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Multipole vectors: A new representation of the CMB sky and evidence for statistical anisotropy
or non-Gaussianity at 2ÏøÏ8
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We propose a novel representation of cosmic microwave anisotropy maps, where each multipole order, is
represented by, unit vectors pointing in directions on the sky and an overall magnitude. These ‘‘multipole
vectors and scalars’’ transform as vectors under rotations. Like the usual spherical harmonics, multipole vectors
form an irreducible representation of the proper rotation groupSO(3). However, they are related to the
familiar spherical harmonic coefficientsa,m in a nonlinear way and are therefore sensitive to different aspects
of the cosmic microwave background~CMB! anisotropy. Nevertheless, it is straightforward to determine the
multipole vectors for a given CMB map and we present an algorithm to compute them. A code implementing
this algorithm is available at http://www.phys.cwru.edu/projects/mpvectors/. Using the Wilkinson Microwave
Anisotropy Probe~WMAP! full-sky maps, we perform several tests of the hypothesis that the CMB anisotropy
is statistically isotropic and Gaussian random. We find that the result from comparing the oriented area of
planes defined by these vectors between multipole pairs 2<,1Þ,2<8 is inconsistent with the isotropic
Gaussian hypothesis at the 99.4% level for the internal linear combination map and at 98.9% level for the
cleaned map of Tegmarket al.A particular correlation is suggested between the,53 and,58 multipoles, as
well as several other pairs. This effect is entirely different from the now familiar planarity and alignment of the
quadrupole and octupole: while the aforementioned is fairly unlikely, the multipole vectors indicate correla-
tions not expected in Gaussian random skies that make them unusually likely. The result persists after account-
ing for pixel noise and after assuming a residual 10% dust contamination in the cleaned WMAP map. While the
definitive analysis of these results will require more work, we hope that multipole vectors will become a
valuable tool for various cosmological tests, in particular those of cosmic isotropy.

DOI: 10.1103/PhysRevD.70.043515 PACS number~s!: 98.80.Es, 02.30.Px, 95.75.Pq
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I. INTRODUCTION

A great deal of attention is currently being devoted
examining the power spectrum of the cosmic microwa
background~CMB! temperature anisotropiesDT(V)/T ex-
tracted from the Wilkinson Microwave Anisotropy Prob
~WMAP! @1–4# and other CMB data@5–11#. Decomposing
the temperature in spherical harmonics

DT~V!

T
5(

,m
a,mY,m~V! ~1!

and deducing the angular power spectrum

C,[
1

2,11 (
m52,

,

ua,mu2 ~2!

as a function of, allows cosmologists to fit the paramete
of cosmological models to unprecedented accuracy, poss
even probing the physics of the inflationary epoch. Simila
the power spectrum of the temperature-polarization cro
correlation function is teaching us about the physics of
reionization of the universe, presumably by the first gene
tion of stars; and the power spectrum of the temperatu
galaxy cross-correlation function is teaching us about
1550-7998/2004/70~4!/043515~13!/$22.50 70 0435
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statistical distribution of matter in the universe. But does
only physics lie in the angular power spectra? Is the s
statistically isotropic, so that any variation in the values
the individual multipole momentsa,m with fixed , repre-
sents only statistical fluctuations, or could there be sub
correlations between thea,m? If the sky is statistically iso-
tropic, is it Gaussian—are thea,m of each fixed, drawn
from a Gaussian distribution of variance that is only, de-
pendent? Are there other interesting deviations from the s
plest picture?

In the standard inflationary cosmology the answer to
question just posed is that in the linear regime, i.e., at low,,
thea,m are realizations of Gaussian random variables of z
mean, with variances that depend only on, ~statistical isot-
ropy!. This paradigm is so strongly believed, because of b
considerable observational evidence and considerable t
retical prejudice, that relatively little~though some, e.g.
@12#! attention has been paid to searches for deviations f
statistical isotropy.

In this paper we set out to search for one particu
deviation—special directions on the sky. We do this by fi
constructing from each multipole moment

DT,~V!

T
5 (

m52,

,

a,mY,m~V! ~3!
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of the CMB sky a set of, unit vectors$v̂ (,,i )u i 51, . . . ,,%
and a scalarA(,) that completely characterize that multipol
We then examine the correlations between pairs of such
of vectors $v̂ (,1 ,i 1)% and $v̂ (,2 ,i 2)%, comparing them with
Monte Carlo simulations of CMB skies with statistically is
tropic Gaussian randoma,m . If the sky is statistically iso-
tropic with Gaussian random a,m , ^a,ma* ,8m8&
5C,d,,8dmm8 . Since the$v̂ (, i ,i i )% depend only on thea, im

,

$v̂ (,1 ,i 1)%, and$v̂ (,2 ,i 2)% should be uncorrelated for,1Þ,2.
We constructed these vectors for 2<,<8 for a set of

full-sky maps including the WMAP internal linear combin
tion ~ILC! @1# and the WMAP map as cleaned by Tegma
et al. @13#. We applied four statistical tests to the set of ve
tors from these full-sky maps. We find that one of the test
inconsistent with the hypothesis of statistical isotropy a
Gaussianity at the 99% confidence level. This work comp
ments recent work by Eriksenet al. @14# looking at north-
south asymmetries inN-point functions, work by Park@15#
looking at genus curves, work by Hajianet al. @16# using the
so-calledk, test @17# which finds violations of statistica
isotropy for 15<,<45, and work by Vielvaet al. @18# using
the spherical mexican hat wavelet technique, where t
found a strong signal for non-Gaussianity.

II. MOTIVATION FOR A NEW TEST OF STATISTICAL
ISOTROPY AND GAUSSIANITY

Tests of non-Gaussianity, as opposed to statistical i
ropy, have a long and rich history. Motivation for those te
originally came from the realization that non-Gaussianity i
signature of structure formation by topological defects@19#,
while inflation predicts Gaussian CMB anisotropies. Sub
quently it has been realized that, even if inflation seeded
structure in the universe, CMB non-Gaussianity may
present as a signature of features in the inflationary mo
@20–24#. Finally, late-time processes in the universe will i
duce non-Gaussianity on small scales@25–30#. The tests of
non-Gaussianity include studies of the bispectrum and sk
ness @31–37#, trispectrum @38,39#, Minkowski functionals
and the genus statistic@15,40–44#, spherical wavelets
@18,45,46#, a combination of these@47–51#, and many other
methods@52–55#. Of particular interest was the claim fo
non-Gaussianity in the Cosmic Background Explo
~COBE! four-year data@56#, but this was shown to be a
artifact of a particular known systematic@57#. Nevertheless,
efforts to test the Gaussianity of the CMB continue, a
most, though not all~e.g.,@15,58#!, have so far given result
entirely in agreement with the Gaussian hypothesis.

