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Weak lensing of the CMB: Sampling errors onB modes
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The B modes generated by the lensing of cosmic microwave backgr@@iM@) polarization are a primary
target for the upcoming generation of experiments and can potentially constrain quantities such as the neutrino
mass and dark energy equation of state. The net sample variance on the smal isales out td =2000
exceeds Gaussian expectations by a factor of 10 reflecting the variance of the larger scale lenses that generate
them. It manifests itself as highly correlated band powers with correlation coefficients approaching 70% for
wide bands ofAl/I~0.25. It will double the total variance for experiments that achieve a sensitivity of
approximately 4uK arcmin and a beam of several arcminutes or better. This non-Gaussianity must be taken
into account in the analysis of experiments that go beyond first detection.
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[. INTRODUCTION of the non-Gaussian sample varianceBomode power spec-
tra measurements. The basic reason for the large sample vari-

As a step on the road toward the ultimate goal of detectance is that the fluctuations that lens the CMB are mainly on
ing primordial gravitational waves, upcoming cosmic micro-degree scales. All of the arcminute sc&lenodes fluctuate
wave backgroundCMB) polarization experiments will tar- jointly with the lens and so precision measurements will re-
get the distortion to the acoustic polarization induced byduire many degree scale patches not simply many arcminute
gravitational lensing. As with the polarization induced by Scale patches.
gravitational waves, the gravitationally lensed polarization Ve begin in Sec. Il by briefly reviewing the generation of
contains a component with handedness, the so-cBliedde B modes through gravitational lensing. We calculate the non-
component[1]. Unlike gravitational waves, gravitational Gaussian sample covariance in Sec. lll and explore its im-
lensing provides a guaranteed signal. In the standard cosmBaCt on measurements in Sec. IV. We conclude in Sec. V. For
logical model, the predicted amplitude of tBemodes can illustrative purposes we employ throughout a fiducial cos-
only vary at the tens of percent level within current con-Mmology that is consistent with Wilkinson Microwave Anisot-
straints[2]. Moreover these fine variations provide an oppor-ropy Probe(WMAP) determinations: an initial scale invari-
tunity to measure the dark side of the universe, namely th@nt spectrum of curvature fluctuations with amplitudg
dark energy and neutrino dependent growth of structure, as 5.07x10™° (a3=0.91,7=0.17), a baryon densit§2,h?
well as another handle on the reionization optical d¢pt].  =0.024 and a matter densit2,h?=0.14 in a flatQ,

Although both the intrinsic distribution and the density =0.73 cosmology.
perturbations that lens the CMB are expected to be Gaussian,
the lensed distribution is non-Gaussian at second order in the Il. B MODES
perturbations. The non-Gaussianity is therefore relatively _ )
small in the temperature distributid]. However because ~ Weak lensing by the large-scale structure of the universe
the B modes are generated by the lensing itself, its non!€Maps the polarization tleld or quuwaIentIy the dimension-
Gaussianity is a first order effect but fortunately one that igess Stokes paramete@yn) andU(n) as[1,10,1]
precisely calculable. Gravitational lensing therefore also pro- o ~
vides a unique testing ground for experimentally extracting a [Q=iU](N)=[Q=xiU][n+Ve(n)], 1)
non-Gaussian signal in the presence of foregrounds and sys- R
tematic errors. Ultimately, the non-Gaussianity of the lensedvheren is the direction on the sky, tildes denote the unlensed
polarization also provides the key to mapping the dark mattefield, and the deflection anglé¢ is the gradient of the line
[6,7] and hence the separation of the lensing and gravitaef sight projection of the gravitational potenti#l(x,D),
tional waveB mode components,9].

