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We construct a family-unified model onz,XZ, orbifold in five dimensions. The model is based on a
supersymmetriSU(7) gauge theory. The gauge group is broken by orbifold boundary conditions to a product
of grand unifiedSU(5) andSU(2) X U(1) flavor symmetry. The structure of Yukawa matrices is generated by
an interplay between spontaneous breaking of flavor symmetry and geometric factors arising due to field
localization in the extra dimension.
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[. INTRODUCTION unified gauge group to a product of GUT and flavor symme-
try, and also reduce the amount of supersymmetrjvtol
The success of gauge coupling unification in the minimalin 4D. Given that the quarks of the third generation are a lot
supersymmetric standard mod®8SSM) suggests there ex- heavier than the quarks of the first two generations, it seems
ists a grand unified theorfGUT). In GUTSs, one generation natural that the light families form a doublet, while the third
of fermions can be incorporated in one or more representgamily a singlet under the flavor group. Consequently, mod-
tions of a simple GUT gauge group. However, GUTs do note|s usingSU(2) x U(1) flavor symmetry are quite successful
explain Why there are three different families and do not She(ih reproducing the mass Spectﬂ[ﬁi_ We embed the flavor
any light on the pattern of the observed fermion mass spedsy2)x U(1) andSU(5) GUT group in anSU(7) family
trum and mixing angles. An immediate idea is to also assignified gauge group. A similar setup was studied in [Re}.

a symmetry group for the generations, the so-called flavofpere ars(7) family unified model was considered. How-

group. Theories incorporating this idea can be divided imoever in Ref.[8] the GUT group is flippedSU(5) and the

two broad categories. First, theories in which the flavor s : o
group and the GUT group are orthogonal. Second, theoriegmphasls IS on the_ doublet-triplet sphttmg problem. A further
: . ifference is that in the construction of R¢8] all matter
that unify the flavor group and the GUT group into a Iargerf. Id te in the bulk while i del the third
simple group. The second approach is known as family uniz<'as propagate in the bulk, whtie in our modet the thir
fication[1]. Within the first category, realistic theories with family IS Ioca.Ilzed. A number of authors dlscu§s¢d flavor in
continuous flavor groupSU(3), SU(2)x U(1), U(1) as extra dimensions, see Réﬁ]_and references within.
well as several discrete groups have been considered. Family The SU(7) gauge group is broken by the boundary con-
unified models push the unification idea a step further an(ﬁ}'{t'ons toSU(5)xSU(2)xU(1). Both theSU(5) and the
are esthetically more attractive. However, four-dimensionaflavor groups are broken further by expectation values of
models of family unification usually suffer from the problem Higgs fields. The pattern of Yukawa matrices is generated by
of mirror families; see Ref2] for a review. both spontaneous breaking of the flavor group and geometric
In the past few years the notion of symmetry breaking byfactors due to field localization. Some of the fields in our
orbifold boundary conditions in extra dimensions has beemmodel propagate in the bulk, while others are localized at the
revitalized. Orbifold breaking has been used to address varprbifold fixed points. Therefore, wavefunction overlap sup-
ous problems ranging from electroweak symmetry breakingresses certain couplings with respect to others. All of the
[3], supersymmetry breakinf4] to GUT model building flavor physics takes place at very high energy scales, com-
[5,6]. For example, in Ref[5] orbifold compactification is parable to the GUT scale. Supersymmetry breaking terms are
used to break th&U(5) GUT group to the standard model of order the electroweak scale and are irrelevant for the dis-
group and solve the doublet-triplet splitting problem that iscussion of flavor. We will not discuss the breaking/df 1
difficult to overcome in 4D models. One of the reasons wesupersymmetry in any detail since this is not the focus of this
use orbifold boundary conditions is to give large masses t@aper. Any standard mechanism of communicating super-
mirror fermions, as noticed for example in RE2). symmetry breaking in a flavor-diagonal manner could be in-
In this article, we construct a family-unified model in 5 corporated into our model. Standard gauge medialticij
dimensions. To maintain the unification of the gauge coucould operate if SUSY breaking and messenger fields are
plings our model incorporates supersymmetry. The fifth didocalized at an orbifold fixed point. By extending the model
mension is compactified and we impose orbifold boundaryto one more dimension one could create an appropriate setup
conditions on all fields propagating in the fifth dimension. for either anomaly mediatiofill] or gaugino mediatioh12]
The role of the boundary conditions is threefold. We use thef supersymmetry breaking.
orbifold breaking to get rid of mirror families, break family- In the next section, we describe the field content and in-
teractions needed to produce Yukawa matrices. We summa-
rize our results in Sec. lll. The details concerning numerical
*Email address: zhenyu.hanyale.edu determination of the high-energy parameters from the data
"Email address: witold.skiba@yale.edu are presented in Appendix B.
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Il. THE MODEL conditions preserve only 4 supercharges, so that below the