As these previous studies have shown, it is a challeng
test such fundamental assumptions as statistical isotropy
Gaussianity without theoretical direction on what deviatio
to expect—they can be violated in a very large number
ways, each of which could easily be hidden from the test t
was actually performed. An instructive example is the effe
on the CMB of any nontrivial topology of the universe, fo
example a universe which is a three-torus. If the length sc
of cosmic topology~for example, the length of the smalle
nontrivial closed curve! is sufficiently short, this will mani-
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fest itself in various two-point temperature-temperature c
relations, such as the so-called ‘‘circles-in-the-sky’’ signatu
@59#: if there are closed paths shorter than the diameter of
last scattering surface, then the last scattering surface
self-intersect along circles. These circles can be viewed
an observer from both sides—from one side in one direct
on the sky, and from the other side in some other directi
The temperature as a function of location around the circle
seen from the two sides will be very strongly correlated. O
can therefore search for such pairs of circles. A definit
direct search is currently being conducted by the origi
proponents of the signature. However, for us this exam
serves to show precisely why it is so difficult to perform
comprehensive test of statistical isotropy and Gaussian
The topology-induced temperature correlations are str
only on or very near the matched circle pairs; thus the m
tipole coefficientsa,m , and other statistics that are weighte
averages over the entire sky, would be poor tools for sea
ing for such circles. Thus testing these phenomena is in
a matter of continually searching for~preferably! physically
motivated ways in which they manifest.

The CMB data itself may provide motivation for searc
ing for deviations from the standard inflationary predictio
~of statistical isotropy and Gaussianity!, especially at large
angular scales. An absence of large angular scale correla
in the CMB sky relative to the inflationary prediction wa
first noted by COBE Differential Microwave Radiomete
~DMR! in their first year data@60#, which showed what was
reported as an anomalously low quadrupoleC2. Because the
cosmic variance in the quadrupole is quite large, it w
widely dismissed as a statistical anomaly. The result p
sisted and was strengthened by the COBE DMR four-y
data @61#. The recent WMAP analysis shows a marked a
sence of power on scales extending from 60° to 180° to
extent that cannot be explained solely by a low quadrup
@4#. Note that the estimator used by the WMAP team h
been shown to be nonoptimal when applied to incompl
maps of the sky. When an alternative estimator is app
@13,62# or a full-sky map is analyzed@1# the discrepancy
becomes less significant.

An absence of power on large scales is expected in s
topologically nontrivial universes. In a compact univer
there is a spectral cutoff of long wavelength modes, lead
to a suppression of power near this cutoff. One method
looking for such a cutoff is the ‘‘circles-in-the-sky’’ signatur
as noted above. In general, such compact topologies w
lead to ‘‘special directions’’ in the universe. To search f
special directions we need a method of defining our dir
tions. Our definition, as discussed in the next section, is
decompose the,th multipole into, unit vectors; these vec
tors are then studied to search for peculiar alignments. Th
vectors contain the full information of thea,m but encode it
in a different way that allows one to more easily look f
special directions. In particular, the components of these v
tors are nonlinear combinations of thea,m ~for a fixed,).

III. DEFINING ‘‘SPECIAL DIRECTIONS’’

One attempt to look at the statistical isotropy of the CM
on large scales was the analysis of the quadrupole and o
5-2
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MULTIPOLE VECTORS: A NEW REPRESENTATION OF . . . PHYSICAL REVIEW D 70, 043515 ~2004!
pole moments of the WMAP sky by de Oliveira–Costaet al.
@63#. They found that the quadrupole was unusually sm
and that the octupole was unusually planar and unusu
aligned with the quadrupole. They identified an axis w
each multipole by finding, for each,, the axisn̂, around
which the angular momentum dispersion

K DT

T
~ n̂,!U~ n̂,•5L!2UDT

T
~ n̂,!L 5 (

m52,

,

m2ua,m~ n̂,!u2 ~4!

is maximized.@Herea,m(n̂,) are the spherical harmonic co
efficients of the CMB map in a coordinate system with itsz

axis in then̂, direction.# They found that then̂2 and then̂3
directions,

n̂25~20.1145,20.5265,0.8424!

and

n̂35~20.2578,20.4207,0.8698! ~5!

are unusually aligned—their dot product is 0.9838. This
only a 1 in 62chance of happening ifn̂2 and n̂3 are uncor-
related and the dot product is uniformly distributed on t
sky. De Oliveira–Costaet al. @63# point out that these value
of n̂2 and n̂3 could be explained by a universe which has
compact direction parallel ton̂2 and n̂3 and of length ap-
proximately equal to the horizon radius; but this is ruled o
by other tests, including the absence of matched circle
these directions.

It has been noticed that the quadrupole and the octupo
the cleaned WMAP skies remain dominated by a hot an
cold spot in the Galactic plane—one in the general direct
of the Galactic center, and the other in the general direc
of the molecular cloud in Taurus. This raises the possibi
that the observed correlation is dominated by foregrou
contamination. One would like therefore to examine in mo
detail the correlations between thea,m corresponding to pos
sible preferred directions, or correlations in directions b
tween the various multipoles.

The question then is how best to associate directions w
the CMB multipoles. De Oliveira–Costaet al. @63# associ-
ated only one direction with each multipole, correspond
to two real degrees of freedom, whereas thea,m of a given,
have 2,11 real degrees of freedom. The,th multipole
f ,(V) in the multipole expansion of a functionf (V) on a
sphere

f ~V![(
,

f ,~V![(
,m

a,mY,m~V! ~6!

can be fully represented by a symmetric, traceless ran,
tensorFi 1 , . . . ,i ,

( i k51,2,3). Such a tensor can readily b

constructed from the outer product of, unit vectors,v̂ (,,i ),
and a single scalar,A(,). ~Strictly speaking these are headle
vectors, i.e., points on the projective two-sphere. The sign
each vector can always be absorbed by the scalar. The si
the scalar takes on physical significance when we defin
04351
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convention for the multipole vectors, such as that all of th
point into the northern hemisphere.!

A. Vector decomposition

The correspondence between these vectors and the u
multipole coefficients can readily be seen for a dipole.
dipole defines a direction in space—the line along which
dipole lies. The standard correspondence is

Y1,0→ ẑ, Y1,61→7
1

A2
~ x̂6 i ŷ !. ~7!

Thus

(
m521

1

a1,mY1,m~V!

5A(1)~ v̂x
(1,1) ,v̂y

(1,1) ,v̂z
(1,1)!•~sinu cosf,

sinu sinf,cosu)[A(1)v̂ (1,1)
•ê, ~8!

whereê is the radial unit vector in spherical coordinates. F
a real valued function, the vector’s components are found
be

vx
(1,1)52A2a1,1

re , vy
(1,1)5A2a1,1

im , vz
(1,1)5a1,0, ~9!

and A(1)5uvW (1,1)u ~which can then be used to construct t
unit vectorv̂ (1,1)).

To extend this to the,th multipole, we want to write
heuristically that

(
m52,

,

a,mY,m~V!'A(,)~ v̂ (,,1)
•ê!•••~ v̂ (,,,)

•ê!, ~10!

for each of the, directions given byê. This cannot be quite
right since the product of, vectors would contain compo
nents not only of angular momentum,, but also of angular
momenta,22, ,24, etc. However, a simple power coun
ing shows that, once the reality conditions have been
posed ona,m , , unit vectors and a scalar contain the sam
number of degrees of freedom as doesa,m , namely, (2,
11) real degrees of freedom. We therefore expect that
components of lower angular momentum found in the rig
hand side of Eq.~10! are not independent. We shall see th
explicitly in Eqs.~13! and~15! below, and more elegantly in
Sec. III B. For now, let us treat Eq.~10! as motivation and
proceed.