For the upcoming generation of experiments, the non- - (Ds—D)
Gaussianity will provide an important source of uncertainty p(n)= _Zf dD DD,
for power spectrum measurements. Fisher information stud-
ies have shown that the information contained on cosmologiwhereD is the comoving distance along the line of sight in
cal parameters in th® mode power spectrum under the the assumed flat cosmology abd denotes the distance to
Gaussian approximation unphysically exceeds that containdihe last-scattering surface. In the flat sky approximation, the
in the two underlying Gaussian fieldi3]. Stokes parameters can be decomposedkinémd B Fourier

In this paper, we study the origin and quantify the impactmodes as

W (Dn,D), 2)
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where we have expanded Ed) in the leading order gradi- wavenumber (4, L)

ent approximation and the mode coupling weight is FIG. 1. B power spectrumA?=12CP®/27 and the differential

T "\ei contribution to the totaB varianceAZ, from power in the lensing
WAL =1 (=1)]sin 21 = err). ©®) field ¢ with wave numberL [see tI%tq.(Q)]. Even though theB
ppower peaks at~10%, it gains half its contribution from power in
the lensing field at. =450. Sampling errors iB therefore reflect
the larger scale variations .

Upcoming experiments will mainly measure the powe
spectrum of theB modes. In the flat sky approximation, the
power spectra of a statistically homogeneous fig(d) is

given by This fact is the key to understanding the non-Gaussian

X*(DX(I'))=(2m)28(1—1")C;, 7 covar?ance. In a g_iven degree sc_ale_patch of sky there is
(XEMXAD)=(2m )G @ effectively only a single lens contributing to the small scale
and statistical isotropy requires=C, . It follows that (e.g., B power. The amplitude of all of these smaller sd®lmodes

Ref.[12]) will covary with the amplitude of the larger scale lens. Hence
reducing the sampling errors for arcminute scBlenodes
2L . requires many independent degree scale patches of sky. If the
CFB=f (277)2W2(|.|—L)C|E7ELCW, (8) B field were Gaussian, such a constraint would require only

an equivalent number of arcminute scale patches of sky.
We illustrate this effect with Monte Carlo realizations of
the polarization field and lenses from the power spectra of
the fiducial cosmology. The Monte Carlo simulations were
performed using a square patch of sky of side length 22.9°,
and with fields sampled on a grid with 1.3-arcmin spacing.
Periodic boundary conditions were used to eliminate the
boundary effects that would otherwise make the decomposi-
42 tion of Q andU into E and B ambiguous.
A2 = J ———CPB=(0.46 uK/T)? In Fig. 2, we show the band powers extracted from indi-
(2m) vidual runs, using 13 bins logarithmically spaced frdm
d2l . =100 to 1=2000. If the covariance were Gaussian, then
f ——W?(l,I-L)CEE | (9  each estimated band powers would be uncorrelated from bin
(2m) to bin, with rms deviation given by the shaded band. The

non-Gaussian covariance manifests itself here as a positive

where Ithe val(;_e_ |2n7ga5r<e{152es§§ |shthce:|vrlrgs in the fiducialorrelation from bin to bin, and a higher variance than one
cosmology and = 2. pKis the temperature. 14 expect from Gaussian statistics alone. This behavior is

For reference, the rms of the<2000 low-pass filtere®  no Foyrier analog of having all of the arcminute scBle

field is 0.43uK. We will typically take this value as the ,4es fluctuate jointly in amplitude with the degree scale
maximuml estimated for illustration purposes. lenses.

In Fig. 1, we show thdé3 power spectrum in the fiducial
cosmology. Note that the power spectrum peak$-atC®

reflecting the power in the underlying unlensidpower
spectrum. However this mode coupling in E8) is achieved On the large scales that are responsible for lensing, the
through power in the potentiﬂﬂ"” across a broad range in potential fluctuations are nearly Gaussian, as are the un-
L. The B field acquires half its power fot <450. In other lensedE modes by assumption. Tl&mode sample covari-
words, degree-scale gravitational lenses give rise toBhe ance can therefore be accurately quantified analytically.
power at the 10scale. Consider an ideal, noise-free estimator of the bandpower,

given that the intrinsic polarization from~ 1000 is essen-
tially uncorrelated with the lensing potential frane 3. The

B power spectrum is essentially a convolution of Ehand ¢
power spectra.

The total power in thd field arises from power in the
field as

d2L
— b
f 2m?2Ct

Ill. SAMPLE COVARIANCE

043002-2



WEAK LENSING OF THE CMB: SAMPLING ERROR . . .

