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Topological approach to baryon-antibaryon and meson production
in rapidly expanding Bjorken rods

G. Holzwarth*
Siegen University, 57068 Siegen, Germany

~Received 26 April 2004; published 9 August 2004!

The topological approach to baryon-antibaryon production in the chiral phase transition is numerically
simulated for rapidly expanding hadronic systems. For that purpose the dynamics of the effective chiral field is
implemented on a space-rapidity lattice. The essential features of evolutions from initial ‘‘hot’’ configurations
into final ensembles of~anti-!baryons embedded in the chiral condensate are studied in proper time of comov-
ing frames. Typical times for onset and completion of the roll-down and exponents for the growth of correla-
tions are extracted. Meson and baryon-antibaryon yields are estimated. For standard assumptions about initial
coherence lengths they are compatible with experimental results.
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I. INTRODUCTION

The topological approach to baryon structure and dyna
ics in the framework of an effective action for mesonic chi
fields has achieved a number of remarkable successes
soliton concept@1# for baryons provides an impressive a
count of spectrum and properties of baryon resonances~es-
sentially without numerous ‘‘missing resonances’’! @2#, with
predictive power that recently has even led to the first in
cations for pentaquarks@3#. Model-independent relations be
tweenT-matrix elements for meson-baryon scattering@4# and
explicit results for specific channels are well supported
experimental data@5#. The matrix element of the axial single
current related to the spin content of the proton is natur
of the observed order of magnitude@6#. The ‘‘unexpected’’
behavior recently found@7# in the ratio of electric and mag
netic proton form factors has been predicted in this appro
long ago@8#. The underlying chiral effective action is pro
foundly based on the 1/Nc expansion of QCD@9#, preserving
all relevant symmetries. Efforts to include next-to-leadi
order quantum corrections have brought substantial impro
ment as expected@10#.

The manifestations of a chiral phase transition pose
other natural challenge for an effective theory with a grou
state that is characterized by spontaneously broken sym
try. The possible formation of disoriented domains@11# dur-
ing the growth of the chiral condensate has been in the fo
of interest for some time. But signatures in terms of anom
lous multiplicity ratios for differently charged pions have n
been observed@12#, in accordance with theoretical conclu
sions@13,14#. Anomalies in antibaryon production were ve
early recognized as possible signals for interesting dynam
@15# in that phase transition, and the concept to consi
baryons as topological solitons in a chiral condensate sh
lead to quite definite expectations for this process.

Meanwhile, in relativistic heavy-ion collisions at RHIC
very high energy densities are being produced in exten
spatial regions that are essentially baryon free and well s
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rated in rapidity from the nuclear slabs receding from t
collision volume. The experimental values found in the ce
tral rapidity region for the ratio of the integratedp̄ to p2

yields lies between 0.065 and 0.075@16#. This is still too
close to the thermal equilibriump̄/p2 ratio ~for a typical
plasma temperature ofT;200 MeV!,

p̄/p2;2 exp@~mp2mp!/T#50.035, ~1!

to constitute a clear indication for interesting underlyi
physics. Still, although the experimental result does not lo
very exciting, it still poses a constraint for the possible v
lidity of the soliton concept, because any conceivable
namical production process must be able to produce a c
parable number.

In the topological approach the number of baryo
antibaryon pairs produced during the chiral phase transi
depends on two factors: the first is the modulusuru of the
average winding density present in the initial ‘‘hot’’ fiel
configuration. In analogy to applications in cosmology@17#
and condensed matter systems@18# this quantity is closely
related to the coherence length for the local orientations
the chiral field F. Without detailed knowledge about th
initial field configurations this coherence length enters a
parameter and takes away stringent predictive power fr
the approach. However, different conjectures about the
ture of the initial field ensemble suggest typical ranges
the coherence lengths that then may be discriminated by
experimentally observed abundancies.

The second factor is the reduction of the initially prese
total ni5* urudV through the dynamical ordering proces
which finally leads to the formation of stable soliton stru
tures embedded in the topologically trivial ordered chi
condensate of the ‘‘cold’’ system. The solitons or antisolito
evolve from topological obstacles that are met by the ali
ing field orientations, and develop into their stable ‘‘cold
form during the course of the evolution. At the end, the sa
integral nf5* urudV counts the number of finally surviving
nontrivial separate structures, so it is identified with the nu
ber of baryons and antibaryons created in the process.
decrease ofn during the roll-down is reasonably well repre
©2004 The American Physical Society01-1
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sented by a power law (t/t0)2g and the exponentg can be
measured in numerical simulations. Evidently, the init
time t0 that marks the onset of the evolution enters here a
second parameter which further reduces the predictive po
of the approach. Fortunately, it turns out thatg is rather
small, so the dependence ont0 is only weak.

Measuringg and the timet f when the roll-down is com-
pleted presents a typical task for numerical simulations o
the equation of motion~EOM! that governs the field evolu
tions is implemented on a lattice. The underlying effect
chiral action is known from other applications, so no ad
tional parameters enter at this point. In condensed ma
applications, a phase transition is generally driven by an
ternally imposed quench, or by a dissipative term included
the EOM. In cosmology or in our present heavy-ion applic
tion it is the rapid expansion of the hot volume that driv
the cooling process. This expansion is efficiently imp
mented@19# by transforming to rapidity–proper-time coord
nates, i.e., by boosting to the local comoving frame. This
especially convenient if we consider a system that expa
only in one~longitudinal! direction with its transverse scale
unchanged~the Bjorken rod!. The resulting dilution of the
longitudinal gradients drives the system towards its glo
minimum. However, as there is no genuine dissipation in
system, the total energy approaches a constant that resid
the chiral fluctuations around the global minimum. Thus,
simulations also allow us to estimatep- or s- meson abun-
dancies.

Naturally, before the field configurations can roll dow
towards the global minimum, the potentialV(F2,T) that un-
derlies the EOM must have changed from the ‘‘hot’’ chira
symmetric form to its ‘‘cold’’ symmetry-violating form. But
during the early stages, the evolutions are dominated by l
aligning of the field orientationF̂. During this phase the
form of the potential is not important. So its time dependen
can be replaced by a sudden quench where the ‘‘hot’’ fi
configuration is exposed to the ‘‘cold’’ potentialV(F2,T
50), from the outset at initial timet0. In the following, for
definiteness we make use of this sudden quench approx
tion ~although the simulations, of course, allow us to stu
other cases as well!.

For the sake of simplicity we first discuss all releva
features for the case of the two-dimensional O(3) mod
with only one spatial dimension transverse to the longitu
nal rapidity coordinate. Except for computational complex
the extension to the three-dimensional O(4) field present
essential new features. The effective action, its transfor
tion to the Bjorken frame, and the resulting EOM are p
sented in Sec. II. It is important for the choice of the init
ensemble of field configurations that it allows us in a con
nient way to monitor the initial coherence lengths beca
they are the crucial parameters for the final baryo
antibaryon multiplicities. We choose an isotropic Gauss
random ensemble of field fluctuations in momentum sp
that is characterized by a temperaturelike parameter to
able to compare with other approaches. Of course, this is
necessary. In fact, even at initial timet0 the longitudinally
expanding Bjorken rod need not be an isotropic system,
it may be physically justified to distinguish already in th
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initial ensemble two different longitudinal and transver
correlation lengths. This is easy to incorporate, but in Sec
we present initial conditions that are locally isotropic.

As discussed elsewhere@20# stable solitons shrink in a
spatially expanding frame. Therefore, lattice implemen
tions of their dynamics will necessarily involve lattice ar
facts after some time. These are discussed in Sec. IV. T
can be isolated and subtracted from the physically interes
quantities.

