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Topological approach to baryon-antibaryon and meson production
in rapidly expanding Bjorken rods
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The topological approach to baryon-antibaryon production in the chiral phase transition is numerically
simulated for rapidly expanding hadronic systems. For that purpose the dynamics of the effective chiral field is
implemented on a space-rapidity lattice. The essential features of evolutions from initial “hot” configurations
into final ensembles dfanti-)baryons embedded in the chiral condensate are studied in proper time of comov-
ing frames. Typical times for onset and completion of the roll-down and exponents for the growth of correla-
tions are extracted. Meson and baryon-antibaryon yields are estimated. For standard assumptions about initial
coherence lengths they are compatible with experimental results.
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I. INTRODUCTION rated in rapidity from the nuclear slabs receding from the
collision volume. The experimental values found in the cen-
The topological approach to baryon structure and dynamtral rapidity region for the ratio of the integratgrto 7~
ics in the framework of an effective action for mesonic chiralyields lies between 0.065 and 0.0786]. This is still too
fields has achieved a number of remarkable successes. Thgse to the thermal equilibriurp/# ratio (for a typical
soliton concep{1] for baryons provides an impressive ac- plasma temperature GF~200 MeV),
count of spectrum and properties of baryon resonakegs
sentially without numerous “missing resonancg§2], with
predictive power that recently has even led to the first indi-
cations for pentaquark8]. Model-independent relations be-

tweenT-matrix elements for meson-baryon scattefidhand to constitute a clear indication for interesting underlying

- - )})hysics. Still, although the experimental result does not look
explicit results for specific channels are well supported b very exciting, it still poses a constraint for the possible va-

experimental datgb]. The matrix element of the axial singlet lidity of the soliton concept, because any conceivable dy-

current related to the spin content of the proton is naturally,; hical production process must be able to produce a com-
of the observed order of magnitufié]. The “unexpected” parable number.

behavior recently founfi7] in the ratio of electric and mag- In the topological approach the number of baryon-
netic proton form factors has been predicted in this approachntiparyon pairs produced during the chiral phase transition
long ago[8]. The underlying chiral effective action is pro- depends on two factors: the first is the modulps of the
foundly based on the B, expansion of QCI)9], preserving  average winding density present in the initial “hot” field
all relevant symmetries. Efforts to include next-to-leadingconfiguration. In analogy to applications in cosmolddy]
order quantum corrections have brought substantial improveand condensed matter systefd$] this quantity is closely
ment as expected.0]. related to the coherence length for the local orientations of
The manifestations of a chiral phase transition pose anthe chiral field®. Without detailed knowledge about the
other natural challenge for an effective theory with a groundnitial field configurations this coherence length enters as a
state that is characterized by spontaneously broken symmearameter and takes away stringent predictive power from
try. The possible formation of disoriented domajid] dur-  the approach. However, different conjectures about the na-
ing the growth of the chiral condensate has been in the focusire of the initial field ensemble suggest typical ranges for
of interest for some time. But signatures in terms of anomathe coherence lengths that then may be discriminated by the
lous multiplicity ratios for differently charged pions have not experimentally observed abundancies.
been observedl12], in accordance with theoretical conclu-  The second factor is the reduction of the initially present
sions[13,14]. Anomalies in antibaryon production were very total n;= f|p|dV through the dynamical ordering process,
early recognized as possible signals for interesting dynamicshich finally leads to the formation of stable soliton struc-
[15] in that phase transition, and the concept to considetures embedded in the topologically trivial ordered chiral
baryons as topological solitons in a chiral condensate shouldondensate of the “cold” system. The solitons or antisolitons
lead to quite definite expectations for this process. evolve from topological obstacles that are met by the align-
Meanwhile, in relativistic heavy-ion collisions at RHIC, ing field orientations, and develop into their stable “cold”
very high energy densities are being produced in extendefbrm during the course of the evolution. At the end, the same
spatial regions that are essentially baryon free and well sepaategraln¢= [|p|dV counts the number of finally surviving
nontrivial separate structures, so it is identified with the num-
ber of baryons and antibaryons created in the process. The
*Email address: holzwarth@physik.uni-siegen.de decrease oh during the roll-down is reasonably well repre-

plm~~2 exd (m,—m,)/7]=0.035, (1)
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sented by a power lawr(7) ~ ¥ and the exponeny can be initial ensemble two different longitudinal and transverse
measured in numerical simulations. Evidently, the initialcorrelation lengths. This is easy to incorporate, but in Sec. Il
time 7, that marks the onset of the evolution enters here as we present initial conditions that are locally isotropic.
second parameter which further reduces the predictive power As discussed elsewhef@0] stable solitons shrink in a
of the approach. Fortunately, it turns out thatis rather spatially expanding frame. Therefore, lattice implementa-
small, so the dependence ap is only weak. tions of their dynamics will necessarily involve lattice arti-
Measuringy and the timer; when the roll-down is com- facts after some time. These are discussed in Sec. IV. They
pleted presents a typical task for numerical simulations oncean be isolated and subtracted from the physically interesting
the equation of motiofEOM) that governs the field evolu- quantities.
tions is implemented on a lattice. The underlying effectice In Sec. V the essential features of typical evolutions are
chiral action is known from other applications, so no addi-discussed. Estimates for the times of onset and completion of
tional parameters enter at this point. In condensed mattghe roll-down are obtained, and the dynamical exponents for
applications, a phase transition is generally driven by an exthe growth of correlation lengths and decrease of defect
ternally imposed quench, or by a dissipative term included imumber are established and compared. The spectrum of the
the EOM. In cosmology or in our present heavy-ion applica-fluctuations remaining after the roll-down is considered and
tion it is the rapid expansion of the hot volume that drivesfinally the mesonic and baryonic multiplicities are obtained.
the cooling process. This expansion is efficiently imple- The extension to the physically interestin@+1)-
mented 19] by transforming to rapidity—proper-time coordi- dimensional O(4) field is discussed in Sec. VI. The topologi-
nates, i.e., by boosting to the local comoving frame. This iscal generalization is well known, the additional transverse
especially convenient if we consider a system that expanddimension is of little influence for the growth exponents.
only in one(longitudina) direction with its transverse scales However, the coupling constants in the effective action here
unchangedthe Bjorken rod. The resulting dilution of the are related to physical quantities, so they are kngextept
longitudinal gradients drives the system towards its globafor some uncertainty concerning themass, and the results
minimum. However, as there is no genuine dissipation in theean be compared with experimentally determined abundance
system, the total energy approaches a constant that residesratios.
the chiral fluctuations around the global minimum. Thus, the Of course, it would be desirable to obtain a very definite
simulations also allow us to estimate or o- meson abun- answer whether the topological approach to antibaryon pro-
dancies. duction in a chiral phase transition is validated or ruled out
Naturally, before the field configurations can roll down by the data. However, with our poor knowledge about the
towards the global minimum, the potent\{®?2,7) that un-  initial conditions in the hot plasma after a heavy-ion colli-
derlies the EOM must have changed from the “hot” chirally sion, we cannot expect much more than allowed ranges for
symmetric form to its “cold” symmetry-violating form. But, the relevant parameters, which hopefully overlap with stan-
during the early stages, the evolutions are dominated by localard ideas about coherence lengths and formation times.

aligning of the field orientation®. During this phase the
form of the potential is not important. So its time dependencel. THE EFFECTIVE ACTION IN THE BJORKEN FRAME

can be replaced by a sudden quench where the “hot” field . , . . .
configuration is exposed to the “cold” potential(d?,7 For simplicity we first discuss th&2+1)-dimensional

