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Family unification on an orbifold
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We construct a family-unified model on aZ23Z2 orbifold in five dimensions. The model is based on a
supersymmetricSU(7) gauge theory. The gauge group is broken by orbifold boundary conditions to a product
of grand unifiedSU(5) andSU(2)3U(1) flavor symmetry. The structure of Yukawa matrices is generated by
an interplay between spontaneous breaking of flavor symmetry and geometric factors arising due to field
localization in the extra dimension.

DOI: 10.1103/PhysRevD.70.035013 PACS number~s!: 12.10.Dm, 12.60.Jv
a
-

nt
no
he
e
ig
vo
nt
o
ri
e
n
h

m
an
na
m

b
e
a
in

el
is

w

5
ou
d
ar
n
th
-

e-

lot
ms

rd
d-

ul

-

er

rd
in

n-

of
by
tric
ur
the
p-
the
om-
are

dis-

his
er-
in-

are
el
etup

in-
ma-
cal
ata
I. INTRODUCTION

The success of gauge coupling unification in the minim
supersymmetric standard model~MSSM! suggests there ex
ists a grand unified theory~GUT!. In GUTs, one generation
of fermions can be incorporated in one or more represe
tions of a simple GUT gauge group. However, GUTs do
explain why there are three different families and do not s
any light on the pattern of the observed fermion mass sp
trum and mixing angles. An immediate idea is to also ass
a symmetry group for the generations, the so-called fla
group. Theories incorporating this idea can be divided i
two broad categories. First, theories in which the flav
group and the GUT group are orthogonal. Second, theo
that unify the flavor group and the GUT group into a larg
simple group. The second approach is known as family u
fication @1#. Within the first category, realistic theories wit
continuous flavor groupsSU(3), SU(2)3U(1), U(1) as
well as several discrete groups have been considered. Fa
unified models push the unification idea a step further
are esthetically more attractive. However, four-dimensio
models of family unification usually suffer from the proble
of mirror families; see Ref.@2# for a review.

In the past few years the notion of symmetry breaking
orbifold boundary conditions in extra dimensions has be
revitalized. Orbifold breaking has been used to address v
ous problems ranging from electroweak symmetry break
@3#, supersymmetry breaking@4# to GUT model building
@5,6#. For example, in Ref.@5# orbifold compactification is
used to break theSU(5) GUT group to the standard mod
group and solve the doublet-triplet splitting problem that
difficult to overcome in 4D models. One of the reasons
use orbifold boundary conditions is to give large masses
mirror fermions, as noticed for example in Ref.@2#.

In this article, we construct a family-unified model in
dimensions. To maintain the unification of the gauge c
plings our model incorporates supersymmetry. The fifth
mension is compactified and we impose orbifold bound
conditions on all fields propagating in the fifth dimensio
The role of the boundary conditions is threefold. We use
orbifold breaking to get rid of mirror families, break family
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unified gauge group to a product of GUT and flavor symm
try, and also reduce the amount of supersymmetry toN51
in 4D. Given that the quarks of the third generation are a
heavier than the quarks of the first two generations, it see
natural that the light families form a doublet, while the thi
family a singlet under the flavor group. Consequently, mo
els usingSU(2)3U(1) flavor symmetry are quite successf
in reproducing the mass spectrum@7#. We embed the flavor
SU(2)3U(1) andSU(5) GUT group in anSU(7) family
unified gauge group. A similar setup was studied in Ref.@8#,
where anSU(7) family unified model was considered. How
ever, in Ref.@8# the GUT group is flippedSU(5) and the
emphasis is on the doublet-triplet splitting problem. A furth
difference is that in the construction of Ref.@8# all matter
fields propagate in the bulk, while in our model the thi
family is localized. A number of authors discussed flavor
extra dimensions, see Ref.@9# and references within.

