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Observable primordial vector modes

Antony Lewis*
CITA, 60 St. George Street, Toronto M5S 3H8, Ontario, Canada

~Received 24 March 2004; published 17 August 2004!

Primordial vector modes describe vortical fluid perturbations in the early Universe. A regular solution exists
with constant nonzero radiation vorticities on superhorizon scales. Baryons are tightly coupled to the photons,
and the baryon velocity only decays by an order unity factor by recombination, leading to an observable CMB
anisotropy signature via the Doppler effect. There is also a largeB-mode CMB polarization signal, with
significant power on scales larger thanl;2000. ThisB-mode signature is distinct from that expected from
tensor modes or gravitational lensing, and makes a primordial vector to scalar mode power ratio;1026

detectable. Future observations aimed at detecting large scaleB modes from gravitational waves will also be
sensitive to regular vector modes at around this level.
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INTRODUCTION

Observations of the cosmic microwave backgrou
~CMB! show that the primordial perturbation was almost c
tainly dominated by adiabatic scalar~density! modes. How-
ever it is well known that there are several possible sc
isocurvature modes@1# that could be present at some leve
In the presence of a primordial magnetic field, there is a
an observable vector mode perturbation@2,3# sourced by the
anisotropic stress of the magnetic field. Other sources suc
topological defects can also source vector modes. Here
concentrate on the rarely considered regular primordial~un-
sourced! vector modes, which are nondecaying solutions
the perturbation equations in the presence of free stream
neutrinos@4#. We show that a very small primordial regula
vector mode amplitude could be observable.

In the absence of an initial large scale radiation vortic
the vector modes remain in a decaying mode and have
sentially no observational signature. They are therefore
predicted to be present at any significant level in inflation
other simple models. However, there is a regular mode w
a nonzero initial photon vorticity, having equal and oppos
initial photon and neutrino angular momenta such that
total large scale angular momentum is zero. This is the ve
analogue of the scalar neutrino isocurvature velocity m
discussed in Ref.@1#, and constitutes a valid possible com
ponent of the general primordial perturbation. These velo
modes would have to be excited after neutrino decoup
and are hence difficult to produce and somewhat contriv
But they remain a logical possibility that can be constrain
by observation, and if observed would be a powerful way
rule out most theoretical models~for constraints on the scala
mode see, e.g., Ref.@5# and references therein!. The vector
mode can be detected at very small amplitudes and dis
guished from the various scalar modes because of its dis
nonzeroB-mode~curl-like! CMB polarization signal that is
absent with only linear scalar modes.

As we show, the vectorB-mode signature is quite differ
ent from that expected from weak lensing or primordial te
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sor modes. On large scales the spectrum is similar to
from tensors, so observations aimed at detecting theB modes
from primordial tensors will also be sensitive to the lar
scale part of the vector power spectrum, but they can ea
be distinguished by the vector mode power on smaller sca
The physical difference between the spectra is that ten
modes rapidly decay as soon as they come inside the h
zon, whereas the vortical modes are nearly constant du
radiation domination, decaying only on small scales thou
damping towards the end of tight coupling.

Even more contrived regular modes exist with nonze
primordial neutrino octopole~or higher! @4,6#; however,
these have a much weaker observational signature and
not considered further here.

COVARIANT EQUATIONS

We consider linear perturbations in a flat Friedman
Robertson-Walker~FRW! universe evolving according to
general relativity with a cosmological constant, neglect a
velocity dispersion of the dark matter and baryon comp
nents, and approximate the neutrinos as massless. Pert
tions can be described covariantly in terms of a 311 decom-
position with respect to some choice of observer velocityua
~we use natural units, and the signature whereuaua51),
following Refs.@7–9#. Projected spatial derivatives orthogo
nal to ua can be used to quantify perturbations to sca
quantities, for example, the pressure perturbation can be
scribed in terms of Dap where the spatial derivative is

Da[¹a2uaub¹b . ~1!

Conservation of total stress-energy¹aTab50 implies an
evolution equation for the total heat fluxqa

q̇a1
4

3
Qqa1~r1p!Aa2Dap1Dbpab50, ~2!

where r is the energy density,q̇a[ub¹bqa , Q[¹aua is
three times the Hubble expansion,Aa[ub¹bua is the accel-
eration, andpab[T^ab& is the total anisotropic stress. Angl
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brackets around indices denote the projected symme
trace-tree part~orthogonal toua).

We define the vorticity vectorVa[curlua where for a
general tensor

curlXa1 . . . al
[hbcd(a1

ubDcXd
a2 . . . al )

~3!

and round brackets denote symmetrization. It has the ev
tion equation

V̇a1
2

3
QVa5curlAa ~4!

and is transverse DaVa50. Remaining quantities we sha
need are the ‘‘electric’’Eab and ‘‘magnetic’’Hab parts of the
Weyl tensorCabcd,

Eab[Cacbdu
cud, Hab[

1

2
hacd fCbe

cdueuf ~5!

