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Nucleon masses and magnetic moments in a finite volume
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We compute finite-size corrections to nucleon masses and magnetic moments in a periodic, spatial box of
sizeL, both in QCD and in partially quenched QCD.
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I. INTRODUCTION

Impressive progress is being achieved in deriving
properties and interactions of hadrons using lattice QCD
several instances, lattice methods are making prediction
hadronic quantities at the several percent level@1#. Despite
remarkable technical advances, current computational lim
tions continue to necessitate the use of quark masses,mq ,
that are significantly larger than the physical values, latt
spacings,a, that are not significantly smaller than the phy
cal scales of interest, and lattice sizes,L, that are not signifi-
cantly larger than the pion Compton wavelength@2#. There-
fore, lattice QCD simulations of hadronic physics requ
extrapolations in the quark masses, lattice spacing and la
size, and ultimately it is confidence in these extrapolatio
that will allow a confrontation between lattice QCD and e
periment. Fortunately, in many cases, the dependence of
ronic physics on these parameters can be calculated an
cally in the low-energy effective field theory~EFT!.
Calculability requires maintaining the hierarchy of ma
scales,

upW u,mp!Lx!a21, ~1!

where upW u is a typical momentum in the system of intere
mp is the pion mass andLx;2A2p f is the scale of chiral
symmetry breaking (f 5132 MeV is the pion decay con
stant!. In a spatial box of sizeL, momenta are quantized suc
that pW 52pnW /L with nW PZ. The hierarchy of Eq.~1! then
requires maintenance of the additional inequalityf L@1.
This bound ensures that~non-pionic! hadronic physics lives
inside the box. In addition, the bound (mpL)2( f L)2@1 en-
sures that the box size has no effect on spontaneous c
symmetry breaking@3,4#. These two bounds, taken togethe
then imply that we must havempL*1. When
(mpL)2( f L)2&1, and thereforempL!1, momentum zero
modes must be treated nonperturbatively@3,4# and one is in
the so-callede regime.

Here we will consider the range of pion masse
139 MeV,mp,300 MeV, and therefore we will takeL
*2 fm, keeping in mind that the EFT may be reaching t
limits of its validity when this bound onL is saturated, par-
ticularly when the pions are light. For the observables c
sidered here, finite-volume effects tend to be small forL
.4 fm. It is therefore of interest to have control over t
finite-size dependence of hadronic observables in the ra
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2 fm,L<4 fm. Chiral perturbation theory (xPT), which
provides a systematic description of low-energy QCD n
the chiral limit, is the appropriate EFT to exploit the hiera
chy of Eq. ~1! and to describe the dependence of hadro
observables onL @3,5–7#. Recent work has investigated th
finite-volume dependence in the meson@8–16# sector and in
the baryon@17–21# sector. In this paper we compute th
leading finite-volume dependence of the nucleon masses
magnetic moments in baryonxPT, including theD as an
explicit degree of freedom.1 The finite-size dependence o
the nucleon mass was first studied in Ref.@7#, and has re-
cently been computed toO(mp

4 ) in baryon xPT ~without
including theD as an explicit degree of freedom! in Ref.
@20#. ~Some discussion of the effects of theD on the finite-
size dependence of the nucleon mass appears in Ref.@17#.!

We also give expressions for the finite-size dependenc
the nucleon masses and magnetic moments in part
quenched QCD~PQQCD!, including strong isospin break
ing. The cost of simulating dynamical quarks with lig
masses suggests varying the sea and valence quark m
separately in the lattice QCD partition function, a procedu
known as partial quenching. This procedure has import
advantages beyond issues of cost; by increasing the dim
sionality of the parameter space that is explored, lattice Q
simulations can provide additional ‘‘data,’’ which can signifi
cantly improve the quality of extrapolations.xPT has been
extended to describe both quenched QCD@10,24–27# with
quenched chiral perturbation theory (QxPT) and PQQCD
@12,28–31# with partially quenched chiral perturbatio
theory (PQxPT). Recently, meson and baryon propert
have been studied extensively in both QxPT @26,27# and
PQxPT @32–36#. The effective field theory describing th
low-energy dynamics of two-nucleon systems and nucle
hyperon systems in PQQCD has also been explored@37–39#.

