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Quantum weights of dyons and of instantons with nontrivial holonomy
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We calculate exactly functional determinants for quantum oscillations about periodic instantons with a
nontrivial value of the Polyakov line at spatial infinity. Hence, we find the weight or the probability with which
calorons with nontrivial holonomy occur in the Yang-Mills partition function. The weight depends on the value
of the holonomy, the temperaturd,qocp, and the separation between the BPS monop@esiyonsg that
constitute the periodic instanton. At large separation between constituent dyons, the quantum measure factor-
izes into a product of individual dyon measures, times a definite interaction energy. We present an argument
that at temperatures below a critical one related\tg-p, trivial holonomy is unstable, and that calorons
“ionize” into separate dyons.
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I. MOTIVATION AND THE MAIN RESULT [10]. In the SU(N) theory there are I8 different dyons
[9,11): M1,M5, ... My_; ones with charges counted with
There are two known generalizations of the standard selfrespect toN—1 Cartan generators and orhe dyon with
dual instantons to nonzero temperatures. One is the periodigharges compensating thoseMf, ... ,My_; to zero, and
instanton of Harrington and Shepdrd studied in detail by their anti-self-dual counterparts.
Gross, Pisarski, and Yaff@]. These periodic instantons, also  Speaking of dyons one implies that the Euclidean space-
called calorons are said to have trivial holonomy at spatial time is compactified in the “time” direction whose inverse
infinity. It means that the Polyakov line circumference is temperatur€, with the usual periodic
boundary conditions for boson fields. However, the tempera-
ur ture may go to zero, in which case the 4D Euclidean invari-
LZPGXF( fo th4) B (D ance is restored.
[x|—e The essence of the dyon is that tAg component of the
dyon field tends to a constant value at spatial infinity. This
assumes values belonging to the group ce(@¥) for the  constantA, can be eliminated by a time-dependent gauge
SU(N) gauge groug3]. The vacuum made of those instan- transformation. However then the fields violate the periodic
tons has been investigated, using the variational principle, ilboundary conditions, unless, has quantized values corre-
Ref. [4]. sponding to trivial holonomy, i.e., unless the Polyakov line
The other generalization has been constructed a few yeagelongs to the group center. Therefore, in a general case one
ago by Kraan and van Bagh] and Lee and LU6]; it has  jmplies that dyons have a nonzero value A&f at spatial
been called thecaloron with nontrivial holonomyas the infinity and a nontrivial holonomy.
Polyakov line for this configuration does not belong to the  The KyBLL caloron of theSU(2) gauge grouyito which
group center. We shall call it for short the KvBLL caloron. It we restrict ourselves in this papewith a unit topological
is also a periodic self-dual solution of the Yang-Mills equa-charge is “made of” ond_ and oneM dyon, with total zero
tions of motion with an integer topological charge. In the g|ectric and magnetic charges. Although the action density of
limiting case when the KvBLL caloron is characterized by jsolatedL andM dyons does not depend on time, their com-
trivial holonomy, it is reduced to the Harrington-Shepard cal-pination in the KvBLL solution is generally nonstatic: the
oron. The fascinating feature of the KvBLL construction is| \ “constituents” show up not as 3D but rather as 4D
that a caloron with a unit topqlogical charge can be viewedymps(see Fig. 1 When the temperature goes to zero while
as “made of” N Bogomolnyi-Prasad-SommerfelBPS  the separation between dyons remain fixed, these Ilumps
monopoles or dyong7.,8]. _ ~ merge, and the KvBLL caloron is reduced to the usual
Dyons are self-dual solutions of the Yang-Mills equationsge|avin-Polyakov-Schwarz-Tyupkin instantpt2] (as is the
of motion with static(i.e., time-independenction density, standard Harrington-Shepard caloroplus corrections of
which have both the magnetic and electric field at infinitythe order of T. However, the holonomy remains fixed and
decaying as 1P. Therefore these objects carry both electric nontrivial at spatial infinity.
and magnetic charge§rompting their name In the (3 There is a strong argument against the presence of either
+1)-dimensionalSU(2) gauge theory there are in fact two dyons or KvBLL calorons in the Yang-MillsYM) partition
types of self-dual dyon§9]: M and L with (electric, mag-  function at nonzero temperatur®]. The point is that the
netic) charges {-,+) and (—,—), and two types of anti- 1.-|oop effective action obtained from integrating out fast
self-dual dyondM andL with charges ¢,—) and (—,+), varying fields where one keeps all powersfgfbut expands
respectively. Their explicit fields can be found, e.g., in Ref.in (covarianj derivatives ofA, has the forn{13]
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the adjoint representation. Because of supersymmetry, the
boson and fermion determinants abdutM dyons cancel
exactly, so that the perturbative potential enefgyis iden-
tically zero for all temperatures, actually in all loops. There-
fore, in the supersymmetric theory dyons are openly allowed.
[To be more precise, the cancellation occurs when periodic

FIG. 1. The action density of the KvBLL caloron as function of conditions for gluinos are imposed, so it is the compactifica-

z,t at fixedx=y=0, with the asymptotic value of\, at spatial

infinity v=0.97T, v=1.17T. It is periodic in thet direction. At
large dyon separations the density becomes stdgft, ri,

tion in one(time) direction that is implied, rather than physi-
cal temperature which requires antiperiodic fermipiviore-
over, it turns ouf11] that dyons generate a nonperturbative

=1.5/T). As the separation decreases the action density becomgxotential having a minimum at=v=T, i.e., where the per-

more like a 4D lump(right, r,,=0.6/T). In both plots thelL,M

dyons are centered atz =-—vrJ27T, zy :7r12/27rT, XM
=y u=0. The axes are in units of temperatire

gl Ioop:f d*X[P(A,) +E2fz(A,) +B2fg(Ay)

+ higher derivative terms

P(Ay)= 2V2(27TT_V)2|mod 27T s

3T(27)

v=+AJA; [forthe SU(2) group|, 2
where the perturbative potential energy tdeifA,) has been
known for a long timg2,14] (see Fig. 2. As follows from

Eq. (1) the trace of the Polyakov line is related to v as

1 Y
—=TrL=cos=—=

2 2T ©

The zeros of the potential energy correspond 3tdr L
=1, i.e., to the trivial holonomy. If a dyon hasA2#Tn

at spatial infinity the potential energy is positive-definite and
proportional to the 3D volume. Therefore, dyons and KvBLL
calorons with nontrivial holonomy seem to be strictly forbid-
den: quantum fluctuations about them have an unacceptablg

large action.

Meanwhile, precisely these objects determine the physi

of the supersymmetric YM theory where in addition to glu
ons there are gluinos, i.e., Majoraf@ar Weyl) fermions in

pT?

v

1 2 3 4 5 6

FIG. 2. Potential energy as function off\v/ Two minima corre-
spond to% TrL==1, the maximum corresponds to 0+0. The

turbative potential would have the maximum. This value of
A, corresponds to the holonomy D=0 at spatial infinity,
which is the “most nontrivial”; as a matter of fagfTrL)

=0 is one of the confinement’s requirements. In the super-
symmetric YM theory configurations having Ie=0 at in-
finity are not only allowed but dynamically preferred as com-
pared to those with; TrL=+1. In nonsupersymmetric
theory it looks as if it is the opposite.

Nevertheless, it has been argued in R&§] that the per-
turbative potential energf?) which forbids individual dyons
in the pure YM theory might be overruled by nonperturbative
contributions of arensembleof dyons. For fixed dyon den-
sity, their number is proportional to the 3D volume and
hence the nonperturbative dyon-induced potential as function
of the holonomy(or of A, at spatial infinity is also propor-
tional to the volume. It may be that at temperatures below
some critical one the nonperturbative potential wins over the
perturbative one so that the system prefefsL)=0. This
scenario could then serve as a microscopic mechanism of the
confinement-deconfinement phase transifitf]. It should
be noted that the KvBLL calorons and dyons seem to be
observed in lattice simulations below the phase transition
temperatur¢16—18.

To study this possible scenario quantitatively, one first
needs to find the quantum weight of dyons or the probability
with which they appear in the Yang-Mills partition function.
nfortunately, the single-dyon measure is not well defined: it

too badly divergent in the infrared region owing to the
Cweak (Coulomb-like decrease of the fields. What makes
Zense and is finite, is the quantum determinant for small os-

cillations about the KvBLL caloron that possesses zero net
electric and magnetic charges. To find this determinant is the
primary objective of this study. The KvBLL measure de-
pends on the asymptotic value &f, [or on the holonomy
through Eq.(3)], on the temperatur&, on A, the scale pa-
rameter obtained through the renormalization of the charge,
and on the dyon separation,. At large separations between
constituent_,M dyons of the caloron, one gets their weights
and their interaction.

The problem of computing the effect of quantum fluctua-
tions about a caloron with nontrivial holonomy is of the
same kind as that for ordinary instantdisslved by 't Hooft
[19]) and for the standard Harrington-Shepard caloron
(solved by Gross, Pisarski, and Yaffg]), being, however,
technically much more difficult. The zero-temperature in-
stanton i90(4) symmetric, and the quantum weight depends

range of the holonomy where dyons experience repulsion is showan only one variable, the instanton size. The Harrington-

in the dashed portion.

Shepard caloron i®(3) symmetric, and the quantum weight
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depends on two variableg,and T. The KvBLL caloron has typical expressions are several Mbytes long and so far we
only the axialO(2) symmetry, and its quantum weight is a _have not managed to simplify them such tha_tt they would fit
function of three variables (or ry,), T, and the holonomy. INto & paper. However, we are able to obtain compact ana-
Nevertheless, we have managed to find the small-oscillatiolytical €xpressions in the physically interesting case of large
determinantexactly It is possible because we are able toS€paration between dyons,>1/T. We have also used the
construct the exact propagator of spin-0, isospin-1 field irfXact formula; to ch.eck numerically some of the intermedi-
the KvBLL background, which by itself is some achieve- ate formulas, in partlt_:ular at—v.o_
ment. If the separation is large in the temperature scalg,

As it is well known[2,19], the calculation of the quantum >1/T, the final result for the quantum measure of the
weight of a Euclidean pseudoparticle consists of three step&VBLL caloron can be written down in terms of the 3D
(i) calculation of the metric of the moduli space or, in otherpositions of the two constituert,M dyonsz, ,, their sepa-

words, computing the Jacobian composed of zero m0d9$ationr12=|21—22|, the asymptotic oA, at spatial infinity

needed to write down the pseudoparticle measure in terms %fenoted by «[0,27T] and v=27T—ve[0,27T] [see Eq.
its collective coordinates(ii) calculation of the functional (80)]. We give here a simpler expression obtained in the limit

determinant for nonzero modes of small fluctuations about When the separation between dyons is much larger than their
pseudoparticle, andii) calculation of the ghost determinant core sizes:

resulting from background gauge fixing in the previous step.

Problem(i) has been actually solved already by Kraan and g2\ 41 Aeve| 22/3
van Baal[5]. Problem(ii) is reduced tdiii) in the self-dual ZK\,BLsz d%2,d%2,T8(2m)®%C| —- (4 T
background field[20] since for such fields Dew,,) g 77

=Det(—~D?%*, whereW,,, is the quadratic form for spin-1,  AvaeT

. . . 5 . 4v/3nT ™

isospin-1 quantum fluctuations and“ is the covariant v ex] — 271 1,P" (V)]
Laplace operator for spin-0, isospin-1 ghost fields. Symboli- 27T 27T 12

cally, one can write

X

xexd —VEP(v)], 5

KvBLL measure where the overall facto€ is a combination of universal con-

stants; numericallfC=1.031419972084A is the scale pa-
=f d(collective coordinatas JacobianDet™ /2 rameter in the Pauli-Villars scheme; the facwr?® is not
renormalized at the one-loop level.
X(WMV)-DeI(—DZ) (4) Since the caloron field has a constat component at

1+

1
P"(V)=——|v—=T
( WZT[

spatial infinity, it is suppressed by the same perturbative po-
where the product of the last two factors is simply Det tential P(v) as given by Eq(2). Its second derivative with
(—D?) in the self-dual background. As usually, the func- respect to v is
tional determinants are normalized to free oiesth zero
background fieldsand UV regularizedwe use the standard 1- 1 T 1
Pauli-Villars methodl Thus, to find the quantum weight of BT 3
the KvBLL caloron only the ghost determinant has to be
computed. If v is in the range between 0 andT(1—1/\/3) or between

To that end, we follow Zarembb?l] and find the deriva- ’7TT(1+ 1/\/§) and 27T (Corresponding to the h0|onomy not
tive of this determinant with respect to the holonomy or,too far from trivial, 0.78759% |TrL|<1) the second de-
more precisely, to #\AJAj||5_... The derivative is ex- rivative P"(v) is positive, and thé andM dyons experience
pressed through the Green function of the ghost field in the linear attractive potential. Integration over the separation
caloron background. If a self-dual field is written in terms of r |, of dyons inside a caloron converges. We perform this
the Atiyah-Drinfeld-Hitchin-Manin construction, and in the integration in Sec. VII, estimate the free energy of the cal-
KVBLL case it basically ig5,6], the Green function is gen- oron gas and conclude that trivial holonomy=(0,27T)
erally known [22—-25 and we build it explicitly for the may be unstable, despite the perturbative potential energy
KvBLL case. Therefore, we are able to find the derivativep(yv). In the complementary rangerT(1—1/\/3)<v
9 Det(—D?)/gv. Next, we reconstruct the full determinant <aT(1+1//3) (or £|TrL|<0.787597),P"(v) is negative
by integrating over v using the determinant for the trivial (see Fig. 2, and dyons experience a strong linear-rising re-
holonomy[2] as a boundary condition. This determinant atpysion. It means that for these values of v, integration over
v=0 is still a nontrivial function ofr,, and the fact that we the dyon separations diverges: calorons with holonomy far
match it from the ¥ 0 side is a serious check. Actually we from trivial “ionize” into separate dyons.
need only one overall constant factor from Re&X] in order

fco restore the full determinant_ ata0 . and we make a minor Il THE KVBLL CALORON SOLUTION
improvement of the Gross-Pisarski-Yaffe calculation as we
have computed the needed constant analytically. Although the construction of the self-dual solution with

