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Deconfining phase transition as a matrix model of renormalized Polyakov loops
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We discuss how to extract renormalized loops from bare Polyakov loops inSU(N) lattice gauge theories at
nonzero temperature. Single loops in an irreducible representation are multiplicatively renormalized, without
mixing, through mass renormalization. The values of renormalized loops in the four lowest representations of
SU(3) were measured numerically on small, coarse lattices. We find that in magnitude, condensates for the
sextet and octet loops are approximately the square of the triplet loop. This agrees with a largeN expansion,
where factorization implies that the expectation values of loops in adjoint and higher representations are
powers of fundamental and antifundamental loops. The corrections to the largeN relations at three colors are
greatest for the sextet loop,;1/N, and are found to be<25%. The values of the renormalized triplet loop can
be described by a matrix model, with an effective action dominated by the triplet loop: the deconfining phase
transition forN53 is close to the Gross-Witten point atN5`.
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I. INTRODUCTION

In a SU(N) gauge theory, ’t Hooft showed that the exa
order parameter for deconfinement is a globalZ(N) spin
@1–23#. The globalZ(N) symmetry arises topologically@12#
from the center of the gauge group, and is exact in a p
gauge theory. Quarks carryZ(N) charge, and so break th
gluonic Z(N) symmetry. Nevertheless, numerical resu
from the lattice, termed flavor independence@24#, suggest
that the gluonicZ(3) symmetry may be an approxima
symmetry of QCD.

At a nonzero temperatureT, a gluonicZ(N) spin is con-
structed by starting with a thermal Wilson line, which wra
all of the way around in imaginary time. The trace of t
thermal Wilson line is the Polyakov loop@2#,

,N5
1

N
tr LN , ~1!

and is gauge invariant. This is the trace of the propagator
an infinitely massive, test quark; the subscripts denote
the test quark is in the fundamental representation, of dim
sion N.

As a gauge theory is heated, deconfinement occurs ab
a temperatureTd . The confined phase isZ(N) symmetric, so
the expectation value of the fundamental loop, which h
unit Z(N) charge, vanishes belowTd . The gluon spin con-
denses in the deconfined phase, aboveTd :

^,N&5eifu^,N&uÞ0, eifN51, T.Td , ~2!
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and thereby breaks the globalZ(N) symmetry spontaneousl
@1–23#.

To compute nearTd , it is necessary to employ numerica
simulations on the lattice@24–30#. The difficulty is that the
expectation value of the Polyakov loop is a bare quant
and so suffers ultraviolet divergences. This is due to an
ditive mass shift which the test quark undergoes with a
tice regularization. In four spacetime dimensions, the m
divergence for a test quark is linear in the ultraviolet cuto
proportional to the inverse of the lattice spacing,a. This
mass renormalization affects the expectation value of
bare Polyakov loop as the exponential of a divergent ma
mN

div , times the length of the path@31–37#:

u^,N&u;expS 2
mN

div

T D , mN
div;

1

a
. ~3!

For a Polyakov loop, the length of the path is 1/T.
Gervais and Neveu@31#, Polyakov@32#, and others@33–

37# established that Wilson lines are renormalizable ope
tors. We review these results in Sec. II, applying them to,R ,
a single Polyakov loop in an arbitrary, irreducible represe
tation, R. A renormalized loop,,̃R , is formed by dividing
the bare loop by the appropriate renormalization const
ZR :

,̃R5
1

ZR
,R , ZR5expS 2

mR
div

T D . ~4!

This is a standard type of mass renormalization@38#; for
example, in perturbation theoryamR

div is a power series in
the coupling constant. The only unusual feature is that
©2004 The American Physical Society11-1
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cause the Wilson line is a nonlocal operator, the renorm
ization constant depends upon the length of the path; in g
eral, the renormalization constant for a path of lengthL is
ZR5exp(2mR

divL).
The real problem is how to extract the divergent mas

nonperturbatively. In this paper we suggest a way of do
this. Consider a set of lattices, all at the same physical t
perature,T, but with different values of the lattice spacing,a.
Since the number of time steps,Nt51/(aT), changes be-
tween these lattices, the divergent mass,amR

div , follows by
comparing the values of the bare Polyakov loops. This
sumes that, as in perturbation theory,amR

div is a function
only of the temperature, and not of the lattice spacing, aa
→0. Given the renormalization constantZR , the renormal-
ized loop,̃R then follows from~4!, up to corrections at finite
lattice spacing;aT.

In an asymptotically free theory, at high temperature
vacuum is trivial in perturbation theory, as the thermal W
son line is aZ(N) phase times the unit matrix,LN→eif1N
~2!. After suitable normalization, the expectation value
any renormalized loop approaches one at high temperat

u^,̃R&u→1, T→`. ~5!

In Sec. III we present measurements of bare and re
malized loops obtained through numerical simulations in
pureSU(3) lattice gauge theory. Polyakov loops in the fo
lowest representations were measured, although we
found significant signals for three: the fundamental, the sy
metric two-index tensor, and the adjoint representations.
three colors, these are the triplet, the sextet, and the o
representations, respectively. These loops were measur
temperatures from'0.5Td→3Td . Numerically, we find that
in all representations, the divergent massesamR

div are posi-
tive, so the bare loops vanish in the continuum limit,Nt
→`. The values of renormalized loops appear to hav
well-defined continuum limit and approximately satisfy t
asymptotic condition of~5!.

An alternate procedure for computing the renormaliz
Polyakov loop was developed by Kaczmarek, Karsch,
treczky, and Zantow@39#. They obtainZR from the two
point function of Polyakov loops at short distances. Th
numerical values for the triplet Polyakov loop agree w
ours atTd , but differ at higher temperatures; they did n
consider higher representations.

The most basic thing to consider is the size of the ren
malized triplet loop. As we shall see, loops in higher rep
sentations are approximately given as powers of the tri
loop. We define a perturbative regime when the expecta
value of the renormalized triplet loop is near one in mag
tude. If the triplet loop is nonzero, but not close to one, th
we have a deconfined, but nonperturbative, regime. At
transition,T5Td

1 , both we and Kaczmareket al. @39# find

that the renormalized triplet loop,u^,̃3&u, is '0.4; by
'3Td , we find it is'0.9, while Kaczmareket al. @39# find
'1.0. This suggests that a pure gauge theory is, in so
sense, perturbative from temperatures of'3Td on up, but
not from Td to '3Td . This is in qualitative agreement wit
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different resummations of perturbation theory@7#, all of
which work down only to a temperature which is seve
timesTd . It is also suggested by some features of the RH
data@8#.

Turning to loops in higher representations, we find th
the expectation values ofall renormalized loops are ver
small in the confined phase. Renormalized loops are non
aboveTd , with an ordering of expectation values as triple
octet, and then sextet loop. Even though the octet and se
condensates are smaller than that for the triplet, they are
significant.

The apparently large values for the condensates of
octet and sextet loops are illusory. This is because when
fundamental loop condenses, that alone induces expecta
values for all higher loops. It is to these induced values t
we must compare.

This is clear in the limit of an infinite number of color
@10#. Makeenko and Migdal observed that inSU(N) gauge
theories, expectation values factorize at largeN @40–52#.
Factorization is the statement that disconnected diagra
with the most traces, dominate at largeN.

At infinite N, factorization fixes the expectation value
any Polyakov loop to be equal to powers of those for
fundamental and antifundamental,,̃ N̄5( ,̃N)* , loop @41#:

^,̃R&5^,̃N&p1^,̃ N̄&p21OS 1

ND . ~6!

Hence

^,̃R&5eieRfu^,̃N&up1OS 1

ND . ~7!

The integersp1 and p2 are determined from the Youn
tableaux of the representationR, using the composite repre
sentations of Gross and Taylor@52,53#. At any N, the overall
phase is fixed, trivially, by theZ(N) charge ofR, eR[p1

2p2 , moduloN. What is not trivial is the magnitude of th
loop: at largeN, the term with the most powers of the fun
damental loop dominates, with powerp[p11p2 .

Lattice simulations with two colors by Damgaard and o
ers @54,56# showed that the bare adjoint loop is an appro
mate order parameter for deconfinement. At infiniteN, by
factorization any renormalized loop serves as an order
rameter for deconfinement, independent of itsZ(N) charge.
For example, consider the adjoint loop, withp15p251,
and the loop for the symmetric two-index tensor represen
tion, p152 and p250. While the adjoint has noZ(N)
charge, and the two-index tensor charge two, moduloN, in
magnitude both expectation values are;u^,̃N&u2 at largeN.

We tested these largeN relationships numerically for three
colors. For each loop, we define the difference between
measured loop and its value in the largeN limit. The expec-
tation value of the sextet difference is defined to be

^d ,̃6&5^,̃6&2^,̃3&
2, ~8!

and that for the octet difference as
1-2
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^d ,̃8&5^,̃8&2u^,̃3&u2. ~9!

Of course there is some ambiguity in defining the differen
loops. One advantage of the above definitions is that t
automatically vanish at both low and high temperature.
the confined phase,T<Td , the difference loops~nearly!
vanish because all loops are~essentially! zero; at very high
temperature, the difference loops vanish because all lo
approach one asT→`.

The expectation values of the difference loops show in
esting behavior. They vanish belowTd , and spike down
above Td , with a maximum at a temperature.Td . The
spike for the octet difference is smaller, narrower, and clo
to Td than the spike for the sextet difference:u^d ,̃8&u<0.2,
with a maximum at'1.1Td , while u^d ,̃6&u<0.25, with a
maximum at'1.3Td .

The magnitude of these expectation values are in acc
with a largeN expansion. Corrections to the sextet differen
are larger,d ,̃6;1/N, than those for the octet differenc
d ,̃8;1/N2. Thus our measurements of the values of ren
malized loops give us a numerical estimate of just how go
a largeN approximation is for three colors. Corrections
the sextet difference, of;1/N, are found to be<25% when
N53.

Although factorization tells us how to reduce condensa
for higher loops to powers of that for the fundamental loo
it does not tell us how the condensate for the fundame
loop changes with temperature. Given the mean field r
tions satisfied by loops in higher representations, in Sec
we consider a mean field theory for the fundamental lo
itself. We consider a matrix valued mean field theory,
matrix model; this arises in a wide variety of contexts@41–
52#, including previous@48,49,54# and recent@14–16# work
on the deconfining transition.

The most general effective action for a matrix model
the deconfining transition involves a sum over loops in
representations. For three colors, we find that the lattice
for the renormalized triplet loop is approximately describ
by a model whose action includes only the triplet loop. Ov
the range of temperatures studied, the coupling constan
the triplet loop is nearly linear in temperature. While t
overall values of the sextet and octet loops are approxima
described by this mean field theory, the difference loops
not. We categorize more involved models which might.

It is interesting to consider what matrix models mig
apply to the deconfining transition for more than three c
ors. Consider the simplest possible model, where the ac
includes just the fundamental loop. At infiniteN, the solution
follows from that of Gross and Witten @14–
16,43,47,49,51,54#. Kogut, Snow, and Stone showed that
this model, the deconfining transition is of first order, with
latent heat;N2 @14,15,47,49,51,54#. As a first order transi-
tion, the fundamental loop jumps, from zero to precisely o
half:

u^,̃N&u5
1

2
, T5Td

1 , N5`. ~10!
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This was also stressed recently by Aharony, Marsano, M
walla, Papadodimas, and Van Raamsdonk@14#: at Td , this
theory only deconfineshalfway.

