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We construct chiral effective Lagrangian for two lattice theories: one with Wilson fermions and the other
with Wilson sea fermions and Ginsparg-Wilson valence fermions. For each of these theories we construct the
Symanzik action througt®(a?). The chiral Lagrangian is then derived, including term&¢&2), which have
not been calculated before. We find that there are only few new terms at this order. Corrections to existing
coefficients in the continuum chiral Lagrangian are proportionaftand appear in the Lagrangian@¢a®p?)
or higher. Similarly,0(4) symmetry-breaking terms enter the Symanzik actio®@?), but contribute to the
chiral Lagrangian a®(ap*) or higher. We calculate the light meson masses in chiral perturbation theory for
both lattice theories. At next-to-leading order, we find that there aré@¢ar) corrections to the valence-
valence meson mass in the mixed theory due to the enhanced chiral symmetry of the valence sector.
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[. INTRODUCTION chiral log behavior in the pseudo scalar meson mass and
decay constant was observed.

Chiral perturbation theoryyPT) [1,2] plays an important A similar approach was taken in Ré€fL6] for analyzing
role in the analysis of current lattice QCD data. Simulationdattice theories with two types of lattice fermions—Wilson
with the quark masses as light as realized in nature are néérmions for the sea quarks and Ginsparg-Wilson fermions
feasible on present-day computers. Instead one simulatésr the valence quarks. The latter can be implemented using
with heavier quark masses and performs a chiral extrapoladomain wall [17-19, overlap [20-24, perfect action
tion to the physical quark masses using the analytic predid25,26, and chirally improved fermion§27,2§. There are
tions of yPT. To perform the chiral extrapolation one must Several advantages in using different lattice fermions in nu-
first take the continuum limit of the lattice data, sufw@T merical simulations. Since massless GinSparg-W”SOﬂ fermi-
describes continuum QCD and is not valid for nonzero lattice®ns exhibit an exact chiral symmetry even at nonzero lattice
spacing. However, it is common practice not to perform thespacmg[29], it is possible to simulate such valence fermions
continuum extrapolation and nevertheless fit the lattice dat¥ith masses much smaller than the valence quark masses

to continuum yPT, assuming that the lattice artifacts area(_:cessmle using W"S(.)n ferm|qr[§Q,3]]. Th'$ aHOW.S a
small. wider numerical sampling of points in the chiral regime of

A strategy to reduce this systematic uncertainty was proQCD. In addition, the valence sector exhibits all the benefits

. . . stemming from the Ginsparg-Wilson relati¢82], such as
ng]e(ijnl?hzesfiggg;?]c(:u(:)lIfifr?grjel?r;;p'l?rzgigri]tv\\//vfstzﬁi;]vlnn hRo?/{/S. the absence of additive mass renormalization, of operator

. o . . mixing among different chiral multiplets, and of lattice arti-
the discretization effects stemming from a nonzero lattic§, s jinear in the lattice spacirm[23—26,33,3%

spacing can be included jpPT. The basic idea is that lattice In this paper we extend the results of both REF.and
QCD is, close to the continuum limit, described by Syman-[16] by calculating the chiral Lagrangian including the
zik’s effective theory, which is QCD with additional higher O(a?) lattice effects. There are various reasons for doing
dimensional terms[10-14. The derivation of xPTfrom  this. First, the lattice spacings in current unquenched simu-
QCD can then be extended to this effective theory with ad{ations are not very small, so that neglecting é&?) con-
ditional symmetry-breaking parameters. The result is a chirafributions might not be justified. Second, the use of nonper-
expansion in which the leading dependence on the latticeurbatively improved Wilson fermions in lattice simulations
spacing is explicit. This idea was numerically examined inis becoming more common. The leading corrections for these
Ref. [15] for a theory with two dynamical sea quarks on afermions are of®(a?) and hence need to be computed in
coarse lattice using the results of REf]. The characteristic order to know how the continuum limit is approached.
At O(a?) many operators enter the Symanzik action and
need to be taken into account for constructing the chiral La-

*Email address: obaer@het.ph.tsukuba.ac.jp grangian. Four-fermion operators appear for the first time
"Email address: grupak@Ibl.gov and operators that explicitly break Euclidean rotational sym-
*Email address: shoresh@bu.edu metry are encountered. Nevertheless, the number of new op-
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erators in the chiral Lagrangian is rather snitiree for the d—Lg, d—d LT

Wilson action and four for the mixed fermion theoryhis is @)

important in practical applications, since every new operator

comes with an undetermined low-energy constant. These - Tt

constants enter the analytic expressions for physical observ- Yr—Rir, Yr— YR

ables and too many free parameters limit the predictability of

the chiral extrapolations. For small quark masses and lattice spaci@ds an approxi-
The paper is organized as followgPT for the Wilson  mate symmetry group of the theory, broken only by the mass

action is discussed in Sec. I, including the partially and the Wilson terms. If all the quark masses are nonzero but

quenched case in Sec. Il E. The mixed theory with Wilsonequal the vector subgroup with=R is a symmetry of the
sea and Ginsparg-Wilson valence quarks is treated in SegctionS,,.

lIl. In Sec. IV, we discuss the chiral power counting and  To complete the definition of the lattice theory one should
compute the pseudoscalar meson mass including#€)  also define a gauge acti®y,,. However, the precise choice
contributions for both cases. We end with some general combf the gauge action is irrelevant for the purpose of our analy-
ments in Sec. V. sis, so we leave it unspecified.