Although all the above steps can be performed explicitly,nontrivial holonomy has been fully performed independently
at some point the equations become extremely lengthy—by Kraan and van Badl5] and Lee and LU6] we have
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found it more convenient for our purposes to use the gauge
convention and the formalism of Kraan and van B@aiB)

n

I
W/

Yirngls

i i i s{ 550 .5 TINS5 5
TR N5 : & 77 D legrerses: .
whose notations we follow in this paper. ",,:,i;lfzfit?'f &
HYH H— H L 7 00,30 - LS AALIAL T AL ALY
The key quantities characterizing the KvBLL solution for Tl - <L -
R . gy — U - sy~ 0 .
LR G5y
a generaSU(N) gauge group are thd—1 gauge-invariant z 14 z 14

eigenvalues of the Polyakov ling@) at spatial infinity. For _ _ _
the SU(2) gauge group to which we restrict ourselves in this F|G.. 3. The action density of the KVBLL caloron as fL-JnCtIOI’I of
paper, it is just one quantity, e.g. Ir Eq. (3). In a gauge zX at fl)fedt=y=0. At large separations;, the caloron is a su-
where A, is static and diagonal at spatial infinity, i.e. Perposition of two BPS dyon solutiorieft, ry,=1.5/). At small
Aul; .=ivrs/2, it is this asymptotic value v that character- separations they _mer_geght, r,=0.6/T). The caloron parameters
izes the caloron solution in the first place. We shall also usé'® the same as in Fig. 1.

the complementary quantity=27T—vVv. Their relation to .-

parametersw, o introduced by KvB[5] is o=Vv/4nT, o = —cog2mx,)+ch cht 2r_s§1 sh,
=Vv/47T=3%—w. Both v and vvary from O to 27T. At v rs
=0,27T the holonomy is said to be “trivial,” and the
KvBLL caloron reduces to that of Harrington and Shepard
[1].

There are, of course, many ways to parametrize the cal-

.or2 rp, — I
1/;:¢/;+%Zs_h sh+ ?lzshch +le§1 ch,

oron solution. Keeping in mind that we shall be mostly in-
. . . ~ T . . sh sh v
terested in the case of widely separated dyon constituents, we Y=—Cle?™a—y —| P=—. (8)
shall parametrize the solution in terms of the coordinates of ¥ S r v
the dyons’ “centers”(we call constituent dyong and M
according to the classification in R¢fL0]): We have introduced shorthand notations for hyperbolic func-
tions:
. 2wr—fz ) — —
L dyon: z;=-— T sh=sinh(sv), ch=coshsv), sh=sinh(rv),
. 2wfp ch=coshrv). 9
M dyon: z,= , ] .
T The first term in(7) corresponds to a constafyf component
at spatial infinity A,~iv7,/2) and gives rise to the non-
dyon separation: z,—z;=r1,, |ri]=aTp? trivial holonomy. One can see thét, is periodic in time

with period 1(since we have chosen the temperature to be

wherep is the parameter used by KvB; it becomes the size ofqual to unity. A useful formula for the field strength
the instanton at ¥ 0. We introduce the distances from the squared ig5]

“observation point”x to the dyon centers,

TrF,,F,,=d*d*log . (10)
r=X=z;=x+20rp =], In the situation when the separation between dyopsis
S . large compared to both their core sizes M) and 1/v(L),
S=X—2Zy=X—2wly, S=|s|. (6)  the caloron field can be approximated by the sum of indi-

vidual BPS dyongsee Figs. 1 and 8eft) and Fig. 4. We
Henceforth we measure all dimensional quantities in units oglive below the field inside the cores and far away from both
temperature for brevity and restofieexplicitly only in the  cores.
final results.
The KvBLL caloron field in the fundamental representa- X
tion is[5] (we choose the separation between dyons to be in i

the third spatial directiont;,=r,€3):
P i B RO Re (7,—i7%2,) 2 SN
w— Yu4 2 277,(“/7-3 v 2 77;1,1/ 77/1,1/ / 1/v \\
|
i
X (ryi72)(0,+198, %], U \ % s
\ /
where 7; are Pauli matrices;fw are 't Hooft symbolq19] ia’o;
with 7i=ey; and 73,=—75,=i5,,. “Re” means Y
2 ReW)=W-+W" and the functions used are FIG. 4. Three regions of integration for well separated dyons.
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A. Inside dyon cores

In the vicinity of theL dyon centerz, and far away from
the M dyon (sv>1) the field becomes that of thedyon. It

is instructive to write it in spherical coordinates centered at

z,. In the “stringy” gauge[10] in which theA, component is
constant and diagonal at spatial infinity, thelyon field is

Ab=— 1+27T—Vcotr@r) At=0
4 20r o
AL:i\I—,_Sin(ZWXF¢)7'1+C°5(277X4_d’)TZ
¢ 23inr(7r) '
(11)
AL:iVCOSZWXAl_¢)T1+Sir(2ﬂ-x4_¢)T2
¢ 2 sinH(vr)

tan 6/2)

—irg——o

HereA,, for example, is the projection @ onto the direc-
tion ﬁa=(cosecos¢,cosasin¢,—sin 0). The ¢ component
has a string singularity along theaxis going in the positive
direction. Notice that inside the core regiorr &1) the field

is time dependent, although the action density is static. At
large distances from the dyon center, i.e., far outside the

core one neglects exponentially small tergWe"") and the
surviving components are

r—<  tan6/2) i7°
L
Rom -2

corresponding to the radial electric and magnetic field com-

ponents

r—oo i3
L oL 1lir
El=B' - - = —

R (12)

PHYSICAL REVIEW D 70, 036003 (2004

3

= iT
AV [v=Z] =,
4 s 2

' anor) i
¢ 7 s 2"

(14)

We see that in both cases theM fields become Abelian at
large distances, corresponding(&dectric, magneticcharges
(=,—) and (+,+), respectively. The corrections to the
fields (11) and (13) are hence of the order ofrk} arising
from the presence of the other dyon.

B. Far away from dyon cores

Far away from both dyon core$q> 1, sv>1; note that
it does not necessarily imply large separations—the dyons
mayeven be overlappingne can neglect both types of ex-

ponentially small termsQ(e™ ") and O(e™%"). With expo-

nential accuracy the functiog in Eq. (8) is zero, and the
KvBLL field (7) becomes Abeliah5]:

.
A= 53(5”4v+ 72,0,n @,

(15

where ®@ ¢ is the function® of Eq. (8) evaluated with the
exponential precision:

r+s+ry, s—s;
r+s—ry, r—rg

as— if =18 (16)

It is interesting that, despite being Abelian, the asymptotic
field (15) retains its self-duality. This is because the third
color component of the electric field is

E3=0,A3=0;d5In 56
while the magnetic field is

Bi3: eijk&jAE: (?i(93|n CDas_ 5i3(?2|n (I)as,

This Coulomb-type behavior of both the electric and mag-where the last term is zero, except on the line connecting the

netic fields prompts the name “dyon.”
Similarly, in the vicinity of theM dyon and far away from

the L dyon (rv>1) the field becomes that of thd dyon,
which we write in spherical coordinates centeretfzat

i73 1 SingT{—COS¢ 7,
AY:?(VCOWVS)_E L A=V 2i sinh(vs) '
cos¢pTi+singr,  tan6/2)
M_ M_,,
AT=0, Ag=v—y; sinh(vs) 173755

13

the asymptotics of which is

dyon centers where it is singular; however, this singularity is
an artifact of the exponential approximation used. Explicit
evaluation of Eq(15) gives the following nonzero compo-
nents of theA , field far away from both dyon centers:

i7'3 l 1
as:_ o
A 5 v+r s)’ (17
as__ 1731 1
@ 2\r s
o= r+S)(rip+r—s)
( 12 ( 12 (18)

(rp+r+s)(r+s—rqy’
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In particular, far away from both dyong,, is the Coulomb compactified time direction, whereas one actually needs an

field of two opposite charges. explicitly periodic propagatof22). To overcome this nui-
sance, Nahnji25] suggested to pass on to the Fourier trans-
lll. THE SCHEME FOR COMPUTING Det (—D?) forms of the infinite-range subscripts in the ADHM construc-

tion. We perform this program explicitly in Appendix A, first
for the single dyon field and then for the KvBLL caloron. In
this way, we get the finite-dimensional ADHM construction
both for the dyon and the caloron, with very simple period-
icity properties. Using it, we construct explicitly periodic
ropagators in Appendix B, also first for the dyon and then
or the caloron case. For the KvBLL caloron it was not
known previously. Using the obtained periodic propagators,
in Appendix C we calculate the exact vacuum currez@)
for the dyon, and in Appendix D we evaluate the vacuum
current in the caloron background, with the help of the regu-
dlog De{ — D[ A]) , larization carried out in Ap_pe_ndix E _ .
P = —j d* Tr(dpA,d,), (19 AIFhough there is no principal difficulty in domg all cal-
culations exactly for the whole caloron moduli space, at

some point we loose the capacity of performing analytical
calculations for the simple reason that expressions become
too long, and so far we have not been able to put them into a

As explained in Sec. I, to find the quantum weight of the
KvBLL caloron, one needs to calculate the small oscillation
determinant, Detf D?), whereD ,=d,+A, andA, is the
caloron field(7). Instead of computing the determinant di-
rectly, we first evaluate its derivative with respect to the ho-
lonomy v, and then integrate the derivative using the know
determinant at ¥ 0 [2] as a boundary condition.

If the background field\,, depends on some paramefgr
a general formula for the derivative of the determinant with
respect to such parameter is

whereJ,, is the vacuum current in the external background,
determined by the Green function:

Jibz(aggg,gx_ 6‘2‘5319y+Aa°53+Adb5§)g°d(x,y)|y:X manageable form in a general case. Therefore, we have to
adopt a more subtle attitude. First of all we restrict ourselves
or simply to the part of the moduli space corresponding to large sepa-
rations between dyong {,>1). Physically, it seems to be
J,=D,G+@D,. (20 the most interesting cagsee Sec.)l Furthermore, at the first

. , , stage we takeq,v,r,v>1, meaning that the dyons are well
Here G is the Green function or the propagator of spin-0,separated and do not overlap since the separation is then
isospin-1 particle in the given backgrouAd, defined by much bigger than the core sizgsee Figs. 1,3left)]. In this
N2  S(8)(y_ case, the vacuum curredt, (20) becomes that of single
DiG(x,y)= M (x~y) @D dyons inside the spheres of some radiisurrounding the

and, in the case of nonzero temperatures, being periodic ilyon centers, such that 1/v,3R<r,, and outside these
time, meaning that spheres it can be computed analytically with exponential pre-

cision, in correspondence with Sec. I(Bee Fig. 4. Adding
* _ . up the contributions of the regions near two dyons and of the
G(x,y)= 2 G(Xg,X;Yst+NnYy). (22)  far-away region, we getl Det(— D?)/dv for well-separated
= dyons. Integrating it over v we obtain the determinant itself
up to a constant and possible L/terms.
This is already an interesting result by itself; however, we
would like to compute the constant, which can be done by

Equation(19) can be easily verified by differentiating the
identity log Det(—D?)=Trlog(—D?) [26]. The background
{lsel'[(:]?{r;r:: eE_ qH(éLr?z: és ;cfa l:ﬁ g ;)ne':if:)%iidjporglé ;ggg?seﬂaa;xg: as matching our calculation with that for the trivial galoron at.
Eq. (19) becomes a powerful tool for computing quantum Y= 0- It means that we have to extend the domain of appli-
determinants. Specifically, we ta/e=v as the parameter for Cability to r;v=0(1) [or r1,v=0(1)], implying overlap-
differentiating the determinant, and there is no problem inPing dyons, presented in Figs. 1 andright). To make this
finding d,A,,(r,s,r12,Xo,V) for the caloron field7). In this gxtensmn, we “guess” the analytical expression .that would
differentiation, we assume for convenience that the dyondnterpolate between;,v>1 where the determinant is already
centers are fixedOne could assume, for example, that theComputed andr,v<1 where matching with the Gross-
dyons’ center of mass is fixed—it would lead to more com-Pisarski-Yaffe(GPY) calculation[2] can be performed. At
plicated intermediate formulas but the same final result as th&iS point it becomes very helpful that we possess the exact
two frames differ by a global translation of which the deter-vacuum current for_the caloron, which, although too Iong_to
minant in question is invariart. be put on paper, is nevert_heless affordable for numerical
The Green functions in self-dual backgrounds are gener@valuation(and can be provided on requestVe check our
ally known [25,27] and are built in terms of the Atiyah- aqalytlcal guess to an accuracy better than one-millionth. In
Drinfeld-Hitchin-Manin (ADHM) construction[28] for the this way we othm the determinant up to an overall constant
given self-dual field. A subtlety appearing at nonzero temfactor for any v,vwith the only restriction that,,>1. This
peratures is that the Green function is defined by ) in constant factor is then read off from the GPY calculafi®h
the EuclidearR* space where the topological charge is infi- Finally, we compute the i{, and logr,/r 1, corrections in
nite because of the infinite number of repeated strips in th®et(—D?), which turn out to be quite nontrivial.
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IV. Det(—D? FOR WELL SEPARATED DYONS It has to be integrated over the spherical box of radius