—0), from the outset at initial timeo. In the following, for ~ O(3) model. It is defined in terms of the dimensionless
definiteness we make use of this sudden quench approximg=component fieldb=®® with unit-vector field® (P- P
tion (although the simulations, of course, allow us to study=1), and modulugbag field ®, with the following La-

other cases as well grangian density in 21 dimensions X,z,t)
For the sake of simplicity we first discuss all relevant
features for the case of the two-dimensional O(3) model, L=F2(LP+ LB 4 £0) (2

with only one spatial dimension transverse to the longitudi-

nal rapidity coordinate. Except for computational complexity(ff, is an overall constant of dimensidmass], so the
the extension to the three-dimensional O(4) field presents nphysical fieldsf .® are of mass dimensiofjmass’?]). The
essential new features. The effective action, its transformasecond-order part.(®) comprises the kinetic terms of the
tion to the Bjorken frame, and the resulting EOM are pre-linear o model

sented in Sec. Il. It is important for the choice of the initial

ensemble of field configurations that it allows us in a conve- 1

nient way to monitor the initial coherence lengths because 5(2)25%‘1’(9”‘1’7 3
they are the crucial parameters for the final baryon-

antibaryon muItipIicitie_s. We choose an isotropic Gaussian£(4) is the four-derivative “Skyrme” termwhich involves
random ensemble of field fluctuations in momentum space . e , .

that is characterized by a temperaturelike parameter to b%nl_y the unit-vector field®) defined in terms of the topo-
able to compare with other approaches. Of course, this is ngpdical currentp,,

necessary. In fact, even at initial timg the longitudinally 1

expanding Bjorken rod need not be an isotropic system, and b _uvpd. (1 & &

it may be physically justified to distinguish already in the P g€ ®-(9,0X3,®) @
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(which satisfies?, p*=0), following, the longitudinal extension of stable solitons
shrinks like 71 as function of proper time-. This means
(@) ) A2 s, A that after times of ordef the simulations will be influenced
LV==M",00=— 2[(’%‘1"9”‘1’) — (9,99, ®) by lattice artifacts, which may even dominate for large times.
(8) ) o R s
For rapid expansion in thdongitudina) z direction we
X (M D d)] (5) perform the transformation fromz(t) to locally comoving

frames (p,7) with proper timer and rapidity », defined

and£ () contains theb* potential and an explicit symmetry- through
breaker in the three-direction

1 t=rcoshy, 7=\t?—22, d,=coshnd,— Smhn&,,,
LO=-V(®,T)=- e 7[P*=F(D?]*~Hd;| —const
(6) z=r7Ssinhz, 77=atan)'6§ ,
with dimensionless coupling constaltsandH, and
) coshn
f2(7)=f§(7)— L @ d,= —sinhnd + . . 9

No(D)
nserting (9) into (3) and (5) leaves the form ofz () and
This choice ensures that the global minimum of the potentia‘c (4) inv%(ria)mt Wigh)é’t rep(la)ced bya,, and d, replaced by
] T z

V(®,7) is a'WzaVS located ad)o=(0,20,f0(7)). Generically, (1/7)4,. The specific structure of the Skyrme term again
the functionfo(7) decreases fronig=1 at 7=0 towards  giminates all terms with fourr or 7 derivatives. For the
zero for large7. The constant in the potentieh) is chosen  effective action we take the integration boundaries from
such that the value of the potentMlat ®=0 is independent  _ , 15 4« for rapidity 7 and for the transverse coordinate
of T[given by the constant(0,7) = (\ + 2H)/(4€*)],andat v The three-dimensional space-time volume elenubuoizdt
the 7=0 minimum ®=®,=(0,0,1) we haveV(®,,7=0) s replaced byrdxdydr. Therefore, in a separation of the

=0. . actionS in kinetic termsT, gradient termd., and the poten-
The masses of the and o fluctuations ¢y, m5,fo+ o) tial U,

around this minimum are

+ oo
H 2\ f5 Szf drf Ldr;dx=f (T,+T)—L,—Lj—U)dr
mi=——, m3= +m?. (8) —

Ty T 2T (10

2

@
53 (40X a®)

Without explicit symmetry breaking;l =0, we assume that the longitudinal| terms involving rapidity gradients carry a
f2(7) changes sign af=7,, such thatd®,=(0,0,0) and factor 1/, while all other terms carry a factet So we have
m2=m?2=m?=\|f2|/¢? for T>1T.
The parameter (with dimension of a lengththat we 1 2
have separated out from the coupling constants of potential T.= Tf 5(‘97‘1"9r®)+ (477)2
and Skyrme terms can be absorbed into the spatial coordi- &
natesx. So it characterizes the spatial radius of stable ex- X dndx, (11
tended solutiongwhich scales like 3yf?). As ¢ simply sets
the spatial scale, it could be put equal to one, as long as no 1 2 [ @ 2

other (physical or artificial length scales are relevant. For  T|= —f | 5 —3.((9,<I)>< d,®) ]dndx,
lattice implementations, however, the lattice constaaind TS (4m)T P

the size of the latticeN a) set(usually unphysicalscales. To (12)
avoid artificial scaling violations we have to ensure that the 1

size of physical structurg$ike solitons is large as compared _ +

to the lattice constarda and small as compared to the lattice L= Tf |2 (5:PoP) ] drdx 13
sizeNa. So, for numerical simulations we have to choose 1

<{/a<N. It has been shown in Ref21] that for solitons 17 (1 02
that extend over more than at least 4-5 lattice units the en- L= —f {E(a,}q)a,]d))Jr —
ergy Eg is independent of/a. So, in the following we will T (4)
adop_t {/la~5 as suffiqiently Iarge. This appears also as X dpdx, (14)
physically reasonable, if we consider typical lattice constants

of 0.2 fm and baryon radii of about 1 fm. On the other hand

this will require lattice sizes of at 'Iea_sii~50 to_ avoid U:Tf [L(q,z_fz)z_ idbﬁcons}dndx.
boundary effects for the structure of individual solitons. Un- 402 %

fortunately, in the Bjorken frame that we shall use in the (15

P 2
E . ((9,7(I)>< ﬁxq))l }
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Variation of S with respect to® leads to the equation of given by any integral that extends over the finite rapidity
motion (EOM). interval A » and represents the energy contained in a comov-
The contributions ofZ ) to the longitudinal and trans- ing volumeV=7A 4. Due to the symmetry of the initial
verse partsT| and T, of the kinetic energy cause certain condition this comoving volume grows with increasing
numerical difficulties for the implementation of the EOM on proper timer into spatial regions with high energy density;
a lattice. They require at every time step the inversion othereforeE contains contributions that increase with The
matrices that depend on gradients of the unit vectbys average energy density=E/V satisfiesde/d7<0.
which multiply first and second time derivatives of the chiral ~For numerical simulations we implement the configura-
field. This can be troublesome in areas where the unit vectoféons ®(x,»,7) on a rectangular lattice x(#) = (ia,jb)
are aligned, and can be poorly defined in regions where thé,j=1, ... N) with lattice constants for the transverse
unit vectors vary almost randomly for next-neighbor latticecoordinate andb for the rapidity lattice. We define the initial
points (i.e., for initially random configurations, or near the configurations®;; at the lattice sitesi(j) as Fourier trans-
center of defecls In any case, stabilizing the evolutions re- forms of configurationsb,; on a momentum lattice
quires extremely small time steps and leads to very time-
consuming procedures. Although these problems can be 1
handled, we have compared the results with evolutions @;j
where the kinetic energy is taken frofif?) alone. For cou-

pling gtrength§\€2 within reas_ona_ble limits, we fino_l _that the \yith ‘T’ﬁ:‘i’fkq- Inversely, the real partsy, and the
resulting differences do not justify the large additional ex-. . ~ .
pense caused by the fourth-order kinetic contributions. Eviinadinary partsBq of @y are obtained from the real con-
dently, the reason is that the EOM determines the field vefigurationd; through

locities (depending on the functional form of the kinetic N
energy in such a way that the numerical value of the total _1 E L =

h : h & ' : Q=T COS—(Ik+]|)(I>ij—a/_k_|, (19)
kinetic energy is not very sensitive to its functional form. We NiT=1 N
therefore use in the following an effective action where the

