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Multipole vectors: A new representation of the CMB sky and evidence for statistical anisotropy
or non-Gaussianity at 2<¢=<8
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We propose a novel representation of cosmic microwave anisotropy maps, where each multipofeiorder
represented by unit vectors pointing in directions on the sky and an overall magnitude. These “multipole
vectors and scalars” transform as vectors under rotations. Like the usual spherical harmonics, multipole vectors
form an irreducible representation of the proper rotation gr8@¥3). However, they are related to the
familiar spherical harmonic coefficienss,,, in a nonlinear way and are therefore sensitive to different aspects
of the cosmic microwave backgrouit@MB) anisotropy. Nevertheless, it is straightforward to determine the
multipole vectors for a given CMB map and we present an algorithm to compute them. A code implementing
this algorithm is available at http://www.phys.cwru.edu/projects/mpvectors/. Using the Wilkinson Microwave
Anisotropy Probé WMAP) full-sky maps, we perform several tests of the hypothesis that the CMB anisotropy
is statistically isotropic and Gaussian random. We find that the result from comparing the oriented area of
planes defined by these vectors between multipole paid,2-¢,<8 is inconsistent with the isotropic
Gaussian hypothesis at the 99.4% level for the internal linear combination map and at 98.9% level for the
cleaned map of Tegmasit al. A particular correlation is suggested between&ke3 andf¢ =8 multipoles, as
well as several other pairs. This effect is entirely different from the now familiar planarity and alignment of the
quadrupole and octupole: while the aforementioned is fairly unlikely, the multipole vectors indicate correla-
tions not expected in Gaussian random skies that make them unusually likely. The result persists after account-
ing for pixel noise and after assuming a residual 10% dust contamination in the cleaned WMAP map. While the
definitive analysis of these results will require more work, we hope that multipole vectors will become a
valuable tool for various cosmological tests, in particular those of cosmic isotropy.
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[. INTRODUCTION statistical distribution of matter in the universe. But does the
only physics lie in the angular power spectra? Is the sky
A great deal of attention is currently being devoted tostatistically isotropic, so that any variation in the values of
examining the power spectrum of the cosmic microwavethe individual multipole moments,,, with fixed € repre-
background(CMB) temperature anisotropieST({2)/T ex-  sents only statistical fluctuations, or could there be subtle
tracted from the Wilkinson Microwave Anisotropy Probe correlations between the,,? If the sky is statistically iso-
(WMAP) [1-4] and other CMB datf§5-11]. Decomposing tropic, is it Gaussian—are tha,,, of each fixed¢ drawn
the temperature in spherical harmonics from a Gaussian distribution of variance that is oiflyde-
pendent? Are there other interesting deviations from the sim-

AT(Q) plest picture?
T :% amY em(Q2) (1) In the standard inflationary cosmology the answer to the
question just posed is that in the linear regime, i.e., atdow
and deducing the angular power spectrum thea,,, are realizations of Gaussian random variables of zero
mean, with variances that depend only ©igstatistical isot-
1 ¢ ropy). This paradigm is so strongly believed, because of both
Co=r— 2, lam|? (2)  considerable observational evidence and considerable theo-
26+1 m="¢ retical prejudice, that relatively littl€though some, e.g.,

[12]) attention has been paid to searches for deviations from
as a function oft’ allows cosmologists to fit the parameters statistical isotropy.
of cosmological models to unprecedented accuracy, possibly In this paper we set out to search for one particular
even probing the physics of the inflationary epoch. Similarly,deviation—special directions on the sky. We do this by first
the power spectrum of the temperature-polarization crossconstructing from each multipole moment
correlation function is teaching us about the physics of the

reionization of the universe, presumably by the first genera- AT(Q ¢

tion of stars; and the power spectrum of the temperature- Tl ): E Y () 3)
K . L . fm ' {m

galaxy cross-correlation function is teaching us about the T m=—¢
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of the CMB sky a set of unit vectors{p(“D]i=1,... ¢}  festitself in various two-point temperature-temperature cor-
and a scalaA() that completely characterize that multipole. relations, such as the so-called “circles-in-the-sky” signature

We then examine the correlations between pairs of such setg9l: if there are closed paths shorter than the diameter of the
~ (€1)01) ~ (€in) . . last scattering surface, then the last scattering surface will
of vectors{v'‘+''V} and {v'*2'2’}, comparing them with

. . ; ; . . self-intersect along circles. These circles can be viewed by
Monte Carlo _S|mulat|ons of CMB skies \.N'th stgu_stlcally 'S0~ an observer from both sides—from one side in one direction
tropic Gaussian randora,,,. If the sky is statistically iso-

. ) ! . on the sky, and from the other side in some other direction.
tropic - with G"aussmnA random agm,  (am@" em)  The temperature as a function of location around the circle as
=CS¢¢' S - Since the{v ‘i '} depend only onthe,,m,  seen from the two sides will be very strongly correlated. One
{o{01D} and{v“2'2} should be uncorrelated fdt, # ¢ . can therefore search for such pairs of circles. A definitive

We constructed these vectors foxZ<8 for a set of direct search is currently being conducted by the original
full-sky maps including the WMAP internal linear combina- Proponents of the signature. However, for us this example
tion (ILC) [1] and the WMAP map as cleaned by Tegmark Serves to show precisely why it is so difficult to perform a
et al.[13]. We applied four statistical tests to the set of vec-comprehensive test of statistical isotropy and Gaussianity.
tors from these full-sky maps. We find that one of the tests is'he topology-induced temperature correlations are strong
inconsistent with the hypothesis of statistical isotropy and®nly on or very near the matched circle pairs; thus the mul-
Gaussianity at the 99% confidence level. This work completipole coefficients,,, and other statistics that are weighted
ments recent work by Erikseet al. [14] looking at north- ~ averages over the entire sky, would be poor tools for search-
south asymmetries il-point functions, work by Park15] ing for such circles. Thus testing these phenomena is in part
looking at genus curves, work by Haji@h al.[16] using the @ matter of continually searching f@preferably physically
so-calledx, test[17] which finds violations of statistical Motivated ways in which they manifest.

isotropy for 15<¢<45, and work by Vielvaet al.[18] using ~ The CMB data itself may provide motivation for search-
the spherical mexican hat wavelet technique, where the{nd for deviations from the standard inflationary predictions
found a strong signal for non-Gaussianity. (of statistical isotropy and Gaussianityespecially at large

angular scales. An absence of large angular scale correlations
in the CMB sky relative to the inflationary prediction was
[l. MOTIVATION FOR A NEW TEST OF STATISTICAL first noted by COBE Differential Microwave Radiometer
ISOTROPY AND GAUSSIANITY (DMR) in their first year dat&60], which showed what was

Tests of non-Gaussianity, as opposed to statistical isotr_eporyed as an anqmalously low q“adfup@ﬁ? Because.the
cosmic variance in the quadrupole is quite large, it was

ropy, have a long and rich history. Motivation for those tests

originally came from the realization that non-Gaussianity is awldew dismissed as a statistical anomaly. The result per-