This paper is organized as follows: In Sec. II, the lead
finite-size corrections to the nucleon masses are compu
The same is done for the nucleon magnetic moments in S
III. We conclude in Sec. IV. Mathematical details and t
partially quenched extensions of the QCD results~including
strong isospin breaking! are left to the Appendixes.

1Recent work@22,23# has suggested that for certain observables
rearrangement of the chiral expansion may improve converge
We do not utilize these modified chiral expansions in this pape
©2004 The American Physical Society07-1
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II. THE NUCLEON MASSES

A. The infinite-volume limit

For purposes of setting notation, we will begin by revie
ing the derivation of leading terms in the chiral expansion
the nucleon mass. The relevant leading baryon mass op
tors in two-flavorxPT are

L5 iN̄v•DN12aMN̄M1N12sMN̄N tr@M1#

2 i T̄mv•DTm1DT̄mTm , ~2!

where the chirally invariant mass operator isM1

5 1
2 (j†mqj†1jmqj), with mq5diag(mu ,md), and j

5exp(ipata /f) is the usual two-flavor Goldstone matrix. Th
relevant leading axial operators are

L52gAN̄SmAmN1gDN@ T̄abc,nAa,n
d Nbecd1H.c.#. ~3!

The mass of thei th nucleon has a chiral expansion of th
form

Mi5M0~m!2Mi
(1)~m!2Mi

(3/2)~m!1 . . . , ~4!

where a termMi
(a) denotes a contribution of ordermq

a , and
i 5p,n. The nucleon mass is dominated by a term in thexPT
Lagrangian,M0, that is independent ofmq . Here D, the
D-nucleon mass splitting, is assumed to be of the same c
order as the pion mass@40,41#. Each of the contributions in
Eq. ~4! depends upon the scale chosen to renormalize
theory. While toO(mq), the objectsM0 andMi

(1) are scale
independent, at one-loop level,O(mq

3/2), they are scale de
pendent. The leading dependence uponmq , occurring at
O(mq), is due to the operators in Eq.~2! with coefficients
aM andsM . The leading non-analytic dependence uponmq
arises from the one-loop diagrams shown in Fig. 1.

In isospin-symmetric QCD,2 with mu ,md→m̄, one finds
the nucleon mass at one-loop order in the chiral expan
@42#,

MN5M0~m!22m̄~aM12sM !~m!2
1

8p f 2 F3

2
gA

2mp
3

1
4gDN

2

3p
F~mp ,D,m!G , ~5!

2The nucleon masses, including strong isospin breaking, ma
obtained by taking the QCD limit of the partially quenched expr
sions given in Ref.@33#.

FIG. 1. One-loop graphs that give contributions of the fo
;mq

3/2 to the masses of the proton and neutron. A solid, thick so
or dashed line denotes a nucleon,D resonance, or meson, respe
tively. The solid squares denote an axial coupling.
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where

F~m,D,m!5~m22D2!FAD22m2 logS D2AD22m21 i e

D1AD22m21 i e
D

2D logS m2

m2D G2
1

2
Dm2logS m2

m2D , ~6!

and D is the D-nucleon mass splitting. Here we have us
dimensional regularization~dim reg! with the modified mini-
mal subtractionMS scheme to define the divergent loop i
tegrals andM0(m) andM (1)(m).

B. Finite-size corrections

In the infinite-volume limit, the nucleon mass may b
written as

MN5M0~R!22m̄~aM12sM !~R!2 i
9gA

2

2 f 2
IR~`,0!

