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Quantum weights of dyons and of instantons with nontrivial holonomy
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We calculate exactly functional determinants for quantum oscillations about periodic instantons with a
nontrivial value of the Polyakov line at spatial infinity. Hence, we find the weight or the probability with which
calorons with nontrivial holonomy occur in the Yang-Mills partition function. The weight depends on the value
of the holonomy, the temperature,LQCD, and the separation between the BPS monopoles~or dyons! that
constitute the periodic instanton. At large separation between constituent dyons, the quantum measure factor-
izes into a product of individual dyon measures, times a definite interaction energy. We present an argument
that at temperatures below a critical one related toLQCD, trivial holonomy is unstable, and that calorons
‘‘ionize’’ into separate dyons.
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I. MOTIVATION AND THE MAIN RESULT

There are two known generalizations of the standard s
dual instantons to nonzero temperatures. One is the peri
instanton of Harrington and Shepard@1# studied in detail by
Gross, Pisarski, and Yaffe@2#. These periodic instantons, als
calledcalorons, are said to have trivial holonomy at spati
infinity. It means that the Polyakov line

L5P expS E
0

1/T

dtA4D U
uxuW→`

~1!

assumes values belonging to the group centerZ(N) for the
SU(N) gauge group@3#. The vacuum made of those insta
tons has been investigated, using the variational principle
Ref. @4#.

The other generalization has been constructed a few y
ago by Kraan and van Baal@5# and Lee and Lu@6#; it has
been called thecaloron with nontrivial holonomyas the
Polyakov line for this configuration does not belong to t
group center. We shall call it for short the KvBLL caloron.
is also a periodic self-dual solution of the Yang-Mills equ
tions of motion with an integer topological charge. In t
limiting case when the KvBLL caloron is characterized
trivial holonomy, it is reduced to the Harrington-Shepard c
oron. The fascinating feature of the KvBLL construction
that a caloron with a unit topological charge can be view
as ‘‘made of’’ N Bogomolnyi-Prasad-Sommerfeld~BPS!
monopoles or dyons@7,8#.

Dyons are self-dual solutions of the Yang-Mills equatio
of motion with static~i.e., time-independent! action density,
which have both the magnetic and electric field at infin
decaying as 1/r 2. Therefore these objects carry both elect
and magnetic charges~prompting their name!. In the (3
11)-dimensionalSU(2) gauge theory there are in fact tw
types of self-dual dyons@9#: M and L with ~electric, mag-
netic! charges (1,1) and (2,2), and two types of anti-
self-dual dyonsM̄ and L̄ with charges (1,2) and (2,1),
respectively. Their explicit fields can be found, e.g., in R
1550-7998/2004/70~3!/036003~29!/$22.50 70 0360
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@10#. In the SU(N) theory there are 2N different dyons
@9,11#: M1 ,M2 , . . . ,MN21 ones with charges counted wit
respect toN21 Cartan generators and oneL dyon with
charges compensating those ofM1 , . . . ,MN21 to zero, and
their anti-self-dual counterparts.

Speaking of dyons one implies that the Euclidean spa
time is compactified in the ‘‘time’’ direction whose invers
circumference is temperatureT, with the usual periodic
boundary conditions for boson fields. However, the tempe
ture may go to zero, in which case the 4D Euclidean inva
ance is restored.

The essence of the dyon is that theA4 component of the
dyon field tends to a constant value at spatial infinity. T
constantA4 can be eliminated by a time-dependent gau
transformation. However then the fields violate the perio
boundary conditions, unlessA4 has quantized values corre
sponding to trivial holonomy, i.e., unless the Polyakov li
belongs to the group center. Therefore, in a general case
implies that dyons have a nonzero value ofA4 at spatial
infinity and a nontrivial holonomy.

The KvBLL caloron of theSU(2) gauge group~to which
we restrict ourselves in this paper! with a unit topological
charge is ‘‘made of’’ oneL and oneM dyon, with total zero
electric and magnetic charges. Although the action densit
isolatedL andM dyons does not depend on time, their com
bination in the KvBLL solution is generally nonstatic: th
L,M ‘‘constituents’’ show up not as 3D but rather as 4
lumps~see Fig. 1!. When the temperature goes to zero wh
the separation between dyons remain fixed, these lu
merge, and the KvBLL caloron is reduced to the usu
Belavin-Polyakov-Schwarz-Tyupkin instanton@12# ~as is the
standard Harrington-Shepard caloron!, plus corrections of
the order ofT. However, the holonomy remains fixed an
nontrivial at spatial infinity.

There is a strong argument against the presence of e
dyons or KvBLL calorons in the Yang-Mills~YM ! partition
function at nonzero temperatures@2#. The point is that the
1-loop effective action obtained from integrating out fa
varying fields where one keeps all powers ofA4 but expands
in ~covariant! derivatives ofA4 has the form@13#
©2004 The American Physical Society03-1
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S1 loop5E d4x@P~A4!1E2f E~A4!1B2f B~A4!

1higher derivative terms#,

P~A4!5
1

3T~2p!2
v2~2pT2v!2umod 2pT ,

v5AA4
aA4

a @ for the SU~2! group#, ~2!

where the perturbative potential energy termP(A4) has been
known for a long time@2,14# ~see Fig. 2!. As follows from
Eq. ~1! the trace of the Polyakov line is related to v as

1

2
Tr L5cos

v

2T
. ~3!

The zeros of the potential energy correspond to1
2 Tr L

561, i.e., to the trivial holonomy. If a dyon has vÞ2pTn
at spatial infinity the potential energy is positive-definite a
proportional to the 3D volume. Therefore, dyons and KvB
calorons with nontrivial holonomy seem to be strictly forbi
den: quantum fluctuations about them have an unaccept
large action.

Meanwhile, precisely these objects determine the phy
of the supersymmetric YM theory where in addition to gl
ons there are gluinos, i.e., Majorana~or Weyl! fermions in

FIG. 1. The action density of the KvBLL caloron as function
z,t at fixed x5y50, with the asymptotic value ofA4 at spatial

infinity v50.9pT, v̄51.1pT. It is periodic in thet direction. At
large dyon separations the density becomes static~left, r 12

51.5/T). As the separation decreases the action density beco
more like a 4D lump~right, r 1250.6/T). In both plots theL,M

dyons are centered atzL52vr 12/2pT, zM5 v̄r 12/2pT, xL,M

5yL,M50. The axes are in units of temperatureT.

FIG. 2. Potential energy as function of v/T. Two minima corre-
spond to1

2 Tr L561, the maximum corresponds to TrL50. The
range of the holonomy where dyons experience repulsion is sh
in the dashed portion.
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the adjoint representation. Because of supersymmetry,
boson and fermion determinants aboutL,M dyons cancel
exactly, so that the perturbative potential energy~2! is iden-
tically zero for all temperatures, actually in all loops. Ther
fore, in the supersymmetric theory dyons are openly allow
@To be more precise, the cancellation occurs when perio
conditions for gluinos are imposed, so it is the compactifi
tion in one~time! direction that is implied, rather than phys
cal temperature which requires antiperiodic fermions.# More-
over, it turns out@11# that dyons generate a nonperturbati
potential having a minimum at v5pT, i.e., where the per-
turbative potential would have the maximum. This value
A4 corresponds to the holonomy TrL50 at spatial infinity,
which is the ‘‘most nontrivial’’; as a matter of fact̂Tr L&
50 is one of the confinement’s requirements. In the sup
symmetric YM theory configurations having TrL50 at in-
finity are not only allowed but dynamically preferred as co
pared to those with1

2 Tr L561. In nonsupersymmetric
theory it looks as if it is the opposite.

Nevertheless, it has been argued in Ref.@15# that the per-
turbative potential energy~2! which forbids individual dyons
in the pure YM theory might be overruled by nonperturbati
contributions of anensembleof dyons. For fixed dyon den
sity, their number is proportional to the 3D volume an
hence the nonperturbative dyon-induced potential as func
of the holonomy~or of A4 at spatial infinity! is also propor-
tional to the volume. It may be that at temperatures bel
some critical one the nonperturbative potential wins over
perturbative one so that the system prefers^Tr L&50. This
scenario could then serve as a microscopic mechanism o
confinement-deconfinement phase transition@15#. It should
be noted that the KvBLL calorons and dyons seem to
observed in lattice simulations below the phase transit
temperature@16–18#.

To study this possible scenario quantitatively, one fi
needs to find the quantum weight of dyons or the probabi
with which they appear in the Yang-Mills partition function
Unfortunately, the single-dyon measure is not well defined
is too badly divergent in the infrared region owing to th
weak ~Coulomb-like! decrease of the fields. What make
sense and is finite, is the quantum determinant for small
cillations about the KvBLL caloron that possesses zero
electric and magnetic charges. To find this determinant is
primary objective of this study. The KvBLL measure d
pends on the asymptotic value ofA4 @or on the holonomy
through Eq.~3!#, on the temperatureT, on L, the scale pa-
rameter obtained through the renormalization of the cha
and on the dyon separationr 12. At large separations betwee
constituentL,M dyons of the caloron, one gets their weigh
and their interaction.

The problem of computing the effect of quantum fluctu
tions about a caloron with nontrivial holonomy is of th
same kind as that for ordinary instantons~solved by ’t Hooft
@19#! and for the standard Harrington-Shepard calor
~solved by Gross, Pisarski, and Yaffe@2#!, being, however,
technically much more difficult. The zero-temperature
stanton isO(4) symmetric, and the quantum weight depen
on only one variabler, the instanton size. The Harrington
Shepard caloron isO(3) symmetric, and the quantum weigh

es
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QUANTUM WEIGHTS OF DYONS AND OF INSTANTONS . . . PHYSICAL REVIEW D 70, 036003 ~2004!
depends on two variables,r andT. The KvBLL caloron has
only the axialO(2) symmetry, and its quantum weight is
function of three variables,r ~or r 12), T, and the holonomy.
Nevertheless, we have managed to find the small-oscilla
determinantexactly. It is possible because we are able
construct the exact propagator of spin-0, isospin-1 field
the KvBLL background, which by itself is some achiev
ment.

As it is well known@2,19#, the calculation of the quantum
weight of a Euclidean pseudoparticle consists of three st
~i! calculation of the metric of the moduli space or, in oth
words, computing the Jacobian composed of zero mo
needed to write down the pseudoparticle measure in term
its collective coordinates,~ii ! calculation of the functiona
determinant for nonzero modes of small fluctuations abo
pseudoparticle, and~iii ! calculation of the ghost determinan
resulting from background gauge fixing in the previous st
Problem~i! has been actually solved already by Kraan a
van Baal@5#. Problem~ii ! is reduced to~iii ! in the self-dual
background field @20# since for such fields Det(Wmn)
5Det(2D2)4, whereWmn is the quadratic form for spin-1
isospin-1 quantum fluctuations andD2 is the covariant
Laplace operator for spin-0, isospin-1 ghost fields. Symb
cally, one can write

KvBLL measure

5E d~collective coordinates!•Jacobian•Det21/2

3~Wmn!•Det~2D2! ~4!

where the product of the last two factors is simply Det21

(2D2) in the self-dual background. As usually, the fun
tional determinants are normalized to free ones~with zero
background fields! and UV regularized~we use the standar
Pauli-Villars method!. Thus, to find the quantum weight o
the KvBLL caloron only the ghost determinant has to
computed.

To that end, we follow Zarembo@21# and find the deriva-
tive of this determinant with respect to the holonomy
more precisely, to v[AA4

aA4
au uxuW→` . The derivative is ex-

pressed through the Green function of the ghost field in
caloron background. If a self-dual field is written in terms
the Atiyah-Drinfeld-Hitchin-Manin construction, and in th
KvBLL case it basically is@5,6#, the Green function is gen
erally known @22–25# and we build it explicitly for the
KvBLL case. Therefore, we are able to find the derivat
] Det(2D2)/]v. Next, we reconstruct the full determina
by integrating over v using the determinant for the triv
holonomy@2# as a boundary condition. This determinant
v50 is still a nontrivial function ofr 12 and the fact that we
match it from the vÞ0 side is a serious check. Actually w
need only one overall constant factor from Ref.@2# in order
to restore the full determinant at vÞ0, and we make a mino
improvement of the Gross-Pisarski-Yaffe calculation as
have computed the needed constant analytically.

Although all the above steps can be performed explici
at some point the equations become extremely length
03600
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typical expressions are several Mbytes long and so far
have not managed to simplify them such that they would
into a paper. However, we are able to obtain compact a
lytical expressions in the physically interesting case of la
separation between dyons,r 12@1/T. We have also used th
exact formulas to check numerically some of the interme
ate formulas, in particular at v→0.

If the separation is large in the temperature scale,r 12
@1/T, the final result for the quantum measure of t
KvBLL caloron can be written down in terms of the 3
positions of the two constituentL,M dyonszW1,2, their sepa-
ration r 125uzW12zW2u, the asymptotic ofA4 at spatial infinity
denoted by vP@0,2pT# and v̄52pT2vP@0,2pT# @see Eq.
~80!#. We give here a simpler expression obtained in the lim
when the separation between dyons is much larger than
core sizes:

ZKvBLL 5E d3z1d3z2T6~2p!8/3CS 8p2

g2 D 4S LegE

4pT D 22/3

3S v

2pTD 4v/3pTS v̄

2pT
D 4v̄/3pT

exp@22pr 12P9~v!#

3exp@2V(3)P~v!#, ~5!

where the overall factorC is a combination of universal con
stants; numericallyC51.031419972084.L is the scale pa-
rameter in the Pauli-Villars scheme; the factorg28 is not
renormalized at the one-loop level.

Since the caloron field has a constantA4 component at
spatial infinity, it is suppressed by the same perturbative
tential P(v) as given by Eq.~2!. Its second derivative with
respect to v is

P9~v!5
1

p2T
Fv2pTS 12

1

A3
D GFv2pTS 11

1

A3
D G .

If v is in the range between 0 andpT(121/A3) or between
pT(111/A3) and 2pT ~corresponding to the holonomy no
too far from trivial, 0.787597, 1

2 uTr Lu,1) the second de-
rivative P9(v) is positive, and theL andM dyons experience
a linear attractive potential. Integration over the separat
r 12 of dyons inside a caloron converges. We perform t
integration in Sec. VII, estimate the free energy of the c
oron gas and conclude that trivial holonomy (v50,2pT)
may be unstable, despite the perturbative potential ene
P(v). In the complementary rangepT(121/A3),v
,pT(111/A3) ~or 1

2 uTr Lu,0.787597),P9(v) is negative
~see Fig. 2!, and dyons experience a strong linear-rising
pulsion. It means that for these values of v, integration o
the dyon separations diverges: calorons with holonomy
from trivial ‘‘ionize’’ into separate dyons.

