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Weak lensing of the CMB: Sampling errors onB modes
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TheB modes generated by the lensing of cosmic microwave background~CMB! polarization are a primary
target for the upcoming generation of experiments and can potentially constrain quantities such as the neutrino
mass and dark energy equation of state. The net sample variance on the small scaleB modes out tol 52000
exceeds Gaussian expectations by a factor of 10 reflecting the variance of the larger scale lenses that generate
them. It manifests itself as highly correlated band powers with correlation coefficients approaching 70% for
wide bands ofD l / l;0.25. It will double the total variance for experiments that achieve a sensitivity of
approximately 4mK arcmin and a beam of several arcminutes or better. This non-Gaussianity must be taken
into account in the analysis of experiments that go beyond first detection.
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I. INTRODUCTION

As a step on the road toward the ultimate goal of dete
ing primordial gravitational waves, upcoming cosmic micr
wave background~CMB! polarization experiments will tar
get the distortion to the acoustic polarization induced
gravitational lensing. As with the polarization induced
gravitational waves, the gravitationally lensed polarizat
contains a component with handedness, the so-calledB mode
component @1#. Unlike gravitational waves, gravitationa
lensing provides a guaranteed signal. In the standard cos
logical model, the predicted amplitude of theB modes can
only vary at the tens of percent level within current co
straints@2#. Moreover these fine variations provide an opp
tunity to measure the dark side of the universe, namely
dark energy and neutrino dependent growth of structure
well as another handle on the reionization optical depth@3,4#.

Although both the intrinsic distribution and the dens
perturbations that lens the CMB are expected to be Gaus
the lensed distribution is non-Gaussian at second order in
perturbations. The non-Gaussianity is therefore relativ
small in the temperature distribution@5#. However because
the B modes are generated by the lensing itself, its n
Gaussianity is a first order effect but fortunately one tha
precisely calculable. Gravitational lensing therefore also p
vides a unique testing ground for experimentally extractin
non-Gaussian signal in the presence of foregrounds and
tematic errors. Ultimately, the non-Gaussianity of the len
polarization also provides the key to mapping the dark ma
@6,7# and hence the separation of the lensing and grav
tional waveB mode components@8,9#.

For the upcoming generation of experiments, the n
Gaussianity will provide an important source of uncertain
for power spectrum measurements. Fisher information s
ies have shown that the information contained on cosmol
cal parameters in theB mode power spectrum under th
Gaussian approximation unphysically exceeds that conta
in the two underlying Gaussian fields@3#.

In this paper, we study the origin and quantify the impa
1550-7998/2004/70~4!/043002~6!/$22.50 70 0430
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of the non-Gaussian sample variance onB mode power spec-
tra measurements. The basic reason for the large sample
ance is that the fluctuations that lens the CMB are mainly
degree scales. All of the arcminute scaleB modes fluctuate
jointly with the lens and so precision measurements will
quire many degree scale patches not simply many arcmi
scale patches.

We begin in Sec. II by briefly reviewing the generation
B modes through gravitational lensing. We calculate the n
Gaussian sample covariance in Sec. III and explore its
pact on measurements in Sec. IV. We conclude in Sec. V.
illustrative purposes we employ throughout a fiducial co
mology that is consistent with Wilkinson Microwave Aniso
ropy Probe~WMAP! determinations: an initial scale invar
ant spectrum of curvature fluctuations with amplitudedz

55.0731025 (s850.91,t50.17), a baryon densityVbh2

50.024 and a matter densityVmh250.14 in a flat VL

50.73 cosmology.

II. B MODES

Weak lensing by the large-scale structure of the unive
remaps the polarization field or equivalently the dimensio
less Stokes parametersQ(n̂) andU(n̂) as @1,10,11#

@Q6 iU #~ n̂!5@Q̃6 iŨ #@ n̂1¹f~ n̂!#, ~1!

wheren̂ is the direction on the sky, tildes denote the unlens
field, and the deflection angle¹f is the gradient of the line
of sight projection of the gravitational potentialC(x,D),

f~ n̂!522E dD
~Ds2D !

DDs
C~Dn̂,D !, ~2!

whereD is the comoving distance along the line of sight
the assumed flat cosmology andDs denotes the distance t
the last-scattering surface. In the flat sky approximation,
Stokes parameters can be decomposed intoE andB Fourier
modes as
©2004 The American Physical Society02-1
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@Q6 iU #~ n̂!52E d2l

~2p!2 @E~ l!6 iB~ l!#e62iw lei l•n̂, ~3!

wherel5( l coswl ,l sinwl) and likewise

f~ n̂!5E d2l

~2p!2 f~ l!ei l•n̂. ~4!