In Sec. V the essential features of typical evolutions
discussed. Estimates for the times of onset and completio
the roll-down are obtained, and the dynamical exponents
the growth of correlation lengths and decrease of de
number are established and compared. The spectrum o
fluctuations remaining after the roll-down is considered a
finally the mesonic and baryonic multiplicities are obtaine

The extension to the physically interesting~311!-
dimensional O(4) field is discussed in Sec. VI. The topolo
cal generalization is well known, the additional transve
dimension is of little influence for the growth exponen
However, the coupling constants in the effective action h
are related to physical quantities, so they are known~except
for some uncertainty concerning thes mass!, and the results
can be compared with experimentally determined abunda
ratios.

Of course, it would be desirable to obtain a very defin
answer whether the topological approach to antibaryon p
duction in a chiral phase transition is validated or ruled o
by the data. However, with our poor knowledge about
initial conditions in the hot plasma after a heavy-ion col
sion, we cannot expect much more than allowed ranges
the relevant parameters, which hopefully overlap with st
dard ideas about coherence lengths and formation times

II. THE EFFECTIVE ACTION IN THE BJORKEN FRAME

For simplicity we first discuss the~211!-dimensional
O(3) model. It is defined in terms of the dimensionle
3-component fieldF5FF̂ with unit-vector fieldF̂ (F̂•F̂
51), and modulus~bag! field F, with the following La-
grangian density in 211 dimensions (x,z,t)

L5 f p
2 ~L (2)1L (4)1L (0)! ~2!

( f p
2 is an overall constant of dimension@mass1#, so the

physical fieldsf pF are of mass dimension@mass1/2#). The
second-order partL (2) comprises the kinetic terms of th
linear s model

L (2)5
1

2
]mF]mF, ~3!

L (4) is the four-derivative ‘‘Skyrme’’ term~which involves
only the unit-vector fieldF̂) defined in terms of the topo
logical currentrm

rm5
1

8p
emnrF̂•~]nF̂3]rF̂! ~4!
1-2
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~which satisfies]mrm50),

L (4)52l,2%m%m52
2l,2

~8p!2
@~]mF̂]mF̂!22~]mF̂]nF̂!

3~]mF̂]nF̂!#, ~5!

andL (0) contains theF4 potential and an explicit symmetry
breaker in the three-direction

L (0)52V~F,T!52
1

,2 S l

4
@F22 f ~T!2#22HF3D2const

~6!

with dimensionless coupling constantsl andH, and

f 2~T!5 f 0
2~T!2

H

l f 0~T!
. ~7!

This choice ensures that the global minimum of the poten
V(F,T) is always located atF05(0,0,f 0(T)). Generically,
the function f 0

2(T) decreases fromf 0
251 at T50 towards

zero for largeT. The constant in the potential~6! is chosen
such that the value of the potentialV at F50 is independent
of T @given by the constantV(0,T)5(l12H)/(4,2)], and at
the T50 minimum F5F05(0,0,1) we haveV(F0 ,T50)
50.

The masses of thep and s fluctuations (p1 ,p2 , f 01s)
around this minimum are

mp
2 5

H

,2f 0

, ms
25

2l f 0
2

,2
1mp

2 . ~8!

Without explicit symmetry breaking,H50, we assume tha
f 2(T) changes sign atT5Tc , such thatF05(0,0,0) and
ms

25mp
2 5m25lu f 2u/,2 for T.Tc .

The parameter, ~with dimension of a length! that we
have separated out from the coupling constants of pote
and Skyrme terms can be absorbed into the spatial coo
natesx. So it characterizes the spatial radius of stable
tended solutions~which scales like 1/Af 2). As , simply sets
the spatial scale, it could be put equal to one, as long a
other ~physical or artificial! length scales are relevant. Fo
lattice implementations, however, the lattice constanta and
the size of the lattice (Na) set~usually unphysical! scales. To
avoid artificial scaling violations we have to ensure that
size of physical structures~like solitons! is large as compared
to the lattice constanta and small as compared to the lattic
sizeNa. So, for numerical simulations we have to choose
!,/a!N. It has been shown in Ref.@21# that for solitons
that extend over more than at least 4–5 lattice units the
ergy EB is independent of,/a. So, in the following we will
adopt ,/a;5 as sufficiently large. This appears also
physically reasonable, if we consider typical lattice consta
of 0.2 fm and baryon radii of about 1 fm. On the other ha
this will require lattice sizes of at leastN;50 to avoid
boundary effects for the structure of individual solitons. U
fortunately, in the Bjorken frame that we shall use in t
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following, the longitudinal extension of stable soliton
shrinks liket21 as function of proper timet. This means
that after times of order, the simulations will be influenced
by lattice artifacts, which may even dominate for large tim

For rapid expansion in the~longitudinal! z direction we
perform the transformation from (z,t) to locally comoving
frames (h,t) with proper timet and rapidity h, defined
through

t5t coshh, t5At22z2, ] t5coshh]t2
sinhh

t
]h ,

z5t sinhh, h5atanhS z

t D ,

]z52sinhh]t1
coshh

t
]h . ~9!

Inserting ~9! into ~3! and ~5! leaves the form ofL (2) and
L (4) invariant, with ] t replaced by]t , and ]z replaced by
(1/t)]h . The specific structure of the Skyrme term aga
eliminates all terms with fourt or h derivatives. For the
effective action we take the integration boundaries fro
2` to 1` for rapidity h and for the transverse coordina
x. The three-dimensional space-time volume elementdxdzdt
is replaced bytdxdhdt. Therefore, in a separation of th
actionS in kinetic termsT, gradient termsL, and the poten-
tial U,

S5E dtE
2`

1`

Ldhdx5E ~T'1Ti2L'2L i2U !dt

~10!

the longitudinali terms involving rapidity gradients carry
factor 1/t, while all other terms carry a factort. So we have

T'5tE H 1

2
~]tF]tF!1

l,2

~4p!2 F F

F3
•~]tF3]xF!G 2J

3dhdx, ~11!

Ti5
1

tE H l,2

~4p!2 F F

F3
•~]tF3]hF!G 2J dhdx,

~12!

L'5tE H 1

2
~]xF]xF!J dhdx, ~13!

L i5
1

tE H 1

2
~]hF]hF!1

l,2

~4p!2 F F

F3
•~]hF3]xF!G 2J

3dhdx, ~14!

U5tE H l

4,2
~F22 f 2!22

H

,2
F31constJ dhdx.

~15!
1-3
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Variation of S with respect toF leads to the equation o
motion ~EOM!.

The contributions ofL (4) to the longitudinal and trans
verse partsTi and T' of the kinetic energy cause certa
numerical difficulties for the implementation of the EOM o
a lattice. They require at every time step the inversion
matrices that depend on gradients of the unit vectorsF̂,
which multiply first and second time derivatives of the chi
field. This can be troublesome in areas where the unit vec
are aligned, and can be poorly defined in regions where
unit vectors vary almost randomly for next-neighbor latti
points ~i.e., for initially random configurations, or near th
center of defects!. In any case, stabilizing the evolutions r
quires extremely small time steps and leads to very tim
consuming procedures. Although these problems can
handled, we have compared the results with evoluti
where the kinetic energy is taken fromL (2) alone. For cou-
pling strengthsl,2 within reasonable limits, we find that th
resulting differences do not justify the large additional e
pense caused by the fourth-order kinetic contributions. E
dently, the reason is that the EOM determines the field
locities ~depending on the functional form of the kinet
energy! in such a way that the numerical value of the to
kinetic energy is not very sensitive to its functional form. W
therefore use in the following an effective action where
kinetic terms~11! and ~12! are replaced by

T'5
t

2E ~]tF]tF!dhdx, Ti50. ~16!

With this simplification the EOM is

1

t
]tF1]ttF2]xxF2

1

t2
]hhF1

l

,2
~F22 f 2!F2

H

,2
ê3

1
l,2

t2

dr0
2

dF
50. ~17!

This form has the big advantage that we can make use o
geometrical meaning of the winding densityr0 as the area of
a spherical triangle, bounded by three geodesics on a
dimensional spherical surface. In closed form it is expres
through the unit vectors pointing to its corners, and does
involve gradients. So this allows for a very accurate and
lattice implementation of the last term in the EOM.

