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Deconfining phase transition as a matrix model of renormalized Polyakov loops
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We discuss how to extract renormalized loops from bare Polyakov loop&J{iN) lattice gauge theories at
nonzero temperature. Single loops in an irreducible representation are multiplicatively renormalized, without
mixing, through mass renormalization. The values of renormalized loops in the four lowest representations of
SU(3) were measured numerically on small, coarse lattices. We find that in magnitude, condensates for the
sextet and octet loops are approximately the square of the triplet loop. This agrees with I &qgansion,
where factorization implies that the expectation values of loops in adjoint and higher representations are
powers of fundamental and antifundamental loops. The corrections to theNarjations at three colors are
greatest for the sextet loop,1/N, and are found to be=25%. The values of the renormalized triplet loop can
be described by a matrix model, with an effective action dominated by the triplet loop: the deconfining phase
transition forN= 3 is close to the Gross-Witten point t=°.
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[. INTRODUCTION and thereby breaks the globaIN) symmetry spontaneously
[1-23.

In a SU(N) gauge theory, 't Hooft showed that the exact To compute neal 4, it is necessary to employ numerical
order parameter for deconfinement is a gloB&N) spin  simulations on the lattice24—30. The difficulty is that the
[1-23]. The globalz(N) symmetry arises topologicaljd2]  expectation value of the Polyakov loop is a bare quantity,
from the center of the gauge group, and is exact in a purand so suffers ultraviolet divergences. This is due to an ad-
gauge theory. Quarks car®(N) charge, and so break the ditive mass shift which the test quark undergoes with a lat-
gluonic Z(N) symmetry. Nevertheless, numerical resultstice regularization. In four spacetime dimensions, the mass
from the lattice, termed flavor independen@f], suggest divergence for a test quark is linear in the ultraviolet cutoff,
that the gluonicZ(3) symmetry may be an approximate proportional to the inverse of the lattice spacirey, This
symmetry of QCD. mass renormalization affects the expectation value of the

At a nonzero temperaturg a gluonicZ(N) spin is con- bare Polyakov loop as the exponential of a divergent mass,
structed by starting with a thermal Wilson line, which wrapsmﬂ"’, times the length of the pafl31-37:
all of the way around in imaginary time. The trace of the

div
thermal Wilson line is the Polyakov lodg2], m i 1
Y 4] |<fN>|~eXp(—7“ ;i @3
¢ =£trL 1) For a Polyakov loop, the length of the path iF1/
NTNT TN Gervais and Neve{B1], Polyakov[32], and other§33—

37] established that Wilson lines are renormalizable opera-

. . . I tors. We review these results in Sec. Il, applying therfito
and is gauge invariant. This is the trace of the propagator fo(ri single Polyakov loop in an arbitrary, irreducible represen-

an infinitely massive, test quark; the subscripts denote that

the test quark is in the fundamental representation, of dimerf2tion. R. A renormalized loop{x, is formed by dividing

the bare loop by the appropriate renormalization constant,

sion N.
As a gauge theory is heated, deconfinement occurs abover
a temperaturdy. The confined phase B(N) symmetric, so 1 mdiv
the expectation value of the fundamental loop, which has C=—tp, ZR=ex4 _ R (4)
unit Z(N) charge, vanishes beloiWy;. The gluon spin con- 2R T

denses in the deconfined phase, abbye This is a standard type of mass renormalizati@8]; for

_ _ example, in perturbation theorzym‘,’zi” is a power series in
(En)=€?|(€\)]#0, e“N=1 T>T,, (2)  the coupling constant. The only unusual feature is that be-
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cause the Wilson line is a nonlocal operator, the renormaleifferent resummations of perturbation theodfy], all of
ization constant depends upon the length of the path; in gerwhich work down only to a temperature which is several
eral, the renormalization constant for a path of lengths  timesT. Itis also suggested by some features of the RHIC
Zr=exp(—ma’L). data[8].

The real problem is how to extract the divergent masses Turning to loops in higher representations, we find that
nonperturbatively. In this paper we suggest a way of doinghe expectation values ddll renormalized loops are very
this. Consider a set of lattices, all at the same physical tenrsmall in the confined phase. Renormalized loops are nonzero
perature;T, but with different values of the lattice spacirsg, aboveTy, with an ordering of expectation values as triplet,
Since the number of time stepll,=1/(aT), changes be- octet, and then sextet loop. Even though the octet and sextet
tween these lattices, the divergent maﬁsﬁa'v, follows by ~ condensates are smaller than that for the triplet, they are still
comparing the values of the bare Polyakov loops. This assignificant.
sumes that, as in perturbation theoayn” is a function The apparently large values for the condensates of the

only of the temperature, and not of the lattice spacinga as Octet and sextet loops are illusory. This is because when the
—0. Given the renormalization constafif, the renormal- fundamental loop condenses, that alone induces expectation

ized Ioop?R then follows from(4), up to corrections at finite values for all higher loops. It is to these induced values that
we must compare.

lattice spacing-arT. This is clear in the limit of an infinite number of colors

In an asymptotically free theory, at high temperature th .
vacuum is trivial in perturbation theory, as the thermal Wil'ir%g]c;ril\g:kee?(glé?:tzggnM\I/%(Ijuacl,so?zgtr(\)/ﬁ(zjethaiti\t:éeN[zlogfgge

. - B . . |¢
son line is aZ(N) phase times the unit matrnk,,.\lae Iy Factorization is the statement that disconnected diagrams,
(2). After suitable normalization, the expectation value of .
with the most traces, dominate at laiye

any renormalized loop approaches one at high temperature, At infinite N, factorization fixes the expectation value of

any Polyakov loop to be equal to powers of those for the
fundamental and antifundamentéfy=(€y)*, loop [41]:

1
N) . (6)

[(Tr)|—1, T—eo. (5

In Sec. Ill we present measurements of bare and renor-
malized loops obtained through numerical simulations in a <ZR>:<?N>p+<Zﬁ>p7+o
pure SU(3) lattice gauge theory. Polyakov loops in the four
lowest representations were measured, although we onl
found significant signals for three: the fundamental, the sym-
metric two-index tensor, and the adjoint representations. For 1
three colors_, these are Fhe triplet, the sextet, and the octet <"éR>:eieR¢|<"éN>|p+o _)_ )
representations, respectively. These loops were measured at N
temperatures from=0.5T 3— 3T4. Numerically, we find that
in all representations, the divergent masaes,’ are posi- The integersp, and p_ are determined from the Young
tive, so the bare loops vanish in the continuum lint,  tableaux of the representatidd, using the composite repre-
—o. The values of renormalized loops appear to have &entations of Gross and Tayls2,53. At any N, the overall
well-defined continuum limit and approximately satisfy the phase is fixed, trivially, by th&(N) charge ofR, ez=p.
asymptotic condition of5). —p_, moduloN. What is not trivial is the magnitude of the
An alternate procedure for computing the renormalizedoop: at largeN, the term with the most powers of the fun-
Polyakov loop was developed by Kaczmarek, Karsch, Pedamental loop dominates, with powpep, +p_ .
treczky, and Zantow39]. They obtainZ; from the two Lattice simulations with two colors by Damgaard and oth-
point function of Polyakov loops at short distances. Theirers[54,56 showed that the bare adjoint loop is an approxi-
numerical values for the triplet Polyakov loop agree withmate order parameter for deconfinement. At infirliteby
ours atTy4, but differ at higher temperatures; they did not factorization any renormalized loop serves as an order pa-
consider higher representations. rameter for deconfinement, independent ofZ{§N) charge.
The most basic thing to consider is the size of the renorFor example, consider the adjoint loop, with =p_=1,
malized triplet loop. As we shall see, loops in higher repre-and the loop for the symmetric two-index tensor representa-
sentations are approximately given as powers of the tripletion, p.=2 and p_=0. While the adjoint has n&(N)
loop. We define a perturbative regime when the expectatiogharge, and the two-index tensor charge two, modjlan
value of the renormalized triplet loop is near one in magni-magnitude both expectation values aré(?,)|? at largeN.
tude. If the triplet loop is nonzero, but not close to one, then We tested these lardérelationships numerically for three
we have a deconfined, but nonperturbative, regime. At theolors. For each loop, we define the difference between the
transition, T=T , both we and Kaczmaregt al. [39] find  measured loop and its value in the laftgdimit. The expec-
that the renormalized triplet Ioop|,<?3>|, is ~0.4; by tation value of the sextet difference is defined to be
~3Ty4, we find it is=0.9, while Kaczmarelet al. [39] find B 5 ~
~1.0. This suggests that a pure gauge theory is, in some (60g)={le)—{3)?, 8
sense, perturbative from temperatures~a8T4 on up, but
not from T, to ~3T,. This is in qualitative agreement with and that for the octet difference as

ence
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5T =(T)— (T2 9 This was also stressed recently by Aharony, Marsano, Min-
(6Cs)=(Ce) =I(5)] © walla, Papadodimas, and Van Raamsdpid]: at Ty, this
_ o o _ theory only deconfinebalfway.
Of course there is some ambiguity in defining the difference |t js striking that this special value at lardéis close to
|°°tps- (t)'nenadvam?]getog ttf;]elaboveddre]]‘n:]ltlfns IS trt1at thlefhat found from numerical simulations for the renormalized,
automatically vanish at poth fow and g temperature. iy, o+ 1o0p: hoth we and Kaczmaredt al. [39] find |(7
the confined phaseT<T,, the difference loopgnearly %F()M atTp=,T+ In the N=3 matrix modlt:al gloseslt<t§>t|he
vanish because all loops afessentially zero; at very high ' . d-. . :
P Y ross-Witten point, this value is ngt, but ~0.485+0.001

temperature, the difference loops vanish because all loo %7,54.58. The value in the Polyakov loop model, which we

approach one ag— . ; .
: ; . discuss shortly, is=0.55[19].
The expectation values of the difference loops show inter The first o)r/der trans[itio]n at the Gross-Witten point is

esting behavior. They vanish belolly, and spike down atypical. In ordinary first order transitions, masses are non-

above T4, with a maximum at a temperature T4. The . . e

spike for the octet difference is smaller, narrower, and closef < On either side of the trans_|t|c[68]. Even though the

. ) ~ value of the fundamental loop jumps @}, at the Gross-

to Tq than the spike for the sextet differendes¢)|<0.2,  \jitten point both the string tension, and a gauge invariant

with a maximum at~1.1Ty, while [(6€4)|<0.25, with a  Debye mass, vanish. This is only possible because of a tran-

maximum at~1.3T,. sition, which is of third order in the matrix model coupling
The magnitude of these expectation values are in accorgonstant, at infiniteN [43]. The Gross-Witten point is spe-

with a largeN expansion. Corrections to the sextet differencecific to infinite N: at finite N, but =3, in the matrix model

are Iarger,5?6~1/N, than those for the octet difference, deconfinement is an ordinary first order transition, with the