: . . ted and was strengthened by the COBE DMR four-year
signature of structure formation by topological defddtS], SIS )
while inflation predicts Gaussian CMB anisotropies. Subsegata[Gl]' The recent WMAP analysis shows a marked ab-

quently it has been realized that, even if inflation seeded thgence of power on scales extendlng from 60° to 180° to an
structure in the universe, CMB non-Gaussianity may b extent that cannot be explained solely by a low quadrupole

present as a signature of features in the inflationary mod fl]' NoLe thatt ths estlmat?r ufEdh by the IWc'jV"tA‘P_ team TE;S
[20-24. Finally, late-time processes in the universe will in- een shown 1o be nonoptimal when applied o incomplete
duce non-Gaussianity on small scal@§—30. The tests of maps of the sky. When an alternative estimator is applied

non-Gaussianity include studies of the bispectrum and ske 13,62 or a fuII_—sk.y. map is analyzedl] the discrepancy
ness[31-37, trispectrum[38,39, Minkowski functionals ecomes less significant. . .

and the genus statisti¢15,40—44, spherical wavelets An a_bsence of POWEr on large scales is expected In some
[18,45,46, a combination of thesg47—51], and many other topolo_g|cally nontrivial universes. In a compact universe
methods[52-55. Of particular interest was the claim for there is a spe_ctral cutoff of long wayelength modes, leading
non-Gaussianity in the Cosmic Background Explorerto a suppression of power near this cutoff. One method of

(COBE) four-year data56], but this was shown to be an looking for such a cutoff is the “circles-in-the-sky” signature
artifact of a particular known systematfig7]. Nevertheless, as noted above. In general, such compact topologies would

efforts to test the Gaussianity of the CMB continue andIead to “special directions” in the universe. To search for
most, though not alle.g.,[15,58)), have so far given res,ults special directipn_s_ we neeq a methgd of defining our di.rec—
entirély in agreement with the Gaussian hypothesis tions. Our definition, as discussed in the next section, is to

As these previous studies have shown, it is a challenge tgecompose théth multipole into¢ unit vectors; these vec-

test such fundamental assumptions as statistical isotropy angrs are then studied to search for peculiar alignments. These

Gaussianity without theoretical direction on what devialtionsyector.S contain the full information of theyr, but encode It
n a different way that allows one to more easily look for

to expect—they can be violated in a very large number of S :

ways, each of which could easily be hidden from the test tha?peCIaI dwec’qons. In par.tlcu!ar, the component; of these vec-
was actually performed. An instructive example is the effectd®'S are nonlinear combinations of they, (for a fixed ().

on the CMB of any nontrivial topology of the universe, for
example a universe which is a three-torus. If the length scale
of cosmic topology(for example, the length of the smallest  One attempt to look at the statistical isotropy of the CMB
nontrivial closed curveis sufficiently short, this will mani- on large scales was the analysis of the quadrupole and octu-

IIl. DEFINING “SPECIAL DIRECTIONS”
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pole moments of the WMAP sky by de Oliveira—Costaal.  convention for the multipole vectors, such as that all of them
[63]. They found that the quadrupole was unusually smallpoint into the northern hemisphere.
and that the octupole was unusually planar and unusually

aligned with the quadrupole. They identified an axis with A. Vector decomposition
each multipole by finding, for each, the axisﬁ( around The correspondence between these vectors and the usual
which the angular momentum dispersion multipole coefficients can readily be seen for a dipole. A

dipole defines a direction in space—the line along which the

¢ dipole lies. The standard correspondence is

N AT . “
(ne':L)2’7(n5)>:m2€ m?|a;m(ng)|?  (4)

AT .
T(nf)

is maximized[Herea,(n,) are the spherical harmonic co-
efficients of the CMB map in a coordinate system withzts
axis in then, direction] They found that then, and thens

directions, é

- 1 . .
Yio—2Z Yi+1—F—=(XEiy). 7
1,0 1+1 \/E( y) (7)
Thus

L A mY1m(Q)

n,=(—0.1145-0.5265,0.842%

and =AM ED p Y D). (sing cose,

A s ALY
fs=(—0.2578- 0.4207,0.8698 (5) sin@sin¢,cos6) =A"v"e, ®)

v alianed—their d duct is 0.9838. This h wheree is the radial unit vector in spherical coordinates. For
are unusually aligned—their dot product is 0. - IS N8 real valued function, the vector’'s components are found to
only a 1 in 62chance of happening if, andn; are uncor- pe

related and the dot product is uniformly distributed on the _

sky. De Oliveira—Costat al.[63] point out that these values v{t=— \/Earfl, U§1’1): \/Eal:lTl' vi=ao, (9)

of n, andns could be explairjed by a universe which has a3nd AD=|5@Y] (which can then be used to construct the
compact direction parallel to, and ng and of length ap- unit vectors (1)
proximately equal to the horizon radius; but this is ruled out " 14 oxtend this to thefth multipole, we want to write
by other tests, including the absence of matched circles iﬂeuristically that
these directions.

It has been noticed that the quadrupole and the octupole in ()20 2 00 2
the cleaned WMAP skies remain dominated by a hot and a Z( amYem(Q)~A" (" e)--- (v €), (10)
cold spot in the Galactic plane—one in the general direction -
of the Galactic center, and the other in the general directiofyr each of thef directions given bye. This cannot be quite
of the molecular cloud in Taurus. This raises the pOSSlbllltynght since the product of vectors would contain compo-
that the observed correlation is dominated by foregrounghents not only of angular momentuéy but also of angular
contamination. One would like therefore to examine in morémomentaf — 2, {—4, etc. However, a Simp|e power count-
detail the correlations between thg, corresponding to pos- ing shows that, once the reality conditions have been im-
sible preferred directions, or correlations in directions beposed ora,m, € unit vectors and a scalar contain the same
tween the various multipoles. number of degrees of freedom as dags,, nhamely, (2

The question then is how best to associate directions with. 1) real degrees of freedom. We therefore expect that the
the CMB multipoles. De Oliveira—Costet al. [63] associ-  components of lower angular momentum found in the right
ated only one direction with each multipole, correspondinghand side of Eq(10) are not independent. We shall see this
to two real degrees of freedom, whereasdhg of a givent  explicitly in Egs.(13) and(15) below, and more elegantly in
have Z+1 real degrees of freedom. Thith multipole  Sec. |11 B. For now, let us treat Eq10) as motivation and
f(Q) in the multipole expansion of a functiof({2) on a  proceed.
sphere

4

Instead of solving Eq(10) directly for all v () we peel
off one vector at a time, finding first a vectof‘Y (with
f(Q)E; fé’(Q)E;n AmY em(2) (6) componentsﬁi(f'l)), and a rank{—1 symmetric, traceless
tensora‘‘Y). We can think ofi; as running ovek, y, andz,
can be fully represented by a symmetric, traceless fank-or more conveniently over 1, 0, and 1. Similarly, we can
tensorF; ., (iv=1,2,3). Such a tensor can readily be write a(‘? as a 3x3x...Xx3 [({—1) termg matrix
constructed from the outer product 6funit vectors,p (), @2 ; however, this hides its traceless, symmetric nature
and a single scala@(“). (Strictly speaking these are headlessand makes it appear that‘? has far more independent

vectors, i.e., points on the projective two-sphere. The sign oflegrees of freedom than it actually does. It is therefore more

each vector can always be absorbed by the scalar. The sign istructive to write the 2—1 independent components as

the scalar takes on physical significance when we define a{"¥ , with m=—(¢—1), ...,(¢—1).