~which are frame invariant! and the shearsab[D^aub& . The
Einstein equation and the Bianchi identity give the constra
equations

Dasab2
1

2
curlVb2

2

3
DbQ2kqb50,

DaEab2kS Q

3
qb1

1

3
Dbr1

1

2
DapabD50,

DaHab2
1

2
k@~r1p!Vb1curlqb#50, ~6!

Hab2curlsab1
1

2
D^aVb&50,

and the evolution equations

ṡab1
2

3
Qsab52Eab2

1

2
kpab ,

Ėab1QEab5curlHab1
k

2F ṗab2~r1p!sab

1
Q

3
pabG , ~7!

Ḣab1QHab52curlEab2
k

2
curlpab .

We use natural units wherec51 and definek[8pG.
A vector likeAa may be split into a scalar partAa

(0) and a
vector partAa

(1) whereAa5Aa
(0)1Aa

(1) , Aa
(0)5DaA for some

first order scalarA and the vector part is solenoidalDaAa
(1)

50. This extends to a tensor where the vector part is gi
by sab

(1)5D^aSb& for some first-order solenoidal vectorSb .
We can chooseua to simplify the analysis. At linear orde

one can always writeua5ua
'1va , whereua

' is hypersurface
orthogonal andva is first order, so curlua5curlva . For a
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ic

u-

t

n

zero-order scalar quantityX it follows that DaX5Da
'X

2vaẊ. For vector modes (Da
'X)(1)50, and it is convenient

to choose the frameua to be hypersurface orthogonal so th
curlua50 and hence (D̄aX)(1)50, where the bar denote
evaluation in the zero vorticity frame. From its propagati
equation, vanishing of the vorticity also implies thatĀa

(1)

50, so the zero vorticity frame coincides with the synchr
nous gauge. The cold dark matter~CDM! velocity is also
zero in this frame modulo a mode that decays as 1/S whereS
is the scale factor.

It is convenient to expand the vector components in ter
of transverse eigenfunctions of the zero order Laplacian,Qa

6

whereS2D2Qa
65k2Qa

6 and 6 denotes the parity. A rank-,
tensor may be expanded in terms of rank-, eigenfunctions
QAl

6 defined by

QAl

6 [S S

kD l 21

D^a1
. . . Dal 21

Qal &
6 , ~8!

which satisfy

DalQAl 21al

6 5
k

S

~ l 221!

l ~2l 21!
QAl 21

6 , ~9!

curlQAl

6 5
1

l

k

S
QAl

7 . ~10!

Harmonic coefficients are defined by

sab
(1)5(

k

S
sQab

6 , Hab
(1)5(

k2

S2
HQab

6 ,

qa
(1)5( qQa

6 , Va5(
k

S
VQa

6 , ~11!

pab
(1)5( PQab

6 ,

where thek and6 dependence of the harmonic coefficien
is suppressed andqi5(r i1pi)v i for each fluid component
wherev i is the velocity, and the total heat flux is given b
q5( iqi . The sum is overk and the6 parities. We write the
baryon velocity simply asv.

The equations for the harmonic coefficients in the ze
vorticity frame reduce to

k~ s̄812Hs̄ !52kS2P,

H5
1

2
s̄, 2kS2q̄5k2s̄ ~12!

where the prime denotes a derivative with respect to con
mal timeh, andH5SQ/3 is the comoving Hubble param
eter. The combinationv1s ~the Newtonian gauge velocity!

is frame invariant, as ares̄5s1V and v̄5v2V. By
choosing to consider the zero vorticity frame we have sim
8-2
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expedited the derivation of the above frame-invariant eq
tions. Other papers use the Newtonian gauge@10#, in which
s̄ is the vorticity.

The evolution equation for the shear has the solution

s̄5
21

S2 E dh
kS4P

k
. ~13!

In the absence of anisotropic stress it therefore decay
1/S2. However, after neutrino decoupling the neutrinos w
supply an anisotropic source, and solution of this equa
requires a consistent solution for the neutrino evolution.

The baryon velocity is coupled to the photon velocity v
Thomson scattering

v̄81Hv̄52
rg

rb
SnesTS 4

3
v2I 1D ~14!

whereI 154vg/3, ne is the electron number density andsT
is the Thomson scattering cross section.

The photon multipole equations@9# for vectors become

Ī l81k
l

2l 11 F ~ l 12!