III. INITIAL CONFIGURATIONS

We assume that at an initial proper timet0 the system
consists of a hadronic fireball with energy density«0 stored
in a random ensemble of hadronic field fluctuations. Sub
quently, for t.t0, it is subject to EOM~17!. The initial
condition and the symmetry of the action imply boost inva
ance, i.e., the system looks the same in all locally comov
frames, so it is sufficient to consider its dynamics in a rap
ity slice of sizeDh near midrapidityh50, which constitutes
a section of the initially created Bjorken rod with transver
extensionA. The energyE5T1L1U in this slice then is
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given by anh integral that extends over the finite rapidi
intervalDh and represents the energy contained in a com
ing volumeV5tDhA. Due to the symmetry of the initia
condition this comoving volume grows with increasin
proper timet into spatial regions with high energy densit
thereforeE contains contributions that increase witht. The
average energy density«5E/V satisfiesd«/dt<0.

For numerical simulations we implement the configu
tions F(x,h,t) on a rectangular lattice (x,h)5( ia, jb)
( i , j 51, . . . ,N) with lattice constantsa for the transverse
coordinate andb for the rapidity lattice. We define the initia
configurationsFi j at the lattice sites (i , j ) as Fourier trans-
forms of configurationsF̃kl on a momentum lattice

Fi j 5
1

N (
k,l 52N/211

N/2
1

2
~ei(2p/N)( i •k1 j • l )F̃kl1c.c.!, ~18!

with F̃kl* 5F̃2k2 l . Inversely, the real partsakl and the

imaginary partsbkl of F̃kl are obtained from the real con
figurationFi j through

akl5
1

N (
i , j 51

N

cos
2p

N
~ ik1 j l !Fi j 5a2k2 l , ~19!

bkl52
1

N (
i , j 51

N

sin
2p

N
~ ik1 j l !Fi j 52b2k2 l ,

~20!

so we obtain the spectral powerPpq of the configurations~or
a specific component of it! at any timet from

Ppq5F̃kl•F̃kl* 5akl•akl1bkl•bkl ~21!

for any transverse or longitudinal momentum (p,q)
5(2p/aN)(k,l ), for k,l 52N/211, . . . ,N/2.

For the initial configurations att5t0 the real and imagi-
nary parts of each of the three components ofF̃kl at each
momentum-lattice point (p,q) are chosen randomly from
Gaussian deviateGkl(F̃) with kl-dependent widthskl ,

Gkl~F̃ !5
1

A2pskl
2

expS 2
F̃2

2skl
2 D ,

with

skl
2 5

s0
2

Z
expS 2

Ap21q21m2

T D , ~22!

with normalizationZ chosen in such a way that

(
k,l 52N/211

N/2

skl
2 5N2s0

2 . ~23!

@In the continuum limit (a→0, N→`) we have Z
5(T 2/2p)(11m/T)e2m/T.#

In other words, we choose a Boltzmann distribution f
the average occupation numbersnkl5^^F̃klF̃kl* &&5skl

2 for
1-4
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each field component, as for relativistic~noninteracting! par-
ticles with massm. Here the massm2 is defined by the ab-
solute value

m2~T!5
l

,2
u f 2~T!u ~24!

for the fluctuations aroundF50 in the symmetric potentia
~6! at the initially high temperatureT5T0, where f 2(T) is
negative. The amplitudes0

2 plays the role of a fugacity

s0
25exp~2m/T! ~25!

for negative chemical potentialm. In the temperature rang
that we consider (0.05,aT,0.8) ~cf. Fig. 3! a suitable value
for m is am;20.6. ~With this choice the average amplitud
of the chiral field is not subject to abrupt deviations from
initial value immediately after the onset of the dynamic
evolution.!

We assume isotropy of the initial ensemble with respec
rotations in O(3) space such that the three components o
field fluctuationsF̃kl

a (a51,2,3) have the same averag
square amplitudeskl

2 . By picking each component indepen
dently at each point (k,l ) from the Gaussian ensemble, di
ferent components are uncorrelated and equal componen
different points~on the momentum lattice! are also uncorre-
lated,

^^F̃kl
a F̃k8 l 8

b* &&5^^akl
a ak8 l 8

b &&1^^bkl
a bk8 l 8

b &&

5skl
2 dabS 1

2
~dkk8d l l 81d2kk8d2 l l 8!

1
1

2
~dkk8d l l 82d2kk8d2 l l 8! D

5skl
2 dabdkk8d l l 8 . ~26!

Together with~18! this leads to the fluctuation in the re
field configurations

^^F i j
a F i j

b &&5dab

1

N2 (
k,l 52N/211

N/2

skl
2 5dabs0

2 , ~27!

which is, of course, independent of the lattice point (i , j ). Its
magnitude is controlled by the constants0

2 in ~22!. It should
be sufficiently small to keep the amplitudes of the avera
initial fluctuations small. On the lattice the upper limit for th
momentap,q is p/a ~i.e., k,l 5N/2). So, as long as

T!
p

a
, ~28!

the lattice cutoff~upper limit momentum! imposed by the
finite lattice constant is unimportant because the correspo
ing states are almost unoccupied. Note that periodicity
antisymmetry of the imaginary parts in~19! requires thatbkl
vanishes if bothk and l are multiples ofN/2. With the con-
03600
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dition ~28! satisfied, this holds with good accuracy also f
the initial configuration picked randomly from the ensemb
~22!.

The average number of topological defects in a rand
ensemble of vector configurations is closely related to
characteristic angular coherence length in that ensem
Therefore, it will be necessary to measure the~equal-time!
correlation functions for the unit-vector fieldsF̂ for the
evolving ensembles. In order to have an analytical resul
least for the initial configurations~where length and orienta
tion of the three-vectors are uncorrelated!, it is easier to con-
sider the correlations among the full vectorsF. Therefore,
we define normalized transverse and longitudinal correla
functions

C'~ i !5
1

3s0
2N2 F K K (

m,n51

N

Fmn•Fm1 i ,nL L
2

1

N2 K K (
m,n51

N

FmnL L •K K (
k,l 51

N

FklL L G ,

Ci~ i !5
1

3s0
2N2 F K K (

m,n51

N

Fmn•Fm,n1 i L L
2

1

N2 K K (
m,n51

N

FmnL L •K K (
k,l 51

N

FklL L G ,

~29!

with transverse coherence lengthsR' and longitudinal~di-
mensionless! coherence rapidityRi defined through

C~ i !,
1

e
for i .

R'

a
or i .

Ri

b
, ~30!

respectively. For the initial ensemble~22! the correlations
are, of course, isotropic on the lattice, i.e.

R'

a
5

Ri

b
5

R0

a
~31!

with initial spatial coherence lengthR0. In the continuum
limit ( a→0, N→`), we obtainC(r ) as function of the
spatial distancer @or rapidity h5r (b/a)]

C~r !5
e2(m/T)(A11r 2T 221)

~11r 2T 2!3/2 S 11~m/T!A11r 2T 2

11m/T D .

~32!

Specifically, puttingm50, the coherence lengthR as defined
in ~30! is

R5
Ae2/321

T '
0.97

T . ~33!

This allows us to put limits on the range of temperatures t
can be reasonably represented on the lattice. Typically,
lattice size ofN;100, T should lie within the range from
1-5
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about 0.02 to about 0.8 inverse lattice units. For smaller v
ues the initial coherence length already covers more than
of the lattice so almost no defects will fit on the lattice, f
larger values the correlation lengths approach the lattice c
stant. It may be noted that with~24!, for (,/a);5 and
(aT);0.1, the ratiom/T is not very small, so generally w
expect appreciable deviations from theT 21 scaling in ~33!
@e.g., for (,/a)54 we find (R/a);(aT)20.8 ~cf. Fig. 3!#.

During the evolution in the Bjorken frame the correlatio
rapidly become anisotropic. We then conveniently define
average coherence lengthR̄ through

a2

R̄2
5

1

2 S a2

R'
2

1
b2

Ri
2D . ~34!