043515-3



COPI, HUTERER, AND STARKMAN PHYSICAL REVIEW D70, 043515 (2004
We repeat this procedure recursively on the remaining
symmetric, traceless tensor from the previous step. Thus we
next peel froma(‘? a vectorv‘? and a rank¢—2 sym-
metric, traceless tensaf’?, and repeat until we have found
the full set of¢ vectors{v(“D|i=1, ... ¢}. The scalan(*)
is found in the last step when the second to last vector
0(t4=1) is peeled off. In this case the remaining symmetric,
traceless tensa“‘~Y is rank 1, and is just the product of

the final unit vecton (-9 and the scalaA(®.

FIG. 1. (Color online An image of the sky as decomposed into

To apply the recursive procedure outlined above we usé® {=2-8 multipole moments based on the first year WMAP

the following recursion relation to peel off one vector:
Y Yeo1m i =C{ ™Yt D{*™Y, 5 (1D)

for j=-1,0,1, where
clem_ /i [(€—m)(€£+m)
0 47 N (21-1)(21+1y
clem _ /i (€xm—=1)(££m)
+1 87 V (21-1)(21+1) ’
DM _ /i\/(«?—m— 1)(€+m—1)
0 A (21-3)(21-1)

(12
Dlm_ _ /i €+¥m=21)(€£+m)
o 8w ¥V (21-3)(21-1) °

For a givenf we peel off a vector using

¢ (t-1) 1
N4 ¢,1 5
m;{’ aémYem:ﬁw—fE(ffl) i=21 UJ( Yl)a(f—l)ﬁYl,JYffl,m
(-2
¢,1
- 2 by (13
m'=—(¢-2)
and that
|{)(€’1)| =1 (14)

The second term on the right-hand side of ELp), is re-

quired to guarantee that this rafik-1 tensor is traceless. In
other words, it subtracts off the trace. We can see this is

necessary from th¥,_, ., term in the recursion relatiofil).

The presence of thi§—2 term is as anticipated in the dis-

cussion following Eq(10).
Plugging in the recursion relatiofll) yields 4¢—1

results [1] as cleaned by Tegmarkt al. [13]. Shown are the

> maemYem and the vectors calculated for these multipoles. The vec-
tors are drawn as “sticks” since they defined only up to a sipos
they are “headless” vectoys See http://www.phys.cwru.edu/
projects/mpvectors/for a full sized color picture.

1

¢,m)7 (¢ €,1
aem=j;_1 Cj( m)vj( )a(f—l),m—j

(21 +1 equationsy,

(21 =3 equationy,
(15

1
(€1 _ (€.m") 7€) 5 (€,1)
bm, —J;l DJ Uj a{;flym_j

0=1 (1 equation.
These equations are easily solved numerically, though see
Appendix A.

Notice that, again as anticipated below Et0), the com-

ponentsb(nf;l) are not relevant for further calculations; they
(€.1)

are functions of the " anda("},,, ; and are not indepen-
dent. This means that the vecters' we calculate are indeed

unigue as claimed.

The general procedure now follows: from the given,
we construco(“V anda{’¥ . We continue using{" 7, to
find v(“? anda{’-3 . This is repeated until we fina'; ~2)
which gives the final two vectors(“:~1) and v(“:9). The
result of this procedure for the CMB is shown in Fig. 1.

B. Alternative derivation of vectors

In practice we have implemented the procedure described
above(Appendix A and solved the set of equatio(is) for
the analysis we have performed. A mathematically more so-
phisticated decomposition procedure that leads to the same
set of vectors without the need to calculate lbhe begins by
recognizing that

fg(Q):Fi(f?._i{[éiléiz. . .éif]EFi(f_)wi(Oil'”w (16)
:A(«f)[l}i(f,l)ai(i'a. ) .l}i(jf)][éiléiz. el

Heree is again a radial unit vector, there is an implicit sum

coupled quadratic equations that must be solved for the 4 gyer repeated indices { ..., and the square brackets

(¢,1)

—1 unknownso (Y, alY, . andb';;". From them we

find

represent the symmetric trace-free part of the outer product.
For a general symmetric tens8fi1 f)=g1 "¢,

043515-4



MULTIPOLE VECTORS: A NEW REPRESENTATION B. ..

1€/2]

2
()2(

o (20— 2k)!

[Sti]=

(20)! k!(€—k)!(€—2k)!
x Stz Slak-1lakGlok+1 - Te)P1- - Pak
X 8pyn,” " Poy_ 1oy 17

where there is an implicit sum over the repeated i”diceiloise for WMAP is reported asix= 0o/ Nops Whereoy is

P1, - ..,P2k, and () denotes symmetrization of the enclose
indices:

S 1 ) )
T('l""é)Ee—' > The) e, (18

 melUy

(U, is the group of permutations of the numbers 1. ,¢.)
The particular combination

Oil"'i(E[éiléiz...éié] (19
simplifies considerably because®s,,=1,
| 2 [€12] _ |
O i (€h) 2  (26=2K)!
(20)! & K!'(€—Kk)!(€—2k)!
Slitiz. .. siak—1izkgizk+1. ..l | (20)
More importantly, it is easily calculable because of the recur-
sion relation
[éil...éi(j+l)]:[éil[éi2...éi(j+l)]]_ (21

Similarly, the individualo ‘") can be peeled off one by one
by recursion:

(f) C=[0! (fl) a(l’l) ]
le

_[vlf 1) [v(€ 2) a(f 2) ]]

(¢,2),
vi,

—A(€)[ (( 1, A(f ()]

(22)
assuming that th(Fi(f_),,if can be calculated. But these are
easily represented as integrals over the §kgt as are the

a€m):
AT(Q)
Jsz T

Alternatively, there is an explicitanalytio relation between
the Y, and theO'1 "', so thatF{!).; can be expressed in
terms ofa,,,. Thus, givenF(©) caIcuIated from the sky, Eq.
(23) is a sequence of 2+ 1 coupled quadratic equations for

theo ) (andA(") analogous to E(13), in which theb(¢:!)
have been eliminated.

(2€+1)(2¢)!
(4m)2f(01)?

F(0

P

roldQ. (23)
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IV. SOURCES OF ERROR AND ACCURACY IN
DETERMINING THE MULTIPOLE VECTORS

With the actual full-sky CMB maps, such as those that we
use, the main source of error is pixel noise which accounts
for the imperfections in measured temperature on the sky.
Pixel noise depends on a variety of factors, one of which is
the number of times a given patch has been observed. Pixel

oise per observation amd,sis the number of observations
per given pixel[64]. For the WMAPV-band map the re-
ported noise per pixel is;=3.11 mK and the variation in
the number of observations of each pixel is moderately
small. Nevertheless, it is important to account for the inho-
mogeneous distribution of pixel noise, as we do in our full
analysis in Secs. V and (where we find that the inhomo-
geneity of the pixel noise does not significantly change the
main results For the purposes of illustrating the accuracy in
determining the multipole vectors; however, we assume a
homogeneous noise with the measured mean valug,gf
=490 observations per pixel.