II. THE KVBLL CALORON SOLUTION

Although the construction of the self-dual solution wi
nontrivial holonomy has been fully performed independen
by Kraan and van Baal@5# and Lee and Lu@6# we have
3-3
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DIAKONOV et al. PHYSICAL REVIEW D 70, 036003 ~2004!
found it more convenient for our purposes to use the ga
convention and the formalism of Kraan and van Baal~KvB!
whose notations we follow in this paper.

The key quantities characterizing the KvBLL solution f
a generalSU(N) gauge group are theN21 gauge-invariant
eigenvalues of the Polyakov line~1! at spatial infinity. For
theSU(2) gauge group to which we restrict ourselves in t
paper, it is just one quantity, e.g. TrL, Eq. ~3!. In a gauge
where A4 is static and diagonal at spatial infinity, i.e
A4uxW→`5 ivt3/2, it is this asymptotic value v that characte
izes the caloron solution in the first place. We shall also
the complementary quantity v[̄2pT2v. Their relation to
parametersv,v̄ introduced by KvB @5# is v5v/4pT, v̄

5 v̄/4pT5 1
2 2v. Both v and v̄vary from 0 to 2pT. At v

50,2pT the holonomy is said to be ‘‘trivial,’’ and the
KvBLL caloron reduces to that of Harrington and Shepa
@1#.

There are, of course, many ways to parametrize the
oron solution. Keeping in mind that we shall be mostly i
terested in the case of widely separated dyon constituents
shall parametrize the solution in terms of the coordinates
the dyons’ ‘‘centers’’~we call constituent dyonsL and M
according to the classification in Ref.@10#!:

L dyon: zW152
2vr 12
W

T
,

M dyon: zW25
2v̄r 12
W

T
,

dyon separation: zW22zW15r 12
W , ur 12u5pTr2,

wherer is the parameter used by KvB; it becomes the size
the instanton at v→0. We introduce the distances from th
‘‘observation point’’xW to the dyon centers,

rW5xW2zW15xW12vr 12
W, r 5ur uW ,

sW5xW2zW25xW22v̄r 12
W, s5us uW . ~6!

Henceforth we measure all dimensional quantities in units
temperature for brevity and restoreT explicitly only in the
final results.

The KvBLL caloron field in the fundamental represen
tion is @5# ~we choose the separation between dyons to b
the third spatial direction,rW125r 12eW3):

Am5dm,4iv
t3

2
1

i

2
h̄mn

3 t3]nln F1
i

2
F Re@~ h̄mn

1 2 i h̄mn
2 !

3~t11 i t2!~]n1 ivdn,4!x̃#, ~7!

wheret i are Pauli matrices,h̄mn
a are ’t Hooft symbols@19#

with h̄ i j
a 5eai j and h̄4n

a 52h̄n4
a 5 idan . ‘‘Re’’ means

2 Re(W)[W1W† and the functions used are
03600
e
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ĉ52cos~2px4!1ch ch1
rWsW

2rs
sh sh,

c5ĉ 1
r 12

2

rs
sh sh1

r 12

s
sh ch 1

r 12

r
sh ch,

x̃5
r 12

c S e22p ix4
sh

s
1

sh

r D , F5
c

ĉ
. ~8!

We have introduced shorthand notations for hyperbolic fu
tions:

sh[sinh~sv!, ch[cosh~sv!, sh[sinh~r v̄!,

ch[cosh~r v̄!. ~9!

The first term in~7! corresponds to a constantA4 component
at spatial infinity (A4' ivt3/2) and gives rise to the non
trivial holonomy. One can see thatAm is periodic in time
with period 1 ~since we have chosen the temperature to
equal to unity!. A useful formula for the field strength
squared is@5#

Tr FmnFmn5]2]2logc. ~10!

In the situation when the separation between dyonsr 12 is
large compared to both their core sizes 1/v~M! and 1/v̄(L),
the caloron field can be approximated by the sum of in
vidual BPS dyons@see Figs. 1 and 3~left! and Fig. 4#. We
give below the field inside the cores and far away from b
cores.

FIG. 3. The action density of the KvBLL caloron as function
z,x at fixed t5y50. At large separationsr 12 the caloron is a su-
perposition of two BPS dyon solutions~left, r 1251.5/T). At small
separations they merge~right, r 1250.6/T). The caloron parameter
are the same as in Fig. 1.

FIG. 4. Three regions of integration for well separated dyo
3-4
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A. Inside dyon cores

In the vicinity of theL dyon centerzW1 and far away from
the M dyon (sv@1) the field becomes that of theL dyon. It
is instructive to write it in spherical coordinates centered
zW1. In the ‘‘stringy’’ gauge@10# in which theA4 component is
constant and diagonal at spatial infinity, theL dyon field is

A4
L5

i t3

2 S 1

r
12p2 v̄ coth~ v̄r ! D , Ar

L50,

Au
L5 i v̄

2sin~2px42f!t11cos~2px42f!t2

2 sinh~ v̄r !
,

~11!

Af
L 5 i v̄

cos~2px42f!t11sin~2px42f!t2

2 sinh~ v̄r !

2 i t3

tan~u/2!

2r
.

HereAu , for example, is the projection ofAW onto the direc-
tion nW u5(cosu cosf,cosu sinf,2sinu). The f component
has a string singularity along thez axis going in the positive
direction. Notice that inside the core region (vr̄<1) the field
is time dependent, although the action density is static.
large distances from theL dyon center, i.e., far outside th
core one neglects exponentially small termsO(e2 v̄r) and the
surviving components are

A4
L →

r→`S v1
1

r D i t3

2
,

Af
L →

r→`

2
tan~u/2!

r

i t3

2
,

corresponding to the radial electric and magnetic field co
ponents

Er
L5Br

L →
r→`

2
1

r 2

i t3

2
. ~12!

This Coulomb-type behavior of both the electric and ma
netic fields prompts the name ‘‘dyon.’’

Similarly, in the vicinity of theM dyon and far away from
the L dyon (r v̄@1) the field becomes that of theM dyon,
which we write in spherical coordinates centered atzW2:

A4
M5

i t3

2 S v coth~vs!2
1

sD , Au
M5v

sinft12cosft2

2i sinh~vs!
,

Ar
M50, Af

M5v
cosft11sinft2

2i sinh~vs!
1 i t3

tan~u/2!

2s
,

~13!

the asymptotics of which is
03600
t

t
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-

A4
M →

r→`S v2
1

sD i t3

2
,

Af
M →

r→`tan~u/2!

s

i t3

2
, ~14!

Er
M5Br

M →
r→` 1

s2

i t3

2
.

We see that in both cases theL,M fields become Abelian a
large distances, corresponding to~electric, magnetic! charges
(2,2) and (1,1), respectively. The corrections to th
fields ~11! and ~13! are hence of the order of 1/r 12 arising
from the presence of the other dyon.

B. Far away from dyon cores

Far away from both dyon cores (r v̄@1, sv@1; note that
it does not necessarily imply large separations—the dy
mayeven be overlapping! one can neglect both types of ex
ponentially small terms,O(e2r v̄) andO(e2sv). With expo-
nential accuracy the functionx̃ in Eq. ~8! is zero, and the
KvBLL field ~7! becomes Abelian@5#:

Am
as5 i

t3

2
~dm4v1h̄mn

3 ]nln Fas!, ~15!

whereFas is the functionF of Eq. ~8! evaluated with the
exponential precision:

Fas5
r 1s1r 12

r 1s2r 12
5

s2s3

r 2r 3
if rW125r 12eW3 . ~16!

It is interesting that, despite being Abelian, the asympto
field ~15! retains its self-duality. This is because the thi
color component of the electric field is

Ei
35] iA4

35] i]3ln Fas

while the magnetic field is

Bi
35e i jk] jAk

35] i]3ln Fas2d i3]2ln Fas,

where the last term is zero, except on the line connecting
dyon centers where it is singular; however, this singularity
an artifact of the exponential approximation used. Expli
evaluation of Eq.~15! gives the following nonzero compo
nents of theAm field far away from both dyon centers:

A4
as5

i t3

2 S v1
1

r
2

1

sD , ~17!

Aw
as52

i t3

2 S 1

r
1

1

sD
3A~r 122r 1s!~r 121r 2s!

~r 121r 1s!~r 1s2r 12!
. ~18!
3-5
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In particular, far away from both dyons,A4 is the Coulomb
field of two opposite charges.

III. THE SCHEME FOR COMPUTING Det „ÀD2
…

As explained in Sec. I, to find the quantum weight of t
KvBLL caloron, one needs to calculate the small oscillati
determinant, Det(2D2), whereDm5]m1Am andAm is the
caloron field~7!. Instead of computing the determinant d
rectly, we first evaluate its derivative with respect to the h
lonomy v, and then integrate the derivative using the kno
determinant at v50 @2# as a boundary condition.

If the background fieldAm depends on some parameterP,
a general formula for the derivative of the determinant w
respect to such parameter is

] log Det~2D2@A# !

]P 52E d4x Tr~]PAmJm!, ~19!

whereJm is the vacuum current in the external backgroun
determined by the Green function:

Jm
ab[~dc

add
b]x2dc

add
b]y1Aacdd

b1Adbdc
a!G cd~x,y!uy5x

or simply

Jm[DW mG1GDQ m . ~20!

Here G is the Green function or the propagator of spin
isospin-1 particle in the given backgroundAm defined by

2Dx
2G~x,y!5d (4)~x2y! ~21!

and, in the case of nonzero temperatures, being period
time, meaning that

G~x,y!5 (
n52`

`

G~x4 ,xW ;y41n,yW !. ~22!

Equation ~19! can be easily verified by differentiating th
identity log Det(2D2)5Tr log(2D2) @26#. The background
field Am in Eq. ~19! is taken in the adjoint representation,
is the trace. Hence, if the periodic propagatorG is known,
Eq. ~19! becomes a powerful tool for computing quantu
determinants. Specifically, we takeP5v as the parameter fo
differentiating the determinant, and there is no problem
finding ]vAm(r ,s,r 12,x0 ,v) for the caloron field~7!. In this
differentiation, we assume for convenience that the dyo
centers are fixed.@One could assume, for example, that t
dyons’ center of mass is fixed—it would lead to more co
plicated intermediate formulas but the same final result as
two frames differ by a global translation of which the dete
minant in question is invariant.#

The Green functions in self-dual backgrounds are gen
ally known @25,27# and are built in terms of the Atiyah
Drinfeld-Hitchin-Manin ~ADHM ! construction@28# for the
given self-dual field. A subtlety appearing at nonzero te
peratures is that the Green function is defined by Eq.~21! in
the EuclideanR4 space where the topological charge is in
nite because of the infinite number of repeated strips in
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compactified time direction, whereas one actually needs
explicitly periodic propagator~22!. To overcome this nui-
sance, Nahm@25# suggested to pass on to the Fourier tra
forms of the infinite-range subscripts in the ADHM constru
tion. We perform this program explicitly in Appendix A, firs
for the single dyon field and then for the KvBLL caloron. I
this way, we get the finite-dimensional ADHM constructio
both for the dyon and the caloron, with very simple perio
icity properties. Using it, we construct explicitly period
propagators in Appendix B, also first for the dyon and th
for the caloron case. For the KvBLL caloron it was n
known previously. Using the obtained periodic propagato
in Appendix C we calculate the exact vacuum current~20!
for the dyon, and in Appendix D we evaluate the vacuu
current in the caloron background, with the help of the reg
larization carried out in Appendix E.

Although there is no principal difficulty in doing all cal
culations exactly for the whole caloron moduli space,
some point we loose the capacity of performing analyti
calculations for the simple reason that expressions bec
too long, and so far we have not been able to put them in
manageable form in a general case. Therefore, we hav
adopt a more subtle attitude. First of all we restrict oursel
to the part of the moduli space corresponding to large se
rations between dyons (r 12@1). Physically, it seems to be
the most interesting case~see Sec. I!. Furthermore, at the firs
stage we taker 12v,r 12v̄@1, meaning that the dyons are we
separated and do not overlap since the separation is
much bigger than the core sizes@see Figs. 1,3~left!#. In this
case, the vacuum currentJm ~20! becomes that of single
dyons inside the spheres of some radiusR surrounding the
dyon centers, such that 1/v,1/v!̄R!r 12, and outside these
spheres it can be computed analytically with exponential p
cision, in correspondence with Sec. II B~see Fig. 4!. Adding
up the contributions of the regions near two dyons and of
far-away region, we getd Det(2D2)/dv for well-separated
dyons. Integrating it over v we obtain the determinant its
up to a constant and possible 1/r 12 terms.

This is already an interesting result by itself; however,
would like to compute the constant, which can be done
matching our calculation with that for the trivial caloron
v50. It means that we have to extend the domain of ap
cability to r 12v5O(1) @or r 12v̄5O(1)], implying overlap-
ping dyons, presented in Figs. 1 and 3~right!. To make this
extension, we ‘‘guess’’ the analytical expression that wou
interpolate betweenr 12v@1 where the determinant is alread
computed andr 12v!1 where matching with the Gross
Pisarski-Yaffe~GPY! calculation@2# can be performed. At
this point it becomes very helpful that we possess the ex
vacuum current for the caloron, which, although too long
be put on paper, is nevertheless affordable for numer
evaluation~and can be provided on request!. We check our
analytical guess to an accuracy better than one-millionth
this way we obtain the determinant up to an overall const
factor for any v,v̄with the only restriction thatr 12@1. This
constant factor is then read off from the GPY calculation@2#.
Finally, we compute the 1/r 12 and logr12/r 12 corrections in
Det(2D2), which turn out to be quite nontrivial.
3-6
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IV. Det„ÀD2
… FOR WELL SEPARATED DYONS

TheL,M dyon cores have sizes 1/v¯and 1/v, respectively
and in this section we consider the case of well-separa
dyons, meaning that the distance between the two cente
much greater than the core sizes,r 12@1/v, 1/v̄. This situa-
tion is depicted in Figs. 1 and 3~left!. The two dyons are
static in time, so that] log Det(2D2)/]v ~19! becomes an
integral over 3D space, times 1/T set to unity. We divide the
3D volume into to three regions~Fig. 4!: ~i! a ball of radius
R centered at the center of theM dyon,~ii ! a ball of radiusR
centered at theL dyon, ~iii ! the rest of the space, with tw
balls removed. The radiusR is chosen such that it is muc
larger than the dyon cores but much less than the separa
r 12@R@1/v, 1/v̄. Summing up the contributions from th
three regions of space, we are satisfied to observe tha
result does not depend on the intermediate radiusR.

