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Border of spacetime
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It is still uncertain whether the cosmic censorship conjecture is true or not. To get a new insight into this
issue, we propose the concept of the border of spacetime as a generalization of the spacetime singularity and
discuss its visibility. The visible border, corresponding to the naked singularity, is not only relevant to math-
ematical completeness of general relativity but also a window into new physics in strongly curved spacetimes,
which is in principle observable.
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In general relativity, the singularity theorems tell us th
spacetime singularities exist in generic gravitational colla
spacetime~see, e.g., Ref.@1#!. For singularities formed in
gravitational collapse, Penrose@2,3# proposed the so-calle
cosmic censorship conjecture, which has two versions.
spacetimes which contain physically reasonable matter fi
and develop from generic nonsingular initial data, the we
one claims that there is no singularity which is visible fro
infinity, while the strong one claims that there is no singul
ity which is visible to any observer. A singularity censor
by the strong version is called a naked singularity, while
singularity censored by the weak version is called a glob
naked singularity. There is no general proof for the conj
ture at present. Recent development on critical beha
~@4,5#, see also Ref.@6#! and self-similar attractor~@7#, see
also Ref.@8#! has shown that there are naked-singular so
tions which result from nonsingular initial data and conta
physically reasonable matter fields. The critical solution h
one unstable mode while the self-similar attractor has
unstable mode against spherical perturbation, although
still uncertain whether these examples are stable agains
other possible perturbations. If all examples of naked sin
larities were shown to be unstable, would it mean that th
are all rubbish?

We have already known that general relativity will ha
the limitation of its applicable scale in a high-energy side
simple and natural discussion on quantum effects of gra
yields the Planck energyEPl;1019 GeV as a cut-off scaleL.
Some theories with large extra dimensions may have m
lower cut-off scale, which could be TeV scale@9,10#. The
energy scale of the curved spacetime can be measured b
curvature through Einstein’s field equations. Then if t
above expectation is true, general relativity is not applica
to the spacetime region whose curvature strength exc
L4/EPl

2 . This consideration naturally leads to the notion
the border of spacetime as follows.

Let (M,g) be a spacetime manifoldM with a metricg.
We call a spacetime regionA,M a border if and only if the
following inequality is satisfied:
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, ~1!

where the curvature strengthF is given, for instance, by

Fªmax~ uRa
au,uRabRabu1/2,uRabcdRabcdu1/2!. ~2!

We denote the union of all borders inM by UB . We call a
border A a visible border if and only if J1(A,M)ù(M
2UB) is not empty, whereJ1(A,M) is the causal future of
A in M @1#.

We can also naturally define aglobally visible border. To
make the definition precise, we assume that the spacetimM
is asymptotically flat and thus (M,g) is conformally embed-
ded into a space (M̃,g̃) as an unphysical spacetime manifo
with boundaryM̄5Mø]M, where the boundary]M of
M in M̃ consists of the future and past null infinitiesI 1

andI 2 @1#. We call a borderA a globally visible borderif
and only if J1(A,M̄)ùI 1 is not empty. The asymptotic
flatness implies that a globally visible border is a visib
border sinceI 1 is attached to a nonborder region ofM in
M̃. According to these definitions, naked-singular spa
times do not necessarily involve visible borders. See Fig
for an example in which there is no visible border but nak
singularity.

The presence of visible border implies the incompleten
of future predictability of general relativity. Even alread
known examples of naked singularity formation will sho

FIG. 1. Penrose diagram of a possible spacetime in which th
is no visible border even if a naked singularity exists. The sha
region is a border region. The causal future of the border cont
no nonborder region.
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that visible borders appear with nonzero probability in t
collapse of physically reasonable matter fields. These vis
borders will be stable against perturbations even if these
turbations prevent the formation of naked singularities. Ev
in the case of black hole formation, globally visible borde
can appear. If the mass of the black holeMbh is smaller than
EPl

3 /L2, the curvature strength in its exterior can be larg
than the cut-off scaleL4/EPl

2 and hence it is necessarily
globally visible border. The critical behavior shows a pos
bility that such small black holes form in our universe with
the framework of general relativity, and thus strongly su
gests that the cosmic censorship conjecture is violated in
physical sense. It is noted that general relativity and ot
conventional physics are still applicable within the maximu
Cauchy development in (M2UVB), whereUVB is the union
of all visible borders. Just onUB , the effects of new physics
will affect the spacetime metric directly or might invalida
the notion of spacetime manifold itself, where the new ph
ics may be quantum gravity or possibly the classical theo
other than general relativity, e.g., dilatonic gravity a
higher-dimensional theory. In (M2UB), the effects of new
physics will enter as boundary conditions.