R ) Fortunately, we are able to perform the integration analyti-
TheL,M dyon cores have sizes land 1/v, respectively, cqjly. The result for thev dyon is

and in this section we consider the case of well-separated
dyons, meaning that the distance between the two centers igog Dei — D?[M dyon])

much greater than the core sizes;> 1/v, 1/v. This situa- oV

tion is depicted in Figs. 1 and @eft). The two dyons are .

static in time, so that log Det(—D?)/dv (19) becomes an _ _f 2
integral over 3D space, timesTléet to unity. We divide the 0 dsTHLIuA,J4s

3D volume into to three region&ig. 4): (i) a ball of radius )

R centered at the center of thé dyon, (i) a ball of radiusR 2
centered at thé dyon, (iii) the rest of the space, with two 24(ye~logm)+53+ 37 1
balls removed. The radiu is chosen such that it is much == 187 tyt
larger than the dyon cores but much less than the separation:
r,=>R>1/v, 1/v. Summing up the contributions from the
three regions of space, we are satisfied to observe that the
result does not depend on the intermediate raBius

4R
3

4
X P'(v)—27R?P"(v) + 2R P" (V) — E|og(Rv).

(29)

A. Det(—D?) for a single dyon As we see, it is badly infrared divergent, as it depends on the
In region (i) the KVBLL caloron field can be approxi- Pox radiusR. HereP(q) is the potential energisee Eq(2)]
terms, in Sec. V. The single-dyon vacuum current is calcu-

mated by theM dyon field (13), and the vacuum current by 2/ q 2/ q\2
E(;‘Z (;)
lated in Appendix C. Adding up the three parts of the

that inside a single dyon, both with th@(1/r,,) accuracy. P(q)=
We make a more precise calculation, including L/ ;5)

vacuum current denoted there a3"" we obtain the full P’(Q)ZQQ(TT—Q)(ZW—Q),
isospin-1 vacuum curreriin the stringy gauge

= 1
Jr O, P//(q): 2(3q2—67Tq+27T2),
37

_iV[sin(¢) T+ cog ¢)TyJ[1—sv coth(sv)]?

d)_ 2 2 . )
24messinh(sv) ” 2 2
P"(q)=—(a-m), PY(q)=—.
a a
iV[sin(¢)T;—cog ¢) T,][1—svcoth(sv)]?
o 2472s?sinh(sv) ' The IR-divergent terms arise from the asymptotics of the
integrand. Neglecting exponentially small teras® in Eq.
__|[1—svcoth(sv)]* 1—svcoth(sv) (23) we have
J4: - |T3

6ms® 3s

(1-sv)® (1-sv)? . 1-sv

TR = e T e 6s

. coth(sv)[1—sv coth(sv)]?
2

27s 1 1
_ _ _ =P’'|v——=|=P'(v)—P"(v) <
where (T.)3°=i&2°" are the isospin-1 generators. We con- ( S) S
tractJ, (23) with dA,/dv from Eq. (13) according to Eq.
(19). After taking the matrix trace, the integrand in E9) I lpm(v)i_ Epw(v)i
becomes spherically symmetric: 2 2 6 3

sv[sv coth(sv) — 2] Integrating it over the sphere of radiisone gets the IR-
SintA(sv) divergent termgthe second line in Eq24)].
The fact that the IR-divergent part dfDet(—D?)/dv is
[sv coth(sv) — 1]3[ sinh(2sv) — 3sv] directly related to the potential ener@(A,) is not acciden-
- 6 72sint(sv)s® tal. At large distances the field of the dyon becomes a slowly
varying Coulomb field see Eq.(14)]. Therefore, the deter-
[sv coth(sv) — 1][ sinh(2sv) — 2sv] minant can be generically expanded in the covariant deriva-
+ tives of the background fielfiL3,29 with the potential en-
ergy P(A,) being its leading zero-derivative term. The
(23)  nontrivial fact, however, is that with exponential precision

2
TaAd]= 3s ( coth(sv) —sv+

27 sinff(sv)tanh(sv)s?
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the vacuum current is related to the variation of solely theis zero by symmetry between the two centers, and so is the
leading term in the covariant derivative expansion of thelast one. The only nontrivial integral is
effective action with no contribution from any of the sub-

leading terms. This is a specific property of self-dual fields, & 11 2=47rr 87RO R_2 29
and we observe it also in the following section. r s 12 Mo
B. Contribution from the far-away region Therefore, the contribution from the region far from both
o ’ dyon centers is
We now compute the contribution té Det(—D<)/dv
from the region of space far away from both dyon centers.  jlog Dei{ —D?) ) 4r N\ 1
With exponential accuracgmeaning neglecting terms of the ~ —— o~ far: P'(W| V=25 R+ 5P"(v)

order ofe” " ande™%") the KvBLL caloron field is given by
Egs. (17) and (18), and only theA, component depends X (4mr,—87R). (30
(trivially) on v. The caloron vacuum current with the same
exponential accuracy is calculated in Appendix D. Combin-
ing the results given by Eq$D8) and (D9) and Eqgs.(D11)

and(D12) we see thad,=0 and forJ, we have We now add up the contributions tlog Det(—D?)/ v
from the regions surrounding the two dyons and from the

C. Combining all three regions

iT, 1 /1 1\3 1/1 1\2 2/1 1 far-away region. Since the contribution of thedyon is the
Ja=—- ﬁ(F_ g) - ;(F_ g) talr T g) same as that of thi! dyon with the replacement-vv and
, since d/ ov=— gl dv, when adding up contr@utions @f, M
n i(l_ 1) —S(E— 1 n 8_77 w+t16 }_ 1) core regions we have to antisymmetrize irv. It should be
w\r s r s 3 r noted thatP(v) and P”(v) are symmetric under this inter-
6 change, whileP’(v) and P”(v) are antisymmetric. There-
At fore, the combined contribution of both cores is, from
_ 2. — 7 30 , )
167 |w 3 @ ] (25 Eq. (24),
2
We remind the reader thats are distances frorM,L dyon dlog Det(—D?) =2P’(v)4—7TR3+ EPW(V)SWRJF 1
centersfllz and thatw=v/(4m). It is interesting that the v cores 3 2 v
separation ;,=|z; — z,| does not appear explicitly in the cur-
rent. Moreover, it can be again written through the potential 1 4 | v
) — == o—In[ = (31
energyP(A,): v 37 \vy

(26) Adding it up with the contribution from the far-away region,
Eq. (30), we obtain the final result, which is independent of
the intermediate radiuR used to separate the regions:

1' !
Jy=51T3P (Dlg=v+1r-1ss-

Therefore, in the far-away region one obtains

dlog De( —D?) 1 1
) 1 1 a—=P'(V)V+ P"(V)2mr o+ —— =
—Tr[ﬁvA#JM]zP V+F—g . (27) \ vV vy
We have now to integrate E¢R7) over the whole 3D space - im L) ) (32)
with two spheres of radiuR surrounding the dyon centers 3wy
removed: . . o
1 1 This equation can be easily integrated over v up to a constant
_J' d*x Tr[ﬁVAMJM]:j d3xP’| v+ = — _) which in fact can be a function of the separatign:
r s
4v
log De{ —D?)=P(V)V+P"(v)27r 1+ | 1— 5—|log(V)
=P’(v)f d3x+ P”’(v)j d3x 3w
1) 1 1 +11 av log(v) + f 33
X| = — —|+= P/rr(v)j d3x (_ 377 Og(V) (r12)' ( )
r s/ 2 r
1\2 1 1 1\3 Since in the above calculation of the determinant for well-
— =] += P'V(U)f d3x<— - —> separated dyons we have neglected the Coulomb field of one
S 6 r-s (28) dyon inside the core region of the other, we expect that the

unknown functionf (r15) = O(1/r1,) + ¢, wherec is the true
The first integral in Eq(28) is the 3D volumeV minus the integration constant. Our next aim will be to find it. The
volume of two spheres/—2(47/3)R3. The second integral O(1/r1,) corrections will be found later.
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V. MATCHING THE DETERMINANT WITH

4 2
TRIVIAL HOLONOMY log Def — D2]|\,=0' =173 7~ logr o+ 3 logu+cyq

To find the integration constant, one needs to know the

value of the determinant atv0 (or v=0) where the KvBLL +0
caloron with nontrivial holonomy reduces to the Harrington-
Shepard caloron with a trivial one and for which the deter-
minant has been computed by GPX. Before we match our where

determinant at # 0 with that at V=0 let us recall the GPY ) )
result ¢1=10g 2+ 2log m— o —2yp— o _ 2E(2)
1 g 3 g m 9 YE 27 7T2

1

l2

A. Det(—D?) at v=0
Lo . . . =0.206602292859. (39
The v=0 periodic instanton is traditionally parametrized

by the instanton size. It is known[2,24] that the periodic e notice thatP(v)—0 andP”(v)—2 at v—0; therefore
Instanton can be VleW?d_ as a mix of two BPS mqnopolesﬁhe first two terms in Eq(33) become exactly equal to the
one Of Wh|Ch haS an |nf|n|te size. It becomes ESpECIa”y Cleaﬁrst term in Eq(37) At the same time, the |ast two terms in
in the KVBLL constructior{5,6] where the size of one of the £q_ (33) become log v £ log(2m)+c which is formally sin-
dyons becomes infinite as-v0 (see Sec. )l Despite one  gylar at v—0 and does not match thelogry, in Eq. (37).
et_rlze a cLloron by_ the distancg, bfatween d_yon_ centgrs, >1/v,1/v and one cannot take the limit-v0 in that expres-
with p=1ry,/m. Since our determinant33) is given in — qjon \yithout taking simultaneously,,—«. In order to
terms ofr 1, we have first of all to rewrite the GPY determi- match the determinant at20 one needs to extend E(@3)
hant in terms ofr;,, t00. Actually, GPY have interpolated to arbitrary values of v,. As we shall see, it will be impor-

the deter_minant in the WhOIe range p)f(hencer_ 1) but we tant for the matching that lag, has the coefficient-1.
shall be interested only in the limit,>1. In this range the

GPY result reads: ) ]
B. Extending the result to arbitrary values of vr,,

2
log Det( —D%)|y-0,7-1 Let us take a fixed but large value of the dyon separation

4 4 r1,>>1 such that both Eq$33) and(37) are valid. Actually,
—loaDetl — D2l n « ot — aF 1 — 10 ot C our aim is to integrate the exact expression for the derivative
g Det Nv=0,7-0 3 ™2 31097127 Co of the determinant

1
—) a,log De‘(—DZ)zf o (x)d?x,

8 8y 2% 4logw

p(x)=—Tr[a,A,J*(x,X|A)], (39
CoT9™ 3 27 3

(34)
from v=0, where the determinant is given by E&7), to

We have made here a small improvement as compared ome small value of«1 (but such that &;,> 1) where Eq.

Ref.[2], namely(i) we have checked that the correction is of (33) becomes valid. We shall parametrize this v askvr ;,

the order of 17;,, based on an intermediate exact formula, <1 with k>1. The result of the integration over v must be

and (i) we have also managed to get an exact analyticagqual to the difference between the right hand sides of Egs.

expression for the constant. (33) and (37). We write it as
The zero-temperature determinant is that for the standard
BPST instantori19,30: kit 1o k k
f dvf d*xp(x)=V|P| —| —P(0) |+ 27T 1, P”(—)
log De( —D?)|y—o, 1-0 ° 12 2
5
2 1 r —P"(0) | +log(k) +c— s log(27
=—-logu+ slog - +a(l), (35 © ot 3 g(zm)
3 3 T
2I +0O k) 40
. 2ve 16 log2 2log2m 4¢(2) G 39RT L) 49
D=5 "9 3 "3 2

(36) Notice that log,, has cancelled in the difference in the right-
hand side(r.h.s). We denote
where it is implied that the determinant is regularized by the ) .
Pauli-Villars method andu is the Pauli-Villars masgsee - .~ 2
Sec. VI A). Combining Eqs(34) and(35) one obtains €2=C7C 3 log 11 3 log(2). (42)
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We know that the first two terms in E¢40) come from far

asymptotics. Denoting byp our g with subtracted J d¥p1= VI o+ Vio+1 (46)
asymptotic terms we have
Unfortunately, we were not able to verify it analytically but
(42 Wwe checked numerically that it holds with the precision of a
few units of 107 in the range of ¥;, between 0 and 15.

Combining Eqgs.(44) and (46) we obtain for the l.h.s. of
In this integration we are in the domain #4 andr,;,2>1  Eq. (42

and we can simplify the integrand dropping terms, which are

kIt 1o _ 1
f dvf d*xp(x)=logk+c,+O —
0

small in this domain. At this point it will be convenient to kir1p 4 — kit dv
restore temporarily the temperature dependence. \Bith f dvf d Xp(x)_rﬂf \m=log(k+l)
=1/T our domain of interest is 1&% 3 andr,> 3. There-
fore we are in the smajp domain and can expand in —logk+ O })
series with respect t@: k)
Therefore, we reproduce the r.h.s. of E4) and in addition

— 1 1
= oot 5917 O(BY). 43 find thatc,=0.