This may be compared to the coherence radius obtained
the angular-averaged correlation function

C̄~r !5
1

3s0
2N2 F K K (

m,n51

N

(
i , j

Fmn•Fm1 i ,n1 j L L
2

1

N2 K K (
m,n51

N

FmnL L •K K (
k,l 51

N

FklL L G ,

~35!

where thei , j sum indicates an average over all lattice poi
in a narrow circular ring with radiusr around the lattice poin
mn.

The essential characteristics of the evolutions are not v
sensitive to the choice of the initial time derivatives.~They
can as well be put to zero.! The equations of motion very
quickly establish appropriate velocities. Of course, the ab
lute value of the total energy depends on that choice. For
simulations presented in the following we construct in an
ogy to the initial configurations~18! an initial ensemble of
time derivatives through

~]tF! i j 5
i

N (
k,l 52N/211

N/2
vkl

2
~ei(2p/N)( i •k1 j • l )F̃kl2c.c.!,

with

vkl5AS 2p

aN
kD 2

1S 2p

aN
l D 2

1m2. ~36!

The Fourier coefficientsF̃kl again are picked randomly from
the same Gaussian deviate~22!.

IV. SHRINKING SOLITONS IN COMOVING FRAMES

Let F(s)(x,z) be a static soliton solution of the model~2!
in its (x,z) rest frame, which minimizes the static energyE
5L1U with a finite value for the soliton energyE5E0.
After the transformation to the Bjorken frame, the config
ration Ft

(s)(x,h)5F(s)(x,th) then describes a static solu
tion of the action in the comoving (x,h) frame at proper
time t @where]z is replaced by (1/t)]h], for the same value
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of E0. It represents a soliton with the same finite radius
transversex direction as before, but with its radius in long
tudinal h direction shrinking like 1/t with increasing proper
time t. The total energyE0 of this shrinking soliton is, of
course, independent oft. ~Naturally, this consideration
strictly applies only to the adiabatic case, wheret is consid-
ered as a parameter. In the dynamical ordering process
evolution of the solitons towards their static form may a
preciably lag behind the actual progress of proper time.!

For lattice implementations, with the typical spatial radi
of the stable solitons given by,, the longitudinal extension
of the solitons for timest@, has shrunk down to~dimen-
sionless rapidity! lattice-unit size and longitudinally adjacen
solitons no longer interact. In the transverse direction, ho
ever, the solitons develop their stable size of,/a lattice
units, they keep interacting, attracting close neighbors,
annihilating with overlapping antisolitons~cf. Fig. 1!.

For solitons shrinking longitudinally down to lattice-un
size the energy will begin to deviate from the valueE0 as
soon as the longitudinal extent covers merely a few latt
units. To get an approximate idea for the energy limit let

FIG. 1. ~Color online! Soliton configuration after a typical evo
lution on a 50350 lattice~for l51, ,/a54, s050.2, H50.2, aT
50.2) at timet/t051000, i.e., long after completion of the roll
down. The bag fielduFu of the solitons~upper part! is squeezed
longitudinally to lattice-unit size; the positive or negative windin
densities~lower part! are located at the center of the bags.
1-6
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FIG. 2. ~Color online! Potential energyU, ki-
netic energyT(2), transverse and longitudina
~second-order! gradient termsL'

(2) and L uu
(2) , the

number of defectsn, and the average length o
the chiral fielduFu, for a typical evolution after a
sudden quench~for l51, ,/a54, s050.2, H
50.2, aT50.2, N550). For comparison, the
straight lines given by Eqs.~45! with ~43! are
included.
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assume that a single separate soliton finally degenerates
a transverse string of 2,11 lattice points, on whichuFu
varies from nearly zero~in its center! to the surrounding
vacuum configurationF05(0,0,1), i.e.,F5(0,0,u i u/,) for
2,< i<,, on that string of lattice points. Then we find fo
the contributions of a single soliton

L'
(2);

t

,
, L i

(2);
,

t
, U;l

t

,
. ~37!

So, apparently, solitons shrinking on a lattice contribute
the energy terms that rise linearly with proper timet which
~as lattice artifact! will dominate the total energy for larget.

We expect the winding density of the squeezed defec
be located onn lattice squares near its center. This impli
for the fourth-order term

L i
(4)5

l,2/n

t
. ~38!

The winding density is determined by the orientation of t
field unit vector alone, so it is sufficient to consider the u
vectorsF̂. We expect the squeezed defect to consist of
one unit vectorF̂5(0,0,21) at the soliton center looking
into the direction opposite to all surrounding unit vecto
(0,0,1). That lattice point is the top of four adjacent recta
gular triangles ~with the diagonals connecting the fou
nearest-neighbor points as bases! that together cover an are
of two lattice squares. So we expect a winding densityr
51/n with n;2.

This dominance of lattice artifacts fort@, is illustrated
in Fig. 2, which shows a typical evolution on a 50350 lattice
for ,54. The total winding number isB521. After the
roll-down the number of solitons stabilizes atn59 ~cf. Fig.
1!. Apparently, bothU and L'

(2) approach a linearly rising
limit for t@102, approximately like ; 1

2 n(t/,), which
dominates the total energy, but does not affect the~essen-
tially constant! kinetic energy. Longitudinal contribution
drop off like t21, so they are irrelevant.
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It appears from Fig. 2 that for this evolution the roll-dow
~where the average ofF approaches the vacuum valueF
51) takes place during the time interval 2,,t,4,, i.e.,
long before artificial lattice effects dominate the energy. It
also by the end of the roll-down that the number of crea
defects stabilizes. So we would conclude that results
tained from lattice simulations for baryon-antibaryon pr
duction during the chiral phase transition in a rapidly e
panding chiral gas are not severely affected by latt
artifacts. On the other hand, to follow the evolutions beyo
the end of the roll-down, which comprise smalls and p
oscillations ofF around the true vacuum, interfering wit
small oscillations of the bag profiles~resonances!, will re-
quire us to subtract the lattice artifacts.

V. EVOLUTION UNTIL FREEZE-OUT

In this chapter we will follow typical evolutions of the
chiral field after a sudden quench in more detail and try
analyze their characteristic features up to the end of the r
down. Immediately before the sudden quench att5t0 the
initial ensemble is prepared as described in Sec. II. The
erage length of one component of the chiral field is given
s0 @cf. Eq. ~27!#, the potential in~6! is characterized by a
negative value off 2. So, for sufficiently smalls0

2 we have at
t5t0

U05t0

l

4,2E ~ f 412u f 2u^^F2&&!dxdh5~C01C2!V0 ,

~39!

whereV05t0DhA is the initial volume of the Bjorken slice
and the constants are

C05
l

4,2
f 4, C25

3l

2,2
u f 2us0

2 . ~40!

For the derivatives at lattice points (i , j ) Eq. ~18! implies
1-7
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~]xF! i j 5
i

N (
k,l 52N/211

N/2 S 2pk

aN Dei(2p/N)( i •k1 j • l )F̃kl ,

~]hF! i j 5
i

N (
k,l 52N/211

N/2 S 2p l

bN Dei(2p/N)( i •k1 j • l )F̃kl .

~41!

Again replacing the integrands in~13! and~14! by ensemble
averages leads to the second-order gradient contributio
t5t0,

L0
(2)5C(2)V0 . ~42!

For the constantC(2) we have in the continuum limit

C(2)5
9

2
s0

2T 2S 11
m2

3T 2~11m/T!
D . ~43!

Similarly, one may obtain a rough estimate forL (4) averaged
over the initial ensemble by replacing in~5! the unit vectors
F̂ by F/s0.

During the very early phase of an evolution in proper tim
the initially random ensemble of fluctuations will essentia
stay random. This means that the integrals in~13!–~15! will
remain constant, given by their initial values. Therefore,
time dependence of the different contributions~13!–~15! to
the total energy is given by the kinematical factors (t/t0) or
(t0 /t) alone, with the integrals approximated by replaci
the integrands through their averages in the initial ensem

After the quench,f 2 is positive, so for sufficiently smal
s0

2 we have

U5t
l f 2

4,2E ~ f 222^^F2&&!dxdh5
t

t0
~C02C2!V0

~44!

and

L'
(2)5

t

t0
C(2)V0 , L i

(2)5
t0

t
C(2)V0 . ~45!