The SU(7) gauge group is broken by the boundary co
ditions toSU(5)3SU(2)3U(1). Both theSU(5) and the
flavor groups are broken further by expectation values
Higgs fields. The pattern of Yukawa matrices is generated
both spontaneous breaking of the flavor group and geome
factors due to field localization. Some of the fields in o
model propagate in the bulk, while others are localized at
orbifold fixed points. Therefore, wavefunction overlap su
presses certain couplings with respect to others. All of
flavor physics takes place at very high energy scales, c
parable to the GUT scale. Supersymmetry breaking terms
of order the electroweak scale and are irrelevant for the
cussion of flavor. We will not discuss the breaking ofN51
supersymmetry in any detail since this is not the focus of t
paper. Any standard mechanism of communicating sup
symmetry breaking in a flavor-diagonal manner could be
corporated into our model. Standard gauge mediation@10#
could operate if SUSY breaking and messenger fields
localized at an orbifold fixed point. By extending the mod
to one more dimension one could create an appropriate s
for either anomaly mediation@11# or gaugino mediation@12#
of supersymmetry breaking.

In the next section, we describe the field content and
teractions needed to produce Yukawa matrices. We sum
rize our results in Sec. III. The details concerning numeri
determination of the high-energy parameters from the d
are presented in Appendix B.
©2004 The American Physical Society13-1
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II. THE MODEL

Our model is based on a supersymmetric field theory
five dimensions. The fifth dimension is compactified on
(Z23Z28) orbifold. We parametrize the fifth dimension, d
scribed by coordinatey, as an interval withyP@0,pR/2#.
This interval can be thought of as obtained from a cir
@0,2pR# by identifying points related by reflections aroun
two perpendicular axes. Under these reflections,y;2y and
y;p2y such that the circle is equivalent to they
P@0,pR/2# interval. We denote these reflections asP and
P8, respectively.

An arbitrary bulk field configuration can be decompos
into the eigenstates of the reflectionsP and P8. Since P2

5P8251 the eigenvalues must be6. Of course, the eigen
states of the reflections have either the Dirichlet or Neum
boundary conditions at the end points of the interval. T
Kaluza-Klein ~KK ! decomposition of a bulk fieldf(xm,y)
into four dimensional mass eigenstates can be classified
cording to the two parities:

f11~xm,y!5 (
n50

`
1

A2dn0pR
f11

2n ~xm!cos
2ny

R
,

f12~xm,y!5 (
n50

`
1

ApR
f12

2n11~xm!cos
~2n11!y

R
,

f21~xm,y!5 (
n50

`
1

ApR
f21

2n11~xm!sin
~2n11!y

R
,

~1!

f22~xm,y!5 (
n50

`
1

ApR
f22

2n12~xm!sin
~2n12!y

R
,

where xm is the four dimensional coordinate and the su
scripts refer to the parities under theP and P8 reflections.
The five dimensional Lagrangian has simple dependenc
y when the fields are expressed in terms of KK states.
integral over the fifth dimension can be performed explici
One obtains then a four-dimensional Lagrangian describin
KK tower of four dimensional fields. The KK states specifi
in Eq. ~1! have masses 2n/R, (2n11)/R, (2n11)/R, and
(2n12)/R, respectively. The only massless 4D field
f11

0 (xm).
It turns out that the compactification scale in our mod

will be comparable to the GUT scale. The massive states
therefore be too heavy to correspond to observable sta
The fields of the MSSM will come from the zero modes
the KK decomposition, as well as from brane fields localiz
at the end points of the interval.

A. Fields and interactions

We now begin to describe our model in detail. The 5
bulk theory is anN51 SUSY theory with anSU(7) gauge
group. Such a theory has 8 supercharges and correspon
N52 SUSY in four dimensions. However, the bounda
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conditions preserve only 4 supercharges, so that below
compactification scale the theory is a four dimensionalN
51 theory.

There is an arbitrary choice of how the reflection symm
try is represented in the space of gauge transformations.
choose the action of the two parities on the fundamen
representation of the SU(7) group to be P
5diag$1,1,1,1,1,1,1% and P85diag$21,21,21,21,
21,1,1%. Consequently, an arbitrary tensor representation
SU(7), fkl . . .

i j . . . , transforms as

fkl . . .
i j . . . ~2y!5hfPi 8

i Pj 8
j Pk

k8Pl
l 8 . . . fk8 l 8 . . .

i 8 j 8 . . .
~y!,

fkl . . .
i j . . . ~p2y!5hf8 P8 i 8

i P8 j 8
j P8k

k8P8 l
l 8 . . . fk8 l 8 . . .

i 8 j 8 . . .
~y!,

under the two parity transformations, wherehf ,hf8 561 are
the overall, ‘‘internal,’’ parity eigenvalues. For a free field th
parities can be chosen arbitrarily. Interaction terms corre
the parities of different fields. For example, the invariance
the supersymmetric Lagrangian imposes relations betw
parities of different components of superfields.