N/2

N k,l==N/2+1 E(ei(zﬂ/N)(i'k+j'|)‘i’k|+C-C-), (18

S N
kinetic terms(11) and(12) are replaced by 1 2T
Ba=—§ 2, sin (ik+jD®y=—B .y,
ihj=1
T _ (20)
T =5 (6,®9,®)dydx, Tj=0. (16)

so we obtain the spectral powy, of the configurationgor

With this simplification the EOM is a specific component of)iat any timer from
qu:&’m - D} = ay- ay+ Ba- B (21

1 1 A H.
—0, D+ 0, ®— 9y ®——3,,®+ — (P~ ) B— —e; o
T 7 ¢ 4 for any transverse or longitudinal momentunp,d)
=(2mlaN)(k,), for k,|=—N/2+1, ... N/2.

(17) For the initial configurations at= 7, the real and imagi-

72 6P nary parts of each of the three componentsigf at each
momentum-lattice pointg,q) are chosen randomly from a

This form has the big advantage that we can make use of thg 5,ssian deviat&, () with kl-dependent widthr,, ,
geometrical meaning of the winding density as the area of

NG 8p(2) B

a spherical triangle, bounded by three geodesics on a two- 5 P2
dimensional spherical surface. In closed form it is expressed G(d)= exp — —— |,
through the unit vectors pointing to its corners, and does not V27ay 204

involve gradients. So this allows for a very accurate and fast . h
lattice implementation of the last term in the EOM. wit

. ok [ o
Il INITIAL CONFIGURATIONS e e L (22)
We assume that at an initial proper timg the system ) L ,
consists of a hadronic fireball with energy densitystored  With normalizationZ chosen in such a way that
in a random ensemble of hadronic field fluctuations. Subse- N/2
quen_tl_y, for 7> 7, it is subject to E(_)M(_l?). The init_ial _ E UE|=N20(2,. (23)
condition and the symmetry of the action imply boost invari- k| ==N/2+1

ance, i.e., the system looks the same in all locally comovin . o

frames, so it is sufficient to consider its dynamics in a rapid%” the continuum limit &—0, N—«) we have Z

ity slice of sizeA 7 near midrapidityy=0, which constitutes = (Z%/2m)(1+m/Zje"™".]

a section of the initially created Bjorken rod with transverse In other words, we choose a BOItZTarln distribution for
extensionA. The energyE=T+L+U in this slice then is the average occupation numberg=((®D}))=af, for

036001-4



TOPOLOGICAL APPROACH TO BARYON-ANTIBARYON . ..

each field component, as for relativistimoninteracting par-
ticles with masam. Here the mass? is defined by the ab-
solute value

)\
m2(ﬂ=ﬁ|f2(77| (24

for the fluctuations around =20 in the symmetric potential
(6) at the initially high temperaturd=7,, wheref?(7) is
negative. The amplitudeg plays the role of a fugacity

0'3= exp—ul/7) (25

PHYSICAL REVIEW Dr0, 036001 (2004

dition (28) satisfied, this holds with good accuracy also for
the initial configuration picked randomly from the ensemble
(22).

The average number of topological defects in a random
ensemble of vector configurations is closely related to the
characteristic angular coherence length in that ensemble.
Therefore, it will be necessary to measure t{equal-time

correlation functions for the unit-vector fieldd for the
evolving ensembles. In order to have an analytical result at
least for the initial configurationevhere length and orienta-
tion of the three-vectors are uncorrelatgtlis easier to con-
sider the correlations among the full vectabs Therefore,

we define normalized transverse and longitudinal correlation

for negative chemical potential. In the temperature range functions
that we consider (0.05a7<0.8) (cf. Fig. 3 a suitable value

for u is au~ —0.6. (With this choice the average amplitude . 1 !
of the chiral field is not subject to abrupt deviations from its 1(1)= 32N> m;:l Prnn P
initial value immediately after the onset of the dynamical 0 ’
evolution) 1 N N
We assume isotropy of the initial ensemble with respect to - —2< < E CI)mn> > . < < Z CI)k|> > ]
rotations in O(3) space such that the three components of the N mn=1 ki=1

field fluctuations®§, (@=1,2,3) have the same average N
! > S : 1

square amplitudery, . By picking each component indepen- Cii)=—— < < 2 D, D, n+i> >

dently at each pointl(l) from the Gaussian ensemble, dif- 303N? mn=1 ’

ferent components are uncorrelated and equal components at

different points(on the momentum lattigeare also uncorre-
lated,

{BEDLE ) = (afialy )+ (BB ))
5 1
= 041%ap| 5 (S Sitr+ Sk 6-117)

1
+E(5kk’5ll’_5—kk'5—ll’)

:Uﬁlﬁaﬁékk’ 5”/ . (26)

Together with(18) this leads to the fluctuation in the real
field configurations

N/2

2 oh=d.505, (27)

PLDPN=5 ,—
{(DijPT)) *BN2 Ki= SRi2+1

which is, of course, independent of the lattice poinj). Its
magnitude is controlled by the constafﬁ in (22). It should

be sufficiently small to keep the amplitudes of the average
initial fluctuations small. On the lattice the upper limit for the

momentap,q is m/a (i.e., k,|=N/2). So, as long as
T<Z 28
o (28)

the lattice cutoff(upper limit momentumimposed by the

with transverse coherence lengtRs and longitudinal(di-
mensionlesscoherence rapiditR; defined through

(29

Cli)<= for >k > 30

(|)eor|aor|b, (30)

respectively. For the initial ensembl(@2) the correlations
are, of course, isotropic on the lattice, i.e.

R R R
2 b a @

with initial spatial coherence lengtR,. In the continuum

limit (a—0, N—=), we obtainC(r) as function of the

spatial distance [or rapidity n=r(b/a)]

e~ (MD(1+r°7%-1) 1+(m/7) M +r272
(1+7r272)302 1+m/iT

C(r)=
(32)

Specifically, puttingn=0, the coherence lengtkas defined
in (30) is

Je?P—1 0.97
RZ T ~ T (33)

finite lattice constant is unimportant because the correspond-
ing states are almost unoccupied. Note that periodicity an@his allows us to put limits on the range of temperatures that

antisymmetry of the imaginary parts {@9) requires thajB,,
vanishes if bottk and| are multiples ofN/2. With the con-

can be reasonably represented on the lattice. Typically, for
lattice size ofN~ 100, 7 should lie within the range from
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about 0.02 to about 0.8 inverse lattice units. For smaller val-
ues the initial coherence length already covers more than hal'-2
of the lattice so almost no defects will fit on the lattice, for
larger values the correlation lengths approach the lattice con®8
stant. It may be noted that witk24), for (¢/a)~5 and

(a7)~0.1, the ratiom/7 is not very small, so generally we

expect appreciable deviations from tie * scaling in(33)
[e.g., for (¢/a)=4 we find R/a)~(a7) ~°8 (cf. Fig. 3].

During the evolution in the Bjorken frame the correlations o
rapidly become anisotropic. We then conveniently define an s

average coherence lengghthrough

az_l a? b?

