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Border of spacetime
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It is still uncertain whether the cosmic censorship conjecture is true or not. To get a new insight into this
issue, we propose the concept of the border of spacetime as a generalization of the spacetime singularity and
discuss its visibility. The visible border, corresponding to the naked singularity, is not only relevant to math-
ematical completeness of general relativity but also a window into new physics in strongly curved spacetimes,
which is in principle observable.
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In general relativity, the singularity theorems tell us that A4
spacetime singularities exist in generic gravitational collapse infF=—-, (N
spacetime(see, e.g., Ref[1]). For singularities formed in A Ep

gravitational collapse, Penro$2,3] proposed the so-called o )

cosmic censorship conjecture, which has two versions. Fafhere the curvature strengkhis given, for instance, by
spacetimes which contain physically reasonable matter fields bo (12 |mabcd 12

and develop from generic nonsingular initial data, the weak Fi=max|R%|[,|R*Rap| "4 |[R*“Rapcd ). 2
one claims that there is no singularity which is visible from We denote the union of all borders it by Ug. We call a

infinity, while the strong one claims that there is no smgular—borderA a visible borderif and only if J* (A M) (M

ity which is visible to any observer. A singularity censored . .
by the strong version is called a naked singularity, while a~“e) i not empty, wherd™ (A, M) is the causal future of

singularity censored by the weak version is called a globallyA in M [1]. _ o

naked singularity. There is no general proof for the conjec- We can also naturally definegiobally visible borderTo
ture at present. Recent development on critical behaviomake the definition precise, we assume that the spacetime
([4,5], see also Ref[6]) and self-similar attractof[7], see is asymptotically flat and thusi\¢,g) is conformally embed-
also Ref.[8]) has shown that there are naked-singular soluded into a space¥1,g) as an unphysical spacetime manifold

tions which result from nonsingular initial data and contain, i, boundary M= MU M, where the boundary M of
physically reasonable matter fields. The critical solution has .= =~ ~ _ .
in M consists of the future and past null infinitigs"

one unstable mode while the self-similar attractor has n N o >
unstable mode against spherical perturbation, although it i@"dZ~ [1]. We call a bordetA a globally visible borderif
still uncertain whether these examples are stable against ahd only if J" (A, M)NZ™" is not empty. The asymptotic
other possible perturbations. If all examples of naked singuflatness implies that a globally visible border is a visible
larities were shown to be unstable, would it mean that theyorder sinceZ * is attached to a nonborder region .8 in

are all rubbish? M. According to these definitions, naked-singular space-
We have already known that general relativity will have times do not necessarily involve visible borders. See Fig. 1

the limitation of its applicable scale in a high-energy side. Afor an example in which there is no visible border but naked

simple and natural discussion on quantum effects of gravitgingularity.

yields the Planck enerdgp~ 10'° GeV as a cut-off scald. The presence of visible border implies the incompleteness

Some theories with large extra dimensions may have muchf future predictability of general relativity. Even already

lower cut-off scale, which could be TeV scdl®,10l. The  known examples of naked singularity formation will show
energy scale of the curved spacetime can be measured by the

curvature through Einstein’s field equations. Then if the Spacelike Singularity
above expectation is true, general relativity is not applicable T onntnntansenes
to the spacetime region whose curvature strength exceeds *, Border
A“/EZ,. This consideration naturally leads to the notion of .

the border of spacetime as follows. NakedSingularity

Let (M,g) be a spacetime manifold1 with a metricg.
We call a spacetime regiadC M aborderif and only if the
following inequality is satisfied:

FIG. 1. Penrose diagram of a possible spacetime in which there

is no visible border even if a naked singularity exists. The shaded

*Electronic address: T.Harada@qmul.ac.uk region is a border region. The causal future of the border contains
"Electronic address: knakao@sci.osaka-cu.ac.jp no nonborder region.
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that visible borders appear with nonzero probability in theof the unstable mode, respectively. The first terpix) on
collapse of physically reasonable matter fields. These visibléhe right-hand side in Eq.3) is dominant at first, and thus
borders will be stable against perturbations even if these pethe solution initially shows almost self-similar behavior.
turbations prevent the formation of naked singularities. Everwhen the second term becomes comparable to the first one,
in the case of black hole formation, globally visible bordersthe self-similar behavior is lost and the collapsing mass will
can appear. If the mass of the black hblg, is smaller than  start to form a black hole or bounce to disperse away. Let
E,33,/A2, the curvature strength in its exterior can be largerthe mass withinx<xy, collapse to a black hole. Then
than the cut-off scale\*/E3 and hence it is necessarily a the formation timer=ry, of the black hole is estimated
globally visible border. The critical behavior shows a possi-as e~ |(p—p*) fei(Xpr) /No(Xer) | < =O(|p—p*|* 1),
bility that such small black holes form in our universe within where hy(x,) and f (X, are of order unity. Using this
the framework of general relativity, and thus strongly sug-result, we obtain the length scate=r, of the collapsing
gests that the cosmic censorship conjecture is violated in thigjiass atr= 7, i.e., the gravitational radius bh/EgI as
physical sense. It is noted that general relativity and other

conventional physics are still applicable within the maximum M o
Cauchy development in\t—4,g), wherel4g is the union —5 ~Tpp=E"'e  Tbn" = OE Yp—p*|* ). (4
of all visible borders. Just otig, the effects of new physics Epi