The 5D gauge multiplet contains a vectorAM , two gaugi-
nosl1 , l2, and a real scalarS, all of which transform in the
adjoint representation ofSU(7). We use theupper case Latin
letters to denote 5D Lorentz indices, and the lower c
Greek letters to denote 4D indices. The 5D SUSY Lagra
ian is invariant under the reflections if

h
Am

52h
A5

52h
S
, h

l1
52h

l2
, ~2!

as well as an identical set of relations forP8. We choose
h

Am
5h8Am

5h
l1

5h
l1
8 51.

Upon compactification, the first reflection breaks theN
51 5D SUSY toN51 4D SUSY since bothA5 and l2
obtain large masses. Meanwhile,Am andl1 contain the zero
modes that transform exactly as the 4DN51 vector multip-
let. Since we do not embed the parity transformations i
the R symmetryN51 supersymmetry in 4D is preserve
The second reflection breaks the gauge group fromSU(7) to
its SU(5)3SU(2)3U(1) subgroup. More precisely, on th
brane located aty5pR/2 the gauge group is broken, whil
in the bulk and on the braney50 the full symmetry remains
Besides the gauge multiplets, we put the 5D hypermultip
in the bulk. Under theSU(7) symmetry, the hypermultiplets
transform as117135121̄.1 A hypermultiplet corresponds
to two 4D chiral superfields with opposite parities$C,Cc%:

hC52hCc, ~3!

hC8 52hCc8 . ~4!

We choosehC5hC8 51 so that all the massless fields com
from C. These massless fields can be expressed in term

1The SU(7) field content coincides with anSO(14) spinor64
when the spinor is written in the SU~7! basis. This suggests that ou
model may be embedded in a larger symmetry group.
3-2
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TABLE I. Light chiral superfields and theirSU(5)3SU(2)3U(1) charges.

Bulk fields Brane fields

Matter Ta(10,2)21 , Fa(5̄,2)3 , Sa(1,2)25 T3(10,1)0 , F3(5̄,1)0

Higgs S(24,1)0 , H(5,1)0 , H̄(5̄,1)0

fields K(45,1)0 , K̄(45,1)0

Flavons fT,a(1,2)1 , f̄T
a(1,2)21 , c(1,1)22 , c̄(1,1)2

fF,a(1,2)23 , f̄F
a(1,2)3
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representations of the unbroken gauge groupsSU(5)
3SU(2)3U(1). These representations areTa(10,2)21 ,
Fa(5̄,2)3 , Sa(1,2)25, and a neutral field (1,1)0, where a
51,2 is the SU~2! index. This set of 4D massless fields
free of gauge anomalies. In addition, there is no 5D anom
either in the bulk or on the branes@13#. We interpret the
SU(5) as the GUT group and theSU(2)3U(1) as a flavor
group. The zero modes (10,2)21 and (5̄,2)3 are chosen to be
the light two families of fermions with their superpartne
and (1,2)25 might be the right-handed neutrinos with the
superpartners.

On the asymmetric brane we add all other superfields
are necessary to complete the MSSM spectrum and brea
GUT and flavor symmetries. Since theSU(7) gauge symme-
try is broken on this brane, the localized fields do not nee
form completeSU(7) multiplets. First, we choose the thir
family to be SU~2! singlets:T3(10,1)0 , F3(5̄,1)0. Second,
the SU~5! symmetry is broken by the conventional Higg
fields: S(24,1)0 , H(5,1)0 , H̄(5̄,1)0 , K(45,1)0, and
K̄(45,1)0. We need to include the45 and45 representations
to avoid the undesirable relationsmm.ms andme.md at the
GUT scale. In addition, we introduce the following fields
break the flavor SU(2)3U(1) symmetry: fT,a(1,2)1 ,
f̄T

a(1,2)21, xfFa(1,2)23 , f̄F
a(1,2)3 , c(1,1)22, and

c̄(1,1)2. We will refer to these fields as ‘‘flavons.’’ We sum
marize the light field content in Table I.