Our model is based on a supersymmetric field theory incompactlflcatlon scale the theory is a four dimensional

) . ) ) . e o =1 theory.
five dimensions. The fifth dimension is compactified on a There is an arbitrarv choice of how the reflection svmme-
(Z,xZ3) orbifold. We parametrize the fifth dimension, de- y y

i . . ) try is represented in the space of gauge transformations. We
scribed by coordinaty, as an interval withy e[0,7R/2]. ~ 5056 ‘the action of the two parities on the fundamental
This interval can be thought of as obtained from a circle

[0,27R] by identifying points related by reflections around representation - of - the SU(7) ~ group 1o  be P

dicul Under th fections— d =diag{1,1,1,1,1,1,3 and P’=diag—1,-1,—1,—1,
two perpendicular axes. n ert esere .ectlcyns, yan —1,1,1}. Consequently, an arbitrary tensor representation of
y~m—Yy such that the circle is equivalent to thg

i ...
e[0,7R/2] interval. We denote these reflections Rsand SUT), ¢, transforms as
P’, respectively. ooy — i bl pk'pl’ it

An arbitrary bulk field configuration can be decomposed P (Y= 0P PLPICPL i YD,
into the eigenstates of the reflectioRsand P’. Since P? . s ol ekl e
=P’?=1 the eigenvalues must be. Of course, the eigen- b (m=y)=myP L PLPICP b (Y),

states of the reflections have either the Dirichlet or Neumann

boundary conditions at the end points of the interval. Theunder the two parity transformations, wheyg, ;= +1 are
Kaluza-Klein (KK) decomposition of a bulk fields(x*,y) the overall, “internal,” parity eigenvalues. For a free field the
into four dimensional mass eigenstates can be classified aparities can be chosen arbitrarily. Interaction terms correlate

cording to the two parities: the parities of different fields. For example, the invariance of
the supersymmetric Lagrangian imposes relations between
” 1 2ny parities of different components of superfields.
by (XHy)= nz,o \/ﬁqﬁﬂ(x”)cos?, The 5D gauge multiplet contains a vecty; , two gaugi-

nos\i, \», and a real scald, all of which transform in the
adjoint representation &U(7). We use theipper case Latin
1 " (2n+1)y letters to denote 5D Lorentz indices, and the lower case
RO (x*)cos—pa—, Greek letters to denote 4D indices. The 5D SUSY Lagrang-
ian is invariant under the reflections if

¢+,<xﬂ,y)=n§0

o 1 _(2n+1)y n,=—mn,=—n, n =—n, 2
b (XFy)=D —=¢> L (x*)sin——=——, A, A SN Xy
n=0 7R R
(1) as well as an identical set of relations fBf. We choose
77A = n,A”_: 77)\1: 77}:1: 1
o i 2n4 2, i (2N T 2)Y Upon compactification, the first reflection breaks ke
$--(XLy)= 2, R (x*)sin—p—, —1 5D SUSY toA=1 4D SUSY since bottg and \,
obtain large masses. Meanwhike, and\ ; contain the zero

