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Observable primordial vector modes
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Primordial vector modes describe vortical fluid perturbations in the early Universe. A regular solution exists
with constant nonzero radiation vorticities on superhorizon scales. Baryons are tightly coupled to the photons,
and the baryon velocity only decays by an order unity factor by recombination, leading to an observable CMB
anisotropy signature via the Doppler effect. There is also a I&geode CMB polarization signal, with
significant power on scales larger thbn2000. ThisB-mode signature is distinct from that expected from
tensor modes or gravitational lensing, and makes a primordial vector to scalar mode power 1@itib
detectable. Future observations aimed at detecting large Baaledes from gravitational waves will also be
sensitive to regular vector modes at around this level.
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INTRODUCTION sor modes. On large scales the spectrum is similar to that
from tensors, so observations aimed at detectin@thedes
Observations of the cosmic microwave backgroundfrom primordial tensors will also be sensitive to the large
(CMB) show that the primordial perturbation was almost cer-scale part of the vector power spectrum, but they can easily
tainly dominated by adiabatic scalatensity modes. How- be distinguished by the vector mode power on smaller scales.
ever it is well known that there are several possible scalafhe physical difference between the spectra is that tensor
isocurvature modegl] that could be present at some level. modes rapidly decay as soon as they come inside the hori-
In the presence of a primordial magnetic field, there is als@on, whereas the vortical modes are nearly constant during
an observable vector mode perturbatj@rB] sourced by the radiation domination, decaying only on small scales though
anisotropic stress of the magnetic field. Other sources such &&mping towards the end of tight coupling.
topological defects can also source vector modes. Here we Even more contrived regular modes exist with nonzero
concentrate on the rarely considered regular primordiat ~ Primordial neutrino octopole(or highey [4,6]; however,
SOUI’CGd vector modes, which are nondecaying solutions ofthese have a much weaker observational Signature and are
the perturbation equations in the presence of free streamin@Pt considered further here.
neutrinos[4]. We show that a very small primordial regular
vector mode amplitude could be observable. COVARIANT EQUATIONS
In the absence of an initial large scale radiation vorticity
the vector modes remain in a decaying mode and have es- We consider linear perturbations in a flat Friedmann-
sentially no observational signature. They are therefore ndRobertson-Walker(FRW) universe evolving according to
predicted to be present at any significant level in inflation orgeneral relativity with a cosmological constant, neglect any
other simple models. However, there is a regular mode wittvelocity dispersion of the dark matter and baryon compo-
a nonzero initial photon vorticity, having equal and oppositenents, and approximate the neutrinos as massless. Perturba-
initial photon and neutrino angular momenta such that thdions can be described covariantly in terms of+al3decom-
total large scale angular momentum is zero. This is the vectdposition with respect to some choice of observer veloeity
analogue of the scalar neutrino isocurvature velocity modéwe use natural units, and the signature whege®=1),
discussed in Refl1], and constitutes a valid possible com- following Refs.[7-9]. Projected spatial derivatives orthogo-
ponent of the general primordial perturbation. These velocityhal to u, can be used to quantify perturbations to scalar
modes would have to be excited after neutrino decouplinguantities, for example, the pressure perturbation can be de-
and are hence difficult to produce and somewhat contrivedscribed in terms of Pp where the spatial derivative is
But they remain a logical possibility that can be constrained
by observation, and if observed would be a powerful way to D,=V,—u,uV,. D
rule out most theoretical modelf®r constraints on the scalar
mode see, e.g., Reff5] and references therginThe vector  Conservation of total stress-enerdy?T,,=0 implies an
mode can be detected at very small amplitudes and distineyolution equation for the total heat flup,
guished from the various scalar modes because of its distinct
nonzeroB-mode (curl-like) CMB polarization signal that is 2
absent with only linear scalar modes. gat+ §®Qa+ (p+p)A;—Dap+DPmr,=0, 2
As we show, the vectoB-mode signature is quite differ-
ent from that expected from weak lensing or primordial ten- )
where p is the energy densityg,=u’V,q,, ®=V?au, is
three times the Hubble expansioh,=u,VPu, is the accel-
*Electronic address: antony@cosmologist.info eration, andm,,=T ap, IS the total anisotropic stress. Angle
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brackets around indices denote the projected symmetrigero-order scalar quantitX it follows that D,X=DgX

trace-tree partorthogonal touy). —v,X. For vector modes (PX)Y=0, and it is convenient
We define the vorticity vectof),;=curlu, where for a 5 choose the frame, to be hypersurface orthogonal so that
general tensor curlu,=0 and hence (pX)Y)=0, where the bar denotes
curlXy, .. o= ﬁbcd(alubDde612 ) (3)  evaluation in the zero vorticity frame. From its propagation
equation, vanishing of the vorticity also implies thgf)
and round brackets denote symmetrization. It has the evolu=0, so the zero vorticity frame coincides with the synchro-
tion equation nous gauge. The cold dark matt€€DM) velocity is also
zero in this frame modulo a mode that decays &williereS