It is striking that this special value at largeN is close to
that found from numerical simulations for the renormalize
triplet loop; both we and Kaczmareket al. @39# find u^,̃3&u
'0.4 at T5Td

1 . In the N53 matrix model closest to the
Gross-Witten point, this value is not1

2 , but '0.48560.001
@47,54,55#. The value in the Polyakov loop model, which w
discuss shortly, is'0.55 @19#.

The first order transition at the Gross-Witten point
atypical. In ordinary first order transitions, masses are n
zero on either side of the transition@38#. Even though the
value of the fundamental loop jumps atTd , at the Gross-
Witten point both the string tension, and a gauge invari
Debye mass, vanish. This is only possible because of a t
sition, which is of third order in the matrix model couplin
constant, at infiniteN @43#. The Gross-Witten point is spe
cific to infinite N: at finite N, but >3, in the matrix model
deconfinement is an ordinary first order transition, with t
string tension and the Debye mass nonzero atTd .

For three colors, lattice simulations find a relatively we
first order transition, accompanied by a large decrease
both the string tension and the Debye mass nearTd , each by
about a factor of ten@25#. The customary explanation for thi
is that, as in the Potts model, three colors is near the sec
order transition known to occur for two colors@56#. We sug-
gest that the deconfining phase transition for three color
also close to the Gross-Witten point of infiniteN; exactly
how close can be categorized in a matrix model@55#.

Sundborg@9# and others@14–16# showed how at largeN
the Hagedorn temperature can be computed when space
very small sphere. On a small sphere, Aharonyet al. @14#
find that the deconfining transition is of first order if th
Hagedorn temperature is greater thanTd . It is tempting to
think that the spikes which we found for the sextet and oc
difference loops may be related to the Hagedorn temperat
If so, for three colors the Hagedorn temperature is tens
percent above that for the deconfining transition.

It would be valuable to know from numerical simulation
if the deconfining transition for more than three colors
close to the Gross-Witten point as well, or if that is unique
three colors.

An appendix gives a formal discussion of improved W
son lines; on the lattice, these are related to smeared, s
links @57#. This may be of use for measuring Polyakov loo
in higher representations.

Our work was motivated by the Polyakov loop mode
which postulates a relationship between the Polyakov loo
which was presumed to exist as a renormalized quantit
and the pressure@18–21#. In the end, we have more tha
expected: not just a renormalized Polyakov loop, but a go
approximation to its potential, in theSU(3) matrix model.

II. BARE AND RENORMALIZED POLYAKOV LOOPS

A. Traces of Wilson lines in imaginary time

At a temperatureT, the thermal Wilson line at a spatia
point xW , running in time from 0 tot, is
1-3
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LR~xW ,t!5P expS igE
0

t

A0
a~xW ,t8!tR

a dt8D ; ~11!

we take the representationR to be irreducible. The notation
is standard:P denotes path ordering,g is the gauge coupling
constant,t and t8 are variables for imaginary time,t,t8:0
→1/T, A0

a is the vector potential in the time direction, andtR
a

are the generators ofSU(N) in R.
The Wilson line is aSU(N) phase factor forR, and so is

a unitary matrix,

LR †~xW ,t!LR~xW ,t!51dR; ~12!

dR is the dimension of the representation, and1dR the unit
matrix in that space.

The thermal Wilson line is proportional to the propaga
of a ‘‘test’’ quark in the representationR @21,33#. A test
quark is one whose mass is so large that if you put it a
given point in space,xW , it just sits there. The only motion o
a test quark is up in imaginary time. While the test qua
does not move in space, it still interacts in color spa
through the Aharanov-Bohm effect, it acquires aSU(N)
phase.

To see this, form a covariant derivative in imaginary tim
and define a propagator,GR , as its inverse:

S d

dt
1dR2 igA0

a~xW ,t!tR
a DGR~xW ,t!5d~t!1dR. ~13!

It is easy computing the propagator in one dimension: i
just a step function,u(t), times the Wilson line,

GR~xW ,t!5u~t!LR~xW ,t!. ~14!

Alternately, consider the path integral representation
the propagator of a particle with massm in a background
gauge field; schematically,

E DxmexpS 2E ~mAẋ21 igAmẋm!dsD , ~15!

whereẋm5dxm/ds, ands is the path length; an exact form
given in Ref. @31#. In the limit of m→`, this path is a
straight line up in imaginary time, and this propagator is
thermal Wilson line. Classically, the partition function in~15!
is ;exp(2mL), where m is the bare mass, andL is the
length of the path.

Under a gauge transformation inR, VR(xW ,t), the Wilson
line transforms as

LR~xW ,t!→VR †~xW ,t!LR~xW ,t!VR~xW ,0!. ~16!

As bosons, the gauge fields are periodic in imaginary tim
with period 1/T. For the time being, we also assume that
gauge transformations are periodic in time,VR(xW ,1/T)
5VR(xW ,0). We relax that assumption later, but only in a w
which affects the global symmetry, and not the local symm
try.
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For periodic gauge transformations, we can form a qu
tity which is locally gauge invariant by wrapping the Wilso
line around in imaginary time, and then taking its trace:

tr LR~xW ,1/T!. ~17!

For the time being we follow the custom of mathematic
which is to work with traces that are not normalized. T
trace is greatest when the Wilson line is the identity,5dR .

The propagation of a test quark, atxW , forward in imagi-
nary time generates the Wilson line in the fundamental r
resentation,LN(xW ,1/T). A test antiquark is a test quark mov
ing backward in imaginary time, so it gives the conjuga
Wilson line,L N̄(xW ,1/T)5LN

† (xW ,1/T).
Let us consider how to combine more test quarks a

antiquarks. To be gauge invariant, the Wilson lines m
wrap around completely in imaginary time, so we drop t
dependence on imaginary time, 1/T. We also assume that a
test quarks and antiquarks are put down at the same poi
space, and so drop the dependence onxW as well. So a test
quark givesLN , and a test anti-quark,LN

† .
The general classification of representations is, for a

traryN, rather involved@52,53#. We thus start with the lowes
representations for generalN. We then discuss some simpl
fications for N53. Finally, we show how one can easi
classify all representations in the largeN limit @52#. We use a
notation whereR is generally denoted by its dimension,dR .

1. Simple examples

The adjoint Wilson line is a test meson, constructed fro
a test quark and antiquark. To combine the fundamental
antifundamental Wilson lines into something with adjoint i
dices, we sandwichLN andLN

† between twoSU(N) genera-
tors, tN

a ,

LN221
ab

5tr~LNtN
a LN

† tN
b !; ~18!

the adjoint indicesa,b51, . . . ,(N221). The trace of the
adjoint Wilson line is

tr LN2215utr LNu221. ~19!

This follows from an identity on theta’s, or directly from
group theory. The product of the fundamental and antifun
mental representations is the sum of the adjoint and iden
so the coefficient ofutr LNu2 in ~19! is one. To check the
21 in ~19!, consider the case when the Wilson line is t
unit matrix,LN51N ; then the adjoint trace is its dimension
5N221.

The next representations are tensors with two fundam
tal indices@53#. These represent the propagation of two t
quarks up in imaginary time. Two Wilson lines can be p
together in either a symmetric~1!, or an antisymmetric
(2), way. The Wilson lines for the two-index represent
tions are

L (N26N)/2
i j ;kl

5
1

2
~LN

ikLN
jl 6LN

jkLN
il !. ~20!
1-4
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Here i , j ,k,l 51, . . . ,N are indices for the fundamental rep
resentation. The traces of the representations with two W
son lines are then

tr L (N26N)/25
1

2
@~ tr LN!26tr LN

2 #. ~21!

Checking the coefficients forLN51N , the dimensions of the
representations are as indicated. The first term is a produ
two Wilson lines, each of which wrap around once in ima
nary time. The second term is one Wilson line which wra
around twice in imaginary time.

2. Three colors

For three colors, the fundamental representation is a t
let, 3, the adjoint representation is an octet,8, and the sym-
metric two-index representation is a sextet,6.

Special to three colors, the antisymmetric two-index re
resentation is the antitriplet,3̄. To see this, diagonalize th
triplet Wilson line by a local gauge rotation. After diagona
ization, each element ofL3 is a phase; the product of a
phases is one:

L35S exp~ ia1! 0 0

0 exp~ ia2! 0

0 0 exp@2 i ~a11a2!#
D .

~22!

Then it is easy to check thatL (N22N)/2 from ~21! 5tr L3
†

when N53. Notice that~21! actually gives the antitriple
loop, which is a fault of our notation.

We mention one other representation for three colo
Consider a test baryon, composed of three test quarks.
symmetric combination of three fundamental Wilson lin
gives the decuplet representation whenN53. Its trace is

tr L105
1

6
@~ tr L3!313 trL3tr L3

212 trL3
3#. ~23!

SinceL3 is a SU(3) matrix,

detL351

5
1

6
~ tr L3!32

1

2
tr L3tr L3

21
1

3
tr L3

3 , ~24!

which is Mandelstam’s constraint@59#. Using it, we find that
the trace of the decuplet Wilson line is

tr L105tr L3tr L3
211. ~25!

3. Large N

The usual classification of representations is given us
Young tableaux@52,53#. This is not very convenient for the
largeN limit, though. The reason is elementary: Young ta
leaux involve the construction of tensors with fundamen
indices. While of course complete, it does not naturally
corporate the symmetry between the fundamental and a
03451
il-

of
-
s

p-

-

s.
he

g

-
l
-
ti-

fundamental representations. This is accomplished using
composite representations of Gross and Taylor@52#; we give
an abbreviated summary which is sufficient for our purpos

Consider forming a state withp1 test quarks andp2 test
antiquarks. This is done by combiningp1 fundamental Wil-
son lines, andp2 antifundamental Wilson lines, in all pos
sible ways. To be gauge invariant, we must take traces ofLN

and LN
† . We also have to remember thatLN is a unitary

matrix, LN
† LN51N , ~12!. This relation implies that all trace

are either traces of powers ofLN , or traces of powers ofLN
† ,

separately. Any mixed terms can be simplified using the u
tary relation.

The explicit construction of Wilson lines in different rep
resentations, as done above for the adjoint and the two-in
tensor, is unnecessary. Only gauge invariant quantities m
ter: these are traces of the Wilson line in different repres
tations. For anyR, by the Frobenius formula@52,53# we can
express the trace of a Wilson line inR as sums of products
of traces of the fundamental Wilson line.

We do this naively, by considering how to combinep1

LN’s and p2LN
† ’s. The simplest thing is to take a trace o

every Wilson line, separately:

~ tr LN!p1 ~ tr LN
† !p2. ~26!

In this term, each Wilson line wraps once, and only on
around in imaginary time.

This is just the first term in a long series, though. To st
with, we can consider a term where one Wilson line wra
around twice in imaginary time:

~ tr LN!p122 ~ tr LN
2 !~ tr LN

† !p2. ~27!

