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Critical behavior of the damping rate for a plasmon with finite momentum in ¢* theory
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Applying thermal renormalization grouf RG) equations tap* theory with spontaneous breaking symme-
try, we investigate the critical behavior of the damping rate for the plasmons with finite momentum at the
symmetry-restoring phase transition. From the TRG equation the IR cutoff provided by the external momentum
leads to that the momentum-dependent coupling constant stops running in the critical region. As a result, the
critical slowing down phenomenon reflecting the inherently IR effect does not take place at the critical point
for the plasmon with finite external momentum.
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As is well known, at high temperature the spontaneousgeneralize Pietroni’s work to investigate the critical behavior
breaking symmetry in scalar field theory can be restoreaf the damping rate for the plasmons with finite momentum
through phase transition. At finite temperature the effectivén general case.
degrees of the freedom of the scalar field are collective We consider following Lagrangian im* theory with
modes which is interpreted as quasiparticles, the so-callespontaneous-breaking symmetry,
plasmons. The plasmon possess finite thermal mass which is
generated dynamically by the interactions among the funda- Ao
mental degrees of freedom of field. The thermal mass plays 50258M¢&M¢+ E“S¢2+ E¢4’ )
an important role at the phase transition for restoring
spontaneous-breaking symmetry. The width of the spectrabhere u5<0 and)\, is coupling constant. A consistent de-
density of the plasmon is described by damping rate definegermination of the plasmon damping rate requires the resum-

as[1] mation of hard thermal loop6]. The induced thermal mass
correction resulting from the hard thermal lotpe tadpole
_Im S (wy,K) diagram) reads
n(T)= o (1)
k » NoT? @
mr=—

where ImY is the imaginary part of the self energmﬁ

=|k|2+mj(T), my(T) the plasmon mass arkdthe plasmon  The plasmon mass can be defined as

momentum. As shown by Weldon in R¢1], if the plasma is

slightly out of thermal equilibrium, them,(T) gives half the s o AoT?

relaxation rateor the inversion of the relaxation timef the Mp=mot 5 (5)
guasiparticle distribution function to its equilibrium value,

Notice that the thermal mass correctiam? is positive. Al-

dény though,ug<0, at enough high temperatuie>T, the plas-
dt —2y(T)ony, 2 mon mass becomes positive, the spontaneous-breaking sym-

metry is restored. The critical temperatuiie. can be

expressed as

where én, is the deviation of the distribution function from

equilibrium, sn,=n,—ng9. 245
In Refs.[2] and[3] Parwani and Jeon investigated the T.= \/ - 0 (6)

damping rate of the plasmon at rest in massigbgheory. In Ao

our previous papdi], we generalized their work to discuss 4 . .
the damping rate of plasmon with finite momentum. All In ¢” theory, the resummation of the hard thermal loop is

these works do not take into account the effect of therma]ﬁnUCh easier since the hard thermal loop is just a momentum-

renormalization group on the coupling constant. As showrigge‘)::r?ebgt rreesaﬂnfﬁlgzt%m' dzgﬁineﬁzﬁtsef];;%?\,ﬁr: :Qﬁrrigil
by Pietroni[5], for plasmon at rest the damping rate is di- P y 9 grang

vergent at critical temperature of the phase transition for reghrough[4]

storing symmetry ing* theory with spontaneous-breaking

symmetry. This critical behavior contradicts the critical slow- L=
ing down law. The singularity of the damping rate of the

plasmon at critical point can be cured by taking into account

the running coupling constant with temperature from thermal —L— EAqu/)Z @
renormalization grougTRG) equation. In this paper, we will eff =%

1 1
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and treating the last term as an additional interaction. This For the plasmons at regpb€ 0) the damping rate reduces

effective Lagrangian defines an effective propagator

A(k)= 8

2 27

The leading contribution to the imaginary part of the self-
energy comes from the two loop sunset diagram. It can ba

expressed agt]
€)

Im 3,28P and Im3 P are contribution from the 3-body decay
and Landau damping, respectively:

IM35(wp,p)=IM338P(wy,p) +IMELP(w,,p).

|mE3BD(wp,p): W(ewp/T_l)f dik,qlffqf,

X 8(wp—Ex—Eq—Ey), (10)

Im ELD(wp,p)=37T(e“’p/T—1)f drk,q](1+f,)