Il. WILSON ACTION . .
B. Symanzik action

In this section we formulate the chiral effective theory for The Symanzik action for the Wilson lattice action, up to

the Wilson lattice action. First, the Wilson action and its and including®(a?), has been calculated first in R¢L3].
symmetries are bgief.ly reviewed, then the local Symanzikl.he analysis to@(a’) has been later elaborated on in Ref.
action t.hroughO(a ) is pre_sente_d. Based on the symme;ry[m]_ We restate these results in a slightly different form. The
prope.rt|es of the Syman2|k act|0|_'1 we construct.the Chlraexplicit breaking of chiral symmetry by the Wilson term
effeg:tlve theory. Finally, we consider the extension to theIeads to an additive renormalization of the quark mass. This
partially quenched case. causes the pion to become massless along a criticahijne
_ _ =m.(a)~1/a, and a physical quark mass can be defined as
A. Lattice action the distance from this linen,=my—m,. The operators in
We consider an infinite hypercubic lattice with lattice the Symanzik action are constructed from the quark and
spacinga. The quark and antiquark fields are represented by@auge fields and their derivatives and powersngt We list

W andE, respectively. Wilson's fermion actidi85] is given all terms.in the acti_on th_roug@(az) that are allowed by the
symmetries, organized in powers afagain, we only focus

by on the fermion action We use the notation
Sw= a“; Y(Dy+mo) (), Se=Sy+as,+a%s, . . ., .
(o
Dw= %{yﬂ(VfLwLVM) —arVy v}, S.= EI clkr ol

wherem, denotes théN¢ X N; bare quark mass matrix amd
the Wilson parameterV?, V, are the usual covariant, whereO™ are local operators of dimensionand the con-
nearest-neighbor backward and forward difference operatorstantsc(™ are unknown coefficients.

The Wilson action in Eq(1) possesses several discrete  Some allowed operators in the Symanzik action are ob-
symmetries—charge conjugation, parity—as well as anained by multiplying lower-dimensional operators with

SU(N.) color_ gauge symmetry. The intr(_)duction of a dis- powers of the quark mass, . For exampleatr(mq)ZD o,
crete space-time lattice reduces the rotation symmetry grougam Dy and four similar operators a®(a2) contribute to
O(4) to the discrete hypercubic group. q

Next, we consider the group of chiral flavor transforma-the wave function renormal_|zat|0n OT t_h_e quark f|elds_. Per-
tions, forming a(flavor-dependentfield redefinition one can elimi-

nate these operators while keeping the kinetic term trivial in

G=SU(N;) @ SU(N¢). 2 flavor space. Similarly, the operatorsa tr(mg) i,
atrz(mq) i, atr(mg) ymqip, andaz,/xmf]z,/; [and seven more
Introducing the usual projection operatofs.=3(1*ys)  operators ab(a?)] renormalize the mass matrin,. These
the left- and right-handed fermion fields are defined by operators can be effectively accounted for by rep|a(r'mg
L with the renormalized mass;, we do not list them here
W r=Psty, Y r=yP.. (3 explicitly. At O(a?) in the Symanzik action, differences be-
tween insertingm and m, are at leastO(a®) and can be
Under a transformatioh ® Re G these chiral components neglected. With these caveats we find the following list of
transform according to operatorgwe use the same notation as in Réf3]):
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So: oM=yby, oY= ymy. ®)
Si: 0¥=yD,D,¥, O =i F b (7)
S,, bilinears: o= yb3y, 0¥®=ymD,D ¥,

0¥=y(D,D,D+DD,D,)y,  OL=tr(m) yD,D,¥,
0=yD,DD,,y, 0¥ =ymia,,F .4, ©
0{=y,D,D,D ¢, O =tr(m) yio,,F .
S,, four-quark operators:  O%)=(y)?, 0= (yt2y)?,
O =(wysy)?, O =(yt*ys1)?,
0= (yy,.4)%, 0= (yty,4)?, ©)
089 = (1, vs0), 0= (ty, ys1)?
0= (yo,. 17, Off = (%, 1%,

chiral Lagrangian by inducing @) symmetry breaking
terms in it. The analysis leading to the Symanzik action re-
veals that such terms must be at leasta§a?).

wheret? are theSU(N.) generators. This list of four-quark
operators is slightly different from the one in Ré¢fl3].
Sheikholeslami and Wohlert's list contains operators with
flavor group generators. However, both lists are equivalent
and are related by Fierz identitidsee Appendix A Our

ch_oice of operator_s is guided _by th_e fact that for the s_tudy of At O(a°%), the Symanzik action is QCD-like. For small
chiral transformation properties, it is more convenient togndmwe assume the lattice theory to exhibit the same spon-
consider four-quark operators with a trivial flavor structure. taneous symmetry-breaking patter8U(N;), ® SU(N¢)g

In the context of on-shell improvement, equations of mo-—SU(N;),, as continuum QCD. Consequently, the low-
tion have been used to reduce the number of operators &hergy physics is dominated by Nambu-Goldstone bosons,
O(a) in the Symanzik actiof13,14]. This involves a redefi- which acquire small masses due to the soft explicit symmetry
nition of the effective fields, which are matched to their lat- breaking by the small quark masses and discretization ef-
tice counterpartgl4]. Only the Pauli termO% is left at this ~ fects. The low-energy chiral effective field theory is written
order and can be subsequently canceled by adding the clovét terms of these light bosons.
term to the lattice action with a properly adjusted coefficient. T0 construct the chiral Lagrangian we follow the standard
The generalization of the arguments in Ri4] to O(a?) p_rocedure Qf spurion analysis. We write a term in the Sym_an-
has not been carried out yet. We therefore continue with th&K Lagrangian a€,0 whereO contains the fields and their
formulation of the chiral effective theory without making use derivatives and, is the remaining constant factor. For sym-
of equations of motion. metry breaking termsO changes, under a chiral transforma-

We distinguish two types of operators in the Symanziktlon of the fefrmlomc f|eldsOT]Oh. we th?” promote, t(,)
action: those that break chiral symmetry and those that dgwe status of a spuriof, with the transformatiorC—C

) 2 Such thatCO=C’'Q’. The chiral effective theory is con-
?hoet.r:tg((aa)tgl osstzﬁ:gtrrsybt)rreeﬂ(kg;ra;;ggg%% ACI)((a6)) structed from the Nambu-Goldstone fields and the spurions
- VY10 s

®) _ ~(6) 16) M with the requirement that the action is invariant under chiral

0337 —Ojs , andOjg . Fermionic operators that do not break transformations if the spurions are transformed as well. Once

the chiral symmetry first appear &(a®). Purely gluonic  the terms in the chiral Lagrangian are obtained, each spurion

operatorgwhich we have not listed aboyalso belong to the s set to its original constant valu@=C,. This procedure

second type of operators as they are trivially invariant undeguarantees that the chiral effective theory explicitly breaks

chiral transformations. They too enter@ta?). chiral symmetry in the same manner as the underlying theory
The operatorO{®) deserves special attention. While re-

specting the chiral symmetries it is not invariant undé4)O

rotations. This means that it does affect the structure of the !we assume to be outside of the Aoki ph#36—38.