Equation (46) is sufficient to extend the result for the
As we shall see in a moment, only the first two terms are nofleterminant33) valid at w;,>1 to arbitrary values ofm,,
small in this domain and we need to know only them toprovidedr,,>1 (the extension to arbitrary values of g is
computec,. It is a great simplification becausgg,; do not  obtained by symmetryasv). The final result for the deter-
contain terms proportional te™*' since v=27T—v—o at  minant to the 1/;, accuracy is
B—0, and what is left is time independent. Moreover, what

is left after we neglect exponentially small terms are homo- 2 " 4v
geneous functions af.s,r,,,v and we can turn to the dimen- log De{ —D7]=VP(v)+27P"(V)r1p*| 1- 3T
sionless variables:
4v —
1. s Xlog(vr o+ 1)+ | 1— =—log(vr,+1)
po(r,s,rlz,V) W WVlzf, 37
1o T,
5 1
1 F s +§Iog(,ur12)+cl+ §Iog(2w)+(9 )
01(r,S,F 12,V) = —¢ ( VI )
1( 12 I’ rl I’ 1 12 (47)
We rewrite the I.h.s. of Eq42) in terms of the new quanti- where u is the UV cutoff and the numerical constanit is
ties: given by Eq.(38). This expression is finite at+0,v—0 and
rz coincides with the GPY resuli37) in these limits. At v,
d*xa(x) = j Ao+ f 4%%p .+ O(B). >1 we restore the previous result, £E§3), but now with the
f )= B Yotz p1+0(B) integration constant fixect= 3% log u+ 2 log(2m)+c¢,. Equa-

44 tion (47) is valid for any holonomy, i.e., for I&[O,Zw],

and the only restriction on its applicability is the condition

where x=x/r 1, is dimensionless. We see that it is 'ndeedthat the dyon separation is large,>1.

sufficient to take just the first two terms in the expangi#®)
at B—0. The integration measure can be written in terms of

. . L~ ~ C. Yr 4, corrections
the dimensionless variables=r/r,,5=s/r,, as 12

Equatlon (47) can be expanded in inverse powers of

d3x=2mrdrsds, (45 vry,,vry,, which gives 1/(vy,), 1/(wry,) (and higher cor-
L _ rections; however, there are other jb/corrections that are
wherer ands are constrained by the triangle inequalittes ot accompanied by the 1/v, 1factors: the aim of this sec-
+5<1,T+1<Ss, ands+1<T, and we have integrated over tion is to find them using the exact vacuum current.
the azimuth angle. To this end, we again consider the cage>1/v,1/v such
We have now to use the exact vacuum current in the cakhat one can split the integration over 3D space into three
oron background to compufq,ao 1. First, it turns out that the regions shown in Fig. 4. In the far-away region one can use
first integral in Eq.(44) is zero. This is good news because the same vacuum curre(®5) as it has an exponential preci-
had it been nonzero, E¢42) could not be right as its r.h.s. sion with respect to the distances to both dyons. In the core
has no dependence an, other than possible df, terms.  regions, however, it is now insufficient to neglect completely
Second, we have noticed that the second integral iN4). the field of the other dyon, as we did in Sec. IV looking for
is in fact the leading order. Since we are now after the;Jltorrec-
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tions, we have to use the exact field and the exact vacuuriir ;, correction to the determinant we need to compute its
current of the caloron but we can neglect the exponentiallyerivative in the 172, order and expand correspondingly the
small terms in their separation. caloron field and the vacuum current to this order. Wherever
Another modification with respect to Sec. IV is that we the distance from the far-awayL dyon appears in the equa-
find it more useful this time to choose, as the parameté?  tions, we replace it by = (r,+ 2sr;,cos6+s)"? wheres is
in Eq. (19. We shall compute the 7, terms in the distance from th&1 dyon andé is the polar angle seen
dDet(—D?)/dr;, and then restore the determinant itself from theM-dyon center. Expanding in inverse powers of
since the limit ofr,;,—« is already known. Let us define we get coefficients that are functions sfcosd. One can
how the KvBLL field depends on,,. As seen from Eq(7)  easily integrate ovef as the integration measure in spherical
the KvBLL field is a function ofr, s, v, ry, only. We define  coordinates is Zs?dsdcosé. We leave out the intermediate
the change in the separatiopp—r,,+dr;, as the symmetric equations and give only the end result for the integrand in
displacement of each monopole centertbgr,,/2. It corre-  Eq.(19). After integrating over co8 we obtain the following
sponds to contribution from the core region of thd monopole:
(48) 9 Det(—D?)
2 Jo

)
aryz r r3,)’
M dyon core 12 12
We shall use the definitio®8) to compute the derivative of (49
the caloron field7) with respect tar q».
Let us start from théM-monopole core region. To get the wherel w2, reads

o ri4r?—s? gs  ri4s?—r?
i, Argr O drg,  4rgs

1 R
=—— f | 1,ri216wszd st+0O

_ cothisv) coth(sv) sv’coth(sv)cschisv)?  s*v[2+cosh2sv)]cschisv)*
Ul T o2 9s 36 - 72

v[ — 61+ 3 costi2sv) + 4 cosli4sv)]coth sv)cschsv)*
- 967s

v?[37+ 23 cosli2sv) + 4 cosli4sv)]coth(sv)cschsv)* . s?v¥[ 4+ cosh 2sv) Jcoth(sv)?csch{sv)*
19272s A8

sv3[ 54 coslisv) + 17 costi3sv) + cosh5sv) Jcschsv)’
- 384

. sv*[ — 406 coslisv) — 81 cosli3sv) + 7 costi5sv) Jcschisv)’ s’V — 24— 33 cosli2sv) + cosh6sv) ]cschisv)®
2304m° 1536m2

. 6+ 13 csclisv)? s 10— 5 csclisv)?+9 cschisv)* . 40+ 65 csclisv)?+ 19 csclisv)?
v v

72 487rs? 19272s?
2 6— 20 csclisv)?+ 9 csclisv)*+ 27 csclisv)® e 24+ 98 csclisv)?+ 285 csclisv)*+ 234 csclisv)® -
v 481 v 57612 - (50
Fortunately we are able to integrate this function analytically:
R 1 7°+36ye+69 2v(v2—37v+27? 4(6vr—27%— 3V 10(v—7 4 log(Rv/ 7
J I 142 16ms’ds= — — e + ( )R3+ ( )R2+ x )R— a4 ).
o 12 \Y; 27w 97 9 3 3
(51)

For theL monopole core contribution one has to replace v_by\drding together contributions fromn, M monopole cores we
have

9 Det(—D?)

1

1 1  «#2+36yz+69 8 4 log( R2wv/ 72)

- e _ 2 2_
+=-2 977(3v2 6mv+2m?)R e (52)

I,.2
cores 12
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Now let us turn to the far-away region. Recalling E26) we realize that the contribution of this region is determined by the

potential energy:
1 1 1\4
3 \Y 3 —
fdxa P + 5P (v)folxa,lz(Ir S).

The integration region is the 3D volume with two balls of radRissmoved. We use

9 Det(—D?) 2

arqo

11 1
v+———)=—P”(v)f dsxarlz(F—g

far

5 1 1\? 16mR? 5 1 1\* 27
d3xo,. | =—=| =4m— , d®xa, | —— 48lo —97%+8]|. (53)
2\ r S 3r§2 2\ r S 3r12 R

Adding up all three contributions we see that the region separation rRdj)ess cancelledas it shoulg, and we get
5 100 Def — D)= 2B (v) 4 4 | wrz,| 1 1,50 8y 237 54
I’lzog e( )_ ™ (V) %2 3 2 v 97T 371_ 54 ’ ( )

which can be easily integrated, with the result

o0 Def — D)= 2P . 1|1 1 237 8y 74 4 rs T 1 -
og De{(—D)=2mP"(V)ry, v Tt 5 T3 o 34 — c 2] (55

wherec is the integration constant that does not depend orf he general field over which one integrates in E&j) can
r1,. Comparing Eq(55) with Eq. (32) atr,;,—o we con- be written as

clude that _
A,=A,ta,, (58
— 2 3m—4v 3m—4v hereA , is the classical soluti ding to the local
—VP(V)+ 2] n log V- | whereA,, is the classical solution corresponding to the loca
¢ v) 3 ogu 3 o9V 3 o9V minimum of the action and,, is the presumably small quan-
5 tum oscillation about the solution. One expands the action
+ —log(2m)+ ¢4 (56) around the minimum,

_ 4y, namyab A\ b
andc; is given in Eq.(38). We note that the leading correc- SAl= S[A] J d'xa,D, (AR, (A)

tion, logrq,/rq,, arises from the far-away region and is re-

lated to the potential energy, similar to the leadingterm. 4
The terms proportional to 1/v and 1éan be extracted from e J d
expanding Eq.(47) [which is an additional independent

check of Eq.(46)]. In fact, Eqgs.(47) and (55) are comple-  \yhere the linear term is in fact absent sinkesatisfies the
mentary: Eq.(47) sums up all powers of A{v,1/fr1,v but  equation of motion, and the quadratic form is

misses (log,,)/r1, and 1f,, terms, whereas Eq55) col-

lects all terms of that order but misses higher powers of Wab(A)——DZ(A)aba ,+(D,D J)38(A)— 2fa°bF JA),

1t 1V, 11 1 V. (60)

xa@Wa(A)ab+0(a®), (59

w Yy

D2°(A) =, 8%+ fAPAC, | (61)
VI. QUANTUM WEIGHT OF THE KVBLL CALORON m m
We have written the covariant derivative in the adjoint rep-
_ resentation; the relation with the fundamental representation
If a field configurationA,, is a solution of the Yang-Mills  is given bya,= —iaita, Tr(t2t°) =162 and similarly for
Euclidean equation of motionD,F,,=0, its quantum F etc. The 1-loop approximation to the quantum weight
weight is the contribution of the saddle point to the partitioncorresponds to evaluating EG7) in the Gaussian approxi-
function mation ina,; henceO(a®) terms in Eq.(59) have been
neglected.
The quadratic form(60) is highly degenerate since any
fluctuation of the typeaZ:DZb(A)Ab(x) corresponding to
(57 an infinitesimal gauge transformation of the saddle-point

A. Quantum weight of a Euclidean pseudoparticle: generalities

z:f DA, exp —SA]), S[A]— fd“ngVFj‘w
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field A nullifies it. Therefore, one has to impose a gauge-2nd similarly for the determinant of the quadratic form,

fixing condition ona,, . The conventional choice is the back-

ground Lorenz gaugb2”(A)a,=0: with this condition im- , _ Det(W,,) Det(—d?5,,+u
A . Det (W,,)n = ,

posed the operatdV simplifies as the second term in Eq. vt Det(—#%8,,,) Det (W,,,+u?)

(60) can be dropped. Fixing this gauge, however, brings in (68)

the Faddeev-Popov ghost determinant[BdD?(A)].

To define the path integral, one decomposes the fluctuawhere the prime indicates that only the product of nonzero
tion field in the complete set of the eigenfunctions of theeigenvalues is taken. In the integration over Pauli-Villars
quadratic form, fields, the zero eigenvalues are shifted 9. Hence the
integration over the zero-mode Fourier coefficients in the
Pauli-Villars fields produces the factor

aL00=2 Cadf a0, WitW n=Nnd s DLW 2 =0,
(62) P dg; 1, ) (g)"
i=1j \/T_WGX[{—Z—gZCi(O‘FM) = ; (69

which has to be taken in the minus first power. Finally, one

and implies that the path integral is understood as the inte-
gral over Fourier coefficients in the decomposition:

dc, obtains the following normalized and regularized expression
DAM(X):H ' 63 for the 1-loop quantum weight of a Euclidean pseudopar-
v 2m ticle:
The quadratic forn{60) has a finite number of zero modes
related to the moduli space of the solution. Let the number of P _qa| M P i
zero modes be [for a self-dual solution with topological Z:f _Hl de J2r JDet (Wy)n,d
charge onegp=4N for the SU(N) gauge groud27]]. Let o gvem
&,i=1,...p, be the set of collective coordinates charac- X Det —D?),, . (70
terizing the classical solution, of which the acti§pA] is in
fact independent. The zero modes are If the saddle-point fieldA, is (ant)self-dual there is a re-

— markable relation between the two determinaf0]:
IAL(X,€) Det (W,,,),, /= Det'(~D?), , which is satisfied if the back-
& ground field is decaying fast enough at infinity and the Hil-
bert space of the eigenfunctions of the two operators is well
where the second term is subtracted in order for the zergefined. This is the case of the KvBLL caloron but not the

Y ()= —D3(A)AP(x), (64)

modes to satisfy th.e background Lorenz Conditibﬂ,bwz i case of a single BPS dyon having a Coulomb asymptotics. To
=0. ThepXp metric tensor define the dyon weight properly, one would need to consider
it in a spherical box, which would violate most of the state-
= dAxu® U 65 ments in this section. For this reason we prefer to consider
glj Xllllu, Iw,u, ] ( ) - . .
the well-defined quantum weight of the KvBLL caloron in

defines the metric of the moduli space. Its determinant i%vgrfgscjii éhe?tl?ﬁjglzj;:t of two determinants in E4p) be-

actually the Jacobian for passing from integration over zero-
mode Fourier coefficients;, i=1, ... p, in EQ.(63) to th _
integration over the collective coordinatés i=1, ... p: B. KvBLL caloron moduli space

The KvBLL moduli space has been studied in the original
N e papers[5,6]; in particular in Ref.[5] the metric tensog;;
J=ydetg;;.  (66) (65) has been explicitly computed. We briefly review tJhese
results and adjust them to our needs.