The calculation of the pixel noise is straightforward. For

equal-area pixelgas in HEALPIX [65]) subtending a solid

angleflpix and assuming a full-sky map we have

a€m=f dQY}(Q)AT(Q)

= 0o Yin(AT(Q) (24)
Q

so that, usingrsixquT(fl)]z)wconst, we have

<a(ma;'m/>=2 ﬁpix ;m(ﬁ)Z ﬁpixY(f’m’(ﬁ,)
Q Q'

X(AT(Q)AT*(Q"))

H(OQ)YE(Q)

Q> O
Q
X((AT(Q2))2) 8¢ Sy

(25

O 2
= Qpixa'pixé\ef’ Omny -

Using the V-band map parameters, the pixel noise

for NSIDE—512 HEALPIX resolution is Q pix ¥ pix = 2.7
X 10~ mK. We adopt this quantity as an estimate of pixel
noise forall maps we use.

A. Accuracy in determining the multipole vectors
We would like to find how accurately the multipole vec-
tors are determined. To do this, we add a Gaussian-
distributed noise with standard dewatmg to eacha,,,

afm—>a€m+~/\/'(ovo-aém)a (26)

043515-5
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20— . - . simply checks for the “weirdness” of any particular repre-
15k L=2 3 sentation of the map, in this case the multipole vectors. We
’g 105_ E can test only for features that we specify in advance. Here
B f our general goal is to test the statistical isotropy of the map
§ 5;‘ E ﬂ E and search for any preferred directions.
& OF i Our motivation to devise and apply tests of statistical isot-
f SE ﬂ 3 ropy comes from findings that the quadrupole and octupole
© _105_ ] moments of WMAP maps lie in the plane of the Galaxy as
- discussed previously. One could in principle extend this and
‘15;' E ask whether any higher multipoles lie preferentially in this
-20F ' el (or any other plane, and devise a statistic to test for this
0.1 1 10 100 : o
12 alignment. Clearly, the number of tests one can devise is very
Galm/[Qpix °pix] large. Here we would like to be as general as possible and
choose tests that suit our multipole vector representation. We
0p— ' T choose to consider the dot product of multipole vectors be-
_I5f =8 3 tween two different multipoles as described below.
8 10f 3
% sk 3 A. Vector product statistics
i 0 =« o & % H A dot product of two unit vectors is a natural measure of
<2 3 H J J 1 their closeness. One test we consider is dot products between
g 5 | all vectors from the multipolé; with those from the multi-
S -10¢ E pole ¢,. Since our vectors are really “stickgf.e., each vec-
15 E tor is determined only up to a fliﬁe—{)), we always use
20k - --.1-0 “'1'(')0 the absolute value of a dot product. Furthermore, motivated

by the fact that the WMAP quadrupole and octupole are

12
Galm/ [Qpix Gpix] located in the same plane and that their axes of symmetry are
only about 10° from each oth@63], we also consider using
FIG. 2. The accuracy i (filled circles and¢ (empty squarés  the cross products of multipole vectors of any given multi-
of a chosen multipole vector as a function of noise added to thepo|e; if the vectors of ; and?{,, lie in a preferred plane, their
a,m- Both the mean value and scatter in the shift of the angles argespective cross products are oriented near a common axis
ShOWn. TheX-aX|S Value Of l:ln”:y C(_)I’responds to the scatter in the perpendlcular to the plane Dot products of these two Ccross
am due to WMAPV-band pixel noise. products would then be near unity.
. . ) We generalize this argument and make the following four
2
where Mg, ") denoges a Gaussian random variate Withepgices for our statistic, which we shall c&ll For any two
meanu and variancer®. We repeat this many times in order multipoles ¢, and ¢,, we consider the following
to determine the distribution in the noise-added multipole ! z . S0y 2 (6)
(1) Dot products of multipole vectorg'‘1:).p (t2:))]

vectors and their spherical coordinates ¢). S _ :
The mean and standard deviationséodnd ¢, as a func-  Where€1# €5, v (‘o) is theith vector from the¢; multi-
tion of o, (which is in units of WMAPV-band pixel noise ~ pole, andv (2.)) js thejth vector from thef, multipole. We
call this statistic “vector-vector.” For a give; and ¢,

V{pixopix) are shown in Fig. 2. The two panels show they,o o o g clearlyM =¢,¢, distinct products. This statistic
tests the orientation of vectors.

effects on the =2 and{ =8 vectors. Note that both bias
(2) Dot products |p (‘2. (p (2D xp (C2.K)y|f|p (2.

and scatter ir9 and ¢ can be read off this figure. It is clear

that the vectors are not extremely sensitive to the accuracy in | 00 ~ o) .

thea,,, and are determined to aboutl® for noise, which ~ Xv "2")| wherev "1/ comes from thef; multipole and
is of the order of the pixel noise. If the noise is much largerp (‘21 andv (¢2'¥ from the £, multipole. We call this sta-
however @, =10 /Qpix(fpix). the accuracy in multipole UStiC “vector-cross.” For a giverf; and{; andj#k, there

vectors deteriorates to the point that they are probably nof rs I\(;lréﬁtla{;izéf\zo_f ;)czeg'g’:'cvci:hp?dlgﬁj This statistic tests
useful as a representation of the CMB anisotropy. Accurate - 5 i . DN (7 (k)
determination o and ¢ is expected to be especially impor- | Dot products  [(v "'+Vxw al)). (v 2
tant for higher multipoles, where the number of vectors isxv (‘2™)|/[|(v 2D xp C1y]|(v (2K xy (C2M)|]

large. wherep (‘o) andp (1)) come from the¢; multipole and

v (29 andy (“22™ come from thel, multipole. We call this
statistic “cross-cross.” For a givefi; and €, andi+#j and
k#m, there areM=¢,(¢,—1)€,(€,—1)/4 distinct prod-

Now that we have developed a formalism to compute the!Cts- This statistic tes:ts(ethi? o[u??ta)tlonAo(feplk?neAs.({ )
multipole vectors, we would like to test the WMAP map for ~ (4) Dot products|(v "+ xv ) (v 129Xy (T2 M)
any unusual features. Clearly, there does not exist a test thatherev (‘1) andv (2) come from the¢; multipole and