: 2 is the scale factor
O+ =00, =curlA gy ISTE ctor. .
a g e a @ It is convenient to expand the vector components in terms

of transverse eigenfunctions of the zero order Laplad@p,
whereS’D?Q, =k?Q, and = denotes the parity. A rank-
tensor may be expanded in terms of rahleigenfunctions
Qj, defined by

and is transverse M ,=0. Remaining quantities we shall
need are the “electricE,, and “magnetic’H ,, parts of the
Weyl tensorC,pcq,

1
Ean= Cacbducudv Hap= 2 ﬂacdfcbeCdueuf 5) + s\t +
Q,KlE K D<a1 s Da|,1QaT|)* (8)
(which are frame invariaptand the sheas,,=D .Uy, . The
Einstein equation and the Bianchi identity give the constraintvhich satisfy
equations
Da|Q+ k (Iz_l) + (9)
1 2 A QoI —1) RA ;"
Daﬂ'ab_ECUHQb_ §Db®_qu:0| -1 S |(2| 1) -1
® 1 1 Q-1 =0k (10)
curlQ, =+ =0 .
DREp— k| = Gy + =Dpp+ =D?map| =0, Aol sTA
3 3 2
Harmonic coefficients are defined by
1
D*Hap— 5 [ (p+p)Qp+curlgy] =0, (6) 2
2 (1) k - (1) K +
0-abZE §UQab' Hab:E ?HQab!
1
Hab_ curl Tapt §D<aQb):0’ K
(M= . Q=2 20Q,, 11
and the evolution equations é 2 Qs 2 E S Qa 1
: 2 1 ) .
Oap™T §®Uab: —Eap— EKWabv Tab = 2 HQ;;b,
K where thek and = dependence of the harmonic coefficients

Eapt OE p=curlH p+ 5 map— (p+P)0ap is suppressed ang = (p;+ p;)v; for each fluid component,

wherev; is the velocity, and the total heat flux is given by
g=2,qg;. The sum is ovek and thex parities. We write the

2

+ g Tab|: (7) baryon velocity simply as.
The equations for the harmonic coefficients in the zero
) K vorticity frame reduce to
Hap+ OH = —curlEgp— Ecurl Tap -

k(o' +2Ho)=— kS,

We use natural units whee=1 and define{zi:é%

A vector like A, may be split into a scalar p and a 1 —
vector partA) whereA,=AL+AY, AL =D, A for some H=350, 2xSq=K’c (12
first order scalai and the vector part is solenoidBPAS"
=0. This extends to a tensor where the vector part is givemwhere the prime denotes a derivative with respect to confor-
by o{})=Dya3, for some first-order solenoidal vectd,. mal time 7, and’H=S0/3 is the comoving Hubble param-

We can choose, to simplify the analysis. At linear order eter. The combination + o (the Newtonian gauge velocity
one can always write,=u; +v,, Whereu is hypersurface is frame invariant, as arer=c+Q and v=v—Q. By
orthogonal and, is first order, so cuti,=curlv,. For a  choosing to consider the zero vorticity frame we have simply
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expedited the derivation of the above frame-invariant equawhere {=3I,/4—9E,/2 is a source from the photon aniso-

tions. Other papers use the Newtonian galg#, in which

o is the vorticity.
The evolution equation for the shear has the solution

kS
K

— -1
=g )47

(13

In the absence of anisotropic stress it therefore decays as
1/S%. However, after neutrino decoupling the neutrinos will
supply an anisotropic source, and solution of this equation

requires a consistent solution for the neutrino evolution.

The baryon velocity is coupled to the photon velocity via

Thomson scattering

Py 4

v +HU=__SrEO'T _U_Ij_ (14)
Pob 3

wherel,=4v,/3, n. is the electron number density aog

is the Thomson scattering cross section.