In Fig. 2 both straight lines,~45! with ~43!, are included
for comparison. It may be observed that the integralL i

(2)

involving the longitudinal gradients follows the straight lin
decrease almost until the onset of the roll-down. This me
that the rapidity gradients basically stay random. On
other hand, the integralL'

(2) follows the linear rise only for
about one unit of proper time after the onset of the evoluti
Already neart/t0;2, the transverse gradients are strong
affected by the dynamics and interfere with the kinetic e
ergy. Due to the relative factor of 1/t2 of L i as compared to
L' the dynamics quickly gets dominated by the transve
gradients alone, such that the average kinetic energy foll
the average transverse-gradient energyL'

(2) , while the rapid-
ity gradients~in L i

(2) andL i
(4)) that decrease like 1/t are no

longer relevant for the overall dynamical evolution.
Disregarding rapidity gradients altogether, the EOM~17!

reduces to
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]tF1]ttF2]xxF2m2F50, ~46!

which describes wave propagation in transverse direct
A(t)exp(ipx). Here the massm2 again characterizes the fluc
tuations aroundF50,

m25l f 2/,2, ~47!

so m2 is negative for negativef 2 ~whereF50 is the stable
minimum!, and it is positive for potentials that actually d
have a lower symmetry-breaking minimum. The amplitud
A(t) generically are Bessel functions,

A~t!;J0~tAp22m2! for p22m2.0,

A~t!;I 0~tAm22p2! for p22m2,0. ~48!

For large values of their arguments the amplitudes ofJ0

decrease like 1/At, while I 0 contains exponentially rising
parts. Modes with large transverse wave numbers contrib
most to L'

(2) . Therefore, with their amplitudes decreasin
like 1/At, the kinematical factort in L'

(2) is compensated
So we expect that the linear rise ofL'

(2) ends as soon as th
dynamics is dominated by the transverse gradients an
followed by a phase where

^^T&&;^^L'
(2)&&;constut . ~49!

For negativem2 no amplification occurs. After the quench
however, whenf 2 has become positive, a few modes wi
small transverse wave numbers will start to get amplifi
Typically, for wave numbersp52pk/N, with k integer (0
<k<N/2), waves with k/N,Al f /(2p,) get amplified,
e.g., the lowest three or four out ofN5100 for ,;5 ~for
l51 and f 251). At first, the rate of amplification is slow
because the exponential rise is compensated by a decre
function for small arguments inI 0(x). These low-k modes
do not contribute much toL'

(2) . In fact, the k50 mode,
which experiences the largest rate of amplification, does
contribute at all.

While the amplification effect is not very pronounced f
L'

(2) , the few slowly exponentially rising contributions from
the lowest-momentum transverse waves cause a notice
rise of the condensatê̂ F2&& after some time. This enter
into the fluctuating partC2 of the potentialU and drives it
away from its linear rise given by~44!. Then also the fourth-
order terms in the potential become important and the
namical evolution subsequently is dominated by the lo
potential. This initiates the roll-down of the field configur
tion at the majority of the lattice points into the true vacuu
F05(0,0,1). The transition into the symmetry-violatin
configuration takes place, with formation of bags and so
tons in those regions where the winding density happen
be high.

To estimate the timet1 for the onset of the roll-down we
consider thek50 mode with amplitudeI 0(tm). Amplifica-
tion of this amplitude by a factore in the time interval from
t0 to t1 requires
1-8
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ln I 0~t1m!511 ln I 0~t0m!. ~50!

The right-hand side~r.h.s.! depends only very weakly ont0,
as long as (t0m)<1. In fact, (t1m) varies only from 2.26 to
2.55 for 0<(t0m)<1. So, for convenience we simply tak
(t1m)'5/2 if (t0m) is of the order of 1 or less. Otherwise
for larger values of (t0m), t1 has to be obtained more acc
rately from~50!. Typically, therefore, the transition from th
gradient-dominated to the potential-dominated phase, h
pens near

t1;
5,

2Al f 2
. ~51!

However, up to this timet1 of the onset of the roll-down
i.e., throughout the whole gradient-dominated phase the
tential plays no significant role. The overall evolution pr
ceeds practically independently from the~positive or nega-
tive! value of f 2 in the F4 potential ~6!. This also implies
that the quench time~the time scale for changes inf 2) is
irrelevant as long as it is smaller than the time during wh
the gradient terms dominate the evolution and it justifies
use of the sudden quench approximation where we imp
the ‘‘cold’’ ( T50) potential from the outset att.t0.

With ,/t0.1, the ratio (t1 /t0)2 is sufficiently large to
render all longitudinal~rapidity! gradients unimportant a
compared to the potential. This means that during the su
quent roll-down different rapidity slices become effective
decoupled, and begin to evolve independently from e
other, while in longitudinal direction the solitons contract
lattice unit size. Within these rapidity slices,p ands modes
propagate transversely, and eventual further annihilation
soliton-antisoliton pairs take place while the transve
shapes of the squeezed bags are established.

By the end of the roll-down the remaining nontrivial an
sufficiently separate structures have essentially reached
stable form. Apart from small fluctuations, the integral~or
sum! over the absolute values of the winding densityn
5* urudxdz then stabilizes and counts the~integer! number
of these defects. Therefore we identify the end-of-the-r
down time with the~chemical! freeze-out timet f when the
numbers of baryons and antibaryons created are fixed
rough estimate fort f may be obtained if we follow the fur
ther amplification of the amplitudesI 0(tm) of the k50
modes beyondt1. For large arguments the increase
I 0(tm) is mainly due to the exponential exp(tm), so we
obtain

t f;t11
,

Al f 2
lnS F~t f !

F~t1! D . ~52!

For a typical amplification ratio of 5 to 10 during roll-dow
we then find an approximate freeze-out time of

t f;
4,

Al f 2
. ~53!
03600
p-

o-

h
e
se

e-

h

of
e

eir

l-

A

This certainly represents a lower limit for the duration of t
roll-down, because the increasingF4 contributions to the
potential will slow down the symmetry-breaking motion. Th
numerical simulations confirm this simple argument and
dicate that (mt f);4 –5 provides a reasonably accurate es
mate for the freeze-out time@as long as (t0m)<1]. After the
quench, whenf 0

2 has assumed itsT50 valuef 0
251, we may

neglect the small contributions of the explicit symmetr
breakingH to f 2 and to thes massms

2 in Eqs. ~7! and ~8!
and rewrite~53! in the form

t f

t0
'

4A2

t0ms
. ~54!

The typical example for an evolution given in Fig.
shows how during the roll-down the configurations pick
an appreciable amount of kinetic energy until the poten
starts to deviate from its linear rise and interferes with^^T&&.
Subsequently,̂^U&& starts to pick up the unphysical linearl
rising lattice contributions~37! of the shrinking solitons,
while the time-averaged̂̂ T&& remains basically constant. A
the heavy solitons carry no kinetic energy,^^T&& then resides
in small transversely propagating fluctuations that eventu
are emitted ass andp mesons.

A. Correlation lengths and defect numbers

In contrast to the integer net-baryon numberB5*rd2x,
the integral~or lattice sum! over the absolute values of th
local winding densityuru

n5E urudxdz ~55!

generally is not an integer. The ensemble average ofn is
closely related to the coherence lengthR for the field unit
vectors in the statistical ensemble of O(3)-field configura-
tions. If an O(n) field is implemented on ad-dimensional
cubic lattice with lattice constanta, then the field orienta-
tions on the vertices of a sublattice with lattice unitR/a can
be considered as statistically independent. Then the ave
^^n&& expected on anNd lattice is

^^n&&5nd~aN/R!d, ~56!

wherend is the average fraction of the surface of the sph
Sd covered by the image of the sublattice unit~this is the
very definition of a winding density!. The numbernd can be
estimated for different manifolds@17#. For the map~compac-
tified! R2→S2 defined by the unit vectorsF̂(x,z) of the
O(3) field in d52 dimensions it isn251/4 ~i.e., 1/2d11 for
each of two triangles that make up each square subla
unit cell!.