Finally, one has to normalize and regularize the ghost deter- The KvBLL classical solution has 8 parameters for the
minant Det(- D?) and the Gaussian integral of the quadraticSU(2) gauge group. These are the four center-of mass posi-
form. One usually normalizes the contribution of ationsz, and the four quaternionic variables=pU corre-
pseudoparticle to the partition function by dividing it by the sponding to the constituent monopoles relative position in
free (i.e., zero background fielddeterminants, and regular- space and one global gauge transformatisee Appendix
izes it by dividing by the determinants of theD? andW,,  A3). The moduli space of the KvBLL caloron is a product of
operators shifted by the Pauli-Villars mags [19,30. It the base manifold3x S! parameterized by thee R3 and
means that Det{ D?) is replaced by the “quadrupole” com- 7, <[0,1], and the nontrivial part of the moduli space param-

bination eterized by the quaterniofi. It should be noted that the
b D2 D s 5 change_{—>— ¢, corresponding to the center of ti$dJ(2),
Det —D?),, = e(—D") Det(—d"+u) (67)  leavesA,(x) invariant, such that one has to factor out this
" Det(— %) Det(—D?+ u?) symmetry.
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The 8 zero modesyii (64) satisfying the background C. Combining the Jacobian and the determinant over
Lorenz condition have been explicitly found in RE8]. If nonzero modes
one parametrizes the unitary matrix through Euler angles, According to the general equatigii0), we have now to
U=e 1 Y732gi(72-O)7ol20=i0m12 Q<Y <4qr multiply Eq. (77) by the(regularized and normaliz¢deter-
' ’ minant over nonzero modes, which has been calculated in
O=se¢p=<27, O0sf=m, (71 Eq. (47). First of all, we notice that Det(—D?) brings in
o an additional UV divergent factop™ 2 In combination
the metric is[5] with the classical action and the factaf coming from zero
_ 2 2 — o 2, 2.0 modes, it produces
ds?=(2m)*[2dz,dz,+ (1+ 87 wwp?)(4dp?+ p?d?Q) .
_ 22/3,—87219%(1) — A 22/3
+p2(1+8772wwp2)71d25] (72 n*e AT (78)
where where A is the scale parameter obtained here through the
) _ ) X “transmutation of dimensions.”
d?Q=sifode?+d@?, dS;=dY+cosfde. (73) We notice further that Det(— D?) is independent of the

. . . . U(2) orientation® and ofz,. Therefore, we integrate over
The first part describes the flat metric of the base manifol hese variables, which gives unity. Next, we introduce the
R3x S, and the remainder forms the nontrivial part of the ’ ' ’

metric. The variables are inside the ranges[0s), ¢  Cccnters of the constituent BPS dyans, such thajz, —z,|
e[0,m), de[0,2m), Y e[0,4m)/Z,=[0,2) for the non- 12~ 7p" and write

trivial part, andz,€[0,1], z; € R for translational modes. -
The collec.tlve coordinate Jacobian is immediately found d321d3£2=J' a3 12 2 d3(21_22)2477f d3zr2,dry,
from Eq. (72):
— . 3
J=de(g))=8(2m)%p3(1+87n°p’ww)sing. (74 zgﬁf d3zdpr2. (79
The factor sirg is needed to organize the orientatiSi®(3)
Haar measure normalized to unity, Therefore, integration ovet®zdp in Eq. (77) can be traded

) 5 for integrating over the dyon positions in spaigg. Lastly,
f PBo= 1 "dyf deofwdasinezl, (75  We restore the temperature from dimensional considerations
8m2Jo 0 0 and obtain our final result for the 1-loop quantum weight of

the KvBLL caloron, written in terms of the coordinates of the
and the KvBLL measure written in terms of the caloron cen-dyon centers:

ter, size, and orientation becomes

B - —fd3 5y TG 872\ %/ Aeve\ 223 1 \513
f d3zf dz4f d3of dppi(1+8m2wwp?)16(27)™. KVBLL = 210723 2 ) \aaT Tr
(76) _
. .. 8 x| 2 +ﬂ +1 4IBAT—1/\,r
This must be multiplied by the factorsu(gy2m)® and 7+ | (V1) (Vriz
exp(—JA])=exp(—87/g?) according to Eq(70). As the re- _
sult, the KvBLL measure is + 1) lex] —VP(v) =271 ,P"(V)],  (80)
d _
f d3zf dz4f d3(9f —§(1+8772wwp2) where
p
64 |8 16y 2m% 4¢'(2)
4 C=—expz——F5—+—=+——-—|=1.031419972084
8 1 87T2 7871-2/g2 772 9 3 27 772
X (up) ﬁ ? e . (77) (81)

When the holonomy is trivial =0 or 5=0) it becomes andP(v) is the potential energy

the well-known measure of the BPST instan{@0] or that

of the Harrington-Shepard calord]. The difference be- P(V)= v
tween the two is that in the first case one integrates over any 127°T
z, Whereas in the second case théantegration is restricted

to z,€[0,1/T]. Equation(77) would have been the full result 1
in the N'=1 supersymmetric theory where the determinant  P"(v)= ——
over nonzero modes is cancelled by the gluino determinant. 7T
In that case one would need to add the integral over Grass- .
mann variables corresponding to the gluino zero modes. v=27T—V. (82

2V2

T
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We have collected the factorZe™ YET/A because itis the This interaction is a purely quantum effect: classicallm
natural argument of the running coupling constant at nonzerdyons do not interact at all as the KvBLL caloron of which
temperature$13,31]. Here A is the scale parameter in the they are constituents has the same classical action for all
Pauli-Villars regularization scheme that we have used. It id.,M separations. Curiously, the interaction potential has the
related to scale parameters in other schemds,, familiar “linear + Coulomb” form. Both terms depend seri-
=eV22A ;5= 40.66 exp(—37/1IN?) A, [32]. The factor ously on the holonomy: the Polyakov line at spatial infinity
g 8 is not renormalized at the one-loop level: it starts tois 3 TrL=cosgrv). In the range 0.7875973|TrL|<1 dy-
“run” at the 2-loop level(see below. ons experience asymptotically a constant attraction force; in

The KvBLL caloron weighi(80) has been derived assum- the complementary rangd TrL|<0.787597 it is repulsive.
ing the separation between constituent dyons is large in temt should be noted that in its domain of applicability,
perature units 1(;,>1/T) but the holonomy is arbitrary: s 1/v 1A= 1/2#T, the second term in E¢85) is a small
1TrLe[—1,1] corresponding to v,#[0,27T]. It means correction as compared to the linear risifuy linear falling
that Eq.(80) is valid not only for well-separated but also for interaction.
overlapping dyons.

E. 2-loop improvement of the result

D. The limit of large dyon separation The factorg(x) 8 in Eq. (80) is the bare coupling which

In the limit when the separation of dyons is larger thanis renormalized only at the 2-loop level. In the case of the

their core sizes;;,> 1/v,1/v, the caloron weight simplifies to  Zero-temperature instanton one can unambiguously deter-

mine the 2-loop instanton weight without explicit 2-loop cal-
2

3477 ) ) 3 3 -6 culations from the requirement that it should be invariant
ZrupL=8XQ — VT ——v5(1-v) f d°z,d°z,T under the simultaneous change of the UV cutoff and of the
. bare coupling given at that cutoff, such that the scale param-
2 ve\ 22/3 eter
X (27) (@3 8m”| [Ae’E (813
g° 4T b,/2b?
8m? 1672 | 271 )
A=pexp —— ; [1+0(@*(w)],
X (1— V)<8/3><1—v>exp{_zmg b19(w)/ | b1g"(u)
2 b _11 b _34 )
x| 5-4va-n)|], 8y Pi=gN b=z N (86)

remains invariant. The resyl83] is that one has to replace

where we have introduced the dimensionless quantity (o combination of the bare coupling constants

=v/27Te[0,1]. In Sec. VC we have calculated the LT

correction to the determinaféee Eq(55)]. Another correc- 872 2N 8772
tion arises from the Jacobidi4), which cancels the 1/v,1/v > ex;{ -
g°(u) g(m)

terms in Eq(55). As a result, we get the following correction
factor to Eq.(83):

by | by InB(7)
2N—E)

—>ﬁ(7-)2Nex[{—,8”(7-)+ 1) 2b; B(7)

1 /4 )
exp —— Elog[v(l—v)(ZrlzT) I+cur,

ri,1
N +OBHJ' @
@) 2) , where
(riol)
T 1 b2 ZB(T)
74 8yg 23w B(1)=bsIn—+, ﬁ(r)=B(r)+2—bllnb—l, (88)

Cl/r12: E + E - H =1.946. (84)

and 7 is the scale of the pseudoparticle, which ip i the

One can define the interaction potential betweeM dyons  instanton case. In the case of the KvBLL caloron with widely
as separated constituents one has to take the temperature scale,

T=47Te YE. Thus, the 2-loop recipe is to replace the factor

2 1/ 4 (8721g%)*(Ae”el4wT)??2in Egs.(80) and(83) by the r.h.s.

V,_M(r12)=r12T2277(§—4v(l— V)) - —(S—IOQ[V(I of Eq. (87).
F1213m In contrast to the zero-temperature instanton, in the
KvBLL caloron case this replacement is not the only effect
—v)(2rN %+, )

+0 (850  of two loops. In particular, the potential enerd3(v) is

modified in 2 loopq34]. Nevertheless, the above modifica-

raT)
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0.025 0
|(v)=J dRRY¥[1+27v(1-v)R](27vR
77777777 0.02 ..o 04 0.06 0.08 0
-0.025
+ 1)(8/3)1/—1[277(1_ V)R+ 1](8/3)(1— v)—1
=0..05
-0.075[~ — 2 2
e Xexp —27R| sz —4v+4v (92
-0.1 TR 3
-0.125 \\\
where we have introduced the dimensionless separa#on,
FIG. 5. Free energy of the caloron gas in unitsToV at T =r,,T, and the dimensionless=v/27T. One should be
=1.3\ (dotted, T=1.12%\ (solid), andT=1.05\ (dashedlas a  cautioned that Eq:80) has been derived fd®R>1, therefore
function of the asymptotic value @, in units of 27T. the caloron fugacity is evaluated accurately if the integral

o ) ) (97) is saturated in the large-region.
tion is a very important effect of two loops, which needs to Assuming the Yang-Mills partition function is governed
be taken into account if one wants to make a realistic estipy g noninteracting gas ®f.. calorons andN_ anticalorons,

mate of the density of calorons with nontrivial holonomy at agne writes their grand canonical partition function as
given temperature. We remark that the additional large factor

4me” YeE~7.05551 makes the running coupling numerically

small even aff=A [1/B8(7)=0.07], which may justify the A

use of semiclassical methods at temperatures around the an|=exr{—VT3Tv2(l—v)2
phase transition. This numerically large scale is not acciden-

tal but originates from the fact that it is the Matsubara fre- Ny +N_
quency 27T rather thafT itself which serves as a scale in all X( J d32§)
temperature-related problems. The additional order-of-unity

factor 22 7k is specific for the Pauli-Villars regularization =exd —VTeA»,T)], (92
scheme used.

s 1
N NLINC!

VII. CALORON DENSITY AND INSTABILITY OF THE whereF(v,T) is the free energy of the caloron gas, including
TRIVIAL HOLONOMY the perturbative potential energy:
Since the caloron field has a constaf component at
spatial infinity, it is strongly suppressed by the potential en- A
ergy P(v), unless +0,27T corresponding to trivial ho- ]-'(V,T)=Tv2(l—V)Z—Zf(T/A)l(V)- (93

lonomy. Nevertheless, one may ask if the free energy of an
ensemble of calorons can override this perturbative potential.
We make below a crude estimate of the free energy of no
interacting KvBLL calorons. We shall consider only the cas
of small v< #T(1—1/y/3). If v exceeds this value the inte-
gral over dyon separations in E@O) diverges, meaning that
calorons with holonomy far from trivial “ionize” into sepa- S
rate dyons. We shall not consider this case here but restri hergy correspon_ds to trivial h(_)lonomy. However,Tat_A
ourselves to small values of v where the integral over the e caloron fugam.ty becomes S|zable,_and an opposite trend
separation between dyon constituents converges, such thlstObserVEd' In this mpde][czl.125\ Is the critical tem-
one can assume that KVBLL calorons are in the “atomic” Perature where the trivial holonomy becomes an unstable

phase. Integrating over the separatiga in Eq. (80) gives point, and the system rolls towards large values of v where
the “ftjgacity” of calorons: ’ the present approach fails since at large v calorons anyhow

have to “ionize” into separate dyons.