Instead of solving Eq.~10! directly for all v̂ (,,i ) we peel
off one vector at a time, finding first a vectorv̂ (,,1) ~with
componentsv̂ i 1

(,,1)), and a rank,21 symmetric, traceless

tensora(,,1). We can think ofi 1 as running overx, y, andz,
or more conveniently over21, 0, and 1. Similarly, we can
write a(,,1) as a 3333•••33 @(,21) terms# matrix
ai 2••• i ,

(,,1) ; however, this hides its traceless, symmetric nat

and makes it appear thata(,,1) has far more independen
degrees of freedom than it actually does. It is therefore m
instructive to write the 2,21 independent components a
a,21,m

(,,1) , with m52(,21), . . . ,(,21).
5-3
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We repeat this procedure recursively on the remain
symmetric, traceless tensor from the previous step. Thus
next peel froma(,,1) a vectorv̂ (,,2) and a rank,22 sym-
metric, traceless tensora(,,2), and repeat until we have foun
the full set of, vectors$v̂ (,,i )u i 51, . . . ,,%. The scalarA(,)

is found in the last step when the second to last vec

v̂ (,,,21) is peeled off. In this case the remaining symmetr
traceless tensora(,,,21) is rank 1, and is just the product o
the final unit vectorv̂ (,,,) and the scalarA(,).

To apply the recursive procedure outlined above we
the following recursion relation to peel off one vector:

Y1,jY,21,m2 j5Cj
(,,m)Y,m1D j

(,,m)Y,22,m ~11!

for j 521,0,1, where

C0
(,,m)5A 3

4p
A ~,2m!~,1m!

~2l 21!~2l 11!
,

C61
(,,m)5A 3

8p
A~,6m21!~,6m!

~2l 21!~2l 11!
,

D0
(,,m)5A 3

4p
A~,2m21!~,1m21!

~2l 23!~2l 21!
,

~12!

D61
(,,m)52A 3

8p
A~,7m21!~,7m!

~2l 23!~2l 21!
.

For a given, we peel off a vector using

(
m52,

,

a,mY,m5 (
m̃52(,21)

(,21)

(
j 521

1

v̂ j
(,,1)a,21,m̃

(,,1)
Y1,jY,21,m̃

2 (
m852(,22)

,22

bm8
(,,1)Y,22,m8 ~13!

and that

uv̂ (,,1)u51. ~14!

The second term on the right-hand side of Eq.~13!, is re-
quired to guarantee that this rank,21 tensor is traceless. In
other words, it subtracts off the trace. We can see this
necessary from theY,22,m term in the recursion relation~11!.
The presence of this,22 term is as anticipated in the dis
cussion following Eq.~10!.

Plugging in the recursion relation~11! yields 4,21
coupled quadratic equations that must be solved for the,

21 unknowns:v̂ j
(,,1) , a,21,m2 j

(,,1) , andbm8
(,,1) . From them we

find
04351
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j 521

1

Cj
(,,m)v̂ j

(,)a,21,m2 j
(,,1) ~2l 11 equations!,

bm8
(,,1)

5 (
j 521

1

D j
(,,m8)v̂ j

(,)a,21,m82 j
(,,1)

~2l 23 equations!,

~15!

uv̂ (,)u51 ~1 equation!.

These equations are easily solved numerically, though
Appendix A.

Notice that, again as anticipated below Eq.~10!, the com-
ponentsbm8

(,,1) are not relevant for further calculations; the

are functions of thev̂ i 1
(,,1) anda,21,m2 i 1

(,,1) and are not indepen

dent. This means that the vectorsv,,i we calculate are indeed
unique as claimed.

The general procedure now follows: from the givena,m

we constructv̂ (,,1) anda,21,m
(,,1) . We continue usinga,21,m

(,,1) to

find v̂ (,,2) anda,22,m
(,,2) . This is repeated until we finda2,m

(,,,22)

which gives the final two vectorsv̂ (,,,21) and v̂ (,,,). The
result of this procedure for the CMB is shown in Fig. 1.

B. Alternative derivation of vectors

In practice we have implemented the procedure descri
above~Appendix A! and solved the set of equations~15! for
the analysis we have performed. A mathematically more
phisticated decomposition procedure that leads to the s
set of vectors without the need to calculate thebm8 begins by
recognizing that

f ,~V!5Fi 1••• i ,

(,) @ êi 1êi 2
•••êi ,#[Fi 1••• i ,

(,) O i 1••• i , ~16!

5A(,)@ v̂ i 1
(,,1)v̂ i 2

(,,2)
••• v̂ i ,

(,,,)#@ êi 1êi 2
•••êi ,#.

Here ê is again a radial unit vector, there is an implicit su
over repeated indices (i 1 , . . . ,i ,), and the square bracket
represent the symmetric trace-free part of the outer prod
For a general symmetric tensorS( i 1••• i ,)5Si 1••• i ,,

FIG. 1. ~Color online! An image of the sky as decomposed in
the ,52 –8 multipole moments based on the first year WMA
results @1# as cleaned by Tegmarket al. @13#. Shown are the
(ma,mY,m and the vectors calculated for these multipoles. The v
tors are drawn as ‘‘sticks’’ since they defined only up to a sign~thus
they are ‘‘headless’’ vectors!. See http://www.phys.cwru.edu
projects/mpvectors/for a full sized color picture.
5-4
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@Si 1 . . . i ,#[
~,! !2

~2, !! (
k50

b,/2c
~21!k

~2,22k!!

k! ~,2k!! ~,22k!!

3d ( i 1i 2 . . . d i 2k21i 2kSi 2k11••• i ,)p1•••p2k

3dp1p2
•••dp2k21p2k

, ~17!

where there is an implicit sum over the repeated indi
p1 , . . . ,p2k , and () denotes symmetrization of the enclos
indices:

T( i 1••• i ,)[
1

,! (
pPU,

Ti p(1)••• i p(,). ~18!

(U, is the group of permutations of the numbers 1, . . . ,,.!
The particular combination

O i 1••• i ,[@ êi 1êi 2
•••êi ,# ~19!

simplifies considerably becauseêaêbdab51,

O i 1••• i ,5
~,! !2

~2, !! (
k50

b,/2c F ~21!k
~2,22k!!

k! ~,2k!! ~,22k!!

d ( i 1i 2
•••d i 2k21i 2kêi 2k11

•••êi ,)G . ~20!

More importantly, it is easily calculable because of the rec
sion relation

@ êi 1
•••êi ( j 11)#5@ êi 1@ êi 2

•••êi ( j 11)##. ~21!

Similarly, the individualv̂ (,,i ) can be peeled off one by on
by recursion:

Fi 1••• i ,

(,) 5@ v̂ i 1
(,,1) ,ai 2••• i ,

(,,1) #

5@ v̂ i 1
(,,1) ,@ v̂ i 2

(,,2) ,ai 3••• i ,

(,,2) ##

5A(,)@ v̂ i 1
(,,1)v̂ i 2

(,,2)
••• v̂ i ,

(,,,)# ~22!

assuming that theFi 1••• i ,

(,) can be calculated. But these a

easily represented as integrals over the sky~just as are the
a,m):

Fi 1••• i ,

(,) 5
~2,11!~2, !!

~4p!2,~,! !2 ES2

DT~V!

T
O i 1••• i ,dV. ~23!