where x* is the four dimensional coordinate and the sub-modes that transform exactly as the AD=1 vector multip-
scripts refer to the parities under tieand P’ reflections. let. Since we do not embed the parlty transf'ormatlons into
The five dimensional Lagrangian has simple dependence dfi® R Symmetry\V’=1 supersymmetry in 4D is preserved.
y when the fields are expressed in terms of KK states. Thd "€ second reflection breaks the gauge group 8d(7) to
integral over the fifth dimension can be performed explicitly. 'S SU(5)x SU(2)xU(1) subgroup. More precisely, on the
One obtains then a four-dimensional Lagrangian describing 3rane located ay=mR/2 the gauge group is broken, while
KK tower of four dimensional fields. The KK states specified IN the bulk and on the brane=0 the full symmetry remains.
in Eq. (1) have massesrZR, (2n+1)/R, (2n+1)/R, and Be5|des the gauge multiplets, we put the 5D hyperm_ult|plets
(2n+2)/R, respectively. The only massless 4D field is " the bulk. Under th&sU(7) symmetry, the hypermultiplets
#° . (xH). transform asl+7+35+21.% A hypermultiplet corresponds

It turns out that the compactification scale in our modelto two 4D chiral superfields with opposite paritigd, <}
will be comparable to the GUT scale. The massive states will

therefore be too heavy to correspond to observable states. Ty =T e &)
The fields of the MSSM will come from the zero modes of , ,
the KK decomposition, as well as from brane fields localized e =" Tye- 4)

at the end points of the interval. , _
We chooserny = 7y =1 so that all the massless fields come

: . . from . These massless fields can be expressed in terms of
A. Fields and interactions

We now begin to describe our model in detail. The 5D

bulk theory is anN'=1 SUSY theory with arSU(7) gauge The SU(7) field content coincides with aBO(14) spinor64
group. Such a theory has 8 supercharges and correspondsviflen the spinor is written in the $0) basis. This suggests that our
N=2 SUSY in four dimensions. However, the boundarymodel may be embedded in a larger symmetry group.
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TABLE I. Light chiral superfields and theBU(5)x SU(2)X U (1) charges.

Bulk fields Brane fields
Matter T3(10,2)_;, F4(5,2)5, S%(1,2)_s T3(10,1)0, F3(5.1)0
Higgs 3(24,1), H(5,1), H(5,1),
fields K(45,1)0, K(45,1),
Flavons ¢T,a(1l2)17 ¢'?'(112)7lv ¢(111)72‘ 'ﬂ(lyl)z

bra(12) 3, $3(1,2);

representations of the unbroken gauge groups(5) of operators. We have explicitly indicated the\lsuppres-
XSU(2)xU(1). These representations af*(10,2)_, sion of dimension five and dimension six terms. Different
F2(5,2);, S%1,2)_s, and a neutral field{,1),, wherea terms in Eq.(5) are not related by any symmetries, so each
=1,2 is the SW?) index. This set of 4D massless fields is term comes with a different coefficient. We have omitted the
free of gauge anomalies. In addition, there is no 5D anomalgoefficients of operators for now. We will define and deter-
either in the bulk or on the brand43]. We interpret the Mine these coefficients in Appendix B. _
SU(5) as the GUT group and tf8U(2)x U(1) as a flavor In Eq. (5) we included almost all dimension five and six
group. The zero moded0,2) ; and ,2)s are chosen to be terms allowed by the gauge symmetries. We have omitted the

the light two families of fermions with their superpartners couplings ofK andK to the third family fieldsT; andF.

and (1,2) _s might be the right-handed neutrinos with their Also, the flavonspg, ¢t do not appear in Eq5). Since the

superpartners. superpotential is not renormalized it is technically natural to
On the asymmetric brane we add all other superfields thagxclude certain terms. However, we can assign global sym-

are necessary to complete the MSSM spectrum and break timeetries to our fields such that the unwanted terms in(&q.