Even in the absence of an intrinsicB̃, lensing will gener-
ateB as @1#

B~ l!5E d2l 8

~2p!2
Ẽ~ l8!f~ l2 l8!W~ l,l8!, ~5!

where we have expanded Eq.~1! in the leading order gradi
ent approximation and the mode coupling weight is

W~ l,l8!5@ l8•~ l2 l8!#sin 2~w l2w l 8!. ~6!

Upcoming experiments will mainly measure the pow
spectrum of theB modes. In the flat sky approximation, th
power spectra of a statistically homogeneous fieldX( l) is
given by

^X* ~ l!X~ l8!&5~2p!2d~ l2 l8!Cl , ~7!

and statistical isotropy requiresCl5Cl . It follows that ~e.g.,
Ref. @12#!

Cl
BB5E d2L

~2p!2 W2~ l,l2L !Cl2L
ẼẼ CL

ff , ~8!

given that the intrinsic polarization fromz;1000 is essen-
tially uncorrelated with the lensing potential fromz&3. The
B power spectrum is essentially a convolution of theẼ andf
power spectra.

The total power in theB field arises from power in thef
field as

D tot
2 5E d2l

~2p!2 Cl
BB5~0.46 mK/T!2

5E d2L

~2p!2 CL
ffF E d2l

~2p!2 W2~ l,l2L !Cl2L
ẼẼ G ~9!

where the value in parentheses is the rms in the fidu
cosmology andT52.7253106 mK is the CMB temperature
For reference, the rms of thel<2000 low-pass filteredB
field is 0.43mK. We will typically take this value as the
maximuml estimated for illustration purposes.

In Fig. 1, we show theB power spectrum in the fiducia
cosmology. Note that the power spectrum peaks atl;103

reflecting the power in the underlying unlensedẼ power
spectrum. However this mode coupling in Eq.~8! is achieved
through power in the potentialCL

ff across a broad range i
L. The B field acquires half its power forL&450. In other
words, degree-scale gravitational lenses give rise to thB
power at the 108 scale.
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This fact is the key to understanding the non-Gauss
covariance. In a given degree scale patch of sky ther
effectively only a single lens contributing to the small sca
B power. The amplitude of all of these smaller scaleB modes
will covary with the amplitude of the larger scale lens. Hen
reducing the sampling errors for arcminute scaleB modes
requires many independent degree scale patches of sky. I
B field were Gaussian, such a constraint would require o
an equivalent number of arcminute scale patches of sky.

We illustrate this effect with Monte Carlo realizations
the polarization field and lenses from the power spectra
the fiducial cosmology. The Monte Carlo simulations we
performed using a square patch of sky of side length 22
and with fields sampled on a grid with 1.3-arcmin spacin
Periodic boundary conditions were used to eliminate
boundary effects that would otherwise make the decomp
tion of Q andU into E andB ambiguous.

In Fig. 2, we show the band powers extracted from in
vidual runs, using 13 bins logarithmically spaced froml
5100 to l 52000. If the covariance were Gaussian, th
each estimated band powers would be uncorrelated from
to bin, with rms deviation given by the shaded band. T
non-Gaussian covariance manifests itself here as a pos
correlation from bin to bin, and a higher variance than o
would expect from Gaussian statistics alone. This behavio
the Fourier analog of having all of the arcminute scaleB
modes fluctuate jointly in amplitude with the degree sc
lenses.

III. SAMPLE COVARIANCE

On the large scales that are responsible for lensing,
potential fluctuations are nearly Gaussian, as are the
lensedE modes by assumption. TheB-mode sample covari-
ance can therefore be accurately quantified analytically.

Consider an ideal, noise-free estimator of the bandpow

FIG. 1. B power spectrumD l
25 l 2Cl

BB/2p and the differential
contribution to the totalB varianceD tot

2 from power in the lensing
field f with wave numberL @see Eq.~9!#. Even though theB
power peaks atl;103, it gains half its contribution from power in
the lensing field atL&450. Sampling errors inB therefore reflect
the larger scale variations inf.
2-2
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D̂ i
25

1

Aa i
E

l P i
d2l

l 2

2p
B~ l!B* ~ l!, ~10!

whereA is the survey area in steradians and

a i5E
l P i

d2l ~11!

is the l-space area of the band. For a flat spectrum

D l
2[

l 2Cl
BB

2p
5const, ~12!

it is an unbiased estimator of the amplitude

D i
2[^D̂ i

2&5D l
2 , ~13!

where we have used the relationship (2p)2d(0)5A for a
finite patch of sky. In the limit of bandwidths approachin
D l 51, the relationship holds for any underlying power spe
trum. The band power weight ofl 2/2p in Eq. ~10! is appro-
priate near the peak atl;103. For thel !103 regime where
the band power is steeply rising but the power is nearly
~see Fig. 1!, one can drop the weight factors here and still u
wide bands.

