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Chiral perturbation theory at O„a2
… for lattice QCD
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We construct chiral effective Lagrangian for two lattice theories: one with Wilson fermions and the other
with Wilson sea fermions and Ginsparg-Wilson valence fermions. For each of these theories we construct the
Symanzik action throughO(a2). The chiral Lagrangian is then derived, including terms ofO(a2), which have
not been calculated before. We find that there are only few new terms at this order. Corrections to existing
coefficients in the continuum chiral Lagrangian are proportional toa2 and appear in the Lagrangian atO(a2p2)
or higher. Similarly,O~4! symmetry-breaking terms enter the Symanzik action atO(a2), but contribute to the
chiral Lagrangian atO(a2p4) or higher. We calculate the light meson masses in chiral perturbation theory for
both lattice theories. At next-to-leading order, we find that there are noO(a2) corrections to the valence-
valence meson mass in the mixed theory due to the enhanced chiral symmetry of the valence sector.
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I. INTRODUCTION

Chiral perturbation theory (xPT) @1,2# plays an important
role in the analysis of current lattice QCD data. Simulatio
with the quark masses as light as realized in nature are
feasible on present-day computers. Instead one simu
with heavier quark masses and performs a chiral extrap
tion to the physical quark masses using the analytic pre
tions of xPT. To perform the chiral extrapolation one mu
first take the continuum limit of the lattice data, sincexPT
describes continuum QCD and is not valid for nonzero latt
spacing. However, it is common practice not to perform
continuum extrapolation and nevertheless fit the lattice d
to continuumxPT, assuming that the lattice artifacts a
small.

A strategy to reduce this systematic uncertainty was p
posed in Refs.@3–7# ~a different approach was taken in Ref
@8,9# in the strong coupling limit!. There it was shown how
the discretization effects stemming from a nonzero latt
spacing can be included inxPT. The basic idea is that lattic
QCD is, close to the continuum limit, described by Syma
zik’s effective theory, which is QCD with additional highe
dimensional terms@10–14#. The derivation of xPTfrom
QCD can then be extended to this effective theory with
ditional symmetry-breaking parameters. The result is a ch
expansion in which the leading dependence on the lat
spacing is explicit. This idea was numerically examined
Ref. @15# for a theory with two dynamical sea quarks on
coarse lattice using the results of Ref.@7#. The characteristic
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chiral log behavior in the pseudo scalar meson mass
decay constant was observed.

A similar approach was taken in Ref.@16# for analyzing
lattice theories with two types of lattice fermions—Wilso
fermions for the sea quarks and Ginsparg-Wilson fermio
for the valence quarks. The latter can be implemented us
domain wall @17–19#, overlap @20–24#, perfect action
@25,26#, and chirally improved fermions@27,28#. There are
several advantages in using different lattice fermions in
merical simulations. Since massless Ginsparg-Wilson fer
ons exhibit an exact chiral symmetry even at nonzero lat
spacing@29#, it is possible to simulate such valence fermio
with masses much smaller than the valence quark ma
accessible using Wilson fermions@30,31#. This allows a
wider numerical sampling of points in the chiral regime
QCD. In addition, the valence sector exhibits all the bene
stemming from the Ginsparg-Wilson relation@32#, such as
the absence of additive mass renormalization, of oper
mixing among different chiral multiplets, and of lattice art
facts linear in the lattice spacinga @23–26,33,34#.

In this paper we extend the results of both Refs.@7# and
@16# by calculating the chiral Lagrangian including th
O(a2) lattice effects. There are various reasons for do
this. First, the lattice spacings in current unquenched sim
lations are not very small, so that neglecting theO(a2) con-
tributions might not be justified. Second, the use of nonp
turbatively improved Wilson fermions in lattice simulation
is becoming more common. The leading corrections for th
fermions are ofO(a2) and hence need to be computed
order to know how the continuum limit is approached.

At O(a2) many operators enter the Symanzik action a
need to be taken into account for constructing the chiral
grangian. Four-fermion operators appear for the first ti
and operators that explicitly break Euclidean rotational sy
metry are encountered. Nevertheless, the number of new
©2004 The American Physical Society08-1
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erators in the chiral Lagrangian is rather small~three for the
Wilson action and four for the mixed fermion theory!. This is
important in practical applications, since every new opera
comes with an undetermined low-energy constant. Th
constants enter the analytic expressions for physical obs
ables and too many free parameters limit the predictability
the chiral extrapolations.

The paper is organized as follows:xPT for the Wilson
action is discussed in Sec. II, including the partia
quenched case in Sec. II E. The mixed theory with Wils
sea and Ginsparg-Wilson valence quarks is treated in
III. In Sec. IV, we discuss the chiral power counting a
compute the pseudoscalar meson mass including theO(a2)
contributions for both cases. We end with some general c
ments in Sec. V.

II. WILSON ACTION

In this section we formulate the chiral effective theory f
the Wilson lattice action. First, the Wilson action and
symmetries are briefly reviewed, then the local Syman
action throughO(a2) is presented. Based on the symme
properties of the Symanzik action we construct the ch
effective theory. Finally, we consider the extension to
partially quenched case.

A. Lattice action

We consider an infinite hypercubic lattice with lattic
spacinga. The quark and antiquark fields are represented
c andc̄, respectively. Wilson’s fermion action@35# is given
by

SW5a4(
x

c̄~DW1m0!c~x!,

~1!

DW5
1

2
$gm~¹m* 1¹m!2ar¹m* ¹m!%,

wherem0 denotes theNf3Nf bare quark mass matrix andr
the Wilson parameter.¹m* , ¹m are the usual covariant
nearest-neighbor backward and forward difference opera

The Wilson action in Eq.~1! possesses several discre
symmetries—charge conjugation, parity—as well as
SU(Nc) color gauge symmetry. The introduction of a di
crete space-time lattice reduces the rotation symmetry gr
O~4! to the discrete hypercubic group.

Next, we consider the group of chiral flavor transform
tions,

G5SU~Nf !L ^ SU~Nf !R . ~2!

Introducing the usual projection operatorsP65 1
2 (16g5)

the left- and right-handed fermion fields are defined by

cL,R5P7c, c̄L,R5c̄P6 . ~3!