0.02

(@]
L B By L B By LB

1000

—_
o
o

FIG. 2. Fractional deviation of band powers from the ensemble
average for three Monte Carlo realizatiofimes) compared with
the expected rms deviatiqishaded regionfor a Gaussian field of
the same power spectrum. The realizations show correlated devia-

tions in the recovered band powers at high

. 1 12
A? d2=—B(1)B* (1), (10)
21

IZA_ai lei

whereA is the survey area in steradians and

o= d? (12

lei

is thel-space area of the band. For a flat spectrum

|2cBB

|
A= 5> =const, (12

it is an unbiased estimator of the amplitude
AZ=(AH =A%, (13

where we have used the relationshipm)25(0)=A for a

finite patch of sky. In the limit of bandwidths approaching
Al=1, the relationship holds for any underlying power spec-
trum. The band power weight of/27 in Eq. (10) is appro-
priate near the peak &t-10°. For thel <10® regime where
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In the limit of narrow bands and high>1, the Gaussian
piece takes a form that is familiar from Fisher matrix studies
[13]

~ 5 2 ﬁ22
~ Il(2|| ])ﬁlifsky( i) ’

wheref,=A/4m is the fraction of sky covered. The Gauss-
ian errors mainly reflect a mode counting argument. Since
the fundamental moder® A~ 2 sets the spacing of modes in
I space,AaJ-/(27r)2 is the total number of modes in the
survey ared14].

The non-Gaussian or connected piece increases the band
variances and correlates them

2|2
ai_ 2L 13
j 2

2 f d2|if o|2|jJ—2—2
Aaja;)ci ljei (2m)= (2m)
x(ah|j+btlj+ct,j)
where

aj = WA(l; 1= L)WA(L 1= L)CFE CFE (CP)?,

bl =WA(1; L)W?(Ij L)(CEF)*CP? Cf? 17
clLilj:W(Ii di— DW= L= L)W(l; 1 —L)
XW(—1 ,|i_L)CEELCE~ELCK)¢CﬁSflj—L-

Note that the both the Gaussian and non-Gaussian pieces are

the same order in th€FF andC{* power spectra.
The non-Gaussianity is conveniently quantified by the
variance degradation factor

Di=— (18

which gives the diagonals of the covariance matrix, and the
correlation matrix

Sij

the band power is steeply rising but the power is nearly flat N
(see Fig. 1, one can drop the weight factors here and still usén Table | we show these quantities as calculated from the

wide bands.
Under the assumption of nonoverlapping bands, ithe
sample covariance of the estimator then follows as

S;=((Af-Ah(Af-AP)=sj+s]. (19

The first piece is the Gaussian, or more properly the unco

nected, contribution

2 |2 2
o5 2™ J’dzli( ' cﬁB) . (15)

1 A(:ti2 2m

analytic expressior(upper trianglg and 13 Monte Carlo
simulations (lower trianglg. With 10° iterations, the ele-
ments ofR;; have converged to a level ranging from around
0.01 in the lower bins, to around 0.001 in the higher bins
(owing to the larger number of moded he remaining dis-
crepancies between the analytic and Monte Carlo results are

nat the 0.01 level and mainly reflect the use of the gradient

approximation in Eq(5) when deriving the analytic results;
the Monte Carlo simulations resampileandU as in Eq.(1).

The close agreement between the two provides confirmation
that the gradient approximation is accurate when computing
covariances in the range 180<2000. For these wide
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TABLE I. Correlation matrixR;; and variance degradation factds . Parenthetical values are computed from? Mbnte Carlo simu-
lations and compare well with the analytic calculation. The bands are chosen to be logarithmically spaced and nonoverlagping with