=T (TIMI(v), (89) Alth.ough sev_era] simplifyin_g gssumpti(_)ns h.a_ve been
made in this derivation, it may indicate the instability of the
trivial holonomy at temperatures below some critical one

Q\Ne plot the free energy as function ofin Fig. 5 at several
temperatures. The functiof{T/A) rapidly drops with in-
creasing temperature. Therefore, at high temperatures the
perturbative potential energy prevails, and the minimal free

34\34InB
—a- 204 _pl = related toA.
f(T/IAN)=8#w"CpB ex;{ B+ 4 11)11 5|
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APPENDIX A: ADHM CONSTRUCTION FOR THE BPS The gauge field is expressed througlas
DYON AND THE KVBLL CALORON
1. General ADHM construction AM=<v|an). (AL0)
The basic object in the ADHM constructidi28] is the ~ We use anti-Hermitian fields such that the covariant deriva-
kX (k+1) quaternionic-valued matriA which is taken to tive isD,=d,+A,. Comparing Eq(A8) with the general

be linear in the space-time variabte Eq. (A1) we conclude that in this case
AX)=A+Bx, x=x,0,, o0,=(itl). (Al A=—id,, B=v. (A11)
The ADHM gauge potential is given by Equation(A7) corresponds to the “hedgehog” gauge. How-
N ever we find it more convenient to work in the stringy gauge
Au(X)=v1(X)d,0(X), (A2) whereA , has a pure gauge stringlike singularity. One pro-

ceeds from the hedgehog gauge to the stringy gauge using

wherev (x) is a (k+1)-dimensional quaternionic vector, the the singular gauge transformatiésee, e.g., Ref10])

normalized solution to
_ U s _ U U
v—vS=0vS', A,—A,=S_A,S.+S 4,S.

T =

AT(X)v(x)=0, (A3) (AL2)
andk is the topological charge of the gauge field. An impor- ith
tant property of the ADHM construction is that the operatorWI
AT(x)A(x) is a real-valued matrix: S — o (2P gi(m—O)2ryg—i(#12)7 (AL3)

f=[A0)TA(X)] e RK. (Ad) . . .-
having the property that it “gauge-combg#{, at spatial in-

In what follows we shall use the equation finity to a fixed (third) direction:

AfAT=1-pv". (A5) S_n22s" =73, (A14)

It becomes obvious when one notes that both sides are pren the stringy gauge
jectors onto the space orthogonal to the veetowhich fol-

lows fromvTv=1, ATv=0. [ vr

In the case of finite temperatures, because of the infinite vS=8l Sinh(v) exgd zv(ix,+rr)]. (A15)
number of copies of space in the compact direction, the to-
pological charge&k=20, and it is convenient to make a dis- One can check thak
crete Fourier transformation with respect to the infinite rang
indices. The Fourier transformed(x) are 2<2 matrix-
valued functionsy(x,,,z) of a new variableze [ —1/2,1/2
andA becomes a differential operator in

.= (v®d,0°) gives theM dyon field in
&he stringy gauge as in E¢L3). We note that in the stringy
gaugev® has a remarkable property

v3(Xg+n,X) =" %(X4,X). (A16)

2. ADHM construction for the BPS dyon
3. ADHM construction for the KvBLL caloron
As stated above, at nonzero temperatures the essence of

the ADHM construction is the introduction of>22 matrix- Unfortunately, the original papg¢6] does not present an

valued functiona(x,,,z). The scalar product is defined as €Xplicit expression fou, the main ingredient of the ADHM
construction. We could have used R[] but it seems that

vz Ref. [5] is more informative in some other respects. There-
(vilvo)= P! (Xu,2)v2(X,,2)dZ. (AB)  fore, we have to calculate ourselves.
From the point of view of the original ADHM construc-

For the BPS dyon solution has been found by Nahf25]: tion v is a quaternionic vector of infinite length since finite-
temperature field configuration can be viewed as an infinite

vr . set of equal strips, the total topological chargelihbeing
v(Xy,2)= Sim,(vr)exp(lzvx ) (A7) infinite. The bracket is formally defined as a contraction

along this infinite-dimension side:

t_ > —y ot 1y ;
whereo,=(1,,—i7), xT—xM(r# andr=|x|). The matrix-

.
valued functiorw is the solution of the equation (vlv)=v'v. (AL7)
AT (X)v(x,2)=0, AT(x)=id,+vx' (A8)  The gauge potential results from
normalized to unity, A, (x)=v'(x)d,v(x), D,=d,+A,. (A1)
(v|v)=1. (A9)  The vectorv(x) is the normalized solution of the equation
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A ro o=mp?(Uw-oU)/ . A26
AT(x)v(x)=0, A(x):(B_x), (A19) iz o= mp (U ol)w (A26)
Here 2miw- 7 is the value ofA, at spatial infinity,w=||. It
whereB is a square quaternionic matrix, is an (infinite)  can be seen thatp?=r,,. We choose to rotate th&, di-

quaternionic vectox=x,0,,, o,= (i ;—,12)_ Introducing the ~ rection in color space instead of rotating monopole positions,
notation so we do not loose the generality of the solution. We connect

the vectorw andU by

v(X)=<I>‘(1’2>(X)< ) u(x)=(B"=x" "I\,

u(x) UTw-U=wrs. (A27)
(A20) iy o
Writing down the mth component of theinfinite) quater-
Eq. (A19) becomes nionic vector as a Fourier transform
(BT=xMu(x)=x". (A21)

12 _
um(x)=J u(x,z)e 2mmzgz, (A28)
The inverse of the matrix B'—x") exists almost in all 12
points. The points where it does not exist are monopole por

g . . . . - P Eq. (A19), which we have to solve, can be rewritten as
sitions. We are interested in those singular points that lie in

the interval 0<x,<1 (we have rescaled the units to set tem- [9,— 2mir T(z)]u(x,2)

peratureT=1). The unknown functionb(x) is determined

from the normalization ob: =27 pUtS e~ 2minw- r2mizn
d(x)=1+u'u. (A22) "

=27 pUTP,.8(z— w)+P_8(z+ w)],
The formalism of infinite-dimensional matrices is not

convenient. Following Nahnj25] we pass to the Fourier (A29)
transforms in the discrete but infinite-range indices and 9&lyhere
instead a continuous variabte=[ —%,%]. In the notation of
Ref.[5]: 1 .o
P.=-(l*w 1w). (A30)
12 dz A . 2
(BT_XT)nm: _J _.e—2wlan>1;(Z)eZmzm' . . . .
~ 1227 Equation (A29) is piecewise homogeneous; therefore we
. present its solution in the form
A - _ At TV it
D,(2) d,+A'(2)+ 27X d,+2mir '(z2), exp(27is'2)B,, Cwezew
where U2 = e 2mir (2= 1/2) 1By, 0<z<1-w
(A31)

A(2)=2mi[£4T 10 0O ,(2)]. (A23)
. and match the values and the derivativesuoét the end
Here the functio® ,(z) =2w whenze| —w,w] and — 2w points of the pieces,
otherwise;r'(z)=r ()0}, xX'=x,0],. As it can be seen

—27ir T, misTw _
from Eq. (A23), the quaternior¥ simply represents the cen- e 27 wB,—e?ms B =fy,
ter of mass position of the whole system and can be set to L e
zero, é=0. We definer ,(z)=r, whenze[w,1- o], and g 2ms wg — 27l 0B =1, (A32)
r.(2)=s, otherwise, where
where
S=X—2wl, [=X+20l1, S4=F,=X,. _
1 - coe f,=2mipU'P,, f,=27ipU'P_, w=1i-w.
(A24)

Here JE%_(U, andr, ands, have the meaning of the Note thatB, , are matrices that generally do not commute:
vectors from the dyon centers to the “observation” point,
r»=r—s has the meaning of the separation dyon. We
choose separation between dyon in the 3D directiﬁ_@: +eZwiSwaz)Ebzzbﬂe*?wixzuwTsUT/Q,y
=rq1,63. As for \,

—oristy —orir e it ir T — _oist
Bzz(e 2mis ®a 27rir w_827TIS wGZ'n'Ir w) 1(e 2mis wfl

T T

B :(e7271'ir Ee727risfw_e217ir geZ'ﬂiSTw)*l(e*Z'ﬂifT;f

A=out —27ine-7 1 2

n=pU'e ) (A25) . . A

. ) ] ' +827r|r wfl)Eblelle_27T|x4w73UT/¢v (A33)
whereU is a unitary matrix, angp>0. We have an addi-

tional constrain{5] where
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D=l — cod 7% (Chr -Sh - + Ch S)+i sin( rx wherev, is an upper element ang, is a lower one.
2= LX) 1/2Shl/2_ 1125M25) M(mXa) Now let us determinegb(x). We use the following iden-
X (ChyChy ot rsshyshyy) |, tities:

byo=[ — CO 7X,) (Chy,Shyof +Chys8hy,8) +i Sin(mxy)

- S3
- blb1o= b1 bsn= 2, bliby= 4772.02( chyp— EShllz) :
X (ChyChyotsrshyshyp) ],

b,,= 2 p(chy,— ST3shy0), e
- e biibyy=4m?p?| chy,+ T35hI./2 : (A39)
by1= 277 p(Chyp+ T maShy ) €7%473, (A34)
- - Note that the right-hand sides of E@\39) are proportional
J=—coq 2mx,) +chch + —shsh to the unity 2<2 matrix. Now we can easily calculate the

normalization:
Hat over the variablénotation found also in Ref5]) means
contr.act|or.1 of the Acorieﬁpondlng normalized vgctor with (wiwy= 3~ 2b11b11b12b12f dze4ms 7z
Pauli matrices, e.go=w- 7/w. We denote for brevity

sh=sin47sw), ch=cosi4msw), +¢ 2t b21b bzzf ' dze 4qr 72
21 22

sh=sinh(47rw), ch=cosl{4mrw), (A35)

and the hyperbolic functions with subscript 1/2 are the cor- p? (ChI/ZShl/2+ Ch1/2Shl/2)
responding functions of half the same arguments. Combining b S r
Egs.(A31), (A33), and(A34) back into Eq.(A20) one gets
the two-dimensional quaternionic vectofx,z) which is the Y-
base for the construction of the Green'’s functisae Appen- + _Sh1/25h1/2} ==
dix B). Note that we have made a Fourier transformuof ¢
(A28) and got a continuous index so that scalar products of
|(nf|n|§e -dimensional vectors beconintegrations, see EQ. \e ysed the |dent|ty s
A38

We note thatU is actually a gauge transformation of

S=r1,=I1,63. Thus for® we get

Therefore, the gauge potentlAIU is obtained by a global U ch sh chsh ra, —
gauge transformation o&"~? We conclude that the deter- - g Y=ygtrg ——+ ) S_ShSh
minant does not depend on the relative “color orientation” of (A40)
the Polyakov line or holonomy, and of the vectgp, con-

necting monopole centers. Thus, we dgt=1 and o We have checked th&, of the KvBLL caloron(7) by
= wes. calculating (v"*14,0P*). Note thatv*" has the following

We notice further that (x,z) built above givesA, thatis  periodicity property(for integern):
not periodic in time direction and zery, at spatial infinity.
It is a peculiar feature of the “algebraic” gauge used in Ref.
[5]. It is more convenient to use the gauge in which the fields
are periodic. To that end we make a nonperiodic gauge trans-
formationg=e?"*4“"s and obtain

vP®(z,x,+N) =27y P 7 x,). (A41)

APPENDIX B: SPIN-0 ISOSPIN-1 PROPAGATOR

1. General construction of the Green function
w=ug, (A36) . .

w(x,z)/’ Once the self-dual field is found in terms of the ADHM
construction, such that the gauge field is written Ag
=(v|d,v) where the scalar product is defined in £438),

W(X,Z) = U(X,z)e27xa0s. A37 it is pqssmlg to construct explicitly the Green functlon_of

(x2)=u(x2) (A37) spin-0 isospin-1 field in the background of the self-dual field

In terms of the Fourier-transformead the bracket takes the [5,6,29. The solution of the equation

form (D)0 G®(xy) = 500D (x—y)  (BY)

U(X,Z)per 1/2( )(

meaning

1/2
wloy=vlon+ [ ofiadz (n3g)
~1/2 is given by
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1 ) EquationgA15) and(B7) completely determine the periodic
STr v (X)[v(y)) (v (y)]v(X)) propagator defined in Eq$B2) and (B4) in the BPS dyon
G(x,y)= 5 5 background. The use of this propagator is demonstrated in
AT (X=Y) Appendix C.
1 (12 .
+ — dz,dz,dz3dz,M (2, ,2,,25,24) 3. Propagator in the KvBLL caloron background
4=/ -112 In Appendix A3 we have found the needed quaternion
1 v(x,z) for the KvBLL caloron. In this Appendix we derive
XETr[VT(x,zl)V(x,zz)ra] the M function for the KvBLL caloron. The propagat@B?2)
will be then completely determined in the caloron back-
XTHV(y,z) WY, 23) 7], (B2)  ground. , o
In the notations of Ref.25] M is an infinite-dimensional
whereV(x,2)=BTv(x,2). rank-4 tensor, with indices running from 1 kothe topologi-

We denote the first term b, and the second terifthe ~ cal charge ik, As in the case of, it is convenient to make
M pard by G,. The only new object is the function the Fourier transformation with respect to the indices:
M(z1,25,23,24) which we determine below. As we shall see, 2
we do not n_ee(_NI with arbitrary arguments, but only at Mpqnm:f M(z1,2,,25,2,)€2™ (TP2+aZ2+ 23— mz)
=z,4. For coincident arguments we obtain -12