Alternatively, there is an explicit~analytic! relation between
theY,m and theOi 1••• i ,, so thatFi 1••• i ,

(,) can be expressed i

terms ofa,m . Thus, givenF (,) calculated from the sky, Eq
~23! is a sequence of 2,11 coupled quadratic equations fo
the v̂ (,,i ) ~andA(,)) analogous to Eq.~13!, in which theb(,,i )

have been eliminated.
04351
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IV. SOURCES OF ERROR AND ACCURACY IN
DETERMINING THE MULTIPOLE VECTORS

With the actual full-sky CMB maps, such as those that
use, the main source of error is pixel noise which accou
for the imperfections in measured temperature on the s
Pixel noise depends on a variety of factors, one of which
the number of times a given patch has been observed. P
noise for WMAP is reported asspix5s0 /ANobs, wheres0 is
noise per observation andNobs is the number of observation
per given pixel@64#. For the WMAPV-band map the re-
ported noise per pixel iss053.11 mK and the variation in
the number of observations of each pixel is moderat
small. Nevertheless, it is important to account for the inh
mogeneous distribution of pixel noise, as we do in our f
analysis in Secs. V and VI~where we find that the inhomo
geneity of the pixel noise does not significantly change
main results!. For the purposes of illustrating the accuracy
determining the multipole vectors; however, we assum
homogeneous noise with the measured mean value ofNobs
5490 observations per pixel.

The calculation of the pixel noise is straightforward. F
equal-area pixels~as in HEALPIX @65#! subtending a solid
angleV̂pix and assuming a full-sky map we have

a,m5E dVY,m* ~V!DT~V!

5V̂pix(
V̂

Y,m* ~V̂ !DT~V̂ ! ~24!

so that, usingspix
2 [^@DT(V̂)#2&'const, we have

^a,ma,8m8
* &5(

V̂

V̂pixY,m* ~V̂ !(
V̂8

V̂pixY,8m8~V̂8!

3^DT~V̂ !DT* ~V̂8!&

5V̂pix(
V̂

V̂pixY,m* ~V̂ !Y,m* ~V̂ !

3^~DT~V̂ !!2&d,,8dmm8

.V̂pixspix
2 d,,8dmm8 . ~25!

Using the V-band map parameters, the pixel noi

for NSIDE5512 HEALPIX resolution is AV̂pixspix52.7
31024 mK. We adopt this quantity as an estimate of pix
noise forall maps we use.

A. Accuracy in determining the multipole vectors

We would like to find how accurately the multipole ve
tors are determined. To do this, we add a Gauss
distributed noise with standard deviationsa,m

to eacha,m ,

a,m→a,m1N~0,sa,m

2 !, ~26!
5-5
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where N(m,s2) denotes a Gaussian random variate w
meanm and variances2. We repeat this many times in orde
to determine the distribution in the noise-added multip
vectors and their spherical coordinates (u,f).

The mean and standard deviations ofu andf, as a func-
tion of sa,m

~which is in units of WMAPV-band pixel noise

AV̂pixspix) are shown in Fig. 2. The two panels show t
effects on the,52 and ,58 vectors. Note that both bia
and scatter inu andf can be read off this figure. It is clea
that the vectors are not extremely sensitive to the accurac
the a,m , and are determined to about61° for noise, which
is of the order of the pixel noise. If the noise is much larg

however (sa,m
*10AV̂pixspix), the accuracy in multipole

vectors deteriorates to the point that they are probably
useful as a representation of the CMB anisotropy. Accur
determination ofu andf is expected to be especially impo
tant for higher multipoles, where the number of vectors
large.

V. TESTS OF NON-GAUSSIANITY WITH MULTIPOLE
VECTORS

Now that we have developed a formalism to compute
multipole vectors, we would like to test the WMAP map f
any unusual features. Clearly, there does not exist a test

FIG. 2. The accuracy inu ~filled circles! andf ~empty squares!
of a chosen multipole vector as a function of noise added to
a,m . Both the mean value and scatter in the shift of the angles
shown. Thex-axis value of unity corresponds to the scatter in t
a,m due to WMAPV-band pixel noise.
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simply checks for the ‘‘weirdness’’ of any particular repr
sentation of the map, in this case the multipole vectors.
can test only for features that we specify in advance. H
our general goal is to test the statistical isotropy of the m
and search for any preferred directions.

Our motivation to devise and apply tests of statistical is
ropy comes from findings that the quadrupole and octup
moments of WMAP maps lie in the plane of the Galaxy
discussed previously. One could in principle extend this a
ask whether any higher multipoles lie preferentially in th
~or any other! plane, and devise a statistic to test for th
alignment. Clearly, the number of tests one can devise is v
large. Here we would like to be as general as possible
choose tests that suit our multipole vector representation.
choose to consider the dot product of multipole vectors
tween two different multipoles as described below.

A. Vector product statistics

A dot product of two unit vectors is a natural measure
their closeness. One test we consider is dot products betw
all vectors from the multipole,1 with those from the multi-
pole,2. Since our vectors are really ‘‘sticks’’~i.e., each vec-
tor is determined only up to a flipv̂→2 v̂), we always use
the absolute value of a dot product. Furthermore, motiva
by the fact that the WMAP quadrupole and octupole a
located in the same plane and that their axes of symmetry
only about 10° from each other@63#, we also consider using
the cross products of multipole vectors of any given mu
pole: if the vectors of,1 and,2 lie in a preferred plane, thei
respective cross products are oriented near a common
perpendicular to the plane. Dot products of these two cr
products would then be near unity.

We generalize this argument and make the following fo
choices for our statistic, which we shall callS. For any two
multipoles,1 and,2, we consider the following.

~1! Dot products of multipole vectorsuv̂ (,1 ,i )
• v̂ (,2 , j )u,

where,1Þ,2 , v̂ (,1 ,i ) is the i th vector from the,1 multi-
pole, andv̂ (,2 , j ) is the j th vector from the,2 multipole. We
call this statistic ‘‘vector-vector.’’ For a given,1 and ,2,
there are clearlyM5,1,2 distinct products. This statistic
tests the orientation of vectors.

~2! Dot products uv̂ (,1 ,i )
•( v̂ (,2 , j )3 v̂ (,2 ,k))u/uv̂ (,2 , j )

3 v̂ (,2 ,k))u where v̂ (,1 ,i ) comes from the,1 multipole and

v̂ (,2 , j ) and v̂ (,2 ,k) from the ,2 multipole. We call this sta-
tistic ‘‘vector-cross.’’ For a given,1 and,2 and j Þk, there
are M5,1,2(,221)/2 distinct products. This statistic tes
the orientation of a vector with a plane.

~3! Dot products u( v̂ (,1 ,i )3 v̂ (,1 , j ))•( v̂ (,2 ,k)

3 v̂ (,2 ,m))u/@ u( v̂ (,1 ,i )3 v̂ (,1 , j ))uu( v̂ (,2 ,k)3 v̂ (,2 ,m))u#
where v̂ (,1 ,i ) and v̂ (,1 , j ) come from the,1 multipole and

v̂ (,2 ,k) andv̂ (,2 ,m) come from the,2 multipole. We call this
statistic ‘‘cross-cross.’’ For a given,1 and ,2 and iÞ j and
kÞm, there areM5,1(,121),2(,221)/4 distinct prod-
ucts. This statistic tests the orientation of planes.