Under the assumption of nonoverlapping bands inl, the
sample covariance of the estimator then follows as

Si j [^~D̂ i
22D i

2!~D̂ j
22D j

2!&5Si j
G1Si j

N . ~14!

The first piece is the Gaussian, or more properly the unc
nected, contribution

Si j
G5d i j

2~2p!2

Aa i
2 E d2l i S l i

2

2p
Cl i

BBD 2

. ~15!

FIG. 2. Fractional deviation of band powers from the ensem
average for three Monte Carlo realizations~lines! compared with
the expected rms deviation~shaded region! for a Gaussian field of
the same power spectrum. The realizations show correlated d
tions in the recovered band powers at highl.
04300
-

t
e

n-

In the limit of narrow bands and highl @1, the Gaussian
piece takes a form that is familiar from Fisher matrix stud
@13#

Si j
G'd i j

2~2p!2

Aa i
~D i

2!2'd i j

2

~2l i11!D l i f sky
~D i

2!2,

~16!

wheref sky5A/4p is the fraction of sky covered. The Gaus
ian errors mainly reflect a mode counting argument. Sin
the fundamental mode 2p/A21/2 sets the spacing of modes i
l space,Aa j /(2p)2 is the total number of modes in th
survey area@14#.

The non-Gaussian or connected piece increases the
variances and correlates them

Si j
N5

2

Aa ia j
E

l iP i
d2l iE

l j P j
d2l jE d2L

~2p!2

l i
2l j

2

~2p!2

3~ali l j
L 1bli l j

L 1cli l j
L !

where

ali l j
L 5W2~ l i ,l i2L !W2~ l j ,l j2L !Cli2L

ẼẼ Cl j 2L
ẼẼ ~CL

ff!2,

bli l j
L 5W2~ l i ,L !W2~ l j ,L !~CL

ẼẼ!2Cli2L
ff Cl j 2L

ff , ~17!

cli l j
L 5W~ l i ,l i2L !W~2 l i ,l j2L !W~ l j ,l j2L !

3W~2 l j ,l i2L !Cli2L
ẼẼ Cl j 2L

ẼẼ CL
ffCli1 l j 2L

ff .

Note that the both the Gaussian and non-Gaussian piece

the same order in theCl
ẼẼ andCl

ff power spectra.
The non-Gaussianity is conveniently quantified by t

variance degradation factor

Di5
Sii

Sii
G

, ~18!

which gives the diagonals of the covariance matrix, and
correlation matrix

Ri j [
Si j

ASii Sj j

. ~19!

In Table I we show these quantities as calculated from
analytic expression~upper triangle! and 105 Monte Carlo
simulations ~lower triangle!. With 105 iterations, the ele-
ments ofRi j have converged to a level ranging from arou
0.01 in the lower bins, to around 0.001 in the higher b
~owing to the larger number of modes!. The remaining dis-
crepancies between the analytic and Monte Carlo results
at the 0.01 level and mainly reflect the use of the gradi
approximation in Eq.~5! when deriving the analytic results
the Monte Carlo simulations resampleQ andU as in Eq.~1!.
The close agreement between the two provides confirma
that the gradient approximation is accurate when compu
covariances in the range 100< l<2000. For these wide

e

ia-
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TABLE I. Correlation matrixRi j and variance degradation factorDi . Parenthetical values are computed from 105 Monte Carlo simu-
lations and compare well with the analytic calculation. The bands are chosen to be logarithmically spaced and nonoverlapping wl min i

50.89l i and l max i5 l min i 21.