C. Spurion analysis
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defined by the Symanzik action and reproduces the sanghe combinationsAA™™ and trAM™)A already transform

Ward identities.

in the right way to mak®©{®)— O invariant, and their con-

It might appear that one needs many spurion fields tQ,nt vajues have the right powers @nand m. Another

accommodate all the symmetry-breaking operators in the Sy,
manzik action. However, this is not the case. Two spurion

that transform in the same way will lead to the same terms
the chiral Lagrangian; therefore, it is enough to consider on

one of them. This is discussed in Appendix B. Since we

organize the chiral perturbation theory as an expansian in

anda, we do distinguish between spurions that transform the

same way but have different or a dependence.
In the following we list the representative spurions

Source of potentially new spurions &{(a?) are squares of
'(a) spurions. However, note tha?, ATA, (AN2, and

I"hAT transform exactly likeB, C, B, andC, respectively,
Iyand therefore need not be treated separately.

D. Chiral Lagrangian

The chiral Lagrangian is expanded in powerspdf m,
-anda. Generalizing the standard chiral power counting, the

Shown are the transformation rules for the different spuriongeading-order Lagrangian contains the termsagp2 m,a),

under chiral transformations and the constant values
which the spurions are assigned in the end.

0@%: M—=LMR", MT=RMTLT,

(10

Mo=MJ}=m=diagm,, ... my).

f

This makes the mass terfq M ys+ ¢xM T, invariant un-
der the chiral transformations of E().

O(a): A—LAR", ATSRATLT,

(11
Ay=Al=al,

wherel is the flavor identity matrix. The spuriofA renders
the operator©{®> andO0% in Eq. (7) invariant.

O(a?): B=B,;®B,—LB;R'®LB,R’,
B'=Bl®B}—RBILT®RBJL",
C=C,;®C,—RCLT®LC,R", (12
c'=clecl—LC]RT@RCILT,
Bo=B}=Co=Cl=a%&l.

These spurions are introduced to make the symmetr

vhile the terms ofO(p* p?m,p?a,m?,ma,a?) are of next-
to-leading order. In terms of the dimensionless expansion
parametersn/A | andaA, , whereA,~1 GeV is the typical
chiral symmetry-breaking scale, this power counting as-
sumes that the size of the chiral symmetry breaking due to
the 2mass and the discretization effects are of comparable
size:

For the Wilson action, all next-to-leading order terms
have already been computed in RéET], except for the
O(a?) terms. We are now in the position to calculate these
contributions, which are the ones associated with the spuri-
ons B and C. We find the following three new term@nd
their Hermitian conjugates

(BiXT) (B2 T)—a%(2")?, (15
(B, 1B,3 N —a¥sTsh), (16)
(C1E)(CxT)—aX(Z)(2T). (17

Here X = exp(aI1/f), with IT being the matrix of Nambu-
Goldstone fields2, transforms under the chiral transforma-
tions in Eq.(4) as>—L3R'. The angled brackets are traces
over flavor indices, and the arrows indicate assignig
=By, C=C,, according to Eq(12).
Y- So far we only considered the operators in the Symanzik

breaking four-quark operators invariant and therefore carryction that explicitly break chiral symmetry. Operators that

four flavor indices(see Ref.[39] and references thergin
Consider, for example, the operator

(W) () = (YL oR) (L PR) + (Pr) (YL YR)
+ () (i) + (bR (Yrip). (13)

The first term on the right-hand side can be made invaria
with the spurionB as can be seen from

By Yrih r= Bijkl(ZL)i( QBR)j(EL)k( IR

= ¢ By i Botr. (14

do not break chiral symmetry also contribute @fa?).
These operators do not add any new terms to the chiral La-
grangian, but simply modify the coefficients in front of al-
ready existing operators. At leading order, for example, the
kinetic term isf%/4(d,%4,%"). There are corrections tt?

due to the symmetry-conserving terms in the Symanzik ac-
r]rljon: f2—f2+a?K (K is another unknown low-energy con-
stant) This leads to the correctioazK(aM202;> for the
kinetic term. Thus given a term aP(p?) there is another
term of O(a%p?). In general, we can rewrite the coefficient
of any allowed operator in the chiral Lagrangian to obtain a
new allowed operator which i©(a?) higher. These terms
are beyond next-to-leading order and are not included in the

Similarly, all the other symmetry-breaking four-quark opera-present work.

tors can be made invariant using the spuriBn<C, and their
Hermitian conjugates.

No additional spurion fields need to be introduced to 2A more detailed discussion of the power-counting scheme is

make the symmetry-breaking bilinears @a?) invariant.

given in Sec. IV.
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As already mentioned, the operaof®) breaks the @) Finally we can write down the terms aP(a?) which
Symmetry in the Symanzik action. However, in order toenter the next-to-leading order chiral Lagrangian. In terms of
break the @) symmetry, while still preserving the discrete € two parameters
hypercu_bic ;ymmetry, an ope_rator must carry at least four ﬁEZBOm:ZBOdiagml, M), éEZWOa,
space-time indices. In the chiral Lagrangian, these are pro- f (18)

vided by the partial derivativé, , hence the operator is at

effect, we see that the leadind4) symmetry-breaking terms Lla2]= — R2WL(S T+ 3)2— 22Wi(S T—3)2

in the chiral Lagrangian are aP(p*a?) (an example is the [a’] o ) 7 )
operatora®s ,(d,3,%3,9,2")). Hence, up to the order —a?Wy(S T3 T+33). (19
considered here, @) breaking terms can be excluded from

The coefficientdV] are new unknown low-energy constants.
Putting it all together, also quoting the terms in the Lagrang-
ian of O(a) from Ref.[7],* we find

the analysis.