8T~ 1/N2. Thus our measurements of the values of renorString tension and the Debye mass nonzerdat
malized loops give us a numerical estimate of just how good, FOr three colors, lattice simulations find a relatively weak
a largeN approximation is for three colors. Corrections to first order transition, accompanied by a large decrease in
the sextet difference, of 1/N, are found to be<25% when  POth the string tension and the Debye mass figareach by
N=3. about a factor of tefi25]. The customary explanation for this
Although factorization tells us how to reduce condensates that, as in the Potts model, three colors is near the second
for higher loops to powers of that for the fundamental loop,order transition known to occur for two colofS6]. We sug-
it does not tell us how the condensate for the fundamentd¥est that the deconfining phase transition for three colors is
loop changes with temperature. Given the mean field rela@/SO close to the Gross-Witten point of infinitg exactly
tions satisfied by loops in higher representations, in Sec. \N*OW close can be categorized in a matrix mojd].
we consider a mean field theory for the fundamental loop Sundborg9] and other§14-16 showed how at largsl
itself. We consider a matrix valued mean field theory, orthe Hagedorn temperature can be computed when space is a

matrix model; this arises in a wide variety of contejdd—  Very small sphere. On a small sphere, Ahar@tyal. [14]
52], including previoug48,49,54 and recenf14—16 work find that the deconfining transition is of first order if the
on the deconfining transition. Hagedorn temperature is greater thBp. It is tempting to

The most general effective action for a matrix model ofthink that the spikes which we found for the sextet and octet
the deconfining transition involves a sum over loops in alidifference loops may be related to the Hagedorn temperature.
representations. For three colors, we find that the lattice dath SO, for three colors the Hagedorn temperature is tens of
for the renormalized triplet loop is approximately describedP€rcent above that for the deconfining transition. _
by a model whose action includes only the triplet loop. Over It would be valuable to know from numerical simulations
the range of temperatures studied, the coupling constant fdf the deconfining transition for more than three colors is
the triplet loop is nearly linear in temperature. While the close to the Gross-Witten point as well, or if that is unique to
overall values of the sextet and octet loops are approximateltrée colors.

described by this mean field theory, the difference loops are An appendix gives a formal discussion of improved Wil-
not. We categorize more involved models which might. son lines; on the lattice, these are related to smeared, stout

It is interesting to consider what matrix models might links [57]. This may be of use for measuring Polyakov loops
apply to the deconfining transition for more than three col-n higher representations.
ors. Consider the simplest possible model, where the action Our work was motivated by the Polyakov loop model,

includes just the fundamental loop. At infinité the solution ~ Which postulates a relationship between the Polyakov loop—
follows from that of Gross and Witten [14—  Which was presumed to exist as a renormalized quantity—

16,43,47,49,51,54 Kogut, Snow, and Stone showed that in @nd the pressurfl8—21. In the end, we have more than
this model, the deconfining transition is of first order, with a @Pected: not just a renormalized Polyakov loop, but a good

latent heat~ N2 [14,15,47,49,51,54As a first order transi- approximation to its potential, in theU(3) matrix model.

tion, the fundamental loop jumps, from zero to precisely one

half: II. BARE AND RENORMALIZED POLYAKOV LOOPS

A. Traces of Wilson lines in imaginary time

At a temperaturerl, the thermal Wilson line at a spatial

~ 1
=— = + = N
|<€N>|_2’ T=Tq, N== (10 point x, running in time from O tor, is
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R T For periodic gauge transformations, we can form a quan-
LR(X,T)=Pexr{ igJ S(X-T’)t%d7’>i (11 ity which is locally gauge invariant by wrapping the Wilson
0 line around in imaginary time, and then taking its trace:
we take the representatid® to be irreducible. The notation -
is standard® denotes path ordering,is the gauge coupling trL(x,1/T). (17)
constant,r and 7' are variables for imaginary time;, 7':0
— 1T, Aj is the vector potential in the time direction, atid
are the generators &U(N) in R.
The Wilson line is &SU(N) phase factor folR, and so is
a unitary matrix,

For the time being we follow the custom of mathematics,
which is to work with traces that are not normalized. The
trace is greatest when the Wilson line is the identityy .
The propagation of a test quark, st forward in imagi-
nary time generates the Wilson line in the fundamental rep-
LRT(i, T)LR(§,7)= 1%; (12 resentationl_N(i,l/'I'). A test antiquark is a test quark mov-
ing backward in imaginary time, so it gives the conjugate
dy is the dimension of the representation, ara% the unit  Wilson line, Lﬁ()?,lfl’)zLL()Z,lfl’).
matrix in that space. Let us consider how to combine more test quarks and
The thermal Wilson line is proportional to the propagatorantiquarks. To be gauge invariant, the Wilson lines must
of a “test” quark in the representatio® [21,33. A test Wrap around completely in imaginary time, so we drop the
quark is one whose mass is so large that if you put it at &lependence on imaginary time;T1MWe also assume that all
given point in space?, it just sits there. The only motion of test quarks and antiquarks are put doyvn at the same point in
a test quark is up in imaginary time. While the test quarkspace, and so drop the dependencexaas well. So a test
does not move in space, it still interacts in color spacequark givesLy, and a test anti-quark, ;.

through the Aharanov-Bohm effect, it acquiresSdJ(N) The general classification of representations is, for arbi-

phase. trary N, rather involved52,53. We thus start with the lowest
To see this, form a covariant derivative in imaginary time,representations for general We then discuss some simpli-

and define a propagatd¥y, as its inverse: fications forN=3. Finally, we show how one can easily

classify all representations in the larydimit [52]. We use a

d . - - notation whereR is generally denoted by its dimensiaty, .

d—TldR—lgAg(X,T)t% Gr(X,7)= 5(7)1%. (13 e
1. Simple examples

It is easy computing the propagator in one dimension: it S the adjoint Wilson line is a test meson, constructed from

just a step functiong(r), times the Wilson line, a test quark and antiquark. To combine the fundamental and
- - antifundamental Wilson lines into something with adjoint in-
Gr(X,7) = 0(T)LR(X, 7). 14 jices, we sandwich andL[, between twoSU(N) genera-
a
Alternately, consider the path integral representation fof©'S: I

the propagator of a particle with massin a background

ab  _ ayp T4+by.
gauge field; schematically, Lnz— = tr(LntaLntn); (18

i ] the adjoint indicesa,b=1,...,(N>—1). The trace of the
f Dx“ex;{—J’ (m\/;JrigA#x“)ds , (15 adjoint Wilson line is
trLye_g=|trLy|?—1. (19

wherex*=dx*/ds, andsis the path length; an exact form is

given in Ref.[31]. In the limit of m—o, this path is & This follows from an identity on the®s, or directly from
straight line up in imaginary time, and this propagator is theg o theory. The product of the fundamental and antifunda-
thermal Wilson line. Classically, the partition function(b)  ental representations is the sum of the adjoint and identity,
is ~exp(—-mL), wherem is the bare mass, and is the g4 the coefficient oftrLy|2 in (19) is one. To check the
length of the path. R —1 in (19), consider the case when the Wilson line is the
Under a gauge transformation®, Qz(x,7), the Wilson  unit matrix, L= 1y ; then the adjoint trace is its dimension,

line transforms as =N?-1.
. . . . The next representations are tensors with two fundamen-
Lr(X,7)— QR (X, 7)Lr(X, 7)Qr(X,0). (16)  tal indices[53]. These represent the propagation of two test

i o ) ~quarks up in imaginary time. Two Wilson lines can be put
As bosons, the gauge fields are periodic in imaginary t'metogether in either a symmetric+), or an antisymmetric
with period 1. For the time being, we also assume that all(_) ' way. The Wilson lines for the two-index representa-
gauge transformations are periodic in tim@,(x,1/T) tions are
=QR(>Z,0). We relax that assumption later, but only in a way 1
}/;/;mh affects the global symmetry, and not the local symme- LI(JNléli = E(Lil\ll(le + Ljhlﬂ_i’\ll . (20)
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Herei,j,k,I=1,... N are indices for the fundamental rep- fundamental representations. This is accomplished using the

resentation. The traces of the representations with two Wileomposite representations of Gross and Tad@t; we give

son lines are then an abbreviated summary which is sufficient for our purposes.
Consider forming a state witph, test quarks ang _ test

antiquarks. This is done by combinipg. fundamental Wil-

son lines, ang_ antifundamental Wilson lines, in all pos-

] o _ ) sible ways. To be gauge invariant, we must take tracés,of

Checking the coefficients fdry=1y, the dimensions of the ang ! " We also have to remember thay, is a unitary

representations are as indicated. The first term is a product %atrix, LLLN: 1, (12). This relation implies that all traces

are either traces of powers bf;, or traces of powers af

1
trL(NZiN)/ZZ E[(trLN)zitrle\‘] (21)

two Wilson lines, each of which wrap around once in imagi-

nary time. The second term is one Wilson line which wraps : A . .
LTz . . separately. Any mixed terms can be simplified using the uni-
around twice in imaginary time.

tary relation.
The explicit construction of Wilson lines in different rep-
resentations, as done above for the adjoint and the two-index
For three COlorS, the fundamental repl’esentation is a triptensor, is unnecessary. On|y gauge invariant quantities mat-
let, 3, the adjoint representation is an ocitand the sym- ter: these are traces of the Wilson line in different represen-
metric two-index representation is a sextt, tations. For anyR, by the Frobenius formulgs2,53 we can
Special to three colors, the antisymmetric two-index repexpress the trace of a Wilson line /@ as sums of products
resentation is the antitripleB. To see this, diagonalize the of traces of the fundamental Wilson line.
triplet Wilson line by a local gauge rotation. After diagonal-  We do this naively, by considering how to combipe
ization, each element df; is a phase; the product of all Ly's andp_L[’s. The simplest thing is to take a trace of

2. Three colors

phases is one: every Wilson line, separately:
exp(iay) 0 0 (trLy)P+ (trL)P-. (26)
L.= 0 eX[:{iaz) 0 . . .
3= _ : In this term, each Wilson line wraps once, and only once,
0 0 exp—i(artay)] around in imaginary time.
(22) This is just the first term in a long series, though. To start

with, we can consider a term where one Wilson line wraps
Then it is easy to check thdtz_yy, from (21) =trL§ around twice in imaginary time:
when N=3. Notice that(21) actually gives the antitriplet s ) +
loop, which is a fault of our notation. (trLy)Pe 7% (trL)(trLy)P-. (27)
We mention one other representation for three colors o h i i d
Consider a test baryon, composed of three test quarks. théo_ntn."numg, a term where one Wilson line wraps aroun
symmetric combination of three fundamental Wilson lines rice:

gives the decuplet representation whes 3. Its trace is (trLy)P+ =3 (tr L,3\,)(tr LL)p,' (28)
tr L10=1[(tr L3)3+3trLlatrL2+2trL?] (23)  and so on. We can do this as well for the anti-Wilson lines; a
6 3 3 3 34 . . . . .
Wilson line which wraps around backward twice gives
Sincel 5 is aSU(3) matrix, (tr L )P+ (tr LL)p,—Ztr(LL)Z_ (29)
detls=1 We continue in this fashion. The series continues down, gen-
1 1 1 erating fewer traces overall, as they are replaced by traces
= (trLq)3— —trL3trL§+ “trLd, (24) with higher powers of the Wilson and anti-Wilson line. In
6 2 3 general, the operator ItP+ represents a Wilson line which

wraps aroung.. times forward in imaginary time; tt(")P-,
a Wilson line which wraps aroungd_ times backward.
The series stops when we only have either one or no

which is Mandelstam’s constraif59]. Using it, we find that
the trace of the decuplet Wilson line is