will affect the spacetime metric directly or might invalidate o
the notion of spacetime manifold itself, where the new phys-Therefore the black hole mass satisfies the above power-law
ics may be quantum gravity or possibly the classical theorie§€havior, where the index=«"* is called the critical ex-
other than general relativity, e.g., dilatonic gravity andPonent. The curvature strengfhis then estimated to be
higher-dimensional theory. InNM —Ug), the effects of new
physics will enter as boundary conditions. Pl ) wlo2e-1
However, if extremely severe fine tuning of initial condi- F~ M_z_O(E lp—p*| ). 5
tions is required for the formation of visible border, we might bh
say that visible borders are censored practically. We focus o
this issue below. First, if a naked-singular collapse solution i
stable against all possible perturbations and an attractor, n
fine tuning is needed for the formation of visible borders. A2\«
Next, suppose a naked-singular collapse solution is a [p—p*| :o( <—> .
spherically symmetric self-similar solution with one unstable EpE

mode. According to the renormalization group scenftil, . . .
this solution will be identified with a critical solution. Let | "€ above estimate also applies to the subcritical case, where

andr be appropriate time and radial coordinates, respect-he curvatur.e strength reaches a maximum gt the bounce and
tively, and alsor=—In(—Et) and x=In[Er/(—Et)], where the matter field e_ventually dlsperse_s awayk lis very sr_naII
E(<A) is the characteristic energy scale at the initial mo-OF €quivalentlyy is very large, the width of fine-tuning is not
ment. A general solutioh(,x) is expressed by a trajectory {00 small even fO_'E<A2/EPI' _ _

in the space of initial data setSIDS), which is the space of For a naked-singular solution with unstable modes, an

functions of x, while a self-similar solutionhy(x) corre- n-parameter family of initial Qata sets has ge_nerically inter-
sponds to a fixed point. If a fixed point has stable perturbaS€ctions with the stable manifold of codimensiorThen the

tions, there is a family of solutions asymptotically approach-n€ tuning should be considered in thelimensional param-
ing the fixed point. This family will form a manifold eter space. Clearly, nakgd-smgular solutions 'Wlth fewer un-
embedded in the SIDS, which is called the stable manigold Stable modes of small eigenvalues are physically more im-
of the fixed point. For the case of the fixed point with onePOrtant. Moreover, although in the above discussion we have
unstable mode, its stable manifaBlis codimension one in SuPPosed spherically symmetric perturbations, it is reason-
SIDS. Here let us consider a one-parameter family of initia@Ply expected that the discussion goes similarly even for
data sets parametrized fpy This family has generically in- Nonspherical perturbatiorf{d2]. We can also infer that the
tersections wittS by virtue of the codimension @in SIDS. dlscqssmn also applies even to nonspherical naked-singular
A value p=p* at an intersection corresponds to the critical SOlutions. _ . . .
value. The one-parameter family in the SIDS induces a one- Finally we discuss the detectability of visible borders in
parameter family of trajectories=h,(,x). Then only the practice. Let the masM pe distributed nearly spherically
trajectoryh=h«(7,x) asymptotically approaches the fixed and homogeneously within the length SCB'GTQEQ the cur-
point h=h(x) with one unstable mode, which correspondsvat“re strengttF is typically estimated aM/EpL". If this

4

Prom the above equation, the width of fine tuning for the
appearance of visible borders is estimated to be

(6)

to the critical solution. mass is visible to an observer at infinity/ E3<L should be
For an initial data set withp~p*, the solution after a Satisfied. This means that the curvature strength produced by
long time will be described by the spherical visible mass satisfiess E‘,§|/M2. The defini-
tion (1) of visible border implie€Ep/M?= A*/E3, so that the
h(7,X)~hg(x)+(p—p*)e " fe(X), (3) massM can form a spherically symmetric visible border.

This means that the mad$g of the spherically symmetric
wherek (>0) andf . are the eigenvalue and eigenfunction visible border should satisfy
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E3| nomical sense, the mass should be distributed in very spe-
MSMA::—Z. (7) cific manners, e.g., a highly elongated visible border and a
A loosely bound cluster of almost spherical visible borders, in

an accordance with the hoop conject(itg]. On the other
mass ~ 1077 g~10% erg from the experimental constraint hanq, |f recently proposed TeV scale'g'rawty descnbe; real
gravitational physics at TeV scale, visible borders will be

A=1 TeV. If the cut-off scale is much higher than TeV Scale%bserved by the planned high-energy collider experiments

and if the energy conservation law in a usual sense holds and 1ior as astrophysical high-energy phenomena.

the mass of the visible bOfd‘?f Is not going to be_ negative, the The appearance of visible borders with nonzero probabil-

\(/avfiflfct:eo:a(t)r?:r Zlmglftasspgﬁ”gﬁg Syg:)nl]fégcinv'zgsj t;]orgig;ity implies not only the limitation of general relativity but
L . ergy Topny glso a new window into extremely high-curvature spacetime

situations so that it may be difficult to astronomically ob- hvsics in princile observable

serve the direct signal from inside the visible border. In ordelp y P P '

that visible borders may be observable in a practical astro- T.H. was supported from the JSPS.

The upper boundV , is equal to or smaller than the lunar
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