==+ (34
R? 2\R? Rf

PHYSICAL REVIEW D70, 036001 (2004
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where the,j sum indicates an average over all lattice points
in a narrow circular ring with radiusaround the lattice point
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The essential characteristics of the evolutions are not very, 50 T 10

sensitive to the choice of the initial time derivativé$hey
can as well be put to zenoThe equations of motion very

FIG. 1. (Color online Soliton configuration after a typical evo-

quickly establish appropriate velocities. Of course, the absottion on a 550 lattice(for A\=1, £/a=4, 0,=0.2,H=0.2,aT
lute value of the total energy depends on that choice. For the0.2) at time+/7,=1000, i.e., long after completion of the roll-
simulations presented in the following we construct in anal-down. The bag field®| of the solitons(upper part is squeezed

ogy to the initial configuration§18) an initial ensemble of

time derivatives through

N/2

(4 (I))i:L ﬂ(ei(zwm)(i-kﬂ-|);I')k|_C_C_)'
TN k= SRi2e1
with
_\/ 27w \? 27T| 2 ) 36
“u=Vlan®| *lan!] ™ (36

The Fourier coefficientd,, again are picked randomly from

the same Gaussian devid®#?).

IV. SHRINKING SOLITONS IN COMOVING FRAMES

Let ®®(x,z) be a static soliton solution of the mod@)
in its (x,z) rest frame, which minimizes the static enefgy

=L+U with a finite value for the soliton energ=E,.

After the transformation to the Bjorken frame, the configu-

longitudinally to lattice-unit size; the positive or negative winding
densities(lower par} are located at the center of the bags.

of E,. It represents a soliton with the same finite radius in
transverse direction as before, but with its radius in longi-
tudinal » direction shrinking like 1# with increasing proper
time 7. The total energyg, of this shrinking soliton is, of
course, independent of. (Naturally, this consideration
strictly applies only to the adiabatic case, wherns consid-
ered as a parameter. In the dynamical ordering process the
evolution of the solitons towards their static form may ap-
preciably lag behind the actual progress of proper time.

For lattice implementations, with the typical spatial radius
of the stable solitons given b§, the longitudinal extension
of the solitons for timesr>{ has shrunk down tédimen-
sionless rapiditylattice-unit size and longitudinally adjacent
solitons no longer interact. In the transverse direction, how-
ever, the solitons develop their stable size (@a lattice
units, they keep interacting, attracting close neighbors, or
annihilating with overlapping antisolitor(sf. Fig. 1).

For solitons shrinking longitudinally down to lattice-unit

ration ®%(x, 7) =®(x,77) then describes a static solu- size the energy will begin to deviate from the valEg as

tion of the action in the comovingx(») frame at proper

soon as the longitudinal extent covers merely a few lattice

time 7 [whered, is replaced by (1)4,], for the same value units. To get an approximate idea for the energy limit let us
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1000

100
FIG. 2. (Color online Potential energyJ, ki-

netic energyT®, transverse and longitudinal
(second-ordgrgradient termd.{? and L(?), the
number of defects), and the average length of
the chiral field|®|, for a typical evolution after a
sudden quenchfor A=1, ¢/a=4, 0y=0.2,H
=0.2,a7=0.2,N=50). For comparison, the
straight lines given by Eqs45 with (43) are
included.
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assume that a single separate soliton finally degenerates into It appears from Fig. 2 that for this evolution the roll-down
a transverse string of €2+ 1 lattice points, on whicH®| (where the average ob approaches the vacuum valde
varies from nearly zerdin its centey to the surrounding =1) takes place during the time interval 2 r<4¢, i.e.,

vacuum configuratiob,=(0,0,1), i.e.,®=(0,0]i|/¢) for long before artificial lattice effects dominate the energy. It is
—{<i=<¢, on that string of lattice points. Then we find for also by the end of the roll-down that the number of created
the contributions of a single soliton defects stabilizes. So we would conclude that results ob-

tained from lattice simulations for baryon-antibaryon pro-
duction during the chiral phase transition in a rapidly ex-
panding chiral gas are not severely affected by lattice
artifacts. On the other hand, to follow the evolutions beyond
So, apparently, solitons shrinking on a lattice contribute tathe end of the roll-down, which comprise smaill and 7
the energy terms that rise linearly with proper timevhich  oscillations of® around the true vacuum, interfering with
(as lattice artifagtwill dominate the total energy for large  small oscillations of the bag profilesesonances will re-

We expect the winding density of the squeezed defect tgjuire us to subtract the lattice artifacts.
be located orv lattice squares near its center. This implies

4 T
(Z)NZ 2) .~ ~\ —
LY 7 Lﬁ oy U )\6' (37

for the fourth-order term V. EVOLUTION UNTIL FREEZE-OUT
4 N2 v In this chapter we will follow typical evolutions of the
L)'= r (38 chiral field after a sudden qguench in more detail and try to

analyze their characteristic features up to the end of the roll-
The winding density is determined by the orientation of thedown. Immediately before the sudden quenchratr, the
field unit vector alone, so it is sufficient to consider the unitinitial ensemble is prepared as described in Sec. Il. The av-
vectorsd. We expect the squeezed defect to consist of jusErage length of one component of the chiral field is given by
one unit vectord®= (0,0~ 1) at the soliton center looking 90 [Cf.' Eq. (27)], Ehe potential ."1.(6) IS charagterlzed by a
into the direction opposite to all surrounding unit vectorsneg"’mve value of”. So, for sufficiently smalirg we have at

(0,0,1). That lattice point is the top of four adjacent rectan-"_ "©

gular triangles (with the diagonals connecting the four

nearest-neighbor points as bastémt together cover an area _ L 4 2 2 _

of two lattice squares. So we expect a winding dengpity UO_TOMZ (F7+2]£5((@%))) dxdn=(Co+ C2) Vo,

=1/v with v~2. (39
This dominance of lattice artifacts far=>¢ is illustrated

in Fig. 2, which shows a typical evolution on a%80 lattice  \yhere),= oA 7.A is the initial volume of the Bjorken slice,

for ¢=4. The total winding number i8=—1. After the  and the constants are

roll-down the number of solitons stabilizesrat 9 (cf. Fig.

1). Apparently, bothU and L{? approach a linearly rising

limit for 7>10?, approximately like ~3n(7/€¢), which Cosz“, C2:3—)\|f2|0'g_ (40)
dominates the total energy, but does not affect (gssen- 4¢? 2¢2

tially constant kinetic energy. Longitudinal contributions

drop off like 771, so they are irrelevant. For the derivatives at lattice points,f) Eq. (18) implies
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N/2

] _ZWk i2m/N)(i-k+j-1) g Eﬁ O+, D9, D—mPP=0 (46)
(&X(D)ij_NkJ:ileJrl aN € (I)kla 7T T XX )
i N/2 o which describes wave propagation in transverse direction,
(0,®)ij=~ (l) @7 -k+i-Dgp, A(7)exp(px). Here the masm? again characterizes the fluc-
7 N k1=Riz+1 tuations aroundb=0,

(41
. . _ m?=\f2/¢?, (47)
Again replacing the integrands (@3) and(14) by ensemble

averages leads to the second-order gradient contribution 8b m? is negative for negativé® (whered=0 is the stable

T= T, minimum), and it is positive for potentials that actually do
have a lower symmetry-breaking minimum. The amplitudes
LP=c@y (42 i i
0 0 A(7) generically are Bessel functions,
@) i i imi
For the constan€'<’ we have in the continuum limit A(T)~J0(T\/m) for p2—m2>0,

9 m?
CP==g272[ 1+ ————|. (43) A(7)~lo(Tym?=p?) for p?-m?<0. (48)
2 372(1+m/T)

o _ . , For large values of their arguments the amplitudes]gf
Similarly, one may obtain a rough estimate i) averaged  gecrease like /7, while I, contains exponentially rising
over the initial ensemble by replacing () the unit vectors  parts. Modes with large transverse wave numbers contribute
® by @/ao. o ~ most to L(f). Therefore, with their amplitudes decreasing