Having listed the field content of our model, we no
show how to obtain appropriate Yukawa couplings. Since
model is five-dimensional, the underlying field theory is no
renormalizable and has a cutoffL that is roughly two orders
of magnitude larger than the compactification scale.
specify the Yukawa couplings we write the superpotentia
terms of four-dimensional fields that are the brane fields
the zero modes of the bulk fields:

W5T3T3H1T3F3H̄1
1

L
@T3TfTH1F3TfTH̄1T3FfFH̄

1T3TfTK1F3TfTK̄1T3FfFK̄1TFcH̄1TFcK̄#

1
1

L2
@TfTTfTH1TfTFfFH̄1TfTTfTK

1TfTFfFK̄1TTSHc̄1TTSKc̄#. ~5!

This superpotential is valid for a 4D theory below the co
pactification scale, so it is easy to keep track of dimensi
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of operators. We have explicitly indicated the 1/L suppres-
sion of dimension five and dimension six terms. Differe
terms in Eq.~5! are not related by any symmetries, so ea
term comes with a different coefficient. We have omitted t
coefficients of operators for now. We will define and det
mine these coefficients in Appendix B.

In Eq. ~5! we included almost all dimension five and s
terms allowed by the gauge symmetries. We have omitted
couplings ofK and K̄ to the third family fieldsT3 and F3.
Also, the flavonsf̄F , f̄T do not appear in Eq.~5!. Since the
superpotential is not renormalized it is technically natural
exclude certain terms. However, we can assign global s
metries to our fields such that the unwanted terms in Eq.~5!

are prohibited. Such symmetries also preventf̄F and f̄T
from appearing in the higher order terms, like 1/L3, 1/L4,
etc. For any term, the addition of theSU(5) adjoint S is
allowed by gauge symmetries. As we will show later,^S&/L
is small. Thus, we also omitted terms with powers ofS
whenever they would modify a lower order term that is mo
important.

For the sake of clarity, we have also omitted geome
suppression factors in Eq.~5!. These factors are importan
for the structure of Yukawa matrices and are written exp
itly in Sec. II B. Such factors arise when bulk fields couple
brane fields because bulk fields propagate in 5D and t
overlap with brane fields is small. A geometric factor isr
51/ALRp/2. For a given term, the number of powers ofr
suppressing the term is equal to the number of bulk fie
present in the term@14#.

The45 representation,K, and its conjugateK̄ contain one
SU(2) doublet each. Together with the doublets comi
from H andH̄ there would be four light doublets. We assum
that one linear combination of doublets fromH andK gets a
large mass and the orthogonal linear combination rema
light. The same thing takes place forH̄ and K̄. We outline
how to realize this in Appendix A. We denote the light ma
eigenstates ashu,d and the heavy ones ashu,d8 . In terms of
these mass eigenstates

Hu5sinahu1cosahu8 , Ku5cosahu2sinahu8 , ~6!

Hd5singhd1cosghd8 , Kd5cosghd2singhd8 , ~7!

whereHu,d and Ku,d represent theSU(2) doublet compo-
nents of the corresponding fields. The mixing anglesa andg
are free parameters. For convenience, we definev5cotg and
v85cota.
3-3
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We assume that the flavons andS get D-flat, SUSY-
preserving, VEVs:

^fT&
L

5
^f̄T&

L
5S 0

e D ,
^fF&

L
5

^f̄F&
L

5S 0

e8
D ,

^c&
L

5
^c̄&
L

5s, ~8!

^S&
L

5diagH 2
2

3
d,2

2

3
d,2

2

3
d,d,dJ . ~9!

Supersymmetry is only broken by weak-scale soft mas
We do not specify the superpotential that produces th
e
ffi

s.
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e
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VEVs as it is not essential for our discussion, but it wou
not be difficult to do so.