Continuing, a term where one Wilson line wraps arou
thrice:

~ tr LN!p123 ~ tr LN
3 !~ tr LN

† !p2, ~28!

and so on. We can do this as well for the anti-Wilson lines
Wilson line which wraps around backward twice gives

~ tr LN!p1~ tr LN
† !p222tr~LN

† !2. ~29!

We continue in this fashion. The series continues down, g
erating fewer traces overall, as they are replaced by tra
with higher powers of the Wilson and anti-Wilson line. I
general, the operator trL p1 represents a Wilson line which
wraps aroundp1 times forward in imaginary time; tr(L†)p2,
a Wilson line which wraps aroundp2 times backward.

The series stops when we only have either one or
traces left. Ifp15p2 , the series stops at a constant, with
trace. If p1Þp2 , the series stops at one trace,

tr LN
p1~LN

† !p2. ~30!

This term can obviously be reduced, as it is a Wilson li
which goes forwardp1 times, and then backwardp2 times.

The above series of traces of Wilson lines represents
propagation of test quarks and antiquarks. All we can do w
test quarks is to take loops in imaginary time, so the o
1-5
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question left is how many times a test quark, or antiqua
goes around in imaginary time.

Whenp250 these terms are the Schur functions@52,53#.
When p2Þ0, these terms are the Schur functions for t
composite representations of Ref.@52#.

Consider now the powers ofN at largeN. We assume tha
in the deconfined phase, each trace gives a power
N: tr LN

q ;N for all q. The first term in~26! is of order
;Np. Terms in~27! and ~29! have one fewer trace overal
and so are;Np21, down by one power of 1/N relative to
~26!. Each time a Wilson line wraps around an extra time
imaginary time, a possible trace is lost, which suppresses
term by;1/N relative to~26!.

This assumes that the coefficients of all terms,~26!–~30!,
are of order one. For example, if the coefficient of~27! or
~29! were ;N relative to that of~26!, then we could not
conclude anything about the largeN limit. Group theory tells
us, however, that this is not so: for anyN, all coefficients are
numbers of order one@52,53#. This is because all represen
tations are constructed by symmetrization and antisymm
zation operators@53#; the action of these operators depen
on the number of indices, but not uponN.

Consequently, at largeN the trace of any representation
dominated by the term where every Wilson line~or antiline!
wraps around only once in imaginary time. This is just b
cause we maximize the number of possible traces,
so the powers ofN. At largeN we denote representations
R5N`p:

tr LN`p;~ tr LN!p1 ~ tr LN
† !p2, ~31!

p5p11p2 . The notation is meant to be suggestive, as
dimension of this representation is;Np at largeN.

The integersp1 andp2 can be computed from the Youn
tableaux of the representation@52#. Denote the columns o
the Young tableaux by the indexi, and separate them int
two categories. If the number of rows in a column,r i , is
<N/2, then we leave the column alone, and refer to it a
fundamental column, withr 1

i 5r i rows. If the number of
rows in a column is.N/2, then we turn it into a column
with r 2

i 5N2r i antifundamental rows. Thenp15S i r i
1 is

the number of boxes in all of the fundamental columns, a
p25S i r i

2 is the number of boxes in all of the antifundame
tal columns. In the limit of infiniteN, no other details of the
Young tableaux matter; all that matters is the total numbe
boxesp1 andp2 .

In group theory, the distinction between fundamental a
antifundamental columns appears awkward. It is essentia
understand the largeN limit, though. Consider, for example
a single antifundamental box in a Young tableaux: this
given by a column withN21 rows. If we counted rows
naively, this would give usN21 powers of a trace. Clearly
we should replace this by one antifundamental line, and
trace. Geometrically, if a Wilson line wraps forward arou
r i times in imaginary time, whenr i.N/2 it is better to re-
place it by a Wilson line going backwardN2r i times.

While we do not need it now, we note that the Casim
invariants of the representationsN`p were computed by
Samuel@46# and Gross and Taylor@52#. While the dimension
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grows strongly, likeNp, the Casimir invariant does not; a
largeN, it is linear inN, proportional top11p2 :

CN`p5~p11p2!
N

2
1O~1!. ~32!

We shall see in Sec. II D that this relation for the Casim
invariant ensures that Polyakov loops, as computed to low
order in perturbation theory, satisfy factorization at largeN,
~58! and ~55!.

B. Z„N… charges and confinement

Previously, we required that gauge transformations
strictly periodic in imaginary time. ’t Hooft noted that this i
not necessary. Consider gauge transformations which are
riodic, in 1/T, only up to a constant. So as not to change
periodicity of the gauge fields, this constant gauge trans
mation must be equal to the identity matrix times a pha
equal to anNth root of unity, ~2!. For the fundamental rep
resentation, aperiodic gauge transformations are

VN~xW ,1/T!5eifVN~xW ,0!, eifN51. ~33!

This phase represents the center of the localSU(N) gauge
group, which is a global group ofZ(N): f52p j /N, j
50,1, . . . ,(N21).

As the Z(N) phases commute with any element of t
group, the gauge fields remain strictly periodic under such
aperiodic gauge transformation. The Wilson line, howev
does change: for the fundamental representation,

LN→eifLN . ~34!

We define theZ(N) charge, or theN-ality, of the fundamen-
tal Wilson line to be one,eN51. The traces of Wilson lines
in other representations transform under aperiodic ga
transformations as

LR→eieRfLR ; ~35!

the Z(N) chargeeR is an integer.
Due to the cyclic nature ofZ(N), charge is only defined

moduloN. If the fundamental has charge one, the antifun
mental has charge minus one, which is equivalent to cha
N21. The simplest field with vanishingZ(N) charge is the
adjoint. A baryon Wilson line, such as the symmetric com
nation of N fundamental indices, is alsoZ(N) neutral. At
large N, the Wilson line in theN`p representation of~31!
hasZ(N) chargeeR5p12p2 , moduloN.

For three colors, the antitriplet and sextet representati
have charge two, which is the same as minus one. As a
baryon, the decuplet Wilson line isZ(3) neutral.

The confining phase, forT<Td , is characterized by an
unbroken globalZ(N) symmetry @1#. Hence the traces o
Wilson lines with nonzeroZ(N) charge vanish belowTd ,

^tr LR&50, T,Td , eRÞ0. ~36!

Above Td , all traces develop expectation values,
1-6
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^tr LR&Þ0, T.Td , ;eR . ~37!

@Implicitly, we always assume that symmetry breaking o
curs when a backgroundZ(N) field is applied, and then al
lowed to vanish, in the appropriate infinite volume limit.#

A priori, it is not obvious how the traces ofZ(N) neutral
Wilson lines behave in the confined phase,T,Td . Certainly,
they must be nonzero atall temperatures. Even forT,Td ,
they are not protected by theZ(N) symmetry, and so are
induced by quantum fluctuations at some level. For th
colors, though, numerically we find that the expectat
value of the renormalized octet loop is very small belowTd ,
~63!. This is natural in a matrix model, as discussed at
end of Sec. IV C.

There is a counterpart to this in the behavior of lar
adjoint Wilson loops. At zero temperature, a fundamen
Wilson loop forms a string, with its expectation value t
exponential of the string tension times the area. Adjoint W
son loops screen, so the adjoint string tension vanis
Greensite and Halpern@40# show that at largeN, the adjoint
string breaks over distances which grow as; log(N). Simi-
larly, the lattice finds that the adjoint string only breaks ov
large distances@29#.

C. From traces of Wilson lines to Polyakov loops

Traces of Wilson lines grow with the dimensionality
the representation. It is convenient to introduce a normali
quantity, which approaches one in the obvious perturba
limit. From the expectation value of the Wilson line in
given representation, we define the expectation value of
Polyakov loop,,R , as

^,R&5
1

dR
^tr LR&. ~38!

The phase of the expectation of a given loop is fixed
the Z(N) symmetry. In the perturbative limit at high tem
perature,LR→eieRf1R , and,R→eieRf.

Using normalized loops, instead of just traces, is m
useful in considering the limit of a large number of colo
For example, the adjoint loop is

,N2215
1

N221
tr LN2215

N2

N221
S u,Nu22

1

N2D . ~39!

The largeN limit of this expression cannot be taken d
rectly, since it involves an operator,u,Nu2, and a pure num-
ber. A largeN limit can be taken by comparing expectatio
values. This is especially easy at largeN, as then discon-
nected diagrams dominate, and all expectation values fa
ize @40–52#. For instance,

^u,Nu2&5u^,N&u2, N5`. ~40!

Using this, at largeN the expectation value of the adjoin
loop is, in magnitude, identically the square of that for t
fundamental loop,
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^,N221&'u^,N&u21OS 1

N2D . ~41!

As it stands, this is a relationship between bare loops;
shall see, however, that it survives renormalization.

For the two index tensor representations,

, (N26N)/25
2

N~N61!
tr L (N26N)/2

5
N

N61 S ,N
2 6

1

N2
tr LN

2 D . ~42!

Hence atN5` the expectation values of the two-index te
sor loops are the square of the fundamental loop,

^, (N26N)/2&'^,N&21OS 1

ND . ~43!

Notice that the term at infiniteN is the same for both the
symmetric and the antisymmetric representation; the dif
ence only shows up in corrections in 1/N. This generalizes to
higher representations at largeN.

For the two index tensor representations, corrections
1/N start with the expectation value of the operator

1

N S 1

N
tr LN

2 D . ~44!

In the deconfined phase, we consider the trace of any po
of the Wilson line to be a number of order one, so the tra
of LN

2 is like that ofLN , a number of orderN. Overall, then,
this operator is;1/N. It is not surprising that corrections t
the two-index loop are;1/N, larger than the;1/N2 for the
corrections to the adjoint loop. These corrections for the tw
index loop arise because the operator hasZ(N) charge two,
and so mix with the operator in~44!. The adjoint loop is
Z(N) neutral, and so cannot mix with this operator. T
analogous operator for the adjoint loop is trLN

† LN , which by
the unitary relation of~12! is a constant.

The generalization to theN`p representations of the
largeN limit is immediate,

^,N`p&5^,N&p1 ^,N* &p21OS 1

ND , ~45!

which is ~6! and~7!. One advantage of using loops is that
is easy to check overall normalization: up toZ(N) phases,
both sides approach unity in the perturbative limit.

A systematic expansion in 1/N proceeds by including op
erators such as

1

Nq21 S 1

N
tr LN

q D , ~46!

for integral q. This operator is;1/Nq21 in the deconfined
phase. Asq grows, the number of such operators does
well. We do not concern ourselves here with the devel
1-7
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ment of a systematic expansion, and consider only the le
ing corrections in 1/N. For three colors, our numerical simu
lations indicate that this might not be such a b
approximation.

Even to leading order at largeN, some representation
involve loops other than the fundamental. Consider a
baryon, composed ofN fundamentals. Because of Mande
stam’s constraint thatLN is anSU(N) matrix, detLN51, the
term with N powers of the fundamental loop is part of th
identity representation. Hence at largeN, the loop for a test
baryon behaves as

^, test baryon&5^,N&N21K 1

N
tr LN

2 L 1OS 1

ND . ~47!

This is illustrated by the decuplet loop for three colors,~25!.

D. Renormalization of Polyakov loops

With this lengthy introduction aside, we turn to the pro
lem at hand, the renormalization of Polyakov loops.