Xfof 8(wp+E—Eq—Ep), (1)
with the same notation as in Ré#],

d[k q]: )\ZM4€ delk delq (12)

’ 6 (2m)P~1 (27)P 1 BELE(E,’
r=k+qgq-—p, (13
Ef=12+m:, I=kq,r, (14
fi= ! =k 15
= e ET—1 g, (19

to

N2T2
OT

1536mrm 2 @)

Y(mp 0)=

As T— T, the vanishing plasmon mass results in divergent
amping rate for the plasmons at rest. This means that the
relaxation time becomes shorter and shorter as the critical
temperature is approached. This behavior contradicts the
critical slowing down law exhibited in the condensed matter
systems. We should notice that, in obtaining the above result,
the coupling constank is considered as a temperature-
independent. Actually, in thermal field theory the coupling
constant runs with temperature from thermal TRG equation.
As shown in Ref[7], in the framework of Wilson renor-

malization group, the TRG equation in real time thermal field
theories is deduced as

oD !
AN

-1

A A oS¢

ALl i
JA

2

whereA is a cutoff introduced in the thermal sector of real-
time propagator in closed time pat6TP) formalism[8] by
modifying the Bose-Einstein distribution functioN(kg)

=1[expky/T)—1] as

N (ko) =N(ko) (|k| — (23
D, is the tree level propagator witN,(ky) in the CPT
formalism;I", is the generating function of 1Pl vertex func-
tion in which the modes witk> A have been integrated out.

From Eq.(22) the evolution equations for 2-point and
4-point functions can be expressed as

The plasmon damping rate with finite momentum can be

obtained ag4]

2

y(\Ip|?+mZ,p)= 256#3 @ (16)
where
z ¢ £—¢
0= [jox ter i -l
<§—§><1—§§)H
—Ly| ——| |, 1

2( £(1- ()2 0

z=g, a=$, z°+as, (18

gzefe(z), gzefe(x), (19)

In(1—
La(y)=— foydt N 20

Aa—AF(Z)— —Tr[KAFX‘)], (29
Aﬁ—AFW— =3 TG, PKAT], (25

whereK, and n-point 1PI vertex function are defined as

Ka(k,@)=—iG - A&A Dy'Ga, (26)
"
MO(kg)= 55 e L
¢i,60i, - 0i, PR
(27)
Here G, is the full propagator
Gi'(ki@)=D(Kip)+2 (K@), (28)

self-energy2 , is 1Pl 2-point vertex,
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52FA[ ¢] T ™y T oy ey Ty g Ty 4
EA(kKP):F(AZ)(k;(P)EW (29 .
¢1:¢2:‘P 10°F ,-—"’——
Define 4-point function and cutoff mass as [T "
7
rP=-x,—in, (30
m/z\:/—L(%_ReI‘E\Z)a (31) 104-_' _________________ ,’ 4
and substitute them into Eq&4) and (25), the TRG equa- o run
tions for the plasmon mass and the coupling constant are A D Ik]/T=10"
deduced as A |k|/T =10
. A R [k|/T=0
J A N((DA) ,/
2 _ 4 ’
Aﬂm/\_ 4772 WA A (32) 10 b o el vvvmd v vvend voed ol b vvnd el
10° 107 10®* 10° 10* 10 10 10" 10° 10" 107
t
d A3 d N(wp) | ,
A AM=T3 > "o | M (33 FIG. 1. The running of the coupling constant versus dimensional
4=\ dmy A variablet=(T—T,.)/T. given by the TRG equations. The dashed,

dotted and dash-dotted curves are fef/T=0, 10 and 103,
respectively. The solid line is for no-running coupling constant
fixed to 0.01.

wherew, = A2+ m2.
The initial conditions for the evolution equatiof®2) and
(33) are given at a scala=A>T,

external momenturik|/T=10"3 and 10“, respectively.
For much small external momenturk|/T=10*, the

Due to the exponential suppression in the Bose-Einstein dismomentum-dependent coupling constant can run into the
o N ) tritical region, the damping rate goes up at first as tempera-
tribution function, it is enough to také& ,=10T. g bing g P P