B. Yukawa matrices

Using Eqs.~5! through ~9! it is straightforward to write
the Yukawa matrices in terms of the MSSM superfield
These couplings arise at the GUT scale after^S& breaks
SU(5) to the standard model. We denote the Yukawa ma
ces asYu , Yd andYl for the up quarks, down quarks, and th
charged leptons, respectively. We do not consider the n
trino mass matrices orCP violating phases in this article
The Yukawa matrices are given by
Yu;S 0 r2sd~11v ! 0

2r2sd~11v ! r2e2~11v !
1

2
re~11v !

0
1

2
re~11v ! 1

D sing, ~10!

Yd;S 0 r2s~11v8! 0

2r2s~11v8! r2ee8~11v8! re~11v8!

0 re8~11v8! 1
D sina, ~11!

Yl;S 0 r2s~123v8! 0

2r2s~123v8! r2ee8~123v8! re~123v8!

0 re8~123v8! 1
D sina. ~12!
ros

se in
ble
We indicated the matrices with the proportionality sign b
cause in the interest of clarity we omitted arbitrary coe
cients that are also missing in Eq.~5!. Compare Eqs.~B2!–
~B4! in Appendix B that contain the full set of coefficient
The factors of12 that appear in the~2,3! and~3,2! elements of
Yu arise because the termsT3TfTH andT3TfTK contribute
to both elements.

We determine the magnitudes of the elements of
Yukawa matrices at the GUT scale by using the renormal
tion group equations for these matrices and comparing th
with the masses and the CKM angles at the weak scale.
fitting procedure is described in Appendix B. As we will s
the experimental data can be fitted quite accurately. Be
we present the results let us make several comments a
the matrices~10!–~12!.

If e'e8 the structure of the quark Yukawa couplings
very similar to the 4 texture zero symmetric quark mass m
trices discussed in the literature. See Ref.@15# for a review.
~Since the matrices discussed in Ref.@15# are symmetric the
off-diagonal zeros are the same element and counted as
zero.! The only difference is that our matrices are antisy
metric in the~1,2! and ~2,1! indices @7,16#. The matrix for
-
-

e
-
m
he

re
out

-

ne
-

the leptons is similar to that for the down quarks. The ze
in the Yukawa matrices~10!–~12! are exact provided thatf̄F

and f̄T are absent in the superpotential in Eq.~5!.
As discussed in Ref.@17#, this kind of matrices can give

us the approximate relations

uVusu'UAmu

mc
2eifAmd

ms
U, ~13!

UVtd

Vts
U'Amd

ms
, ~14!

where f is a CP violating phase defined in Ref.@17#. Of
course, our matrices have only real elements, so the pha
the first relation is absent. In order to avoid the undesira
relation

UVubU'Ams
~15!
Vcb mb

3-4
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the ~2,3! and ~3,2! elements of the Yukawa matrices shou
be sufficiently large—much larger thanms /mb and mc /mt
for d-Yukawa matrix and u-Yukawa matrix, respectively.

The ~2,3! and~3,2! elements ofYd andYl are too large to
be neglected compared to the~2,2! and ~3,3! diagonal ele-
ments. The off-diagonal elements are different forYd and
Yl : they arere(11v8) andre(123v8), respectively. Thus,
the off-diagonal elements affect the largest eigenvalue of
matrix differently for the bottom Yukawa and thet Yukawa.
Therefore, the bottom-t unification is not exact and theb and
t masses can be fitted accurately. Similar observation
made in Ref.@18#.

It is not possible to uniquely determine all the paramet
in Eqs. ~10!–~12! like e, v, etc. because there are arbitra
coefficientsai in front of every term, see Appendix B. Onl
certain combinations of the coefficientsai and other param-
eters appear in the Yukawa matrices. We would like all
efficientsai to be close to one since they are dimensionl
couplings. We get the values ofai to be close to one by
choosing the remaining parameters as follows:

re5
1

30
, re85

3

40
, r2s5

3

2000
, d5

1

20
,

v85
5

3
, v5

2

3
. ~16!

We assume thatr'0.1 and infer the VEVs of flavons:e
'0.33, e8'0.75, ands'0.15. These VEVs are smalle
than the cutoffL, but e8 is quite close to 1. Together with
d'0.05 and the GUT scaleMGUT;2.831016 GeV, we get
L;5.631017 GeV and 1/R;8.831015 GeV. These num-
bers give a reasonable separation of the cutoff, the GUT,
the compactification scales@19#. However, the VEVs of the
flavons are sufficiently close to the cutoff scale that hig
dimensional operators may play an important role in the g
eration of Yukawa couplings in our model. The values
parameters in Eq.~16! correspond to tanb547, but we
could make similar choices for other values of tanb.