Remember how mass renormalization usually works,
for a scalar field,f, in four spacetime dimensions@38#. If the
mass of the field ism, and its couplinglf4, to one loop
order the mass squared receives contributions

;lEL d4k

k21m2
;lL2, lm2logS L

mD ; ~48!

a momentum cutoffL is used to regularize the integral. Th
structure at one loop order is generic to perturbation the
there are two mass divergences, one proportional to a po
of the cutoff, ;L2, and the other, to a logarithm of th
cutoff, ;m2log(L/m). The power divergence is an additiv
shift in the bare mass, and for a scalar field is inconsequ
tial: the parameters are tuned to be near a critical po
where the renormalized mass vanishes. On the other h
the logarithmic divergence is physical, related to the anom
lous dimension for the mass operator. A renormalization c
dition is required to fix the value of the renormalized mass
a given scale.

Polyakov loops correspond to a test particle whose m
is taken to infinity, so their worldline is a straight line. Th
freezes out fluctuations in the timelike direction. This is o
vious in perturbation theory: as*A0(xW ,t)dt always enters,
only modes which are constant int appear. Thus the mas
divergence of a Polyakov loop in four spacetime dimensi
is like that of a propagating particle in one less dimensi
which is three. Similarly, the mass divergences of a sc
field in four spacetime dimensions,~48!, are like those of
Polyakov loops in five spacetime dimensions.

The ultraviolet divergences of a Wilson line depend on
upon the representation, and not upon~smooth! details of the
path. For the time being, letLR denote any Wilson line in a
representationR; we only assume that the path forms a loo
so that traces ofLR are gauge invariant. The expectatio
value of the Wilson line has a mass divergence which
pends upon the length of the loop,L, as
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^tr LR&;exp~2mR
divL!. ~49!

The exponentiation of mass divergences follows from
analysis of Gervais and Neveu@31#. Similar to ~15!, they
rewrite the Wilson line as a propagator for a fermion whi
lives in one dimension, along the path of the loop. W
lattice regularization, the additive mass shift which the W
son loop undergoes,mR

div , is no different from that which
~nongauged! propagating fields also experience, such as
massive quarks, or scalar fields,f.

On the lattice, the exponentiation of mass divergences
been shown explicitly by Curci, Menotti, and Paffuti to;g4

@37#.
To develop insight into the divergent masses, we comp

to one loop order. In four spacetime dimensions,

mR
div;1CRg2E1/a d3k

k2
;1

CRg2

a
. ~50!

We have used a lattice, with lattice spacinga, to regularize
the theory. The exact coefficient of 1/a in mR

div depends on
the details of the lattice discretization, but it is a positiv
nonzero number of order one. In four dimensions,amR

div is a
power series in the coupling constant.

For a straight Polyakov loop in four dimensions, this
the only divergence: there is no anomalous dimension for
corresponding mass. This is clear to any order in perturba
theory, and occurs because the mass divergence is like th
a particle which propagates in three, instead of four, dim
sions.

Loops can also have cusps@32–36#. In order to be peri-
odic in imaginary time, the simplest example of a Polyak
loop with cusps has not one, but two, cusps. This is illu
trated in Fig. 1, with cusps att50 andt51/(2T). These
cusps reflect external probes which deflect the test partic
these points. As with Polyakov loops, the expectation val
of single loops with cusps only have nontrivial expectati
values in the deconfined phase.

A cusp generates a logarithmic singularity in four spa
time dimensions@32–36#. This is not proportional to the
length, and so does not contribute to the divergent mas
condition to fix the value of a renormalized loop with a cu
must be supplied, but this is standard. For example, in Q
loops with cusps are related to the Isgur-Wise function@36#.

It is also interesting to consider loops in three, instead
four, spacetime dimensions@58#. The linear divergence o
~50! is now logarithmic@31#,

FIG. 1. A Polyakov loop with two cusps, att50 and t
51/(2T). The dotted lines denotet50 and 1/T.
1-8
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mR
div;1CRg2E1/a d2k

k2
;1CRg2logS 1

aD ; ~51!

in three dimensions, the coupling constantg2 has dimensions
of mass. As the divergent mass depends logarithmically u
the lattice spacing, a condition to fix the value of the ren
malized loop must be supplied@60#. Loops with cusps do no
have new ultraviolet divergences in three spacetime dim
sions, although they do have powerlike infrared divergenc

Defining wave function renormalization for a Wilson lin
of lengthL as

ZR5exp~2mR
divL!, ~52!

then the renormalized Wilson line is given by

L̃R5
1

ZR
LR , ~53!

as illustrated by the renormalization of Polyakov loops,~4!.
In the space of allSU(N) invariant tensors, the set of irre
ducible representations form a complete and orthonormal
sis @53#. As this basis is orthonormal, Wilson lines in diffe
ent representations do not mix. Consequently, in differ
representations the divergent masses,mR

div , and so the renor-
malization constantsZR , are independent quantities.

We discuss in the next section how to extract the div
gent masses from lattice simulations using a straight Wil
line. In an appendix we also discuss how the Wilson l
might be modified to alter the mass divergence.

It is illuminating to compute the renormalized loops
one loop order. Then it is easiest using dimensional regu
ization, as then the divergent mass automatically vanis
Following Gava and Jengo@3,21#, the leading correction
arises after the Debye mass,mD

2 5Ng2T2/3, is included by
resummation. To lowest order, the correction to the ren
malized loop is

^ ,̃R&21'2CRg2E d32ek

k21mD
2

;1CRg2mD ~54!

so that

^,̃R&'11
CR~g2N!3/2

8pNA3
1O~g4!. ~55!

@In three spacetime dimensions, ^ ,̃R&21
'CR(g2/T)log(T/g2) @60#.#

In four spacetime dimensions, the leading correction
the renormalized loop is positive. Thus in the limit of hig
temperature, the loop approaches one from above, and
from below. At first sight, this seems paradoxical. Ba
Polyakov loops are traces ofSU(N) matrices, and so satisf
a strict inequality,u,Ru<1. For example, on the lattice thi
holds configuration by configuration. Instead, renormaliz
loops satisfy the renormalized constraint,
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ZR
. ~56!

Numerically, we find that the divergent masses are uniform
positive,

amR
div.0, ~57!

for all representations, at all temperatures. If so, then
renormalization constantZR always vanishes in the con
tinuum limit, and there is no constraint on the renormaliz
loop. This condition is most natural: otherwise,ZR diverges
asa→0, so the renormalized loop must vanish.

The renormalization of a constraint is also familiar fro
the nonlinear sigma model in two spacetime dimensio
@38#. If the sigma field is aSU(N) matrix, then like the bare
Wilson line, the bare field is a unitary matrix. Because
wave-function renormalization, however, the renormaliz
sigma field satisfies a renormalized, and not a bare, c
straint.

In the largeN limit, factorization holds. This implies tha

amR
div'~p11p2!amN

div . ~58!

This is automatic to lowest order in perturbation theo
where amR

div;CR , remembering that the Casimirs satis
~32!. This also ensures that the perturbative expression
the renormalized Polyakov loop,~55!, is well behaved at
largeN.

McLerran and Svetitsky@4# used the expectation value o
a loop to define the free energy of a test quark. If this t
free energy is defined from the renormalized loop asFR5

2T log(u^,̃R&u), then while it is positive nearTd , from ~55!
it is negative at high temperature,FR;2CRT/ log(T)3/2.

While the divergent masses depend upon the ultravi
cutoff in a unremarkable manner, the renormalization c
stants are not like those of local operators. In four spacet
dimensions, the renormalization constants of local opera
are independent of temperature. In contrast, the renorma
tion constants of Polyakov loops are temperature depend
but just because the length of the path for a Polyakov loo
1/T.

Renormalization implies that the only measurable qua
ties are single traces of Wilson lines. Consider the most g
eral, gauge invariant combination of bare Wilson lines p

sible. For example, start with trLR
1
1

q1
1

, which represents the

propagator for a test quark, in the representationR 1
1 , q1

1

times around some fixed loop in spacetime. Generically,
can take powers of this trace, and then multiply differe
powers of different traces together. We can also do the s
with conjugate operators. By the character expansion@53#,
any such combination can be reduced to a linear sum o
traces of single Wilson lines in different, irreducible repr
sentations:
1-9
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~ tr LR
1
1

q1
1

!n1
1

~ tr LR
2
1

q2
1

!n2
1

•••~ tr ~L†!R
1
2

q1
2

!n1
2

•••

5(R cR,R5(R cRZR,̃R . ~59!

Here alln’s andq’s are positive integers; the constantscR ,
and the representationsR which one must sum over, ar
determined by group theory@53#. Because irreducible repre
sentations form a complete basis over allSU(N) representa-
tions @53#, we can insist that only linear powers of Wilso
lines appear on the right hand side. With a linear sum, ren
malization is then just a matter of replacing bare by ren
malized loops.

Assuming that allmR
div.0, ~57!, so theZR all vanish as

a→0, in the continuum limit only the identity representatio
survives. This is of no physical consequence: the phys
quantities, the traces of renormalized Wilson lines, are h
den in the corrections to this relation, which are exponen
in 1/a asa→0.

This was discovered numerically. To high accuracy,
found that^u,3u2&'1/9; corrections varied from;7% for
Nt54, to ;0.2% for Nt510. This is because from~19!,

^u,3u2&21/9'8Z8^,̃8&/9; because of the octet renormaliz
tion constant,Z8, this is a small quantity.

Previous work on the renormalization of loops at ze
temperature concentrated on loops in the fundamental
adjoint representations, especially on the case of loops
cusps@35,36#. The case of traces of lines which wrap arou
the same loop several times, or products of such traces,
neglected. At nonzero temperature, though, the natural lo
to consider are those at the same point in space, wrap
around in imaginary time in all possible ways. As discuss
this is equivalent to the set of loops which wrap around
imaginary time just once, although in arbitrary represen
tions.

III. LATTICE MEASUREMENTS OF SU„3… POLYAKOV
LOOPS

A. General method

We turn to the case of three colors. Group theory tells
how bare loops are related, through expressions such as~39!.
After renormalization, we do not know how renormalize
loops are related. Except at very high temperature, where
can use perturbation theory,~55!, the only way to compute
renormalized loops is through numerical simulations on
lattice.

TABLE I. The lattice coupling constant for the deconfining tra
sition, bd , at different time steps.

Nt bd

4 5.690~5!

6 5.89~1!

8 6.055~6!

10 6.201~5!
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In this section we discuss how we extract renormaliz
Polyakov loops for the lowest, nontrivial representations
SU(3) color. Consider a lattice withNs steps in each of the
three spatial directions, andNt steps in the time direction. A
lattice spacinga, the physical temperatureT51/(aNt). As
discussed in the Introduction, to extract the mass diverge
we consider a series of lattices, all at the same tempera
but with different values of the lattice spacing,a, and soNt ;
Ns /Nt is kept in fixed ratio. At a given value ofT/Td , we
assume that the logarithm of the expectation value o
single, bare Polyakov loop can be written as a power se
in 1/Nt :

2 log^,R&5 f R
divNt1 f R

ren1 f R
lat 1

Nt
. ~60!