l i 112 141 178 224 281 354 446 561 707 889 1120 1409 1775 Di

112 1.00 0.03 0.04 0.05 0.05 0.06 0.06 0.06 0.07 0.07 0.07 0.08 0.08 1.03~1.04!
141 ~0.03! 1.00 0.05 0.06 0.07 0.07 0.08 0.08 0.08 0.09 0.09 0.10 0.10 1.04~1.06!
178 ~0.04! ~0.05! 1.00 0.09 0.10 0.09 0.10 0.11 0.11 0.12 0.13 0.13 0.13 1.07~1.10!
224 ~0.05! ~0.07! ~0.08! 1.00 0.13 0.13 0.14 0.15 0.15 0.17 0.17 0.18 0.18 1.13~1.15!
281 ~0.06! ~0.08! ~0.10! ~0.13! 1.00 0.18 0.18 0.20 0.21 0.23 0.23 0.24 0.24 1.21~1.23!
354 ~0.05! ~0.08! ~0.09! ~0.13! ~0.19! 1.00 0.22 0.24 0.27 0.27 0.28 0.29 0.29 1.28~1.29!
446 ~0.06! ~0.08! ~0.10! ~0.14! ~0.19! ~0.22! 1.00 0.29 0.30 0.32 0.32 0.33 0.32 1.33~1.35!
561 ~0.06! ~0.09! ~0.11! ~0.15! ~0.21! ~0.24! ~0.29! 1.00 0.37 0.40 0.40 0.40 0.39 1.55~1.57!
707 ~0.07! ~0.09! ~0.11! ~0.15! ~0.22! ~0.27! ~0.30! ~0.37! 1.00 0.47 0.48 0.48 0.47 1.76~1.78!
889 ~0.07! ~0.09! ~0.13! ~0.17! ~0.23! ~0.28! ~0.32! ~0.40! ~0.47! 1.00 0.56 0.56 0.55 2.17~2.17!
1120 ~0.07! ~0.10! ~0.13! ~0.17! ~0.24! ~0.28! ~0.32! ~0.40! ~0.47! ~0.55! 1.00 0.62 0.61 2.56~2.55!
1409 ~0.08! ~0.10! ~0.13! ~0.17! ~0.24! ~0.29! ~0.32! ~0.40! ~0.48! ~0.56! ~0.62! 1.00 0.66 2.98~2.94!
1775 ~0.08! ~0.10! ~0.13! ~0.17! ~0.23! ~0.29! ~0.32! ~0.40! ~0.46! ~0.54! ~0.60! ~0.66! 1.00 3.19~3.17!
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bands ofD l / l;0.25, the non-Gaussian contribution tripl
the variance near the peak of theB power and correlates
neighboring bands by 70%.

As the bands widen, the non-Gaussian effects sup
cially appear larger in the covariance matrix. In Fig. 3, w
show the degradation factorDi as a function of the band
width. The nearly linear scaling at highDi can be understood
as reflecting the linear decrease in the Gaussian errors
bandwidth in Eq.~16! revealing a non-Gaussian floor to th
variance. For narrow bands, this effect is hidden in the b
correlations. The net effect on the measurements is the s
however: when combining narrow band measurements
constrain the parameters underlying theB power spectrum,
their nonindependence leads to a large degradation in
constraints as we show in the next section.

FIG. 3. Band-power variance degradation factorDi as a func-
tion of bandwidth for various choices of the centrall i of the band.
The degradation increases with the bandwidth since the Gaus
contribution decreases with the number of wavemodes. The t
illustrates the effect of the non-Gaussian correlation.
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IV. SCIENTIFIC IMPACT

The sample covariance of band powers provides the u
mate limitations for measuring theB mode power. However
until experiments map theB field at a high signal-to-noise
ratio, detector noise will bring the errors closer to Gaussi

For a given experiment, the covariance matrix of the ba
powers will include contributions from detector noise a
the instrumental beam. The sample covariance matrix of
~14! is replaced with the full covariance matrix

Ci j 5^~D̂ i
22D i

2!~D̂ j
22D j

2!&5Ci j
G1Si j

N . ~20!

Let us make the usual approximation that the noise is w
and Gaussian. Then@13#

Ci j
G5d i j

2~2p!2

Aa i
2 E

l P i
d2l F l 2

2p
~Cl

BB1Nl !G2

,

Nl5S DP

T D 2

el ( l 11)uFWHM
2 /8 ln 2, ~21!

where DP
2 is the polarization noise variance in a steradi

and u is the full width at half maximum~FWHM! of the
beam in radians.

The impact of the non-Gaussian errors in the power sp
trum on the errors in a set of cosmological parameterspm can
be estimated via the Fisher matrix

Fmn5(
i j

]D i
2

]pm
~C21! i j

]D j
2

]pn
. ~22!

The errors on a given parameters(pm)'(F21)mm
1/2 . Because

constraints on the cosmological parameters of interest,
the neutrino mass and the dark energy properties, will
affected by constraints from the temperature andE power
spectra, we defer a full forecast to a future work. Instead
calculate the net degradation in the signal to noise or equ

ian
nd
2-4



f

be

F
-

al

or

he
de
le
ra-

om-
ated
m-

sian
ent-

a-
-
hem

e
de.
e-
-
utri-
be
ri-
that
the
p-

an
he
-
m-
-
ical
ce
rse

the
cial

l
s.
ari-
um.

of

ic

-
,

WEAK LENSING OF THE CMB: SAMPLING ERRORS . . . PHYSICAL REVIEW D 70, 043002 ~2004!
lently the degradation in the errors of the amplitude of theB
power spectrum given a fixed shape,

Cl
BB5lCl

BBufid . ~23!