A. Det„ÀD2
… for a single dyon

In region ~i! the KvBLL caloron field can be approxi
mated by theM dyon field ~13!, and the vacuum current b
that inside a single dyon, both with theO(1/r 12) accuracy.
We make a more precise calculation, including theO(1/r 12)
terms, in Sec. V. The single-dyon vacuum current is cal
lated in Appendix C. Adding up the three parts of t
vacuum current denoted there asJm

s,r,m we obtain the full
isospin-1 vacuum current~in the stringy gauge!

Jr50,

Jf52
iv@sin~f!T21cos~f!T1#@12sv coth~sv!#2

24p2s2sinh~sv!
,

Ju52
iv@sin~f!T12cos~f!T2#@12sv coth~sv!#2

24p2s2sinh~sv!
,

J452 iT3F @12sv coth~sv!#3

6p2s3
1

12sv coth~sv!

3s

1
coth~sv!@12sv coth~sv!#2

2ps2 G ,

where (Tc)
ab[ i«acb are the isospin-1 generators. We co

tract Jm ~23! with dAm /dv from Eq. ~13! according to Eq.
~19!. After taking the matrix trace, the integrand in Eq.~19!
becomes spherically symmetric:

Tr@]vAmJm#5
2

3s S coth~sv!2sv1
sv@sv coth~sv!22#

sinh2~sv!
D

2
@sv coth~sv!21#3@sinh~2sv!23sv#

6p2sinh2~sv!s3

1
@sv coth~sv!21#2@sinh~2sv!22sv#

2p sinh2~sv!tanh~sv!s2
.

~23!
03600
d
is

n:

he

-

-

It has to be integrated over the spherical box of radiusR.
Fortunately, we are able to perform the integration anal
cally. The result for theM dyon is

] log Det~2D2@M dyon# !

]v

52E
0

R

dsTr@]vAmJm#4ps2

52

24~gE2 logp!1531
2

3
p2

18p
1

1

v
1

4pR3

3

3P8~v!22pR2P9~v!12pRP-~v!2
4

3p
log~Rv!.

~24!

As we see, it is badly infrared divergent, as it depends on
box radiusR. HereP(q) is the potential energy@see Eq.~2!#

P~q!5Fp2

12 S q

p
22D 2S q

p D 2G ,
P8~q!5

1

3p2
q~p2q!~2p2q!,

P9~q!5
1

3p2
~3q226pq12p2!,

P-~q!5
2

p2
~q2p!, PIV~q!5

2

p2
.

The IR-divergent terms arise from the asymptotics of
integrand. Neglecting exponentially small termse2sv in Eq.
~23! we have

2Tr@]vAmJm#.24F ~12sv!3

12p2s3
1

~12sv!2

4ps2
1

12sv

6s G
5P8S v2

1

sD5P8~v!2P9~v!
1

s

1
1

2
P-~v!

1

s2
2

1

6
PIV~v!

1

s3
.

Integrating it over the sphere of radiusR one gets the IR-
divergent terms@the second line in Eq.~24!#.

The fact that the IR-divergent part ofd Det(2D2)/dv is
directly related to the potential energyP(A4) is not acciden-
tal. At large distances the field of the dyon becomes a slo
varying Coulomb field@see Eq.~14!#. Therefore, the deter
minant can be generically expanded in the covariant der
tives of the background field@13,29# with the potential en-
ergy P(A4) being its leading zero-derivative term. Th
nontrivial fact, however, is that with exponential precisio
3-7
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the vacuum current is related to the variation of solely
leading term in the covariant derivative expansion of
effective action with no contribution from any of the su
leading terms. This is a specific property of self-dual fiel
and we observe it also in the following section.

B. Contribution from the far-away region

We now compute the contribution to] Det(2D2)/]v
from the region of space far away from both dyon cente
With exponential accuracy~meaning neglecting terms of th
order ofe2r v̄ ande2sv) the KvBLL caloron field is given by
Eqs. ~17! and ~18!, and only theA4 component depend
~trivially ! on v. The caloron vacuum current with the sam
exponential accuracy is calculated in Appendix D. Comb
ing the results given by Eqs.~D8! and ~D9! and Eqs.~D11!
and ~D12! we see thatJw50 and forJ4 we have

J45
iT3

2 H F 1

3p2 S 1

r
2

1

sD 3

2
1

p S 1

r
2

1

sD 2

1
2

3 S 1

r
2

1

sD G
1F 4

p S 1

r
2

1

sD 2

28S 1

r
2

1

sD1
8p

3 Gv1F16S 1

r
2

1

sD
216pGv21

64p

3
v3J . ~25!

We remind the reader thatr ,s are distances fromM ,L dyon
centerszW1,2 and thatv5v/(4p). It is interesting that the
separationr 125uz12z2u does not appear explicitly in the cu
rent. Moreover, it can be again written through the poten
energyP(A4):

J45
1

2
iT3P8~q!uq5v11/r 21/s . ~26!

Therefore, in the far-away region one obtains

2Tr@]vAmJm#5P8S v1
1

r
2

1

sD . ~27!

We have now to integrate Eq.~27! over the whole 3D space
with two spheres of radiusR surrounding the dyon center
removed:

2E d4x Tr@]vAmJm#5E d3xP8S v1
1

r
2

1

sD
5P8~v!E d3x1P-~v !E d3x

3S 1

r
2

1

sD1
1

2
P-~v !E d3x S 1

r

2
1

sD 2

1
1

6
PIV~v !E d3xS 1

r
2

1

sD 3

.

~28!

The first integral in Eq.~28! is the 3D volumeV minus the
volume of two spheres,V22(4p/3)R3. The second integra
03600
e
e

,

.
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is zero by symmetry between the two centers, and so is
last one. The only nontrivial integral is

E d3xS 1

r
2

1

sD 2

54pr 1228pR1OS R2

r 12
D . ~29!

Therefore, the contribution from the region far from bo
dyon centers is

] log Det~2D2!

]v U
far

5P8~v!S V22
4p

3
R3D1

1

2
P-~v!

3~4pr 1228pR!. ~30!

C. Combining all three regions

We now add up the contributions to] log Det(2D2)/]v
from the regions surrounding the two dyons and from
far-away region. Since the contribution of theL dyon is the
same as that of theM dyon with the replacement v→ v̄ and
since]/]v52]/] v̄, when adding up contributions ofL,M
core regions we have to antisymmetrize in v↔ v̄. It should be
noted thatP(v) and P9(v) are symmetric under this inter
change, whileP8(v) and P-(v) are antisymmetric. There
fore, the combined contribution of both cores is, fro
Eq. ~24!,

] log Det~2D2!

]v U
cores

52P8~v!
4p

3
R31

1

2
P-~v!8pR1

1

v

2
1

v̄
2

4

3p
lnS v

v̄
D . ~31!

Adding it up with the contribution from the far-away region
Eq. ~30!, we obtain the final result, which is independent
the intermediate radiusR used to separate the regions:

] log Det~2D2!

]v
5P8~v!V1P-~v!2pr 121

1

v
2

1

v̄

2
4

3p
lnS v

v̄
D . ~32!

This equation can be easily integrated over v up to a cons
which in fact can be a function of the separationr 12:

log Det~2D2!5P~v!V1P9~v!2pr 121S 12
4v

3p D log~v!

1S 12
4v̄

3p
D log~ v̄!1 f ~r 12!. ~33!

Since in the above calculation of the determinant for we
separated dyons we have neglected the Coulomb field of
dyon inside the core region of the other, we expect that
unknown functionf (r 12)5O(1/r 12)1c, wherec is the true
integration constant. Our next aim will be to find it. Th
O(1/r 12) corrections will be found later.
3-8
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V. MATCHING THE DETERMINANT WITH
TRIVIAL HOLONOMY

To find the integration constant, one needs to know
value of the determinant at v50 ~or v̄50) where the KvBLL
caloron with nontrivial holonomy reduces to the Harringto
Shepard caloron with a trivial one and for which the det
minant has been computed by GPY@2#. Before we match our
determinant at vÞ0 with that at v50 let us recall the GPY
result.

A. Det„ÀD2
… at vÄ0

The v50 periodic instanton is traditionally parametrize
by the instanton sizer. It is known @2,24# that the periodic
instanton can be viewed as a mix of two BPS monopo
one of which has an infinite size. It becomes especially c
in the KvBLL construction@5,6# where the size of one of th
dyons becomes infinite as v→0 ~see Sec. II!. Despite one
dyon being infinitely large, one can still continue to para
etrize a caloron by the distancer 12 between dyon centers
with r5Ar 12/p. Since our determinant~33! is given in
terms ofr 12 we have first of all to rewrite the GPY determ
nant in terms ofr 12, too. Actually, GPY have interpolate
the determinant in the whole range ofr ~hencer 12) but we
shall be interested only in the limitr 12@1. In this range the
GPY result reads:

log Det~2D2!uv50, T51

5 log Det~2D2!uv50, T501
4

3
pr 122

4

3
log r 121c0

1OS 1

r 12
D ,

c05
8

9
2

8gE

3
2

2p2

27
1

4 logp

3
. ~34!

We have made here a small improvement as compare
Ref. @2#, namely~i! we have checked that the correction is
the order of 1/r 12, based on an intermediate exact formu
and ~ii ! we have also managed to get an exact analyt
expression for the constant.

The zero-temperature determinant is that for the stand
BPST instanton@19,30#:

log Det~2D2!uv50, T50

5
2

3
logm1

1

3
logS r 12

p D1a~1!, ~35!

a~1!5
2gE

3
2

16

9
1

log 2

3
1

2 log~2p!

3
2

4z8~2!

p2
,

~36!

where it is implied that the determinant is regularized by
Pauli-Villars method andm is the Pauli-Villars mass~see
Sec. VI A!. Combining Eqs.~34! and ~35! one obtains
03600
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log Det@2D2#uv50, T515
4

3
pr 122 log r 121

2

3
logm1c1

1OS 1

r 12
D , ~37!

where

c15 log 21
5

3
logp2

8

9
22gE2

2p2

27
2

4z8~2!

p2

50.206602292859. ~38!

We notice thatP(v)→0 and P9(v)→ 2
3 at v→0; therefore

the first two terms in Eq.~33! become exactly equal to th
first term in Eq.~37!. At the same time, the last two terms
Eq. ~33! become log v2 5

3 log(2p)1c which is formally sin-
gular at v→0 and does not match the2 log r12 in Eq. ~37!.
The reason is that Eq.~33! has been derived assumingr 12

@1/v,1/v̄ and one cannot take the limit v→0 in that expres-
sion without taking simultaneouslyr 12→`. In order to
match the determinant at v50 one needs to extend Eq.~33!
to arbitrary values of vr 12. As we shall see, it will be impor-
tant for the matching that logr12 has the coefficient21.

B. Extending the result to arbitrary values of vr 12

Let us take a fixed but large value of the dyon separat
r 12@1 such that both Eqs.~33! and ~37! are valid. Actually,
our aim is to integrate the exact expression for the deriva
of the determinant

]vlog Det~2D2!5E `~x!d4x,

`~x![2Tr@]vAmJm~x,xuA!#, ~39!

from v50, where the determinant is given by Eq.~37!, to
some small value of v!1 ~but such that vr 12@1) where Eq.
~33! becomes valid. We shall parametrize this v as v5k/r 12
!1 with k@1. The result of the integration over v must b
equal to the difference between the right hand sides of E
~33! and ~37!. We write it as

E
0

k/r 12
dvE d4x`~x!5VFPS k

r 12
D2P~0!G12pr 12FP9S k

r 12
D

2P9~0!G1 log~k!1c2
5

3
log~2p!

2c12
2

3
logm1OS k

r 12
D . ~40!

Notice that logr12 has cancelled in the difference in the righ
hand side~r.h.s.!. We denote

c2[c2c12
2

3
logm2

5

3
log~2p!. ~41!
3-9
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We know that the first two terms in Eq.~40! come from far
asymptotics. Denoting by`̄ our ` with subtracted
asymptotic terms we have

E
0

k/r 12
dvE d4x`̄~x!5 logk1c21OS 1

r 12
D . ~42!

In this integration we are in the domain 1/v@1 andr 12@1
and we can simplify the integrand dropping terms, which
small in this domain. At this point it will be convenient t
restore temporarily the temperature dependence. Withb
[1/T our domain of interest is 1/v@b and r 12@b. There-
fore we are in the small-b domain and can expand̄̀ in
series with respect tob:

`̄5
1

b2
`01

1

b
`11O~b0!. ~43!

As we shall see in a moment, only the first two terms are
small in this domain and we need to know only them
computec2. It is a great simplification becausè0,1 do not
contain terms proportional toe2 v̄r since v̄52pT2v→` at
b→0, and what is left is time independent. Moreover, wh
is left after we neglect exponentially small terms are hom
geneous functions ofr ,s,r 12,v and we can turn to the dimen
sionless variables:

`0~r ,s,r 12,v!5
1

r 12
`̃0S r

r 12
,

s

r 12
,vr 12D ,

`1~r ,s,r 12,v!5
1

r 12
2

`̃1S r

r 12
,

s

r 12
,vr 12D .

We rewrite the l.h.s. of Eq.~42! in terms of the new quanti
ties:

E d4x`̄~x!5
r 12

2

b E d3x̃`̃01r 12E d3x̃`̃11O~b!,

~44!

where x̃5x/r 12 is dimensionless. We see that it is inde
sufficient to take just the first two terms in the expansion~43!
at b→0. The integration measure can be written in terms
the dimensionless variablesr̃ 5r /r 12,s̃5s/r 12 as

d3x̃52p r̃ d r̃ s̃ds̃, ~45!

where r̃ and s̃ are constrained by the triangle inequalitiesr̃

1 s̃,1, r̃ 11, s̃, ands̃11, r̃ , and we have integrated ove
the azimuth angle.

We have now to use the exact vacuum current in the
oron background to compute*`̃0,1. First, it turns out that the
first integral in Eq.~44! is zero. This is good news becau
had it been nonzero, Eq.~42! could not be right as its r.h.s
has no dependence onr 12 other than possible 1/r 12 terms.
Second, we have noticed that the second integral in Eq.~44!
is in fact
03600
e

t

t
-

f

l-

E d3x̃`̃15
1

vr 1211
. ~46!