In four spacetime dimensions,f R
div5amR

div . @In three dimen-
sions, the series isf R

divlog(Nt)1fR
ren1 f R

lat/Nt .]
Each of thef R’s is a power series in the coupling con

stant,g2. On the lattice, this is a series in the bare coupli
constant, and becomes, in the continuum limit, a series in
renormalized coupling constant. As such, thef R’s are func-
tions only of the temperature divided by the renormalizat
mass scale; or equivalently, ofT/Td . By comparing expec-
tation values at the same temperature, but different value
Nt , we can extractamR

div . What remains is the renormalize
loop in the continuum limit,

^,̃R&5exp~2 f R
ren!. ~61!

There are also corrections at finite lattice spacing,fR lat.
Near the continuum limit, these effects begin at 1/Nt , with
f R

lat5( j 51
` cj /Nt

j 21 . In weak coupling,c1;g4; these are
corrections to the one loop term on the lattice, after resu
ming the Debye mass. Corrections inc2;g5 presumably
arise as lattice corrections to the continuum term,~61!.

As is common on the lattice, we work at a fixed ratio
Ns /Nt . Thus we implicitly assume that the dependence up
this ratio is negligible in the infinite volume limit. This ca
be studied analytically, but requires a careful treatment of
constant modes. A perturbative study is given by Heller a
Karsch, especially Sec. 4.4@37#. For now, we defer this ques
tion for future study@55#.

B. Lattice results

In practice, our method is not quite so trivial. The diffi
culty is that if we require the comparison lattices to have

TABLE II. Statistics.

Nt Measurements

4 10000
6 400
8 400
10 400
1-10
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TABLE III. Bare Polyakov loops forNt54.

b ^,3& ^,6& ^,8& ^,10&

5.50 0.0104~22! 0.0037~9! 0.0020~6! 0.0024~5!

5.60 0.01659~9! 0.003636~19! 0.002522~19! 0.002139~11!

5.65 0.02456~14! 0.003696~19! 0.002670~21! 0.002126~11!

5.69 0.0854~5! 0.00588~4! 0.00726~6! 0.002202~12!

5.70 0.1233~4! 0.00834~4! 0.01172~6! 0.002254~12!

5.75 0.17803~17! 0.01503~4! 0.02205~6! 0.002372~12!

5.80 0.19956~15! 0.01925~5! 0.02791~6! 0.002490~13!

5.90 0.22978~14! 0.02657~5! 0.03772~6! 0.002825~15!

6.00 0.25301~13! 0.03340~5! 0.04649~6! 0.003328~17!

6.10 0.27307~13! 0.04010~6! 0.05492~6! 0.003979~19!

6.20 0.29075~13! 0.04660~6! 0.06298~7! 0.004747~20!

6.30 0.30695~12! 0.05319~6! 0.07103~7! 0.005748~22!

6.40 0.32174~12! 0.05964~6! 0.07880~7! 0.006821~24!
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same physical temperature, but differentNt , then the de-
confining transition occurs at different values of the latt
coupling constant. This significantly complicates the ana
sis.

In the simulations, the Wilson lattice action was use
with lattice coupling constantb56/g2. The number of time
steps taken wereNt54, 6, 8, and 10. The number of steps
the spatial direction,Ns , was always kept fixed atNs

53Nt ; we did not study what happens as this ratio is vari
The value of the coupling constant at which the deconfin
transition occurs,bd , was determined by monitoring th
peak in the susceptibility of the triplet loop, to give the va
ues in Table I.

By using nonperturbative renormalization@28#, the rela-
tionship betweenb and the temperature was found to be
03451
-

,

.
g

log
T

Td
51.7139 ~ b̄2b̄d!20.8155 ~ b̄22b̄d

2!

10.6667 ~ b̄32b̄d
3!, ~62!

whereb̄[b26 andb̄d[bd26. In terms of physical tem-
perature, our lattices varied from'0.5Td to '3Td . The
lattice calculation was done using the over-relaxed Cabi
Marinari pseudo-heat-bath algorithm. Each update step c
tained 4 heat-bath updates and six overrelaxation step
measurement was performed every 10 update steps. In T
II we summarize our statistics in each case. Our lattice d
for the bare Polyakov loops are presented in Tables III,
V, and VI. They are also plotted in Figs. 2, 3, 4, and
TABLE IV. Bare Polyakov loops forNt56.

b ^,3& ^,6& ^,8& ^,10&

5.70 0.00592~16! 0.00197~5! 0.00131~5! 0.00115~3!

5.80 0.00963~26! 0.00195~5! 0.00143~6! 0.00116~3!

5.82 0.0111~3! 0.00191~5! 0.00139~5! 0.00117~3!

5.84 0.0125~3! 0.00195~5! 0.00135~5! 0.001126~29!

5.86 0.0183~5! 0.00210~5! 0.00132~5! 0.001148~28!

5.88 0.0314~9! 0.00205~5! 0.00150~6! 0.00116~3!

5.89 0.0391~10! 0.00195~5! 0.00183~7! 0.00121~3!

5.90 0.0545~9! 0.00217~6! 0.00231~8! 0.001144~29!

5.92 0.0702~6! 0.00254~6! 0.00296~9! 0.00119~3!

5.95 0.0816~5! 0.00268~7! 0.00397~9! 0.00118~3!

6.00 0.0935~5! 0.00346~8! 0.00508~10! 0.00117~3!

6.10 0.1128~4! 0.00480~9! 0.00759~11! 0.00126~3!

6.20 0.1301~4! 0.00654~9! 0.01038~11! 0.00120~3!

6.30 0.1445~4! 0.00837~10! 0.01314~11! 0.00127~3!

6.40 0.1581~4! 0.01031~10! 0.01604~13! 0.00124~3!

6.50 0.1707~4! 0.01241~11! 0.01901~12! 0.00128~3!

6.60 0.1829~4! 0.01462~12! 0.02216~14! 0.00136~4!

6.70 0.1954~4! 0.01718~12! 0.02565~14! 0.00144~4!
1-11
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TABLE V. Bare Polyakov loops forNt58.

b ^,3& ^,6& ^,8& ^,10&

5.80 0.00339~9! 0.00133~4! 0.00083~3! 0.000775~20!

5.90 0.00421~11! 0.00122~3! 0.00086~3! 0.000770~20!

6.00 0.00668~18! 0.00124~3! 0.00087~3! 0.000763~20!

6.02 0.00858~26! 0.00126~4! 0.00082~3! 0.000775~20!

6.04 0.0159~5! 0.00121~3! 0.00095~4! 0.000754~19!

6.06 0.0209~5! 0.00129~3! 0.00092~3! 0.000713~17!

6.08 0.0345~4! 0.00129~3! 0.00099~4! 0.000751~20!

6.10 0.0391~3! 0.00126~4! 0.00108~4! 0.000755~20!

6.15 0.04762~26! 0.00138~4! 0.00131~5! 0.000754~20!

6.20 0.05400~25! 0.00146~4! 0.00164~5! 0.000724~20!

6.30 0.06541~24! 0.00164~5! 0.00228~6! 0.000768~21!

6.40 0.07540~24! 0.00194~5! 0.00305~6! 0.000751~19!

6.50 0.08501~22! 0.00249~5! 0.00407~5! 0.000804~18!

6.60 0.09492~24! 0.00299~5! 0.00502~6! 0.000765~19!

6.70 0.10490~24! 0.00375~5! 0.00635~6! 0.000766~21!

6.80 0.11377~25! 0.00450~6! 0.00757~6! 0.000819~20!

6.90 0.12214~24! 0.00540~5! 0.00886~7! 0.000778~20!
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As the relationship between the lattice coupling const
and the physical temperature,~62! is nonlinear, it is not au-
tomatic ensuring that the temperature is the same whenNt
changes. Thus we resort to interpolation, measuring the lo
on a fixed grid, inb, for eachNt . For Nt54, 6, and 8 we
have linearly interpolated the Polyakov loop values to
T/Td values at which the measurements forNt510 were
done. Then, for each value ofT/Td , the expectation value o
the bare Polyakov loop was fit to~60!–~61!.

In our measurements, we see no statistically signific
term ;1/Nt , f R

lat'0. Such terms will presumably be re
vealed by more precise measurements. The success of a
~60! indicates that on the lattice, the divergent massmR

div

does exponentiate.
We stress that we make no assumptions about any o

functions f R . At a given value of the temperature, the log
03451
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rithm of the expectation value of the bare loop, log(^,R&), is
a power series in 1/Nt , beginning as;Nt , ~60!–~61!. Given
the lattice data, for loops at the same physical tempera
and different values ofNt , there is nothing left over to ad
just.

In Fig. 6 we present a typical fit for the logarithim of th
expectation value of the bare triplet loop. It is clear that t
bare loop decreases, with increasingNt , for all temperatures
measured.

In Table VII, we give the expectation values of the ba
Polyakov loops for different representations. We chose
smallestNt , Nt54, where the signals are greatest. For r
erence, we also include the Casimir invariants of the diff
ent representations.

For all representations, the signal decreases with incr
ing Nt . This indicates that everyamR

div is positive, as sug-
TABLE VI. Bare Polyakov loops forNt510.

b ^,3& ^,6& ^,8& ^,10&

6.00 0.00272~9! 0.00088~3! 0.00058~3! 0.000525~18!

6.10 0.00362~13! 0.00085~3! 0.00064~4! 0.000537~22!

6.15 0.00524~15! 0.000904~24! 0.000588~23! 0.000560~13!

6.18 0.00672~16! 0.000906~18! 0.000615~17! 0.000550~11!

6.20 0.00839~27! 0.000909~23! 0.000633~24! 0.000512~14!

6.22 0.01651~22! 0.000927~18! 0.000627~18! 0.000561~11!

6.25 0.02167~17! 0.000929~18! 0.000641~18! 0.000532~11!

6.30 0.02741~22! 0.00091~3! 0.00070~4! 0.000537~18!

6.40 0.03444~24! 0.00092~4! 0.00084~4! 0.000555~21!

6.50 0.04142~24! 0.00092~4! 0.00099~4! 0.000521~20!

6.60 0.04861~18! 0.00098~3! 0.00111~4! 0.000543~17!

6.70 0.05505~18! 0.00118~3! 0.00146~5! 0.000511~17!

6.80 0.06204~19! 0.00128~4! 0.00193~5! 0.000549~16!

6.90 0.06852~19! 0.00154~3! 0.00255~5! 0.000555~16!

6.95 0.07130~18! 0.00152~3! 0.00270~4! 0.000546~15!
1-12
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gested before,~57!. We were only able to measure a sign
for the decuplet loop on the smallest lattice,Nt54. Perhaps
a modified Polyakov loop, as discussed in the Append
might help. We do not discuss the decuplet loop further.

Figure 7 shows our results for the product of the latt
spacing times the divergent mass,amR

div . For the triplet
loop, this product does not vary much with temperature,
those for the sextet and octet loops do. At the highest t
perature,'3Td , the values are approximately what one e
pects from lowest order in perturbation theory, where
divergent masses scale like the Casimir invariant of the r
resentation,amR

div;CR , ~50!. As the temperature decreas
below '1.5Td , though, the perturbative ordering ofam6

div

.am8
div is reversed, witham8

div.am6
div . All divergent

masses are approximately equal belowTd , although the sig-
nals are poor.

After dividing by the renormalization constant, we obta
the renormalized loops of Fig. 8. BelowTd , the triplet and

FIG. 2. The bare triplet Polyakov loop as a function of tempe
ture.