2 traces left. Ifp, =p_, the series stops at a constant, with no
= +1. o '
trlbyg=tristrbs+1 @ frace. Ifp,. #p_, the series stops at one trace,
3. Large N L2 (Lh)P- (30

The usual classification of representations is given using
Young tableauX52,53. This is not very convenient for the This term can obviously be reduced, as it is a Wilson line
large N limit, though. The reason is elementary: Young tab-which goes forwarg , times, and then backwaiml_ times.
leaux involve the construction of tensors with fundamental The above series of traces of Wilson lines represents the
indices. While of course complete, it does not naturally in-propagation of test quarks and antiquarks. All we can do with
corporate the symmetry between the fundamental and antiest quarks is to take loops in imaginary time, so the only
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question left is how many times a test quark, or antiquarkgrows strongly, likeNP, the Casimir invariant does not; at
goes around in imaginary time. largeN, it is linear inN, proportional top, +p_:
Whenp_=0 these terms are the Schur functi¢bg,53.
When p_+#0, these terms are the Schur functions for the N
composite representations of RE$2]. Cnrp=(P++P-) §+O(1)' (32)
Consider now the powers &f at largeN. We assume that
in the deconfined phase, each trace gives a power ole shall see in Sec. Il D that this relation for the Casimir
N: trLy~N for all g. The first term in(26) is of order invariant ensures that Polyakov loops, as computed to lowest
~NP. Terms in(27) and (29) have one fewer trace overall, order in perturbation theory, satisfy factorization at lahye
and so are~NP~1, down by one power of N relative to (58 and(55).
(26). Each time a Wilson line wraps around an extra time in
imaginary time, a possible trace is lost, which suppresses the B. Z(N) charges and confinement
term by ~1/N relative to(26).
This assumes that the coefficients of all terii2§)—(30),
are of order one. For example, if the coefficient(a¥) or
(29) were ~N relative to that of(26), then we could not

Previously, we required that gauge transformations be
strictly periodic in imaginary time. 't Hooft noted that this is
not necessary. Consider gauge transformations which are pe-
. - riodic, in 1/T, only up to a constant. So as not to change the
conclude anything about the largBlimit. Group theory tells periodicity of the gauge fields, this constant gauge transfor-

us, however, that this is not so: for ahy all coefficients are mation must be equal to the identity matrix times a phase
numbers of order ongs2,53. This is because all represen- th q . y P ’
equal to anN'" root of unity, (2). For the fundamental rep-

tations are constructed by symmetrization and antisymmetri- . - )
zation operator$53]; the action of these operators dependsresentatmn, aperiodic gauge transformations are
on the number of indices, but not updh

Consequently, at largd the trace of any representation is
dominated by the term where every Wilson life antiling
wraps around only once in imaginary time. This is just be-
cause we maximize the number of possible traces, an
so the powers oN. At large N we denote representations as
R=N/\p:

Qn(X,LT)=€"%Q\(x,0), €'*N=1. (33

This phase represents the center of the I@&d(N) gauge
8roup, which is a global group oZ(N): ¢=2mj/N, j
=0,1,...,(N—-1).
As the Z(N) phases commute with any element of the
group, the gauge fields remain strictly periodic under such an
- p typ_ aperiodic gauge transformation. The Wilson line, however,
trhnnp~(trby)™ (rbw™, S does change: for the fundamental representation,

p=p.+p_. The notation is meant to be suggestive, as the
dimension of this representation isNP at largeN.

The integerg, andp_ can be computed from the Young
tableaux of the representati¢b2]. Denote the columns of
the Young tgbleaux by the index and separate them Into in other representations transform under aperiodic gauge
two categories. If the number of rows in a colunh, is ;

. transformations as
<N/2, then we leave the column alone, and refer to it as a
fundamental column, withr', =r' rows. If the number of Lp—e Rl (35)
rows in a column is>N/2, then we turn it into a column ’
with r'’ =N-r' antifundamental rows. Thep+=2iri+ is  theZ(N) chargeey is an integer.
the number of boxes in all of the fundamental columns, and Due to the cyclic nature aZ(N), charge is only defined
p_=2r; is the number of boxes in all of the antifundamen- moduloN. If the fundamental has charge one, the antifunda-
tal columns. In the limit of infiniteN, no other details of the mental has charge minus one, which is equivalent to charge
Young tableaux matter; all that matters is the total number oN— 1. The simplest field with vanishing(N) charge is the
boxesp, andp_. adjoint. A baryon Wilson line, such as the symmetric combi-

In group theory, the distinction between fundamental anchation of N fundamental indices, is alsé(N) neutral. At
antifundamental columns appears awkward. It is essential ttarge N, the Wilson line in theN/\p representation of31)
understand the largd limit, though. Consider, for example, hasZ(N) chargeer=p,.—p_, moduloN.

a single antifundamental box in a Young tableaux: this is For three colors, the antitriplet and sextet representations
given by a column withN—1 rows. If we counted rows have charge two, which is the same as minus one. As a test
naively, this would give usN—1 powers of a trace. Clearly baryon, the decuplet Wilson line &(3) neutral.

we should replace this by one antifundamental line, and one The confining phase, fof<Ty, is characterized by an
trace. Geometrically, if a Wilson line wraps forward aroundunbroken globalz(N) symmetry[1]. Hence the traces of

ri imes in imaginary time, when;>N/2 it is better to re-  Wilson lines with nonzer@(N) charge vanish belowy,

place it by a Wilson line going backwaid—r; times.

While we do not need it now, we note that the Casimir (rLg)=0, T<Ty, er#0. (36)
invariants of the representatio®/\p were computed by
Samuel46] and Gross and Tayld62]. While the dimension Above T4, all traces develop expectation values,

Ly—e?Ly. (34)

We define théZ(N) charge, or theéN-ality, of the fundamen-
tal Wilson line to be onegy=1. The traces of Wilson lines
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(trLg)#0, T>T4, Veg. (37 1
(Enz_ )= [(€)]2+ o(—2>. (41)

[Implicitly, we always assume that symmetry breaking oc- N
curs when a background(N) field is applied, and then al-
lowed to vanish, in the appropriate infinite volume lirit.

A priori, it is not obvious how the traces @fN) neutral
Wilson lines behave in the confined phage; T4. Certainly,
they must be nonzero ail temperatures. Even foF<Tg, 2
they are not protected by th&(N) symmetry, and so are Cn2sny2= mth(NZiN)/z
induced by quantum fluctuations at some level. For three
colors, though, numerically we find that the expectation N
value of the renormalized octet loop is very small belbyy -
(63). This is natural in a matrix model, as discussed at the N+1
end of Sec. IVC. ) )

There is a counterpart to this in the behavior of largeHence atN=c the expectation values of the two-index ten-
adjoint Wilson loops. At zero temperature, a fundamentafor loops are the square of the fundamental loop,
Wilson loop forms a string, with its expectation value the
exponential of the string tension times the area. Adjoint Wil- (€ neeny2)=(€n)2+0
son loops screen, so the adjoint string tension vanishes.
Greensite and Halpef@0] show that at largé\, the adjoint
string breaks over distances which grow-asg(N). Simi-
larly, the lattice finds that the adjoint string only breaks over
large distancef29].

As it stands, this is a relationship between bare loops; we
shall see, however, that it survives renormalization.
For the two index tensor representations,

1
€§imtrLﬁ). (42

1
Y

Notice that the term at infinitd is the same for both the

symmetric and the antisymmetric representation; the differ-

ence only shows up in corrections iNL/This generalizes to

higher representations at large

_ _ For the two index tensor representations, corrections in

C. From traces of Wilson lines to Polyakov loops 1/N start with the expectation value of the operator
Traces of Wilson lines grow with the dimensionality of

the representation. It is convenient to introduce a normalized +

guantity, which approaches one in the obvious perturbative N

limit. From the expectation value of the Wilson line in a

given representation, we define the expectation value of th#) the deconfined phase, we consider the trace of any power
Polyakov loop {5, as of the Wilson line to be a number of order one, so the trace

of Lﬁ is like that ofL, a number of ordeN. Overall, then,
¢ _i L 38 this operator is~1/N. It is not surprising that corrections to
{br)= dr (rLg). (38) the two-index loop are-1/N, larger than the~1/N? for the
corrections to the adjoint loop. These corrections for the two-
The phase of the expectation of a given loop is fixed byindex loop arise because the operator B@N) charge two,
the Z(N) symmetry. In the perturbative limit at high tem- and so mix with the operator if44). The adjoint loop is
peraturel —e'®r%1,  and{,—e'®r?, Z(N) neutral, and so cannot mix with this operator. The
Using normalized loops, instead of just traces, is mos@inalogous operator for the adjoint loop it fiLy, which by
useful in considering the limit of a large number of colors.the unitary relation of12) is a constant.
For example, the adjoint loop is The generalization to théd/\p representations of the
large N limit is immediate,

1
—trLg

N . (44)

1 N2 1
_ - 2_
fne-1= Nz_lthN2—1— N1 ( [l NZ)' (39 (Eanp)=(Ln)P+ (€3)P-+0O

1
N) : (45)

The largeN limit of this expression cannot be taken di- which is (6) and (7). One advantage of using loops is that it
rectly, since it involves an operatd¥,|?, and a pure num- is easy to check overall normalization: up Z¢N) phases,
ber. A largeN limit can be taken by comparing expectation both sides approach unity in the perturbative limit.
values. This is especially easy at larlye as then discon- A systematic expansion in/proceeds by including op-
nected diagrams dominate, and all expectation values factoerators such as
ize [40-57. For instance,

—trLy ], 46
(NP =(E? N=. (40) qu(N N) (48
Using this, at largeN the expectation value of the adjoint for integral g. This operator is~1/N9" ! in the deconfined
loop is, in magnitude, identically the square of that for thephase. Asq grows, the number of such operators does as
fundamental loop, well. We do not concern ourselves here with the develop-
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ment of a systematic expansion, and consider only the lead-  ----=--==------~¢-"--=---=-------
ing corrections in M. For three colors, our numerical simu-
lations indicate that this might not be such a bad
approximation. TT

Even to leading order at largd, some representations
involve loops other than the fundamental. Consider a test
baryon, composed dfl fundamentals. Because of Mandel-
stam’s constraint thdty is anSU(N) matrix, det_y=1, the
term with N powers of the fundamental loop is part of the  FiG. 1. A Polyakov loop with two cusps, at=0 and r
identity representation. Hence at laiygthe loop for a test = 1/(2T). The dotted lines denote=0 and 17.
baryon behaves as