. o ture approaches gradually the critical region, and then goes
For t_he_movmg plasmon with finite mome”t“““" the down with coupling constant running down as the tempera-
nonvanishing external momentujk| provides an IR cutoff

to the TRG running, so the running will effectively stop/as ture enters the critical region. After entering the critical re-
) ' ion, tendency of the plasmon damping rate is opposite to
is of the order ofik|. WhenA —|Kk|, g Y P png PP

A we take the solutions  yhat optained from no-running coupling constant, and the re-
M} =, andA , -y s the results we are expecting for. For the|axation time gets longer and longer, which is then consistent

plasmon with zero and finite external momenta, the couplingyith the critical slowing down law. As the critical point is
constants Ny Vversus dimensionless variablé=(T

—T.)/T. are illustrated in Fig. 1. The numerical results show s
indeed that, because of the IR cutoff provided by the external :
finite momentum, the momentum-dependent coupling con-
stant stops running with temperature and keeps a constant i
the critical region. As shown in Fig. 1, the region keeping the  10*}
momentum-dependent coupling constant as a no-running i
constant increases with increasing the external momentum
In the following, we will show that the above features of the
running coupling constant will change the critical behavior
for the plasmon with finite external momentum at the critical
point by comparing to that for the plasmon with vanishing
external momentum.

Substituting running coupling constant into E@6), we
get the damping rate versus temperature as illustrated in Fig
2. For the damping rate of the plasmon at rest, the result in
Ref.[5] is reproduced by the lower curve in Fig. 2. Itis clear 107
that the damping rate goes to zero instead of infifdliyer- 10°
gence as temperature approaches to critical point, by taking
into account the running coupling constant with temperature giG. 2. The plasmon damping rate versus dimensional variable
from TRG equation. This corresponds to that the relaxation=(1—T.)/T, for different momenta. The upper and lower curves
time goes to infinity at critical point, the behavior is consis- are for plasmon at rest with no-running and running coupling con-
tent with the critical slowing down law. For the plasmons stant, respectively. The middle two curves result from the
with finite momentum the damping rates versus temperaturenomentum-dependent running coupling constant for the plasmon
are illustrated by the middle two curves in Fig. 2 for the with momentumk|/T=10"%,10"*, respectively.

2

M3, =u5 Aa,=No- (39

>~ 10°
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approached further, the momentum-dependent coupling comccount the running of the coupling constant with tempera-
stant stops running with temperature, the plasmon dampintyre from the TRG equations. For the plasmon with finite
rate stops decreasing and does not vanish, the critical slovexternal momentum, the IR cutoff provided by the external
ing down phenomenon doesn't occur at the critical point. Asfinitt. momentum leads to that the momentum-dependent
|k|/T=10"3, the momentum-dependent coupling constancoupling constant stops running with temperature in the vi-
cannot run into the critical region. Although the damping ratecinity of the critical point. Only for enough smaller external
v«(T) is no longer divergent as the critical temperature ismomentum, the momentum-dependent coupling constant can

approached, which is different from the critical behavior of 'un into the critical region, we can see the tendency of criti-
cal slowing down phenomenon. Nearby the critical point, the

the plasmon with zero external momentum for no-running tum-d dent i fant st X q
coupling constant, but the damping rate increases still witl omentum-gependent coupling constant Stops running an
eeps a constant, the critical slowing down phenomenon

approaching the critical temperature. This means that the r Joes not take place for the plasmon with finite external mo-
laxation time gets shorter and shorter as temperature ap- P b

proaches critical point. the critical slowing down phenom-mnemﬁgeaicﬁgsgﬁgﬁ gﬁ'f?écselg\t’v'gg SZZEOW?r?;Tﬁengﬂegr
enon does not take place completely. We notice that thé y j pap

o . ) . viscosity of the thermal scalar field is closely related to the
critical slowing down phenomenon is an inherently IR eﬁeCt’damping rate of the plasmons with finite momentigh We

which takes places only in the double limit for external mo_anticipate that, by taking into account the TGR equation, the

mentum|k| -0 and the cutofi 0. damping rate discussed in this paper will result in important
In summary, based on the TRG equations in the CTP for- ping pap P

malism, we investigate the critical behavior of the dampinge‘cre%tS on thkehtrants)port properties of the thermal scalar field.
rate of the plasmon with finite momentum @f theory with Further work has been in progress.

spontaneous breaking symmetry. For the plasmon with van- This work was supported by the National Natural Science
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