£2 f2 R
L= {0,20,5 )= T (METH3M) =4 (3T+3) - 1(9,30,3 72~ 1(3,20,5)(9,20,51) - Lx((7,29,5H?)

+L4(0,50, ST WMET+3m)+aWy(a,50,S WS T+3) +Ls(9,2 9,3 T (MET+3m)) +aWs(9,3d,3(ST+3))
—Lg(mST+3m)2—aWg(mE T+ Smy(ST+3) - L(m2 -3 m)2—aw,(m3 —Smy(3T-3)

—Lg(mXTm3 T+ S mEm)—aWg(m3 ST+ 3 S m)+ £[a?]+ higher order terms. (20)

Here, the parametells; are the usual Gasser-Leutwyler co- Gpo=SU(N;+Ny|Ny) @ SUN¢+Ny[Ny)g.  (2D)

efficients of continuumyPT. ) )
Based on the symmetries of the lattice theory the Syman-

zik action for partially quenched lattice QCD is obtained as
E. Partially quenched QCD before. The result is easily quoted: One can simply replace

Partially quenched QCD is formally represented by anand@ in the Symanzik action for the unquenched theory

action with sea, valence, and ghost qua@]. We collect with the extended field¥ and¥ because the only two- and
the quark fields'inlf=(¢s, o), whereys describes the sea four-quark operators that are invariant under the extended,

quarks, andygs, contains both the anticommuting valence 9raded flavor group are stV and its square.

quarks and commuting ghost fields. The same is done for the The leading term in the Symanzik action is partially
antiquark fields. The mass matrix is given b quenched QCD, for which the construction of the chiral La-

grangian(first introduced in Refl42]) is essentially the same
as for the unquenched cafél]. This remains true when
higher dimensional operators in the Symanzik action are in-
) . ' . . Cluded, and the analysis of Sec. IID is readily extended to
We consider partially quenched lattice QCD with Wil the partially quenched case. In particular, the form of the

son’s fermion action Eq) for all three types of fields. The chiral Lagrangian for partially quenched lattice QCD with

discrete symmetries and the color-gauge symmetry is as I&/ilson fermions isexactlythe same as in Eq20). The dif-

the unquenched case. The group of chiral flavor transforma:- o A .
tions, however, is different. If all the masses and the Wilsora1ference Is in the definition of the angled brackets, which now

parameterr are set to zero, the action is invariant underdenOte supertraces., and the |n.terpretat|oﬁ @ndm. These
transformations in the graded gréup need to be appropriately redefined to reflect the larger flavor
content of partially quenchegPT.

=diag(msg,my,), with mg being theN; X N; mass matrix for
the sea quarks and,=diag(my,my) is the 2NyX2Ny
mass matrix for the valence quarks and valence ghosts.

~ I1l. MIXED ACTION

3Unlike in Ref.[16], here we define without the factor ofcgy.
The coefficientcsy is not kept explicit as we do not use equations [N this section we consider a lattice theory with Wilson
of motion, andS; contains ac{®0{> besides the Pauli term sea quarks and Ginsparg-Wilson valence quarks. As before
acsyO% . Note thatcg,, does not refer to the coefficient of the
clover-leaf term of improved lattice actions.

“There are some typos in the Lagrangj&u. (2.10] in Ref. [7]. 5See Ref.[41] for a more honest discussion of the symmetry
The Lagrangian in E¢(20) is the correct one. group of partially quenched QCD.
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we first construct Symanzik’s effective action through B. Symanzik action

O(a®). We then derive the chiral Lagrangian for this theory.  The Symanzik action for the mixed theory can be derived
using the results of the previous section. It is convenient to
separately discuss three types of terms—those that contain

A. Lattice action only sea quark fields, those that contain only valence fields,
and those that contain both.

Tf;(e use of d|ffe|r_en:. Iattu;e fe:_m|||ons for ie?j Tmt(tj valeg%e For the first type of terms the analogy with the previous
quarks is a generalization of partially quenched lattice Q section is evident: the relevant symmetry groupGse,

Theoretically it too is formulated by an action with sea and_ 5 g4 the explicit symmetry-breaking structure is the
valence quarks and valence ghosts. However, in addition tQam,e. Thus. all bilinear operato&i(”)(zp) and four-quark

aIIo_winhg different quark Ewassemgb;é n;\# the fDirac gpera— . operatorsO{" (¢, ), listed in Sec. Il B, appear in Syman-
tor in the sea sector is chosen to be different from the one fofy.c "5 crion. oncey is replaced byys.®

the valence quarks and ghosts. For this reason we will refer 0" construction of the purely valence terms is also

to this type of lattice theory as a “mixed action” theory.  anajogous to the one for the Wilson action in Sec. Il B. How-
_The mixed action theory with Wilson sea quarks andeyer, there are stricter symmetry constraints for Ginsparg-
Ginsparg-Wilson valence quarks is defined in R&6]. We  \wjlson quarks and ghosts because the Ginsparg-Wilson ac-
refer the reader to this reference for details and notationjon possesses an exact chiral symmetry when the quark
Here we just quote that the flavor symmetry group of themass is set to zero. All operators without any insertions of

mixed lattice action is the quark mass must therefore be chirally invariant. Further,
operators with insertions of the quark mamsnust become
Guy=Gses®Gyal, chirally invariant wherm s transformed like a spurion field.