During the very early phase of an evolution in proper timejike 1/\/, the kinematical factor in L{? is compensated.
the initially random ensemble of fluctuations will essentially gq \ye expect that the linear rise bf?) ends as soon as the

stay random. This means that the integral$l®—(15 will  4ynamics is dominated by the transverse gradients and is
remain constant, given by their initial values. Therefore, theg|owed by a phase where

time dependence of the different contributidd8)—(15) to
the total energy is given by the kinematical factorér) or (T ~{LP))~const,. (49)
(79/7) alone, with the integrals approximated by replacing
the integrands through their averages in the initial ensemble=or negativem? no amplification occurs. After the quench,
After the quenchf? is positive, so for sufficiently small however, whenf2? has become positive, a few modes with
US we have small transverse wave numbers will start to get amplified.
Typically, for wave numberp=2=k/N, with k integer (0
<k=N/2), waves withk/N<\f/(27¢) get amplified,
e.g., the lowest three or four out &f=100 for ¢ ~5 (for
(44) A=1 andf?=1). At first, the rate of amplification is slow
because the exponential rise is compensated by a decreasing
and function for small arguments ihy(x). These lowk modes
do not contribute much ta{?. In fact, thek=0 mode,
L(f)=lC(2)Vo, Lﬁ2)=EC(Z)VO. (45) Which experiences the largest rate of amplification, does not
To T contribute at all.
) _ _ _ _ While the amplification effect is not very pronounced for
In Fig. 2 both straight linesi45) with (43), are included | () the few slowly exponentially rising contributions from
for comparison. It may be observed that the intedrf?  the lowest-momentum transverse waves cause a noticeable
inVOIVing the IOngitUdinal gradients follows the Straight line rise of the Condensat@¢2>> after some time. This enters
decrease almost until the onset of the roll-down. This meangto the fluctuating par€, of the potentiall and drives it
that the rapidity gradients basically stay random. On theyway from its linear rise given bi4). Then also the fourth-
other hand, the integral{”’ follows the linear rise only for order terms in the potential become important and the dy-
about one unit of proper time after the onset of the evolutionnamical evolution subsequently is dominated by the local
Already nearr/7,~2, the transverse gradients are stronglypotential. This initiates the roll-down of the field configura-
affected by the dynamics and interfere with the kinetic en+ion at the majority of the lattice points into the true vacuum
ergy. Due to the relative factor of # of L, as compared to &,=(0,0,1). The transition into the symmetry-violating
L, the dynamics quickly gets dominated by the transverseonfiguration takes place, with formation of bags and soli-
gradients alone, such that the average kinetic energy followsns in those regions where the winding density happens to
the average transverse-gradient endrffy, while the rapid-  be high.

U= )‘—fzf £2- 2((®?)))dxdn= — (Cy— C) Vi
=T ( ( >>)X77—TO( 0~ C2)Vo

ity gradients(in L{* andL{*) that decrease like #/are no To estimate the time; for the onset of the roll-down we
longer relevant for the overall dynamical evolution. consider th&k=0 mode with amplitude ,(7m). Amplifica-

Disregarding rapidity gradients altogether, the EQM)  tion of this amplitude by a factoz in the time interval from
reduces to 7o t0 71 requires
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Inlo(7,m)=1+In1q(7om). (50) This certainly represents a lower limit for the duration of the
roll-down, because the increasinp* contributions to the
The right-hand sidér.h.s) depends only very weakly on, potenti_al Wil! slow _down the_symmetry-breaking motion. The
as long as f;m)<1. In fact, (r,m) varies only from 2.26 to ngmerlcal simulations conflrm this simple argument and in-
2.55 for 0<(7,m)<1. So, for convenience we simply take dicate that thr¢) ~4-5 p_rowdes a reasonably accurate esti-
(r,m)~5/2 if (7om) is of the order of 1 or less. Otherwise, Mate for the frt;eze-out tinf@s long as fom)fl]' After the
for larger values of £,m), 7, has to be obtained more accu- duénch, wherfg has assumed i=0 valuef;=1, we may
rately from(50). Typically, therefore, the transition from the neglect the small contributions of the explicit symmetry-
gradient-dominated to the potential-dominated phase, hagreakingH to f2 and to thes massm? in Egs.(7) and (8)

pens near and rewrite(53) in the form
5¢ Z% 4\/5 (54)
PN oy o oMy

The typical example for an evolution given in Fig. 2
However, up to this timer; of the onset of the roll-down, shows how during the roll-down the configurations pick up
i.e., throughout the whole gradient-dominated phase the pan appreciable amount of kinetic energy until the potential
tential plays no significant role. The overall evolution pro- starts to deviate from its linear rise and interferes Wqth)).
ceeds practically independently from tkgositive or nega- Subsequently(U)) starts to pick up the unphysical linearly
tive) value of f2 in the ®* potential (6). This also implies rising lattice contributions(37) of the shrinking solitons,
that the quench timéthe time scale for changes iif) is  while the time-average¢{ T)) remains basically constant. As
irrelevant as long as it is smaller than the time during whichthe heavy solitons carry no kinetic energ{T)) then resides
the gradient terms dominate the evolution and it justifies thén small transversely propagating fluctuations that eventually
use of the sudden quench approximation where we imposare emitted agr and = mesons.
the “cold” (7=0) potential from the outset at> 7.

With €/75>1, the ratio ¢ /7o)? is sufficiently large to A. Correlation lengths and defect numbers

render all longitudinal(rapidity) gradients unimportant as . )
compared to the potential. This means that during the subse- [N contrast to the integer net-baryon numiger [ pd°x,
quent roll-down different rapidity slices become effectively the integral(or lattice sum over the absolute values of the
decoupled, and begin to evolve independently from eachPcal winding densityp|
other, while in longitudinal direction the solitons contract to
lattice unit size. Within these rapidity slices,ando modes n:f |p|dxdz (55)
propagate transversely, and eventual further annihilations of

soliton-antisoliton pairs take place while the transverse . . .
shapes of the squeezed bags are established. generally is not an integer. The ensemble average o

By the end of the roll-down the remaining nontrivial and closely related to the coherence lendrHor the field unit

sufficiently separate structures have essentially reached th%vlrectors in the statistical ensemble o{3)-field configura-

) . ions. If an Of) field is implemented on a-dimensional
stable form. Apart from small fluctuations, the integtat ; . . . . .
T . cubic lattice with lattice constard, then the field orienta-
sum over the absolute values of the winding density

— [|p|dxdzthen stabilizes and counts tiietege) number tions on_the vertices o_f a sublgttice with lattice uRita can

p ) i 9 be considered as statistically independent. Then the average
of these defects. Therefore we identify the end-of-the-roll-«n>> expected on ah® lattice is

down time with the(chemical freeze-out timer; when the

numbers of baryons and antibaryons created are fixed. A ((n))=vy(aN/R)® (56)
rough estimate for; may be obtained if we follow the fur- '

ther amplification of the amplitudey(7m) of the k=0 \yherey, is the average fraction of the surface of the sphere
modes beyondr;. For large arguments the increase ingd coyered by the image of the sublattice ufthis is the
lo(7m) is mainly due to the exponential expf), S0 we \ery definition of a winding densily The numbeny can be
obtain estimated for different manifold4.7]. For the magcompac-

tified) R2—$S? defined by the unit vectord(x,z) of the
O(B) field ind=2 dimensions it is’,=1/4 (i.e., 1/21 for
each of two triangles that make up each square sublattice
unit cell).