V. TESTS OF NON-GAUSSIANITY WITH MULTIPOLE
VECTORS
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Pick statistic S of vectors would be the height of the histogram for the value
@ of the statisticS corresponding to WMAP relative to the
l maximum height. Since we hawd histograms, the likeli-
fif):k b #b ?e;lculate the M values for the data g;f%%izzr?;lgions hood trIVIaIIy generalizes to
a a,
~ b
g (b) N
e i, WMAP
g Lowne=11 N (27)
4 Rank order Lwyap in MC to find the Define £ =1 J,max
these MC to get Ry, e, distribution for £ Calculate Lwmap
() ) ©) where N; wuap is the ordinate of thgth histogram corre-
g sponding to WMAP’sj th rank-ordered producly; maxis the
= maximum value of thgth histogram, and the product runs
g MC Q distribution for .
£ IT;st set, of ranks [ Statistic | final probability over all M histograms.
ad Lve ! 1) (d) Now that we have the WMAP likelihood, we need to

FIG. 3. Aflowchart of the algorithm we apply in order to extract compare I.t tq typical® likelihoods produqed by Monte
Carlo realizations of the mapAn alternative approach,

the likelihood of the statistiS. The lower case letters, such @s, . Nt o
refer to the itemized points in Sec. V B where more information cantomputing the expected distribution of the likelihood from

be found about the step. Alse/ C) and(V1) refer to the sections in  first principles, would be much more difficult since one
the paper where the details of these boxes can be found. would have to explicitly take into account the correlations

betweenM products) To do this, we generate another 50 000
5 (20 andp (2m come from thef, multipole. We call this Gaussian random realizations of coefficieats, anda, m,
statistic “oriented area.” For a givefi; and{, andi#j and  and compute the multipole vectors and the statSfar each
and k#m, there areM=¢,(¢,—1)€,(¢{,—1)/4 distinct realization.
products. This statistic tests the orientation of areas. Notice (€) We rank-order the likelihoodyyap among the 50 000
that it is similar to the previous test but the cross products aréikelihoods from MC maps to obtain its rari, ..
unnormalized. (f) Finally, we go to stega) and repeat the whole proce-
dure for all pairs of multipoles{;,¢,) that we wish to test.
B. Rank-order statistic Only when we have the complete set do we assign a prob-

Having computed the statistic in question, we would Iikeab'“ty' . - -
to know %he IikEe)Iihood of this statistiqc given the hypothesis The_rankR_el,ez gl\{es the probability t_hat the stat|st|c_
that thea,,, are statistically isotropic. The most straightfor- Swmap iS consistent with the test hypothesis. For example, if
ward way, and possibly the only reliable way, to do this is bythe likelihood ofSyuap is rank 900 out of 1000, then there is
comparing to Monte CarléMC) realizations of the statisti- & 10% probability that a Monte Carlo Gaussian random re-
cally isotropicand Gaussian random,,,. To be explicit, we alization of the CMB sky will give higher likelihood, and

provide the algorithm for computing the rank-ordered likeli- 90% probability for a lower MC likelihood. We say that the
hood, and also illustrate it in the flowchart Fig. 3. rank order of this particular likelihood is 0.9. If our CMB sky

(a) For ¢, and ¢, fixed, a statistiS will produceM num- 1S indeed random Gaussian, we would expect the rank orders

bers(dot products We will useSto test the hypothesis that Of our statistics to be distributed between 0 and 1, being
the multipole vectors come from a map that exhibits statisti€ither too small nor too large. Conversely, if we computed
cal isotropy and Gaussianity. Calculate tlenumbers for ~ the rank orderings for three different multipoles for a particu-
this statistic for the WMAP map. lar test and obtained 0.98, 0.99, and_O.@B,O_.Ol, 0.05, and
(b) To determine the expected distributions for thése 0.02,' say, we would suspect that this partlcular test is not
numbers we begin by generating 100000 Monte carlgonsistent with the Gaussian random hypothesis.
Gaussian, isotropic maps; in other words, we draw the coef-
ficientsa,,, by assuminga;maj, )= C¢S¢¢r Smny . We are
assuming statistical isotropgnd Gaussianity, and this is the ~ We now consider how to quantify the confidence level for
hypothesis that we are testing. We add a realization of inhorejecting the hypothesis of statistical isotropy of thg,. Let
mogeneous pixel noise, consistent with WMARKband us assume that we have computed the rank orderdNfor
noise, to each MC map. For each MC realization, we therdifferent pairs of multipoles and obtained the rank orderings
compute the multipole vectors for multipolés and€,, and  of x; for theith one, where &x;<1. We consider the fol-
M dot products of the statisti8 Because the vectors of any lowing parametric test.
particular realization do not have an identig.g., we do not The test anticipates that the ranks will be unusubigh.
know which one is the “fifth vector of thé =8 multipole”) Let us first order the ranks in descending order, so thaf
and neither do the dot products, we rank-order khedot is the largest andy the smallest. We calculate the following
products. At the end we hawd histograms of the products, statistic:
each having 100000 elements.

C. How unusual are the ranks?

(c) We would like to know the likelihood of thé! prod- _ NI f ! f i f IN-1
ucts computed from a WMAP map. To compute it we use a QU - ) =N! deyl Xo dv XN Y-
likelihood ratio test, which in the case of a single dot product (28
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TABLE I. Ranks of the vector-vector, vector-cross, cross-cross, and oriented¢atatistics for multipoles ¢ ,,€,<8 for the four
tests we consider as applied to the Tegnetril. [13] cleaned map. Also listed are the oriented area ranks for the ILC Mhapthe number
of products for a given statistic for eachi,(,€,) pair. In Sec. VI B we perform a parametric test to compute the likelihood of oriented area
ranks being this high.

Ranks of Products of Multipole Vectors

Vector-vector Vector-cross Cross-cross Oriented area (I0@ map

(€41,€5) M Rank M (€1,€,) rank  (€,,¢£4) rank M Rank M Rank M Rank

2,3 6 0.57714 6,3 0.03176 0.04814 3 0.01316 3 0.00126 3 0.00886

2, 4 8 0.39167 12, 4 0.51983 0.20369 6 0.56747 6 0.96042 6 0.62279

(2,5 10 0.66656 20,5 0.85252 0.10536 10 0.22285 10 0.71820 10 0.77484
(2, 6 12 0.53649 30, 6 0.50367 0.67791 15 0.87882 15 0.76320 15 0.93862
2,7 14 0.44925 42,7 0.74254 0.52205 21 0.91890 21 0.86496 21 0.63763
2,9 16 0.21683 56, 8 0.20861 0.73486 28 0.91338 28 0.68520 28 0.99986
(3,9 12 0.18093 18, 12 0.75272 0.30611 18 0.17059 18 0.34475 18 0.12562
3,5 15 0.21511 30, 15 0.36963 0.78578 30 0.37187 30 0.67870 30 0.76284
(3,6 18 0.31507 45, 18 0.26683 0.54146 45 0.75052 45 0.93546 45 0.52839
3,7 21 0.98772 63, 21 0.85874 0.57072 63 0.55147 63 0.73650 63 0.83324
3,8 24 0.76120 84, 24 0.98578 0.60408 84 0.99988 84 0.99656 84 0.97766
4,5 20 0.41209 40, 30 0.28221 0.84716 60 0.54035 60 0.52936 60 0.65965
(4, 6) 24 0.68840 60, 36 0.58372 0.86140 90 0.74826 90 0.62266 90 0.73762
4,7 28 0.85008 84, 42 0.51404 0.95584 126 0.53715 126 0.88992 126 0.32153
4,8 32 0.48723 112, 48 0.56328 0.85462 168 0.84374 168 0.99006 168 0.95266
(5,6 30 0.82148 75, 60 0.42361 0.88662 150 0.66327 150 0.82760 150 0.86242
5,7 35 0.86884 105, 70 0.56542 0.96116 210 0.59483 210 0.68920 210 0.98440
(5,98 40 0.83380 140, 80 0.96812 0.34287 280 0.30403 280 0.24449 280 0.33959
6,7 42 0.03742 126, 105 0.13831 0.02203 315 0.20221 315 0.97286 315 0.78414
(6, 8 48 0.92760 168, 120 0.91468 0.78058 420 0.72850 420 0.62894 420 0.66873
(7, 8 56 0.03238 196, 168 0.04440 0.02060 588 0.09552 588 0.25367 588 0.24871