In particular, all dimension-3 and dimension-5 operators are
forbidden. Several dimension-6 operators¥&?) are also
excluded. Only the bilinea®{®— 0, 0% of Eq. (8) and
the four-quark operator® ® (i, ), i=11, 12, 16, and
17, of Eq.(9), areGy, invariant and are therefore allowed.
For terms of the third type, note that the symmetry group
Gya=SU(Ny|Ny) ® SUNy|Ny)g. (22) Gy, forbids bilinears that mix valence and sea quarks. Thus,
the only terms containing both sea and valence fields are
_ _ . four-quark operators that are products of two bilinears—one
The quark mass term in the mixed action breaks 81,  from each sector. Again, only the four terrﬁgﬁ(l/,s,,pv),
and Gy, . However, in the massless ca8g, becomes an  j=11, 12, 16, and 17, are allowed. All the others break the
exact symmetry29] while Gg.,is still broken by the Wilson  chiral symmetry in the valence sector wheg=0.
term. Because of the different Dirac operators there is no From these considerations it follows that the Symanzik
symmetry transformation that mixes the valence and sea segetion for the mixed lattice action up to and includié¥ga?)
tors, in contrast to the partially quenched chsfe Eq.(21)].  contains the following terms:

Gsea= SU(N{) L@ SU(N()R,

So: ofys),  O(gy), i=12. (23
S:: 0P (ysg), i=1,2. (24)
S,, bilinears: 0®)(yg), i=1-8,

0O (i), i=1-5,7. (25)
S,, four-quark operatorsO{®)(ys, ), i=9-18,

Oy, ), O (s, uhy), 1=11,12,16,17. (26)

5We make the dependence of bilinear operators on the fields explicit by woigg. All the four-quark operators that we consider have
the structured (i, ) = 1 Q¢ 1, Q% ,. HereQ) denotes any combination of Clifford algebra elements and color group generators with
a combined index, which is contracted.
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C. Spurion analysis No additional spurion fields need to be introduced to make

Sy, the leading term in the Symanzik action, is just thethe remaining biIinearsL)_ge)—Q§36) invariant. Appropriate
continuum action of partially quenched QCD. In tive—0 comblnat_lons of the spurion fieldd andA (and their com-
limit it is invariant under the flavor symmetry groupo plex c_onjugate)s have already the required transformation
inEg. (21), which is larger tharG,, [Eq. (22)], the symmetry behavior anq tlhe c_orrect constant structure.
group of the underlying lattice action. For a sufficiently Ve can distinguish two types of four-quark operators. The
smalla (andm), S, determines the spontaneous symmetry-f”St type is _made of bilinears that only co_uple fields of the
breaking pattern and the symmetry properties of the NambuS@me chirality. These operators appear with only sea or va-
Goldstone particles in the theory. It follows that the mixed!€nce fields as well as in the “mixed” for®(ys, ¥v). The
theory contains the same set of light particles as partiallyémaining four-quark operators, which couple fields with op-
quenched QCD. posne chirality, appear only_ with sea quarks. We therefore

For the construction of the chiral effective theory, we in- introduce the following spurions:
troduce spurion fields that make the entire Symanzik action
invariant underGpq. Notice that all the operators propor-
tional to a and a? breakGpq, the flavor symmetry of the
leading term. This is obvious for operators that appear with
sea quark fields only, such as the dimension 5 operators.
However, even if an operator appears “symmetrically’iig
andiy, as in Eq.(25), it still breaksGpq. To illustrate this

O(a?), four-quark operators:
D=D;®D,—LD;LT®LD,L",

E=E,®E,—~RER'®RE,RT,

= t t
point let us consider any of the bilinear terms, suppressing all F=F1®F;—LFL'@RFR,
v matrices and color-group generators. Any bilinear that is B T +
invariant under all rotations 0Gpqo must have the flavor G=G18G,~RGR®@LG,L,

structure@qf=$s¢s+$v1/fv. In general, thoughz?szps and

iy WIill not appear in the Symanzik action with equal
coefficients, and therefore will not be invariant under trans-
formations inGp that mix the sea and valence sectors. H=H;®H,—LH;RT@LH,R",
As before we begin the construction of the chiral La-
grangian by listing the representative spurions required at
each order ina to make the Symanzik action invariant.
Shown are the transformation properties of the spurions un-
der chiral transformations iGpq and the constant structures JEJl®J;—>LJ1RT® RJ;LT,
to which the spurion fields are assigned in the end. Since
different operators appear in the sea and valence sector, it is £t - .
convenient to introduce the projection operators J'=J;©J,—RJL'®LIRY,

Ps=diagls0), Py=diag0,ly), (27)

wherel s denotes théN; X N; identity matrix in the sea sec-

tor, andly the 2Ny X 2Ny, identity matrix in the space of Squaring the spurions ob(a) does not lead to any new
valence quarks and ghogt®call thatys, includes both va- SPUrions.

lence quarks and ghosts

Do,Eo,Fo,Goe{a2P5®Ps,a2P5® Pv,azpv® Pv}, (31)

H'=HIeHI-RHILT®@ RHILT,

Ho=H{=J,=3}=a%Ps®Ps. (32

0@%: M—LMR'", MT=RMTLT, D. Chiral Lagrangian

The chiral Lagrangian for the mixed action theory includ-
ing the cutoff effects linear ia is derived in Ref[16]. Terms
of O(a?) are constructed from the spurions in E¢30)—
(32). It is easily checked that the spurioBs C, D, andE
lead necessarily to operators higher th@a?) [at least
O(p?a?,ma?)], so we can ignore them. From the other spu-
rions we obtain the following independent operatéasid

eir Hermitian conjugates

Mo=MJ=m=diag mg,m). (28)
O(a): A—LAR', ATSRATLT,
Ay=Al=aPs. (29
The last spurion arises from the sea sector symmetry breal

ing terms atO(a).
The quark bilinears0{®— 0% at ®(a?) couple fields

t 2 T
with the same chirality. Since there are bilinears for both sea (Fi2FpXT)—aX(rsX 752 ), (33
and valence fields we obtain the following spurions:
H3TH.SNY S ad PSS TP T 34
O(a?), bilinears: B—LBL", C—RCR, (Hi2THp2 ) —aX(Ps2 P ), 39
Bo, Coe{a’Ps,a’Py}. (30) (Hi2T)(H2T) —a*(PST)(PT), (35
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(3. 3T)(IIS)—a¥(PSTH(PsS). (36) La%]= — 22Wy (733 753 1) — 22WL(PsS T+ 3 Pg)2
For Eqg. (33 we use the fact thaPs=3(l+73) and Py —22WY(PS TS Pg)?
1 ; . e 7 s
=3(l—73), with r3=diag(ls,—Iy). When assignind~, ,
=(I+3) and expanding, the field§ and3" are next to —a’Wg(Ps2 TPY T+ 3PS Py). (37)

each other and cancel whenever the identity matrix is in- . .
serted, so the only nontrivial operator is the one shown in EqThe parametersn and a are defined as in the unquenched
(33). case in Eq(18). Note that the projectoPs in the last three