GUT and flavor symmetries. Since tB&J(7) gauge symme- are prohibited. Such symmetries also prevet and ¢

try is broken on this brane, the localized fields do not need terom appearing in the higher order terms, like\$/ 1/A4,

form completeSU(7) multiplets. First, we choose the third etc. For any term, the addition of tf&U(5) adjoint3 is

family to be SU2) singlets:T5(10,1)y, F3(5,1)o. Second, allowed by gauge symmetries. As we will show lat&i)/A

the SU5) symmetry is broken by the conventional Higgs is small. Thus, we also omitted terms with powers Xf

fields: 3(24,1),, H(51), H(51),, K(451), and Whenevertheywould modify a lower order term thatis more

E(4_5, 1)o. We need to include thé5 and45 representations important. . . .
to avoid the undesirable relations, ~m; andm,=m, at the For the sake of clarity, we have also omitted geometric

GUT scale. In addition, we introduce the following fields to suppression factors in E¢5). Th‘?se factors are important
break the flavor SU(2)XU(1) symmetry: by (1,2) for the structure of Yukawa matrices and are written explic-
- PTal+b4)1s

— - itly in Sec. Il B. Such factors arise when bulk fields couple to

$7(12) 1, x¢ra(1,2) -3, ¢F(1,2)s, #(L1) -2 and  prane fields because bulk fields propagate in 5D and their

#(1,1),. We will refer to these fields as “flavons.” We sum- overlap with brane fields is small. A geometric factorpis

marize the light field content in Table I. =1/\JAR=/2. For a given term, the number of powersgof
Having listed the field content of our model, we now syppressing the term is equal to the number of bulk fields

show how to obtain appropriate Yukawa couplings. Since oupresent in the terril4].

model is five-dimensional, the underlying field theory is non- .o 45 representationi, and its conjugate?contain one

renormalizable and has a cutdffthat is roughly two orders SU(2) doublet each. Together with the doublets coming

of magnitude larger than the compactification scale. Tq — .
: : ; . from H andH there would be four light doublets. We assume
specify the Yukawa couplings we write the superpotential in . s
pecify ping Perp at one linear combination of doublets frdthandK gets a

terms of four-dimensional fields that are the brane fields an{f1 . L .
arge mass and the orthogonal linear combination remains

the zero modes of the bulk fields: = —

light. The same thing takes place for and K. We outline
how to realize this in Appendix A. We denote the light mass
eigenstates aB, 4 and the heavy ones dg, 4. In terms of
these mass eigenstates

— 1 — _
W=T3TsH+TzFsH+ K[T3T¢TH +F3TorH+T3F dpeH

+TaTprK+FaT K+ TaF peK+ TFyYH + TFyK]

) H,=sinah,+cosah/, K,=cosah,—sinah/, (6)
+ P[MTT‘X’TH+T¢TF¢’FH+T¢TT¢TK Hy=sinyhg+cosyh}, Kg=cosyhy—sinyh, (7)
+T¢TF¢FE+TTEHZ+TTEKZ]. (5) whereH, 4 and K, 4 represent thesU(2) doublet compo-

nents of the corresponding fields. The mixing angtesnd y
This superpotential is valid for a 4D theory below the com-are free parameters. For convenience, we defineoty and
pactification scale, so it is easy to keep track of dimensions’'=cota.
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We assume that the flavons angd get D-flat, SUSY- VEVs as it is not essential for our discussion, but it would

preserving, VEVs: not be difficult to do so.
(d1) (d7) [0} ($e) (¢e) (O
A A e A A e B. Yukawa matrices

() <E> Using Egs.(5) through(9) it is straightforward to write
NTA T (8 the Yukawa matrices in terms of the MSSM superfields.