If the ranksR, ., were expected to be uniformly distributed tailed analysis of cut-sky maps will be presented in an up-

in [0,1], Q would be the probability that the highest rank is coming publication.

greater tharx,, and the second biggest rank greater than For computational convenience we considered only the

X5, ... ,andthe smallest rank greater thag. However we ~Multipoles 2<¢,,{,<8; we discuss the upper multipole

do not expect that the ranks from Gaussian random maps al@it in Sec. VIC. Note that, for the vector-cross test,

uniformly distributed, and we tre@® merely as a statistic. (€1,€2) and (€2,¢;) products are distinct and both need to

We then ask that given th@ossibly very smallvalue of  be considered.

Qwwmar » What fraction of Gaussian random maps would give

an even smalleQ? That number is our probability, and is A. Vector-vector, vector-cross, and cross-cross ranks

g?ﬁr}::%lljtti? ilgggisr;glxet ';)egsglta,:l: fng?)?tti,cgncOtﬁgehrigﬁﬁf:ély Table | shows that the vector-vector _ranks are distributed
’ roughly as expected, nearly uniformly in the interyal1].

S'de.Of Eq.(28) can trivially b_e computed using a recursion The vector-cross ranks, however, are starting to shows hints
relation as shown in Appendix B. . . ;
of an interesting feature that will be more pronounced later
in the cross-cross and oriented area tests: ranks that are un-
VI. RESULTS usuallyhigh—seven ranks out of 42 are greater than 0.9. The
probability of this happening, however, is not statistically
Table | shows the final ranks for the vector-vector, vector-significant and it may be purely accidental.
Cross, cross-cross, and oriented area tests for péjrg §). The first big surprise comes from the cross-cross ranks:
These results correspond to the full-sky cleaned WMAP maphe (¢;=3,{,=8) rank is 0.999 88. This means that only six
from Tegmarket al. [13] (results for their Wiener-filtered out of 50000 MC generated maps had a higher likelihood
map from the same reference are essentially identitdle  than the WMAP map. In other words, the 84 cross-cross dot
ranks from the WMAP ILC full-sky map are similar, and to products computed for this pair from WMAP lie unusually
make the presentation concise we show the ILC map orinear the peaks of their respective histograms, which, recall,
ented area ranks in Table I, but otherwise quote only finahre built out of 100 000 products from MC map realizations.
probabilities for the ILC ranks. As discussed earlier, a de-The violation of statistical isotropy and/or Gaussianity there-
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FIG. 4. Ranks of the oriented area statistics for the Tegmark
full-sky map. The mean values correspond to the actual extracted FIG. 5. The statisti® for the oriented area statistic, computed

a,m, While the error bars were obtained by adding the pixel noisefrom the Tegmarlet al. cleaned WMAP map, is shown by vertical

(the error bars are not necessarily symmetrlc around the NO-€MGfe The shaded region around it corresponds to the uncertainty due
values. Note that an unusually large fraction of the ranks are hlgh.to pixel noise, while the histogram shows the distribution of the

Also n_ote thelow value of the(,=2, €,=3 rank Wh'c_h is due to tatistic for MC generated Gaussian maps. Only 1.07% of MC val-
the _allgnment of the quadrupole and octupole which was note%es 0fQ are smaller than the no-error value of the WM@PThe
earlier[13]. same fraction for the ILC mafnot shown hergis 0.38%.

fore manifests itself by a particular correlation between thebution of ranks expected to be uniform[i®,1], would be the
vectors which makes the statistig,sp “Unusually usual.”  probability of the largest one being at least as large as the
Since we checked that the distribution of Monte Carlo gendargest actual WMAP ranland the second largest being at
erated ¢,=3,{,=8) cross-cross ranks is uniform in the in- least as large as the second-largest actual rank, etc. This sta-
terval[0,1], it is easy to see that the probability of this rank tistic, applied to ranks from the Tegmaek al. cleaned map,
being this high(or highed is 6/50 000, or 0.012%. Admit- is

tedly, we checked 21 such cross-cross ranks, which raises the 06

probability of finding such a result to 0.26%. If we include Q=10 (¢1%11 (29
all vector-vector, vector-cross, cross-cross, and oriented area
ranks, the probability rises to a still rather low 1.3%. where the error around the mean value is estimated by re-

Note that this effect is very different from the now famil- peatedly adding the pixel noise of the map to the pure ex-
iar orientation of the quadrupole and octupole axes; thdracteda,,, as in Eq.(26), and estimating the effect on the
quadrupole-octupole alignment is quitelikely and results ~ products of multipole vectors and their ranks.
in multipole vector products which preferentially fall on the ~ However, we have to be cautious not to overinter@rets
tails of their respective histograms. This is confirmed by thethe final probability—it has to be compared to Monte Carlo
actual ranks for2,3) and(3,2) multipole vector-cross prod- probabilities computed under the same conditions to deter-
ucts, and also thé2,3) cross-cross and oriented area prod-mine its distribution. To this end, we generate 10000 addi-
ucts, all of which are fairly low £0.05). This is easy to tional MC Gaussian random maps and compQtéor each.
understand: in the cross-cross product case, for example, tiieturns out that only 107 of them produ€glower than the
fact that the multipole vectors lie mostly in the Galaxy planeWMAP value in Eq.(29). This is further illustrated in Fig. 5,
implies that their cross products are roughly perpendicular tavhich also shows the error bars on the WMQPThe prob-
this plane. The dot products of those are then, by absolutability of WMAP oriented area ranks being this high, accord-
value, very large, and hence unusual. What we are seeirid to theQ test, is 1.07%, which corresponds to a2.@r
here is that the {,=3,{,=8) cross-cross products from the 98.93% evidence for the violation of statistical isotropy

WMAP full-sky map areunusually usual and/or Gaussianity. The connection of tliirearly 3o de-
viation to the nearly & deviation represented by the
B. Oriented area ranks =3,0,=8) cross-cross rank remains somewhat unclear.