M(21,25,2,2)= (21— 2,)M(21,2), (B3) X dz,dz,dzdz,. (B8)
see below. The tensoM ;4 is defined by the equatio27]
The propagato(B2) is written for theR* space and does 1
not obey the periodicity condition. The periodic propagator, ETr[(ATA)iI(BTB)mj+(BTB)iI(ATA)mj
however, can be easily obtained from it by a standard proce-
dure: —2(A"B)y (BT A)mIM 5j= 81 6sm,  (B9)
re . . All indices here run from 1 tk as rectangulakx (k+1)
G(x,y)= 2 G(Xq,X;Yatny). (B4)  matricesA and B are contracted along the longer side. Here
e A andB are

In what follows it will be convenient to split it into three 0
parts: AX)=A+Bx, A=A(0), B=( _1). (B10)

Gx.y)=G"(xy) +GAxy) +G"(xy), Equation(B9) can be rewritten as

1
G*=Gilp-0, G'=2, G1, G"=2 G 5 T(ATA(0))y 8+ (ATA(0))pyj1 — 28] B IM s
(B5)
= 61 Osm, (B11
The vacuum curren®0) will be also split into three parts, in

accordance to which part of the periodic propag4R#) is  Where ATA(0)=\"\+B"B, B and \ are found in Egs.
used to calculate it: (A23) and (A25), respectively. In our cask is infinite and

we rewrite Eq.(B11) in the Fourier basis:
JM=JL+JfL+JIT. (B6)

Zy

Oz .
2m @)\ o

i ~
ETr[ATA(o,z3)+ATA(o,z4)+2
2. Propagator in the BPS dyon background

In Appendix A2 we have found the needed periodic
quaternionv(x,z) for the single BPS monopolgsee Eq. —r(z4))
(A15)]. The 4-argument functioM for the BPS monopole
was computed in Ref25]. The result with the two last ar- wherer(z)=r;o; whenze[w,1— w], andr(z) =s;o; other-
guments taken equal is wise; oy=i7;. Zero components of ,, s, are absent be-
causex,=0. We use

M(21,2,23,24) = 8(21— 23) 6(2,— 24),

M(23,24,2,2) = 8(23—24)M(23,2),
~ 92 p2
1 ATA(o,z)=—4—22+r2(z)+7[5(z— W)+ 8(z+ w)].
PN— e ’ T
M(z,2") 4\/2(2|z Z'|-1+4z7). (B7) (B12)
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Here the first two terms come from the Fourier transformadn the casez;=z,, which is the only one we need as we shall
tion of B'B (A23) and the last one comes from the Fourier see in a moment, we look for the solution in the form
transformation ofAT\. We obtain the explicit equation

for M: M(217221zvz):5(21_22)M(Zlyz)- (814)
(9, +3, )2 The equation for the two-argument function simplifies to
4 Z, - -
- 3—24‘*‘“(23)"’(24”2 M(zy,2;,23,24) 2
4 C s e B2ty M2 2 = 8- 7))
2 4o T @ ™ “ o 7

(B15)

wherer ;,= p?. We see that the solution has to be piecewise
linear in its arguments. The solution is symmetric in its two
arguments and foz<<z' is given by

+ %[5(z3—w)+ 525+ )+ 8(24— @)+ 824

+ ) IM(21,2;,23,24) = (21— 23) 5(2,— 2,) .
(B13)

2,2 e[w,1— 0]

((322,7%w(2- 0)(1- 2 — )~ 8r pr¥(w?+2(2' — 1))+ 7

2d(8r prow+1)
1 [4mz(1-27 1
M(z,z2')={ =7 L_) —, Ze[—w,0],2' e[w,1-w]

2 \8rpmww+l T2

ar o z2—72' =272 2(w—1)w— 8 1,m(Z' — @) (2+ w)w ]+ 7 ,

— . 2,2 e[~ w,0].
\ 2I‘12(8I’12ﬂ'ww+1)
(B16)

Now we can see that making the Green’s function periodic

Outside this rangeM is defined by periodicityM (z+n,z’
results in the substitution

+m)=M(z,z'), wheren,m are integers.

Now let us demonstrate that actually only the two-
argument functioM (z,z") is needed to construct the propa-
gator satisfying the periodicity. It turns out that making the

Green function periodic simplifie§, (Sec. Il). One has
from the definitiongB2)—(B5):

1 (12

dz;---dzyM(zq, . ..

124)
n 8mw2)-12

Gm=

XTI VT(x,21)V(X,2,) 7]

XTr[VT(anZ4)V(yn123) Tb]! (817)
wherey=y,+n, y"=y. Using Eq.(A41) we set
Wy",z)=e*" M)y, z). (B18)

Further on, we note that fdm|<1 one has

2 TV (y", z) Vy",25) 7]

1
=TV (y,z)Wy,25) "] 5(23—24)m-

1
M(z4,25,25,24)— mM(zl,22,23,23)5(23—24)

1
= mM(21-23)5(21_22) (23— 24).

It follows from Eqgs.(A16) and(A41) that for the monopole

one has to takey=v/(27)<1 and for the KvBLL caloron

n=1. In both cases th®l part of the periodic propagator is
given by

m 1 l/2d dz
gM= zdZM(z,Z2'
8 gl - 2OEM 2
XTI VI(x,2)V(x,2) 2T Vi(y,z ) Wy,z') ],

(B19

where the two-argumem functions are found in Eq$B7)
and (B16), respectively.
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APPENDIX C: VACUUM CURRENT IN THE BPS

MONOPOLE BACKGROUND

PHYSICAL REVIEW D 70, 036003 (2004

Finally we obtain the singular part of the vacuum current:

=0,
We compute the vacuum currefg0) in the BPS mono- '
pole background in this Appendix. We assume& <2 Lo o B
and work in the stringy gaugé3) dropping the indesin v® \]ZS: - Iv[s*v*eschi(sv) +sv coth(sv) —2]
given by Eq.(A15). 247%s?sinh(sv)
X[Tico8 )+ Tosin(¢h)],

H S
1. Singular part of the monopole currentJ;,

This part of the current corresponds to the second tg&tm

iv[ s?v2cschf(sv) + sv coth(sv) — 2]

. . . . S__
e eaion e e Boetins " 24m?ssinh(sv)
(E2) and(All) state: X [TySin( ) —T,coq é)], (C4)
JSab_; gadby d; L v2 te oy i[ 1—s®vicoth(sv)csch(sv)]
n ie2™r(7%,), i, 12772<U|f0'MA flv)—H.c., K=— .

AT(x)=id,+vx".

(CD

247°s8

where (T;)3P=igacP,

The functionf(z,z’,x) for the BPS monopole is knowi25]:

ivx4(z—2")

Z—VS(smh \s|z—2Z'|

f(x;z,2')=—

S
+ coth?sinh wzsinhwsZ

VS
— tanhE coshyszcosh\sZ ) . (C2

Here we denoted bythe distance to th®-monopole center.

It is helpful to calculate the action of the Green function on
v. Since the monopole is a static configuration, we can tak
x,=0, moreoveff is a scalar function and we can mogé

matrix to the left:
|v)=S_flv)[x,=0

_ coshisvz)tani(sv/2) — 2z sinh(svz)

4./sv sinh(sv) 2

N sinh(sv z)coth(sv/2) — 2z coshsv z)
4+/sv sinh(sv)

We use the following identities

S_nyrS" = —cog p)ry—sin(¢) 7y,

S_n,7S" =sin(¢) 1, —cog ¢) 7
and arrive, after simple algebra, at

3
. \4 . .
Uasir .Jg,]¢}:—12772<V|{|,_7'3,COS¢T1+SII’IQ')T2,

—sin¢7,+cos¢7,}(d,—VrsS)|v)+H.c.

T3.

2. Regular part of the monopole currentJ;,

We are going to calculate the part of the current that cor-
responds to

nab — 7_a
(GH0xy)= 2, —8W2<X_yn)2m (0] (yn))
X 70 (yo) v (x))],

Yo=Y, Yna=Yatn, (CH

gamely
Jr:Jr1+Jr2 Jrle gr+grA Jr2=(¢9x—&y)gr
12 ® m 2 13 oo ® ® /2 '

At first considerJ"™ . We have to computg" with equal
arguments. SubstitutingA15) into (C5) and calculating the
trace one has

Tr
@*x0=3, [dzaz—. (s
nZ0 82n?
where
S2\/2einv(zfz’)
Tr=2——————{cosh 2sv(z—z')](62°— 6235°%)

sinkP(sv)

+cosli2sv(z+2')]8565+sinH 2sv(z—z')] T3,

(C3
with T¢=ig3°?, To compute the sum in this expression we

use the summation formul@ote that w<2)

eizn 72 |Z| 1 ) )
=————+ -7, —2w<z<2m.
nz0 4m72n? 872 4w 12
(C7)
It remains now to calculate integrals overand z'. The

result is

036003-22



QUANTUM WEIGHTS OF DYONS AND OF INSTANTON . ..

3 coth(sv) —sv[ 3 csch(sv) + 2]
8ms

G'(x,x)=

_ 2
+[svcotr(sv) 1]

8m’s?

57— 5359

sv cscH(sv) — coth(sv)
8ms

1-s’v?csci(sv) 1|
+ — 6%,
167252 12

Now we turn to the]L2 part of the current where we have

to sum ovem a derivative of the propagator. First of all we
consider derivatives of the trace ifC5). One finds for

X=Yy:

22

(9— r?};)Tr=.—2[cosr(25vz) +cosh{2svz’)]
sinh(sv)

X (T,sin— Tocosep)eVn@=2),

C4s?VA
sing———

Sinh(sv)?2 coshisv(z+2')]

(af,,—ag)Trz(

X cosisv(z—2")](Ticos¢p+T,sing)
4522

sinh(sv)?

cosh2sv(z—2")]

X (1— cosa)Tg) glvn(z-2),

2, ,3;
(=) Tr=— v (z—2')sin 2sv(z—2')]

sintP(sv)

X Taehn=2), (C8)

(95— %) Tr=0.

Here only terms even in— 2z’ were left. The last two equa-
tions are especially clear as we can drop out the matB8des
Eqg. (Al15).

A derivative of the denominator qfC5) is equal to zero
for x=y except for the derivative with respect xq, but in
this case we have the expression of the f@@6) with n®/4
instead ofn? in the denominator. Now we can sum owver
We use the summation formula

5 2772 z

+_
31

eizn 2

070 im?nd® 672 2T

—27<z<2m. (C9

Next one has to integrate over z’. Combining all pieces
we obtain:

PHYSICAL REVIEW D 70, 036003 (2004

J=0,

I cog )Ty +sin(¢) T,

= ] 1,
¢ 48 sinf(sv)m2s?

J—i sin(¢) T, —cog$) T,

 48sinf(sv) m2s?

91, (C10

; iTs
= —(Q 1
4 2472s8 2
where we denote
91=[s?V3+67s?v?+ 3v+ 3s(V+ ) sinh(2sv)v

— (s®v®+3v+67)cosh2sv) + 67],

9,=8m?s?[ — 1+ sv coth(sv)]— 127s coth(sv)
X[ —1+svcothsv)]?+ (—3(1+4s%v?)
+ sv{4(3+s?v?)coth(sv)
+3sv[ —4+sv coth(sv) JescH(sv)}).

We have used spherical coordinates. For example, a projec-

tion of J onto the directionn,=(cosécose,cosdsin e,
—siné) is denoted by, .

3. M part of the monopole current Jy/

Combining together Eq$B7) and(B19) we have for the
M part of the periodic Green’s function:

1/2

m—_ _
9= Ter) Ly,

dzdZ(2|z—2'|-1+4z7)
2

XTrlvT(x,2)v(x,2) 2] T v (y,z v (y,2" )] (C1D)

Note that we can drop o@_ in (A15). In the stringy gauge
one has

exd —2vsr3z]. (C12

Vs
UT(XM ,Z)U(XM ,Z)= m

It means thatG™ has only the 33 component. Taking the
trace we get

S
sinh(vs)

Trv'(x,,2)v(x,,2)7*]=—2 sinh(2vs2).

(C13
Therefore the only nonzero component@f is

3

vor ry, (12
GB(x,y)=— —= yf dzdZ(2|z—z'|-1+4z7)
—-1/2

4

sinh(2vr,z")sinh(2vr,z)
sinh(vr,)sinh(vry)
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(re=|xl, ry= ly|). Performing the integrations we get and 'on'Iy the anticommutatgg ™(x,x),A ,} remains. Taking
the limit x—y, we get forg™

1 1 vr,coth w,—vr,cothw
3m3(XaY):_ + . Z 2y : "
4mv Fxly ry—rx

2 VS
coth'vs) — — (C19

(C14 gﬁﬂmx}—gws gnﬁ@s)

Note that(C14) is symmetric in its arguments. For that rea-
son the contribution to the current coming frdrdinary

derivatives ofG™M is zero, _—
g and for the contribution to the curreﬂﬁ‘:AﬂgangmAM,

G ™(X,Y) = dyGM(X,Y)|x=y=0, we obtain in spherical coordinates

J"=o0,

~i[sin(¢) T+ cos ¢) T1][sv coth(sv) +s?v>csch(sv) — 2]
o 16 sinh(sv)s?

_i[sin(¢) Ty~ cog ¢) T,][sv coth(sv) + s?v2csch(sv) — 2]
16 sinh(sv)s?

Jm

(C16)

Jr=o.