We conclude that for the mixed action theory with Wilson terms implies that these operators involve only the sea-sea
sea and Ginsparg-Wilson valence quarks the term@8(af) block of X.
in the chiral Lagrangian are The final result, including the terms from R¢L6], reads

f2 f2 . . .f2
LX=Z<aMEaﬂ2T>— Z(mEHEm)—aZ(PSEH PsS)—L1(3,30,3M2—Ly(0,29,2"a,30,3")

—L5((0,33,3N2) +L4(3,5 0,3 WM T+ 3m)+aW,(0,39, 3 NPT+ 3Pg) +Ls(d,39,3 (MST+3m))
+aWs(9,3d, ST (PSS T+3Pg))—Le(mS T+ 3 m)2—aWg(mS T+ Smy(PS T+ 3 Pg) — L (mS T —Sm)2
—aWo(m3 T —Sm)(Ps3 =3 Pg)— Lg(mS TmE T+ 3 mSm)—aWg(m3 TPs3 T+ 3PS m)

+ L[ a?]+ higher order terms. (39

The chiral Lagrangian for the mixed action theory atonstration of this point is provided by the calculation of the
O(a?) has four terms while there are only three terms at thigpseudo scalar valence-valence meson mass in the next sec-
order in the chiral Lagrangian for the Wilson action. Thetion.
reason that the mixed theory has an additional opefatut
consequently an additional unknown low-energy constant IV. APPLICATION

multiplying it) is its reduced symmetry groufy in Eq. We conclude our analysis of the chiral effective theories

(2.2)' compared W0Gpq in Eq. (21). The use of @fferent for the Wilson action and the mixed action theory with an
Dirac operators for sea and valence quarks forbids transfor—xpIiCit calculation of the light meson masses. Before pre-

mat!qns between the s$a.and valence sectors and allows tggnting the calculations, however, a discussion of the chiral
additional term{3% 75%") in Eq. (37). . Jower counting is appropriate.

The presence of more terms in the Lagrangian does not
entail that chiral expressions for all observables in the mixed
theory depend on more free parameters thagRT for the
Wilson action. By definition, the correlation functions mea-  xPT reproduces low-momentum correlation functions of
sured in numerical simulations involve operators that arghe underlying theory, provided that the typical momenjum
made of valence quarks only, and the enhanced chiral synand the mass of the Nambu-Goldstone bobbyg are suf-
metry of the Ginsparg-Wilson fields plays an important roleficiently small,p<A, and Mygg<A, . The standard con-
in that sector. The chiral symmetry leads to constraints owention is to considep and M y¢g as formally of the same
operators in the Symanzik action that contain valence fieldsorder, and take a single expansion parameteM{gg/A2
and ultimately it restricts and simplifies the form of chiral ~p2/A)2(. Thus, a typical next-to-leading ordéone-loop

expressions for valence quark observables. This can alrea@ypression for a correlation function §PT has the structure
be seen by considering the termsgfa?] with coefficients

Wy, W5, andWy [see Eq.(37)]. These terms depend only C=CLot+Cniot -,
on the sea-sea block &f. This entails that all the multi-pion
interaction vertices obtained from these terms necessarily

A. Power counting

) : ) ; 2 2

contain some mesons with at least a single sea quark in them. Ci—O()=0O Mics P
Consequently, these terms cannot contribute at tree level to Lo=0(e) A2 A2

any expectation value of operators made entirely out of va- X X

lence fields. This is easily understood: tWé terms arise

from the breaking of chiral symmetry in the sea sector by the Mﬁles M ﬁGBpZ

Wilson term, and this breaking is communicated to the va-  Cyo=0(€?)=0
lence sector only through loop effects. A more concrete dem-

(39

p?
4 ' 44 4
AX AX AX
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In some cases of interest the momentum scale and the Next, we consider the mixed action theory. A direct cal-
Nambu-Goldstone boson mass are significantly differpnt, culation shows thathere are no®(a?) corrections to the
<Mygg for instance. In such a case one could treat the twgseudoscalar-meson mad3$e expression foM 55 is, there-
dimensionless parameters separately and introduce anothfere, the same as in Refl6], which we quote here for
expansion parametgs/Mygg. However, as long as both completeness:

MRce/AZ and p?/A% are sufficiently small, Eq(39) still
holds. Consequently, a reasonable approach in the cage that , A 1 ~ A -
andM g are very different is to take E¢39) and to ignore Mag= Myt ﬁmvm[mvm— Msea
16fo aa
(or not calculatgterms that are smaller than the error asso-
ciated with the larger expansion parameter.

In the case ofyPT for lattice theories there are two pos-
sible sources of explicit chiral symmetry breaking: the quark 8 . R
masses and the lattice spacing. Consequently, the mass of the — Ml (Ls—2Lg) My
pseudo-Nambu-Goldstone boson is given Migg/AZ f
~m/A,+aA,. The discussion of the previous paragraph _ - _ 2 3

X X ) 22 + N (Ls—2Lg)Mgeat N¢(W,—Ws)a]+ O(€”).
applies here as well: we can take-p“/A~m/A,~aA,
and Eq.(39) (properly extendedstill holds. As long as the (41)
largest of these parameters is sufficiently small, this is a con- o
sistent power-counting scheme, and E89) is applicable T_he fact that there are r(G_(a_lz) contrlbutlo_ns at next-to-
even when some of the dimensionless parameters are signifgading order is not as surprising as one might think at first.
cantly smaller than the others. This is the power-countind®nly the valence quark mass term breaks the chiral symme-
that is used in organizing the terms in the Lagrangians iy for Ginsparg-Wilson fermions. Hence the pseudoscalar-
Egs.(20) and (38). meson mass is proportional to the quark mass an(_j va_tmshes