What is interesting is that the flavons’ VEVs,e, e8, s, are
of the same order. This is very different from many 4D mo
els where the flavons usually obtain hierarchical VEVs
order to produce hierarchy in the Yukawa matrices. The g
metric suppression factor does contribute in our mode
generating small ratios.

III. SUMMARY

The underlying theory for our model is a 5D SUSY theo
with the SU(7) gauge group. Compactification of the fift
dimension on aZ23Z2 orbifold breaks SUSY toN51 in 4D
as well as breaksSU(7) to GUT SU(5) times flavor
SU(2)3U(1). The compactification scale is very close
the GUT scale, it is just a factor of three smaller than
GUT scale. Thus, our model is an ordinary SUSY GUT
most all the way to the GUT scale. We did not investigate
proton decay rate, which tightly constrains the minim
SU(5) SUSY GUT@20#, see also@21#. However, the mini-
mal SU(5) results for proton decay cannot be directly a
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plied to our model because of nonminimal Higgs represen
tions and the compactification scale being slightly lower th
the GUT scale. A detailed study of induced baryon num
violation would be interesting to check the viability of th
model. In addition to symmetry breaking by boundary co
ditions we introduce two types of Higgs fields. First, sta
dard Higgs fields that break GUT symmetry down to t
standard model and give masses to the quarks and lep
Second, flavon Higgs fields whose role is to complet
break the flavor symmetry. The flavor symmetry is brok
close to the GUT scale.

Bulk multiplets contain zero modes corresponding to
two lightest families that transform as a doublet under fla
SU(2). The third family is a singlet under the flavor sym
metry and it is localized at one of the orbifold fixed point
The SU(7) gauge symmetry is not preserved at the fix
point where the third family is localized. Therefore, the thi
family does not come from a completeSU(7) multiplet and
is a flavor singlet. As far as the flavor symmetry and the lig
fields are concerned our model is very similar to the
model described in Ref.@7#.

Our main goal was constructing a realistic pattern
Yukawa matrices at the GUT scale. We were only concer
with the quark and charged lepton sectors and comple
neglected the neutrino sector. The Yukawa couplings co
from the superpotential in Eq.~5!, which we chose to re-
semble the ‘‘four zeros’’ texture described in Ref.@15#. The
resulting Yukawa matrices, omitting a number of dimensio
less constants of order one, are given in Eqs.~10!, ~11!, and
~12!.

The orders of magnitude of different elements of t
Yukawa matrices are governed by three different effects. T
first effect is the geometry of our model. The couplings th
involve both localized fields and bulk fields are suppres
due to small wavefunction overlap between such fields. S
ond, theSU(2)3U(1) flavor symmetry is broken by thre
different flavons and their conjugates. Among the three
vons there are twoSU(2) doublets and one singlets. A
flavons are charged under theU(1). We do notcount sepa-
rately the conjugates of the flavons because the VEVs
flavons with the conjugate quantum numbers are identica
maintain SUSY above the weak scale. Third, the up a
down sectors are distinguished by the mixing of the Hig
doublets that come both from the5 and the45. The light up
and down Higgs doublets come from different linear com
nations of5 and45. Of course, any value of tanb other than
1 also differentiates the up and down sectors.

Our model has too many free parameters to be predict
What we accomplished, however, is generating the Yuka
matrices in terms of a few small parameters: flavon VEV
defined in Eqs.~8! and ~16!, and the geometric suppressio
factor. By matching to the observed fermion mass spectr
and quark mixing angles we determined the 13 nonzero
rameters in the Yukawa matrices, see Eqs.~B5!–~B7!. We
chose the undetermined parameters such that the dimen
less couplings are close to one.