However, if extremely severe fine tuning of initial cond
tions is required for the formation of visible border, we mig
say that visible borders are censored practically. We focus
this issue below. First, if a naked-singular collapse solutio
stable against all possible perturbations and an attractor
fine tuning is needed for the formation of visible borders

Next, suppose a naked-singular collapse solution i
spherically symmetric self-similar solution with one unstab
mode. According to the renormalization group scenario@11#,
this solution will be identified with a critical solution. Lett
and r be appropriate time and radial coordinates, resp
tively, and alsot[2 ln(2Et) and x[ ln@Er/(2Et)#, where
E(!L) is the characteristic energy scale at the initial m
ment. A general solutionh(t,x) is expressed by a trajector
in the space of initial data sets~SIDS!, which is the space o
functions of x, while a self-similar solutionh0(x) corre-
sponds to a fixed point. If a fixed point has stable pertur
tions, there is a family of solutions asymptotically approac
ing the fixed point. This family will form a manifold
embedded in the SIDS, which is called the stable manifolS
of the fixed point. For the case of the fixed point with o
unstable mode, its stable manifoldS is codimension one in
SIDS. Here let us consider a one-parameter family of ini
data sets parametrized byp. This family has generically in-
tersections withSby virtue of the codimension ofS in SIDS.
A value p5p* at an intersection corresponds to the critic
value. The one-parameter family in the SIDS induces a o
parameter family of trajectoriesh5hp(t,x). Then only the
trajectoryh5hp* (t,x) asymptotically approaches the fixe
point h5h0(x) with one unstable mode, which correspon
to the critical solution.

For an initial data set withp'p* , the solution after a
long time will be described by

h~t,x!'h0~x!1~p2p* !ekt f rel~x!, ~3!

wherek (.0) and f rel are the eigenvalue and eigenfunctio
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of the unstable mode, respectively. The first termh0(x) on
the right-hand side in Eq.~3! is dominant at first, and thus
the solution initially shows almost self-similar behavio
When the second term becomes comparable to the first
the self-similar behavior is lost and the collapsing mass w
start to form a black hole or bounce to disperse away.
the mass withinx<xbh collapse to a black hole. The
the formation timet5tbh of the black hole is estimated
as etbh;u(p2p* ) f rel(xbh)/h0(xbh)u2k21

5O(up2p* u2k21
),

where h0(xbh) and f rel(xbh) are of order unity. Using this
result, we obtain the length scaler 5r bh of the collapsing
mass att5tbh, i.e., the gravitational radiusMbh/EPl

2 as

Mbh

EPl
2

;r bh5E21e2tbh1xbh5O~E21up2p* uk
21

!. ~4!

Therefore the black hole mass satisfies the above power
behavior, where the indexg[k21 is called the critical ex-
ponent. The curvature strengthF is then estimated to be

F;
EPl

4

Mbh
2

5O~E2up2p* u22k21
!. ~5!

From the above equation, the width of fine tuning for t
appearance of visible borders is estimated to be

up2p* u5OS S L2

EPlE
D 2kD . ~6!

The above estimate also applies to the subcritical case, w
the curvature strength reaches a maximum at the bounce
the matter field eventually disperses away. Ifk is very small
or equivalentlyg is very large, the width of fine-tuning is no
too small even forE!L2/EPl .

For a naked-singular solution withn unstable modes, an
n-parameter family of initial data sets has generically int
sections with the stable manifold of codimensionn. Then the
fine tuning should be considered in then-dimensional param-
eter space. Clearly, naked-singular solutions with fewer
stable modes of small eigenvalues are physically more
portant. Moreover, although in the above discussion we h
supposed spherically symmetric perturbations, it is reas
ably expected that the discussion goes similarly even
nonspherical perturbations@12#. We can also infer that the
discussion also applies even to nonspherical naked-sing
solutions.

Finally we discuss the detectability of visible borders
practice. Let the massM be distributed nearly sphericall
and homogeneously within the length scaleL. Then the cur-
vature strengthF is typically estimated asM /EPl

2 L3. If this
mass is visible to an observer at infinity,M /EPl

2 &L should be
satisfied. This means that the curvature strength produce
the spherical visible mass satisfiesF&EPl

4 /M2. The defini-
tion ~1! of visible border impliesEPl

4 /M2*L4/EPl
2 so that the

massM can form a spherically symmetric visible borde
This means that the massM of the spherically symmetric
visible border should satisfy
1-2
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M&MLª
EPl

3

L2
. ~7!

The upper boundML is equal to or smaller than the luna
mass;1027 g;1048 erg from the experimental constrain
L*1 TeV. If the cut-off scale is much higher than TeV sca
and if the energy conservation law in a usual sense holds
the mass of the visible border is not going to be negative,
effect of one almost spherically symmetric visible bord
will be rather small as an energy source in astrophys
situations so that it may be difficult to astronomically o
serve the direct signal from inside the visible border. In or
that visible borders may be observable in a practical as
e,
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n
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nomical sense, the mass should be distributed in very s
cific manners, e.g., a highly elongated visible border an
loosely bound cluster of almost spherical visible borders
an accordance with the hoop conjecture@13#. On the other
hand, if recently proposed TeV scale gravity describes r
gravitational physics at TeV scale, visible borders will
observed by the planned high-energy collider experime
and/or as astrophysical high-energy phenomena.

The appearance of visible borders with nonzero proba
ity implies not only the limitation of general relativity bu
also a new window into extremely high-curvature spaceti
physics in principle observable.
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