A different power-counting scheme does need to be emin the limit my,,— 0. It follows that any lattice contribution
ployed in some cases. To illustrate this we consider a realistit? Mg is suppressed by at least one factongf,;, and the
example: for some fermion actions there are no discretizatiofergest lattice correction quadratic in the lattice spacing is of
effects atO(a). This is the case, for example, for nonpertur- O(Myz@%). Note that this higher order term becomes the
batively O(a) improved Wilson fermions. If, in addition, leading discretization effect in the meson mass if=)
the lattice spacing in a simulation is large such thatimproved Wilson action is used for the sea quarks. This ex-
aZA)Z(Nm/AX’ an expansion in two parameters may beample illustrates the beneficial properties of GinSparg-W”SOﬂ

required, and the leading-order contributions arefermions, which are preserved even in the presence of a
O(pY A2, m/A ,,a2A2) “non-Ginsparg-Wilson” sea sector.
X’ X’ X7

—-a+ (ZFAHVaF rAnsea_ a)ln( rAnv:;\l)]

V. SUMMARY
B. Pseudoscalar-meson masses
We now turn to the calculation of the pseudoscalar-meson " the previous sections we presented chiral Lagrangian

masses. As in Ref§7] and[16], we only consider mesons for two lattice theories: one with Wilson fermions and the
with different valence flavor indicesA& B). In addition, we other with Wilson sea fermions and Ginsparg-Wilson valence

also take the sea quark masses and the valence quark mas@é%ions. One consequence of the analysis is that corrections
e low-energy constants of continuw®T (coming from

to be separately degenerate. For the partially quenched Wif° !
son acti(?n we f>i/nd g P vy symmetry-conserving discretization effecare of O(a?).

Since the coefficients in the chiral Lagrangian themselves
o 1 o A multiply terms of O(p?) (By and f) and O(p*) (Gasser-
MiBz (myy+a)+ ﬁ(m\/aﬁ- a)[ Myy— Mgea Leutwyler coefficienty such effects can only be detected by
16N fear measuring observables at the accuracy @fa’p?) and
8 O(a?p%), respectively. Another important discretization ef-
+ (2Myy— Mgegt ) IN(Myy+2) ] — — (Myy+ Q) fect that enters the Symanzik action@{a?) is the breaking
f2 of O(4) rotational invariance. An @) breaking term in the
chiral Lagrangian, however, must contain at least four de-

X[ N(LgMseat W,a) + LsMyy+ Wsa] rivatives, so it is a higher-order term as wéht least
o(a’ph)].
8Ny The main purpose of constructing chiral effective theories

+ —[ 2L gMyaMsest We( Mya+ Meeda+ 2Wea? : UTPO g eriira \
f2[ 6MaiMseat We( Myt Msed 53] for lattice actions is to capture discretization effects analyti-

cally and to guide the chiral extrapolations of numerical lat-

1 ~5 ~ - Ao 3 tice data. This is achieved by the explieitdependence of
+ 7 [LeMiz+ Wemyga+Wga]+ O(€), (400 observables that can be calculated in these effective theories.
whereN; is the number of sea quark flavors. "In Ref.[16] the number of flavord\; was set to 3.
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In particular, the chiral Lagrangian is sufficient for the deter-G.R. would like to thank the Center for Theoretical Physics
mination of the pseudoscalar-meson masses. For the calculat MIT, and N.S. would like to thank the Nuclear Theory
tion of matrix elements, such ds., an additionala depen- Group at LBNL for kind hospitality and financial support

dence coming from the effective continuum operators needduring parts of this work.

to be taken into account, but no conceptual difficulties are

expected to arise in this step. _ APPENDIX A: FLAVOR, COLOR, AND DIRAC
“There is a more subtle cutoff dependence that is not ex- STRUCTURE OF FOUR-QUARK OPERATORS
plicit in the Symanzik action. All the unknown coefficients in IN THE SYMANZIK ACTION
the Symanzik action, includingsyy, implicitly include
short-distance effects that make thendependent. For the In this section we discuss four-quark operators in the Sy-

chiral Lagrangian this results in an impliétdependence of manzik action that are invariant under the vector flavor sym-
the low-energy constanfZ]. The existence of a well-defined metry groupSU(N;)y, the color-gauge grouBU(N,), the
continuum limit implies that all the parameters of continuumhypercubic transformations, parity, and charge conjugation.
xPT, such as the Gasser-Leutwyler coefficients, have alead- It is convenient to label the quark fields
ing a-independent part. The other coefficients in the La-y(1) () 43) 44 Considering first the flavor group, we
grangian, loosely referred to as thW's, are expected to write the most general terfsummation over repeated indi-

show a weak, logarithmia dependence. ces is assumed

From a practical point of view there are several ways to
approach this issue. One option is not to varyror a given C ... J“)WW’W) (A1)
lattice spacing, one fits the chiral forms by only varying the "1'2!3l4 7l Tlp g Ty