:089| andlmaxi:|mini,l.
112 141 178 224 281 354 446 561 707 889

112 1.00 003 004 005 005 006 006 006 007 007 007 008 008 (L®B
141 (0.03 1.00 005 006 007 007 008 008 008 009 009 010 010 (108
178  (0.04 (0.05 1.00 009 010 009 010 011 011 012 013 013 0.13 [iors)
224 (0.0 (007 (0.09 1.00 013 013 014 015 015 017 017 018 0.18 11185
281 (0.0 (0.09 (0.10 (0.13 1.00 018 018 020 021 023 023 024 024 1223
354 (0.05 (0.08 (0.09 (0.13 (019 100 022 024 027 027 028 029 029 12829
446 (0.0 (0.09 (0.10 (0.14 (019 (0.22 100 029 030 032 032 033 032 1.a335
561 (0.0§ (0.09 (0.1 (0.19 (0.2) (0.24 (029 1.00 037 040 040 040 0.39 1.§557)
707 (0.07 (0.09 (0.1) (0.19 (0.22 (0.2 (0.30 (0.37 1.00 047 048 048 0.47 1.16.78
889 (0.0 (0.09 (0.13 (0.17 (023 (0.28 (0.32 (040 (0.47 100 056 056 0.55 2.12.17
1120 (0.07 (0.10 (0.13 (0.17 (0.24 (028 (0.32 (0.40 (0.47 (055 1.00 0.62 0.61 2.562.55
1409 (0.08 (0.10 (0.13 (0.17 (0.24 (029 (0.32 (040 (0.489 (056 (0.6 1.00 0.66 2.982.94
1775 (0.08 (0.10 (0.13 (0.1 (023 (029 (0.32 (0.40 (0.46 (0.54 (0.60 (0.66 1.00 3.19(3.17)

I 1120 1409 1775 D,

bands ofAl/l~0.25, the non-Gaussian contribution triples IV. SCIENTIFIC IMPACT

tnheei \éigﬁﬂcebgﬁgg tt?e?%%/?k of tzpower and correlates The sample covariance of band powers provides the ulti-
gs the %ands Wigen tHe non-Gaussian effects su erflr:nate limitations for measuring tH& mode power. However

ciallv appear laraer in tﬁe covariance matrix. In Fi 3pweuntil experiments map th8 field at a high signal-to-noise

shoelv tﬁg de ragation fact®: as a function 'Of thegt.)an’d- ratio, detector noise will bring the errors closer to Gaussian.

oA The negarl . scalinl at high can be understood For a given experiment, the covariance matrix of the band

o y g atnig ; .powers will include contributions from detector noise and

as reflecting the linear decrease in the Gaussian errors wi e instrumental beam. The sample covariance matrix of Eq

bandwidth in Eq.(16) revealing a non-Gaussian floor to the . . ' : . '

variance. For narrow bands, this effect is hidden in the banc(114) is replaced with the full covariance matrix

correlations. The net effect on the measurements is the same A2 A2 A2 A2\ _ G, N

however: when combining narrow band measurements to Cij =((AT—AD(AT—A])) =Cyj+ S (20

con_stram.the parameters underlying teower SPeCtrum, - | ot ys make the usual approximation that the noise is white

their nonindependence leads to a large degradation in th§r1d Gaussian. Thef3]

constraints as we show in the next section. '

2(27)? 2 2
— ——— C-G:ﬁ--—f dzl{— CPB+N) |,
I ] T Ae? 27 C X
I ] 2
I ] NF(%) eI+ 1) P81 2 21)

where A2 is the polarization noise variance in a steradian
and @ is the full width at half maximum(FWHM) of the

beam in radians.
The impact of the non-Gaussian errors in the power spec-

] trum on the errors in a set of cosmological paramepgrsan
] be estimated via the Fisher matrix

i i IA? IA?
L3 e N B RS RN BRI FV:Z—'(C’l)-- L. (22
0 100 200 300 400 500 MO 0P, ! ap,
bandwidth (A( .
andwidth (44) The errors on a given paramete(p,)~(F*);2 . Because

FIG. 3. Band-power variance degradation fadiyras a func- ~ constraints on the cosmological parameters of interest, e.g.
the neutrino mass and the dark energy properties, will be

tion of bandwidth for various choices of the centrabf the band. (
The degradation increases with the bandwidth since the Gaussiaffected by constraints from the temperature @&gower

contribution decreases with the number of wavemodes. The treng@ipectra, we defer a full forecast to a future work. Instead we
illustrates the effect of the non-Gaussian correlation. calculate the net degradation in the signal to noise or equiva-
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W ' T as a function of the noisAp in this Al=1 limit. The deg-
radation exceeds a factor of 2 for experiments wih
<4 yKarcmin and a beand<3’. At this level, the noise
within the beam is comparable to the rms of Bdield [see
Eqg. (9)]. In the limit of zero noise, the degradation is a factor
of ~10 for bands out té=2000.