These couplings arise at the GUT scale aft®) breaks
(3) 2 2 2 SU(5) to the standard model. We denote the Yukawa matri-
N diagr 3 S5,— 3 S,— 3 5,0, 6] . (9) ces asy,, Yy andy, for the up quarks, down quarks, and the

charged leptons, respectively. We do not consider the neu-

Supersymmetry is only broken by weak-scale soft massedino mass matric_es otk vi_olating phases in this article.
We do not specify the superpotential that produces theséh€ Yukawa matrices are given by

0 p?od(1+v) 0
1
2 2.2
—pod(l+v e (1+v — 1+
s p o d( ) pe( ) Spe(1+v) siny, 10
1
0 zpe(l+v) 1
2
0 p?o(l+v’) 0
Yo~| —pPo(1+v") pPee’(1+v") pe(l+v') |sina, (1D
0 pe' (1+v') 1
0 p?o(1—3v") 0
Y,~| —p?c(1-3v") p’ee’(1-3v') pe(1-3v’) |sina. (12)
0 pe' (1-3v'") 1

We indicated the matrices with the proportionality sign be-the leptons is similar to that for the down quarks. The zeros

cause in the interest of clarity we omitted arbitrary coeffi-in the Yukawa matrice610)—(12) are exact provided thaIF
cients that are also missing in EG). Compare EqsiB2)—  gnq'4 are absent in the superpotential in ES).

(B4) in Appendix B that contain the full set of coefficients.  ag discussed in Ref17], this kind of matrices can give
The factors of that appear in th€2,3) and(3,2) elements of s the approximate relations

Y, arise because the termgT ¢+H andT3T ¢+K contribute

to both elements.

We determine the magnitudes of the elements of the Vyd ~ [My ol My
Yukawa matrices at the GUT scale by using the renormaliza- us mg ms
tion group equations for these matrices and comparing them
with the masses and the CKM angles at the weak scale. The
fitting procedure is described in Appendix B. As we will see E
the experimental data can be fitted quite accurately. Before Vis
we present the results let us make several comments about
the matriceg10)—(12). . o ' .

If e~¢€' ie)st(ruciure of the quark Yukawa couplings is where ¢ is aCP_ violating phase defined in Ref17]. Of .
very similar to the 4 texture zero symmetric quark mass magOurse, our ”_‘a”'_ces have only real e'emef_‘ts’ so the phase n
trices discussed in the literature. See R&8] for a review. the f_|rst relation is absent. In order to avoid the undesirable
(Since the matrices discussed in Rdf5] are symmetric the relation
off-diagonal zeros are the same element and counted as one
zero) The only difference is that our matrices are antisym- ‘Vub

: (13

~ \/% (14

S

metric in the(1,2 and(2,1) indices[7,16]. The matrix for

~\= (15)
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the (2,3 and(3,2) elements of the Yukawa matrices should plied to our model because of nonminimal Higgs representa-
be sufficiently large—much larger thang/m, and m./m;  tions and the compactification scale being slightly lower than
for d-Yukawa matrix and u-Yukawa matrix, respectively.  the GUT scale. A detailed study of induced baryon number
The(2,3) and(3,2) elements ofY; andY, are too large to  violation would be interesting to check the viability of the
be neglected compared to tli2,2) and (3,3 diagonal ele- model. In addition to symmetry breaking by boundary con-
ments. The off-diagonal elements are different ¥y and  ditions we introduce two types of Higgs fields. First, stan-
Y, : they arepe(1+v') andpe(1—3v'), respectively. Thus, dard Higgs fields that break GUT symmetry down to the
the off-diagonal elements affect the largest eigenvalue of thetandard model and give masses to the quarks and leptons.
matrix differently for the bottom Yukawa and theYukawa.  Second, flavon Higgs fields whose role is to completely
Therefore, the bottom-unification is not exact and theand  break the flavor symmetry. The flavor symmetry is broken
7 masses can be fitted accurately. Similar observation wagose to the GUT scale.
made in Ref[18]. Bulk multiplets contain zero modes corresponding to the
It is not possible to uniquely determine all the parameterswo lightest families that transform as a doublet under flavor
in Egs. (10)—(12) like €, v, etc. because there are arbitrary SU(2). Thethird family is a singlet under the flavor sym-
coefficientsa; in front of every term, see Appendix B. Only metry and it is localized at one of the orbifold fixed points.
certain combinations of the coefficierds and other param- The SU(7) gauge symmetry is not preserved at the fixed
eters appear in the Yukawa matrices. We would like all copoint where the third family is localized. Therefore, the third
efficientsa; to be close to one since they are dimensionlessamily does not come from a comple8J(7) multiplet and
couplings. We get the values af to be close to one by is a flavor singlet. As far as the flavor symmetry and the light