~4! Dot productsu( v̂ (,1 ,i )3 v̂ (,1 , j ))•( v̂ (,2 ,k)3 v̂ (,2 ,m))u
where v̂ (,1 ,i ) and v̂ (,1 , j ) come from the,1 multipole and

e
re
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MULTIPOLE VECTORS: A NEW REPRESENTATION OF . . . PHYSICAL REVIEW D 70, 043515 ~2004!
v̂ (,2 ,k) andv̂ (,2 ,m) come from the,2 multipole. We call this
statistic ‘‘oriented area.’’ For a given,1 and,2 andiÞ j and
and kÞm, there areM5,1(,121),2(,221)/4 distinct
products. This statistic tests the orientation of areas. No
that it is similar to the previous test but the cross products
unnormalized.

B. Rank-order statistic

Having computed the statistic in question, we would li
to know the likelihood of this statistic given the hypothes
that thea,m are statistically isotropic. The most straightfo
ward way, and possibly the only reliable way, to do this is
comparing to Monte Carlo~MC! realizations of the statisti
cally isotropicandGaussian randoma,m . To be explicit, we
provide the algorithm for computing the rank-ordered like
hood, and also illustrate it in the flowchart Fig. 3.

~a! For ,1 and,2 fixed, a statisticSwill produceM num-
bers~dot products!. We will useS to test the hypothesis tha
the multipole vectors come from a map that exhibits stati
cal isotropy and Gaussianity. Calculate theM numbers for
this statistic for the WMAP map.

~b! To determine the expected distributions for theseM
numbers we begin by generating 100 000 Monte Ca
Gaussian, isotropic maps; in other words, we draw the c
ficientsa,m by assuminĝ a,ma,8m8

* &5C,d,,8dmm8 . We are
assuming statistical isotropyand Gaussianity, and this is th
hypothesis that we are testing. We add a realization of in
mogeneous pixel noise, consistent with WMAP’sV-band
noise, to each MC map. For each MC realization, we th
compute the multipole vectors for multipoles,1 and,2, and
M dot products of the statisticS. Because the vectors of an
particular realization do not have an identity~e.g., we do not
know which one is the ‘‘fifth vector of the,58 multipole’’!
and neither do the dot products, we rank-order theM dot
products. At the end we haveM histograms of the products
each having 100 000 elements.

~c! We would like to know the likelihood of theM prod-
ucts computed from a WMAP map. To compute it we us
likelihood ratio test, which in the case of a single dot prod

FIG. 3. A flowchart of the algorithm we apply in order to extra
the likelihood of the statisticS. The lower case letters, such as~a!,
refer to the itemized points in Sec. V B where more information c
be found about the step. Also,~V C! and~VI ! refer to the sections in
the paper where the details of these boxes can be found.
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of vectors would be the height of the histogram for the va
of the statisticS corresponding to WMAP relative to th
maximum height. Since we haveM histograms, the likeli-
hood trivially generalizes to

LWMAP5)
j 51

M
Nj ,WMAP

Nj ,max
~27!

where Nj ,WMAP is the ordinate of thej th histogram corre-
sponding to WMAP’sj th rank-ordered product,Nj ,max is the
maximum value of thej th histogram, and the product run
over all M histograms.

~d! Now that we have the WMAP likelihood, we need
compare it to ‘‘typical’’ likelihoods produced by Monte
Carlo realizations of the map.~An alternative approach
computing the expected distribution of the likelihood fro
first principles, would be much more difficult since on
would have to explicitly take into account the correlatio
betweenM products.! To do this, we generate another 50 00
Gaussian random realizations of coefficientsa,1m anda,2m ,
and compute the multipole vectors and the statisticS for each
realization.

~e! We rank-order the likelihoodLWMAP among the 50 000
likelihoods from MC maps to obtain its rankR,1 ,,2

.
~f! Finally, we go to step~a! and repeat the whole proce

dure for all pairs of multipoles (,1 ,,2) that we wish to test.
Only when we have the complete set do we assign a p
ability.

The rank R,1 ,,2
gives the probability that the statisti

SWMAP is consistent with the test hypothesis. For example
the likelihood ofSWMAP is rank 900 out of 1000, then there
a 10% probability that a Monte Carlo Gaussian random
alization of the CMB sky will give higher likelihood, and
90% probability for a lower MC likelihood. We say that th
rank order of this particular likelihood is 0.9. If our CMB sk
is indeed random Gaussian, we would expect the rank or
of our statistics to be distributed between 0 and 1, be
neither too small nor too large. Conversely, if we compu
the rank orderings for three different multipoles for a partic
lar test and obtained 0.98, 0.99, and 0.95,~or 0.01, 0.05, and
0.02, say!, we would suspect that this particular test is n
consistent with the Gaussian random hypothesis.

C. How unusual are the ranks?

We now consider how to quantify the confidence level
rejecting the hypothesis of statistical isotropy of thea,m . Let
us assume that we have computed the rank orders foN
different pairs of multipoles and obtained the rank orderin
of xi for the i th one, where 0<xi<1. We consider the fol-
lowing parametric test.

The test anticipates that the ranks will be unusuallyhigh.
Let us first order the ranksxi in descending order, so thatx1
is the largest andxN the smallest. We calculate the followin
statistic:

Q~x1 , . . . ,xN!5N! E
x1

1

dy1E
x2

y1
dy2•••E

xN

yN21
dyN .

~28!

n
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86
279
484
862
763
986
562
284
839
324
766
965
762
153
266
242
440
959

8414
6873
4871
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TABLE I. Ranks of the vector-vector, vector-cross, cross-cross, and oriented area~OA! statistics for multipoles 2<,1 ,,2<8 for the four
tests we consider as applied to the Tegmarket al. @13# cleaned map. Also listed are the oriented area ranks for the ILC map.M is the number
of products for a given statistic for each (,1 ,,2) pair. In Sec. VI B we perform a parametric test to compute the likelihood of oriented
ranks being this high.

Ranks of Products of Multipole Vectors

Vector-vector Vector-cross Cross-cross Oriented area OA~ILC map!

(,1 ,,2) M Rank M (,1 ,,2) rank (,2 ,,1) rank M Rank M Rank M Rank

~2, 3! 6 0.57714 6, 3 0.03176 0.04814 3 0.01316 3 0.00126 3 0.008
~2, 4! 8 0.39167 12, 4 0.51983 0.20369 6 0.56747 6 0.96042 6 0.62
~2, 5! 10 0.66656 20, 5 0.85252 0.10536 10 0.22285 10 0.71820 10 0.77
~2, 6! 12 0.53649 30, 6 0.50367 0.67791 15 0.87882 15 0.76320 15 0.93
~2, 7! 14 0.44925 42, 7 0.74254 0.52205 21 0.91890 21 0.86496 21 0.63
~2, 8! 16 0.21683 56, 8 0.20861 0.73486 28 0.91338 28 0.68520 28 0.99
~3, 4! 12 0.18093 18, 12 0.75272 0.30611 18 0.17059 18 0.34475 18 0.12
~3, 5! 15 0.21511 30, 15 0.36963 0.78578 30 0.37187 30 0.67870 30 0.76
~3, 6! 18 0.31507 45, 18 0.26683 0.54146 45 0.75052 45 0.93546 45 0.52
~3, 7! 21 0.98772 63, 21 0.85874 0.57072 63 0.55147 63 0.73650 63 0.83
~3, 8! 24 0.76120 84, 24 0.98578 0.60408 84 0.99988 84 0.99656 84 0.97
~4, 5! 20 0.41209 40, 30 0.28221 0.84716 60 0.54035 60 0.52936 60 0.65
~4, 6! 24 0.68840 60, 36 0.58372 0.86140 90 0.74826 90 0.62266 90 0.73
~4, 7! 28 0.85008 84, 42 0.51404 0.95584 126 0.53715 126 0.88992 126 0.32
~4, 8! 32 0.48723 112, 48 0.56328 0.85462 168 0.84374 168 0.99006 168 0.95
~5, 6! 30 0.82148 75, 60 0.42361 0.88662 150 0.66327 150 0.82760 150 0.86
~5, 7! 35 0.86884 105, 70 0.56542 0.96116 210 0.59483 210 0.68920 210 0.98
~5, 8! 40 0.83380 140, 80 0.96812 0.34287 280 0.30403 280 0.24449 280 0.33
~6, 7! 42 0.03742 126, 105 0.13831 0.02203 315 0.20221 315 0.97286 315 0.7
~6, 8! 48 0.92760 168, 120 0.91468 0.78058 420 0.72850 420 0.62894 420 0.6
~7, 8! 56 0.03238 196, 168 0.04440 0.02060 588 0.09552 588 0.25367 588 0.2
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If the ranksR,1 ,,2
were expected to be uniformly distribute