. ) (trLg)~exp —m%’L). (49)
— N-1 2
(Crest baryon = {Cn) <NtrLN> +O(N)' “7) The exponentiation of mass divergences follows from the
analysis of Gervais and Nevd@1]. Similar to (15), they
This is illustrated by the decuplet loop for three coldgf).  rewrite the Wilson line as a propagator for a fermion which
lives in one dimension, along the path of the loop. With
lattice regularization, the additive mass shift which the Wil-
son loop undergoesn%'”, is no different from that which

With this lengthy introduction aside, we turn to the prob- (nongaugeyl propagating fields also experience, such as for
lem at hand, the renormalization of Polyakov loops. massive quarks, or scalar fields,

Remember how mass renormalization usually works, as On the lattice, the exponentiation of mass divergences has
for a scalar fieldg, in four spacetime dimension38]. If the  peen shown explicitly by Curci, Menotti, and Paffutitog*
mass of the field isn, and its coupling ¢*, to one loop [37].
order the mass squared receives contributions To develop insight into the divergent masses, we compute

to one loop order. In four spacetime dimensions,

D. Renormalization of Polyakov loops

)\fA d' AAZ, Am? ( ) (48
~ ~NA2, axmPlog| —|;
|(2‘|'|I2 g n div 2 la d3k CRgZ
My N+Cjo ?"'4— a

(50

a momentum cutoff\ is used to regularize the integral. The
structure at one loop order is generic to perturbation theory\e have used a lattice, with lattice spaciagto regularize
there are two mass divergences, one proportional to a powgfie theory. The exact coefficient ofalin m&* depends on
of the cutoff, ~A?, and the other, to a logarithm of the the details of the lattice discretization, but it is a positive,
cutoff, ~m?log(A/m). The power divergence is an additive nonzero number of order one. In four dimensicasg” is a
shift in the bare mass, and for a scalar field is inconsequerbo\,\,er series in the coupling constant.
tial: the parameters are tuned to_be near a critical point, o g straight Polyakov loop in four dimensions, this is
where the renormalized mass vanishes. On the other hanghe only divergence: there is no anomalous dimension for the
the logarithmic divergence is physical, related to the anomaggrresponding mass. This is clear to any order in perturbation
lous dimension for the mass operator. A renormalization CONtheory, and occurs because the mass divergence is like that of
dition is required to fix the value of the renormalized mass aly particle which propagates in three, instead of four, dimen-
a given scale. sions.
Polyakov loops correspond to a test particle whose mass Loops can also have cuspd2—36. In order to be peri-
is taken to infinity, so their worldline is a straight line. This gic in imaginary time, the simplest example of a Polyakov
freezes out fluctuations in the timelike direction. This is Ob'loop with cusps has not one, but two, cusps. This is illus-
vious in perturbation theory: afAq(x,7)dr always enters, trated in Fig. 1, with cusps at=0 and r=1/(2T). These
only modes which are constant inappear. Thus the mass cusps reflect external probes which deflect the test particle at
divergence of a Polyakov loop in four spacetime dimensionshese points. As with Polyakov loops, the expectation values
is like that of a propagating particle in one less dimensionpf single loops with cusps only have nontrivial expectation
which is three. Similarly, the mass divergences of a scalavalues in the deconfined phase.
field in four spacetime dimension§48), are like those of A cusp generates a logarithmic singularity in four space-
Polyakov loops in five spacetime dimensions. time dimensiong32-36. This is not proportional to the
The ultraviolet divergences of a Wilson line depend onlylength, and so does not contribute to the divergent mass. A
upon the representation, and not ugemooth details of the  condition to fix the value of a renormalized loop with a cusp
path. For the time being, lét; denote any Wilson line in a must be supplied, but this is standard. For example, in QCD
representatiofR; we only assume that the path forms a loop,loops with cusps are related to the Isgur-Wise funcii@.
so that traces ot are gauge invariant. The expectation It is also interesting to consider loops in three, instead of
value of the Wilson line has a mass divergence which defour, spacetime dimensior{$8]. The linear divergence of
pends upon the length of the loof, as (50) is now logarithmic[31],
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_ 1/a d?k
v~ +Crg f —~+CRgZIog

! Tal<— (56)
) (51 RIS ZR

in three dimensions, the coupling constghthas dimensions  Numerically, we find that the divergent masses are uniformly
of mass. As the divergent mass depends logarithmically upopositive,

the lattice spacing, a condition to fix the value of the renor-
malized loop must be suppli¢60]. Loops with cusps do not g
have new ultraviolet divergences in three spacetime dimen- amp">0 (57)
sions, although they do have powerlike infrared divergences.
Defining wave function renormalization for a Wilson line

of length £ as for all representations, at all temperatures. If so, then the

renormalization constangy, always vanishes in the con-
tinuum limit, and there is no constraint on the renormalized
loop. This condition is most natural: otherwisg; diverges
asa—0, so the renormalized loop must vanish.
The renormalization of a constraint is also familiar from
1 the nonlinear sigma model in two spacetime dimensions
[ (53) [38]. If the sigma field is eSL_J(N) matrix, then .Ilke the bare
Zr Wilson line, the bare field is a unitary matrix. Because of
wave-function renormalization, however, the renormalized

as illustrated by the renormalization of Polyakov loof®,  sigma field satisfies a renormalized, and not a bare, con-
In the space of alBU(N) invariant tensors, the set of irre- straint.

ducible representations form a complete and orthonormal ba- |n the largeN limit, factorization holds. This implies that
sis[53]. As this basis is orthonormal, Wilson lines in differ-

ent representations do not mix. Consequently, in different div i

representations the divergent masse&’ , and so the renor- me"~(p.+p-)amy’. (58)
malization constant€y , are independent quantities.

e e e e verThis s atomatc o lowest order in perurbaion theary
g g g "Where amR'” Cr, remembering that the Casimirs satisfy
line. In an appendix we also discuss how the Wilson IIne(32) This also ensures that the perturbative expression for
might be modified to alter the mass divergence. ' : periu P

o U ; the renormalized Polyakov loogh5), is well behaved at
It is illuminating to compute the renormalized loops to IargeN

one loop order. Then it is easiest using dimensional regular- . .
ization, as then the divergent mass automatically vanlshes McLerran and Svetitskj4] used the expectation value of
a loop to define the free energy of a test quark. If this test

Following Gava and Jengf3,21], the leading correction
arises after the Debye mastD NG2T2/3, is included by free energy is defined from the renormalized loop7as=

resummation. To lowest order, the correction to the renor- —Tlog((tz)|), then while it is positive neafy, ff0272(55)
malized loop is it is negative at high temperaturé&;~ —Cr T/log(T)

While the divergent masses depend upon the ultraviolet
cutoff in a unremarkable manner, the renormalization con-
(TR)—1~—Crg f ~+Crg?mp  (54)  Stants are not like those of local operators. In four spacetime
dimensions, the renormalization constants of local operators
are independent of temperature. In contrast, the renormaliza-

Zp=exp(—m%’L), (52

then the renormalized Wilson line is given by

so that tion constants of Polyakov loops are temperature dependent,
but just because the length of the path for a Polyakov loop is
Cr(g?N)3?2 1T.
r)y~ 0o(g*. (55 Renormalization implies that the only measurable quanti-
N3 ties are single traces of Wilson lines. Consider the most gen-

eral, gauge invariant combination of bare Wilson lines pos-

[In three spacetime dimensions, (¥z)—1 ; - ;
~ Co(g?IT)log(T/g?) [60].] sible. For example, start with IURI’ which represents the

In four spacetime dimensions, the leading correction tgpropagator for a test quark, in the representaiopn, q;
the renormalized loop is positive. Thus in the limit of high times around some fixed loop in spacetime. Generically, we
temperature, the loop approaches one from above, and noan take powers of this trace, and then multiply different
from below. At first sight, this seems paradoxical. Barepowers of different traces together. We can also do the same
Polyakov loops are traces 8fU(N) matrices, and so satisfy with conjugate operators. By the character expangksi,
a strict inequality| € ;| <1. For example, on the lattice this any such combination can be reduced to a linear sum over
holds configuration by configuration. Instead, renormalizedraces of single Wilson lines in different, irreducible repre-
loops satisfy the renormalized constraint, sentations:
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TABLE I. The lattice coupling constant for the deconfining tran- TABLE Il. Statistics.
sition, B4, at different time steps.
N¢ Measurements

N P 4 10000

4 5.6905) 6 400

6 5.891) 8 400

8 6.0556) 10 400

10 6.2015)

In this section we discuss how we extract renormalized
Polyakov loops for the lowest, nontrivial representations of
SU(3) color. Consider a lattice withlg steps in each of the
three spatial directions, and, steps in the time direction. At

:E CR5R=E CrZrlr. (59) Ia}ttice spaginga, the phys.ical temperaturé= 1/(aNt). As
R R discussed in the Introduction, to extract the mass divergence,
we consider a series of lattices, all at the same temperature,
Here alln’s andq’s are positive integers; the constauts, but with different values of the lattice spacireg,and soN; ;
and the representatiori® which one must sum over, are Ng/N, is kept in fixed ratio. At a given value of/Ty4, we
determined by group theofp3]. Because irreducible repre- assume that the logarithm of the expectation value of a
sentations form a complete basis over@l(N) representa- single, bare Polyakov loop can be written as a power series
tions [53], we can insist that only linear powers of Wilson in 1/N;:
lines appear on the right hand side. With a linear sum, renor-
malization is then just a matter of replacing bare by renor-
malized loops. _
Assuming that alm&v>0, (57), so theZy, all vanish as

a—0, in the continuum limit only the identity representation |, sour spacetime dimension{;‘,’g”=am‘7’{” _[In three dimen-

survives. This is of no physical consequence: the physicagions the series is%vlog(N)+fren+f|at/N ]

quantities, the traces of renormalized Wilson lines, are hid- Ea,ch of thef 's is a potwerRseriez inttﬁe coupling con
® -

den in the corrections to this relation, which are exponentia!stam,gzl On the lattice, this is a series in the bare coupling

n 1/a_ asa—>0: . . constant, and becomes, in the continuum limit, a series in the
This was discovered numerically. To high accuracy, we lized i A h f

found that(|¢4|2)~1/9: corrections varied from-79% for  cnormalized coupling constant. As such, fes are func-

N.=4 to ~032°/ forN —10. This is because frorfil9) tions only of the temperature divided by the renormalization
IS N v ' mass scale; or equivalently, 3 T4. By comparing expec-

(|€3]%)— 1/19~825(¢)/9; because of the octet renormaliza- ation values at the same temperature, but different values of

tion constantZg, this is a small quantity. N, we can extracam®’ . What remains is the renormalized
Previous work on the renormalization of loops at zero|OOIO in the continuum limit

temperature concentrated on loops in the fundamental and

adjoint representations, especially on the case of loops with -

cuspsy 35,36). The case of traces of lines which wrap around (tr)=exp(—fx"). (61)
the same loop several times, or products of such traces, was

neglected. At nonzero temperature, though, the natural 100pghere are also corrections at finite lattice spacifig,'®".
to consider are those at the same point in space, wrappingear the continuum limit, these effects begin a¥1/with
around in imaginary time in all possible ways. As dISCUSSGdflgtzz?c iC /N{—l In weak coupling,c,~g* these are