Under a transformationL ^ RPG these chiral component
transform according to
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cL→LcL , c̄L→c̄LL†,
~4!

cR→RcR , c̄R→c̄RR†.

For small quark masses and lattice spacing,G is an approxi-
mate symmetry group of the theory, broken only by the m
and the Wilson terms. If all the quark masses are nonzero
equal the vector subgroup withL5R is a symmetry of the
actionSW .

To complete the definition of the lattice theory one shou
also define a gauge actionSY M . However, the precise choic
of the gauge action is irrelevant for the purpose of our ana
sis, so we leave it unspecified.

B. Symanzik action

The Symanzik action for the Wilson lattice action, up
and includingO(a2), has been calculated first in Ref.@13#.
The analysis toO(a) has been later elaborated on in Re
@14#. We restate these results in a slightly different form. T
explicit breaking of chiral symmetry by the Wilson term
leads to an additive renormalization of the quark mass. T
causes the pion to become massless along a critical linem0
5mc(a);1/a, and a physical quark mass can be defined
the distance from this line,mq5m02mc . The operators in
the Symanzik action are constructed from the quark a
gauge fields and their derivatives and powers ofmq . We list
all terms in the action throughO(a2) that are allowed by the
symmetries, organized in powers ofa ~again, we only focus
on the fermion action!. We use the notation

SS5S01aS11a2S2 . . . ,
~5!

Sk5(
i

ci
(k14)Oi

(k14) ,

whereOi
(n) are local operators of dimensionn and the con-

stantsci
(n) are unknown coefficients.

Some allowed operators in the Symanzik action are
tained by multiplying lower-dimensional operators wi
powers of the quark massmq . For example,a tr(mq)c̄D” c,
ac̄mqD” c and four similar operators atO(a2) contribute to
the wave function renormalization of the quark fields. P
forming a~flavor-dependent! field redefinition one can elimi-
nate these operators while keeping the kinetic term trivia
flavor space. Similarly, the operatorsa tr(mq

2)c̄c,

a tr2(mq)c̄c, a tr(mq)c̄mqc, andac̄mq
2c @and seven more

operators atO(a2)] renormalize the mass matrixmq . These
operators can be effectively accounted for by replacingmq
with the renormalized massm; we do not list them here
explicitly. At O(a2) in the Symanzik action, differences be
tween insertingm and mq are at leastO(a3) and can be
neglected. With these caveats we find the following list
operators~we use the same notation as in Ref.@13#!:
8-2



CHIRAL PERTURBATION THEORY ATO(a2) FOR . . . PHYSICAL REVIEW D 70, 034508 ~2004!
S0 : O1
(4)5c̄D” c, O2

(4)5c̄mc. ~6!

S1 : O1
(5)5c̄DmDmc, O2

(5)5c̄ ismnFmnc. ~7!

S2, bilinears: O1
(6)5c̄D” 3c, O5

(6)5c̄mDmDmc,

O2
(6)5c̄~DmDmD” 1D” DmDm!c, O6

(6)5tr~m! c̄DmDmc,
~8!

O3
(6)5c̄DmD” Dmc, O7

(6)5c̄mismnFmnc,

O4
(6)5c̄gmDmDmDmc, O8

(6)5tr~m! c̄ ismnFmnc.

S2 , four-quark operators: O9
(6)5~ c̄c!2, O14

(6)5~ c̄tac!2,

O10
(6)5~ c̄g5c!2, O15

(6)5~ c̄tag5c!2,

O11
(6)5~ c̄gmc!2, O16

(6)5~ c̄tagmc!2, ~9!

O12
(6)5~ c̄gmg5c!2, O17

(6)5~ c̄tagmg5c!2,

O13
(6)5~ c̄smnc!2, O18

(6)5~ c̄tasmnc!2,
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whereta are theSU(Nc) generators. This list of four-quar
operators is slightly different from the one in Ref.@13#.
Sheikholeslami and Wohlert’s list contains operators w
flavor group generators. However, both lists are equiva
and are related by Fierz identities~see Appendix A!. Our
choice of operators is guided by the fact that for the study
chiral transformation properties, it is more convenient
consider four-quark operators with a trivial flavor structur

In the context of on-shell improvement, equations of m
tion have been used to reduce the number of operator
O(a) in the Symanzik action@13,14#. This involves a redefi-
nition of the effective fields, which are matched to their la
tice counterparts@14#. Only the Pauli termO2

(5) is left at this
order and can be subsequently canceled by adding the c
term to the lattice action with a properly adjusted coefficie
The generalization of the arguments in Ref.@14# to O(a2)
has not been carried out yet. We therefore continue with
formulation of the chiral effective theory without making u
of equations of motion.

We distinguish two types of operators in the Syman
action: those that break chiral symmetry and those that
not. At O(a) all operators break chiral symmetry. AtO(a2)
there are ten symmetry-breaking operators:O5

(6)2O10
(6) ,

O13
(6)2O15

(6) , andO18
(6) . Fermionic operators that do not brea

the chiral symmetry first appear atO(a2). Purely gluonic
operators~which we have not listed above! also belong to the
second type of operators as they are trivially invariant un
chiral transformations. They too enter atO(a2).

The operatorO4
(6) deserves special attention. While r

specting the chiral symmetries it is not invariant under O~4!
rotations. This means that it does affect the structure of
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chiral Lagrangian by inducing O~4! symmetry breaking
terms in it. The analysis leading to the Symanzik action
veals that such terms must be at least ofO(a2).

C. Spurion analysis

At O(a0), the Symanzik action is QCD-like. For smalla
andm we assume the lattice theory to exhibit the same sp
taneous symmetry-breaking patternSU(Nf)L ^ SU(Nf)R
→SU(Nf)V as continuum QCD.1 Consequently, the low-
energy physics is dominated by Nambu-Goldstone boso
which acquire small masses due to the soft explicit symme
breaking by the small quark masses and discretization
fects. The low-energy chiral effective field theory is writte
in terms of these light bosons.