guark masses. Note that everaifs not varied, the inclusion
of the discretization effects in the chiral expressions, particuThere are only two possibilities fd (up to a multiplicative
larly in the chiral logarithms, is more accurate than simplyconstant, which make this term invariant:
using the continuum expressions. From the fits, one extracts
values for the coefficients in the Lagrangian, including the C
W’s. Applying this procedure again, independently and for
lattice data with differe.nt lattice spacings, thgse parametergpege corresponélip to a sign from the interchange of the
are aIIowed_ to vary v_wtha. It should be \_/erlfled that the Grassman fielgsto
values obtained in this way for the continuum low-energy
constants do not exhibit am dependence beyond the error
expected at the order of the calculation. It might be the case
that thea dependence of thé/’s is so slow that they do not
change much over the range of lattice spacings simulated. IAt this point we are free to redefine the labels on the quark
that case a simultaneous fit anandm might be appropriate. fields in the second term by exchanging the second and
More genera"y, a simultaneous fit can be used whenathe fourth indices. In this way we Only need to consider the first
dependence of the/’s is known. In particu|ar, provided that invariant in the last equation. From this pOint on, the order of
the equations of motion can be Consistenﬂy app“ed throug[t:he fields will remain fixed, so the labels of the fields can be
O(a?) to eliminate all but the Pauli term in the Symanzik dropped, and the trivial flavor contractions will be sup-
action atO(a), one can treat th&\V's that enter the chiral Pressed. _ _
Lagrangian at’)(a) as being proportionai to a Single param_ The Same ana|ySIS hO|dS fOI’ the CO|OI‘ structure. The dlf'
etercgy. If the a dependence of this parameter is numeri-ference is that now we have 'already exhauste'd _the freedom
cally known, one has control over all taedependence in the 0 reshuffle an_d r_elabel the fields—they are dlstlngwshable
chiral Lagrangian at)(a), pushing the unknowsm depen- by the|_r fIav_or indices—and so there are two genuinely dif-
dence to O(a?). This is “automatically” done in ferentinvariant operators:
O(a)-improved lattice simulations. L L

All the qualifications of the previous paragraphs notwith- Yatha oy, and by Ppths. (A4)
standing, chiral perturbation theory for lattice actions pro-
vides a better understanding of the relation between lattic@ye find it convenient to “untwist” the color indices in the
observables and their continuum counterparts. It is encouisecond term using the Fierz rule
aging that at?(a?) only a few new low-energy constants are
needed. ThuyPT is still predictive at this order and it is 1
likely to play an important role in the extraction of quantita- Sacdba=p Sabdeat 2t50tey, (A5)
tive predictions of QCD from numerical simulations. c

iyigigia= Oiyi,Oigi,  @NA Ciiii = 6,61, (A2)

Zi(l)l;bi(Z) %(3%!/](4) and Zi(l)lpi@) %(3)(%2). (A3)

where thet® are the generators of the color group in the
ACKNOWLEDGMENTS fundamental representation. The possible terms can now be
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FG03-96ER40956/A006, and No. DE-FG02-91ER40676. i gy, and Yty Yt (AB)
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where the contraction of color indices is straightforward andvor group, one can also eliminate the crossed Kronecker del-
can also be suppressgd. tas at the price of introducing terms with flavor group gen-
Finally, we take into account the Dirac structure. To main-gratorsa'. The final set of invariants gl t2y T At2y and
tain the hypercubic symmetry and parity invariance, the a.api 1A a i
. TYPEL T 0 ST ARB T M2 B .
space-time indices must be contracted in pairs gnchatri-
ces must appear in pai.rs. One set of invariant terms can be APPENDIX B: REDUNDANCY OF SPURIONS
obtained by adding a Dirac structure to the terms in(&6)
in the following way: We note the following fact: IfA and B are two spurions,
. . . . which are of the same order in then(a) power counting,
YDAy YAy and ¢T3y ¢T3y, (A7) transform in the same manner, and have a similar “original”
. structure,Bo=kA, wherek carries no indices, then one can
where ¢I'”y can be a scalar, pseudoscalar, vectoruse only one of them to construct the chiral action. The rea-
pseudovector, or a tensor, with denoting the appropriate son is the following. Iff(A) is an operator in the chiral
space-time indices. In addition, as in the cases of color antagrangian, which containg, thenf(B) is also an allowed
flavor, it is also possible to have the Dirac matrices connecterm because of the assumption that both spurions transform
the first and fourth fields, and the second and the third. Thesi@ the same way. Since the spurions transform linearly, the
operators, however, are linearly dependent on the previou®lation between the constarAg andB, also holds for the
terms, because of the identity spurions. Assuming a power expansion in the spurions, this
leads tof(B)=k"f(A). Recalling that each operator in the
FAﬁI‘B :2 KAB[C D chiraI'Lagrangian appears with an unknown coefficient, we
adt B & CDT Bt oy have in the Lagrangian

1 T K. f(A)+Kyf(B)=(K{+KykMf(A). (B1)
Keo= 1—6Tr[F Ut £ (A8) Since neitheiK; nor K, are known(and in most cases nei-
ther isk), this is equivalent to considering only a single term
This identity holds for any pair of Clifford algebra elements in the LagrangianKf(A), which we would have written
and not only for the casA=B in which we are interested. anyway if we had considered only the first spurion.

This completes the derivation of the list of four-quark  Example:At O(a) the Symanzik Lagrangian contains the
operators in Eq(9). There are several equivalent sets ofterms
operators. A different path leads to the list of operators that _ o
appear in Ref[13]: starting with the color structure, one ac,$ D, D yrtacyio,,F, ir. (B2)

considers the invariants of EGA3), but with color indices

instead of the flavor ones. Fierz rules can be used to replace® Make these terms invariant one can introduce two spuri-

the identity matrices with color generators that are eithe®"SA andB, which are flavor matrices that transform As

+ T i
“straight” (connecting the first and second fields, and the LAR', B—LBR'. Both are(a), qnd their constant yal—
I, Bo=ac,l (herel is the flavor identity

third and fourth or “crossed.” As was done above with re- U€S @réAg=ac;

spect to flavor, it is possible to choose a convention in whicHnatriX). With these spurions it is possible to construct the
all the color generators are straightorder the fields Thus  following invariant terms in the chiral Lagrangigat O(a)]:

t_he only invari_ant ISyt ytdy. Once that conventi_on is K (ASTY+K,(BZT) (B3)
fixed, one again faces the possibility of crossed Dirac and ) ) ]

flavor indices. The Dirac matrices are straightened in thdut after setting the spurions to their constant values we ob-
same manner as above. Finally, using Fierz rules for the flafain only a single term

Kiac (ST +Koac,(STh=akK' (3T, (B4)
8In fact, the color structure is completely inconsequential in thewhich we would have writing down even if we had kept only
construction of the chiral Lagrangian. A in the analysis.
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