What is interesting is that given a few arbitrary choices
dimensionless coefficients are of order one. Moreover, m
of the coefficients listed in Eq.~B11! are very close to one
3-5
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All the large ratios are determined in terms of the geome
suppression factor and a few flavon VEVs that are of
same order of magnitude. Obviously, a more fundame
and predictive structure of flavor is still missing. However
is conceivable that the flavor could be generated from
interplay between geometry and flavor symmetries.
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APPENDIX A: MIXING OF HIGGS DOUBLETS

We briefly comment on the mixing of the Higgs double
coming from the45 and 5 representations and their conju
gates. As we explained in Sec. II, we need the45 and 45
representations to avoid the equality of the lepton-do
quark Yukawa couplings in the two light families. The pro
lem is similar toSO(10) unification, where one needs
introduce larger Higgs representation in addition to
10-dimensional Higgs field to incorporate realistic Yukaw
couplings. The additional Higgs fields, for example126,
would produce too many light doublets. A simple soluti
was presented in Ref.@22#. Similar solution works in the
SU(5) case and we outline it here for completeness.

We supplement the Higgs fieldsH, H̄, K, and K̄ intro-
duced already by another pair of45 and45 Higgs fields. Let
us refer to the new fields asK1 andK̄1. We assume that the
superpotential for these Higgs fields is given by

WHiggs5mHH̄1HSH̄1HSK̄11H̄SK11M1K1K̄

1M2KK̄1 . ~A1!
03501
c
e
al

n

e
S
.

n

e

In the equation aboveS is theSU(5) adjoint field that de-
velops anSU(5) breaking VEV given by Eq.~9! and ^S&
}dL. M1 and M2 are arbitrary mass parameters that a
comparable to the GUT scale. We also assume thatm'

2dL so that theSU(2) doublets inH andH̄ are light. The
mass matrix for the doublets arising fromH, H̄, K, K̄, K1,
andK 1̄ has the following structure

M5S Hd

K1d

Kd

D TS 0 dL 0

dL 0 M2

0 M1 0
D S Hu

K1u

Ku

D , ~A2!

where we assumed thatm1dL50. The light eigenvalues o
this mass matrix are two doublets

hu5cosaHu1sinaKu , ~A3!

hd5cosgHd1singKd , ~A4!

where tana5dL/M2 and tang5dL/M1. There is no rea-
son to assume thatM1 and M2 are equal, so the mixing
angles of the up and down Higgs doublets are, in gene
different. Clearly, the remaining Higgs doublets have mas
of the order of the unification scale and so do other com
nents ofK, K̄, K1, andK̄1. Our model has no natural mecha
nism to address the doublet-triplet splitting problem, so
keep the triplets heavy we have to resort to fine-tuning.

APPENDIX B: FITTING TO THE DATA

We now describe our procedure for determining t
Yukawa matrices at the GUT scale. As we mentioned in S
II A, there are no relations between the various terms in
~5! since different terms are not related by symmetries to
another. Therefore, one needs to include arbitrary coe
cients of order one in front of every term. After including th
missing coefficients Eq.~5! becomes
W5a1T3T3H1a2T3F3H̄1
1

L
@a3T3TfTH1a4F3TfTH̄1a5T3FfFH̄1a6T3TfTK1a7F3TfTK̄1a8T3FfFK̄

1a9TFcH̄1a10TFcK̄#1
1

L2
@a11TfTTfTH1a12TfTFfFH̄1a13TfTTfTK1a14TfTFfFK̄1a15TTSHc̄

1a16TTSKc̄#. ~B1!

The corresponding Yukawa matrices are then

Yu5S 0 r2sd~a151a16v ! 0

2r2sd~a151a16v ! r2e2~a111a13v !
re

2
~a31a6v !

0
re

2
~a31a6v ! a1

D sing, ~B2!
3-6
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Yd5S 0 r2s~a91a10v8! 0

2r2s~a91a10v8! r2ee8~a121a14v8! re~a41a7v8!

0 re8~a51a8v8! a2

D sina, ~B3!

Yl5S 0 r2s~a923a10v8! 0

2r2s~a923a10v8! r2ee8~a1223a14v8! re~a423a7v8!

0 re8~a523a8v8! a2

D sina. ~B4!
n
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The Yukawa matrices are defined in terms of 16 coefficie
ai , 3 flavon VEVs,S VEV, geometric factorr, and two
Higgs mixing angles: a total of 23 parameters. Howev
several of our parameters only appear in particular comb
tions, which allows us to eliminate the ‘‘unobservable’’ com
binations:

Yu5S 0 c1 0

2c1 c2 c3

0 c3 1
D h, ~B5!