in @0,1#, Q would be the probability that the highest rank
greater thanx1, and the second biggest rank greater th
x2, . . . ,and the smallest rank greater thanxN . However we
do not expect that the ranks from Gaussian random maps
uniformly distributed, and we treatQ merely as a statistic
We then ask that given the~possibly very small! value of
QWMAP , what fraction of Gaussian random maps would g
an even smallerQ? That number is our probability, and
computed in the next section. Note that, although appare
difficult or impossible to evaluate analytically, the right-ha
side of Eq.~28! can trivially be computed using a recursio
relation as shown in Appendix B.

VI. RESULTS

Table I shows the final ranks for the vector-vector, vect
cross, cross-cross, and oriented area tests for pairs (,1 ,,2).
These results correspond to the full-sky cleaned WMAP m
from Tegmarket al. @13# ~results for their Wiener-filtered
map from the same reference are essentially identical!. The
ranks from the WMAP ILC full-sky map are similar, and t
make the presentation concise we show the ILC map
ented area ranks in Table I, but otherwise quote only fi
probabilities for the ILC ranks. As discussed earlier, a
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tailed analysis of cut-sky maps will be presented in an
coming publication.

For computational convenience we considered only
multipoles 2<,1 ,,2<8; we discuss the upper multipol
limit in Sec. VI C. Note that, for the vector-cross tes
(,1 ,,2) and (,2 ,,1) products are distinct and both need
be considered.

A. Vector-vector, vector-cross, and cross-cross ranks

Table I shows that the vector-vector ranks are distribu
roughly as expected, nearly uniformly in the interval@0,1#.
The vector-cross ranks, however, are starting to shows h
of an interesting feature that will be more pronounced la
in the cross-cross and oriented area tests: ranks that are
usuallyhigh—seven ranks out of 42 are greater than 0.9. T
probability of this happening, however, is not statistica
significant and it may be purely accidental.

The first big surprise comes from the cross-cross ran
the (,153,,258) rank is 0.999 88. This means that only s
out of 50 000 MC generated maps had a higher likeliho
than the WMAP map. In other words, the 84 cross-cross
products computed for this pair from WMAP lie unusual
near the peaks of their respective histograms, which, rec
are built out of 100 000 products from MC map realization
The violation of statistical isotropy and/or Gaussianity ther
5-8
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MULTIPOLE VECTORS: A NEW REPRESENTATION OF . . . PHYSICAL REVIEW D 70, 043515 ~2004!
fore manifests itself by a particular correlation between t
vectors which makes the statistic SWMAP ‘‘unusually usual.’’
Since we checked that the distribution of Monte Carlo g
erated (,153,,258) cross-cross ranks is uniform in the in
terval @0,1#, it is easy to see that the probability of this ran
being this high~or higher! is 6/50 000, or 0.012%. Admit-
tedly, we checked 21 such cross-cross ranks, which raise
probability of finding such a result to 0.26%. If we includ
all vector-vector, vector-cross, cross-cross, and oriented
ranks, the probability rises to a still rather low 1.3%.

Note that this effect is very different from the now fam
iar orientation of the quadrupole and octupole axes;
quadrupole-octupole alignment is quiteunlikely and results
in multipole vector products which preferentially fall on th
tails of their respective histograms. This is confirmed by
actual ranks for~2,3! and ~3,2! multipole vector-cross prod
ucts, and also the~2,3! cross-cross and oriented area pro
ucts, all of which are fairly low (&0.05). This is easy to
understand: in the cross-cross product case, for example
fact that the multipole vectors lie mostly in the Galaxy pla
implies that their cross products are roughly perpendicula
this plane. The dot products of those are then, by abso
value, very large, and hence unusual. What we are se
here is that the (,153,,258) cross-cross products from th
WMAP full-sky map areunusually usual.

B. Oriented area ranks

As mentioned above, one of the cross-cross ranks
extremely high. A much bigger surprise is found when
examine the oriented area ranks~see also Fig. 4!: two ~out of
21! are greater than 0.99, a total of five are greater than
and a total of eight are greater than 0.8. These ranks
clearly not distributed in the same way as those from a ty
cal MC map.

To examine the probability of the ranks being this high
perform the parametric test described in Sec. V B and
Appendix B: we compute the statisticQ which, for a distri-

FIG. 4. Ranks of the oriented area statistics for the Tegm
full-sky map. The mean values correspond to the actual extra
a,m , while the error bars were obtained by adding the pixel no
~the error bars are not necessarily symmetric around the no-e
values!. Note that an unusually large fraction of the ranks are hi
Also note thelow value of the,152, ,253 rank which is due to
the alignment of the quadrupole and octupole which was no
earlier @13#.
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bution of ranks expected to be uniform in@0,1#, would be the
probability of the largest one being at least as large as
largest actual WMAP rankand the second largest being a
least as large as the second-largest actual rank, etc. This
tistic, applied to ranks from the Tegmarket al. cleaned map,
is

Q5102(6.1221.16
10.62) ~29!

where the error around the mean value is estimated by
peatedly adding the pixel noise of the map to the pure
tracteda,m , as in Eq.~26!, and estimating the effect on th
products of multipole vectors and their ranks.

However, we have to be cautious not to overinterpretQ as
the final probability—it has to be compared to Monte Ca
probabilities computed under the same conditions to de
mine its distribution. To this end, we generate 10 000 ad
tional MC Gaussian random maps and computeQ for each.
It turns out that only 107 of them produceQ lower than the
WMAP value in Eq.~29!. This is further illustrated in Fig. 5,
which also shows the error bars on the WMAPQ. The prob-
ability of WMAP oriented area ranks being this high, accor
ing to theQ test, is 1.07%, which corresponds to a 2.6s ~or
98.93%! evidence for the violation of statistical isotrop
and/or Gaussianity. The connection of this~nearly! 3s de-
viation to the nearly 3s deviation represented by the (,1
53,,258) cross-cross rank remains somewhat unclear.