Inserting our result(33) (obtained form=0) into this
estimate ford=2 dimensions, leads t()(n))T:ToocTz. In

Fig. 3a this is compared with numbers and coherence
lengthsR measured for several initial configurations on an

¢
T~ 71+ —==In

JAF2

For a typical amplification ratio of 5 to 10 during roll-down
we then find an approximate freeze-out time of

q)(Tf)). (52)

O ()

fwﬂ_ (53  NXN lattice for different temperaturegfor N=100 and
YA T2 massm=0). Evidently, the finiteness of the lattice causes a
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FIG. 3. (Color onling Initial (measurefcoherence lengthR and number of defectsas functions of initial temperaturE measured for
five random initial configurations for each temperature, oiNanL0O0 lattice, withm put to zero(left), and withm= 1/¢ for € =4 (right). (All
guantities are in lattice units.)

small systematic deviation from thi&? dependence, espe- €nd of the roll-down. The longitudinal coherence lengh
cially for large values of(n)), as the coherence length ap- grows very slowly because rapidity gradients are suppressed
proaches the lattice constant. The measured nun{leps ~ With 1/7 in the Bjorken frame. This leads to an effective
follow (56) with satisfactory accuracy far~1/5. In Fig. 3b  decoupling of field vectors in the longitudinal direction and
the same comparison is shown for nonvanishing nmass subdues the drive for aligning field orientations in adjacent
=1/¢, for ¢/a=4. Form#0 the coherence lengfRcan be rapidity bins. On the other hand, the transverse cohErence
obtained from(32) and compared to the measured valueslengthR, grows rapidly. FoiR, >R, the average radiug
Figure 3b shows that they are reasonably well described bgbtained from(34) is dominated byr; . A typical example is
Rx7 %8 The corresponding measured numbarsollow shown in Fig. 4 for an evolution that startsat/a=1. The
(56) with good accuracy forv~1/6. Of course, small ayerageR grows with an exponent af~0.25. The statisti-
changes ofv could be absorbed into a slightly redefined ca| argument in(56) then leads ton~ 2%, with 2a=1y
coherence lengtfnote that the correlation functio82) for <0 5. This is slightly steeper than the measured decrease in
m=0 does not decrease exponentialWe shall, however, n But as the growth in the coherence radii sets in only after
keep the definition(30). ~ one or two units ofr after the onset of the evolution, the final
The above considerations apply to random configurationgumber of surviving defects is reasonably well reproduced
that need not contain any fully developed solitons but may,y the statistical expressias6) (we adopty= 1/6 from Fig.
consist of only small fluctuating local winding densities thatgp) - Altogether, we typically find exponentg~0.4=0.05

cover small fractions of the image sphere. However, if thefor the decreasé57) of the number of defects. Then, with
configurations finally have evolved into an ensemble of well-54) for the typical freeze-out time, we have

separated solitons or antisolitons embedded in a topologi-

cally trivial vacuum with only small fluctuations in the local oM, 04

winding density, then the integréb5) counts the number of (D) 7= 7= (M) 7=, —) (58)
these embedded baryons plus antibaryons. We therefore 4‘/5

adopt the notion “number of defects” fdKn)), irrespective

of whether configurations comprise only small local winding

derllipils'tOri([:):Irt(I:/lo(l)Lrjtﬁ;)nr(nsﬂgtee SOI'It:?nSthhe number of down. With (rom,,) of the order of 0.5 to 1, we find reduc-
yp -9- 713 tion factors of 1/3 to 1/2, which is not even one order of

defects measured as functlon of proper time shows a SIOVr\ﬁagnitude. So, this is not a dramatic result. The reason is,
decrease that follows approximately a power law

evidently, that in the expanding Bjorken frame the gradient
coupling in rapidity direction quickly gets suppressed.

It should be noted that all numerically measured expo-
nents are independent of the choice of the lattice constants,
because scaling—ax (i.e., {—af), n—bn, r—(alb)r
By the end of the roll-down at freeze-out time this de-  |eaves the EOM17) invariant. The length uni only serves
crease levels off and settles near the constant that countsto define the resolution with which the spatial structure of the
the number of the finally surviving fully developed solitons field configurations is analyzed and all physical results
plus antisolitons(cf. Fig. 1). The decrease in reflects the  should be independent of this scale. On the other hand, the
slow increase in the average coherence leigythp till the  initial time 7y denotes the physical point in time when the

for the reduction of the number of defects from its initial
value at the onset of the evolution until the end of the roll-

T -y

(57)

n~ n(T: TO) T_O
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FIG. 4. (Color online Crosses show the mea-
sured coherence length® ,R; and the average
R as obtained from the definitio(84), as func-
tions of proper timer. For 7>2 they are param-
etrized by power laws with exponents 0.15, 0.75,
and 0.25, respectively. The measured defect num-
bern (full line) is compared to the statistical re-
sult (56) with »=1/6 (crosses connected by
lines). (N=100,7=0.2,07=0.2,¢{=4,H
=0.1,A=1).

0.1 1

system begins its evolution in terms of hadronic degrees aothe evolution, and the integra($3) to (15) finally are deter-
freedom with a sudden or rapid quench in the relevant pomined by the remaining ensemble of squeezed solitons alone,
tential. So, physical results generally will dependmnasis  while the kinetic energy goes to zero.

evident from the reduction factor obtained(&8).

Small explicit symmetry breakingH{# 0) accelerates the
decrease oh during roll-down, but at the same time it re-
duces the freeze-out time, such that the final numben of  For times long after the roll-down the average kinetic en-
remains essentially unaffected by small nonzero valués.of ergy ((T)) and the potential energy paréL, +U)) [after
Figure 5 shows a number of evolutions for two different subtraction of the linearly risingattice) contributions from
strengthsH of explicit symmetry breaking. the squeezed solitor{87)] converge towards the same con-

The same is true if additional damping is introduced intostantE¢/2. Their sumE; represents the average total energy
the EOM(17) by adding a termcd,® with damping constant stored in the mesonic field fluctuations after the roll-down.
k to account for the fact that the field fluctuations are actu-Both averages show residual fluctuations around their
ally emitted from the expanding Bjorken rod, carrying awaysmooth background with opposite phases, such that their sum
energy. Through this dissipative dynamics the evolutions ar&; is smooth. Analyzing the spectral density of eitéF))
slowed down, the roll-down times may be retarded by aror ((L, +U)) (after subtracting the backgroundells us
order of magnitude, but the overall reduction factor in theabout the spectral distribution of pions andmesons that
number of surviving defects remains unaffected. Of courseill eventually be emitted from the expanding Bjorken rod.
all fluctuations then are damped away during the course of We consider the Fourier transforms

B. Meson spectrum

e ——= n_(for H=0) FIG. 5. (Color onling The numbers of defects
n for two different valuesH=0 andH=1.0 for
the strength of the explicit symmetry breaking,
each for five evolutions on a 160100 lattice
(7=0.3,A=1, {=5, 0¢y=0.2). The arrows point
to the freeze-out times;~22, andr;~11, re-
=11 22 spectively, where the average lengtids of the
chiral field vectors have reach¢®| = 1. The ini-
tial values ofn lie within a band from 145 to 185,
/ and they all endfor both values oH) in a band

1 y
|® | (for H=1.0) f from 32 to 52, which corresponds to reduction
|®] (for H=0) factors of about 1/4.

n (for H=1.0) e

10 £ E
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60000 - \ of the residual fluctuations in the average kinetic
\ energy((T)) for times long after the roll-down
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the number densitEni(j“) for the o mesons, which we may
extract from the strength located at the double frequencies
20{", is only about 5% of the pionic strength residing in
where the integral covers times long after the roll-down, e.g.the first three pionic modes. For an order-of-magnitude esti-
7170~ 100, /7~ 1000, andT(T) subtracts the smooth mate of the pionic multiplicities we therefore ignore the
background. The absolute valugw) = \/c?+s?, represents contributions.