FIG. 3. The bare sextet Polyakov loop as a function of tempe
ture.
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sextet fields, which carryZ(3) charge, should vanish in th
infinite volume limit. What is striking is that belowTd , the
Z(3) neutral adjoint loop—which could be nonzero—is al
too small for us to measure:

^,̃8&'0, T,Td . ~63!

Previous studies found this for bare adjoint loops on sm
lattices, such asNt54 @10,27,54,56#.

In the deconfined phase, the triplet loop is always gre
est, followed by the octet, and then the sextet loop. AtTd

1 ,
the triplet loop jumps to a relatively large value,'0.4, al-
though the exact value is not very well determined. Due
the increase in correlation lengths, there is critical slow
down nearTd , and much more careful studies are require

We then computed the expectation value of the differe
between the sextet and octet loops, and their largeN limit,
~8! and~9!. The results are presented in Fig. 9. Numerica
we find that both difference loops are negative. They e
look like a ‘‘spike’’ down, with a maximum nearTd . The

-

-

FIG. 4. The bare adjoint Polyakov loop as a function of te
perature.

FIG. 5. The bare decuplet Polyakov loop as a function of te
perature.
1-13
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sextet spike is larger,ud ,̃6u<0.25, with a maximum at

'1.25Td . The octet spike is smaller,ud ,̃8u<0.2, with a
maximum nearerTd , at '1.1Td . The octet spike falls off
much more quickly than the sextet spike with increas
temperature: by'1.5Td , the octet difference vanishe
while the sextet difference persists all of the way to'3Td .

The most important feature of the difference loops is th
overall magnitude: each is significantly smaller than one.
discussed in the Introduction, this indicates that factorizat
which is exact forN5`, is approximately correct forN
53. The difference loops will be discussed further in t
next section.

We conclude this section by contrasting our method
determining renormalized Polyakov loops with that of Ka

zmarek et al. @39#. They measurê , 3̄(xW ),3(0)&2u^,3&u2,
and extractZ3 by comparing with perturbation theory a
short distances. Thus they need to measure two-point fu
tions, although at just one value ofNt . We only need to
measure one-point functions, but must do so at several
ues ofNt . Our results agree approximately with theirs; ne

Td , we both haveu^,̃3&u'0.4. It disagrees in that by 3Td ,

their u^,̃3&u'1.0, while ours is'0.9. We do not know the
reason for the differences between our results, althoug
could simply be due to the effects of finite lattice spacing

FIG. 6. The logarithm of the expectation value of the bare trip
loop at fixed temperature, as a function ofNt .

TABLE VII. Approximate expectation values of the bare Poly
kov loop, and Casimir invariants, forNt54 andT52Td .

R ^,R& CR

3 0.25 4/3
8 0.04 3
6 0.035 10/3
10 0.004 6
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IV. MATRIX MODELS FOR RENORMALIZED LOOPS

A. Effective theories

We now discuss various effective models for the dec
fining phase transition@5–23,43–51,54#, and fit the renor-
malized triplet loop to a simple matrix model@47,49,54#. We
then discuss the Gross-Witten point at largeN, and how it
may be related to three colors.

Numerical simulations on the lattice suggest that the tr
sition is of second order for two colors@56# and of first order
for three@24#, four @26,27#, and six@27# colors. Lucini, Te-
per, and Wenger@27# present evidence that the latent he
grows;N2 for these values ofN. From this we presume tha
the transition is of first order for allN>3. Arguments for a
first order transition at infiniteN have also been given b
Gocksch and Neri@42#.

We start with an effective lattice theory in the purely sp
tial dimensions. The actual value of the lattice spacing
irrelevant: all that matters is that it is much smaller than a
physical length scale. Thus we concentrate on the region
Td , and ignoreT→`.

The simplest approach is to follow Svetitsky and Yaf
@5#, and construct an effective theory just for the Polyak
loop in the fundamental representation. This is certainly fi
if the transition is of second order, as the only critical fie
should be that for the fundamental loop. For the second o
transition of two colors, this predicts that the universal
class is that of the Ising model, in agreement with the o
served critical exponents@56#. For three colors, becaus
Z(3) symmetry allows a cubic invariant, this approach a
predicts that the transition is invariably of first order. F
more than three colors, though, it is not clear why the tr
sition should be of first order. It would be if the interaction
of the Z(N) spins were like those of a Potts model, but th
are not at high temperature@21#. Loops in higher represen
tations can be introduced into this model, as new types
Z(N) spins. However, at largeN factorization does not fol-
low naturally, but must be imposed by hand.

A variant of this approach is the Polyakov loop mod
@18–21#. This starts with a potential for the~renormalized!
fundamental loop, and assumes that the pressure is corre
to the value of the potential at its minimum. We presume t
the same holds for the potential of the matrix model~Secs.
IV B and IV C!.

The closest model to the underlying gauge theory is
gauged, nonlinear sigma model for the Wilson lineLN
@6,18#. In such a model, Higgs phases, in which theSU(N)
symmetry is spontaneously broken, can appear, but these
not expected to arise if there are no dynamical scalars ab
Remember that deconfinement is not a Higgs effect: o
Z(N) is broken in the deconfined phase, notSU(N).

Assuming that Wilson lines form the essential degrees
freedom in the effective theory, we take as the partition fu
tion:

Z5E PdLN~ i !exp$2S@,R~ i !#%; ~64!

i denotes lattice sites in the spatial directions. We assu

t
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that only Polyakov loops enter into the effective action, a
consider only constant solutions in mean field theory.
neglect all kinetic terms, including those for the Wilson lin
Polyakov loops, and color magnetic fields@17#. The effects
of fluctuations, which are controlled by these kinetic term
can be important, especially in three spacetime dimens
@60#.

At each site, the measure in~64! implicitly contains a
constraint to enforce thatLN( i ) is aSU(N) matrix. As such,
loops ,R( i ) are constructed by the usual relations of gro
theory. This is most convenient, since then all loops au
matically have the rightZ(N) charge, and satisfy factoriza
tion at largeN. Moreover, at each site we can use the ch
acter expansion,~59!, to reduce any product of loops to
linear sum. This vastly restricts the number of possible c
plings which can arise.

In a sigma model over a symmetric space, the trace ofLN
is everywhere some fixed constant@38#. In the present in-

FIG. 7. The divergent masses, times lattice spacing, versus
perature.

FIG. 8. Renormalized Polyakov loops as a function of tempe
ture.
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stance, however, the trace of the Wilson line is not const
Thus the action also includes a potential for the Wilson l
@18#. Requiring the action to beZ(N) invariant, this is a sum
over Polyakov loops with vanishingZ(N) charge:

W5N2(
i

(R
eR50

gR,R~ i !; ~65!

the gR are coupling constants. This series begins with
adjoint loop.

Next, loops on one site can interact with those on anot
site:

SR52
N2

3 (
i ,n̂

(
R,R8

eR1eR850

bR,R8Re,R~ i !,R8~ i 1n̂!.

~66!

Re denotes the real part, andbR,R85bR8,R . We just write
nearest neighbor interactions, given by the sum over the
tice vectorn̂, but this is inessential. The sum over represe
tations is restricted by the requirement that the totalZ(N)
charge of each term is zero, moduloN. There are both diag-
onal couplings, whereR8 is the representation conjugate
R, and off-diagonal couplings, whereR8ÞR* . This is the
complete set of independent couplings.

B. Mean field and matrix models for NÄ3

For three colors, the simplest action includes just the tr
let loop @48#

S3523b3(
i ,n̂

Re,3~ i !,3* ~ i 1n̂!; ~67!

b3,3* [b3. We use this to develop a mean field approxim
tion, replacing all nearest neighbors by an average value
a cubic lattice in three dimensions, if the value of ea
neighboring spin is,05^,3& in ~67!, the partition function of
~64! reduces to one for a single site,

m-

-

FIG. 9. Difference loops: renormalized Polyakov loops, min
their largeN values.
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Z5E dL3exp~118b3,0Re,3![exp~29V!. ~68!

This is a matrix model, but one whose coupling const
depends on the value of the condensate,,0. We introduce the
single site potential,V. The mean field condition is that th
average value, computed with this action, is equal to
assumed value@38#:

,052
1

2b3

]

],0
V. ~69!

As LN is anSU(N) matrix, it is the unitary transformation
of a diagonal matrix, withN21 independent eigenvalue
WhenN52, the integral like~68! is elementary, and can b
evaluated in terms of Bessel functions. These can also
done whenN.2, but we found it easier to simply evaluate
numerically. Explicitly, with L3
5U diag„exp(iu1),exp(iu2),exp@2i(u11u2)#…U

†, the normal-
ized Haar measure, including the van der Monde deter
nant, is

dL35
1

3p2
@12cos~u12u2!#@12cos~2u11u2!#

3@12cos~u112u2!#du1du2 . ~70!

This mean field theory was studied in the context of
deconfinement transition by several groups@47–49,54#. Like
the lattice data, the transition is of second order forN52,
and first order whenN>3. For three colors, Damgaard@54#
used Eq.~69! to compute the expectation value of the trip
loop; expectation values for the sextet, adjoint, and decu
loops were then computed from that. Damgaard compa
the results of this mean field theory to lattice data for b
Polyakov loops, withNt53, by Markum, Faber, and Mein
hart @37#, finding qualitative agreement.

We stress that the approximate agreement between
mean field theory, and lattice data at smallNt , is in some
sense fortuitous. For smallNt , theZR are not much different
from one, and so the bare values are not far from the re
malized values; even so, they are not identical. To see th
another way, we computed the ratio of the difference loop
the loop itself, for the bare octet loop:u(^,8&
2u^,3&u2)/^,8&u. This ratio is ;50% at Nt54, and in-
creases to;100–200% forNt510. This is to be compared
with the values for the renormalized octet difference loop
Fig. 4, which is<12%. Thus while renormalized loops sa
isfy factorization, bare loops do not.

In this vein, recently Dittmann, Heinzl, and Wipf com
puted the effective potential for bare doublet loops in a p
SU(2) gauge theory@23#. Because only renormalized loop
satisfy factorization, we suggest that the effective poten
for renormalized loops is much simpler than that for ba
loops.

We next compare the solution of mean field theory, E
~69!, to our lattice data for the renormalized triplet loop. W
find that a linear relationship between the mean field c
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pling constant,b3, and the temperature,T/Td , is approxi-
mately valid. A least squares fit gives

b35~0.4660.02!1~0.3360.02!
T

Td
. ~71!

The computed coupling, as well as the fitted curve, is sho
in Fig. 10. A quadratic term was included in the fit but th
coefficient was found to be zero within the error bars. S
nificant deviations are seen at both the highest tempera
'3Td , and also at the two points closest toTd ; see the
discussion at the end of this section. The approximate lin
relationship betweenb3 and the temperature is typical o
mean field theory for spin models@38#.

Using this relationship between the mean field coupl
and the temperature, we then computed mean field result
the sextet, octet, and decuplet loops. The comparison to
lattice data are shown in Fig. 11. Notice that although
could not extract from the lattice a signal for the decup
loop, the mean field theory predicts that while the decup
loop is less than the sextet, it is not that small; for examp
,10(3Td)'0.4.