To construct the chiral Lagrangian we follow the standa
procedure of spurion analysis. We write a term in the Sym
zik Lagrangian asC0O whereO contains the fields and thei
derivatives andC0 is the remaining constant factor. For sym
metry breaking terms,O changes under a chiral transform
tion of the fermionic fieldsO→O8. We then promoteC0 to
the status of a spurionC, with the transformationC→C8
such thatCO5C8O8. The chiral effective theory is con
structed from the Nambu-Goldstone fields and the spuri
with the requirement that the action is invariant under ch
transformations if the spurions are transformed as well. O
the terms in the chiral Lagrangian are obtained, each spu
is set to its original constant valueC5C0. This procedure
guarantees that the chiral effective theory explicitly brea
chiral symmetry in the same manner as the underlying the

1We assume to be outside of the Aoki phase@36–38#.
8-3
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defined by the Symanzik action and reproduces the s
Ward identities.

It might appear that one needs many spurion fields
accommodate all the symmetry-breaking operators in the
manzik action. However, this is not the case. Two spurio
that transform in the same way will lead to the same term
the chiral Lagrangian; therefore, it is enough to consider o
one of them. This is discussed in Appendix B. Since
organize the chiral perturbation theory as an expansion im
anda, we do distinguish between spurions that transform
same way but have differentm or a dependence.

In the following we list the representative spurion
Shown are the transformation rules for the different spuri
under chiral transformations and the constant values
which the spurions are assigned in the end.

O~a0!: M→LMR†, M†→RM†L†,
~10!

M05M0
†5m5diag~m1 , . . . ,mNf

!.

This makes the mass termc̄LMcR1c̄RM†cL invariant un-
der the chiral transformations of Eq.~4!.

O~a!: A→LAR†, A†→RA†L†,
~11!

A05A0
†5aI,

whereI is the flavor identity matrix. The spurionA renders
the operatorsO1

(5) andO2
(5) in Eq. ~7! invariant.

O~a2!: B[B1^ B2→LB1R†
^ LB2R†,

B†[B1
†

^ B2
†→RB1

†L†
^ RB2

†L†,

C[C1^ C2→RC1L†
^ LC2R†, ~12!

C†[C1
†

^ C2
†→LC1

†R†
^ RC2

†L†,

B05B0
†5C05C0

†5a2I ^ I .

These spurions are introduced to make the symme
breaking four-quark operators invariant and therefore ca
four flavor indices~see Ref.@39# and references therein!.
Consider, for example, the operator

~ c̄c!~c̄c!5~ c̄LcR!~ c̄LcR!1~ c̄RcL!~ c̄LcR!

1~ c̄RcL!~ c̄RcL!1~ c̄LcR!~ c̄RcL!. ~13!

The first term on the right-hand side can be made invar
with the spurionB as can be seen from

Bc̄LcRc̄LcR5Bi jkl ~ c̄L! i~cR! j~ c̄L!k~cR! l

5c̄LB1cRc̄LB2cR . ~14!

Similarly, all the other symmetry-breaking four-quark ope
tors can be made invariant using the spurionsB, C, and their
Hermitian conjugates.

No additional spurion fields need to be introduced
make the symmetry-breaking bilinears atO(a2) invariant.
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The combinationsAA†M and tr(AM†)A already transform
in the right way to makeO5

(6)2O8
(6) invariant, and their con-

stant values have the right powers ina and m. Another
source of potentially new spurions atO(a2) are squares of
O(a) spurions. However, note thatA2, A†A, (A†)2, and
AA† transform exactly likeB, C, B†, andC†, respectively,
and therefore need not be treated separately.

D. Chiral Lagrangian

The chiral Lagrangian is expanded in powers ofp2, m,
anda. Generalizing the standard chiral power counting,
leading-order Lagrangian contains the terms ofO(p2,m,a),
while the terms ofO(p4,p2m,p2a,m2,ma,a2) are of next-
to-leading order. In terms of the dimensionless expans
parametersm/Lx andaLx , whereLx'1 GeV is the typical
chiral symmetry-breaking scale, this power counting
sumes that the size of the chiral symmetry breaking due
the mass and the discretization effects are of compar
size.2

For the Wilson action, all next-to-leading order term
have already been computed in Ref.@7#, except for the
O(a2) terms. We are now in the position to calculate the
contributions, which are the ones associated with the sp
ons B and C. We find the following three new terms~and
their Hermitian conjugates!

^B1S†&^B2S†&→a2^S†&2, ~15!

^B1S†B2S†&→a2^S†S†&, ~16!

^C1S&^C2S†&→a2^S&^S†&. ~17!

Here S5exp(2iP/f), with P being the matrix of Nambu-
Goldstone fields.S transforms under the chiral transform
tions in Eq.~4! asS→LSR†. The angled brackets are trace
over flavor indices, and the arrows indicate assigningB
5B0 , C5C0, according to Eq.~12!.

So far we only considered the operators in the Syman
action that explicitly break chiral symmetry. Operators th
do not break chiral symmetry also contribute atO(a2).
These operators do not add any new terms to the chiral
grangian, but simply modify the coefficients in front of a
ready existing operators. At leading order, for example,
kinetic term is f 2/4^]mS]mS†&. There are corrections tof 2

due to the symmetry-conserving terms in the Symanzik
tion: f 2→ f 21a2K (K is another unknown low-energy con
stant.! This leads to the correctiona2K^]mS]Sm

† & for the
kinetic term. Thus given a term ofO(p2) there is another
term of O(a2p2). In general, we can rewrite the coefficie
of any allowed operator in the chiral Lagrangian to obtain
new allowed operator which isO(a2) higher. These terms
are beyond next-to-leading order and are not included in
present work.

2A more detailed discussion of the power-counting scheme
given in Sec. IV.
8-4



to
te
ou
pr
t

r
m

of

s.
g-

CHIRAL PERTURBATION THEORY ATO(a2) FOR . . . PHYSICAL REVIEW D 70, 034508 ~2004!
As already mentioned, the operatorO4
(6) breaks the O~4!

symmetry in the Symanzik action. However, in order
break the O~4! symmetry, while still preserving the discre
hypercubic symmetry, an operator must carry at least f
space-time indices. In the chiral Lagrangian, these are
vided by the partial derivative]m , hence the operator is a
least of O(p4). Adding the fact that it is also anO(a2)
effect, we see that the leading O~4! symmetry-breaking terms
in the chiral Lagrangian are ofO(p4a2) ~an example is the
operator a2(m^]m]mS]m]mS†&). Hence, up to the orde
considered here, O~4! breaking terms can be excluded fro
the analysis.
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Finally we can write down the terms ofO(a2) which
enter the next-to-leading order chiral Lagrangian. In terms
the two parameters

m̂[2B0m52B0diag~m1 , . . . ,mNf
!, â[2W0a,

~18!

which have been introduced in Ref.@16#,3 these terms are

L@a2#52â2W68^S
†1S&22â2W78^S

†2S&2

2â2W88^S
†S†1SS&. ~19!