The photon multipole equatiori8] for vectors become

tropic stress ande-mode polarization, ang,l,=1II,. In
generall; is an angular moment of the fractional photon
density distribution, four times the fractional temperature an-
isotropy. The neutrino multipole equations are analogous but

without the Thomson scattering terms. The solution is

Snorv¥(x)

70 _
||(7]0):4f dne "

(16)

dwv
SI’}__,O’Tj +ka’) dl)((X)

whereW | (x)=1j,(x)/x, j,(X) is a spherical Bessel function,
x=Kk(79— n) and 7 is the optical depth. In the approxima-
tion that the visibility Sn.ore™ 7 is a delta function at last
scatteringn= »* this becomes

£ dw,

4 dy

1 (70)

4 ~ (U+O')\I'|+

70
7* 7
17

— +2)—
ko= ( ) 1= |1} . .
21+1[(1+1) The anisotropy therefore comes predominantly from the
4 8 Newtonian gauge baryon velocity at last scattering, plus an
=—Snoq| || — =810 — =08, | + ==kod), integrated Sachs-Wolf@SW) term from the evolution of the
3 15 15 magnetic Weyl tensoH = ¢/2 along the line of sight.
(15 The vector polarization multipole equatiofsl] become
|
. (1+3)(1+2)I(1-1) e 2 2 po_s - 2 ‘s
| (|+1) (21+1) I+l 21 +1 1-1"" [(1+1) [ Neor| E _1_5§ 12 ]
L (E3)A+2)1(-1) 2
B '+ i~ =——kB_,+ ——KkE =0 18
! I+D32+1) o 2k O i) < 18
|
whereE, and B, describe moments of the (gradient-like o RHv
andB (curl-like) polarization. These equations have solutions v'=- 1R +0O(7¢) (20)
LAY () 2%(x) _ o
E\(79)= |+1 d7] nore ’ dx + X whereR=3p./4p,. The solution is
=1 (0 o~ 20 21
Bi(m0)=~ 71 +1f dySneore Wi(xX)¢. (19 "TT+R @)

Signs of E; and B, here follow the conventions of CMB-
FAST[12] and CAMB[13].

SOLUTIONS

ﬂhereu_O is the initial value. Hence it_o;eo, by decoupling

v has only decayed an order unity factor depending on the
matter and radiation density at the time. On smaller scales
where k7.= (1) before decoupling the perturbations are
damped by photon diffusion, giving a characteristic fall off

At early times the baryons and photons are tightlyin perturbation power on small scales.

coupled, and the opacity, l=8n is large. This means
v,~v, and we can do an expansion 1 that is valid for
e=maxkr. ,Hr,)<1. To lowest order

We now perform a general series expansion in conformal
time for the above equations in the early radiation dominated
era to identify the regular primordial modes. We define
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=0 Ho/VQr, WhereQr=0Q,+Q,, andH, and(); are the 3
Hubble parameter and densiti@s units of the critical den-
sity) today. The Friedmann equation gives
QnH2 1 !
s=—" 2| wp+ i+ 0<T5)). (22)
w 4 0
Defining the ratios R,=Q,/Qgr, R,=Q,/Qr, R, 1t
=0,/Q,,, and keeping lowest-order terms the regular solu-
tion (with zero initial anisotropies fok>2) is ot
- — 15 own _al
o=0g 1_?4Ry—+15 , (23)
4L
— —4R,+5/1 3R, ) (24)
V,=0g - wnl, _5 . . .
Ry 14 16, 107° 107° 107" 107
_ S
— 09 4R, +5 ) ) )
v,=— 7 R , (25 FIG. 1. Evolution of the vector perturbations with wave number
v k=0.02 Mpc' ! (solid lines and k=0.2 Mpc ! (dashed lines
Thick lines are the velocities of the baryoftep), photons(until
| = E: _ E k_”; (26) decoupling same as th_e baryon velogitgnd neutrinogbottom.
2 Py 3R, 0 Thin lines ares (with 0y=1) and the photon anisotropic stress.

o The baryon velocity evolves independently of wave number on
where we have neglected small contributions from thearge scales, but is damped on small scales.

scattering-suppressed photon anisotropic stress. This regular

mode is the vector analogue of the neutrino velocity isocur=ry corresponding expressions for the CMB temperature and

vature mode discussed in Réﬂ.] The Shear; is |n|t|a”y polarization power Spectra are derived in F{Qﬂ
constant on superhorizon scales, supported by the growing To account for the small scale damping effect accurately,
anisotropic stress of the neutrinos. On subhorizon scales igs well as a detailed treatment of recombination and reion-
radiation domlnathn it decays as the neutrino anisotropigzation, we compute sample CMB power spectra numerically
stress starts to oscillate rather than grow. by a straightforward modification of CAMB.The CMB