Adding up(C4), (C10), and(C16) we obtain the full vacuum We are using the coordinates,r,s,¢, wherer,s are de-
current in the BPS backgrouridee Eq(23)]. fined in (A24) and ¢ is defined by

APPENDIX D: VACUUM CURRENT IN THE KVBLL

r2,4+r2—g?
CALORON BACKGROUND > > . > 12
X=X,(COSpe,+sing e;)+ o
12

There are no principal problems to make the calculation
of the caloron Green’s function and the ensuing vacuum cur-
rents exactly. One can consider this Appendix as an instruc-
tion how to perform the exact calculation. In fact, we have
done it but unfortunately the exact result for the current is = 217
about 200 pages long and thus too large to be printed. How- (D2)
ever, in certain limits the expressions drastically simplify. In
particular, assuming the case when the dyons inside the c
oron are widely separated such that their cores do not ovea%)
lap, it is relatively easy to find the KvBLL caloron current
with the exponential precisiofi.e., dropping out term of the

ordere™ "V, e~ ). This will be sufficient to find the determi- _ _
s=|s, r=Ir],
nant of the KvBLL caloron for large;, up to some constant.
With the exponential precision, the only honzero compo-
nents of the KvBLL caloron’s gauge potential in fundamental
representation aresee Sec. )l

—2r0 | €3,

\/(r12+r—s)(r12+s—r)(r+s—r12)(r12+r+s)

ne can easily check the consistency of this definition, i.e.,
hat

where s=x-— 25?12,

r=X+2wry, r15=r1£3.

A= |73 Ao+ E— l , SinceA, =0 andA,=0 we have to calculate only thly and
S J, components.
) We shall use the ADHM construction. The main steps of
AT Lo 1) [(rp=r+s)(riptr—s) the calculation are similar to that for the monopole. Drop-
e 20 (riptr+s)(r+s—ryp)’ ping out exponentially small terms in EGA36) one has in

(D1)  the periodic gauge
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\/T—rlz — @2mixqwry
v(X,2)=\/—— , D3
(x.2) r+s+ry\  w(x,z) (03
. rtr—s 2X
*iﬂ'pez”('stf‘”s) 2 T3+ ¢ (7,sing+ m,C0S0)|, —w<z<w
Mo r+s—ri,
W(X,Z)=
; 2n(irz-irt2-ray| T2V ST 2%, ;
impe @) ————— (1 1,SiN X, + 73€0STX,) + —————[SIN(7TX4— @) T, —COL TXy— @) T ]|, ©0<zZ<l—-w
(PP r+s—ry,
(D4)
|
wheresTEsMaL, SE|S_)|, s,=X4. We shall use the follow- 1 J 1 1
i indri i Le= 1 G+ B+ —dpXedo+ —
ing formulas to pass to the cylindrical coordinai@sx, , ¢: Ie > 47T 03 eRelp™ 50|V |V
487 ® XQ XQ
ar  rigqrri=s? g x, or 5
— == = = —H.c.|+ 5 (At ALAAL+6A,T).
X3 2rof MXo 17 dog Arr
2 2 o Taking the derivatives we obtain simple expressions:
Js ri,ts-—r gs X, ds
X3 208 X S de iz [1 1
D5 ja= == (D8)
(0S) * 48723 S8
1. Singular part of the caloron current J§ . E . 1 i 35Xl 12
Let us calculate the singular part of the vacuum current Jo I s/872rs(ryyrr+s)?
with exponential precision. It is related to the zero Matsubara (D9)

frequency. Similar to the monopole case, we could use Eq.
(E2), where the Green’s functioi\4) for the case of KvBLL
caloron was found in Ref.5]. However it is more conve-
nient to use Eq(E10 because then we have only to take Next we calculate the temperature-dependent part of the
derivatives of the simple expressi@i3) and no integrations KVBLL caloron vacuum current. As in the monopole case
arise. Equatior(E2) would have been more suitable for the (Appendix C 2 we divide the current into two parts,

exact calculation.

2. Regular part of the caloron current JL

r_qr2 rl
It is straightforward to calculate the quantifyfrom Eq. Ju=dp+d, (D10)
(E9). It is sufficient to calculate the second time derivative:
where
T'=(d4940|v)—A3. (D6)
oS xR 000 2 () 00)
Bearing in mind thaf is a vector under gauge transforma- 170 87 © (x—y)? '
tions, we can perform calculations in any gauge. Up to the
exponentially small terms we have -y i A T 2o T (X)v(y) v T (y)v(%)]
KO gm2| M n2

- (r+9)[(r—s)2+r(r+s)]8

Fab:
4r2s%(r 4+ r+s)

(D7) and y,=x,+n. The quaternion functiow(x,z) has been

constructed in Appendix A Bactually calledvP*(x,z) therg.

It is important thatv(x,z) has the remarkable periodicity
One can observe from E@D1) that all terms with deriva- property(A41).
tives in the right-hand side of EGE10) are zero. Writing the In evaluating the above currents the tactics is to factor the
Laplace operator in the cylindrical coordinates we find matrix part out of the integrals over We use the following

notation for the integrals ovex
< (?4 v > —H.c.

1 e
+ﬁ(A2+A¢A4A¢+6A4F), QEJ 2™t V2054 rz)dz,

[0

4872

Ja

P+ 2+ ia X, +ia2
4T O8T y, feXe%eT (2 % v

o .
|15f e’""2cosi4msz)dz,
g —w
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B=Db1,bl b,

n

J e?""%sinh(47sz)dz,

[ 10T —
— ]j (,ﬂ+1)(1_83)e877swe477rw,

= fw_ez"i”(” V2)sinh47rrz)dz.
-0 where

We obtain the following relations for the matrix structures: 1 _
wzz(ﬁ_l_ 1)e47TSwe47Tl'w, =__ _ ,

PPW (X)) W(xg+n)=(11B+1" B+ (1N B+1" B,),
r2,+r2—g?

T I’r3=SS3= 2r12

PPWT(xg+MW(x) = (17 B—1" B+ (1N B—1"B,),

Substituting this into in the currenﬂélj'r2 we obtain certain

P (X4) daW(X4+ N
YW (Xa) 2aW(Xg 1) sums, which are of the form

=(1TBo+ 1" B+idd" B+idgl T B+ - -,
> TN /(47n?), Y, cog2mhw)glh/(4m*n?),

I’ZJZWT(X4+ n)zlw(x‘l) n#0 n#0

=(1TBo—1"B2—idd" B+idgl T B)+ - -, _
( +B0 Bs s :8 s +ﬁs) 2 Sln(47an)/(772n3).

n#0

where ... means the same expression but with bar over

each quantity and instead ofs. The notationd, means de- All such sums can be calculated using the summation formu-

rivative from the right minus derivative from the left. The las
definition and the evaluation of the matrix structures with the

exponential precision is 62’””(271’2): 2_2_ i=c @, - £<z<£
B = 4202 2 24 20 2 2
Ba=b]bl,s0,b1b1y=o0(e* ™€), _
e27-r|n(271/2) o _<23 Z) ( )
— ————=87i| —— == | =c3(2),
BY=bLbl T d4bsy 070  n° 6 24 7
P2
~— (9+1)(s3—1)edmswetme, —Eszsl
2 2
Bo=bl1bl,dabyb1~0(e* e ), For example,

EOE b;lbgzgllbzzbZl

772I’12

2i

(9+ 1)(33_ 1)(:)8871'5(»64711;,

Bs=Db]bl,sbby;

mr ~ —
= (94 1)(rg+1)wetmwete,

Er = bllez? by

r - —
~ —412(19+ 1)(s3— 1) weBmswetme,

B=Db]b] b1y,

1o -
= (9 D) (rg+ Detmoete,

go |1|1/(4w2n2):f_ j_ Co(z+2' —1/2)cost{4ms2)

Xcosh4msz )dzdZ

and so on. With some help fromATHEMATICA we come to
the final result

e 1 1 1 1 2
J4: I

—_ _— R — ___+_
ms? 3r 3s \ g2 @S g2 r S
L 16 16 , 6470°|iT; D11
3/? s @ 3 |2 (OW
1 1 iTaX,r
;:(—+—) e iz (D12)
I S/4m?rs(ri,+r+s)?
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3. M part of the caloron current Ji} (see Appendix A for notations of the ADHM construction
This part of the current is especially simple: with expo- €léments _ . .
nential precision it is zero. The main steps are the same as jn W€ would like to derive another expression for this part of
the case of a single monopole. The starting formula is oufl® current—in terms of derivatives. In some cases it is more
Eq. (B19). First of all we note that only the lower compo- USeful. We start from writing our result:
nents ofv are left and only the=3 component is honzero:

1
jﬂ=@[(DMD2<v|)|v)—H.C.]. (E2)

TV (x,2)V(x,2) 73] = Trw™ (X, Z)W(X,2z) 73] o< 623,

D(x)

Let us prove it. First of all we consider the action of one

Inspecting the definition of théMl part of the propagator derivative

(B19) we observe that

Gm ab(X,y)M5a35b3, Gm ab(X,y):Gm ab(y,X)- DM<U(X)|:3M<U|_aM<U|U><U|:(9M<U|(1_|U><U|)
D13
(D13 =3d,(v|AfAT=—(v]d,AfAT (E3
The second equation means that the terms with derivatives in
the expression for the curref@0) cancel each other. It fol- = —<U|Ba'MfAT. (=)
lows from the first one that the product &™ and Aib
x &33P s equal to zero, too. Therefore we conclude that At the end of the first line we have used E#5). The first

equation in the second line comes from differentiating the
J7=0. (D14)  ADHM equation

APPENDIX E: REGULARIZATION OF THE CURRENT 0=0,((v]8)=d,(v[A+(v]d,A.
Here we consider in more deta][;, the contribution to The last equgtion follows from the definitigB10). There-
the current from the singuldasx—vy) part of the propaga- fore we obtain
tor G(x,y) defined by Eq.(B5). This part is obviously
temperature-independent, so the zero-temperature results are Dﬂ<v(x)|v(y)>= —(v(X)|Bo-foA;:|v(y)>
applicable. We regularize the current by settiagy =€ and _ fot
inserting a parallel transporter to support gauge invariance == ((X)[Bo,t(x=y)'B|v(y)),

(see, e.g., Ref.20]): ) ] ]
where in the last line we have used the ADHM equation

JS =354 %2, (A3). We next consider two derivatives. It is important here
pooRR thatf is proportional to the unity 2 matrix. We have

BI=[A,(z2— el2)GN(z— el2,2+ €l2)
S D(v(0)|v(y))=—D[{v(x)|Bo,f(x=y) B'lo(y)]

y
+GX(z— + + -
GXz—€l2z+€l2)A (2 e/2)]Pexr< JX AMdzﬂ), =(v(x)|BafoAIBo#fx(x—y)TBT|v(y))

(ED) —(v(¥)|Bo,a,f,(x=y) BT|v(y))

—(v(X)| B fol BTv
JZZE[(O"Z_&,YL)GS(X,Y)]PGX[< —nyAMdZM), (v( )| w'xpy | (y))
=—4v(x)|Bf, B v(y)).
wherex=z—¢€/2,y=z+¢€/2 and we imply averaging over
all directions of € in the 4D space. This regularization We have used here
method was proved to be equivalent to §xéunction regu-
larization approach35]. 0,0, fx=—1x9,(0, AT =—Tfy0o, (ol BTA+ATBo,) Ty

For a background field written in terms of the ADHM 2 BTAf=f.o ATBo f

construction, a useful expression for the vacuum current was - x x= IxTp Tplx
derived in Refs[20,35. In the SU(2) case it acquires the

form: We have also used that the derivative of the inverse operator

is (0" H=—0"190)0 %, as well as the relations
b_i .adby.  d:
Jia =ig20r( 7 i)

0'#0'21:4, ,C0,= —2ct, (E5)
j#:%<U|Bf(0MAT8_BTAU-L)fBT|U> wherec is an arbitrary quaternion. o
127 Finally, let us consider three derivatives:
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DXDX(v(x)|v(y))=—4D%[(v(x)|BfBv(y))]
=4(v(x)| Bf o, ALBfB|v(y))
+4(v(x)| B3, fB v (y)).

Notice that the last term is hermitiansaty. Thus we have
proven that the current written in form of E@2) is equiva-
lent to that of Eq.(E2):

487T2[(DMD2<U|)|U>— H.c]

tTr_rt T T
12W2(U|Bf(UMA B-B"Ac!)tB o).

In fact it is more useful to rewrite everything in terms of
ordinary rather than covariant derivatives:

(D,D¥v|)|v)=(d,%|v)+AAA,~3,AA,~AdA,

—d,AA,+3,0,A,+6A,T, (E6)
whereA , is in the fundamental representation and
1
E(DMDV+D,,D,L<U|)|U>=5WF. (E7)

We have to prove that the left-hand side of EEY) is a
Lorentz scalar as is the right-hand side. Note that(E§) is

PHYSICAL REVIEW D 70, 036003 (2004

proportional tox—y. The only way to obtain a nonzero re-
sult atx—y—0 is to differentiate this factor:

1
E(D#D,,+DVDM(U|)|U)

1
- 5(vlBo,0+0,0,)B|v)

=—6,,(v|BfBYv). (E9

It follows from Eq.(E8) thatI" is Hermitian. We can writd’
as follows:

1
r's,,=(d,0,vlv)+ E((?MAV-I- 3,AL)

1
— S (AATAA,). (E9)

Finally, the regularized singular part of the current can be
written as

487?

1
- 2
ju= (9,0 v|v>—H.C.)—}—24W2

X (AALA,+3,d,A,+3A,I+3TA,). (E10

Equations(E9) and(E10 are used for the calculation of the
singular part of the vacuum current in Appendix D 1.
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