The coefficientsWi8 are new unknown low-energy constant
Putting it all together, also quoting the terms in the Lagran
ian of O(a) from Ref. @7#,4 we find
Lx5
f 2

4
^]mS]mS†&2

f 2

4
^m̂S†1Sm̂&2â

f 2

4
^S†1S&2L1^]mS]mS†&22L2^]mS]nS†&^]mS]nS†&2L3^~]mS]mS†!2&

1L4^]mS]mS†&^m̂S†1Sm̂&1âW4^]mS]mS†&^S†1S&1L5^]mS]mS†~m̂S†1Sm̂!&1âW5^]mS]mS†~S†1S!&

2L6^m̂S†1Sm̂&22âW6^m̂S†1Sm̂&^S†1S&2L7^m̂S†2Sm̂&22âW7^m̂S†2Sm̂&^S†2S&

2L8^m̂S†m̂S†1Sm̂Sm̂&2âW8^m̂S†S†1SSm̂&1L@a2#1higher order terms. ~20!
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Here, the parametersLi are the usual Gasser-Leutwyler c
efficients of continuumxPT.

E. Partially quenched QCD

Partially quenched QCD is formally represented by
action with sea, valence, and ghost quarks@40#. We collect
the quark fields inC5(cS ,cV), wherecS describes the se
quarks, andcV contains both the anticommuting valen
quarks and commuting ghost fields. The same is done for
antiquark fields. The mass matrix is given bym
5diag(mS ,mV8 ), with mS being theNf3Nf mass matrix for
the sea quarks andmV85diag(mV ,mV) is the 2NV32NV

mass matrix for the valence quarks and valence ghosts.
We consider partially quenched lattice QCD with W

son’s fermion action Eq.~1! for all three types of fields. The
discrete symmetries and the color-gauge symmetry is a
the unquenched case. The group of chiral flavor transfor
tions, however, is different. If all the masses and the Wils
parameterr are set to zero, the action is invariant und
transformations in the graded group5

3Unlike in Ref. @16#, here we defineâ without the factor ofcSW.
The coefficientcSW is not kept explicit as we do not use equatio
of motion, and S1 contains ac1

(5)O1
(5) besides the Pauli term

acSWO2
(5) . Note thatcSW does not refer to the coefficient of th

clover-leaf term of improved lattice actions.
4There are some typos in the Lagrangian@Eq. ~2.10!# in Ref. @7#.

The Lagrangian in Eq.~20! is the correct one.
n

he

in
a-
n
r

GPQ5SU~Nf1NVuNV!L ^ SU~Nf1NVuNV!R . ~21!

Based on the symmetries of the lattice theory the Sym
zik action for partially quenched lattice QCD is obtained
before. The result is easily quoted: One can simply replacc
and c̄ in the Symanzik action for the unquenched theo
with the extended fieldsC andC̄ because the only two- an
four-quark operators that are invariant under the extend
graded flavor group are stillC̄C and its square.

The leading term in the Symanzik action is partia
quenched QCD, for which the construction of the chiral L
grangian~first introduced in Ref.@42#! is essentially the same
as for the unquenched case@41#. This remains true when
higher dimensional operators in the Symanzik action are
cluded, and the analysis of Sec. II D is readily extended
the partially quenched case. In particular, the form of
chiral Lagrangian for partially quenched lattice QCD wi
Wilson fermions isexactlythe same as in Eq.~20!. The dif-
ference is in the definition of the angled brackets, which n
denote supertraces, and the interpretation ofS andm. These
need to be appropriately redefined to reflect the larger fla
content of partially quenchedxPT.

III. MIXED ACTION

In this section we consider a lattice theory with Wilso
sea quarks and Ginsparg-Wilson valence quarks. As be

5See Ref.@41# for a more honest discussion of the symme
group of partially quenched QCD.
8-5
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we first construct Symanzik’s effective action throu
O(a2). We then derive the chiral Lagrangian for this theo

A. Lattice action

The use of different lattice fermions for sea and valen
quarks is a generalization of partially quenched lattice QC
Theoretically it too is formulated by an action with sea a
valence quarks and valence ghosts. However, in additio
allowing different quark masses (mSÞmV), the Dirac opera-
tor in the sea sector is chosen to be different from the one
the valence quarks and ghosts. For this reason we will r
to this type of lattice theory as a ‘‘mixed action’’ theory.

The mixed action theory with Wilson sea quarks a
Ginsparg-Wilson valence quarks is defined in Ref.@16#. We
refer the reader to this reference for details and notat
Here we just quote that the flavor symmetry group of
mixed lattice action is

GM5GSeâ GVal ,

GSea5SU~Nf !L ^ SU~Nf !R ,

GVal5SU~NVuNV!L ^ SU~NVuNV!R . ~22!

The quark mass term in the mixed action breaks bothGSea
andGVal . However, in the massless caseGVal becomes an
exact symmetry@29# while GSea is still broken by the Wilson
term. Because of the different Dirac operators there is
symmetry transformation that mixes the valence and sea
tors, in contrast to the partially quenched case@cf. Eq. ~21!#.
03450
.

e
.

to

or
er

n.
e

o
c-

B. Symanzik action

The Symanzik action for the mixed theory can be deriv
using the results of the previous section. It is convenien
separately discuss three types of terms—those that con
only sea quark fields, those that contain only valence fie
and those that contain both.