Unfortunately, we were not able to verify it analytically bu
we checked numerically that it holds with the precision o
few units of 1027 in the range of vr 12 between 0 and 15
Combining Eqs.~44! and ~46! we obtain for the l.h.s. of
Eq. ~42!

E
0

k/r 12
dvE d4x`̄~x!5r 12E

0

k/r 12 dv

vr 1211
5 log~k11!

5 logk1OS 1

kD .

Therefore, we reproduce the r.h.s. of Eq.~42! and in addition
find thatc250.

Equation ~46! is sufficient to extend the result for th
determinant~33! valid at vr 12@1 to arbitrary values of vr 12,
providedr 12@1 ~the extension to arbitrary values of vr̄ 12 is
obtained by symmetry v↔ v̄). The final result for the deter
minant to the 1/r 12 accuracy is

log Det@2D2#5VP~v!12pP9~v!r 121S 12
4v

3p D
3 log~vr 1211!1S 12

4v̄

3p
D log~ v̄r 1211!

1
2

3
log~mr 12!1c11

5

3
log~2p!1OS 1

r 12
D ,

~47!

wherem is the UV cutoff and the numerical constantc1 is
given by Eq.~38!. This expression is finite at v→0,v̄→0 and
coincides with the GPY result~37! in these limits. At vr 12
@1 we restore the previous result, Eq.~33!, but now with the
integration constant fixed:c5 2

3 logm15
3 log(2p)1c1. Equa-

tion ~47! is valid for any holonomy, i.e., for v,vP̄@0,2p#,
and the only restriction on its applicability is the conditio
that the dyon separation is large,r 12@1.

C. 1Õr 12 corrections

Equation ~47! can be expanded in inverse powers
vr 12,v̄r 12, which gives 1/(vr 12), 1/(v̄r 12) ~and higher! cor-
rections; however, there are other 1/r 12 corrections that are
not accompanied by the 1/v, 1/v¯factors: the aim of this sec
tion is to find them using the exact vacuum current.

To this end, we again consider the caser 12@1/v,1/v̄ such
that one can split the integration over 3D space into th
regions shown in Fig. 4. In the far-away region one can
the same vacuum current~25! as it has an exponential prec
sion with respect to the distances to both dyons. In the c
regions, however, it is now insufficient to neglect complete
the field of the other dyon, as we did in Sec. IV looking f
the leading order. Since we are now after the 1/r 12 correc-
3-10
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tions, we have to use the exact field and the exact vacu
current of the caloron but we can neglect the exponenti
small terms in their separation.

Another modification with respect to Sec. IV is that w
find it more useful this time to chooser 12 as the parameterP
in Eq. ~19!. We shall compute the 1/r 12

2 terms in
] Det(2D2)/]r 12 and then restore the determinant its
since the limit ofr 12→` is already known. Let us defin
how the KvBLL field depends onr 12. As seen from Eq.~7!
the KvBLL field is a function ofr , s, v, r 12 only. We define
the change in the separationr 12→r 121dr12 as the symmetric
displacement of each monopole center by6dr12/2. It corre-
sponds to

]r

]r 12
5

r 12
2 1r 22s2

4r 12r
,

]s

]r 12
5

r 12
2 1s22r 2

4r 12s
. ~48!

We shall use the definition~48! to compute the derivative o
the caloron field~7! with respect tor 12.

Let us start from theM-monopole core region. To get th
03600
m
ly
1/r 12 correction to the determinant we need to compute
derivative in the 1/r 12

2 order and expand correspondingly th
caloron field and the vacuum current to this order. Where
the distancer from the far-awayL dyon appears in the equa
tions, we replace it byr 5(r 12

2 12sr12cosu1s2)1/2 wheres is
the distance from theM dyon andu is the polar angle seen
from theM-dyon center. Expanding in inverse powers ofr 12
we get coefficients that are functions ofs,cosu. One can
easily integrate overu as the integration measure in spheric
coordinates is 2ps2dsdcosu. We leave out the intermediat
equations and give only the end result for the integrand
Eq. ~19!. After integrating over cosu we obtain the following
contribution from the core region of theM monopole:

] Det~2D2!

]r 12
U

M dyon core

52
1

r 12
2 E0

R

I 1/r
12
2 16ps2ds1OS 1

r 12
3 D ,

~49!

whereI 1/r 2 reads

12
I 1/r
12
2 52

coth~sv!

12p2s3
2

coth~sv!

9s
2

sv2coth~sv!csch~sv!2

36
2

s2v3@21cosh~2sv!#csch~sv!4

72

1
v@26113 cosh~2sv!14 cosh~4sv!#coth~sv!csch~sv!4

96ps

2
v2@37123 cosh~2sv!14 cosh~4sv!#coth~sv!csch~sv!4

192p2s
1

s2v4@41cosh~2sv!#coth~sv!2csch~sv!4

48p

2
sv3@54 cosh~sv!117 cosh~3sv!1cosh~5sv!#csch~sv!7

384p

1
sv4@2406 cosh~sv!281 cosh~3sv!17 cosh~5sv!#csch~sv!7

2304p2
2

s2v5@224233 cosh~2sv!1cosh~6sv!#csch~sv!8

1536p2

1v
6113 csch~sv!2

72
1

21025 csch~sv!219 csch~sv!4

48ps2
1v

40165 csch~sv!2119 csch~sv!4

192p2s2

1v2
26220 csch~sv!219 csch~sv!4127 csch~sv!6

48p
1v3

24198 csch~sv!21285 csch~sv!41234 csch~sv!6

576p2
. ~50!

Fortunately we are able to integrate this function analytically:

E
0

R

I 1/r
12
2 16ps2ds5

1

v
2

p2136gE169

27p
1

2v~v223pv12p2!

9p
R31

4~6vp22p223v2!

9p
R21

10~v2p!

3p
R2

4 log~Rv/p!

3p
.

~51!

For theL monopole core contribution one has to replace v by v.̄ Adding together contributions fromL,M monopole cores we
have

] Det~2D2!

]r 12
U

cores

52
1

r 12
2 F1

v
1

1

v̄
22

p2136gE169

27p
2

8

9p
~3v226pv12p2!R22

4 log~R2vv̄/p2!

3p G . ~52!
3-11
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Now let us turn to the far-away region. Recalling Eq.~26! we realize that the contribution of this region is determined by
potential energy:

] Det~2D2!

]r 12
U

far

5E d3x] r 12
PS v1

1

r
2

1

sD5
1

2
P9~v!E d3x] r 12S 1

r
2

1

sD 2

1
1

24
PIV~v!E d3x] r 12S 1

r
2

1

sD 4

.

The integration region is the 3D volume with two balls of radiusR removed. We use

E d3x] r 12S 1

r
2

1

sD 2

54p2
16pR2

3r 12
2

, E d3x] r 12S 1

r
2

1

sD 4

5
2p

3r 12
2 F48 logS r 12

R D29p218G . ~53!

Adding up all three contributions we see that the region separation radiusR gets cancelled~as it should!, and we get

] r 12
log Det~2D2!52pP9~v!1

1

r 12
2 F 4

3p
logS vv̄r 12

2

p2 D 2
1

v
2

1

v̄
1

50

9p
1

8gE

3p
2

23p

54 G , ~54!

which can be easily integrated, with the result

log Det~2D2!52pP9~v!r 121
1

r 12
F1

v
1

1

v̄
1

23p

54
2

8gE

3p
2

74

9p
2

4

3p
logS vv̄r 12

2

p2 D G1 c̄1OS 1

r 12
2 D , ~55!
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where c̄ is the integration constant that does not depend
r 12. Comparing Eq.~55! with Eq. ~32! at r 12→` we con-
clude that

c̄5VP~v!1
2

3
logm1

3p24v

3p
log v1

3p24v̄

3p
log v̄

1
5

3
log~2p!1c1 ~56!

andc1 is given in Eq.~38!. We note that the leading correc
tion, logr12/r 12, arises from the far-away region and is r
lated to the potential energy, similar to the leadingr 12 term.
The terms proportional to 1/v and 1/v¯can be extracted from
expanding Eq.~47! @which is an additional independen
check of Eq.~46!#. In fact, Eqs.~47! and ~55! are comple-
mentary: Eq.~47! sums up all powers of 1/r 12v,1/r 12v̄ but
misses (logr12)/r 12 and 1/r 12 terms, whereas Eq.~55! col-
lects all terms of that order but misses higher powers
1/r 12v,1/r 12v̄.

VI. QUANTUM WEIGHT OF THE KVBLL CALORON

A. Quantum weight of a Euclidean pseudoparticle: generalities

If a field configurationĀm is a solution of the Yang-Mills
Euclidean equation of motion,DmFmn50, its quantum
weight is the contribution of the saddle point to the partiti
function

Z5E DAmexp~2S@A# !, S@A#5
1

4g2E d4xFmn
a Fmn

a .

~57!
03600
n

f

The general field over which one integrates in Eq.~57! can
be written as

Am5Ām1am , ~58!

whereĀm is the classical solution corresponding to the loc
minimum of the action andam is the presumably small quan
tum oscillation about the solution. One expands the act
around the minimum,

S@A#5S@Ā#2
1

g2E d4xan
aDm

ab~Ā!Fmn
b ~Ā!

1
1

2g2E d4xam
a Wmn

ab~Ā!an
b1O~a3!, ~59!

where the linear term is in fact absent sinceĀ satisfies the
equation of motion, and the quadratic form is

Wmn
ab~Ā!52D2~Ā!abdmn1~DmDn!ab~Ā!22 f acbFmn

c ~Ā!,
~60!

Dm
ab~Ā!5]mdab1 f acbĀm

c . ~61!

We have written the covariant derivative in the adjoint re
resentation; the relation with the fundamental representa
is given by am52 iam

a ta, Tr(tatb)5 1
2 dab and similarly for

Fmn , etc. The 1-loop approximation to the quantum weig
corresponds to evaluating Eq.~57! in the Gaussian approxi
mation in am ; henceO(a3) terms in Eq.~59! have been
neglected.

The quadratic form~60! is highly degenerate since an
fluctuation of the typeam

a 5Dm
ab(Ā)Lb(x) corresponding to

an infinitesimal gauge transformation of the saddle-po
3-12
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field Ā nullifies it. Therefore, one has to impose a gaug
fixing condition onam . The conventional choice is the bac
ground Lorenz gaugeDm

ab(Ā)am
b 50: with this condition im-

posed the operatorW simplifies as the second term in E
~60! can be dropped. Fixing this gauge, however, brings
the Faddeev-Popov ghost determinant Det@2D2(Ā)#.

To define the path integral, one decomposes the fluc
tion field in the complete set of the eigenfunctions of t
quadratic form,

am
a ~x!5(

n
cncm n

a ~x!, Wmn
abcn n

b 5lncm n
b , Dm

abcm n
b 50,

~62!

and implies that the path integral is understood as the i
gral over Fourier coefficients in the decomposition:

DAm~x!5)
n

dcn

A2p
, ~63!

The quadratic form~60! has a finite number of zero mode
related to the moduli space of the solution. Let the numbe
zero modes bep @for a self-dual solution with topologica
charge onep54N for the SU(N) gauge group@27# #. Let
j i , i 51, . . . ,p, be the set of collective coordinates chara
terizing the classical solution, of which the actionS@Ā# is in
fact independent. The zero modes are

cm i
a ~x!5

]Ām
a ~x,j!

]j i
2Dm

ab~Ā!L i
b~x!, ~64!

where the second term is subtracted in order for the z
modes to satisfy the background Lorenz condition,Dm

abcm i
b

50. Thep3p metric tensor

gi j 5E d4xcm i
a cm j

a ~65!

defines the metric of the moduli space. Its determinan
actually the Jacobian for passing from integration over ze
mode Fourier coefficientsci , i 51, . . . ,p, in Eq. ~63! to the
integration over the collective coordinatesj i , i 51, . . . ,p:

)
i 51

p
dci

A2p
5J)

i 51

p

dj iS 1

A2p
D p

, J5Adetgi j . ~66!

Finally, one has to normalize and regularize the ghost de
minant Det(2D2) and the Gaussian integral of the quadra
form. One usually normalizes the contribution of
pseudoparticle to the partition function by dividing it by th
free ~i.e., zero background field! determinants, and regula
izes it by dividing by the determinants of the2D2 andWmn

operators shifted by the Pauli-Villars massm @19,30#. It
means that Det(2D2) is replaced by the ‘‘quadrupole’’ com
bination

Det~2D2!n, r5
Det~2D2!

Det~2]2!

Det~2]21m2!

Det~2D21m2!
~67!
03600
-

n

a-

e-

f

-

ro
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and similarly for the determinant of the quadratic form,

Det8~Wmn!n, r5
Det8~Wmn!

Det~2]2dmn!

Det~2]2dmn1m2!

Det8~Wmn1m2!
,

~68!

where the prime indicates that only the product of nonz
eigenvalues is taken. In the integration over Pauli-Villa
fields, the zero eigenvalues are shifted bym2. Hence the
integration over the zero-mode Fourier coefficients in
Pauli-Villars fields produces the factor

)
i 51

p E dci

A2p
expF2

1

2g2
ci

2~01m2!G5S g

m D p

~69!

which has to be taken in the minus first power. Finally, o
obtains the following normalized and regularized express
for the 1-loop quantum weight of a Euclidean pseudop
ticle:

Z5E )
i 51

p

dj ie
2S[ Ā]S m

gA2p
D p

J@Det8~Wmn!n, r#
21/2

3Det~2D2!n, r . ~70!

If the saddle-point fieldĀm is ~anti!self-dual there is a re-
markable relation between the two determinants@20#:
Det8(Wmn)n, r5Det4(2D2)n, r which is satisfied if the back-
ground field is decaying fast enough at infinity and the H
bert space of the eigenfunctions of the two operators is w
defined. This is the case of the KvBLL caloron but not t
case of a single BPS dyon having a Coulomb asymptotics
define the dyon weight properly, one would need to consi
it in a spherical box, which would violate most of the stat
ments in this section. For this reason we prefer to cons
the well-defined quantum weight of the KvBLL caloron
which case the product of two determinants in Eq.~70! be-
comes just Det21(2D2).

B. KvBLL caloron moduli space

The KvBLL moduli space has been studied in the origin
papers@5,6#; in particular in Ref.@5# the metric tensorgi j
~65! has been explicitly computed. We briefly review the
results and adjust them to our needs.