C. Further tests

We have performed a few tests to explore the stability
the oriented area result. First, we have varied the multip
range from the fiducial 2<,<8; the results are shown in
Table II. Increasing the lower limit,min leads to the final
probability of 1% and 5.6% for,min53 and 4, respectively
Therefore, evidence for the violation of statistical isotro
weakens, but does so relatively slowly. This shows that
main result does not completely hinge on the quadrupole

k
ed
e
or
.

d

FIG. 5. The statisticQ for the oriented area statistic, compute
from the Tegmarket al. cleaned WMAP map, is shown by vertica
line. The shaded region around it corresponds to the uncertainty
to pixel noise, while the histogram shows the distribution of t
statistic for MC generated Gaussian maps. Only 1.07% of MC v
ues ofQ are smaller than the no-error value of the WMAPQ. The
same fraction for the ILC map~not shown here! is 0.38%.
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COPI, HUTERER, AND STARKMAN PHYSICAL REVIEW D70, 043515 ~2004!
octupole. Same can be said for the upper multipole lim
which gives strongest results for the violation of statisti
isotropy with ,max58, but with decreasing,max the result
does not immediately go away. Finally, we have checked
increasing,max to higher values, up to 12, does not produ
new ranks that are unusually high. The correlations are th
fore most apparent in the multipole range 2<(,1 ,,2)<8.

We next check if the correlations can be explained by a
remaining dust contamination. We use WMAP’sV-band map
of the identified thermal dust; this map was created by fitt
to the template model from Ref.@66#. We assume for a mo
ment that 10% of the identified contamination by dust h
not been accounted for, and we add it to the cleaned C
map, i.e.,Ttot5TCMB10.1Tdust. Although we are adding a
significant contamination~the remaining dust is expected
contribute no more than a few percent to the rms CMB te
perature@1#!, the high oriented area ranks do not chan
much~they actually slightly increase!, and the Gaussian iso
tropic hypothesis is still ruled out at the 99.3% level. Clea
dust contamination does not explain our results. Further
mimic remaining foregrounds due to an imperfect clean
of the map we tested adding a synthetic random Gaus
map which contributed 10% of the rms temperature. We fi
that the oriented area statistic still disagrees with the Ga
ian isotropic hypothesis at the 99.4% level.

Finally, we have repeated the analysis with several ot
available full-sky CMB maps. As mentioned earlier, bo
maps analyzed by Tegmarket al. give the same probability
for the oriented area statistic. For the WMAP ILC map w
find similarly high ranks, giving an even smaller value f
our statistic:QILC52.4431027, and only 62 MC maps ou
of 10 000 have a smaller value ofQ; therefore, the high ranks
in the ILC map are unlikely at the 99.38% level, correspon
ing to 2.7s.

VII. DISCUSSION

Does the apparent violation of statistical isotropy or Ga
sianity that we detected have a cosmological origin, or i
due to foregrounds or measurement error? The results

TABLE II. Final probabilities of the WMAP oriented area sta
tistic as a function of multipole coveragel min< l< l max. The fiducial
case is 2<,<8 and we have shown how the results change if
lower and upper bounds are changed.f (QMC,QWMAP) is the frac-
tion of MC random Gaussian maps that give a value ofQ smaller
than the WMAP value.

Varying the multipole coverage

,min QWMAP f (QMC,QWMAP)

2 7.6131027 107/10000
3 3.1331026 105/10000
4 3.1231024 565/10000

,max QWMAP f (QMC,QWMAP)
8 7.6131027 107/10000
7 3.7231025 394/10000
6 3.6231023 2079/10000
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sented in this paper refer to full-sky maps, and it is kno
that there are two large cold and two hot spots in the Gal
plane, and that any result that depends on structure in
plane is suspect. Nevertheless, it is far from obvious that
result is caused by the contamination in the map for
following reasons.

~1! As Tegmarket al. @13# argue, their cleaned map agre
very well with the ILC map on large scales, although the tw
were computed using different methods. The results we p
sented indicate a violation of isotropy and/or Gaussianity
>98.9% confidence using either map. Furthermore, ins
mental noise and beam uncertainties are completely s
dominant on these scales.

~2! The results come from an effect different from th
quadrupole and octupole alignment: the latter is fairlyun-
likely, as discussed in Ref.@63#, while we see a particula
correlation between the vectors that makes our statistiS
unusuallylikely.

~3! Perhaps most importantly, our results are mostly~al-
though not completely! independent of the quadrupole an
octupole, multipoles that might be suspect. For example,
second-highest oriented area rank is (,154,,258). Further-
more, Table II shows that, if we use only the multipoles
<,1 ,,2<8, the oriented area statistic still rules out th
Gaussian random hypothesis at the 94.4% level.

At this time it is impossible to ascertain the origin of th
additional correlation between the multipole vectors that
are seeing. One obvious way to find out more about th
origin is to Monte Carlo generate maps that are no
Gaussian or violate the statistical isotropy, according to
chosen prescription, and see whether our statisticsSWMAP
agree with theS computed from MC maps. Of course, the
are many different ways in which Gaussianity and/or is
ropy can be broken, and there is no guarantee that we
find one that explains our results.

Another possibility is to cut the galaxy~or other possible
contaminations! from the map prior to performing the vecto
decomposition. There are two approaches we can take~1!
use the cut-skya,m to compute the multipole vectors and th
statisticsS and compare those toS computed from cut-sky
Gaussian random maps, or~2! reconstruct the true full-sky
a,m and compare with full-sky Gaussian random maps. T
latter procedure is preferred as one would like to work w
the true multipole vectors of our universe, but reconstruct
the full-sky map from the cut-sky information is a subt
problem that will introduce an additional source of erro
Nevertheless, the total error with a;10° cut may still be
small enough to allow using the vectors as a potent tool
finding any preferred directions in the universe. We are
tively pursuing these approaches at the present time.

Finally, Park @15# recently tested the full-sky WMAP
maps using the genus statistic and found evidence for
violation of Gaussianity at the (2 –3)s level, depending on
the smoothing scale and the chosen aspect of the stat
Furthermore Eriksenet al. @14# find that the WMAP multi-
poles with,,35 have significantly less power in the nort
ern hemisphere than in the southern hemisphere. It is p
sible that these results and the effects discussed in this p

e
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have the same underlying cause, but this cannot be
firmed without further tests.

VIII. CONCLUSIONS

The traditionalY,m expansion of the sky has many adva
tages. For one, each set ofY,m of fixed , form an irreducible
representation of the rotation group in three dimensi
O(3); for another, more than two centuries of effort ha
lead to a rich mathematical literature on theY,m , their prop-
erties, and how to efficiently calculate them. The coefficie
a,m of a Y,m expansion of a function on the sphere a
readily calculated as integrals over the sphere of the func
times theY,m* . In this paper we have considered a differe
basis of an equivalent irreducible representations of
proper rotation groupO(,)

i 1••• i ,—for each ,, the traceless
symmetric product of, copies of the unit vector of coordi
nates ê(V). These are merely linear combinations of t
Y,m , and so share many of their properties, albeit with
more sparse mathematical literature explicitly dedicated
their properties. In particular the coefficientsFi 1••• i ,

(,) of an

O(,) expansion of a function on the sky are, like the sphe
cal harmonic coefficients, calculable as integrals over
sphere of the function timesO(,) .

We have expressed theFi 1••• i ,

(,) as symmetric traceles

products of, ~headless! unit vectors$v̂ (,,i )% and a scalar
A(,). The $v̂ (,,i )% are highly nonlinear functions of thea,m .
Thus, while in principle they encode the exact same inf
mation, they may make certain features of the data m
self-evident. In particular we claim that these ‘‘multipo
vectors’’ are natural sets of directions to associate with e
multipole of the sky. A code to calculate multiple vecto
from CMB skies is available on our website at http
www.phys.cwru.edu/projects/mpvectors/.