- - . . . J= . 1 1
this is equivalent to the set of loops which wrap around incgrections to the one loop term on the lattice, after resum-
imaginary time just once, although in arbitrary representa-ming the Debye mass. Corrections 3~g® presumably

+ + -
A1 yn; d2 \nf . 91 \ng L
(trLRI) 1(trLR2+) 2..-(tr(L )RI) 1

_ 1
—Iog<€R>=f§’{”Nt+f5§”+f'7§tWt. (60)

tions. arise as lattice corrections to the continuum tef@d).
As is common on the lattice, we work at a fixed ratio of
Ill. LATTICE MEASUREMENTS OF SU(3) POLYAKOV Ng/N;. Thus we implicitly assume that the dependence upon
LOOPS this ratio is negligible in the infinite volume limit. This can

be studied analytically, but requires a careful treatment of the
constant modes. A perturbative study is given by Heller and
We turn to the case of three colors. Group theory tells uKarsch, especially Sec. 4[87]. For now, we defer this ques-
how bare loops are related, through expressions su¢39as tion for future study[55].
After renormalization, we do not know how renormalized
loops are related. Except at very high temperature, where we
can use perturbation theor§5), the only way to compute
renormalized loops is through numerical simulations on the In practice, our method is not quite so trivial. The diffi-
lattice. culty is that if we require the comparison lattices to have the

A. General method

B. Lattice results
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TABLE lll. Bare Polyakov loops folN,=4.

B (€3) (€e) (€g) (€100
5.50 0.010422) 0.00379) 0.002@6) 0.00245)
5.60 0.0165®) 0.00363619) 0.00252219) 0.00213911)
5.65 0.0245614) 0.00369619) 0.00267021) 0.00212611)
5.69 0.08545) 0.005884) 0.007266) 0.00220212)
5.70 0.1238%) 0.008344) 0.011726) 0.00225412)
5.75 0.17808L7) 0.015034) 0.0220%6) 0.00237212)
5.80 0.1995615) 0.0192%5) 0.027916) 0.00249013)
5.90 0.2297814) 0.026575) 0.037726) 0.00282515)
6.00 0.2530(13) 0.033405) 0.046496) 0.00332817)
6.10 0.2730713) 0.0401@6) 0.054926) 0.00397919)
6.20 0.29076LY) 0.0466@6) 0.062987) 0.00474720)
6.30 0.3069612) 0.053196) 0.071037) 0.00574822)
6.40 0.3217412) 0.059646) 0.078807) 0.00682124)

same physical temperature, but differéxit, then the de-
confining transition occurs at different values of the lattice
coupling constant. This significantly complicates the analy-
sis. +0.6667 (83— B3), (62
In the simulations, the Wilson lattice action was used,
with lattice coupling constan8=6/g?. The number of time
steps taken werl; =4, 6, 8, and 10. The number of steps in yyhere =56 andBy=B4—6. In terms of physical tem-
the spatial directionNs, was always kept fixed aNs  perature, our lattices varied from0.5Ty to ~3T4. The
=3N;; we did not study what happens as this ratio is variedjattice calculation was done using the over-relaxed Cabibo-
The value of the coupling constant at which the deconfiningviarinari pseudo-heat-bath algorithm. Each update step con-
transition occurs,34, was determined by monitoring the tained 4 heat-bath updates and six overrelaxation steps. A
peak in the susceptibility of the triplet loop, to give the val- measurement was performed every 10 update steps. In Table
ues in Table I. Il we summarize our statistics in each case. Our lattice data
By using nonperturbative renormalizati¢@8], the rela- for the bare Polyakov loops are presented in Tables lil, IV,
tionship betweerB and the temperature was found to be  V, and VI. They are also plotted in Figs. 2, 3, 4, and 5.

|ongd= 1.7139 (B— B4) —0.8155 (B2— B2)

TABLE V. Bare Polyakov loops folN,=6.

B (t3) (€s) (€g) (€10
5.70 0.0059216) 0.001975) 0.001315) 0.00115%3)
5.80 0.0096326) 0.0019%5) 0.001436) 0.001163)
5.82 0.01113) 0.001915) 0.001395) 0.001173)
5.84 0.01283) 0.0019%5) 0.0013%5) 0.00112629)
5.86 0.0188%) 0.0021@5) 0.001325) 0.00114828)
5.88 0.03149) 0.0020%5) 0.0015@6) 0.001163)
5.89 0.039110) 0.0019%5) 0.001837) 0.001213)
5.90 0.0548) 0.002176) 0.002318) 0.00114429)
5.92 0.07025) 0.002546) 0.002969) 0.001193)
5.95 0.0816b) 0.002687) 0.003979) 0.001183)
6.00 0.093%) 0.003448) 0.0050810) 0.001173)
6.10 0.1128&4) 0.0048@9) 0.0075911) 0.001263)
6.20 0.13014) 0.006549) 0.0103811) 0.0012@3)
6.30 0.144%4) 0.0083710) 0.0131411) 0.001273)
6.40 0.15814) 0.0103110) 0.0160413) 0.001243)
6.50 0.1707) 0.0124111) 0.0190112) 0.001283)
6.60 0.182%) 0.0146212) 0.0221614) 0.001364)
6.70 0.19544) 0.0171812) 0.0256%14) 0.001444)
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TABLE V. Bare Polyakov loops foN;=8.

B (€3) (te) (tg) (€10
5.80 0.0033M) 0.001334) 0.000833) 0.00077%20)
5.90 0.0042(11) 0.001223) 0.000863) 0.00077020)
6.00 0.00668L8) 0.001243) 0.000873) 0.000763820)
6.02 0.008586) 0.001264) 0.000823) 0.00077%20)
6.04 0.015%) 0.001213) 0.0009%4) 0.00075419)
6.06 0.020%) 0.001293) 0.000923) 0.000713817)
6.08 0.034%4) 0.001293) 0.000994) 0.00075120)
6.10 0.03913) 0.001264) 0.001084) 0.00075%20)
6.15 0.0476R26) 0.001384) 0.001315) 0.00075420)
6.20 0.0540@5) 0.001464) 0.001645) 0.00072420)
6.30 0.0654024) 0.001645) 0.002286) 0.00076821)
6.40 0.0754@4) 0.001945) 0.0030%6) 0.00075119)
6.50 0.0850022) 0.002495) 0.004075) 0.00080418)
6.60 0.094924) 0.002995) 0.005026) 0.00076%19)
6.70 0.1049(4) 0.0037%5) 0.0063%6) 0.00076621)
6.80 0.1137@25) 0.004506) 0.007576) 0.00081920)
6.90 0.122144) 0.005405) 0.008867) 0.00077820)

As the relationship between the lattice coupling constantithm of the expectation value of the bare loop, idg)), is
and the physical temperatur@?2) is nonlinear, it is not au- a power series in N,, beginning as-N,, (60)—(61). Given
tomatic ensuring that the temperature is the same vifien the lattice data, for loops at the same physical temperature
changes. Thus we resort to interpolation, measuring the loopgnd different values o, , there is nothing left over to ad-
on a fixed grid, inB, for eachN;. ForN,=4, 6, and 8 we just.
have linearly interpolated the Polyakov loop values to the |n Fig. 6 we present a typical fit for the logarithim of the
T/T4 values at which the measurements fdy=10 were expectation value of the bare triplet loop. It is clear that the
done. Then, for each value 87T, the expectation value of bare loop decreases, with increasig for all temperatures
the bare Polyakov loop was fit {&0)—(61). measured.

In our measurements, we see no statistically significant In Table VII, we give the expectation values of the bare
term ~1/N,, fi2'~0. Such terms will presumably be re- Polyakov loops for different representations. We chose the
vealed by more precise measurements. The success of a fit§mallestN,, N,=4, where the signals are greatest. For ref-
(60) indicates that on the lattice, the divergent mmf’,é” erence, we also include the Casimir invariants of the differ-
does exponentiate. ent representations.

We stress that we make no assumptions about any of the For all representations, the signal decreases with increas-

functionsf . At a given value of the temperature, the loga-ing N,. This indicates that ever&m‘,’g” is positive, as sug-

TABLE VI. Bare Polyakov loops folN;=10.

B (t3) (€e) (€g) (€10
6.00 0.0027) 0.000883) 0.000583) 0.00052518)
6.10 0.003621L3) 0.0008%3) 0.000644) 0.00053722)
6.15 0.0052415) 0.00090424) 0.00058823) 0.00056013)
6.18 0.006721L6) 0.00090618) 0.00061517) 0.00055011)
6.20 0.0083@27) 0.00090923) 0.00063824) 0.00051214)
6.22 0.0165(22) 0.00092718) 0.00062718) 0.00056111)
6.25 0.0216717) 0.00092918) 0.00064118) 0.00053211)
6.30 0.0274(22) 0.000913) 0.0007@4) 0.00053718)
6.40 0.0344®&4) 0.000924) 0.000844) 0.00055%21)
6.50 0.041424) 0.000924) 0.000994) 0.00052120)
6.60 0.0486(198) 0.000983) 0.001114) 0.00054817)
6.70 0.05506L8) 0.001183) 0.001445) 0.00051117)
6.80 0.0620419) 0.001284) 0.001935) 0.00054916)
6.90 0.0685219) 0.001543) 0.0025%5) 0.00055516)
6.95 0.0713Q1L8) 0.001523) 0.0027@4) 0.00054615)
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FIG. 4. The bare adjoint Polyakov loop as a function of tem-

FIG. 2. The bare triplet Polyakov loop as a function of tempera-

ture perature.

sextet fields, which carrg(3) charge, should vanish in the
infinite volume limit. What is striking is that beloW,, the
Z(3) neutral adjoint loop—which could be nonzero—is also
too small for us to measure:

<?8>NO, T<Td

gested before(57). We were only able to measure a signal
for the decuplet loop on the smallest lattidg=4. Perhaps
a modified Polyakov loop, as discussed in the Appendix
might help. We do not discuss the decuplet loop further.
Figure 7 shows our results for the product of the lattice
spacing times the divergent massm”. For the triplet . ) . o
loop, this product does not vary much with temperature, buP’revious studies found this for bare adjoint loops on small
those for the sextet and octet loops do. At the highest temattices, such adl=4 [10,27,54,56 .
pects from lowest order in perturbation theory, where theest, followed by the octet, and then the sextet loopT4t
divergent masses scale like the Casimir invariant of the repthe triplet loop jumps to a relatively large value,0.4, al-
resentationarn%ivaCR, (50) As the temperature decreasesthough the exact value is not very well determined. Due to

below ~1.5T4, though, the perturbative ordering afng' the increase in correlation lengths, there is critical slowing
div div Al divergent down nearTy, and much more careful studies are required.