The KvBLL classical solution has 8 parameters for t
SU(2) gauge group. These are the four center-of mass p
tions zm and the four quaternionic variablesz5rU corre-
sponding to the constituent monopoles relative position
space and one global gauge transformation~see Appendix
A 3!. The moduli space of the KvBLL caloron is a product
the base manifoldR33S1 parameterized by thezWPR3 and
z4P@0,1#, and the nontrivial part of the moduli space para
eterized by the quaternionz. It should be noted that the
changez→2z, corresponding to the center of theSU(2),
leavesĀm(x) invariant, such that one has to factor out th
symmetry.
3-13
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The 8 zero modescm i
a ~64! satisfying the background

Lorenz condition have been explicitly found in Ref.@5#. If
one parametrizes the unitary matrix through Euler angles

U5e2 iYt3/2ei (p/22u)t2/2e2 iwt1/2, 0<Y<4p,

0<w<2p, 0<u<p, ~71!

the metric is@5#

ds25~2p!2@2dzmdzm1~118p2vv̄r2!~4dr21r2d2V!

1r2~118p2vv̄r2!21dS3
2# ~72!

where

d2V5sin2udw21du2, dS35dY1cosudw. ~73!

The first part describes the flat metric of the base manif
R33S1, and the remainder forms the nontrivial part of t
metric. The variables are inside the rangesrP@0,̀ ), u
P@0,p), fP@0,2p), YP@0,4p)/Z25@0,2p) for the non-
trivial part, andz4P@0,1#, ziPR for translational modes.

The collective coordinate Jacobian is immediately fou
from Eq. ~72!:

J5Adet~gi j !58~2p!8r3~118p2r2vv̄!sinu. ~74!

The factor sinu is needed to organize the orientationSO(3)
Haar measure normalized to unity,

E d3O5
1

8p2E0

2p

dYE
0

2p

dwE
0

p

du sinu51, ~75!

and the KvBLL measure written in terms of the caloron ce
ter, size, and orientation becomes

E d3zE dz4E d3OE drr3~118p2vv̄r2!16~2p!10.

~76!

This must be multiplied by the factors (m/gA2p)8 and
exp(2S@Ā#)5exp(28p2/g2) according to Eq.~70!. As the re-
sult, the KvBLL measure is

E d3zE dz4E d3OE dr

r5
~118p2vv̄r2!

3~mr!8
1

4p2 S 8p2

g2 D 4

e28p2/g2
. ~77!

When the holonomy is trivial (v50 or v̄50) it becomes
the well-known measure of the BPST instanton@30# or that
of the Harrington-Shepard caloron@2#. The difference be-
tween the two is that in the first case one integrates over
z4 whereas in the second case thez4 integration is restricted
to z4P@0,1/T#. Equation~77! would have been the full resu
in the N51 supersymmetric theory where the determin
over nonzero modes is cancelled by the gluino determin
In that case one would need to add the integral over Gr
mann variables corresponding to the gluino zero modes.
03600
d

d

-

ny

t
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C. Combining the Jacobian and the determinant over
nonzero modes

According to the general equation~70!, we have now to
multiply Eq. ~77! by the~regularized and normalized! deter-
minant over nonzero modes, which has been calculate
Eq. ~47!. First of all, we notice that Det21(2D2) brings in
an additional UV divergent factorm22/3. In combination
with the classical action and the factorm8 coming from zero
modes, it produces

m22/3e28p2/g2(m)5L22/3, ~78!

where L is the scale parameter obtained here through
‘‘transmutation of dimensions.’’

We notice further that Det21(2D2) is independent of the
SU(2) orientationO and ofz4. Therefore, we integrate ove
these variables, which gives unity. Next, we introduce
centers of the constituent BPS dyonszW1,2 such thatuz12z2u
5r 125pr2 and write

E d3zW1d3zW25E d3S zW11zW2

2
D d3~zW12zW2!54pE d3zr12

2 dr12

58p
3
2E d3zdrr 12

5/2. ~79!

Therefore, integration overd3zdr in Eq. ~77! can be traded
for integrating over the dyon positions in space,zW1,2. Lastly,
we restore the temperature from dimensional considerat
and obtain our final result for the 1-loop quantum weight
the KvBLL caloron, written in terms of the coordinates of th
dyon centers:

ZKvBLL 5E d3z1d3z2T6CS 8p2

g2 D 4S LegE

4pT D 22/3S 1

Tr12
D 5/3

3S 2p1
vv̄

T
r 12D ~vr 1211!4v/3pT21~ v̄r 12

11!4v̄/3pT21exp@2VP~v!22pr 12P9~v!#, ~80!

where

C5
64

p2
expF8

9
2

16gE

3
1

2p2

27
1

4z8~2!

p2 G51.031419972084

~81!

andP(v) is the potential energy

P~v!5
1

12p2T
v2v̄2,

P9~v!5
1

p2T
FpTS 12

1

A3
D 2vGF v̄2pTS 12

1

A3
D G ,

v̄52pT2v. ~82!
3-14
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We have collected the factor 4pe2gET/L because it is the
natural argument of the running coupling constant at nonz
temperatures@13,31#. Here L is the scale parameter in th
Pauli-Villars regularization scheme that we have used. I
related to scale parameters in other schemes:LPV
5e1/22LMS540.66•exp(23p2/11N2)L lat @32#. The factor
g28 is not renormalized at the one-loop level: it starts
‘‘run’’ at the 2-loop level ~see below!.

The KvBLL caloron weight~80! has been derived assum
ing the separation between constituent dyons is large in t
perature units (r 12@1/T) but the holonomy is arbitrary
1
2 Tr LP@21,1# corresponding to v,vP̄@0,2pT#. It means
that Eq.~80! is valid not only for well-separated but also fo
overlapping dyons.

D. The limit of large dyon separation

In the limit when the separation of dyons is larger th
their core sizes,r 12@1/v,1/v̄, the caloron weight simplifies to

ZKvBLL 5expF2VT3
4p2

3
n2~12n!2G E d3z1d3z2T6

3~2p!~8/3!CS 8p2

g2 D 4S LegE

4pT D 22/3

n (8/3)n

3~12n!(8/3)(12n)expF22pr 12T

3S 2

3
24n~12n! D G , ~83!

where we have introduced the dimensionless quantityn
5v/2pTP@0,1#. In Sec. V C we have calculated the 1/r 12T
correction to the determinant@see Eq.~55!#. Another correc-
tion arises from the Jacobian~74!, which cancels the 1/v,1/v¯
terms in Eq.~55!. As a result, we get the following correctio
factor to Eq.~83!:

expF 1

r 12T
S 4

3p
log@n~12n!~2r 12T!2#1c1/r 12D

1OS 1

~r 12T!2D G ,

c1/r 12
5

74

9p
1

8gE

3p
2

23p

54
51.946. ~84!

One can define the interaction potential betweenL,M dyons
as

VLM~r 12!5r 12T
22pS 2

3
24n~12n! D2

1

r 12
S 4

3p
log@n~1

2n!~2r 12T!2#1c1/r 12D1OS 1

r 12
2 T

D . ~85!
03600
ro

is

-

This interaction is a purely quantum effect: classicallyL,M
dyons do not interact at all as the KvBLL caloron of whic
they are constituents has the same classical action fo
L,M separations. Curiously, the interaction potential has
familiar ‘‘linear 1 Coulomb’’ form. Both terms depend ser
ously on the holonomy: the Polyakov line at spatial infin
is 1

2 Tr L5cos(pn). In the range 0.787597, 1
2 uTr Lu,1 dy-

ons experience asymptotically a constant attraction force
the complementary range12 uTr Lu,0.787597 it is repulsive.
It should be noted that in its domain of applicabilityr 12

@1/v,1/v̄> 1/2pT, the second term in Eq.~85! is a small
correction as compared to the linear rising~or linear falling!
interaction.

E. 2-loop improvement of the result

The factorg(m)28 in Eq. ~80! is the bare coupling which
is renormalized only at the 2-loop level. In the case of t
zero-temperature instanton one can unambiguously de
mine the 2-loop instanton weight without explicit 2-loop ca
culations from the requirement that it should be invaria
under the simultaneous change of the UV cutoff and of
bare coupling given at that cutoff, such that the scale par
eter

L5m expS 2
8p2

b1g2~m!
D S 16p2

b1g2~m!
D b2/2b1

2

@11O„g2~m!…#,

b15
11

3
N, b25

34

3
N2, ~86!

remains invariant. The result@33# is that one has to replac
the combination of the bare coupling constants

S 8p2

g2~m!
D 2N

expS 2
8p2

g2~m!
D

→b~t!2NexpF2b II~t!1S 2N2
b2

2b1
D b2

2b1

ln b~t!

b~t!

1OS 1

b~t! D G , ~87!

where

b~t!5b1ln
t

L
, b II~t!5b~t!1

b2

2b1
ln

2b~t!

b1
, ~88!

andt is the scale of the pseudoparticle, which is 1/r in the
instanton case. In the case of the KvBLL caloron with wide
separated constituents one has to take the temperature s
t54pTe2gE. Thus, the 2-loop recipe is to replace the fac
(8p2/g2)4(LegE/4pT)22/3 in Eqs.~80! and~83! by the r.h.s.
of Eq. ~87!.

In contrast to the zero-temperature instanton, in
KvBLL caloron case this replacement is not the only effe
of two loops. In particular, the potential energyP(v) is
modified in 2 loops@34#. Nevertheless, the above modific
3-15



to
st
t a
ct
lly

t
e
re
ll

ni
n

n

a
tia
o
s
-
t
-
tr
th
t

ic’

,

ral

d

g

the
ree

end

ble
ere
how

en
e

ne

ial
o
ne,

DIAKONOV et al. PHYSICAL REVIEW D 70, 036003 ~2004!
tion is a very important effect of two loops, which needs
be taken into account if one wants to make a realistic e
mate of the density of calorons with nontrivial holonomy a
given temperature. We remark that the additional large fa
4pe2gE'7.05551 makes the running coupling numerica
small even atT.L @1/b(t).0.07#, which may justify the
use of semiclassical methods at temperatures around
phase transition. This numerically large scale is not accid
tal but originates from the fact that it is the Matsubara f
quency 2pT rather thatT itself which serves as a scale in a
temperature-related problems. The additional order-of-u
factor 2e2gE is specific for the Pauli-Villars regularizatio
scheme used.

VII. CALORON DENSITY AND INSTABILITY OF THE
TRIVIAL HOLONOMY

Since the caloron field has a constantA4 component at
spatial infinity, it is strongly suppressed by the potential e
ergy P(v), unless v50,2pT corresponding to trivial ho-
lonomy. Nevertheless, one may ask if the free energy of
ensemble of calorons can override this perturbative poten
We make below a crude estimate of the free energy of n
interacting KvBLL calorons. We shall consider only the ca
of small v,pT(121/A3). If v exceeds this value the inte
gral over dyon separations in Eq.~80! diverges, meaning tha
calorons with holonomy far from trivial ‘‘ionize’’ into sepa
rate dyons. We shall not consider this case here but res
ourselves to small values of v where the integral over
separation between dyon constituents converges, such
one can assume that KvBLL calorons are in the ‘‘atom
phase. Integrating over the separationr 12 in Eq. ~80! gives
the ‘‘fugacity’’ of calorons:

z5T3f ~T/L!I ~n!, ~89!

f ~T/L!58p2Cb4expF2b II1S 42
34

11D34

11

ln b

b G ,
b5

22

3
ln

4pT

LegE
,

b II5b1
34

11
ln

3b

11
, ~90!

FIG. 5. Free energy of the caloron gas in units ofT3V at T
51.3L ~dotted!, T51.125L ~solid!, and T51.05L ~dashed! as a
function of the asymptotic value ofA4 in units of 2pT.
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hat
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I ~n!5E
0

`

dRR~1/3!@112pn~12n!R#~2pnR

11!(8/3)n21@2p~12n!R11# (8/3)(12n)21

3expF22pRS 2

3
24n14n2D G ~91!

where we have introduced the dimensionless separationR
5r 12T, and the dimensionlessn5v/2pT. One should be
cautioned that Eq.~80! has been derived forR@1, therefore
the caloron fugacity is evaluated accurately if the integ
~91! is saturated in the large-R region.

Assuming the Yang-Mills partition function is governe
by a noninteracting gas ofN1 calorons andN2 anticalorons,
one writes their grand canonical partition function as

Zcal5expF2VT3
4p2

3
n2~12n!2G (

N1 ,N2

1

N1!N2!

3S E d3zz D N11N2

5exp@2VT3F~n,T!#, ~92!

whereF(n,T) is the free energy of the caloron gas, includin
the perturbative potential energy:

F~n,T!5
4p2

3
n2~12n!222 f ~T/L!I ~n!. ~93!

We plot the free energy as function ofn in Fig. 5 at several
temperatures. The functionf (T/L) rapidly drops with in-
creasing temperature. Therefore, at high temperatures
perturbative potential energy prevails, and the minimal f
energy corresponds to trivial holonomy. However, atT'L
the caloron fugacity becomes sizable, and an opposite tr
is observed. In this model,Tc51.125L is the critical tem-
perature where the trivial holonomy becomes an unsta
point, and the system rolls towards large values of v wh
the present approach fails since at large v calorons any
have to ‘‘ionize’’ into separate dyons.

Although several simplifying assumptions have be
made in this derivation, it may indicate the instability of th
trivial holonomy at temperatures below some critical o
related toL.
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APPENDIX A: ADHM CONSTRUCTION FOR THE BPS
DYON AND THE KVBLL CALORON

1. General ADHM construction

The basic object in the ADHM construction@28# is the
k3(k11) quaternionic-valued matrixD which is taken to
be linear in the space-time variablex:

D~x!5A1Bx, x[xmsm , sm5~ i tW ,12!. ~A1!

The ADHM gauge potential is given by

Am~x!5v†~x!]mv~x!, ~A2!

wherev(x) is a (k11)-dimensional quaternionic vector, th
normalized solution to

D†~x!v~x!50, ~A3!

andk is the topological charge of the gauge field. An impo
tant property of the ADHM construction is that the opera
D†(x)D(x) is a real-valued matrix:

f 5@D~x!†D~x!#21PRk3k. ~A4!

In what follows we shall use the equation

D f D†512vv†. ~A5!

It becomes obvious when one notes that both sides are
jectors onto the space orthogonal to the vectorv, which fol-
lows from v†v51, D†v50.