We have obtained the multipole vectors of the CMB s
as measured by WMAP, as well as the oriented areas defi
by all pairs of such vectors~within a particular multipole!.
We have examined the hypothesis that the vectors of m
pole, are uncorrelated with the vectors of multipole,8 for ,
and,8 up to 8. We have done this by comparing in turn t
dot products of the vectors from, with those from,8, the
dot products of the vectors with the unit normals to t
planes, the dot products of the unit normals to the pla
with each other, and the dot products of the normals to
planes with each other. We found that, while there is noth
unusual about the distribution of dot products of the vect
with each other, the dot products of the normals to the pla
with each other~and, to a lesser extent, the dot products
the unit normals to the planes with each other! are inconsis-
tent with the standard assumptions of statistical isotropy
Gaussianity of thea,m . To quantify this inconsistency we
compared the distribution of these dot products with th
from 50 000 Monte Carlo simulations and found that they
inconsistent at the level of 107 parts in 10 000 for the T
mark et al. cleaned full-sky map and 62 parts in 10 000 f
the ILC full-sky map. These results are robust to the inc
sion of appropriate Poisson noise. The sensitivity to a Ga
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tic cut will be explored in a future publication, but prelim
nary results suggest that the results persist within the e
bars, but eventually decline in statistical significance as
uncertainties increase with increasing cuts.
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APPENDIX A: VECTOR DECOMPOSITION EQUATIONS

The vector decomposition equations we derived~15! can
be recast in a numerically more convenient form. The eq
tions, as written, involve complex valued coefficients. He
we rewrite these equations in terms of their purely real co
ponents. To begin we note that the spherical harmonics
isfy Y,,2m(V)5(21)mY,m* (V). Thus the decomposition
coefficients of a real valued function, such asDT(V)/T,
satisfya,,2m* 5(21)ma,m . This shows that all the informa
tion about the function is encoded in the real part ofa,0 ~the
imaginary part is identically zero! and the real and imaginar
parts ofa,m for 1<m<,. These are the 2,11 independent
components we use in the vector decomposition. We t
need to solve Eq.~15! only for 0<m<,.

For notational convenience we drop the (,) superscript on
a,21,m2 j , bm8 , and v̂. It should be understood that thes
quantities are associated with a particular multipole and s
in the recursive decomposition procedure as outlined in S
III A. The correspondence between the dipole and Cartes
coordinate directions ~7! allows us to identify v̂
5( v̂21 ,v̂0 ,v̂1) with standard coordinate axes via

v̂215
1

A2
~ v̂x1 i v̂y!,

v̂05 v̂z , ~A1!

v̂152
1

A2
~ v̂x2 i v̂y!.

Finally, the real and imaginary parts of thea,m are

a,m
re 5

1

2
~a,m1a,m* ! and a,m

im 5
1

2i
~a,m2a,m* !.

~A2!

Applying Eqs.~A1! and~A2! to the multipole vector decom
position equations~15! gives the following equations:
5-11
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a,m
re 5C0

( l ,m)a,21,m
re v̂z1

1

A2
C21

(,,m)~a,21,m11
re v̂x

2a,21,m11
im v̂y!2

1

A2
C1

(,,m)~a,21,m21
re v̂x

1a,21,m21
im v̂y!,

a,m
im 5C0

( l ,m)a,21,m
im v̂z1

1

A2
C21

(,,m)~a,21,m11
im v̂x

1a,21,m11
re v̂y!2

1

A2
C1

(,,m)~a,21,m21
im v̂x

2a,21,m21
re v̂y!,

a,05a,0
re 5C0

( l ,0)a,21,0
re v̂z1A2C1

(,,0)~a,21,1
re v̂x2a,21,1

im v̂y!,

~A3!

bm8
re

5D0
( l ,m)a,21,m

re v̂z1
1

A2
D21

(,,m)~a,21,m11
re v̂x

2a,21,m11
im v̂y!2

1

A2
D1

(,,m)~a,21,m21
re v̂x

1a,21,m21
im v̂y!,

bm8
im

5D0
( l ,m)a,21,m

im v̂z1
1

A2
D21

(,,m)~a,21,m11
im v̂x

1a,21,m11
re v̂y!2

1

A2
D1

(,,m)~a,21,m21
im v̂x

2a,21,m21
re v̂y!,

b05b0
re5D0

( l ,0)a,21,0
re v̂z1A2D1

(,,0)~a,21,1
re v̂x2a,21,1

im v̂y!,

uv̂u5 v̂x
21 v̂y

21 v̂z
251.

Note that the equations forbm8 are identical to those fora,m
with D (,,m) inserted in place ofC(,,m). Here 1<m<, and
1<m8<,22. These equations involve only real quantiti
and can thus be easily coded and solved. These are the e
tions we have implemented to find the multipole vectors.

APPENDIX B: PROBABILITY OF RANK ORDERINGS

ConsiderN numbersxi , where 0<xi<1, and order them
in descending order, so thatx1 is the largest andxN the
smallest. Let us then consider a set of variatesyi uniformly
distributed in the interval@0,1#, and also order them in de
scending order, so thaty1 is the largest one andyN the small-
est. We ask: what is the probability thaty1 is greater thanx1,
and that y2 is greater thanx2, . . . , and that yN is greater
thanxN .
04351
ua-

The probability thaty1 is in the interval@x1 ,x11dx1#,
P1(x1)dx1, is

P1~x1!dx15S N
1 D x1

N21dx1 , ~B1!

and the probability thaty1 is larger thanx1 , P1(x1), is ob-
viously

P1~x1!5E
x1

1

P1~y1!dy1 . ~B2!

Given thaty1 is greater thanx1, the probability thaty2 is
in the interval@x2 ,x21dx2# is

P2~x2ux1!dx25S N21
1 D S x2

x1
D N22 dx2

x1
, ~B3!

and the probability that the largesty is greater thanx1 and
the second-largest greater thanx2 is

P2~x1 ,x2!5E
x1

1

P1~y1!dy1E
x2

y1P2~y2uy1!dy2

5N~N21!E
x1

1

dy1E
x2

y1
y2

N22dy2 .

~B4!

We can continue this argument for all otheryi and xi , in
descending order inxi . The final probability, the joint prob-
ability of the i th largesty being greater thanxi for all i, is
given by

PN~x1 ,x2 , . . . ,xN!5N! E
x1

1

dy1E
x2

y1
dy2•••E

xN21

yN21
dyN .

~B5!

We would like to evaluate this integral. Even though t
result will obviously be a polynomial inxi , there is a total of
2N terms and it is difficult to do the bookkeeping. Howeve
there is a simple recursion formula for this integral. Assum
more generally, that we want to compute

I N
a[E

x1

1

dy1E
x2

y1
dy2•••E

xN21

yN
dyNyN

a . ~B6!

One can then perform the innermost integral, and this le
to the recursion relation

I N
a5

1

a11
@ I N21

a112xN
a11I N21

0 #. ~B7!

We are left with two (N21)-tuple integrals. Therefore
starting from theN-dimensional integral, we can recursive
bring it down all the way toN51, at which point it is an
easy one-dimensional integral

I 1
b[E

x1

1

dy1y1
b5

1

b11
@12x1

b11# ~B8!

for the requiredb. Using the recursion relation~B7!, to-
gether with~B8!, we numerically compute the probability i
~B5!.
5-12
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