>ami"” is reversed, witham3’>amg We th i _ e of the diff
masses are approximately equal beldyy although the sig- e then computed the expectation value of the difterence
between the sextet and octet loops, and their I&danit,

| i i .
nais are poor (8) and(9). The results are presented in Fig. 9. Numerically,

After dividing by the renormalization constant, we obtain X . .
the renormalized loops of Fig. 8. BeloW, the triplet and we find that both difference loops are negative. They each
' look like a “spike” down, with a maximum neafly. The

(63

FIG. 3. The bare sextet Polyakov loop as a function of tempera-

ture.
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" " " " ™ y—— IV. MATRIX MODELS FOR RENORMALIZED LOOPS
2 t ,,,,,,,,,,,,,,,, e A. Effective theories
""""""""""""""" L We now discuss various effective models for the decon-
B o fining phase transitiof5—23,43-51,54 and fit the renor-
10 W malized triplet loop to a simple matrix modet7,49,54. We
T - then discuss the Gross-Witten point at lafdeand how it
o B may be related to three colors.
- . Numerical simulations on the lattice suggest that the tran-
& sition is of second order for two colof56] and of first order
-, b, for three[24], four [26,27], and six[27] colors. Lucini, Te-
,,,,,,,,,,,,, per, and Wengef27] present evidence that the latent heat
ke, grows~N? for these values dfl. From this we presume that
o ., ] the transition is of first order for aN=3. Arguments for a
K, first order transition at infiniteN have also been given by
s| o Gocksch and Nerfi42].
; : . 7 . 5 1'0 We start with an effective lattice theory in the purely spa-

N tial dimensions. The actual value of the lattice spacing is
¢ irrelevant; all that matters is that it is much smaller than any
FIG. 6. The logarithm of the expectation value of the bare tripletPhysical length scale. Thus we concentrate on the region near

loop at fixed temperature, as a functionyf. T4, and ignoreT — oo,
The simplest approach is to follow Svetitsky and Yaffe

o ~ ] ] [5], and construct an effective theory just for the Polyakov
sextet spike is larger| 5¢4[<0.25, with & maximum at |oop in the fundamental representation. This is certainly fine
~1.25T4. The octet spike is smalletsfg|<0.2, with a if the transition is of second order, as the only critical field
maximum neareiTy, at ~1.1T4. The octet spike falls off should be that for the fundamental loop. For the second order
much more quickly than the sextet spike with increasingtransition of two colors, this predicts that the universality
temperature: by~1.5T4, the octet difference vanishes, class is that of the Ising model, in agreement with the ob-
while the sextet difference persists all of the way~8T,.  Served critical exponent§56]. For three colors, because

The most important feature of the difference loops is theirZ(3) symmetry allows a cubic invariant, this approach also
overall magnitude: each is significantly smaller than one. AQredicts that the transition is invariably of first order. For

discussed in the Introduction, this indicates that factorizationOre than three colors, though, it is not clear why the tran-
which is exact forN=cs, is approximately correct foN  Siion should be of first order. It would be if the interactions

=3. The difference loops will be discussed further in the®f the Z(N) spins were like those of a Potts model, but they
next section are not at high temperatuf@1]. Loops in higher represen-

We conclude this section by contrasting our method fortatlons can be introduced into this model, as new types of

determining renormalized Polyakov Iogps with that of Kac'i)(v{/\l)n astﬂlpjiyﬁgme%igta; elaiggog:éoxit;onr:idoes not fol-
zmarek et al. [39]. They measurg(€3(x)€3(0))—[(¢3)|%, A variant of this approach is the Polyakov loop model
and extractZ; by comparing with perturbation theory at [18-21]. This starts with a potential for th@enormalized
short distances. Thus they need to measure two-point fungundamental loop, and assumes that the pressure is correlated
tions, although at just one value &f. We only need to to the value of the potential at its minimum. We presume that
measure one-point functions, but must do so at several vathe same holds for the potential of the matrix moggécs.

ues ofN;. Our results agree approximately with theirs; nearlVB and IV C).

T4, We both have(?5)|~0.4. It disagrees in that byT3, The closes_t mode! to the underlying gauge thepry is a
gauged, nonlinear sigma model for the Wilson lihg

reason far he iferences between our resuls, athough (18- In such a model, Higgs phases, in which B&(N)
could simply be due to the effects of finite Iatticé spacing ymmelry IS sponta ne_ously broken, can appea, but these are
" not expected to arise if there are no dynamical scalars about.
Remember that deconfinement is not a Higgs effect: only
TABLE VII. Approximate expectation values of the bare Polya- Z(N) is broken in the deconfined phase, &i(N).

kov loop, and Casimir invariants, fod,=4 andT=2Tj. Assuming that Wilson lines form the essential degrees of
freedom in the effective theory, we take as the partition func-
R (€r) Cr tion:
3 0.25 4/3
8 0.04 3 Z=f IdLy(i)exp —S[ € ()1} (64)
6 0.035 10/3
10 0.004 6

i denotes lattice sites in the spatial directions. We assume
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FIG. 7. The divergent masses, times lattice spacing, versus tem- FlG' 9. Difference loops: renormalized Polyakov loops, minus
perature their largeN values.

that only Polyakov loops enter into the effective action, andstance, however, the trace of the Wilson line is not constant.
consider only constant solutions in mean field theory. WeThus the action also includes a potential for the Wilson line
neglect all kinetic terms, including those for the Wilson line, [18]. Requiring the action to b&(N) invariant, this is a sum
Polyakov loops, and color magnetic fielfk7]. The effects over Polyakov loops with vanishing(N) charge:
of fluctuations, which are controlled by these kinetic terms, e=0
E:g(rﬁ.be important, especially in three spacetime dimensions We NZZ % yrlrli): 65)
At each site, the measure i®4) implicitly contains a
constraint to enforce thaty(i) is aSU(N) matrix. As such, the y, are coupling constants. This series begins with the
loops ¢ (i) are constructed by the usual relations of groupadjoint loop.
theory. This is most convenient, since then all loops auto- Next, loops on one site can interact with those on another
matically have the righZ(N) charge, and satisfy factoriza- site:
tion at largeN. Moreover, at each site we can use the char-
acter expansion(59), to reduce any product of loops to a . N
linear sum. This vastly restricts the number of possible cou- Sr~ ~ 3 2 2 BrrRetr(1)lr (i+n).
plings which can arise. b RR 66)
In a sigma model over a symmetric space, the tradeyof
is everywhere some fixed constdi®8]. In the present in-

N2 egter =0

Re denotes the real part, aph - =Br' . We just write

nearest neighbor interactions, given by the sum over the lat-

1.0 -
tice vectorn, but this is inessential. The sum over represen-
0.9 tations is restricted by the requirement that the t@éN)
0.8 charge of each term is zero, modb There are both diag-
. " = onal couplings, wher&®' is the representation conjugate to
0.7 s R, and off-diagonal couplings, whef®'’# R*. This is the
0.6 $ g complete set of independent couplings.
G § 1
g 05 i . . B. Mean field and matrix models for N=3
04 : . : For three colors, the simplest action includes just the trip-
0.3 " let loop [48]
0.2 . o
ta ®3 S3=—3B5, Rels(i)(4(i+0); (67)
0.1 . A 38 i,n
o . m 6
0.0 e 1 B3z =B3. We use this to develop a mean field approxima-

2
T/ T,

tion, replacing all nearest neighbors by an average value. On
a cubic lattice in three dimensions, if the value of each

FIG. 8. Renormalized Polyakov loops as a function of temperaneighboring spin i€,=({3) in (67), the partition function of

ture.

(64) reduces to one for a single site,
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1.8
Z= J dLgexp(+18B3f gRef3)=exp(—9V). (68
1.6
This is a matrix model, but one whose coupling constant "
depends on the value of the condensége We introduce the 14
single site potential). The mean field condition is that the
average value, computed with this action, is equal to the
assumed valug3s: 12
1 9 1.0
o= 28, MOV' (69 .
As Ly is anSU(N) matrix, it is the unitary transformation o8
of a diagonal matrix, withN—1 independent eigenvalues.
WhenN=2, the integral like(68) is elementary, and can be 06 : 5 q
evaluated in terms of Bessel functions. These can also be T/Tq
done wherN>2, but we found it easier to simply evaluate it
numerically. Explicitly, with Lg FIG. 10. The fundamental coupling constant extracted from the

=U diaglexp(6,),exp(6,),exd —i(6,+6,))UT, the normal- lattice data. The circles are the fundamental coupling computed

ized Haar measure, including the van der Monde determifrom lattice data for the fundamental loop. The error bars on the
nant. is extracted points are smaller than data points. The smooth line is the

linear fit to the extracted fundamental coupling with the errors
1 quoted in(71).
dL3_ [1_00101_02)][1_003201"' 02)]

_Q pling constant,B3, and the temperaturd,/T,, is approxi-

mately valid. A least squares fit gives

This mean field theory was studied in the context of the B3=(0.46:0.02+(0.33£0.02 T_d' (71
deconfinement transition by several gro(ihg—49,54. Like

the lattice data, the transition is of second orderNo+2,  The computed coupling, as well as the fitted curve, is shown
and first order whemN=3. For three colors, Damgaaff4] in Fig. 10. A quadratic term was included in the fit but the
used Eq(69) to compute the expectation value of the triplet coefficient was found to be zero within the error bars. Sig-
loop; expectation values for the sextet, adjoint, and decuplatificant deviations are seen at both the highest temperature,
loops were then computed from that. Damgaard comparee-3T,, and also at the two points closest 1q; see the

the results of this mean field theory to lattice data for barediscussion at the end of this section. The approximate linear
Polyakov loops, withN;=3, by Markum, Faber, and Mein- relationship betweerB; and the temperature is typical of
hart[37], finding qualitative agreement. mean field theory for spin model88].