In the case of finite temperatures, because of the infi
number of copies of space in the compact direction, the
pological chargek5`, and it is convenient to make a dis
crete Fourier transformation with respect to the infinite ran
indices. The Fourier transformedv(x) are 232 matrix-
valued functionsv(xm ,z) of a new variablezP@21/2,1/2#
andD becomes a differential operator inz.

2. ADHM construction for the BPS dyon

As stated above, at nonzero temperatures the essen
the ADHM construction is the introduction of 232 matrix-
valued functionsv(xm ,z). The scalar product is defined as

^v1uv2&5E
21/2

1/2

v1
1~xm ,z!v2~xm ,z!dz. ~A6!

For the BPS dyon solutionv has been found by Nahm@25#:

v~xm ,z!5A vr

sinh~vr !
exp~ izvx†! ~A7!

wheresm
† 5(12 ,2 i tW ), x†5xmsm

† and r 5uxW u). The matrix-
valued functionv is the solution of the equation

D†~x!v~x,z!50, D†~x!5 i ]z1vx† ~A8!

normalized to unity,

^vuv&51. ~A9!
03600
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The gauge field is expressed throughv as

Am5^vu]mv&. ~A10!

We use anti-Hermitian fields such that the covariant deri
tive is Dm5]m1Am . Comparing Eq.~A8! with the general
Eq. ~A1! we conclude that in this case

A52 i ]z , B5v. ~A11!

Equation~A7! corresponds to the ‘‘hedgehog’’ gauge. How
ever we find it more convenient to work in the stringy gau
whereAm has a pure gauge stringlike singularity. One pr
ceeds from the hedgehog gauge to the stringy gauge u
the singular gauge transformation~see, e.g., Ref.@10#!

v→vs5vS2
† , Am→Am

s 5S2AmS2
† 1S2]mS2

†

~A12!

with

S25e2 i (f/2)t3
ei (p2u)/2t2e2 i (f/2)t3

~A13!

having the property that it ‘‘gauge-combs’’A4 at spatial in-
finity to a fixed ~third! direction:

S2nataS2
† 5t3. ~A14!

In the stringy gauge

vs5S2
† A vr

sinh~vr !
exp@zv~ ix41r t3!#. ~A15!

One can check thatAm5^vsu]mvs& gives theM dyon field in
the stringy gauge as in Eq.~13!. We note that in the stringy
gaugevs has a remarkable property

vs~x41n,xW !5einvzvs~x4 ,xW !. ~A16!

3. ADHM construction for the KvBLL caloron

Unfortunately, the original paper@5# does not present an
explicit expression forv, the main ingredient of the ADHM
construction. We could have used Ref.@6# but it seems that
Ref. @5# is more informative in some other respects. The
fore, we have to calculatev ourselves.

From the point of view of the original ADHM construc
tion v is a quaternionic vector of infinite length since finit
temperature field configuration can be viewed as an infin
set of equal strips, the total topological charge inR4 being
infinite. The bracket is formally defined as a contracti
along this infinite-dimension side:

^vuv&[v†ṽ. ~A17!

The gauge potential results from

Am~x!5v†~x!]mv~x!, Dm5]m1Am . ~A18!

The vectorv(x) is the normalized solution of the equation
3-17
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D†~x!v~x!50, D~x!5S l

B2xD , ~A19!

where B is a square quaternionic matrix,l is an ~infinite!

quaternionic vector,x[xmsm , sm5( i tW ,12). Introducing the
notation

v~x!5F2 ~1/2!~x!S 21

u~x!
D , u~x!5~B†2x†!21l†,

~A20!

Eq. ~A19! becomes

~B†2x†!u~x!5l†. ~A21!

The inverse of the matrix (B†2x†) exists almost in all
points. The points where it does not exist are monopole
sitions. We are interested in those singular points that lie
the interval 0,x4,1 ~we have rescaled the units to set te
peratureT51). The unknown functionF(x) is determined
from the normalization ofv:

F~x!511u†u. ~A22!

The formalism of infinite-dimensional matrices is n
convenient. Following Nahm@25# we pass to the Fourie
transforms in the discrete but infinite-range indices and
instead a continuous variablezP@2 1

2 , 1
2 #. In the notation of

Ref. @5#:

~B†2x†!nm52E
21/2

1/2 dz

2p i
e22p iznD̂x

†~z!e2p izm,

D̂x
†~z!52]z1Â†~z!12p ix†[2]z12p ir †~z!,

where

Â~z!52p i @j1rW12•sW Qv~z!#. ~A23!

Here the functionQv(z)52v̄ whenzP@2v,v# and22v
otherwise;r †(z)[r m(z)sm

† , x†[xmsm
† . As it can be seen

from Eq. ~A23!, the quaternionj simply represents the cen
ter of mass position of the whole system and can be se
zero, j50. We definer m(z)5r m when zP@v,12v#, and
r m(z)5sm otherwise, where

sW5xW22v̄rW12, rW5xW12vrW12, s45r 45x4 .
~A24!

Here v̄[ 1
2 2v, and r m and sm have the meaning of the

vectors from the dyon centers to the ‘‘observation’’ poin
rW125rW2sW has the meaning of the separation dyon. W
choose separation between dyon in the 3D direction:rW12

5r 12eW3. As for l,

ln
†5rU†e22p invW •tW, ~A25!

whereU is a unitary matrix, andr.0. We have an addi-
tional constraint@5#
03600
o-
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-

et

to

,
e

rW12•sW 5pr2~U†vW •sW U !/v. ~A26!

Here 2p ivW •tW is the value ofA4 at spatial infinity,v5uvW u. It
can be seen thatpr25r 12. We choose to rotate theA4 di-
rection in color space instead of rotating monopole positio
so we do not loose the generality of the solution. We conn
the vectorvW andU by

U†vW •tWU5vt3 . ~A27!

Writing down themth component of the~infinite! quater-
nionic vector as a Fourier transform

um~x!5E
21/2

1/2

u~x,z!e22p imzdz, ~A28!

Eq. ~A19!, which we have to solve, can be rewritten as

@]z22p ir †~z!#u~x,z!

52p irU†(
n

e22p invW •tWe2p izn

52p irU†@P1d~z2v!1P2d~z1v!#,

~A29!

where

P65
1

2
~16vW •tW /v!. ~A30!

Equation ~A29! is piecewise homogeneous; therefore w
present its solution in the form

u~x,z!5H exp~2p is†z!B1 , 2v,z,v

exp@2p ir †~z21/2!#B2 , v,z,12v
~A31!

and match the values and the derivatives ofu at the end
points of the pieces,

e22p ir †v̄B22e2p is†vB15 f 1 ,

e22p is†vB12e2p ir †v̄B25 f 2 , ~A32!

where

f 152p irU†P1 , f 252p irU†P2 , v̄5 1
2 2v.

Note thatB1,2 are matrices that generally do not commute

B25~e22p is†ve22p ir †v̄2e2p is†ve2p ir †v̄!21~e22p is†v f 1

1e2p is†v f 2![b22b21e
22p ix4vt3U†/ĉ,

B15~e22p ir †v̄e22p is†v2e2p ir †v̄e2p is†v!21~e22p ir †v̄ f 2

1e2p ir †v̄ f 1![b12b11e
22p ix4vt3U†/ĉ, ~A33!

where
3-18
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b225@2cos~px4!~ch1/2sh1/2r̂ 1ch1/2sh1/2ŝ!1 i sin~px4!

3~ch1/2ch1/21 r̂ ŝ sh1/2sh1/2!#,

b125@2cos~px4!~ch1/2sh1/2r̂ 1ch1/2sh1/2ŝ!1 i sin~px4!

3~ch1/2ch1/21 ŝr̂ sh1/2sh1/2!#,

b2152p ir~ch1/22st̂3sh1/2!,

b1152p ir~ch1/21r t̂3sh1/2!e
p ix4t3, ~A34!

ĉ[2cos~2px4!1chch 1
sW•rW

sr
shsh.

Hat over the variable~notation found also in Ref.@5#! means
contraction of the corresponding normalized vector w
Pauli matrices, e.g.,v̂[vW •tW /v. We denote for brevity

sh[sinh~4psv!, ch[cosh~4psv!,

sh [sinh~4pr v̄ !, ch [cosh~4prv!, ~A35!

and the hyperbolic functions with subscript 1/2 are the c
responding functions of half the same arguments. Combin
Eqs.~A31!, ~A33!, and~A34! back into Eq.~A20! one gets
the two-dimensional quaternionic vectorv(x,z) which is the
base for the construction of the Green’s function~see Appen-
dix B!. Note that we have made a Fourier transform ou
~A28! and got a continuous indexz, so that scalar products o
infinite-dimensional vectors becomez integrations, see Eq
~A38!.

We note thatU is actually a gauge transformation ofv.
Therefore, the gauge potentialAm

U is obtained by a globa
gauge transformation ofAm

U51 . We conclude that the dete
minant does not depend on the relative ‘‘color orientation’’
the Polyakov line or holonomy, and of the vectorrW12 con-
necting monopole centers. Thus, we setU51 and vW

5veW3.
We notice further thatv(x,z) built above givesAm that is

not periodic in time direction and zeroA4 at spatial infinity.
It is a peculiar feature of the ‘‘algebraic’’ gauge used in R
@5#. It is more convenient to use the gauge in which the fie
are periodic. To that end we make a nonperiodic gauge tr
formationg5e2p ix4vt3 and obtain

v~x,z!per5F21/2~x!S 2g

w~x,z!
D , w5ug, ~A36!

meaning

w~x,z!5u~x,z!e2p ix4vt3. ~A37!

In terms of the Fourier-transformedv the bracket takes the
form

^vuv&[v1
†ṽ11E

21/2

1/2

v2
†ṽ2dz, ~A38!
03600
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g
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wherev1 is an upper element andv2 is a lower one.
Now let us determineF(x). We use the following iden-

tities:

b12
† b125b22

† b225ĉ/2, b21
† b2154p2r2S ch1/22

s3

s
sh1/2D ,

b11
† b1154p2r2S ch1/21

r 3

r
sh1/2D . ~A39!

Note that the right-hand sides of Eq.~A39! are proportional
to the unity 232 matrix. Now we can easily calculate th
normalization:

^wuw&5ĉ22b11
† b11b12

† b12E
2v

v

dze24psW•tWz

1ĉ22b21
† b21b22

† b22E
2v̄

v̄
dze24prW•tWz

5
pr2

ĉ
F S ch1/2sh1/2

s
1

ch1/2sh1/2

r D
1

r 12

sr
sh1/2sh1/2G[ c2ĉ

ĉ
.

We used the identityrW2sW5r 12
W5r 12eW3. Thus forF we get

F5
c

ĉ
, c5ĉ1r 12S ch sh

s
1

chsh

r D 1
r 12

2

sr
shsh.

~A40!

We have checked theAm of the KvBLL caloron ~7! by
calculating ^vperu]mvper&. Note thatvper has the following
periodicity property~for integern):

vper~z,x41n!5e2p inzvper~z,x4!. ~A41!

APPENDIX B: SPIN-0 ISOSPIN-1 PROPAGATOR

1. General construction of the Green function

Once the self-dual field is found in terms of the ADHM
construction, such that the gauge field is written asAm
5^vu]mv& where the scalar product is defined in Eq.~A38!,
it is possible to construct explicitly the Green function
spin-0 isospin-1 field in the background of the self-dual fie
@5,6,25#. The solution of the equation

2~Dm
2 !ca~x!Gab~x,y!5dcbd (4)~x2y! ~B1!

is given by
3-19
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Gab~x,y!5

1

2
Tr ta^v~x!uv~y!&tb^v~y!uv~x!&

4p2~x2y!2

1
1

4p2E21/2

1/2

dz1dz2dz3dz4M ~z1 ,z2 ,z3 ,z4!

3
1

2
Tr@V †~x,z1!V~x,z2!ta#

3Tr@V †~y,z4!V~y,z3!tb#, ~B2!

whereV(x,z)[B †v(x,z).
We denote the first term byG1 and the second term~the

M part! by G2. The only new object is the function
M (z1 ,z2 ,z3 ,z4) which we determine below. As we shall se
we do not needM with arbitrary arguments, but only atz3
5z4. For coincident arguments we obtain

M ~z1 ,z2 ,z,z!5d~z12z2!M ~z1 ,z!, ~B3!

see below.
The propagator~B2! is written for theR4 space and doe

not obey the periodicity condition. The periodic propagat
however, can be easily obtained from it by a standard pro
dure:

G~x,y!5 (
n52`

1`

G~x4 ,xW ;y41n,yW !. ~B4!

In what follows it will be convenient to split it into three
parts:

G~x,y!5G r~x,y!1G s~x,y!1G m~x,y!,

G s[G1un50 , G r[ (
nÞ0

G1 , G m[(
n

G2 .

~B5!

The vacuum current~20! will be also split into three parts, in
accordance to which part of the periodic propagator~B5! is
used to calculate it:

Jm5Jm
r 1Jm

s 1Jm
m. ~B6!

2. Propagator in the BPS dyon background

In Appendix A 2 we have found the needed period
quaternionv(x,z) for the single BPS monopole@see Eq.
~A15!#. The 4-argument functionM for the BPS monopole
was computed in Ref.@25#. The result with the two last ar
guments taken equal is

M ~z3 ,z4 ,z,z!5d~z32z4!M ~z3 ,z!,

M ~z,z8!52
1

4v2
~2uz2z8u2114zz8!. ~B7!
03600
,
e-

Equations~A15! and~B7! completely determine the periodi
propagator defined in Eqs.~B2! and ~B4! in the BPS dyon
background. The use of this propagator is demonstrate
Appendix C.

3. Propagator in the KvBLL caloron background

In Appendix A 3 we have found the needed quatern
v(x,z) for the KvBLL caloron. In this Appendix we derive
the M function for the KvBLL caloron. The propagator~B2!
will be then completely determined in the caloron bac
ground.

In the notations of Ref.@25# M is an infinite-dimensional
rank-4 tensor, with indices running from 1 tok, the topologi-
cal charge inR4. As in the case ofv, it is convenient to make
the Fourier transformation with respect to the indices:

M pqnm5E
21/2

1/2

M ~z1 ,z2 ,z3 ,z4!e2p i (2pz11qz21nz32mz4)

3dz1dz2dz3dz4 . ~B8!

The tensorM pqmn is defined by the equation@27#

1

2
Tr@~A †A! i l ~B †B!m j1~B †B! i l ~A †A!m j

22~A †B! i l ~B †A!m j#Mrsi j5d rl dsm, ~B9!