For the first type of terms the analogy with the previo
section is evident: the relevant symmetry group isGSea
5G, and the explicit symmetry-breaking structure is t
same. Thus, all bilinear operatorsOi

(n)(c) and four-quark
operatorsOi

(n)(c,c), listed in Sec. II B, appear in Syman
zik’s action, oncec is replaced bycS .6

The construction of the purely valence terms is a
analogous to the one for the Wilson action in Sec. II B. Ho
ever, there are stricter symmetry constraints for Ginspa
Wilson quarks and ghosts because the Ginsparg-Wilson
tion possesses an exact chiral symmetry when the qu
mass is set to zero. All operators without any insertions
the quark mass must therefore be chirally invariant. Furth
operators with insertions of the quark massm must become
chirally invariant whenm is transformed like a spurion field
In particular, all dimension-3 and dimension-5 operators
forbidden. Several dimension-6 operators atO(a2) are also
excluded. Only the bilinearsO1

(6)2O5
(6) , O7

(6) of Eq. ~8! and
the four-quark operatorsOi

(6)(cV ,cV), i 511, 12, 16, and
17, of Eq.~9!, areGVal invariant and are therefore allowed

For terms of the third type, note that the symmetry gro
GM forbids bilinears that mix valence and sea quarks. Th
the only terms containing both sea and valence fields
four-quark operators that are products of two bilinears—o
from each sector. Again, only the four termsOi

(6)(cS ,cV),
i 511, 12, 16, and 17, are allowed. All the others break
chiral symmetry in the valence sector whenmV50.

From these considerations it follows that the Syman
action for the mixed lattice action up to and includingO(a2)
contains the following terms:
ve

with
S0 : Oi
(4)~cS!, Oi

(4)~cV!, i 51,2. ~23!

S1 : Oi
(5)~cS!, i 51,2. ~24!

S2 , bilinears: Oi
(6)~cS!, i 5128,

Oi
(6)~cV!, i 5125,7. ~25!

S2 , four-quark operators:Oi
(6)~cS ,cS!, i 59218,

Oi
(6)~cV ,cV!, Oi

(6)~cS ,cV!, i 511,12,16,17. ~26!

6We make the dependence of bilinear operators on the fields explicit by writingO(c). All the four-quark operators that we consider ha

the structureO(c1 ,c2)5c̄1VJc1c̄2VJc2. HereV denotes any combination of Clifford algebra elements and color group generators
a combined indexJ, which is contracted.
8-6
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C. Spurion analysis

S0, the leading term in the Symanzik action, is just t
continuum action of partially quenched QCD. In them→0
limit it is invariant under the flavor symmetry groupGPQ
inEq. ~21!, which is larger thanGM @Eq. ~22!#, the symmetry
group of the underlying lattice action. For a sufficient
small a ~andm), S0 determines the spontaneous symmet
breaking pattern and the symmetry properties of the Nam
Goldstone particles in the theory. It follows that the mix
theory contains the same set of light particles as parti
quenched QCD.

For the construction of the chiral effective theory, we i
troduce spurion fields that make the entire Symanzik ac
invariant underGPQ . Notice that all the operators propo
tional to a and a2 breakGPQ , the flavor symmetry of the
leading term. This is obvious for operators that appear w
sea quark fields only, such as the dimension 5 opera
However, even if an operator appears ‘‘symmetrically’’ incS
andcV , as in Eq.~25!, it still breaksGPQ . To illustrate this
point let us consider any of the bilinear terms, suppressing
g matrices and color-group generators. Any bilinear tha
invariant under all rotations ofGPQ must have the flavor
structureC̄C5c̄ScS1c̄VcV . In general, though,c̄ScS and
c̄VcV will not appear in the Symanzik action with equ
coefficients, and therefore will not be invariant under tra
formations inGPQ that mix the sea and valence sectors.

As before we begin the construction of the chiral L
grangian by listing the representative spurions required
each order ina to make the Symanzik action invarian
Shown are the transformation properties of the spurions
der chiral transformations inGPQ and the constant structure
to which the spurion fields are assigned in the end. Si
different operators appear in the sea and valence sector,
convenient to introduce the projection operators

PS5diag~ I S,0!, PV5diag~0,I V!, ~27!

whereI S denotes theNf3Nf identity matrix in the sea sec
tor, and I V the 2NV32NV identity matrix in the space o
valence quarks and ghosts~recall thatcV includes both va-
lence quarks and ghosts!.

O~a0!: M→LMR†, M†→RM†L†,

M05M0
†5m5diag~mS ,mV8 !. ~28!

O~a!: A→LAR†, A†→RA†L†,

A05A0
†5aPS . ~29!

The last spurion arises from the sea sector symmetry br
ing terms atO(a).

The quark bilinearsO1
(6)2O4

(6) at O(a2) couple fields
with the same chirality. Since there are bilinears for both
and valence fields we obtain the following spurions:

O~a2!, bilinears: B→LBL†, C→RCR†,

B0 , C0P$a2PS ,a2PV%. ~30!
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No additional spurion fields need to be introduced to ma
the remaining bilinearsO5

(6)2O8
(6) invariant. Appropriate

combinations of the spurion fieldsM andA ~and their com-
plex conjugates! have already the required transformatio
behavior and the correct constant structure.

We can distinguish two types of four-quark operators. T
first type is made of bilinears that only couple fields of t
same chirality. These operators appear with only sea or
lence fields as well as in the ‘‘mixed’’ formO(cS ,cV). The
remaining four-quark operators, which couple fields with o
posite chirality, appear only with sea quarks. We theref
introduce the following spurions:

O~a2!, four-quark operators:

D[D1^ D2→LD1L†
^ LD2L†,

E[E1^ E2→RE1R†
^ RE2R†,

F[F1^ F2→LF1L†
^ RF2R†,

G[G1^ G2→RG1R†
^ LG2L†,

D0 ,E0 ,F0 ,G0P$a2PS^ PS ,a2PS^ PV ,a2PV^ PV%, ~31!

H[H1^ H2→LH1R†
^ LH2R†,

H†[H1
†

^ H2
†→RH1

†L†
^ RH2

†L†,

J[J1^ J2
†→LJ1R†

^ RJ2
†L†,

J†[J1
†

^ J2→RJ1
†L†

^ LJ2R†,

H05H0
†5J05J0

†5a2PS^ PS . ~32!

Squaring the spurions ofO(a) does not lead to any new
spurions.

D. Chiral Lagrangian

The chiral Lagrangian for the mixed action theory inclu
ing the cutoff effects linear ina is derived in Ref.@16#. Terms
of O(a2) are constructed from the spurions in Eqs.~30!–
~32!. It is easily checked that the spurionsB, C, D, andE
lead necessarily to operators higher thanO(a2) @at least
O(p2a2,ma2)], so we can ignore them. From the other sp
rions we obtain the following independent operators~and
their Hermitian conjugates!:

^F1SF2S†&→a2^t3St3S†&, ~33!