To obtain a more precise measure of the quality of o
fits, we computed the difference loops in our mean field
proximation, and plot them in Fig. 12. We do this becau
even in this simple mean field approximation, there are c
rections toN5` factorization atN53. Now compare the
difference loops in mean field theory, Fig. 12, to those fro
the lattice, Fig. 9. As expected from general arguments,
adjoint difference loop is always smaller than the sextet d
ference loop; also, both difference loops are negative
mean field theory. In detail, however, the difference loo
found from mean field theory are very different from tho
found from the lattice. First, in magnitude the differen
loops from mean field theory are at least a factor of th

FIG. 10. The fundamental coupling constant extracted from
lattice data. The circles are the fundamental coupling compu
from lattice data for the fundamental loop. The error bars on
extracted points are smaller than data points. The smooth line is
linear fit to the extracted fundamental coupling with the erro
quoted in~71!.
1-16
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times smaller than found from the lattice. Further, their te
perature dependence is very different: in mean field the
both difference loops are greatest at about'1.5Td , with
approximately the same width,60.5Td . In contrast, the dif-
ference loops from the lattice have a maximum much clo
to Td ; while the sextet has a tail which persists to'3Td ,
the octet really appears to be a sharp, narrow spike.

The quality of the fit could be improved by includin
other terms in the action. We started by including an adjo
loop in the potential at each site,~65!, ;g8,8. Within our
numerical accuracy, this only appeared to produce a shi
b3→b31g8. We show in the next section that this can
understood at infiniteN.

To model the sextet and octet loops, it is necessary to
corresponding fields at each site. In~66! there are two diag-
onal couplings,b6,6* and b8,8, and one off-diagonal cou
pling, b3,6. Even in mean field theory, it is tedious to solv

FIG. 11. ~Color online! The values of the Polyakov loops from
the matrix model, using the linear relationship between the coup
and the temperature. The lowermost~green! line corresponds to the
value of the decuplet loop, for which there is no lattice data.

FIG. 12. Difference loops from the matrix model: Polyako
loops, minus their largeN values.
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numerically for several, coupled condensates; the results
more careful study will be presented separately@55#.

The presence of other loops obviously feeds back into
triplet loop. One of the clearest tests of this is the value of
triplet loop atTd . In a mean field theory which includes jus
the triplet loop,~68!, numerically we estimate that,3(Td)
'0.48560.001; this is consistent with the value of'0.49 in
Ref. @47#. This is significantly higher than the values of th
renormalized loop from the lattice, where both we and@39#

find ,̃3(Td)'0.4. In aN53 matrix model which includes
both triplet and sextet loops, we find that the value of t
triplet loop atTd decreases significantly by addingb3,6, as
this represents a linear coupling between the two loops@55#.
It is also possible to decrease,3(Td) by adding a term for
the decuplet loop to the potentialW with the appropriate sign
@55#.

Thus the approximate linearity inb3 with T, ~71!, should
be treated as preliminary. Further, we doubt that it is true
all couplings. In particular, since the octet difference loop
such a sharp, narrow spike in temperature, it appears tha
can only model it with ab8 which varies nonmonotonically
with temperature; i.e., which is itself a spike. This is not
obvious for the sextet loop, due to the triplet-sextet mixi
from the couplingb3,6. The sextet loop is also affected by i
coupling with itself, through the couplingb6,6, and by the
decuplet loop in the potential.

Nevertheless, the matrix model proposed in Sec. IV A
pears to be a useful way of characterizing the condensate
renormalized Polyakov loops whenN53 @55#.

C. Matrix models: NÌ3

For generalN, the simplest possibility is to start with a
action including just the fundamental loop,

SN52
N2

3
b(

i ,n̂

Re,N~ i !,N* ~ i 1n̂!, ~72!

b[bN,N* . For the action to be of orderN2 at largeN, b
must be of order one asN→`. Positive values ofb corre-
spond to a ferromagnetic coupling. As the perturbat
vacuum at high temperature is completely ordered,b→
1` asT→`. We assumeb.0 @61#.

At infinite N, if the fundamental loop condenses, loops
higher representations are fixed by factorization. The c
densate for the fundamental loop is determined by the po
tial, W of ~65!.

We start with the mean field analysis of~72!, following
the discussion of Kogut, Snow, and Stone@47#. We then dis-
cuss how these results change when the potentialW, ~65!, is
added@45,46#. A similar discussion was given recently b
Aharonyet al @14#.

Replacing the values of all nearest neighbors by an a
age value,0, we need to evaluate the integral at one site

Z5E dLNexp@N2~2b,0!Re,N#

[exp@2N2VGW~b,0!#. ~73!

g

1-17
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The mean field condition is

,052
1

2b

]

],0
VGW~b,0!. ~74!

This condition is equivalent to minimizing the mean fie
potential

Vm f~b,, !5b,21VGW~b, !. ~75!

We replace,0 by ,, and interpret the result as a potential f
,. At a fixed b, as usual the vacuum,0 is given by mini-
mizing Vm f with respect to,.

Since an overall factor ofN2 is scaled out of the potentia
a nonzero value ofVm f(,0) implies that the free energ
;N2. This is expected in the deconfined phase from
liberation of;N2 gluons. In the confined phase, Thorn@10#
noted that as all states are color singlets, their free energ
at most of order one, soVm f(,0);1/N2'0. This scaling
also motivated the Polyakov loop model@18–21#. Here, we
assume that to go from the single site model to thermo
namics, we multiplyVm f by T4 times the volume of space.

The potentialVGW has been computed in the largeN limit
by Gross and Witten@43#. At infinite N the result is nonana
lytic, and is given by twodifferent potentials. For small,,
the potential is just a mass term,

V m f
2 5b~12b!,2, ,<

1

2b
, ~76!

while at large,, the potential is

V m f
1 522b,1b,21

1

2
log~2b, !1

3

4
, ,>

1

2b
. ~77!

The physical interpretation of this potential is rather d
ferent from the context in which it arose. Gross and Witt
considered aU(N) lattice gauge theory in two dimension
with lattice coupling constantbGW[b, @43#. This is the
only parameter in the model, and there is no condition to
,0. Instead, the expectation value of Re,N is related to the
string tension; it changes withbGW , but is always nonzero
The two potentials in~76! and ~77! correspond to weak an
strong coupling branches of the free energy. AboutbGW
51/2, the first and second derivatives of the free energy
continuous, but the third derivative is not, so there is a th
order phase transition inbGW .

In mean field theory,b is an effective coupling for the
fundamental loop. As a function of, at fixedb, the first and
second derivatives of the potential are everywhere cont
ous, but third~and higher! derivatives are discontinuous at
single point, when,51/(2b). This nonanalyticity is specia
to N5`: the mean field potential is everywhere continuo
for finite N.

Overlooking this discontinuity, the potentialVm f behaves
as a potential should. Whenb,1, the potential just in-
creases monotonically with,, so the minimum is at,050.
For b.1, the potential about the origin is given byV m f

2 ,
03451
e

is

-

n

x

re
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u-

s

and so starts out with a negative mass term. The poten
decreases with increasing,, with a single minimum when

,05
1

2 S 11Ab21

b D . ~78!

When ,.,0, the potential increases monotonically. For
b, the potential is bounded at large,, V m f

1 ;1b,2 as ,
→`. @For ,.1/(2b), the extremal condition]V m f

1 /],50
is a quadratic equation. There is another root besides~78!,
but it occurs for,,1/(2b), and so does not matter.#

Thus there is a confined phase forb,1, and a deconfined
phase forb.1. The expectation value of the loop,,0,
jumps from zero below the transition,b512, to 1

2 just
above,b511. The latter is~10! of the Introduction. In the
limit b→`, ,0→1.

To verify that the transition is in fact of first order, con
sider the value of the potential at its minimum. In the co
fined phase,,050, soV m f

2 (,0)50 for all b,1, including
b→12. In the deconfined phase, using~78! one finds that

V m f
1 ~,0!'2

b21

4
1 . . . , ~79!

as b→11. Thus the first derivative ofVm f(,0), which re-
spect tob, is discontinuous whenb51.

If we assume thatb is linear in the temperature—as foun
for three colors—then the deconfining transition is therm
dynamically of first order atN5`, with a latent heat;N2.
In this we agree with@47#.

Even so, the nonanalyticity of the potential still has str
ing physical consequences. In particular, exactly atb51, the
potential is completelyflat for , between 0 and1

2 , V m f
2 50

@63#. The potential then increases monotonically, starting
to cubic order in,2 1

2 . The only reason the order paramet
can jump, despite the flatness of the potential, is becausb
51 is special: then, and only then, does the point at wh
the potential is discontinuous coincide with the nontriv
minimum.

To appreciate this in another way, consider how the m
squared,m25]2Vm f /],2 changes. Approaching the trans
tion in the confined phase implies that we compute ab
,050,

m2
2 '2~12b!, b→12. ~80!

In contrast, approaching the transition in the deconfin
phase, we compute about,05 1

2 ,

m1
2 '4Ab21, b→11. ~81!

Thus while both masses vanish atb51, they vanish with
different powers ofub21u.

The mass of the Polyakov loop is of physical significan
in the underlying gauge theory@19,20#. In coordinate space
the connected two point function of,(xW ) is
1-18
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^,N* ~xW !,N~0!&2u^,N&u2;
exp~2M uxW u!

uxW u
, uxW u→`.

~82!

In the confined phase,M5s/T, wheres is the string ten-
sion. In the deconfined phase, one can defineM
52mDebye, where mDebye is a ~gauge-invariant! Debye
mass. Assuming thatM;m, with mass dimensions made u
by some other physical mass scale, such as the tempera
this mean field theory predicts that the string tension v
ishes at the transition as@62#

s~T!;~Td2T!1/2, T→Td
2 , ~83!

and the Debye mass, as

mDebye~T!;~T2Td!1/4, T→Td
1 . ~84!

One might refer to this as a ‘‘critical’’ first order transition: a
the transition, the order parameter jumps, but the ma
vanish, asymmetrically.

We next include the effects of the potential,~65!. We start
with the simplest term,g2Þ0, which is the contribution of
the adjoint loop to the potential. At largeN, in mean field
approximation we need to evaluate the integral

Z̃5E dLNexp@N2~2b, Re,N1g2u,Nu2!#

[exp@2N2Ṽ~b,,g2!#. ~85!

The solution is@45,46#

Ṽ~b,,g2!5g2k21VGW~b,1g2k!, ~86!

wherek is a variable which one minimizes with respect t
The variation with respect tok enforces the condition that th
expectation value of,N

2 satisfies factorization. Finally, th
mean field solution is given by minimizing a potential wi
respect to, andk:

Ṽm f~,,k!5b,21g2k21VGW~b,1g2k!. ~87!

This is trivial to solve. Expanding aboutk5,1dk, for dk
50, this reduces to the previous mean field potential, exc
that the coupling constant is shifted,b→b1g2. Further, if,
is extremal with respect to this shifted mean field, the te
linear in dk also vanishes. This follows because the Gro
Witten potential is a function only ofb,, and not ofb and,
separately. As discussed previously, forN53 we discovered
numerically that in mean field theory, we can shift the adjo
coupling away,b→b1g2.