All indices here run from 1 tok as rectangulark3(k11)
matricesA andB are contracted along the longer side. He
A andB are

D~x![A1Bx, A5D~0!, B5S 0

21D . ~B10!

Equation~B9! can be rewritten as

1

2
Tr@„D†D~0!…i l dm j1„D†D~0!…m jd i l 22Bil

†Bm j#Mrsi j

5d rl dsm, ~B11!

where D†D(0)5l†l1B†B, B and l are found in Eqs.
~A23! and ~A25!, respectively. In our casek is infinite and
we rewrite Eq.~B11! in the Fourier basis:

1

2
TrF D̃†D̃~0,z3!1D̃†D̃~0,z4!12S ]z3

2p i
1r †~z3! D S ]z4

2p i

2r ~z4! D GM ~z1 ,z2 ,z3 ,z4!5d~z12z3!d~z22z4!,

wherer (z)5r is i whenzP@v,12v#, andr (z)5sis i other-
wise; s i5 i t i . Zero components ofr m , sm are absent be-
causexm50. We use

D̃†D̃~0,z!52
]z

2

4p2
1r 2~z!1

r2

2
@d~z2v!1d~z1v!#.

~B12!
3-20
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Here the first two terms come from the Fourier transform
tion of B†B ~A23! and the last one comes from the Four
transformation ofl†l. We obtain the explicit equation
for M:

S 2
~]z3

1]z4
!2

4p2
1urW~z3!2rW~z4!u2D M ~z1 ,z2 ,z3 ,z4!

1
r2

2
@d~z32v!1d~z31v!1d~z42v!1d~z4

1v!#M ~z1 ,z2 ,z3 ,z4!5d~z12z3!d~z22z4!.

~B13!
o-
a-
he

03600
-In the casez35z4, which is the only one we need as we sh
see in a moment, we look for the solution in the form

M ~z1 ,z2 ,z,z!5d~z12z2!M ~z1 ,z!. ~B14!

The equation for the two-argument function simplifies to

S 2
]z

2

4p2
1

r 12

p
d~z2v!1

r 12

p
d~z1v!D M ~z8,z!5d~z2z8!,

~B15!

wherer 125pr2. We see that the solution has to be piecew
linear in its arguments. The solution is symmetric in its tw
arguments and forz,z8 is given by
M ~z,z8!55
32r 12

2 p3v~z2v!~12z82v!28r 12p
2~v21z~z821!!1p

2d~8r 12pvv̄11!
, z,z8P@v,12v#

1

2
pS 4pz~122z8!

8r 12pvv̄11
1

1

r 12
D , zP@2v,v#,z8P@v,12v#

4r 12p
2@z2z822z8z22~v21!v28r 12p~z82v!~z1v!v̄#1p

2r 12~8r 12pvv̄11!
, z,z8P@2v,v#.

~B16!
dic

s

Outside this rangeM is defined by periodicity:M (z1n,z8
1m)5M (z,z8), wheren,m are integers.

Now let us demonstrate that actually only the tw
argument functionM (z,z8) is needed to construct the prop
gator satisfying the periodicity. It turns out that making t
Green function periodic simplifiesG2 ~Sec. III!. One has
from the definitions~B2!–~B5!:

G m[(
n

1

8p2E21/2

1/2

dz1•••dz4M ~z1 , . . . ,z4!

3Tr@V †~x,z1!V~x,z2!ta#

3Tr@V †~yn,z4!V~yn,z3!tb#, ~B17!

wherey4
n5y41n, yW n5yW . Using Eq.~A41! we set

V~yn,z!5e2p ihnzV~y,z!. ~B18!

Further on, we note that foruhu<1 one has

(
n

Tr@V †~yn,z4!V~yn,z3!tb#

5Tr@V †~y,z4!V~y,z3!tb#d~z32z4!
1

uhu
.

Now we can see that making the Green’s function perio
results in the substitution

M ~z1 ,z2 ,z3 ,z4!→ 1

uhu
M ~z1 ,z2 ,z3 ,z3!d~z32z4!

5
1

uhu
M ~z1 ,z3!d~z12z2!d~z32z4!.

It follows from Eqs.~A16! and~A41! that for the monopole
one has to takeh5v/(2p),1 and for the KvBLL caloron
h51. In both cases theM part of the periodic propagator i
given by

G m5
1

8p2uhu
E

21/2

1/2

dzdz8M ~z,z8!

3Tr@V †~x,z!V~x,z!ta#Tr@V †~y,z8!V~y,z8!tb#,

~B19!

where the two-argumentM functions are found in Eqs.~B7!
and ~B16!, respectively.
3-21



r.
n

on
ak

:

or-

e

DIAKONOV et al. PHYSICAL REVIEW D 70, 036003 ~2004!
APPENDIX C: VACUUM CURRENT IN THE BPS
MONOPOLE BACKGROUND

We compute the vacuum current~20! in the BPS mono-
pole background in this Appendix. We assume 0,v,2p
and work in the stringy gauge~13! dropping the indexs in vs

given by Eq.~A15!.

1. Singular part of the monopole current Jµ
s

This part of the current corresponds to the second termG s

in Eq. ~B5!. At x→y this part of the propagator is singula
The regularization is presented in Appendix E. Equatio
~E2! and ~A11! state:

Jm
s ab5 i«adbtr~tdj m!, j m5

v2

12p2
^vu f smD†f uv&2H.c.,

D†~x!5 i ]z1vx†. ~C1!

The functionf (z,z8,x) for the BPS monopole is known@25#:

f ~x;z,z8!52
eivx4(z2z8)

2vs S sinh vsuz2z8u

1coth
vs

2
sinh vszsinh vsz8

2tanh
vs

2
cosh vszcosh vsz8D . ~C2!

Here we denoted bys the distance to theM-monopole center.
It is helpful to calculate the action of the Green function
v. Since the monopole is a static configuration, we can t
x450, moreoverf is a scalar function and we can moveS2

†

matrix to the left:

un&[S2 f uv&ux450

5
cosh~svz!tanh~sv/2!22z sinh~svz!

4Asv sinh~sv !
12

1
sinh~svz!coth~sv/2!22z cosh~svz!

4Asv sinh~sv !
t3 .

We use the following identities

S2nW rtWS2
† 5t3 ,

S2nW utWS2
† 52cos~f!t12sin~f!t2 , ~C3!

S2nW ftWS2
† 5sin~f!t12cos~f!t2

and arrive, after simple algebra, at

$ j 4 , j r , j u , j f%5
v3

12p2
^nu$ i ,2t3 ,cosft11sinft2 ,

2sinft11cosft2%~]z2vt3s!un&1H.c.
03600
s

e

Finally we obtain the singular part of the vacuum current

Jr
s50,

Jf
s 52

iv@s2v2csch2~sv!1sv coth~sv!22#

24p2s2sinh~sv!

3@T1cos~f!1T2sin~f!#,

Ju
s52

iv@s2v2csch2~sv!1sv coth~sv!22#

24p2s2sinh~sv!

3@T1sin~f!2T2cos~f!#, ~C4!

J4
s52

i @12s3v3coth~sv!csch2~sv!#

24p2s3
T3 ,

where (Tc)
ab[ i«acb.

2. Regular part of the monopole currentJµ
r

We are going to calculate the part of the current that c
responds to

~G r!ab~x,y![ (
nÞ0

1

8p2~x2yn!2
Tr@ta^v~x!uv~yn!&

3tb^v~yn!uv~x!&#,

yn5yW , yn45y41n, ~C5!

namely

Jm
r 5Jm

r11Jm
r2 , Jm

r15AmG r1G rAm , Jm
r25~]m

x 2]m
y !G r.

At first considerJm
r1 . We have to computeG r with equal

arguments. Substituting~A15! into ~C5! and calculating the
trace one has

~G r!ab~x,x![ (
nÞ0

E dzdz8
Tr

8p2n2
, ~C6!

where

Tr52
s2v2einv(z2z8)

sinh2~sv!
$cosh@2sv~z2z8!#~dab2da3db3!

1cosh@2sv~z1z8!#d3
ad3

b1sinh@2sv~z2z8!#T3
ab%,

with Tc5 i«acb. To compute the sum in this expression w
use the summation formula~note that v,2p)

(
nÞ0

eizn

4p2n2
5

z2

8p2
2

uzu
4p

1
1

12
, 22p,z,2p.

~C7!

It remains now to calculate integrals overz and z8. The
result is
3-22
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G r~x,x!5F3 coth~sv!2sv@3 csch2~sv!12#

8ps

1
@sv coth~sv!21#2

8p2s2 G ~dab2d3
ad3

b!

1Fsv csch2~sv!2coth~sv!

8ps

1
12s2v2 csch2~sv!

16p2s2
1

1

12Gdab.

Now we turn to theJm
r2 part of the current where we hav

to sum overn a derivative of the propagator. First of all w
consider derivatives of the trace in~C5!. One finds for
x5y:

~]u
x2]u

y!Tr5
2s2v2i

sinh~sv!2
@cosh~2svz!1cosh~2svz8!#

3~T1sinf2T2cosf!eivn(z2z8),

~]f
x 2]f

y !Tr5S sinu
4s2v2i

sinh~sv!2
cosh@sv~z1z8!#

3cosh@sv~z2z8!#~T1cosf1T2sinf!

2
4s2v2i

sinh~sv!2
cosh@2sv~z2z8!#

3~12cosu!T3D eivn(z2z8),

~]4
x2]4

y!Tr52
4s2v3i

sinh2~sv!
~z2z8!sinh@2sv~z2z8!#

3T3eivn(z2z8), ~C8!

~]s
x2]s

y!Tr50.

Here only terms even inz2z8 were left. The last two equa
tions are especially clear as we can drop out the matricesS in
Eq. ~A15!.

A derivative of the denominator of~C5! is equal to zero
for x5y except for the derivative with respect tox4, but in
this case we have the expression of the form~C6! with n3/4
instead ofn2 in the denominator. Now we can sum overn.
We use the summation formula

(
nÞ0

eizn

ip2n3
5

z3

6p2
2

zuzu
2p

1
z

3
, 22p,z,2p. ~C9!

Next one has to integrate overz, z8. Combining all pieces
we obtain:
03600
Jr
r50,

Jf
r 5 i

cos~f!T11sin~f!T2

48 sinh3~sv!p2s2
`1 ,

Ju
r 5 i

sin~f!T12cos~f!T2

48 sinh3~sv!p2s2
`1 , ~C10!

J4
r 5

iT3

24p2s3
`2 ,

where we denote

`1[@s2v316ps2v213v13s~v1p!sinh~2sv!v

2~s2v313v16p!cosh~2sv!16p#,

`2[8p2s2@211sv coth~sv!#212ps coth~sv!

3@211sv coth~sv!#21„23~114s2v2!

1sv$4~31s2v2!coth~sv!

13sv@241sv coth~sv!#csch2~sv!%….

We have used spherical coordinates. For example, a pro
tion of JW onto the directionnW u5(cosu cosf,cosu sinf,
2sinu) is denoted byJu .

3. M part of the monopole current Jµ
m

Combining together Eqs.~B7! and~B19! we have for the
M part of the periodic Green’s function:

G m52
v

16pE21/2

1/2

dzdz8~2uz2z8u2114zz8!

3Tr@v†~x,z!v~x,z!ta#Tr@v†~y,z8!v~y,z8!tb# ~C11!

Note that we can drop outS2 in ~A15!. In the stringy gauge
one has

v†~xm ,z!v~xm ,z!5
vs

sinh~vs!
exp@22vst3z#. ~C12!

It means thatG m has only the 33 component. Taking th
trace we get

Tr@v†~xm ,z!v~xm ,z!t3#522
vs

sinh~vs!
sinh~2vsz!.

~C13!

Therefore the only nonzero component ofG m is

G m
33~x,y!52

v3r xr y

4p E
21/2

1/2

dzdz8~2uz2z8u2114zz8!

3
sinh~2vr yz8!sinh~2vr xz!

sinh~vr x!sinh~vr y!
3-23
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(r x5uxW u, r y5uyW u). Performing the integrations we get

G m
33~x,y!52

1

4pv S 1

r xr y
1

vr xcoth vr y2vr ycoth vr x

r y
22r x

2 D .

~C14!

Note that~C14! is symmetric in its arguments. For that re
son the contribution to the current coming from~ordinary!
derivatives ofG m is zero,

]xG m~x,y!2]yG m~x,y!ux5y50,
io
u

ru
ve
t i
ow
In
c
ve
t

-
.
o
ta

03600
and only the anticommutator$G m(x,x),Am% remains. Taking
the limit x→y, we get forG m

G m
33~x,x!5

1

8psFcoth~vs!2
2

vs
1

vs

sinh2~vs!
G , ~C15!

and for the contribution to the currentJm
m5AmG m1G mAm ,

we obtain in spherical coordinates
Jr
m50,

Jf
m52

i @sin~f!T21cos~f!T1#@sv coth~sv!1s2v2csch2~sv!22#

16p sinh~sv!s2
,

Ju
m52

i @sin~f!T12cos~f!T2#@sv coth~sv!1s2v2csch2~sv!22#

16p sinh~sv!s2
, ~C16!

J4
m50.
.e.,

of
p-
Adding up~C4!, ~C10!, and~C16! we obtain the full vacuum
current in the BPS background@see Eq.~23!#.

APPENDIX D: VACUUM CURRENT IN THE KVBLL
CALORON BACKGROUND

There are no principal problems to make the calculat
of the caloron Green’s function and the ensuing vacuum c
rents exactly. One can consider this Appendix as an inst
tion how to perform the exact calculation. In fact, we ha
done it but unfortunately the exact result for the curren
about 200 pages long and thus too large to be printed. H
ever, in certain limits the expressions drastically simplify.
particular, assuming the case when the dyons inside the
oron are widely separated such that their cores do not o
lap, it is relatively easy to find the KvBLL caloron curren
with the exponential precision~i.e., dropping out term of the
ordere2r v̄, e2sv). This will be sufficient to find the determi
nant of the KvBLL caloron for larger 12 up to some constant

With the exponential precision, the only nonzero comp
nents of the KvBLL caloron’s gauge potential in fundamen
representation are~see Sec. II!

A4.
i t3

2 S 4pv1
1

r
2

1

sD ,

Aw.2
i t3

2 S 1

r
1

1

sDA~r 122r 1s!~r 121r 2s!