As mentioned above, one of the cross-cross ranks was
extremely high. A much bigger surprise is found when we
examine the oriented area ranfsge also Fig. ¥ two (out of We have performed a few tests to explore the stability of
21) are greater than 0.99, a total of five are greater than 0.g9he oriented area result. First, we have varied the multipole
and a total of eight are greater than 0.8. These ranks am@nge from the fiducial 2 ¢<8; the results are shown in
clearly not distributed in the same way as those from a typi-Table Il. Increasing the lower limit ., leads to the final
cal MC map. probability of 1% and 5.6% fof,;,=3 and 4, respectively.

To examine the probability of the ranks being this high weTherefore, evidence for the violation of statistical isotropy
perform the parametric test described in Sec. V B and inweakens, but does so relatively slowly. This shows that our
Appendix B: we compute the statistig which, for a distri-  main result does not completely hinge on the quadrupole and

C. Further tests

043515-9



COPI, HUTERER, AND STARKMAN PHYSICAL REVIEW D70, 043515 (2004

TABLE II. Final probabilities of the WMAP oriented area sta- sented in this paper refer to full-sky maps, and it is known
tistic as a function of multipole coveragg,<I<Ina. The fiducial  that there are two large cold and two hot spots in the Galaxy
case is 2(¢<8 and we have shown how the resu|t§ Change if theplane' and that any result that depends on structure |n thls
lower and upper bounds are changbuc<Qwwap) IS the frac- 5506 i suspect. Nevertheless, it is far from obvious that the
tion of MC random Gaussian maps that give a valuQamaller o1t is caused by the contamination in the map for the
than the WMAP value. .

following reasons.

(1) As Tegmarket al.[13] argue, their cleaned map agrees
very well with the ILC map on large scales, although the two
i Qwwmap f(Qmc<Qwwmar) were computed using different methods. The results we pre-
sented indicate a violation of isotropy and/or Gaussianity at

Varying the multipole coverage

2 7.61x10°7 107/20000 : ) . .

e =98.9% confidence using either map. Furthermore, instru-
3 3.13x 10 105/10000 | . d b L letel b
4 312¢10-4 565/10000 menFa noise and beam uncertainties are completely sub-

dominant on these scales.

€ max Quwmap f(Qmc<Qwmap) (2) The results come from an effect different from the
8 7.61x 1077 107/10000 quadrupole and octupole alignment: the latter is fairty
7 3.72<10°° 394/10000 likely, as discussed in Ref63], while we see a particular
6 3.62x10°° 2079/10000 correlation between the vectors that makes our statStic

unusuallylikely.

) ] ~ (3) Perhaps most importantly, our results are moély
octupole. Same can be said for the upper multipole limitihq,gh not completelyindependent of the quadrupole and
which gives strongest results for the violation of Stat'St'Caloctupole multipoles that might be suspect. For example, the

isotropy With €m?X=8, but with d_ecreasing’max the result second-highest oriented area rankfis£€ 4,(,=8). Further-
does not immediately go away. Finally, we have checked th%ore, Table Il shows that, if we use only the multipoles 4

increasingf nax to higher values, up to 12, does not produce _ _ . - .
new ranks that are unusually high. The correlations are theregel’e?\& the oriented area statistic sill rules out the
aussian random hypothesis at the 94.4% level.

fore most apparent in the multipole range=@¢,,€,)<8. T . : -
We next check if the correlations can be explained by any At this time it is impossible to ascertain the origin of the

remaining dust contamination. We use WMAR'sband map additional correlation between the multipole vectors that we
of the identified thermal dust; this map was created by fitting®® Se€ing. One obvious way to find out more about their
to the template model from Rel66]. We assume for a mo- °Mgin is to Monte Carlo generate maps that are non-
ment that 10% of the identified contamination by dust had>aussian or violate the statistical isotropy, according to a

not been accounted for, and we add it to the cleaned CM@ENOSen prescription, and see whether our statisiggap
map, i.e.,Ti=Tema+0.1Tqus Although we are adding a 29ree with thes computed from MC maps. Of course, there

significant contaminatiothe remaining dust is expected to € many different ways in which Gaussianity and/or isot-
contribute no more than a few percent to the rms CMB tem[OPY can be broken, and there is no guarantee that we can
perature[1]), the high oriented area ranks do not changgind one that explains our results. _
much (they actually slightly increageand the Gaussian iso-  Another possibility is to cut the galaxpr other possible
tropic hypothesis is still ruled out at the 99.3% level. Clearly,contaminationsfrom the map prior to performing the vector
dust contamination does not explain our results. Further, t§€composition. There are two approaches we can tdje:
mimic remaining foregrounds due to an imperfect cleaning”S€ the cut-sky,, to compute the multipole vectors and the
of the map we tested adding a synthetic random GaussiapfatisticsS and compare those 8 computed from cut-sky
map which contributed 10% of the rms temperature. We find>2ussian random maps, @) reconstruct the true full-sky
that the oriented area statistic still disagrees with the Gausé«m and compare with full-sky Gaussian random maps. The
ian isotropic hypothesis at the 99.4% level. latter proced_ure is preferred as one would like to work w!th
Finally, we have repeated the analysis with several othethe true multipole vectors of our universe, but reconstructing
available full-sky CMB maps. As mentioned earlier, both the full-sky map from the cut-sky information is a subtle
maps analyzed by Tegmask al. give the same probability problem that will introduce an_addltlonal source o_f error.
for the oriented area statistic. For the WMAP ILC map weNevertheless, the total error with-a10° cut may still be
find similarly high ranks, giving an even smaller value for Small enough to allow using the vectors as a potent tool for
our statistic:Q, c=2.44x10"7, and only 62 MC maps out f!ndmg any.preferred directions in the universe. We are ac-
of 10 000 have a smaller value @ therefore, the high ranks tively pursuing these approaches at the present time.

in the ILC map are unlikely at the 99.38% level, correspond-  Finally, Park[15] recently tested the full-sky WMAP
ing to 2.7 maps using the genus statistic and found evidence for the

violation of Gaussianity at the (2—3)level, depending on

the smoothing scale and the chosen aspect of the statistic.

Furthermore Eriksemt al. [14] find that the WMAP multi-
Does the apparent violation of statistical isotropy or Gauspoles with€ <35 have significantly less power in the north-

sianity that we detected have a cosmological origin, or is itern hemisphere than in the southern hemisphere. It is pos-

due to foregrounds or measurement error? The results preible that these results and the effects discussed in this paper

VII. DISCUSSION
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have the same underlying cause, but this cannot be coric cut will be explored in a future publication, but prelimi-
firmed without further tests. nary results suggest that the results persist within the error
bars, but eventually decline in statistical significance as the
uncertainties increase with increasing cuts.
VIIl. CONCLUSIONS