a spectral energy density, from which we may extract the
spectral particle number density

c(w)+is(w):fTb«T(T)—?(T)))eimdr, (59

C. Meson and baryon multiplicities

To obtain a simple estimate for the energy finally

n(w)=——=2 n{"8(w-20{")+> n{ 8w available for meson production we consider the time of the
w ] ] onset of the roll-downr; in (51), which marks the transition
_zwi(ja))+ o (60) from the gradient-dominated to the potential-dominated

phase. At this time, for sufficiently sma#?, the total energy
Theij sum withi,j=0,1,2 ... N/2 covers all frequencies IS dominated by the linearly rising termv/(zo)Col, in the
on the lattice for pions and mesons with masses_ and ~ Potential (44). With the onset of the roll-down the average
m, given in (8) potential ((U)) starts to deviate from this linear rise and
bends down to interfere with(T)) and((L)) (cf. Fig. 2. In
the numerical simulations the large-time limit @fU)) and
+m,,. (61)  ((L)) is masked by thélattice-artificia) rise of the soliton
contributions. But the asymptoti€T)) is free of these arti-
Generically, T(r) contains contributions~[cos@(”)r)]z facts andapart f_rom residual fluctuatiohapproac_hes a con-
from the pionic fluctuations, and*[COS@((T)T)+C]2 from the stant value, which is well represented by thg linearly rising
5(7/15)Co)y taken at r=r7,. Approximating =, by
o fluctuations around some nonvanlshmg averagé€here- 5/(\2m,) as given in(51), we then haveéwith f2=1)
fore, the spectral functions(w) andn(w) will, in addition v 9 '
to the double frequenues@r‘” , also contain contributions -
for the o mesons at the smgle frequencmsf) (=f2 —lCOVO
Figure 6 shows the spectral densityw) as obtained
from the residual fluctuations in the average kinetic energy.

The long vertical arrows point to the first foum%”) pionic  where we have again neglected the small contribution of the
frequencies(61) for ij =00,10,20,30, withm2 H/€?, (H explicit symmetry-breakingH to the o mass. Within this
=0.1,¢/a=4, f;=1). It may be seen that the overwhelm- level of accuracy we can also ignore that about 30% of the
ing part of the strength resides in the lowest and first excitegbions carry the energgo(”) (instead ofm._.), and obtain the
pionic modes. The strength decreases rapidly with excitatiopion multiplicity n, from dividing (62) by m

energy, approximately like exp(l2aw). The same is true

for the strength of ther modes[The short arrows in Fig. 6

point to the first three modes wiilp =00,10,20, with single _¢2 2(abN?). (63)
frequenciesn{” and double frequenciesa”.] However, =™ 8\/— m,

2 2

N 2
aN’

~ 25m”(ab N?) (62
Tr8\/§ ’
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This number may be compared with the baryon-plus- 5
antibaryon multiplicity given in(58). We use for((n))|,- “ {(n))| = 0= m(aN/ROF. (68)
the statistical resul{56), with initial spatial coherence length 2

Ro. Then we have (We again use= b for the lattice constantsThe factor 5

NE y counts the number of three-simplicéstraedersthat make
(nY)y=v an Tom”) ) (64)  up acubic sublattice cell of si3, the factor (1/3™1) with
Ro 4\/§ d=3 is the(absolute value of theaverage surface area cov-

ered by the image of one three-simplex on the image sphere
The last factor relies on the estimatgés) and (53) for the  s3. S0 the factor 5/16 counts the average “number of de-
times 7, and 7¢, which are valid as long asrgm)<1 [oth-  fects” associated with a cubic lattice cell with lattice constant
erwise they have to be obtained more accurately ft60)  given by the initial coherence leng®y. A certain arbitrari-
and (52)]. The evolutions described above have been pemess in'the definition of the coherence length may translate
formed for initial configurations selected with net baryoninto modifications of this factor 5/1.g., for a random lat-
numberB=0. So, the average number of antibaryons tice of three-simplices the factor 5 is replaced by £2/85

created during the phase transition{{:))/2. With typical ~6.8) [17]]. In any case we do not expect order-of-
valuesv~1/4, y~0.4 we find for the multiplicity ratio of ~magnitude changes in this factor as compared todthe
antibaryons to pions case, where we had /2,
, However, through the cubic power the result is now very
n=/n ~0.14 17 (7om,) (65  Sensitive to the actual value & in the initial ensemble.
prtim At_) m,f2 R3 Different concepts about the physical nature of the initial

configurations will imply quite different ways to arrive at the
With an overall energy scalléT of the order of the pion mass appropriate initial coherence lengtRg. For an initial en-
m._., andR, of the order ofmflz\/im;l, this ratio is semble that is characterized by a temperatfirere could
proceed as it32) and relateR, to the temperature, or to the
a massm?(7) = \|f2(7)|/€? of the field fluctuations; but it has
”p/”w~0-07<5m0>(70m0)7- (66)  also been suggestd@?] to tie R, to the parton density,
which makes it independent of the temperature concept. So,
The ratioa/b of the spatial and rapidity lattice constants for the moment it seems appropriate to keep the initial co-
which appears in this result has a physical meaning: accordierence lengtiiRy as a parameter.
ing to (31) it is equal to the ratio of thétransversgspatial Adding a second transverse dimension does not change
coherence lengtiR, and the(longitudina) rapidity coher- the result(34) for the average of the transverse and longitu-
ence distanc®| in the initial configuration. Naturally, this  dinal coherence lengths. The growth in the resulfthggain
ratio is of the order ofry. So, for initial timesr, typically of  is dominated by the slow increase of the longitudinal coher-
the order of the inverse- mass we find antibaryon-to-pion ence lengtfR;, which is unaffected by additional transverse

multiplicity ratios of the order of 0.05 to 0.1. dimensions. The estimatés1) and(53) for the timesr; and
7¢ of the onset and end of the roll-down also remain unaf-
VI. GENERALIZATION TO 3D O (4) fected, as they only rely on the amplitud&ér) of the trans-

verse waveg48), irrespective of the number of spatial di-
o e mensions/[In this case,.®*) now contributes td., with a
model we kegp the pzar.ametrlzatlon as given in EQ)S-(3),_ term containing four transverse gradients, acting on the di-
and (6). In this casef’ is an overall constant of dimension (qction of the @4) field. The roll-down, however, takes place
[mass], so the physical field$,® are of mass-dimension i, areas that are topologically trivial, i.e., with small angular
one. Thf winding density is no longer given bY), but we  gragients, so we do not expect a strong effect on the roll-
keel‘?ﬁ( ) as defined by the seccznd equality in E5§). Con-  gown times] Within the approximations that led (58), we
ventionally, the strength of the () term in (5) is given in  then find for the average number of baryons and antibaryons

For the generalization to th€3-+1)-dimensional @)

terms of the Skyrme parameteras present after the roll-down
2\ €2 1 3 3a
5 [aN}|®[ 7om
— . (67) = —| — 0 i
(877)2 4ezfi <<n>>|7’:7f 16 RO ( 4\/5) ) (69)

In this case the typical spatial radius of a stable skyrmion inyith «»~0.2 to 0.25. We denote the transverse aad)€ of
its rest frame is mainly determined by the balance betweeg,¢ Bjorken rod by.A, and replace the ratioa(b) of the