~r 121r 1s!~r 1s2r 12!
.

~D1!
n
r-
c-

s
-

al-
r-

-
l

We are using the coordinatesx4 ,r ,s,w, where r ,s are de-
fined in ~A24! andw is defined by

xW5x%~cosweW21sinw eW1!1S r 12
2 1r 22s2

2r 12
22r 12v DeW3 ,

x%[
A~r 121r 2s!~r 121s2r !~r 1s2r 12!~r 121r 1s!

2r 12
.

~D2!

One can easily check the consistency of this definition, i
that

s5usuW , r 5ur uW , where sW5xW22v̄rW12,

rW5xW12vrW12, rW125r 12eW3 .

SinceAr50 andAs50 we have to calculate only theJ4 and
Jw components.

We shall use the ADHM construction. The main steps
the calculation are similar to that for the monopole. Dro
ping out exponentially small terms in Eq.~A36! one has in
the periodic gauge
3-24
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v~x,z!.Ar 1s2r 12

r 1s1r 12
S 2e2p ix4vt3

w~x,z!
D , ~D3!

w~x,z!.H 2 ipre2p( is†z2vs)F r 121r 2s

r 12
t31

2x%

r 1s2r 12
~t1sinw1t2cosw!G , 2v,z,v

ipre2p( ir †z2 ir †/22r v̄)F r 121s2r

r 12
~ i12sinpx41t3cospx4!1

2x%

r 1s2r 12
@sin~px42w!t12cos~px42w!t2#G , v,z,12v

~D4!
en
ar
E

ke

e

e:

a-
th

the
se

y

the
wheres†[smsm
† , s[us uW , s45x4. We shall use the follow-

ing formulas to pass to the cylindrical coordinatesx3 ,x% ,w:

]r

]x3
5

r 12
2 1r 22s2

2r 12r
,

]r

]x%
5

x%

r
,

]r

]w
50

]s

]x3
52

r 12
2 1s22r 2

2r 12s
,

]s

]x%
5

x%

s
,

]s

]w
50.

~D5!

1. Singular part of the caloron current Jµ
s

Let us calculate the singular part of the vacuum curr
with exponential precision. It is related to the zero Matsub
frequency. Similar to the monopole case, we could use
~E2!, where the Green’s function~A4! for the case of KvBLL
caloron was found in Ref.@5#. However it is more conve-
nient to use Eq.~E10! because then we have only to ta
derivatives of the simple expression~D3! and no integrations
arise. Equation~E2! would have been more suitable for th
exact calculation.

It is straightforward to calculate the quantityG from Eq.
~E9!. It is sufficient to calculate the second time derivativ

G.^]4]4vuv&2A4
2 . ~D6!

Bearing in mind thatG is a vector under gauge transform
tions, we can perform calculations in any gauge. Up to
exponentially small terms we have

Gab52
~r 1s!@~r 2s!21r 12~r 1s!#dab

4r 2s2~r 121r 1s!
. ~D7!

One can observe from Eq.~D1! that all terms with deriva-
tives in the right-hand side of Eq.~E10! are zero. Writing the
Laplace operator in the cylindrical coordinates we find

j 4
s.

1

48p2 F K ]4S ]4
21]3

21
1

x%
]%x%]%1

1

x%
2

]w
2 D vUvL 2H.c.G

1
1

24p2
~A4

31AwA4Aw16A4G!,
03600
t
a
q.

e

j w
s .

1

48p2 F K ]w

xw
S ]4

21]3
21

1

x%
]%x%]%1

1

x%
2

]w
2 D vUvL

2H.c.G1
1

24p2
~Aw

31A4AwA416AwG!.

Taking the derivatives we obtain simple expressions:

j 4
s5

i t3

48p2 S 1

r 3
2

1

s3D , ~D8!

j w
s 52S 1

r
1

1

sD i t3x%r 12

8p2rs~r 121r 1s!2
.

~D9!

2. Regular part of the caloron current Jµ
r

Next we calculate the temperature-dependent part of
KvBLL caloron vacuum current. As in the monopole ca
~Appendix C 2! we divide the current into two parts,

Jm
r 5Jm

r21Jm
r1 , ~D10!

where

Jm
r25 (

nÞ0

1

8p2
~]m

x 2]m
y !

Tr@tav†~x!v~y!tbv†~y!v~x!#

~x2y!2
,

Jm
r15 (

nÞ0

1

8p2 H Am ,
Tr@tav†~x!v~y!tbv†~y!v~x!#

n2 J
and y45x41n. The quaternion functionv(x,z) has been
constructed in Appendix A 3@actually calledvper(x,z) there#.
It is important thatv(x,z) has the remarkable periodicit
property~A41!.

In evaluating the above currents the tactics is to factor
matrix part out of the integrals overz. We use the following
notation for the integrals overz:

I 1
n [E

2v

v

e2p inzcosh~4psz!dz,

Ī 1
n [E

2v̄

v̄
e2p in(z11/2)cosh~4prz!dz,
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I 2
n [E

2v

v

e2p inzsinh~4psz!dz,

Ī 2
n [E

2v̄

v̄
e2p in(z11/2)sinh~4prz!dz.

We obtain the following relations for the matrix structures

ĉ2w†~x4!w~x41n!5~ I 1
n b1I 2

n bs!1~ Ī 1
n b̄1 Ī 2

n b̄ r !,

ĉ2w†~x41n!w~x4!5~ I 1
n b2I 2

n bs!1~ Ī 1
n b̄2 Ī 2

n b̄ r !,

ĉ2w†~x4!]̄4w~x41n!

5~ I 1
n b01I 2

n bs
01 i ]sI 2

n b1 i ]sI 1
n bs!1•••,

ĉ2w†~x41n!]̄4w~x4!

5~ I 1
n b02I 2

n bs
02 i ]sI 2

n b1 i ]sI 1
n bs!1•••,

where . . . means the same expression but with bar o
each quantity andr instead ofs. The notation]̄4 means de-
rivative from the right minus derivative from the left. Th
definition and the evaluation of the matrix structures with
exponential precision is

bs
0[b11

† b12
† ŝ]̄4b12b11.o~e4psve8pr v̄!,

b̄ r
0[b21

† b22
† r̂ ]̄4b22b21

.
ip2r 12

2
~q11!~s321!e8psve4pr v̄,

b0[b11
† b12

† ]̄4b12b11.o~e4psve8pr v̄!,

b̄0[b21
† b22

† ]̄4b22b21

.
p2r 12

2i
~q11!~s321!v̂e8psve4pr v̄,

bs[b11
† b12

† ŝb12b11

.
pr 12

4
~q11!~r 311!v̂e4psve8pr v̄,

b̄ r[b21
† b22

† r̂ b22b21

.
pr 12

4
~q11!~s321!v̂e8psve4pr v̄,

b[b11
† b12

† b12b11

.
r 12p

4
~q11!~r 311!e4psve8pr v̄,
03600
er

e

b̄[b21
† b22

† b22b21

.
r 12p

4
~q11!~12s3!e8psve4pr v̄,

where

ĉ.
1

4
~q11!e4psve4pr v̄, q[

rWsW

sr
5

r 21s22r 12
2

2sr
,

rr 35ss35
r 12

2 1r 22s2

2r 12
.

Substituting this into in the currentsJm
r 1 ,r 2 we obtain certain

sums, which are of the form

(
nÞ0

I 1
n I 1

n /~4p2n2!, (
nÞ0

cos~2pnv!gI1
n /~4p2n2!,

(
nÞ0

sin~4pnv!/~p2n3!.

All such sums can be calculated using the summation form
las

(
nÞ0

e2p in(z21/2)

4p2n2
5

z2

2
2

1

24
[c2~z!, 2

1

2
<z<

1

2
,

(
nÞ0

e2p in(z21/2)

p2n3
58p i S z3

6
2

z

24D[c3~z!,

2
1

2
<z<

1

2
.

For example,

(
nÞ0

I 1
n I 1

n /~4p2n2!5E
2v

v E
2v

v

c2~z1z821/2!cosh~4psz!

3cosh~4psz8!dzdz8

and so on. With some help fromMATHEMATICA we come to
the final result

J4
r 5F 1

4p2r 3
2

1

p2r 2s
1

1

p2rs2
2

1

4p2s3
2

1

pr 2
1

2

prs

2
1

ps2
1

2

3r
2

2

3s
1S 4

pr 2
2

8

prs
1

4

ps2
2

8

r
1

8

s

1
8p

3 D v1S 16

r
2

16

s
216p Dv21

64pv3

3 G iT3

2
, ~D11!

Jw
r 5S 1

r
1

1

sD iT3x%r 12

4p2rs~r 121r 1s!2
. ~D12!
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3. M part of the caloron current Jµ
m

This part of the current is especially simple: with exp
nential precision it is zero. The main steps are the same a
the case of a single monopole. The starting formula is
Eq. ~B19!. First of all we note that only the lower compo
nents ofv are left and only thea53 component is nonzero

Tr@V 1~x,z!V~x,z!ta#5
1

F~x!
Tr@w1~x,z!w~x,z!ta#}da3.

Inspecting the definition of theM part of the propagato
~B19! we observe that

Gm ab~x,y!}da3db3, Gm ab~x,y!5Gm ab~y,x!.
~D13!

The second equation means that the terms with derivative
the expression for the current~20! cancel each other. It fol-
lows from the first one that the product ofGm and Am

ab

}«3ab is equal to zero, too. Therefore we conclude that

Jm
m.0. ~D14!

APPENDIX E: REGULARIZATION OF THE CURRENT

Here we consider in more detailJm
s , the contribution to

the current from the singular~asx→y) part of the propaga-
tor G s(x,y) defined by Eq.~B5!. This part is obviously
temperature-independent, so the zero-temperature result
applicable. We regularize the current by settingx2y5e and
inserting a parallel transporter to support gauge invaria
~see, e.g., Ref.@20#!:

Jm
s 5Jm

s11Jm
s2,

Jm
s1[@Am~z2e/2!Gs~z2e/2,z1e/2!

1Gs~z2e/2,z1e/2!Am~z1e/2!#P expS 2E
x

y

AmdzmD ,

~E1!

Jm
s2[@~]m

x 2]m
y !Gs~x,y!#P expS 2E

x

y

AmdzmD ,

where x5z2e/2, y5z1e/2 and we imply averaging ove
all directions of e in the 4D space. This regularizatio
method was proved to be equivalent to thez-function regu-
larization approach@35#.

For a background field written in terms of the ADHM
construction, a useful expression for the vacuum current
derived in Refs.@20,35#. In the SU(2) case it acquires the
form:

Jm
s ab5 i«adbtr~tdj m!,

j m5
1

12p2
^vuBf ~smD†B2B †Dsm

† ! fB †uv&
03600
in
r

in

are

e

as

~see Appendix A for notations of the ADHM constructio
elements!.

We would like to derive another expression for this part
the current—in terms of derivatives. In some cases it is m
useful. We start from writing our result:

j m5
1

48p2
@~DmD2^vu!uv&2H.c.#. ~E2!

Let us prove it. First of all we consider the action of on
derivative

Dm^v~x!u5]m^vu2]m^vuv&^vu5]m^vu~12uv&^vu!

5]m^vuD f D†52^vu]mD f D† ~E3!

52^vuBsm f D†. ~E4!

At the end of the first line we have used Eq.~A5!. The first
equation in the second line comes from differentiating
ADHM equation

05]m~^vuD!5]m^vuD1^vu]mD.

The last equation follows from the definition~B10!. There-
fore we obtain

Dm^v~x!uv~y!&52^v~x!uBsm f xDx
†uv~y!&

52^v~x!uBsm f x~x2y!†B †uv~y!&,

where in the last line we have used the ADHM equati
~A3!. We next consider two derivatives. It is important he
that f is proportional to the unity 232 matrix. We have

Dx
2^v~x!uv~y!&52Dm

x @^v~x!uBsm f x~x2y!†B †uv~y!&#

5^v~x!uBsm f xDx
†Bsm f x~x2y!†B †uv~y!&

2^v~x!uBsm]m f x~x2y!†B †uv~y!&

2^v~x!uBsm f xsm
† B †uv~y!&

524^v~x!uBf xB †uv~y!&.

We have used here

sm]m f x52 f x]m~smD†D! f x52 f xsm~sm
† B †D1D†Bsm! f x

522 f xB †D f x5 f xsmD†Bsm f x .

We have also used that the derivative of the inverse oper
is ](O21)52O21(]O)O21, as well as the relations

smsm
† 54, smc sm522c†, ~E5!

wherec is an arbitrary quaternion.
Finally, let us consider three derivatives:
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Dm
x Dx

2^v~x!uv~y!&524Dm
x @^v~x!uBf xB †uv~y!&#

54^v~x!uBf xsmDx
†Bf xB †uv~y!&

14^v~x!uB]m f xB †uv~y!&.

Notice that the last term is hermitian atx5y. Thus we have
proven that the current written in form of Eq.~E2! is equiva-
lent to that of Eq.~E2!:

1

48p2
@~DmD2^vu!uv&2H.c.#

5
1

12p2
^vuBf ~smD†B2B †Dsm

† ! fB †uv&.

In fact it is more useful to rewrite everything in terms
ordinary rather than covariant derivatives:

~DmD2^vu!uv&5^]m]2vuv&1AnAmAn2]nAnAm2An]nAm

2]mAnAn1]m]nAn16AmG, ~E6!

whereAm is in the fundamental representation and

1

2
~DmDn1DnDm^vu!uv&5dmnG. ~E7!

We have to prove that the left-hand side of Eq.~E7! is a
Lorentz scalar as is the right-hand side. Note that Eq.~E5! is
s,

s.

an

.

03600
proportional tox2y. The only way to obtain a nonzero re
sult atx2y→0 is to differentiate this factor:

1

2
~DmDn1DnDm^vu!uv&

52
1

2
^vuB~smsn

†1snsm
† ! fB †uv&

52dmn^vuBfB †uv&. ~E8!

It follows from Eq.~E8! thatG is Hermitian. We can writeG
as follows:

Gdmn5^]m]nvuv&1
1

2
~]mAn1]nAm!

2
1

2
~AmAn1AnAm!. ~E9!

Finally, the regularized singular part of the current can
written as

j m5
1

48p2
~^]m]2vuv&2H.c.!1

1

24p2

3~AnAmAn1]m]nAn13AmG13GAm!. ~E10!

Equations~E9! and~E10! are used for the calculation of th
singular part of the vacuum current in Appendix D 1.
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