^H1S†H2S†&→a2^PSS†PSS†&, ~34!

^H1S†&^H2S†&→a2^PSS†&^PSS†&, ~35!
8-7
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^J1S†&^J2
†S&→a2^PSS†&^PSS&. ~36!

For Eq. ~33! we use the fact thatPS5 1
2 (I 1t3) and PV

5 1
2 (I 2t3), with t35diag(I S ,2I V). When assigningF1,2

5(I 6t3) and expanding, the fieldsS and S† are next to
each other and cancel whenever the identity matrix is
serted, so the only nontrivial operator is the one shown in
~33!.

We conclude that for the mixed action theory with Wilso
sea and Ginsparg-Wilson valence quarks the terms ofO(a2)
in the chiral Lagrangian are
a
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q.

L@a2#52â2WM^t3St3S†&2â2W68^PSS†1SPS&
2

2â2W78^PSS†2SPS&
2

2â2W88^PSS†PSS†1SPSSPS&. ~37!

The parametersm̂ and â are defined as in the unquenche
case in Eq.~18!. Note that the projectorPS in the last three
terms implies that these operators involve only the sea
block of S.

The final result, including the terms from Ref.@16#, reads
Lx5
f 2

4
^]mS]mS†&2

f 2

4
^m̂S†1Sm̂&2â

f 2

4
^PSS†1PSS&2L1^]mS]mS†&22L2^]mS]nS†&^]mS]nS†&

2L3^~]mS]mS†!2&1L4^]mS]mS†&^m̂S†1Sm̂&1âW4^]mS]mS†&^PSS†1SPS&1L5^]mS]mS†~m̂S†1Sm̂!&

1âW5^]mS]mS†~PSS†1SPS!&2L6^m̂S†1Sm̂&22âW6^m̂S†1Sm̂&^PSS†1SPS&2L7^m̂S†2Sm̂&2

2âW7^m̂S†2Sm̂&^PSS†2SPS&2L8^m̂S†m̂S†1Sm̂Sm̂&2âW8^m̂S†PSS†1SPSSm̂&

1L@a2#1higher order terms. ~38!
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The chiral Lagrangian for the mixed action theory
O(a2) has four terms while there are only three terms at t
order in the chiral Lagrangian for the Wilson action. T
reason that the mixed theory has an additional operator~and
consequently an additional unknown low-energy const
multiplying it! is its reduced symmetry group,GM in Eq.
~22!, compared toGPQ in Eq. ~21!. The use of different
Dirac operators for sea and valence quarks forbids trans
mations between the sea and valence sectors and allow
additional term^t3St3S†& in Eq. ~37!.

The presence of more terms in the Lagrangian does
entail that chiral expressions for all observables in the mi
theory depend on more free parameters than inxPT for the
Wilson action. By definition, the correlation functions me
sured in numerical simulations involve operators that
made of valence quarks only, and the enhanced chiral s
metry of the Ginsparg-Wilson fields plays an important ro
in that sector. The chiral symmetry leads to constraints
operators in the Symanzik action that contain valence fie
and ultimately it restricts and simplifies the form of chir
expressions for valence quark observables. This can alre
be seen by considering the terms inL@a2# with coefficients
W68 , W78 , andW88 @see Eq.~37!#. These terms depend onl
on the sea-sea block ofS. This entails that all the multi-pion
interaction vertices obtained from these terms necess
contain some mesons with at least a single sea quark in th
Consequently, these terms cannot contribute at tree lev
any expectation value of operators made entirely out of
lence fields. This is easily understood: theW8 terms arise
from the breaking of chiral symmetry in the sea sector by
Wilson term, and this breaking is communicated to the
lence sector only through loop effects. A more concrete de
t
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onstration of this point is provided by the calculation of t
pseudo scalar valence-valence meson mass in the next
tion.

IV. APPLICATION

We conclude our analysis of the chiral effective theor
for the Wilson action and the mixed action theory with
explicit calculation of the light meson masses. Before p
senting the calculations, however, a discussion of the ch
power counting is appropriate.

A. Power counting

xPT reproduces low-momentum correlation functions
the underlying theory, provided that the typical momentump
and the mass of the Nambu-Goldstone bosonMNGB are suf-
ficiently small, p!Lx and MNGB!Lx . The standard con-
vention is to considerp and MNGB as formally of the same
order, and take a single expansion parametere;MNGB

2 /Lx
2

;p2/Lx
2 . Thus, a typical next-to-leading order~one-loop!

expression for a correlation function inxPT has the structure

C5CLO1CNLO1•••,

CLO5O~e!5OS MNGB
2

Lx
2

,
p2

Lx
2D ,

CNLO5O~e2!5OS MNGB
4

Lx
4

,
p4

Lx
4

,
MNGB

2 p2

Lx
4 D . ~39!
8-8
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In some cases of interest the momentum scale and
Nambu-Goldstone boson mass are significantly differenp
!MNGB for instance. In such a case one could treat the
dimensionless parameters separately and introduce an
expansion parameterp/MNGB . However, as long as bot
MNGB

2 /Lx
2 and p2/Lx

2 are sufficiently small, Eq.~39! still
holds. Consequently, a reasonable approach in the case tp
andMNGB are very different is to take Eq.~39! and to ignore
~or not calculate! terms that are smaller than the error as
ciated with the larger expansion parameter.

In the case ofxPT for lattice theories there are two po
sible sources of explicit chiral symmetry breaking: the qu
masses and the lattice spacing. Consequently, the mass o
pseudo-Nambu-Goldstone boson is given byMNGB

2 /Lx
2

;m/Lx1aLx . The discussion of the previous paragra
applies here as well: we can take«;p2/Lx

2;m/Lx;aLx

and Eq.~39! ~properly extended! still holds. As long as the
largest of these parameters is sufficiently small, this is a c
sistent power-counting scheme, and Eq.~39! is applicable
even when some of the dimensionless parameters are sig
cantly smaller than the others. This is the power-count
that is used in organizing the terms in the Lagrangians
Eqs.~20! and ~38!.