Inserting our result~33! ~obtained form50) into this
estimate ford52 dimensions, leads tô^n&&t5t0

}T 2. In
Fig. 3a this is compared with numbersn and coherence
lengthsR measured for several initial configurations on
N3N lattice for different temperatures~for N5100 and
massm50). Evidently, the finiteness of the lattice causes
1-9
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FIG. 3. ~Color online! Initial ~measured! coherence lengthsR and number of defectsn as functions of initial temperatureT, measured for
five random initial configurations for each temperature, on anN5100 lattice, withm put to zero~left!, and withm51/, for ,54 ~right!. ~All
quantities are in lattice unitsa.!
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small systematic deviation from thisT 2 dependence, espe
cially for large values of̂ ^n&&, as the coherence length a
proaches the lattice constant. The measured numbers^^n&&
follow ~56! with satisfactory accuracy forn'1/5. In Fig. 3b
the same comparison is shown for nonvanishing massm
51/,, for ,/a54. FormÞ0 the coherence lengthR can be
obtained from~32! and compared to the measured valu
Figure 3b shows that they are reasonably well described
R}T 20.8. The corresponding measured numbersn follow
~56! with good accuracy forn'1/6. Of course, smal
changes ofn could be absorbed into a slightly redefine
coherence length@note that the correlation function~32! for
m50 does not decrease exponentially#. We shall, however,
keep the definition~30!.

The above considerations apply to random configurati
that need not contain any fully developed solitons but m
consist of only small fluctuating local winding densities th
cover small fractions of the image sphere. However, if
configurations finally have evolved into an ensemble of w
separated solitons or antisolitons embedded in a topol
cally trivial vacuum with only small fluctuations in the loca
winding density, then the integral~55! counts the number o
these embedded baryons plus antibaryons. We there
adopt the notion ‘‘number of defects’’ for̂̂ n&&, irrespective
of whether configurations comprise only small local windi
densities, or partial or complete solitons.

For a typical evolution~see e.g. Fig. 2! the number of
defects measured as function of proper time shows a s
decrease that follows approximately a power law

n;n(t5t0)S t

t0
D 2g

. ~57!

By the end of the roll-down at freeze-out timet f this de-
crease levels off andn settles near the constant that coun
the number of the finally surviving fully developed soliton
plus antisolitons~cf. Fig. 1!. The decrease inn reflects the
slow increase in the average coherence lengthR̄ up till the
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end of the roll-down. The longitudinal coherence lengthRi
grows very slowly because rapidity gradients are suppres
with 1/t in the Bjorken frame. This leads to an effectiv
decoupling of field vectors in the longitudinal direction an
subdues the drive for aligning field orientations in adjac
rapidity bins. On the other hand, the transverse cohere
lengthR' grows rapidly. ForR'@Ri , the average radiusR̄
obtained from~34! is dominated byRi . A typical example is
shown in Fig. 4 for an evolution that starts att0 /a51. The
averageR̄ grows with an exponent ofa'0.25. The statisti-
cal argument in~56! then leads ton;t22a, with 2a5g
'0.5. This is slightly steeper than the measured decreas
n. But as the growth in the coherence radii sets in only a
one or two units oft after the onset of the evolution, the fina
number of surviving defects is reasonably well reproduc
by the statistical expression~56! ~we adoptn51/6 from Fig.
3b!. Altogether, we typically find exponentsg;0.460.05
for the decrease~57! of the number of defects. Then, wit
~54! for the typical freeze-out time, we have

^^n&&ut5t f
5^^n&&ut5t0S t0ms

4A2
D 0.4

~58!

for the reduction of the number of defects from its initi
value at the onset of the evolution until the end of the ro
down. With (t0ms) of the order of 0.5 to 1, we find reduc
tion factors of 1/3 to 1/2, which is not even one order
magnitude. So, this is not a dramatic result. The reason
evidently, that in the expanding Bjorken frame the gradie
coupling in rapidity direction quickly gets suppressed.

It should be noted that all numerically measured exp
nents are independent of the choice of the lattice consta
because scalingx→ax ~i.e., ,→a,), h→bh, t→(a/b)t
leaves the EOM~17! invariant. The length unita only serves
to define the resolution with which the spatial structure of
field configurations is analyzed and all physical resu
should be independent of this scale. On the other hand,
initial time t0 denotes the physical point in time when th
1-10
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FIG. 4. ~Color online! Crosses show the mea
sured coherence lengthsR' ,Ri and the average

R̄ as obtained from the definition~34!, as func-
tions of proper timet. For t.2 they are param-
etrized by power laws with exponents 0.15, 0.7
and 0.25, respectively. The measured defect nu
ber n ~full line! is compared to the statistical re
sult ~56! with n51/6 ~crosses connected b
lines!. (N5100,T50.2, s050.2, ,54, H
50.1, l51).
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system begins its evolution in terms of hadronic degrees
freedom with a sudden or rapid quench in the relevant
tential. So, physical results generally will depend ont0, as is
evident from the reduction factor obtained in~58!.

Small explicit symmetry breaking (HÞ0) accelerates the
decrease ofn during roll-down, but at the same time it re
duces the freeze-out time, such that the final number on
remains essentially unaffected by small nonzero values oH.
Figure 5 shows a number of evolutions for two differe
strengthsH of explicit symmetry breaking.

The same is true if additional damping is introduced in
the EOM~17! by adding a termk]tF with damping constan
k to account for the fact that the field fluctuations are ac
ally emitted from the expanding Bjorken rod, carrying aw
energy. Through this dissipative dynamics the evolutions
slowed down, the roll-down times may be retarded by
order of magnitude, but the overall reduction factor in t
number of surviving defects remains unaffected. Of cou
all fluctuations then are damped away during the course
03600
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the evolution, and the integrals~13! to ~15! finally are deter-
mined by the remaining ensemble of squeezed solitons al
while the kinetic energy goes to zero.

B. Meson spectrum

For times long after the roll-down the average kinetic e
ergy ^^T&& and the potential energy parts^^L'1U&& @after
subtraction of the linearly rising~lattice! contributions from
the squeezed solitons~37!# converge towards the same co
stantEf /2. Their sumEf represents the average total ener
stored in the mesonic field fluctuations after the roll-dow
Both averages show residual fluctuations around th
smooth background with opposite phases, such that their
Ef is smooth. Analyzing the spectral density of either^^T&&
or ^^L'1U&& ~after subtracting the background!, tells us
about the spectral distribution of pions ands mesons that
will eventually be emitted from the expanding Bjorken ro

We consider the Fourier transforms
g,

n

FIG. 5. ~Color online! The numbers of defects
n for two different valuesH50 andH51.0 for
the strength of the explicit symmetry breakin
each for five evolutions on a 1003100 lattice
(T50.3, l51, ,55, s050.2). The arrows point
to the freeze-out timest f'22, andt f'11, re-
spectively, where the average lengthsuFu of the
chiral field vectors have reacheduFu51. The ini-
tial values ofn lie within a band from 145 to 185,
and they all end~for both values ofH) in a band
from 32 to 52, which corresponds to reductio
factors of about 1/4.
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FIG. 6. ~Color online! Spectral densityn(v)
of the residual fluctuations in the average kine
energy^^T&& for times long after the roll-down
(N580, ,/a54, H50.1). The arrows point to
the lowest~double! frequencies~61! for p ands
mesons~see text!. The curved~green! line is the
exponential exp(212av).
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^^T~t!2T̄~t!&&eivtdt, ~59!

where the integral covers times long after the roll-down, e
ta /t0;100, tb /t0;1000, andT̄(t) subtracts the smooth
background. The absolute value,e(v)5Ac21s2, represents
a spectral energy density, from which we may extract
spectral particle number density

n~v!5
e~v!

v
5(

i j
ni j

(p)d~v22v i j
(p)!1(

i j
ni j

(s)d~v

22v i j
(s)!1••• . ~60!