We stress that the approximate agreement between this Using this relationship between the mean field coupling
mean field theory, and lattice data at smidl, is in some and the temperature, we then computed mean field results for
sense fortuitous. For small;, the Z5 are not much different the sextet, octet, and decuplet loops. The comparison to our
from one, and so the bare values are not far from the renoitattice data are shown in Fig. 11. Notice that although we
malized values; even so, they are not identical. To see this inould not extract from the lattice a signal for the decuplet
another way, we computed the ratio of the difference loop, tdoop, the mean field theory predicts that while the decuplet
the loop itself, for the bare octet loop:|({{g) loop is less than the sextet, it is not that small; for example,
—|{(€3)|?)/{€g)|. This ratio is ~50% atN,=4, and in- €,o(3Ty)~0.4.
creases to-100-200% foN,=10. This is to be compared To obtain a more precise measure of the quality of our
with the values for the renormalized octet difference loop infits, we computed the difference loops in our mean field ap-
Fig. 4, which is<12%. Thus while renormalized loops sat- proximation, and plot them in Fig. 12. We do this because
isfy factorization, bare loops do not. even in this simple mean field approximation, there are cor-

In this vein, recently Dittmann, Heinzl, and Wipf com- rections toN=c factorization atN=3. Now compare the
puted the effective potential for bare doublet loops in a purdaifference loops in mean field theory, Fig. 12, to those from
SU(2) gauge theory23]. Because only renormalized loops the lattice, Fig. 9. As expected from general arguments, the
satisfy factorization, we suggest that the effective potentiahdjoint difference loop is always smaller than the sextet dif-
for renormalized loops is much simpler than that for bareference loop; also, both difference loops are negative in
loops. mean field theory. In detail, however, the difference loops

We next compare the solution of mean field theory, Eqfound from mean field theory are very different from those
(69), to our lattice data for the renormalized triplet loop. We found from the lattice. First, in magnitude the difference
find that a linear relationship between the mean field couloops from mean field theory are at least a factor of three
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10 numerically for several, coupled condensates; the results of a
5 more careful study will be presented separafély.
The presence of other loops obviously feeds back into the
08 triplet loop. One of the clearest tests of this is the value of the
0.7 triplet loop atT4. In a mean field theory which includes just
the triplet loop,(68), numerically we estimate that;(T)
o B ~0.485+0.001; this is consistent with the value©1.49 in
E 05 Ref.[47]. This is significantly higher than the values of the
~ o renormalized loop from the lattice, where both we §8€]
' find €5(T4)~0.4. In aN=3 matrix model which includes
0.3 / both triplet and sextet loops, we find that the value of the
0.2 } I triplet loop atTy decreases significantly by addiny s, as
= ® 3 this represents a linear coupling between the two 1§6p%
0Ll o/ ; 2 It is also possible to decreagg(T,) by adding a term for
0.0 M the decuplet loop to the potentidl with the appropriate sign
4 4 [55].
T/Tq

Thus the approximate linearity i3 with T, (71), should

FIG. 11. (Color onling The values of the Polyakov loops from D€ treated as preliminary. Further, we doubt that it is true for
the matrix model, using the linear relationship between the coupling!l couplings. In particular, since the octet difference loop is
and the temperature. The lowermégteen line corresponds to the such a sharp, narrow spike in temperature, it appears that we
value of the decuplet loop, for which there is no lattice data. can only model it with g3g which varies nonmonotonically

with temperature; i.e., which is itself a spike. This is not so

times smaller than found from the lattice. Further, their tem-obvious for the sextet loop, due to the triplet-sextet mixing
perature dependence is very different: in mean field theoryirom the coupling3; 6. The sextet loop is also affected by its
both difference loops are greatest at abeut.5Ty, with  coupling with itself, through the couplinBs s, and by the
approximately the same width; 0.5T4. In contrast, the dif- decuplet loop in the potential.
ference loops from the lattice have a maximum much closer Nevertheless, the matrix model proposed in Sec. IV A ap-
to T4; while the sextet has a tail which persists#@8Ty, pears to be a useful way of characterizing the condensates of
the octet really appears to be a sharp, narrow spike. renormalized Polyakov loops whei= 3 [55].

The quality of the fit could be improved by including
other terms in the action. We started by including an adjoint C. Matrix models: N>3
loop in the potential at each sit&g5), ~ yglg. Within our . S .
numerical accuracy, this only appeared to produce a shift in For Qe”er?‘N* .the simplest possibility is to start with an
B3— Bzt ys. We show in the next section that this can beaction including just the fundamental loop,
understood at infinité\. N2 .

To model the sextet and octet loops, it is necessary to add Sn=— ?ﬂZ Rety(i)€x (i +n), (72
corresponding fields at each site.(B6) there are two diag- i.n
onal couplings,B¢ s and Bgg, and one off-diagonal cou-

_ - 2
pling, Bs6. Even in mean field theory, it is tedious to solve S=Bn,n+- FOr the action to be of ordeN” at largeN, 3

must be of order one dd—<. Positive values of3 corre-
-0.02 . : : spond to a ferromagnetic coupling. As the perturbative
vacuum at high temperature is completely ordergd,
+o asT—o., We assumg3>0 [61].

008 At infinite N, if the fundamental loop condenses, loops in
higher representations are fixed by factorization. The con-
-0.04 densate for the fundamental loop is determined by the poten-
@ tial, W of (65).
E -0.05 \ We start with the mean field analysis 6f2), following
~ ‘ the discussion of Kogut, Snow, and Stdd&]. We then dis-
006 cuss how these results change when the potewfjal65), is

added[45,46]. A similar discussion was given recently by

\ Aharonyet al [14].

-0.07 S Replacing the values of all nearest neighbors by an aver-
e age valuefy, we need to evaluate the integral at one site,

-0.08

2T/Td Z= f dLyexd N2(28€)Rely]

FIG. 12. Difference loops from the matrix model: Polyakov
loops, minus their largé values. =exg —N>Vgw(B€o)]. (73
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The mean field condition is and so starts out with a negative mass term. The potential
decreases with increasig with a single minimum when
1 9
fo:_ﬁ MVGW(B%)- (74) ) 1 . -1 .
=5 =/ (78)

This condition is equivalent to minimizing the mean field

otential - .
P When ¢>{, the potential increases monotonically. For all

o + 5
v )=BL2+ Y 7). 75 B, the potential is bounded at large V' ~+ B¢ as ¢
milB.0)=8 owAE) 79 —oo, [For £>1/(2p), the extremal conditio@V /¢ =0
We replacel, by ¢, and interpret the result as a potential for IS & quadratic equation. There is another root besi@8s
¢. At a fixed 8, as usual the vacuury, is given by mini- but it occurs for¢<1/(2B), and so does not mattgr.
mizing Vy,s With respect tof . Thus there is a confined phase &< 1, and a deconfined

Since an overall factor a2 is scaled out of the potential, Phase fors>1. The expectation value of the loog,
a nonzero value ol,«({,) implies that the free energy JUMPS fr0m+zero below the transitiorg=1", to 3 just
"“NZ. This is expected in the deconfined phase from thea_lb(_)ve,ﬁ=l . The latter IS(].O) of the Introduction. In the
liberation of~N2 gluons. In the confined phase, Thdao] ~ IMit B—, o—1. L _
noted that as all states are color singlets, their free energy is 10 Verify that the transition is in fact of first order, con-
at most of order one, s®,{(£o)~1/N2~0. This scaling s_lder the value of the p9tent|al at its minimum. In thg con-
also motivated the Polyakov loop moda8—21. Here, we fined phasefo=0, soVy(£o)=0 for all <1, including
assume that to go from the single site model to thermody#—1"- In the deconfined phase, usifig8) one finds that
namics, we multiplyVy,¢ by T4 times the volume of space.

The potential/g\ has been computed in the larydimit N -1
by Gross and Wittei43]. At infinite N the result is nonana- Vimi(€o)~— 4 T (79)
lytic, and is given by twadifferent potentials. For smalf,

the potential is just a mass term, as B—1". Thus the first derivative o¥,«({o), which re-

spect tog, is discontinuous whepg=1.

Vo=B(1-p) 2, €$i, (76) If we assume thagB is linear inthe temperature—as found
2B for three colors—then the deconfining transition is thermo-
dynamically of first order aN= o, with a latent heat- N?.
while at largef, the potential is In this we agree with47].

Even so, the nonanalyticity of the potential still has strik-
ing physical consequences. In particular, exactlgatl, the
potential is completelylat for ¢ between 0 and, V=0
[63]. The potential then increases monotonically, starting out

The physical interpretation of this potential is rather dif- to cubic order in¢ — 3. The only reason the order parameter
ferent from the context in which it arose. Gross and Wittencan jump, despite the flatness of the potential, is bec@guse
considered aJ(N) lattice gauge theory in two dimensions, =1 is special: then, and only then, does the point at which
with lattice coupling constanBg= ¢ [43]. This is the the potential is discontinuous coincide with the nontrivial
only parameter in the model, and there is no condition to fixminimum.
¢,. Instead, the expectation value of Regis related to the To appreciate this in another way, consider how the mass
string tension; it changes witBgy, but is always nonzero. squared,m?=d*V,,¢/3¢? changes. Approaching the transi-
The two potentials ir(76) and(77) correspond to weak and tion in the confined phase implies that we compute about
strong coupling branches of the free energy. Abgg,, €0=0,
=1/2, the first and second derivatives of the free energy are
continuous, but the third derivative is not, so there is a third m2~2(1-p8), B—1". (80)
order phase transition iBgy-

In mean field theory$3 is an effective coupling for the |, contrast, approaching the transition in the deconfined
fundamentql Iopp. As a function (ﬁfat fixed B, the first and_ phase, we compute abogg=21,
second derivatives of the potential are everywhere continu-
ous, but third(and highey derivatives are discontinuous at a

V= —2B0+ €2+1| 2 €+§ €>i 7

single point, wher! = 1/(23). This nonanalyticity is special mi~4 B—1, p—1". (81)

to N=o: the mean field potential is everywhere continuous

for finite N. Thus while both masses vanish g1, they vanish with
Overlooking this discontinuity, the potenti¥},; behaves different powers of 8—1|.

as a potential should. Wheg<1, the potential just in- The mass of the Polyakov loop is of physical significance

creases monotonically with, so the minimum is at,=0. in the underlying gauge theofyt9,20. In coordinate space,

For B>1, the potential about the origin is given B, the connected two point function @f{x) is
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R exr(—M|>Z|) ) =0, The mean field couplingd is again shifted,3—
(X (X)EN0)Y = ()2~ ——=——, |X|—=. + y,+#vy,2, but by an amount which depends on the con-
| densate, {,; there are also additional potential terms,

(82) ~ y4€3. Consequentlyy,# 0 corresponds to a change in the

In the confined phaseV = o/T, whereo is the string ten-  Potential. Aharonyet al. [14] show that fory,#0, ordinary
sion. In the deconfined phase, one can defive transitions appearto be generic. In pa_rtlcular, first order tran-
=2Mpepyes Where Mpepye is a (gauge-invariant Debye sitions have finite correlation lengths in both phases.

mass. Assuming thafl ~m, with mass dimensions made up  This remains the case for an arbitrary potentlad, At

by some other physical mass scale, such as the temperatul@r,geNa this is just a sum of powers of the fundamental loop:
this mean field theory predicts that the string tension van-

ishes at the transition 462] W=2 (o ([E8D™+ £ (€)™ C.CTh (89)

a(M~(Tg—NY3 T-Tyg, (83
and the Debye mass, as This is a typical potential for a scalar fiel=€(i): the
adjoint loop acts like a mass term, while the other terms are
mDebye(T)~(T—Td)1’4, T-T,. (84) interactions of quartic and higher order, invariant under a