A different power-counting scheme does need to be e
ployed in some cases. To illustrate this we consider a real
example: for some fermion actions there are no discretiza
effects atO(a). This is the case, for example, for nonpertu
batively O(a) improved Wilson fermions. If, in addition
the lattice spacing in a simulation is large such th
a2Lx

2;m/Lx , an expansion in two parameters may
required, and the leading-order contributions a
O(p2/Lx

2 ,m/Lx ,a2Lx
2).

B. Pseudoscalar-meson masses

We now turn to the calculation of the pseudoscalar-me
masses. As in Refs.@7# and @16#, we only consider meson
with different valence flavor indices (AÞB). In addition, we
also take the sea quark masses and the valence quark m
to be separately degenerate. For the partially quenched
son action we find

MAB
2 5~m̂Val1â!1

1

16Nf f
2p2

~m̂Val1â!@m̂Val2m̂Sea

1~2m̂Val2m̂Sea1â!ln~m̂Val1â!#2
8

f 2
~m̂Val1â!

3@Nf~L4m̂Sea1W4â!1L5m̂Val1W5â#

1
8Nf

f 2
@2L6m̂Valm̂Sea1W6~m̂Val1m̂Sea!â12W68â

2#

1
16

f 2
@L8m̂Val

2 1W8m̂Valâ1W88â
2#1O~e3!, ~40!

whereNf is the number of sea quark flavors.
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Next, we consider the mixed action theory. A direct c
culation shows thatthere are noO(a2) corrections to the
pseudoscalar-meson mass. The expression forMAB is, there-
fore, the same as in Ref.@16#, which we quote here for
completeness:7

MAB
2 5m̂Val1

1

16Nf f
2p2

m̂Val@m̂Val2m̂Sea

2â1~2m̂Val2m̂Sea2â!ln~m̂Val!#

2
8

f 2
m̂Val@~L522L8!m̂Val

1Nf~L422L6!m̂Sea1Nf~W42W6!â#1O~e3!.

~41!

The fact that there are noO(a2) contributions at next-to-
leading order is not as surprising as one might think at fi
Only the valence quark mass term breaks the chiral sym
try for Ginsparg-Wilson fermions. Hence the pseudosca
meson mass is proportional to the quark mass and vani
in the limit mVal→0. It follows that any lattice contribution
to MAB

2 is suppressed by at least one factor ofmVal , and the
largest lattice correction quadratic in the lattice spacing is
O(mVala

2). Note that this higher order term becomes t
leading discretization effect in the meson mass if anO(a)
improved Wilson action is used for the sea quarks. This
ample illustrates the beneficial properties of Ginsparg-Wils
fermions, which are preserved even in the presence o
‘‘non-Ginsparg-Wilson’’ sea sector.

V. SUMMARY

In the previous sections we presented chiral Lagrang
for two lattice theories: one with Wilson fermions and th
other with Wilson sea fermions and Ginsparg-Wilson valen
fermions. One consequence of the analysis is that correct
to the low-energy constants of continuumxPT ~coming from
symmetry-conserving discretization effects! are of O(a2).
Since the coefficients in the chiral Lagrangian themsel
multiply terms of O(p2) (B0 and f ) and O(p4) ~Gasser-
Leutwyler coefficients!, such effects can only be detected b
measuring observables at the accuracy ofO(a2p2) and
O(a2p4), respectively. Another important discretization e
fect that enters the Symanzik action atO(a2) is the breaking
of O~4! rotational invariance. An O~4! breaking term in the
chiral Lagrangian, however, must contain at least four
rivatives, so it is a higher-order term as well@at least
O(a2p4)].

The main purpose of constructing chiral effective theor
for lattice actions is to capture discretization effects anal
cally and to guide the chiral extrapolations of numerical l
tice data. This is achieved by the explicita dependence of
observables that can be calculated in these effective theo

7In Ref. @16# the number of flavorsNf was set to 3.
8-9
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In particular, the chiral Lagrangian is sufficient for the det
mination of the pseudoscalar-meson masses. For the cal
tion of matrix elements, such asf p , an additionala depen-
dence coming from the effective continuum operators ne
to be taken into account, but no conceptual difficulties
expected to arise in this step.

There is a more subtle cutoff dependence that is not
plicit in the Symanzik action. All the unknown coefficients
the Symanzik action, includingcSW, implicitly include
short-distance effects that make thema dependent. For the
chiral Lagrangian this results in an implicita dependence o
the low-energy constants@7#. The existence of a well-define
continuum limit implies that all the parameters of continuu
xPT, such as the Gasser-Leutwyler coefficients, have a l
ing a-independent part. The other coefficients in the L
grangian, loosely referred to as theW’s, are expected to
show a weak, logarithmica dependence.

From a practical point of view there are several ways
approach this issue. One option is not to varya. For a given
lattice spacinga, one fits the chiral forms by only varying th
quark masses. Note that even ifa is not varied, the inclusion
of the discretization effects in the chiral expressions, parti
larly in the chiral logarithms, is more accurate than simp
using the continuum expressions. From the fits, one extr
values for the coefficients in the Lagrangian, including t
W’s. Applying this procedure again, independently and
lattice data with different lattice spacings, these parame
are allowed to vary witha. It should be verified that the
values obtained in this way for the continuum low-ener
constants do not exhibit ana dependence beyond the err
expected at the order of the calculation. It might be the c
that thea dependence of theW’s is so slow that they do no
change much over the range of lattice spacings simulated
that case a simultaneous fit ina andm might be appropriate
More generally, a simultaneous fit can be used when tha
dependence of theW’s is known. In particular, provided tha
the equations of motion can be consistently applied thro
O(a2) to eliminate all but the Pauli term in the Symanz
action atO(a), one can treat theW’s that enter the chira
Lagrangian atO(a) as being proportional to a single param
eter cSW. If the a dependence of this parameter is nume
cally known, one has control over all thea dependence in the
chiral Lagrangian atO(a), pushing the unknowna depen-
dence to O(a2). This is ‘‘automatically’’ done in
O(a)-improved lattice simulations.