The ij sum with i , j 50,1,2, . . . ,N/2 covers all frequencies
on the lattice for pions ands mesons with massesmp and
ms given in ~8!

v i j
(p/s)5AS 2p

aN
i D 2

1S 2p

aN
j D 2

1mp/s
2 . ~61!

Generically, T(t) contains contributions;@cos(vij
(p)t)#2

from the pionic fluctuations, and;@cos(vij
(s)t)1c#2 from the

s fluctuations around some nonvanishing averagec. There-
fore, the spectral functionse(v) andn(v) will, in addition
to the double frequencies 2v i j

(s) , also contain contributions
for the s mesons at the single frequenciesv i j

(s) .
Figure 6 shows the spectral densityn(v) as obtained

from the residual fluctuations in the average kinetic ene
The long vertical arrows point to the first four 2v i j

(p) pionic
frequencies~61! for i j 500,10,20,30, withmp

2 5H/,2, (H
50.1, ,/a54, f 051). It may be seen that the overwhelm
ing part of the strength resides in the lowest and first exc
pionic modes. The strength decreases rapidly with excita
energy, approximately like exp(212av). The same is true
for the strength of thes modes.@The short arrows in Fig. 6
point to the first three modes withi j 500,10,20, with single
frequenciesv i j

(s) and double frequencies 2v i j
(s). ] However,
03600
.,

e

y.

d
n

the number density(ni j
(s) for the s mesons, which we may

extract from the strength located at the double frequen
2v i j

(s) , is only about 5% of the pionic strength residing
the first three pionic modes. For an order-of-magnitude e
mate of the pionic multiplicities we therefore ignore thes
contributions.

C. Meson and baryon multiplicities

To obtain a simple estimate for the energyEf finally
available for meson production we consider the time of
onset of the roll-downt1 in ~51!, which marks the transition
from the gradient-dominated to the potential-domina
phase. At this time, for sufficiently smalls0

2, the total energy
is dominated by the linearly rising term (t/t0)C0V0 in the
potential ~44!. With the onset of the roll-down the averag
potential ^^U&& starts to deviate from this linear rise an
bends down to interfere witĥ̂ T&& and^^L&& ~cf. Fig. 2!. In
the numerical simulations the large-time limit of^^U&& and
^^L&& is masked by the~lattice-artificial! rise of the soliton
contributions. But the asymptotiĉ̂T&& is free of these arti-
facts and~apart from residual fluctuations! approaches a con
stant value, which is well represented by the linearly risi
1
2 (t/t0)C0V0 taken at t5t1. Approximating t1 by
5/(A2ms) as given in~51!, we then have~with f 251)

Ef5 f p
2 t1

t0
C0V0' f p

2 5ms

8A2
~abN2!, ~62!

where we have again neglected the small contribution of
explicit symmetry-breakingH to the s mass. Within this
level of accuracy we can also ignore that about 30% of
pions carry the energyv10

(p) ~instead ofmp), and obtain the
pion multiplicity np from dividing ~62! by mp ,

np5
5

8A2

ms

mp
f p

2 ~abN2!. ~63!
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This number may be compared with the baryon-pl
antibaryon multiplicity given in~58!. We use for̂ ^n&&ut5t0

the statistical result~56!, with initial spatial coherence lengt
R0. Then we have

^^n&&5nS aN

R0
D 2S t0ms

4A2
D g

. ~64!

The last factor relies on the estimates~51! and ~53! for the
timest1 andt f , which are valid as long as (t0m)<1 @oth-
erwise they have to be obtained more accurately from~50!
and ~52!#. The evolutions described above have been p
formed for initial configurations selected with net bary
number B50. So, the average numbernp̄ of antibaryons
created during the phase transition is^^n&&/2. With typical
valuesn;1/4, g;0.4 we find for the multiplicity ratio of
antibaryons to pions

np̄ /np'0.14
a

b

mp

ms f p
2

~t0ms!g

R0
2

. ~65!

With an overall energy scalef p
2 of the order of the pion mas

mp , andR0 of the order ofm215A2ms
21 , this ratio is

np̄ /np'0.07S a

b
msD ~t0ms!g. ~66!

The ratio a/b of the spatial and rapidity lattice constan
which appears in this result has a physical meaning: acc
ing to ~31! it is equal to the ratio of the~transverse! spatial
coherence lengthR0 and the~longitudinal! rapidity coher-
ence distanceRi0 in the initial configuration. Naturally, this
ratio is of the order oft0. So, for initial timest0 typically of
the order of the inverses mass we find antibaryon-to-pio
multiplicity ratios of the order of 0.05 to 0.1.

VI. GENERALIZATION TO 3D O „4…

For the generalization to the~311!-dimensional O~4!
model we keep the parametrization as given in Eqs.~2!, ~3!,
and ~6!. In this casef p

2 is an overall constant of dimensio
@mass2#, so the physical fieldsf pF are of mass-dimension
one. The winding density is no longer given by~4!, but we
keepL (4) as defined by the second equality in Eq.~5!. Con-
ventionally, the strength of theL (4) term in ~5! is given in
terms of the Skyrme parametere as

2l,2

~8p!2
⇒ 1

4e2f p
2

. ~67!

In this case the typical spatial radius of a stable skyrmion
its rest frame is mainly determined by the balance betw
L (2) andL (4), so it is of the order of (e fp)21.

For the map~compactified! R3→S3 defined by the unit
vectors of the O(4) field in 3 spatial dimensions the stati
cal result~56! for the average number of defects found on
(aN)3 lattice for initial configurations with coherence leng
R0 generalizes as
03600
-

r-

d-

n
n

i-

^^n&&ut5t0
5

5

2311
~aN/R0!3. ~68!

~We again usea5bt0 for the lattice constants.! The factor 5
counts the number of three-simplices~tetraeders! that make
up a cubic sublattice cell of sizeR0

3, the factor (1/2d11) with
d53 is the~absolute value of the! average surface area cov
ered by the image of one three-simplex on the image sph
S3. So the factor 5/16 counts the average ‘‘number of d
fects’’ associated with a cubic lattice cell with lattice consta
given by the initial coherence lengthR0. A certain arbitrari-
ness in the definition of the coherence length may trans
into modifications of this factor 5/16@e.g., for a random lat-
tice of three-simplices the factor 5 is replaced by (24p2/35
;6.8) @17# #. In any case we do not expect order-o
magnitude changes in this factor as compared to thed52
case, where we had 2/2211.

However, through the cubic power the result is now ve
sensitive to the actual value ofR0 in the initial ensemble.
Different concepts about the physical nature of the init
configurations will imply quite different ways to arrive at th
appropriate initial coherence lengthsR0. For an initial en-
semble that is characterized by a temperatureT we could
proceed as in~32! and relateR0 to the temperature, or to th
massm2(T)5lu f 2(T)u/,2 of the field fluctuations; but it has
also been suggested@22# to tie R0 to the parton density,
which makes it independent of the temperature concept.
for the moment it seems appropriate to keep the initial
herence lengthR0 as a parameter.