~ l 11!
Ī l 112 Ī l 21G

52SnesTS Ī l2
4

3
d l1v̄2

2

15
zd l2D1

8

15
ks̄d l2

~15!
n

-

tly
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wherez[3I 2/429E2/2 is a source from the photon aniso
tropic stress andE-mode polarization, andrgI 25Pg . In
general I l is an angular moment of the fractional photo
density distribution, four times the fractional temperature a
isotropy. The neutrino multipole equations are analogous
without the Thomson scattering terms. The solution is

I l~h0!54Eh0
dhe2tFSnesTv̄C l~x!

1S SnesT

z

4
1ks̄ D dC l~x!

dx G ~16!

whereC l(x)[ l j l(x)/x, j l(x) is a spherical Bessel function
x[k(h02h) and t is the optical depth. In the approxima
tion that the visibilitySnesTe2t is a delta function at las
scatteringh5h* this becomes

I l~h0!

4
'F ~v1s!C l1

z

4

dC l

dx G
h*

12E
h*

h0
dhH8C l .

~17!

The anisotropy therefore comes predominantly from
Newtonian gauge baryon velocity at last scattering, plus
integrated Sachs-Wolfe~ISW! term from the evolution of the
magnetic Weyl tensorH5s̄/2 along the line of sight.

The vector polarization multipole equations@11# become
El
6 81

~ l 13!~ l 12!l ~ l 21!

~ l 11!3~2l 11!
kEl 11

6 2
l

2l 11
kEl 21

6 2
2

l ~ l 11!
kBl

752SnesTS El
62

2

15
z6d l2D ,

Bl
6 81

~ l 13!~ l 12!l ~ l 21!

~ l 11!3~2l 11!
kBl 11

6 2
l

2l 11
kBl 21

6 1
2

l ~ l 11!
kEl

750 ~18!
the
les
re
ff

al
ted
whereEl and Bl describe moments of theE ~gradient-like!
andB ~curl-like! polarization. These equations have solutio

El~h0!5
l 21

l 11E
h0

dhSnesTe2tFdC l~x!

dx
1

2C l~x!

x Gz,

Bl~h0!52
l 21

l 11E
h0

dhSnesTe2tC l~x!z. ~19!

Signs of El and Bl here follow the conventions of CMB
FAST @12# and CAMB @13#.

SOLUTIONS

At early times the baryons and photons are tigh
coupled, and the opacitytc

21[SnesT is large. This means
vg'v, and we can do an expansion intc that is valid for
e[max(ktc ,Htc)!1. To lowest order
s v̄852
RHv̄
11R

1O~tc! ~20!

whereR[3rb/4rg . The solution is

v̄'
v̄0

11R
~21!

wherev̄0 is the initial value. Hence ifv̄0Þ0, by decoupling

v̄ has only decayed an order unity factor depending on
matter and radiation density at the time. On smaller sca
where ktc5O(1) before decoupling the perturbations a
damped by photon diffusion, giving a characteristic fall o
in perturbation power on small scales.

We now perform a general series expansion in conform
time for the above equations in the early radiation domina
era to identify the regular primordial modes. We definev
8-3
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[VmH0 /AVR, whereVR5Vg1Vn , andH0 andV i are the
Hubble parameter and densities~in units of the critical den-
sity! today. The Friedmann equation gives

S5
VmH 0

2

v2 S vb1
1

4
v2t21O~t5! D . ~22!

Defining the ratios Rn[Vn /VR , Rg[Vg /VR , Rb
[Vb /Vm , and keeping lowest-order terms the regular so
tion ~with zero initial anisotropies forl .2) is

s̄5s̄0S 12
15

2

vh

4Rn115D , ~23!

v̄g5s̄0

4Rn15

Rg
S 1

4
2

3Rb

16Rg
vh D , ~24!

v̄n52
s̄0

4

4Rn15

Rn
, ~25!

I 2[
Pn

rn
52

2

3

kh

Rn
s̄0 , ~26!

where we have neglected small contributions from
scattering-suppressed photon anisotropic stress. This re
mode is the vector analogue of the neutrino velocity isoc
vature mode discussed in Ref.@1#. The shears̄ is initially
constant on superhorizon scales, supported by the grow
anisotropic stress of the neutrinos. On subhorizon scale
radiation domination it decays as the neutrino anisotro
stress starts to oscillate rather than grow.

The photon and neutrino vorticities are constant on sup
horizon scales during radiation domination. This is consist
with angular momentum conservation because of the en
redshift. The photon vorticity is tightly coupled to the bar
ons, so both are initially nearly constant, with some de
due to drag from the baryons through matter radiation eq
ity. On superhorizon scales there is only an order unity
cay, so a significant large scale photon quadrupole will
present at low redshift to source a significant additional la
scale polarization signal from reionization. The evolution
illustrated in Fig. 1.