Yd5S 0 c4 0

2c4 c5 c6

0 c7 1
D z, ~B6!

Yl5S 0 c8 0

2c8 c9 c10

0 c11 1
D z. ~B7!

We are left with 13 parameters:c1 throughc11, h, andz.
The experimental data gives nine masses and three
angles in the CKM matrix. Including complex phases in o
Yukawa matrices would introduce too many free paramet
so we omit the phases. If we performed a fit with the pha
present the values of the real parameters might cha
slightly, but such change would not affect the structure of
Yukawa matrices.

To obtain the GUT scale values we use the followi
fermion parameters and the gauge couplings at the scaleMZ
@23# as inputs:

a150.016829, a250.033493, a350.118,

mu52.3360.435 MeV,mc50.67760.0585 GeV,

mt5181613 GeV,

md54.3661.13 MeV, ms572623 MeV,

mb53.0060.1 GeV,

me5486.8472760.00014 keV,

mm5102.7513860.00033 MeV,

mt51.7466960.000285 GeV,
03501
ts

r,
a-

al
r
s,
s

ge
e

Vus50.220560.0018, Vcb50.037360.0018,

uVub /Vcbu50.0860.02.

Given the structure of Yukawa matrices described in E
~B5!–~B7! at the GUT scale, we use the one loop renorm
ization group equations in the MSSM@24# to compare with
the weak scale data. We set the GUT scale to beMGUT
52.8031016 where the three gauge coupling constants un
The one-loop running of the gauge couplings does not
volve the Yukawa couplings, so the gauge couplings are
termined at all scales before fitting the Yukawa matrices.
neglect the fact that the first few KK modes appear bel
MGUT sinceRMGUT'3.2. Since the logarithm ofRMGUT is
small we can neglect the effects of the KK modes bel
MGUT and we use 4D RGE equations.

In practice, we numerically evaluate the RGE equatio
from the GUT scale down to the weak scale. We then co
pare the results of the RGE running with the data and ev
ate thex2 using the experimental errors. The errors are
verely underestimated this way because threshold correct
and two-loop effects are much larger than the experime
uncertainty of the lepton masses. However, since we h
more parameters than the number of inputs we are able to
a good fit. For example, we present the numerical fit
tanb547 below:

Yu5S 0 20.0001050 0

0.0001050 0.005335 0.05848

0 0.05848 1
D 1.053,

~B8!

Yd5S 0 0.004744 0

20.004744 0.006898 0.1009

0 0.2205 1
D 0.4597,

~B9!

Yl5S 0 20.003774 0

0.003774 20.007916 20.1526

0 20.3161 1
D 0.4597.

~B10!
3-7
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The totalx2 for this fit is 4.654. Thex2 is dominated by the
errors frommd andmt , but none of the two masses with th
poorest fit deviates by more than 1.5s from the experimenta
value.

To extract the physical parametersr,s and so on, we
need to remember that the coefficientsa1 , . . . ,a16 are close
to 1. A choice of parameters is given in Eq.~16! and the
corresponding coefficients are

a151.266, a250.8935, a353, a451.006,

a551.029, a652.162,

a751.019, a850.9590, a951.557,

a1050.7611, a1153, a1251.141,
.

B
.

s.

o,

n

D

03501
a1354.618, a1450.7942, a1551, a1651.160.
~B11!

Note that the coefficientsa3 , a11 and a15 in Yu are set by
hand. There are too many free parameters to be uniq
determined from the 13 parameters in Eqs.~B5!–~B7!, so we
need to arbitrarily choose some of them.

Most coefficientsai are very close to 1 and certainly non
of the coefficients deviate from one by an order of mag
tude. There are many small additional contributions to t
result that we neglected, for example higher-dimensional
erators, threshold corrections, higher-loop effects. Since
coefficientsai are so close to multiples of 1 it is possible th
the deviations could be accounted for by higher-order effe
we neglected. This suggests that there could be a simple
of hidden symmetries responsible for this result. It certai
would be an exciting possibility.
h
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