The photon and neutrino vorticities are constant on supefyower spectra €,) depend onP;. For a scale-invariant
horizon scales during radiation domination. This is consistengpectrum the temperatui®, has a broad peak arounl
with angular momentum conservation because of the energy 5o a5 shown in Fig. 2. The polarization power spectra
redshift. The photpn_ vorticity is tightly couplgd to the bary- peak at around ~500, with theB mode dominating in ac-
ons, so both are initially nearly constant, with some decay,qrqance with Ref[10].
due to drag from the baryons through matter radiation equal- The |arge scale reionization signal is rather similar to that
ity. On superhorizon scales there is only an order unity degypected from tensor modes, and thus experiments aimed at
cay, so a significant large scale photon quadrupole will bgjetecting this tensor signal will also be sensitive to vector
present at low redshift to source a significant additional larggnoges. Incomplete sky coverage only decreases the sensitiv-
scale polarization signal from reionization. The evolution ISity by an order unity factor due tB-B mode mixing[14,15
illustrated in Fig. 1. o ,,2ven on the largest scales. From Fig. 2 we see that the large

On large scales the early ISW contribution IS about 20%;c41eB modes are more sensitive to vector power by a factor
aso decays as the matter becomes more dominant. On sulaf about 100; thus sensitive observations of tensor modes
horizon scales at recombination there is no ISW contributiorwill also be good probes of regular vector modes. To distin-
aso has already decayed. We neglect the effect of magnetiguish the two, one just needs to measure the spectruim at

field generation by the photon-baryon vorticj]. =100 where the tensor power falls but the vector power
continues to grow.
OBSERVATIONS The dominant confusion on small scales is likely to be

from weak lensing of the scalar modes, which peaks on simi-
We now compute the observable CMB anisotropy signaliar scales. There are about®i@bservable modes, so one can
We define the dimensionless first order transverse vecior ideally expect to detect a vector contributierl/1000 of the
such thataglb)=D<aob>, and quantify the primordial vector power of the lensing signal. Since they are of comparable
modes by their power spectruRy, defined so that power for a scale-invariant primordial power spectrum ratio

2y
(ol >—J dinkP;. (27) Ihttp://camb.info/
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10° . : - mordial vector modes if they are approximately Gaussian, at
least until the lensing confusion limit. Magnetic fields also
provide a constant source that partly compensate the damp-
ing, so there is more magnetic field vector mode power on
very small scales. The detailed signature of magnetic fields
in the CMB is discussed in Reff3], including the additional
large scale signature from tensor modes.

Topological defects can also source simBamode spec-
tra [20], though again the spectrum is expected to be non-
Gaussian, andat least for stringsthere is more power on
very small scales due to the continuous sourcing of the vec-
tor modes.

CONCLUSION

We have shown that regular primordial vector modes have
FIG. 2. Typical CMB temperaturéop solid, polarizationEE & Strong Obslervatlon_al signature, allowing the possibility that
(bottom solid, BB (dashed thick and cross-correlationE (dotted; ~ tiny primordial amplitudes can be constrained from future
absolute valugpower spectra for regular vector modes assuming dhigh-sensitivity CMB  polarizationB-mode observations.
primordial vector to scalar power ratie 10~2 and scale-invariant ANy signature of vector modes would be powerful evidence
vector mode spectruii. The other dashed lines show Benode ~ against simple inflationary models. The Plahcatellite
spectrum from weak lensingpeaking atf ~1000), and primordial ~ should be able to detect tf2mode signature from primor-
tensors with initial power ratie-10"* (peaking at¢ ~100). dial vector modes at the 16 level, and distinguish them
from tensor modes by the presence of small scale power. A
full Bayesian joint analysis of all the CMB power spectra
ture perturbatio)) this implies that vector modes with only should be stralghtforward using I\/_Iarkov-Chaln—Mon'ge Carlo
10 © of the scalar power may be detectable irrespective ofMCMC) techniques, anq may give better c_onstramts that
suggested here. Separating a vector mode signal at the 10

the tensor mode amplitude. Since the lensing signal is no .
Gaussian, and in the absence of vector modes is partia:‘lkfvel fror_n that generated by lensing of scalar modes would
' e a serious challenge for the future.

subtractabl¢16—18, the in-principle limit is probably much

lower, though t_hls dep_er_lds on the spectrum of the vector ACKNOWLEDGMENTS
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similar to that from primordial vector mod¢g]. However,

the perturbations are expected to be highly non-Gaussian for
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. —3 . . .
P,/P5 of ~107° (P, is the power in the comoving curva-
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