_ ) N . . global symmetry oZ(N).
One might refer to this as a “critical” first order transition: at ~ \we define the Gross-Witten point as the transition for a
the.trﬁnsmon, the Olfldef parameter jumps, but the massgsptential which is just the adjoint loop. All other interactions
vanish, asymmetrically. are droppedB+ y,#0, With y,=ye=- - - = &= ="- -
We next include the effects of the potentigdp). We start  —q ’ e N
with the simplest termy,+0, which is the contribution of  The deconfining transition for three colors appears to be
the adjoint loop to the potential. At larg¥, in mean field  cjose to the Gross-Witten point of infinits. For example,

approximation we need to evaluate the integral although the data are very limitd@5], the decrease of the
Debye mass neafy does seem to be significantly sharper
’ng dL yexd N?(28€ Rely+ v, €nD)] than for the string tension, as indicated by the different
“critical exponent” in (84) versus(83). Exactly how close

o~ N=3 is to the Gross-Witten point dfl=c can be charac-
=exd —NWUBL,y2)]. (85 terized within matrix model§55]. Effects which are impor-
The solution iS45,46 tant for three colors include the contribution of the decuplet
' loop, which is like a cubic interaction for the triplet loop, and
= — K2t n the mixing between the triplet_and sextet loopge in (66). .
VIBL, 72)= 72K+ Vewl BE+ 72K), (86) Assuming that three colors is near the Gross-Witten point,

wherek is a variable which one minimizes with respect to. We can explain whyZ(N) neutral fields have small expecta-
The variation with respect toenforces the condition that the tion values in the confined phag¢€3). In the confined phase,
expectation value of? satisfies factorization. Finally, the the potential is purely a mass term, as corrections76)
mean field solution is given by minimizing a potential with P€gin with the baryon vertex; (€)™ [44,47,53. This ver-

respect tof andk: tex inducesZ(N) neutral expectation values, but as noted by
Goldschmidf44], these are of order exp(—N).
Voni(£,K) = B2+ y,k2+ Vgl B+ v,K). (87) ThatN=3 is close to the Gross-Witten point could be an

accident of three colors. The lattice will tell us if the decon-

This is trivial to solve. Expanding abolit=¢ + 5k, for sk fining transition for four or more colors is also close to the
=0, this reduces to the previous mean field potential, excepgbross-Witten point. The lattice finds a first order transition
that the coupling constant is shifteé— B8+ v,. Further, if¢ ~ [26,27], but the crucial tests are the value of the renormal-
is extremal with respect to this shifted mean field, the termized, fundamental loop &t; , and whether the string tension
linear in 6k also vanishes. This follows because the Grossand the Debye mass decrease significantly figar
Witten potential is a function only g8€, and not of8 and¢ If this is not found, the most probable scenario is just that
separately. As discussed previously, fo=3 we discovered the transition becomes more strongly first order with increas-
numerically that in mean field theory, we can shift the adjointing N. We term the transition strongly first order if the value
coupling away,8— B+ v,. of the renormalized fundamental loop & is near unity.

This is very different from lattice gauge theories in two Then at the transition, deconfinement is not halfway, as it is
dimensions, whergg\ and y, represent independent cou- at the Gross-Witten point, but nearly complete.
pling constantg45,46. Then Bgw and y, can be varied For such a strongly first order transition, neither the string
irrespectively of each other, and one finds that the third ordetension, nor the Debye mass, would need to change much
transition, inBgw for v,=0, can become a first order tran- aboutT,. Gocksch and Nerf42] argued that the “loop”
sition in the plane of3g\w and y, [45,46. string tension is constant fof<Ty. In a Nambu string

The generalization te,# 0 is direct. One includes a con- model, though, a largel expansion shows that when the
straint field for |€|?> and then solves the constraint Wt  ordinary string tension vanishes &, the loop string ten-
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sion is still~87% of its value at zero temperatUi®2]. We  tional Laboratory using the publicly availableiLc code.
are unaware of lattice data on the loop string tension. J.L. thanks P. Arnold and H. Thacker for useful discussions.
R.D.P. thanks R. Brower and C. P. Korthals-Altes, for em-
phasizing the importance of mixed actions in matrix models;
M. Creutz, for numerous discussions on group theory and the
In this paper we presented a general analysis of the renolattice; P. Damgaard, for many discussions of his work; G.
malization of Polyakov loops, and applied it to measure theKorchemsky, for explaining loops with cusps; also, Y. Dok-
simplest loops for three colors in four dimensions. Theseshitzer, N. Drukker, D. J. Gross, T. Heinzl, and S. Necco.
results led us to consider effective matrix models for theR.D.P. and Y.H. thank P. Petreczky for discussions concern-
deconfining phase transition. There are clearly many avenuggsg Polyakov loops on the lattice.
for future study.
For two colors, there will be two regions. Aboty, there APPENDIX: IMPROVED WILSON LINE
is a critical region, controlled by universality of the second o ) ) )
order transition[5], and in which factorization fails. This It is difficult extracting renormalized Polyakov loops in
may then match onto a mean field region, where factorizal®Presentations such as the decuplet, because the bare loop is
tion is approximately valid. suppressed by a small renormalization constant. In this Ap-
For three colors, careful measurements of the renormalPendix we give a formal discussion of how to improve the
ized loops, and associated masses, will sharply constrain théflson line[57]. _ _ _
couplings of the effective matrix modéb5]. We note that Our discussion applies to any Wilson line along a path
while we could not extract an expectation value for theX“(S), wheresis the path length along the curve. As shown
renormalized decuplet loop from that for the bare loop, mearn Sec. II,(13), the propagator for a test quark is proportional
field theory indicates that it is significaf4]. to the Wilson line. Consequently, we consider a generalized
Simulations should quickly show if for the deconfining Propagator, by adding an operat#ito the covariant deriva-
transition for four or more colors is near the Gross-WittentIVe:
point.
_Considgring theories_ other tharSU(N), Holland, (i—igA“X“—X> G(s,s')=58(s—s"), (A1)
Minkowski, Pepe, and Wiedé5] noted that in a pur&(2) ds
gauge theory, there is no center to the gauge group, and so no _
absolute measure of confinement. This is analogous, thougtherex*=dx*/ds. The representation is denoted implicitly.
to Z(N) neutral loops ifSU(N), for which we measured no Schematically, the solution to this equation is
signal belowTy. In the simplest mean field theory for a
G(2) gauge theory, presumably there is a first order transi-
tion, with a value for the fundamental loop & near ;.
Maybe like SU(3), the ‘deconfining” transition in aG(2)
gauge theory is also near the Gross-Witten point. with P denoting path ordering. The solution &is sche-
The renormalization of Wilson lines implies that once thematic because of the path ordering, but it is easy to under-
divergent mass is knowll renormalized loops can be com- Stand the solution as a power seriestinwith each insertion
puted. We suggest that numerical simulations measure loog¥ < sandwiched between a Wilson line on both sides.
of different shapes, such as Polyakov loops with cusps, Fig. Any possible operato’ has a higher mass dimension
1, and circular loops, as can be computed in supersymmetri®an the gauge field, so we make up the dimensions with
theories[13]. inverse powers of the ultraviolet cutoff, such as the lattice
In the end, however, what is most important is to measurépacinga. The important thing is that' respects the relevant
renormalized Polyakov loops for theories with dynamicalsymmetries. Gauge invariance requires thidtansforms ho-
quarks. Our method for computing renormalized Polyakovnogeneously under gauge transformations, but that is simply
loops is completely unaffected by the presence of dynamicaione by using powers of the field strength ten€dy, . The
quarks. Given the flavor independence found for the pressur@perator must also be invariant under how we parameterize
[24], it would be striking if the values of renormalized Polya- arc lengths—s’(s). The final symmetry is the zigzag sym-
kov loops, with dynamical quarks, are found to be close tametry of Polyako\66]; for reparameterizations which go in
those of the pure gauge theory. For recent results, see Rdhe opposite direction, witlls/ds’<0, & should change
[39]. sign.
The simplest possibility is

V. OUTLOOK

g(s,s’)=0(s—s’)7?exp<f (igA*x“+ X)ds| (A2)
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=a?g? G2,\x2 (A3)
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One can satisfy all symmetries with the following opera-
tor,

e

*=agG,,—5-, (A%)

wherex=d?x*/ds?. A similar operator was noted by Polya-
kov and Rytchko\66]. Since it vanishes for a straight path,
wherex*=0, it does not help to regularize the Wilson line.
It is also problematic to continue to Minkowski spacetime
since it is singular on the light conlé6].

To define an operator which satisfies all of our require-

ments, we define a unit vector normal to the path,
(A5)

For a given direction, we introduce tiedependent operator

X;=kgG,, X N". (AB)
We then define a modified Wilson line as
J dQ;ﬂDexp(J (igA, X"+ X,)ds|. (A7)

The operatotY;, inserts the field strength tensor perpendicu-

lar to the path. We then integrate over all directions of the

insertion, withdQ); the normalized integral ovem, [dQ;
=1. We obviously cannot integrate over all directionsn

PHYSICAL REVIEW D70, 034511 (2004

<1/\/3, (A8) is negative, while foi>1/\/3, it is positive. If
a more realistic cutoff is used, then the valuexoét which
the sign changes will be different, but for large(and to
leading order irg?) bare loops are enhanced, not suppressed.
Following the procedure in Sec. IID, from Iggf) we
compute as power series M. The term linear irN; gives
Zr , with the renormalized loop given by the term indepen-
dent ofN;. We argue that while th& are x dependent, the
renormalized loops are not, at least in perturbation theory. To
lowest order ing?, for k=0 the renormalized loop arises
from the correction from the Debye mass term,
~g?(m3)Y2T~g3, (55 [3]. This is nonanalytic in the De-
bye mass, and arises because the leading term is only linearly
divergent. For thec-dependent term, the leading term is cu-
bically divergent, so corrections are-g?«?a’ma/(aT)
~g*«?aT; but this is~ 1/N;, and vanishes a¥,— . There
is a nonanalytic term at one higher order in momentum, but
this is even smaller, ~g°«?a?(m3)%¥4T~g%«>?(aT)?
~1/Nt2. It seems likely that this holds for any-dependent
terms: they contribute to terms 1/(aT)~N,, or to lattice
corrections~ 1/N; or smaller, but not to terms in the con-
tinuum limit, ~N?. This analysis is special to four space-
time dimensions: in three dimensions, tkelependent term
is quadratically divergent, and has logarithmic corrections, as
for k=0.
While zigzag symmetric, the term added;, is not a
phase factor; the coupling must be real in order to enhance
the bare loop. As the bare loop is not the trace of a unitary
matrix, there is no bound on the renormalized loop, as for

the exponential, or the term would vanish, and so do so in.=q, (56): when x#0, Z5 can diverge in the continuum
the prefactor of the exponential. Zigzag symmetry is mainqimit, instead of vanishing.

tained by integrating over afi.
In perturbation theory, to lowest ordef, generates new

On the lattice, adding a field strength tensor at a point
corresponds to stapling a plaquette, as the average rover

divergences. In three spatial dimensions, and including a Deyecomes a sum over the directions transverse to the path. To

bye masanp~gT in the propagator foA, [3], the leading
divergence is
QZJ j d3k
~—=| dQj;
TS em?

—1+a%>*(n-k)?
k?+m3

(A8)

lowest order ink, this modification is the same as the smear-
ing of link variables proposed by the APE Collaboration
[57]. We suggest doing this not just to lowest order, but to all
orders ink. This is related to the stout links of Morningstar
and Peardof57]. The difficulty is that eventually the Wilson
line is smeared over the entire lattice, which must then be cut

We assume that the ultraviolet divergence is cutoff strictly abff in some way. On the other hand, the usual problem with

momenta 1d. The usual term is- fd®k/k?~ 1/a, and is of
the same order as the new terma?fd%k~1/a. For «

smeared links is the need to project back to an element of
SU(N), which is unnecessary here.
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