For reference, theB power spectrum at the peakl;103 has a
sensitivity to the dark energy equation of statew of
dl/dwuVm

'20.6 and to the neutrino mass in eV o

dl/dmn'20.5. However these sensitivities should not
used for error propagation since they carry anl dependence
and depend on what is being fixed by the other spectra.
example, the sensitivity tow at fixed angular diameter dis
tance to last scattering isdl/dwuDA

'20.2. Nonetheless the

errors onl serve as a useful quantification of the over
effect of the non-Gaussianity.

From Eq.~22! the variance in the amplitude becomes

s2~l!5S (
i j

D i
2~C21! i j D j

2D 21

. ~24!

Note that in the Gaussian limit andD l 51, the variance be-
comes

s2~l!uG5F(
l

2l 11

2
f skyS Cl

BB

Cl
BB1Nl

D 2G21

. ~25!

In Fig. 4, we show the degradation factor

Dl5
s2~l!

s2~l!uG

~26!

FIG. 4. Non-Gaussian degradation on the amplitudel of the B
power spectrum as a function of detector noise for several cho
of the FWHM beamuFWHM . For beams that resolve theB power
out to the maximuml max52000 (uFWHM&38), the degradation rap
idly rises below DP54 mK arcmin to the high signal-to-noise
sample variance limit of;10. Increasingl max would further in-
crease the importance of sample variance.
04300
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as a function of the noiseDP in this D l 51 limit. The deg-
radation exceeds a factor of 2 for experiments withDP

<4 mK arcmin and a beamu<38. At this level, the noise
within the beam is comparable to the rms of theB field @see
Eq. ~9!#. In the limit of zero noise, the degradation is a fact
of ;10 for bands out tol 52000.

Note that the degradation factor is insensitive to t
choice of banding. Computing the variance with the wi
bands D l / l'0.25 bands of Table I causes a negligib
change in comparison to the accuracy of the underlying g
dient approximation@see Eq.~5!#. The degradation factor is
also insensitive to the area orf sky for a large contiguous
region. The degradation can be reduced somewhat by c
posing the total area out of many smaller patches separ
by many degrees on the sky. However this strategy will co
promise the separability ofE and B modes. Optimizing a
scan strategy against realistic correlated noise, non-Gaus
sample variance and mode leakage will require experim
specific Monte Carlo simulations.

V. DISCUSSION

The non-Gaussianity of theB modes in the lensed CMB
polarization substantially degrades the amount of inform
tion contained in theB mode power spectrum. It both in
creases the variance of band powers and makes t
strongly covary across a wide range inl surrounding the
peak power. Ultimately it will increase the variance of th
amplitude of the power spectrum by an order of magnitu

As experiments move from the upper limit and first d
tection stage to using theB mode power spectrum to con
strain the properties of dark components such as the ne
nos and dark energy, this non-Gaussianity will have to
included in the analysis. By quantifying the sample cova
ance, we have provided the analytic and numerical tools
will be the basis for such an analysis. The advantage of
Monte Carlo approach is that it can be straightforwardly a
plied to any estimator ofB power.

In principle, one can include the sample covariance in
effective x2 as is done for power spectrum errors of t
temperature field~e.g. Ref.@15#!. However since the compu
tation of the covariance is much more costly than the co
putation of theB power spectrum, minimization in a large
dimensional cosmological parameter space is impract
even with Monte Carlo Markov Chain techniques. Sin
most of the parameters affecting the high redshift unive
will be fixed prior to these measurements from theT andE
mode spectra, as a first order correction one can follow
Fisher matrix approach and calculate the effect in a fidu
model. More specifically, given the correlation matrix (Ri j )
and the relative variance degradation (Di) in a fiducial
model, one can scale the covariance matrix to the modeB
mode spectrum (Cl

BB) as calculated from Boltzmann code
This approach would capture the main scaling of the cov
ance through the amplitude of the lensing power spectr
Implementing such a pipeline though is beyond the scope
this paper.
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As experiments move from parameter constraints ba
on power spectra to mapping the lensing potential@6,7#, the
non-Gaussianity of the polarization becomes the signal
not the noise. The extent to which this ultimate goal will
achievable instrumentally and in the presence of foregrou
@16# awaits the results of the upcoming generation of exp
ments.
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