Adding a second transverse dimension does not cha
the result~34! for the average of the transverse and longi
dinal coherence lengths. The growth in the resultingR̄ again
is dominated by the slow increase of the longitudinal coh
ence lengthRi , which is unaffected by additional transvers
dimensions. The estimates~51! and~53! for the timest1 and
t f of the onset and end of the roll-down also remain un
fected, as they only rely on the amplitudesA(t) of the trans-
verse waves~48!, irrespective of the number of spatial d
mensions.@In this case,L (4) now contributes toL' with a
term containing four transverse gradients, acting on the
rection of the O~4! field. The roll-down, however, takes plac
in areas that are topologically trivial, i.e., with small angu
gradients, so we do not expect a strong effect on the r
down times.# Within the approximations that led to~58!, we
then find for the average number of baryons and antibary
present after the roll-down

^^n&& ut5t f
5

5

16S aN

R0
D 3S t0ms

4A2
D 3a

, ~69!

with a;0.2 to 0.25. We denote the transverse area (aN)2 of
the Bjorken rod byA, and replace the ratio (a/b) of the
lattice constants again by the initial timet0. Then we obtain
for the rapidity density of antiprotons (np̄5 1

4 ^^n&&)

dnp̄

dh
5

5

64

t0A
R0

3 S t0ms

4A2
D 3a

~70!
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~at this point we count all baryons as nucleons, assuming
excitational fluctuations and rotations contribute to the s
rounding pionic fluctuations!. Although the strength of the
Skyrme term does not appear explicitly in~70!, the presence
of theL (4) term is essential for the formation of the soliton
because during the evolution it transforms the sum over
absolute values of average winding densities into the ave
number of fully developed solitons and antisolitons. So it
hidden in the growth law characterized bya.

For meson production we adopt the considerations
led to the estimate~62!. Counting again all mesons as ze
momentum pions we have

np5
Ef

mp
5

f p
2

mp

t1

t0
C0V05 f p

2 5

8A2

ms

mp
~AbN!. ~71!

The rapidity density of negatively charged pionsnp25 1
3 np

then is

dnp2

dh
5 f p

2 5

24A2

ms

mp
A. ~72!

In a heavy-ion collision the transverse areaA of the Bjorken
rod will correspond to the spatial overlap of the collidin
relativistic nuclear slabs. As we have assumed spatially
mogeneous initial conditions we have to consider slabs w
constant nucleon~area! density. In order to account for th
numberA of nucleons contained in one slab, its radius m
be taken asr 0A1/2, with r 0'1.2 fm. Then, as function o
centrality,dnp2 /dh is directly proportional to the number o
participantsNp , which is one of the basic experimental r
sults in relativistic heavy-ion collisions. For central col
sions ofA-nucleon slabs we haveNp52A, so we find for the
p2-rapidity density perNp/2 participants

1

Np/2

dnp2

dh
5

5p

24A2

ms

mp
~r 0f p!2. ~73!

This is an interesting result because all parameters have
absorbed into physical quantities. There are, however,
eral caveats: We have used for this result the form of
potential~6! after the quench~only this enters into the cal
culations!. This means that differences between the aver
potential energybeforethe quench~39! and immediatelyaf-
ter the quench~44! are left out. However, this difference is o
the orders0

2, which has been neglected in~73! anyway. But
generally, the result~73! should be considered as a low
limit. It should further be noted that the result~73! depends
linearly on the timet1 for the onset of the roll-down. The
definition of t1 in ~51! is not very stringent and may b
subject to changes by620%. The estimate@cf. Eq. ~51!# we
used for the timet1 required (t0ms)<A2, i.e. with ms

;3 –5 fm21, the initial timet0 should not exceed 0.3–0.
fm. Another unsatisfactory feature of the homogeneo
Bjorken rod is that the inhomogeneity in the nucleon~area!
density of real relativistic nuclear slabs with transverse ra
r 0A1/3 has to be represented through radiir 0A1/2 for homo-
geneous slabs.
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The experimental value@16# for the p2 rapidity density
per Np/2 lies between 1.2 and 1.5 forNp increasing up to
350. With r 0f p50.57, ms /mp'5 –8, our result~73! leads
to

1

Np/2

dnp2

dh
'0.75–1.2. ~74!

In the light of the reservations discussed above, this is q
satisfactory.

In contrast to the parameter-free pion multiplicities, t
result for baryon-antibaryon creation depends on two par
eters: the timet0 when the initial hadronic field ensemble
established and begins its expansion, and the initial co
ence lengthR0 within that ensemble. From~70! and~72! we
have~with a;0.2 to 0.25!

np̄

np2

'0.15S mpms

f p
2 D ~t0ms!3a11

~R0ms!3
. ~75!

The experimental value for the ratio of integratedp̄ to p2

multiplicities lies between 0.065 and 0.085@16# for varying
numbers of participants. Withmp / f p

2 53.0 fm, and a typical
s mass ofms'3 fm21, the experimentally observed mult
plicity ratios are reproduced ifR0 andt0 ~both in @fm#! sat-
isfy

R0'~3t0!a11/3. ~76!

For initial times in the range 0.2<t0<0.5 the dependence o
a is very weak and the coherence length varies in the ra
0.7<R0<1.2 ~all in @fm#!. These values are certainly withi
the limits of conventional assumptions. Interpreted in ter
of a thermodynamic equilibrium ensemble,R0;1 fm;T 21

implies the standard estimateT;200 MeV for the chiral
phase transition. With our choicea/b5t05R0 /Ri0 for the
ratio of the spatial and rapidity lattice constants, the init
time t0'1/3 fm resulting from ~76! for R051 fm then
means that in the initial ensemble the initial rapidity coh
ence distanceRi0 extends over three units of rapidity.

VII. CONCLUSION

We have presented numerical simulations of the dyna
cal evolution that chiral field configurations undergo in
rapidly expanding spatial volume. Starting at an initial tim
t0 from a random hadronic field ensemble with restored c
ral symmetry, we follow its ordering process and roll-dow
into the global potential minimum with spontaneously br
ken chiral symmetry. In accordance with standard conce
of heavy-ion physics we have considered one-dimensio
longitudinal expansion of an essentially baryon-free reg
of high energy density, as it may be realized in the afterm
of an ultrarelativistic collision of heavy ions for central ra
pidities.

Performed on a space-rapidity lattice in proper time
comoving frames, such simulations are very powerful inst
ments that allow us to investigate a multitude of interest
features related to the chiral phase transition. We have c
1-14
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centrated here on the topological aspects that are dire
related to baryon-antibaryon multiplicity as a sensiti
signal for the phase transition. Mesonic abundancies co
be analyzed as well, both forp ands mesons~or any other
elementary fluctuations included in the chiral field!. Not
only their spectra can be obtained, but from the inst
taneous configurations the spectral power of their momen
distribution could be extracted at every point
time.

The method is not restricted to thermally equilibrated i
tial ensembles with global or local temperature; inhomo
nities and anisotropy in the correlation lengths could
implemented naturally. Surface effects could be investiga
by suitable boundary conditions. This may be interest
with respect to theA dependence of spectra and multiplic
ties. Here we have applied only standard periodic conditio
The one-dimensional expansion could be replaced by an
tropic or spherically symmetric expansion, which may be
specific interest in cosmological applications. We have u
the sudden quench approximation, which could be repla
by any desired time dependence of the chiral potential w
arbitrary quench times. We have selected ensembles
conserved net-baryon numberB50 or very smallB. Any
other choice would be possible, and it appears as a pecul
attractive feature to study evolutions in ensembles with h
net-baryon density, either fixed or in the form of gra
canonical ensembles. The method is well suited to ana
distribution, growth, and realigning of domains with diso
s
.

H
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ented chiral condensate as has been shown previous
purely dissipative dynamics@14#. The generalization to
SU~3! fields appears most interesting to learn about stran
ness production in terms of baryonic and kaonic abunda
ratios.

Evidently, the method opens up a wide field of applic
tions. Unfortunately, however, we know very little about th
nature and characteristics of the initial ensemble that en
crucially into all physical results. So, in our present analy
of antibaryon and pion multiplicities, the experimental da
do not allow us to draw definite conclusions about the va
ity of the topological approach, because the results dep
on two initial coherence lengths, the spatialR0 and rapidity
Ri0 ~which for an isotropic initial ensemble are related
R05Ri0t0). We can only conclude that conventional a
sumptions about these quantities lead to results that are c
patible with experimentally detected multiplicities. So, luc
ily, the mechanism is not ruled out. On the other hand,
assumption liket05R0 ~which would imply that the corre-
lations have grown with the speed of light from a pointlik
origin! is ruled out: it would overestimate the abundan
ratio in ~75! by a factor of 5.
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