The traditionalY ., expansion of the sky has many advan- ACKNOWLEDGMENTS
tages. For one, each setYf,, of fixed ¢ form an irreducible
representation of the rotation group in three dimension
0(3); for another, more than two centuries of effort have
lead to a rich mathematical literature on tg,,, their prop-
erties, and how to efficiently calculate them. The coefficient:
a,n of a Y., expansion of a function on the sphere are
readily calculated as integrals over the sphere of the functio
times theY7,,. In this paper we have considered a different
basis of an equivalent irreducible representations of the
proper rotation grouwl(%}""‘_for each ¢, the traceless APPENDIX A: VECTOR DECOMPOSITION EQUATIONS

symm?tric product of copies of the unit vector of coordi- The vector decomposition equations we derive8) can
natese({)). These are merely linear combinations of thepe recast in a numerically more convenient form. The equa-
Yem, and so share many of their properties, albeit with ations, as written, involve complex valued coefficients. Here
more sparse mathematical literature explicitly dedicated tave rewrite these equations in terms of their purely real com-
their properties. In particular the coefficierﬁ$f?_.i€ of an  ponents. To begin we note that the spherical harmonics sat-
Oy expansion of a function on the sky are, like the spheriisfy Y, -m(Q)=(-1)"Y7,(©). Thus the decomposition
cal harmonic coefficients, calculable as integrals over the€oefficients of a real valued function, such a3 (Q)/T,
sphere of the function time@g). satisfyaj _,=(—1)"a,n. This shows that all the informa-
We have expressed tHéi(l?,_i[ as symmetric traceless tion about the function is encoded in the real paragf (the
. ~ (i imaginary part is identically zejand the real and imaginary
products of ¢ (headlesk unit vectors{v( )} and a scalar parts ofa,,, for l=m=<{. These are the2+ 1 independent

¢ S (i H H i . "
AL, The_{v(_ U} are highly nonlinear functions of tt@&n.  components we use in the vector decomposition. We thus
Thus, while in principle they encode the exact same inforeeq to solve Eq(15) only for 0O<m<¢.
mation, they may make certain features of the data more o notational convenience we drop the Guperscript on
self-evident. In particular we claim that these “multipole b ands. It should be understood that these
vectors” are natural sets of directions to associate with eacfi¢-tm-j: Pm’: v . . )
multipole of the sky. A code to calculate multiple vectors quantities are associated W'.th a particular mult|p(_)le a’?d step
from CMB skies is. available on our website at http:// in the recursive decomposition procedure as outlined in Sec.

www.phys.cwru.edu/projects/mpvectors/. Il A. The correspondence between the dipole and Cartesian

We have obtained the multipole vectors of the CMB skyCcoordinate directions (7) allows us to identify v
as measured by WMAP, as well as the oriented areas defined(v_1,v¢,v4) With standard coordinate axes via
by all pairs of such vectoréwithin a particular multipolg
We have examined the hypothesis that the vectors of multi- 1
pole¢ are uncorrelated with the vectors of multipdlefor ¢ U_1= ——=(vy+i {)y),
and¢’ up to 8. We have done this by comparing in turn the V2
dot products of the vectors from with those from¢’, the
dot products of the vectors with the unit normals to the -

We would like to thank Tom Crawford, Vanja Dukic
oug Finkbeiner, Gary Hinshaw, Eric Hivon, Arthur Lue,
Dominik Schwarz, David Spergel, Jean-Phillipe Uzan, Tan-
ay Vachaspati, and Ben Wandelt for helpful discussions.
e have benefited from using the publicly availabiaLPix
Rackage[65]. The work of the particle astrophysics theory

group at CWRU is supported by the DOE.

planes, the dot products of the unit normals to the planes Vo=Uz, (A1)
with each other, and the dot products of the normals to the

planes with each other. We found that, while there is nothing . 1 . R

unusual about the distribution of dot products of the vectors v1=— —=(vy—ivy).

with each other, the dot products of the normals to the planes V2

with each otherfand, to a lesser extent, the dot products of

the unit normals to the planes with each ojhame inconsis-  Finally, the real and imaginary parts of the,, are

tent with the standard assumptions of statistical isotropy and

Gaussianity of thea,,,. To quantify this inconsistency we 1 1

compared the distribution of these dot products with those  g'¢ =~ (a, +a¥,) and am=—(a;m—a,).

from 50 000 Monte Carlo simulations and found that they are 2 2i

inconsistent at the level of 107 parts in 10000 for the Teg- (A2)
mark et al. cleaned full-sky map and 62 parts in 10 000 for

the ILC full-sky map. These results are robust to the inclu-Applying Egs.(Al) and(A2) to the multipole vector decom-
sion of appropriate Poisson noise. The sensitivity to a Galacposition equation$l5) gives the following equations:
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(
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0] 1.

Note that the equations fd,,, are identical to those faa,,
with D™ inserted in place o€(“™. Here I=m=<¢ and
ls=m’'<{—2. These equations involve only real quantities

_r2,.n2, 02
=vytoytu;=

and can thus be easily coded and solved. These are the equa-

tions we have implemented to find the multipole vectors.

APPENDIX B: PROBABILITY OF RANK ORDERINGS

ConsideN numbersx;, where O<x;=<1, and order them
in descending order, so that is the largest andy the
smallest. Let us then consider a set of variateaniformly
distributed in the interval0,1], and also order them in de-
scending order, so thg is the largest one angl, the small-
est. We ask: what is the probability thatis greater thax,,
and thaty, is greater tharx,, ... , andthatyy is greater
thanxy.

PHYSICAL REVIEW D70, 043515 (2004

The probability thaty, is in the interval[ x;,x;+dX;],
Pi(x)dxq, is

— N N—1
Pi(xq)dx, = 1 /%1 dxq, (B1)
and the probability thay, is larger tharx,, P;(x;), is ob-
viously
1
Pl(xl):f Pi(y1)dy;. (B2
X1

Given thaty, is greater thax,, the probability thay, is
in the interval[ X, ,X,+dx,] is

and the probability that the largegtis greater thanx; and
the second-largest greater thanis

N—1
1

N—2 dX2

X1

X2

o

X1

Pa(Xa|x1)dx= ( (B3)

1 Y1
PZ(XI’XZ):L Pl(Yl)dylj; Pa(y2ly1)dy,
1 2

1 Y1 No
:N(N_l)f d)ﬁf y, “dys.
X1 X2
(B4)
We can continue this argument for all othgrandx;, in
descending order ix; . The final probability, the joint prob-

ability of theith largesty being greater tham; for all i, is
given by

1 Y1
Pn(X1,X2, ...,XN):N!f dylf dyzf
X1 X2

XN-1

YN-1

dyy-
(B5)

We would like to evaluate this integral. Even though the
result will obviously be a polynomial ix; , there is a total of
2N terms and it is difficult to do the bookkeeping. However,
there is a simple recursion formula for this integral. Assume,
more generally, that we want to compute

YN P
f dy, dyz L dynyn -
N—-1

(B6)

One can then perform the innermost integral, and this leads
to the recursion relation

[Ia+l a+1|N 1]

IN= a+1 (B7)
We are left with two N—1)-tuple integrals. Therefore,
starting from theN-dimensional integral, we can recursively
bring it down all the way tdN=1, at which point it is an

easy one-dimensional integral

1 1
— B_ B+1
fxldylyl Sl (B9)

for the requiredB. Using the recursion relatiofB7), to-
gether with(B8), we numerically compute the probability in
(B5).
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