choosing the remaining parameters as follows: fields are concerned our model is very similar to the 4D
model described in Ref7].
p6=i pf,:i ngzi 5:i Our main goal was constructing a realistic pattern of
30’ 40’ 2000’ 20’ Yukawa matrices at the GUT scale. We were only concerned
with the quark and charged lepton sectors and completely
, 5 2 neglected the neutrino sector. The Yukawa couplings come
v—T3 U733 (16 from the superpotential in Eq5), which we chose to re-

semble the “four zeros” texture described in REI5]. The
We assume thap~0.1 and infer the VEVs of flavonse resulting Yukawa matrices, omitting a number of dimension-
~0.33, €' ~0.75, ando~0.15. These VEVs are smaller less constants of order one, are given in E@§), (11), and
than the cutoffA, but €’ is quite close to 1. Together with (12).
5~0.05 and the GUT scalbl g ,1~2.8X 10" GeV, we get The orders of magnitude of different elements of the
A~5.6x10" GeV and 1R~8.8x10' GeV. These num- Yukawa matrices are governed by three different effects. The
bers give a reasonable separation of the cutoff, the GUT, anfiyst effect is the geometry of our model. The couplings that
the compactification scald¢49]. However, the VEVs of the involve both localized fields and bulk fields are suppressed
flavons are sufficiently close to the cutoff scale that higherdue to small wavefunction overlap between such fields. Sec-
dimensional operators may play an important role in the genend, theSU(2)xU(1) flavor symmetry is broken by three
eration of Yukawa couplings in our model. The values ofdifferent flavons and their conjugates. Among the three fla-
parameters in Eq(16) correspond to tag=47, but we vons there are twd&U(2) doublets and one singlets. All
could make similar choices for other values of gan flavons are charged under th1). We do notcount sepa-
What is interesting is that the flavons’ VEVss, €', o, are  rately the conjugates of the flavons because the VEVs of
of the same order. This is very different from many 4D mod-flavons with the conjugate quantum numbers are identical to
els where the flavons usually obtain hierarchical VEVs inmaintain SUSY above the weak scale. Third, the up and
order to produce hierarchy in the Yukawa matrices. The geodown sectors are distinguished by the mixing of the Higgs
metric suppression factor does contribute in our model taloublets that come both from tfteand the45. The light up
generating small ratios. and down Higgs doublets come from different linear combi-
nations of5 and45. Of course, any value of tgh other than
. SUMMARY 1 also differentiates the up and down sectors.
Our model has too many free parameters to be predictive.
The underlying theory for our model is a 5D SUSY theory What we accomplished, however, is generating the Yukawa
with the SU(7) gauge group. Compactification of the fifth matrices in terms of a few small parameters: flavon VEVs,
dimension on &,X Z, orbifold breaks SUSY tdv=1in4D  defined in Eqs(8) and(16), and the geometric suppression
as well as breaksSU(7) to GUT SU(5) times flavor factor. By matching to the observed fermion mass spectrum
SU(2)xU(1). The compactification scale is very close to and quark mixing angles we determined the 13 nonzero pa-
the GUT scale, it is just a factor of three smaller than therameters in the Yukawa matrices, see E@5)—(B7). We
GUT scale. Thus, our model is an ordinary SUSY GUT al-chose the undetermined parameters such that the dimension-
most all the way to the GUT scale. We did not investigate thdess couplings are close to one.
proton decay rate, which tightly constrains the minimal What is interesting is that given a few arbitrary choices all
SU(5) SUSY GUT[20], see alsd21]. However, the mini- dimensionless coefficients are of order one. Moreover, many
mal SU(5) results for proton decay cannot be directly ap-of the coefficients listed in EqB11) are very close to one.
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All the large ratios are determined in terms of the geometridn the equation abov& is the SU(5) adjoint field that de-
suppression factor and a few flavon VEVs that are of thevelops anSU(5) breaking VEV given by Eq(9) and(X)
same order of magnitude. Obviously, a more fundamentak6A. M, and M, are arbitrary mass parameters that are
and predictive structure of flavor is still missing. However, it comparable to the GUT scale. We also assume jhat