All the qualifications of the previous paragraphs notwi
standing, chiral perturbation theory for lattice actions p
vides a better understanding of the relation between lat
observables and their continuum counterparts. It is enc
aging that atO(a2) only a few new low-energy constants a
needed. ThusxPT is still predictive at this order and it i
likely to play an important role in the extraction of quantit
tive predictions of QCD from numerical simulations.
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APPENDIX A: FLAVOR, COLOR, AND DIRAC
STRUCTURE OF FOUR-QUARK OPERATORS

IN THE SYMANZIK ACTION

In this section we discuss four-quark operators in the
manzik action that are invariant under the vector flavor sy
metry groupSU(Nf)V , the color-gauge groupSU(Nc), the
hypercubic transformations, parity, and charge conjugatio

It is convenient to label the quark field
c̄ (1), c (2), c̄ (3), c (4). Considering first the flavor group, w
write the most general term~summation over repeated ind
ces is assumed!

Ci 1i 2i 3i 4
c̄ i 1

(1)c i 2
(2)c̄ i 3

(3)c i 4
(4) . ~A1!

There are only two possibilities forC ~up to a multiplicative
constant!, which make this term invariant:

Ci 1i 2i 3i 4
5d i 1i 2

d i 3i 4
, and Ci 1i 2i 3i 4

5d i 1i 4
d i 3i 2

. ~A2!

These correspond~up to a sign from the interchange of th
Grassman fields! to

c̄ i
(1)c i

(2) c̄ j
(3)c j

(4) and c̄ i
(1)c i

(4) c̄ j
(3)c j

(2) . ~A3!

At this point we are free to redefine the labels on the qu
fields in the second term by exchanging the second
fourth indices. In this way we only need to consider the fi
invariant in the last equation. From this point on, the order
the fields will remain fixed, so the labels of the fields can
dropped, and the trivial flavor contractions will be su
pressed.

The same analysis holds for the color structure. The
ference is that now we have already exhausted the free
to reshuffle and relabel the fields—they are distinguisha
by their flavor indices—and so there are two genuinely d
ferent invariant operators:

c̄aca c̄bcb , and c̄acb c̄bca . ~A4!

We find it convenient to ‘‘untwist’’ the color indices in the
second term using the Fierz rule

dacdbd5
1

Nc
dabdcd12tab

e tcd
e , ~A5!

where thete are the generators of the color group in t
fundamental representation. The possible terms can now
written as

c̄c c̄c, and c̄tac c̄tac, ~A6!
8-10
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where the contraction of color indices is straightforward a
can also be suppressed.8

Finally, we take into account the Dirac structure. To ma
tain the hypercubic symmetry and parity invariance,
space-time indices must be contracted in pairs andg5 matri-
ces must appear in pairs. One set of invariant terms ca
obtained by adding a Dirac structure to the terms in Eq.~A6!
in the following way:

c̄GAc c̄GAc and c̄GAtac c̄GAtac, ~A7!

where c̄GAc can be a scalar, pseudoscalar, vec
pseudovector, or a tensor, withA denoting the appropriate
space-time indices. In addition, as in the cases of color
flavor, it is also possible to have the Dirac matrices conn
the first and fourth fields, and the second and the third. Th
operators, however, are linearly dependent on the prev
terms, because of the identity

Gad
A Ggb

B 5(
C,D

KCD
ABGab

C Ggd
D ,

KCD
AB5

1

16
Tr@GAGDGBGC#. ~A8!

This identity holds for any pair of Clifford algebra elemen
and not only for the caseA5B in which we are interested.

This completes the derivation of the list of four-qua
operators in Eq.~9!. There are several equivalent sets
operators. A different path leads to the list of operators t
appear in Ref.@13#: starting with the color structure, on
considers the invariants of Eq.~A3!, but with color indices
instead of the flavor ones. Fierz rules can be used to rep
the identity matrices with color generators that are eit
‘‘straight’’ ~connecting the first and second fields, and
third and fourth! or ‘‘crossed.’’ As was done above with re
spect to flavor, it is possible to choose a convention in wh
all the color generators are straight~reorder the fields!. Thus
the only invariant isc̄tacc̄tac. Once that convention is
fixed, one again faces the possibility of crossed Dirac a
flavor indices. The Dirac matrices are straightened in
same manner as above. Finally, using Fierz rules for the

8In fact, the color structure is completely inconsequential in
construction of the chiral Lagrangian.
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vor group, one can also eliminate the crossed Kronecker
tas at the price of introducing terms with flavor group ge
eratorsb i . The final set of invariants isc̄GAtacc̄GAtac and
c̄GAtab icc̄GAtab ic.

APPENDIX B: REDUNDANCY OF SPURIONS

We note the following fact: IfA andB are two spurions,
which are of the same order in the (m,a) power counting,
transform in the same manner, and have a similar ‘‘origin
structure,B05kA0 wherek carries no indices, then one ca
use only one of them to construct the chiral action. The r
son is the following. If f (A) is an operator in the chira
Lagrangian, which containsA, then f (B) is also an allowed
term because of the assumption that both spurions trans
in the same way. Since the spurions transform linearly,
relation between the constantsA0 andB0 also holds for the
spurions. Assuming a power expansion in the spurions,
leads tof (B)5knf (A). Recalling that each operator in th
chiral Lagrangian appears with an unknown coefficient,
have in the Lagrangian

K1f ~A!1K2f ~B!5~K11K2kn! f ~A!. ~B1!

Since neitherK1 nor K2 are known~and in most cases nei
ther isk), this is equivalent to considering only a single ter
in the Lagrangian,K f (A), which we would have written
anyway if we had considered only the first spurion.

Example:At O(a) the Symanzik Lagrangian contains th
terms

ac1c̄LDmDmcR1ac2c̄LismnFmncR . ~B2!

To make these terms invariant one can introduce two sp
ons A andB, which are flavor matrices that transform asA
→LAR†, B→LBR†. Both areO(a), and their constant val-
ues areA05ac1I , B05ac2I ~here I is the flavor identity
matrix!. With these spurions it is possible to construct t
following invariant terms in the chiral Lagrangian@at O(a)]:

K1^AS†&1K2^BS†& ~B3!

but after setting the spurions to their constant values we
tain only a single term

K1ac1^S
†&1K2ac2^S

†&5aK8^S†&, ~B4!

which we would have writing down even if we had kept on
A in the analysis.

e
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