On large scales the early ISW contribution is about 2
as s̄ decays as the matter becomes more dominant. On
horizon scales at recombination there is no ISW contribut
ass̄ has already decayed. We neglect the effect of magn
field generation by the photon-baryon vorticity@4#.

OBSERVATIONS

We now compute the observable CMB anisotropy sign
We define the dimensionless first order transverse vectosa

such thatsab
(1)5D ^asb& , and quantify the primordial vecto

modes by their power spectrumPs̄ defined so that

^us̄au2&5E d ln kPs̄ . ~27!
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The corresponding expressions for the CMB temperature
polarization power spectra are derived in Ref.@3#.

To account for the small scale damping effect accurat
as well as a detailed treatment of recombination and re
ization, we compute sample CMB power spectra numerica
by a straightforward modification of CAMB.1 The CMB
power spectra (Cl) depend onPs̄ . For a scale-invariant
spectrum, the temperatureCl has a broad peak around,
;50, as shown in Fig. 2. The polarization power spec
peak at around,;500, with theB mode dominating in ac-
cordance with Ref.@10#.

The large scale reionization signal is rather similar to t
expected from tensor modes, and thus experiments aime
detecting this tensor signal will also be sensitive to vec
modes. Incomplete sky coverage only decreases the sen
ity by an order unity factor due toE-B mode mixing@14,15#
even on the largest scales. From Fig. 2 we see that the l
scaleB modes are more sensitive to vector power by a fac
of about 100; thus sensitive observations of tensor mo
will also be good probes of regular vector modes. To dist
guish the two, one just needs to measure the spectrum,
*100 where the tensor power falls but the vector pow
continues to grow.

The dominant confusion on small scales is likely to
from weak lensing of the scalar modes, which peaks on si
lar scales. There are about 106 observable modes, so one ca
ideally expect to detect a vector contribution;1/1000 of the
power of the lensing signal. Since they are of compara
power for a scale-invariant primordial power spectrum ra

1http://camb.info/

FIG. 1. Evolution of the vector perturbations with wave numb
k50.02 Mpc21 ~solid lines! and k50.2 Mpc21 ~dashed lines!.
Thick lines are the velocities of the baryons~top!, photons~until
decoupling same as the baryon velocity!, and neutrinos~bottom!.

Thin lines ares̄ ~with s̄051) and the photon anisotropic stres
The baryon velocity evolves independently of wave number
large scales, but is damped on small scales.
8-4
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Px /Ps̄ of ;1023 (Px is the power in the comoving curva
ture perturbation!, this implies that vector modes with onl
1026 of the scalar power may be detectable irrespective
the tensor mode amplitude. Since the lensing signal is n
Gaussian, and in the absence of vector modes is part
subtractable@16–18#, the in-principle limit is probably much
lower, though this depends on the spectrum of the ve
modes. The ultimate limit may be around the level whe
there should be a sourced vector mode signal from sec
order effects@19#.

Primordial magnetic fields source aB-mode spectrum
similar to that from primordial vector modes@2#. However,
the perturbations are expected to be highly non-Gaussian
magnetic fields and hence easily distinguishable from

FIG. 2. Typical CMB temperature~top solid!, polarizationEE
~bottom solid!, BB ~dashed thick!, and cross-correlationTE ~dotted;
absolute value! power spectra for regular vector modes assumin
primordial vector to scalar power ratio;1023 and scale-invariant
vector mode spectrumPs̄ . The other dashed lines show theB-mode
spectrum from weak lensing~peaking at,;1000), and primordial
tensors with initial power ratio;1021 ~peaking at,;100).
. R

C.

ys
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mordial vector modes if they are approximately Gaussian
least until the lensing confusion limit. Magnetic fields al
provide a constant source that partly compensate the da
ing, so there is more magnetic field vector mode power
very small scales. The detailed signature of magnetic fie
in the CMB is discussed in Ref.@3#, including the additional
large scale signature from tensor modes.

Topological defects can also source similarB-mode spec-
tra @20#, though again the spectrum is expected to be n
Gaussian, and~at least for strings! there is more power on
very small scales due to the continuous sourcing of the v
tor modes.

CONCLUSION

We have shown that regular primordial vector modes h
a strong observational signature, allowing the possibility t
tiny primordial amplitudes can be constrained from futu
high-sensitivity CMB polarizationB-mode observations
Any signature of vector modes would be powerful eviden
against simple inflationary models. The Planck2 satellite
should be able to detect theB-mode signature from primor
dial vector modes at the 1023 level, and distinguish them
from tensor modes by the presence of small scale powe
full Bayesian joint analysis of all the CMB power spect
should be straightforward using Markov-Chain-Monte Ca
~MCMC! techniques, and may give better constraints t
suggested here. Separating a vector mode signal at the26

level from that generated by lensing of scalar modes wo
be a serious challenge for the future.
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