is conceivable that the flavor could be generated from an- 5A so that theSU(2) doublets inH andH are light. The
interplay between geometry and flavor symmetries. mass matrix for the doublets arising fram H, K, K, Kj,

andK; has the following structure

o _ _ Hqy\ T/ 0 6A O Hy,
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where we assumed that+ A =0. The light eigenvalues of

APPENDIX A: MIXING OF HIGGS DOUBLETS this mass matrix are two doublets

We briefly comment on the mixing of the Higgs doublets hy=cosaH, FsinakK,, (A3)

coming from the45 and 5 representations and their conju- hg=cosyH4+sinyKy, (A4)
gates. As we explained in Sec. Il, we need #®and 45

representations to avoid the equality of the lepton-downvhere tare=6A/M; and tany=SA/M;. There is no rea-
quark Yukawa couplings in the two light families. The prob- son to assume tha#l; and M, are equal, so the mixing
lem is similar to SO(10) unification, where one needs to angles of the up and down Higgs doublets are, in general,
introduce larger Higgs representation in addition to thedifferent. Clearly, the remaining Higgs doublets have masses
10-dimensional Higgs field to incorporate realistic Yukawa Of the order of the unification scale and so do other compo-
couplings. The additional Higgs fields, for exampl@6, nents ofK, K, K;, andK;. Our model has no natural mecha-
would produce too many light doublets. A simple solutionnism to address the doublet-triplet splitting problem, so to
was presented in Ref22]. Similar solution works in the keep the triplets heavy we have to resort to fine-tuning.
SU(5) case and we outline it here for completeness.

We supplement the Higgs fields, H, K, andK intro- APPENDIX B: FITTING TO THE DATA

duced already by another pair 45 and45 Higgs fields. Let We now describe our procedure for determining the
us refer to the new fields 391 and El' We assume that the Yukawa matrices at the GUT scale. As we mentioned in Sec.
Superpotentia| for these H|ggs fields is given by Il A, there are no relations between the various terms in Eq
(5) since different terms are not related by symmetries to one
WHiggs=,uHﬁ+ HSH+HSK;+H3K,+MK;K another. Therefore, one needs to include arbitrary coeffi-
_ cients of order one in front of every term. After including the
+M,KK;. (A1)  missing coefficients E(5) becomes

— 1 _ — — —
W=a,T3TsH+a,TzFzH+ X[33T3T¢’TH +a4F3TorH+asTsF ppH+agT3T K+ a;F3T oK+ agTsF ¢peK

— — 1 — _ —
+agTFyH+aoTFyYK]+ P[a11T¢TT¢TH +al drFppH+a13T 1T drK+a T drF deK+asT TS H

+aTTEK Y. (B1)
The corresponding Yukawa matrices are then

0 p?od(ajstai) 0

2 2 2 Pe
—pcod(as+ag) e“(apta;v) —(as+a )
v, p 151 844 P ntagw 5 (aztagy) siny, B2

pE
0 ?(a3+a6U) a
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0 plo(agtaw’) 0

Y4= _PZO'(ag"‘aloU,) p’ee’ (ataip’) pe(agtagpw’) Sina, (B3)
0 pe'(astagy’) a,
0 po(ag—3aw’) 0

Y, =| —pPo(ag—3ap’) p’ee’(a—3ap’) pe(az—3ap’) |sina. (B4)
0 pe'(as—3agy’) a,

The Yukawa matrices are defined in terms of 16 coefficients V,s=0.2205+0.0018, V,,=0.0373+0.0018,
a;, 3 flavon VEVs,3 VEV, geometric factorp, and two

Higgs mixing angles: a total of 23 parameters. However,

several of our parameters only appear in particular combina- [Vup/Vep|=0.08+0.02.

tions, which allows us to eliminate the “unobservable” com-

binations: . . . .
Given the structure of Yukawa matrices described in Egs.