L@ and£®, so it is of the ordser of ¢f,) . _lattice constants again by the initial timg. Then we obtain
For the map(compactifiedd R>—S® defined by the unit for the rapidity density of antiprotonsif= L(nyy)

vectors of the O(4) field in 3 spatial dimensions the statisti-

3a

cal result(56) for the average number of defects found on a dn= 5 A

3 I ; . : Mp ToA [ ToMg
(aN)* lattice for initial configurations with coherence length G 64 03 (70
R, generalizes as K Ry | 42
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(at this point we count all baryons as nucleons, assuming that The experimental valugl6] for the v~ rapidity density
excitational fluctuations and rotations contribute to the surper N,/2 lies between 1.2 and 1.5 fdd, increasing up to
rounding pionic fluctuations Although the strength of the 350. Withryf,,=0.57, m,/m_~5-8, our result73) leads
Skyrme term does not appear explicitly(ir0), the presence to

of the £ term is essential for the formation of the solitons,

because during the evolution it transforms the sum over the 1 dn.- ~0.75-1.2 74
absolute values of average winding densities into the average Np/2 dyp 7T (74)
number of fully developed solitons and antisolitons. So it is

hidden in the growth law characterized by In the light of the reservations discussed above, this is quite

For meson production we adopt the considerations thagatisfactory.
led to the estimat¢62). Counting again all mesons as zero In contrast to the parameter-free pion multiplicities, the
momentum pions we have result for baryon-antibaryon creation depends on two param-
eters: the timery when the initial hadronic field ensemble is
E; .7 , 5 m, established and begins its expansion, and the initial coher-
Ne= o = o T_OCoVo: fﬁﬁ o (ABN). (7D ence lengttR, within that ensemble. Frorv0) and(72) we
i have (with «~0.2 to 0.25

The rapidity density of negatively charged pioms-=3n_.
then is .;(

m’iTmO') (TOm(r)3a+l (75)

f2 ] (Rom,)®
dn.- , 5 m,
=fl—— —A. (72 . . . — _
dny 7242 M, The experimental value for the ratio of integratedo
multiplicities lies between 0.065 and 0.0BE5] for varying
In a heavy-ion collision the transverse aréaf the Bjorken  numbers of participants. Witmw/ff,=3.0 fm, and a typical
rod will correspond to the spatial overlap of the colliding o mass ofm,~3 fm™%, the experimentally observed multi-
relativistic nuclear slabs. As we have assumed spatially hoplicity ratios are reproduced R, and 7, (both in[fm]) sat-
mogeneous initial conditions we have to consider slabs withisfy
constant nucleoriarea density. In order to account for the
numberA of nucleons contained in one slab, its radius must Ro~(379)* "3, (76)
be taken ag A2 with ro~1.2 fm. Then, as function of o _
centrality,dn_- /d is directly proportional to the number of For initial times in the range 0:27o=0.5 the dependence on
participantsN,, which is one of the basic experimental re- ¢ IS V€ry weak and the coherence length varies in the range
sults in relativistic heavy-ion collisions. For central colli- 0-7<Ro=1.2 (all in [fm]). These values are certainly within
sions ofA-nucleon slabs we hawé,=2A, so we find for the the limits of conve_ntlona.l .as_sumptlons. Interpreted mitlerms
7~ -rapidity density peN,/2 participants pf a.thermodynamlc equn!brlum ensembi;~1 fm~T.
implies the standard estimaté~200 MeV for the chiral
, phase transition. With our choicb=7,=R,/R|, for the
= —(rof »)°. (73 ratio of the spatial and rapidity lattice constants, the initial
Ny/2 dn 242 m, ’ time 7,~1/3 fm resulting from(76) for Ry=1 fm then
. . . means that in the initial ensemble the initial rapidity coher-
This is an !nterestlng result be'c'ause all parameters have be@ﬂce distanc|, extends over three units of rapidity.
absorbed into physical quantities. There are, however, sev-
eral caveats: We have used for this result the form of the
potential (6) after the quench(only this enters into the cal-
Culatio.né. Th|S means that diﬁerences be.tWeen the aVerage We have presented numerical Simu|ati0ns Of the dynami_
potential energyeforethe quench(39) and immediatelaf-  ¢cal evolution that chiral field configurations undergo in a
ter the quencti44) are left out. However, this difference is of rapidly expanding spatial volume. Starting at an initial time
the orderco, which has been neglected (@3) anyway. But . from a random hadronic field ensemble with restored chi-
generally, the resul{73) should be considered as a lower ral symmetry, we follow its ordering process and roll-down
limit. It should further be noted that the res(i3) depends into the global potential minimum with spontaneously bro-
linearly on the timer, for the onset of the roll-down. The ken chiral symmetry. In accordance with standard concepts
definition of 7, in (51) is not very stringent and may be of heavy-ion physics we have considered one-dimensional
subject to changes by 20%. The estimatcf. Eq.(51)]we  longitudinal expansion of an essentially baryon-free region
used for the timer; required (roma)s\/i, i.e. with m, of high energy density, as it may be realized in the aftermath
~3-5 fm 1, the initial time 7, should not exceed 0.3—0.5 of an ultrarelativistic collision of heavy ions for central ra-
fm. Another unsatisfactory feature of the homogeneougpidities.
Bjorken rod is that the inhomogeneity in the nuclg@amnea Performed on a space-rapidity lattice in proper time of
density of real relativistic nuclear slabs with transverse radicomoving frames, such simulations are very powerful instru-
roA has to be represented through ragip'? for homo-  ments that allow us to investigate a multitude of interesting
geneous slabs. features related to the chiral phase transition. We have con-

1 dn,- 57 m,

VIl. CONCLUSION
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centrated here on the topological aspects that are directignted chiral condensate as has been shown previously in
related to baryon-antibaryon multiplicity as a sensitivepurely dissipative dynamic$14]. The generalization to
signal for the phase transition. Mesonic abundancies coulgU(3) fields appears most interesting to learn about strange-
be analyzed as well, both far ando mesongor any other ness production in terms of baryonic and kaonic abundance
elementary fluctuations included in the chiral fieldNot ratios.
only their spectra can be obtained, but from the instan- Evidently, the method opens up a wide field of applica-
taneous configurations the spectral power of their momenturions. Unfortunately, however, we know very little about the
distribution could be extracted at every point in nature and characteristics of the initial ensemble that enters
time. crucially into all physical results. So, in our present analysis
The method is not restricted to thermally equilibrated ini- of antibaryon and pion multiplicities, the experimental data
tial ensembles with global or local temperature; inhomogedo not allow us to draw definite conclusions about the valid-
nities and anisotropy in the correlation lengths could beity of the topological approach, because the results depend
implemented naturally. Surface effects could be investigatedn two initial coherence lengths, the spafg) and rapidity
by suitable boundary conditions. This may be interestingr,; (which for an isotropic initial ensemble are related by
with reSpeCt to theA dependence of SpeCtra and mUltlpllCl- R0: R|OTO)' We can On|y conclude that conventional as-
ties. Here we have applied only standard periodic conditionssymptions about these quantities lead to results that are com-
The one-dimensional expansion could be replaced by anisgratible with experimentally detected multiplicities. So, luck-
tropic or spherically symmetric expansion, which may be ofjly, the mechanism is not ruled out. On the other hand, an
specific interest in cosmological applications. We have Usegssumption likero= R, (which would imply that the corre-
the sudden quench approximation, which could be replacegtions have grown with the speed of light from a pointlike

by any desired time dependence of the chiral potential withyrigin) is ruled out: it would overestimate the abundance
arbitrary quench times. We have selected ensembles Witkstio in (75) by a factor of 5.

conserved net-baryon numbB=0 or very smallB. Any

other choice would be possible, and it appears as a peculiarly

attractive feature.to stgdy ev_olut|ons in ensembles with high ACKNOWLEDGMENT

net-baryon density, either fixed or in the form of grand

canonical ensembles. The method is well suited to analyze The author appreciates helpful discussions with J. Klom-
distribution, growth, and realigning of domains with disori- fass, H. Walliser, and H. Weigel.
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