Note that the degradation factor is insensitive to the
choice of banding. Computing the variance with the wide
bands Al/I~=0.25 bands of Table | causes a negligible
change in comparison to the accuracy of the underlying gra-
dient approximatiorisee Eq.5)]. The degradation factor is
also insensitive to the area dg,, for a large contiguous
i region. The degradation can be reduced somewhat by com-
posing the total area out of many smaller patches separated
by many degrees on the sky. However this strategy will com-
promise the separability o and B modes. Optimizing a

FIG. 4. Non-Gaussian degradation on the amplitvdef theB ~ Scan strategy against realistic correlated noise, non-Gaussian
power spectrum as a function of detector noise for several choicesample variance and mode leakage will require experiment-
of the FWHM beamfgyyy. For beams that resolve tiepower  specific Monte Carlo simulations.
out to the maximunh .= 2000 @rwumv=3'), the degradation rap-
idly rises belowAp=4 uKarcmin to the high signal-to-noise,
sample var?ance limit of-10. Increa_sing max Would further in- V. DISCUSSION
crease the importance of sample variance.

A, (uK—arcmin)

The non-Gaussianity of thB modes in the lensed CMB
lently the degradation in the errors of the amplitude of Bhe polarization substantially degrades the amount of informa-
power spectrum given a fixed shape, tion contained in theB mode power spectrum. It both in-

creases the variance of band powers and makes them
strongly covary across a wide range lirsurrounding the

CPP=NCPPgq. (23)  peak power. Ultimately it will increase the variance of the
amplitude of the power spectrum by an order of magnitude.
For reference, thB power spectrum at the peék 10° has a As experiments move from the upper limit and first de-

sensitivity to the dark energy equation of state of  tection stage to using thB mode power spectrum to con-
d\/dwlg ~—0.6 and to the neutrino mass in eV of gyain the properties of dark components such as the neutri-
d\/dm,~—0.5. However these sensitivities should not benos and dark energy, this non-Gaussianity will have to be
used for error propagation since they carrylatependence included in the analysis. By quantifying the sample covari-
and depend on what is being fixed by the other spectra. Faince, we have provided the analytic and numerical tools that
example, the sensitivity tov at fixed angular diameter dis- will be the basis for such an analysis. The advantage of the
tance to last scattering @\/dw|p,~—0.2. Nonetheless the Monte Carlo approach is that it can be straightforwardly ap-
errors on\ serve as a useful quantification of the overall plied to any estimator oB power.
effect of the non-Gaussianity. In principle, one can include the sample covariance in an
From Eq.(22) the variance in the amplitude becomes  effective x° as is done for power spectrum errors of the
temperature fielde.g. Ref[15]). However since the compu-
tation of the covariance is much more costly than the com-
o 2 1 a2 -1 putation of theB power spectrum, minimization in a large-
oo (N)= Z AF(CT A7) (24 dimensional cosmological parameter space is impractical
J even with Monte Carlo Markov Chain techniques. Since
most of the parameters affecting the high redshift universe
will be fixed prior to these measurements from thand E
mode spectra, as a first order correction one can follow the
1 Fisher matrix approach and calculate the effect in a fiducial
(25) model. More specifically, given the correlation matri;)
and the relative variance degradatioB;Y in a fiducial
model, one can scale the covariance matrix to the mBdel
In Fig. 4, we show the degradation factor mode spectrquFB) as calculated from Boltzmann codes.
This approach would capture the main scaling of the covari-
o2(\) ance through the amplitude of the lensing power spectrum.
Dy\=——— (26) Implementing such a pipeline though is beyond the scope of
o“(Mls this paper.

Note that in the Gaussian limit ankll =1, the variance be-
comes

2141 2

EI 2 fsky

cpP

2 —
g ()\)|G_ CFB+N|
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