0 ¢ O (B5)—(B7) at the GUT scale, we use the one loop renormal-
ization group equations in the MSSN4] to compare with

Yu=| G C2 Cs 7, (BS  the weak scale data. We set the GUT scale toMhey T
0 ¢ 1 =2.80x 10 where the three gauge coupling constants unify.
The one-loop running of the gauge couplings does not in-
0 ¢ O volve the Yukawa couplings, so the gauge couplings are de-
Yy=| —¢4 ©s5 ¢, (86)  termined at all scales before fitting the Yukawa matrices. We
0 o 1 neglect the fact that the first few KK modes appear below
7 MguT SinceRMgy1~3.2. Since the logarithm Mgt is
0 ¢ 0 small we can neglect the effects of the KK modes below
8 Mgyt and we use 4D RGE equations.
Y= =Cg Cg Cypo|{. (B7) In practice, we numerically evaluate the RGE equations
0 ¢ 1 from the GUT scale down to the weak scale. We then com-

pare the results of the RGE running with the data and evalu-

We are left with 13 parameters; throughcqq, 7, and({. ate they? using the experimental errors. The errors are se-
The experimental data gives nine masses and three rewaerely underestimated this way because threshold corrections
angles in the CKM matrix. Including complex phases in ourand two-loop effects are much larger than the experimental
Yukawa matrices would introduce too many free parametergjncertainty of the lepton masses. However, since we have
so we omit the phases. If we performed a fit with the phasesore parameters than the number of inputs we are able to get
present the values of the real parameters might change good fit. For example, we present the numerical fit for
slightly, but such change would not affect the structure of thdanB=47 below:
Yukawa matrices.

To obtain the GUT scale values we use the following

fermion parameters and the gauge couplings at the s¢ale 0 —0.0001050 0
[23] as inputs: Y,=| 0.0001050  0.005335 0.05848.053,
@,;=0.016829, a,=0.033493, a;=0.118, 0 0.05848 1 8
m,=2.33+0.435 MeVm.=0.677+0.0585 GeV,
m,=181+13 GeV, 0 0.004744 0
Yq=| —0.004744 0.006898 0.1049D.4597,
B9
m,=3.00+0.1 GeV, (B9)
m.=486.847270.00014 keV, 0 —0.003774 0
0 —0.3161 1
m,=1.74669 0.000285 GeV, (B10)
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The totalx? for this fit is 4.654. They® is dominated by the a,,—4.618, a,,=0.7942, a;s=1
errors frommy andm,., but none of the two masses with the (B11)
poorest fit deviates by more than &.from the experimental Note that the coefficientas, a;; anda;s in Y, are set by
value. hand. There are too many free parameters to be uniquely

To extract the physical parametepso and so on, we determined from the 13 parameters in E@5)—(B7), so we
need to remember that the coefficients . . . ,a;c are close need to arbitrarily choose some of them.

y a16: 1160

to 1. A choice of parameters is given in EG.6) and the Most coefficientsa; are very close to 1 and certainly none
corresponding coefficients are of the coefficients deviate from one by an order of magni-
tude. There are many small additional contributions to this
a;=1.266, a,=0.8935, az=3, a,=1.006, result that we neglected, for example higher-dimensional op-
erators, threshold corrections, higher-loop effects. Since the
a5=1.029, ag=2.162, coefficientsa; are so close to multiples of 1 it is possible that
the deviations could be accounted for by higher-order effects
a;=1.019, ag=0.9590, ag=1.557, we neglected. This suggests that there could be a simple set
of hidden symmetries responsible for this result. It certainly
a,0=0.7611, a;;=3, a;»=1.141, would be an exciting possibility.
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