This is very different from lattice gauge theories in tw
dimensions, wherebGW and g2 represent independent cou
pling constants@45,46#. Then bGW and g2 can be varied
irrespectively of each other, and one finds that the third or
transition, inbGW for g250, can become a first order tran
sition in the plane ofbGW andg2 @45,46#.

The generalization tog4Þ0 is direct. One includes a con
straint field for u,u2 and then solves the constraint atN
03451
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5`. The mean field couplingb is again shifted,b→b
1g21#g4,0

2, but by an amount which depends on the co
densate, ,0; there are also additional potential term
;g4,0

4. Consequently,g4Þ0 corresponds to a change in th
potential. Aharonyet al. @14# show that forg4Þ0, ordinary
transitions appear to be generic. In particular, first order tr
sitions have finite correlation lengths in both phases.

This remains the case for an arbitrary potential,W. At
largeN, this is just a sum of powers of the fundamental loo

W5(
i ,m

$g2m ~ u,Nu2!m1jmN@~,N!mN1c.c.#%. ~88!

This is a typical potential for a scalar field,N[,N( i ): the
adjoint loop acts like a mass term, while the other terms
interactions of quartic and higher order, invariant unde
global symmetry ofZ(N).

We define the Gross-Witten point as the transition fo
potential which is just the adjoint loop. All other interaction
are dropped:b1g2Þ0, with g45g65•••5jN5j2N5•••

50.
The deconfining transition for three colors appears to

close to the Gross-Witten point of infiniteN. For example,
although the data are very limited@25#, the decrease of the
Debye mass nearTd does seem to be significantly sharp
than for the string tension, as indicated by the differe
‘‘critical exponent’’ in ~84! versus~83!. Exactly how close
N53 is to the Gross-Witten point ofN5` can be charac-
terized within matrix models@55#. Effects which are impor-
tant for three colors include the contribution of the decup
loop, which is like a cubic interaction for the triplet loop, an
the mixing between the triplet and sextet loops,b3,6 in ~66!.

Assuming that three colors is near the Gross-Witten po
we can explain whyZ(N) neutral fields have small expecta
tion values in the confined phase,~63!. In the confined phase
the potential is purely a mass term, as corrections to~76!
begin with the baryon vertex,;(,N)N @44,47,51#. This ver-
tex inducesZ(N) neutral expectation values, but as noted
Goldschmidt@44#, these are of order;exp(2N).

That N53 is close to the Gross-Witten point could be
accident of three colors. The lattice will tell us if the deco
fining transition for four or more colors is also close to t
Gross-Witten point. The lattice finds a first order transiti
@26,27#, but the crucial tests are the value of the renorm
ized, fundamental loop atTd

1 , and whether the string tensio
and the Debye mass decrease significantly nearTd .

If this is not found, the most probable scenario is just th
the transition becomes more strongly first order with incre
ing N. We term the transition strongly first order if the valu
of the renormalized fundamental loop atTd

1 is near unity.
Then at the transition, deconfinement is not halfway, as i
at the Gross-Witten point, but nearly complete.

For such a strongly first order transition, neither the str
tension, nor the Debye mass, would need to change m
about Td . Gocksch and Neri@42# argued that the ‘‘loop’’
string tension is constant forT<Td . In a Nambu string
model, though, a larged expansion shows that when th
ordinary string tension vanishes atTd , the loop string ten-
1-19
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sion is still '87% of its value at zero temperature@62#. We
are unaware of lattice data on the loop string tension.

V. OUTLOOK

In this paper we presented a general analysis of the re
malization of Polyakov loops, and applied it to measure
simplest loops for three colors in four dimensions. The
results led us to consider effective matrix models for
deconfining phase transition. There are clearly many aven
for future study.

For two colors, there will be two regions. AboutTd , there
is a critical region, controlled by universality of the seco
order transition@5#, and in which factorization fails. This
may then match onto a mean field region, where factor
tion is approximately valid.

For three colors, careful measurements of the renorm
ized loops, and associated masses, will sharply constrain
couplings of the effective matrix model@55#. We note that
while we could not extract an expectation value for t
renormalized decuplet loop from that for the bare loop, me
field theory indicates that it is significant@64#.

Simulations should quickly show if for the deconfinin
transition for four or more colors is near the Gross-Witt
point.

Considering theories other thanSU(N), Holland,
Minkowski, Pepe, and Wiese@65# noted that in a pureG(2)
gauge theory, there is no center to the gauge group, and s
absolute measure of confinement. This is analogous, tho
to Z(N) neutral loops inSU(N), for which we measured no
signal belowTd . In the simplest mean field theory for
G(2) gauge theory, presumably there is a first order tra
tion, with a value for the fundamental loop atTd

1 near 1
2 .

Maybe like SU(3), the ‘‘deconfining’’ transition in aG(2)
gauge theory is also near the Gross-Witten point.

The renormalization of Wilson lines implies that once t
divergent mass is known,all renormalized loops can be com
puted. We suggest that numerical simulations measure lo
of different shapes, such as Polyakov loops with cusps,
1, and circular loops, as can be computed in supersymm
theories@13#.

In the end, however, what is most important is to meas
renormalized Polyakov loops for theories with dynamic
quarks. Our method for computing renormalized Polyak
loops is completely unaffected by the presence of dynam
quarks. Given the flavor independence found for the pres
@24#, it would be striking if the values of renormalized Poly
kov loops, with dynamical quarks, are found to be close
those of the pure gauge theory. For recent results, see
@39#.
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APPENDIX: IMPROVED WILSON LINE

It is difficult extracting renormalized Polyakov loops i
representations such as the decuplet, because the bare lo
suppressed by a small renormalization constant. In this
pendix we give a formal discussion of how to improve t
Wilson line @57#.

Our discussion applies to any Wilson line along a pa
xm(s), wheres is the path length along the curve. As show
in Sec. II,~13!, the propagator for a test quark is proportion
to the Wilson line. Consequently, we consider a generali
propagator, by adding an operatorX to the covariant deriva-
tive:

S d

ds
2 igAmẋm2XDG~s,s8!5d~s2s8!, ~A1!

whereẋm5dxm/ds. The representation is denoted implicitl
Schematically, the solution to this equation is

G~s,s8!5u~s2s8!P expS E ~ igAmẋm1X!dsD ~A2!

with P denoting path ordering. The solution toG is sche-
matic because of the path ordering, but it is easy to und
stand the solution as a power series inX, with each insertion
of X sandwiched between a Wilson line on both sides.

Any possible operatorX has a higher mass dimensio
than the gauge field, so we make up the dimensions w
inverse powers of the ultraviolet cutoff, such as the latt
spacinga. The important thing is thatX respects the relevan
symmetries. Gauge invariance requires thatX transforms ho-
mogeneously under gauge transformations, but that is sim
done by using powers of the field strength tensor,Gmn . The
operator must also be invariant under how we paramete
arc length,s→s8(s). The final symmetry is the zigzag sym
metry of Polyakov@66#; for reparameterizations which go i
the opposite direction, withds/ds8,0, X should change
sign.

The simplest possibility is

X5a2g2 Gmn
2 Aẋ2. ~A3!

This is gauge covariant and reparameterization invariant,
is not zigzag symmetric. If one abandons zigzag symme
then this operator can be used to regularize the Wilson l
since it is just a field strength dependent ‘‘mass’’ term for t
line.
1-20
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One can satisfy all symmetries with the following oper
tor,

X5agGmn

ẋmẍn

ẋ2
, ~A4!

whereẍ5d2xm/ds2. A similar operator was noted by Polya
kov and Rytchkov@66#. Since it vanishes for a straight pat
whereẍm50, it does not help to regularize the Wilson lin
It is also problematic to continue to Minkowski spacetim
since it is singular on the light cone@66#.

To define an operator which satisfies all of our requi
ments, we define a unit vector normal to the path,

n̂mẋm50, n̂251. ~A5!

For a given direction, we introduce then̂ dependent operato

Xn̂5kgGmnẋmn̂n. ~A6!

We then define a modified Wilson line as

E dV n̂P expS E ~ igAmẋm1Xn̂!dsD . ~A7!

The operatorXn̂ inserts the field strength tensor perpendic
lar to the path. We then integrate over all directions of
insertion, withdV n̂ the normalized integral overn̂, *dV n̂

51. We obviously cannot integrate over all directionsn̂ in
the exponential, or the term would vanish, and so do so
the prefactor of the exponential. Zigzag symmetry is ma
tained by integrating over alln̂.

In perturbation theory, to lowest orderXn̂ generates new
divergences. In three spatial dimensions, and including a
bye massmD;gT in the propagator forA0 @3#, the leading
divergence is

;
g2

T E dV n̂E d3k

~2p!3 S 211a2k2~ n̂•kW !2

k21mD
2 D . ~A8!

We assume that the ultraviolet divergence is cutoff strictly
momenta 1/a. The usual term is;*d3k/k2;1/a, and is of
the same order as the new term,;a2*d3k;1/a. For k
J.P
m

k,

03451
-

,

-

-
e
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-

e-

t

,1/A3, ~A8! is negative, while fork.1/A3, it is positive. If
a more realistic cutoff is used, then the value ofk at which
the sign changes will be different, but for largek ~and to
leading order ing2) bare loops are enhanced, not suppress

Following the procedure in Sec. II D, from log(^,&) we
compute as power series inNt . The term linear inNt gives
ZR , with the renormalized loop given by the term indepe
dent ofNt . We argue that while theZR arek dependent, the
renormalized loops are not, at least in perturbation theory
lowest order ing2, for k50 the renormalized loop arise
from the correction from the Debye mass term
;g2(mD

2 )1/2/T;g3, ~55! @3#. This is nonanalytic in the De-
bye mass, and arises because the leading term is only line
divergent. For thek-dependent term, the leading term is c
bically divergent, so corrections are;g2k2a2mD

2 /(aT)
;g4k2aT; but this is;1/Nt , and vanishes asNt→`. There
is a nonanalytic term at one higher order in momentum,
this is even smaller, ;g2k2a2(mD

2 )3/2/T;g5k2(aT)2

;1/Nt
2 . It seems likely that this holds for anyk-dependent

terms: they contribute to terms;1/(aT);Nt , or to lattice
corrections;1/Nt or smaller, but not to terms in the con
tinuum limit, ;Nt

0 . This analysis is special to four spac
time dimensions: in three dimensions, thek dependent term
is quadratically divergent, and has logarithmic corrections
for k50.

While zigzag symmetric, the term added,Xn̂ , is not a
phase factor; the couplingk must be real in order to enhanc
the bare loop. As the bare loop is not the trace of a unit
matrix, there is no bound on the renormalized loop, as
k50, ~56!; when kÞ0, ZR can diverge in the continuum
limit, instead of vanishing.

On the lattice, adding a field strength tensor at a po
corresponds to stapling a plaquette, as the average ovn̂
becomes a sum over the directions transverse to the path
lowest order ink, this modification is the same as the sme
ing of link variables proposed by the APE Collaboratio
@57#. We suggest doing this not just to lowest order, but to
orders ink. This is related to the stout links of Morningsta
and Peardon@57#. The difficulty is that eventually the Wilson
line is smeared over the entire lattice, which must then be
off in some way. On the other hand, the usual problem w
smeared links is the need to project back to an elemen
SU(N), which is unnecessary here.
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