2 i
4gDN

2

f 2
IR~`,D!, ~7!

where

IR~`,D!52
1

3ER

d4k

~2p!4

kW2

~k02D2 i e!~k0
22kW22mp

2 1 i e!
.

~8!

Here R denotes the choice of ultraviolet regulator and
renormalization scheme.3

In a spatial box of sizeL, IR generalizes to

IR~L,D!5 i
1

3 S 1

L3 (
kW

R E dk4

~2p!

kW2

~ ik42D!~k4
21kW21mp

2 !
D ,

~9!

where we have rotated the integral to Euclidean space
accounted for the quantization of the momentum levels
to the periodic boundary conditions. Feynman paramete
ing and explicitly evaluating thek4 integration lead to

IR~L,D!52 i
1

6E0

`

dlS 1

L3 (
kW

R
kW2

@kW21bD
2 #3/2D , ~10!

wherebD
2 [l212lD1mp

2 . We can now write the finite-size
corrections toIR as

be
-

3In dim reg withMS,

IMS~`,D!52 i
1

24p2 F~mp ,D,m!,

where F(mp,0,m)5pmp
3 , which recovers the results o

Eq. ~5!.

,
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FIG. 2. Left panel: The ratio of the asymptotic formula, Eq.~17!, to the exact formula, Eq.~16!, as a function ofL for various values of
mp . The solid, dashed and dotted lines correspond tomp5100, 200, and 300 MeV, respectively. Right panel: The ratio of the nucleon m
size dependence to the~infinite volume! nucleon mass vsL. The solid and dashed lines correspond to QCD withmp5139 and 300 MeV,
respectively. The dotted line corresponds to PQQCD withmp5139 MeV andmp

s 5300 MeV.
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dLI~D![IR~L,D!2IR~`,D!

52
i

6E0

`

dlFdLS 1

@kW21bD
2 #1/2D

2bD
2 dLS 1

@kW21bD
2 #3/2D G , ~11!

wheredL„f (ukW u)… is defined in Eq.~A1! of Appendix A. No-
tice thatdLI(D) is a purely infrared quantity and, as such,
independent ofR.4 Using Eqs.~7! and ~11!, the finite-size
corrections to the nucleon mass may then be expressed

dLMN[MN~L !2MN~`!

52 i
9gA

2

2 f 2
dLI~0!2 i

4gDN
2

f 2
dLI~D!. ~12!

Using the ‘‘master’’ formula, Eq.~A6!, derived in Appendix
A, we find

dLI~D!52
i

12p2K~D!, ~13!

where

K~D![E
0

`

dlbD (
nW Þ0

@~LunW u!21K1~LbDunW u!

2bDK0~LbDunW u!#. ~14!

4This implies that finite-volume effects should be independen
the lattice spacinga, which appears implicitly as the ultraviole
cutoff p/a in all sums and integrals.
03450
s

HereKn(z) is a modified Bessel function of the second kin
With D50 the integral overl can be carried out explicitly
~see Appendix A! and one has

K~0!52
p

2
mp

2 (
nW Þ0

~LunW u!21exp~2LunW ump!. ~15!

Notice that this function contains no power-law correction
Finally, we have

dLMN52
3gA

2

8p2f 2
K~0!2

gDN
2

3p2f 2
K~D!. ~16!

This is the exact formula for the finite-size corrections to t
nucleon mass at leading order in baryonxPT. In Fig. 2~right
panel!, the ratio of the nucleon mass size dependence to
~infinite volume! nucleon mass has been plotted against
box sizeL for various pion masses. The solid and dash
lines correspond to the QCD formula of Eq.~16! with mp

5139 MeV and 300 MeV, respectively. The dotted line co
responds to PQQCD in the isospin limit taken from Eq.~B7!
with mp5139 MeV andmp

s 5300 MeV. We use the param
eter setf 5132 MeV, gA51.26 andgDN51.4.

C. The asymptotic limit

Using Eqs.~15! and ~A11!, in the large-L expansion one
has

dL
AMN5S 9gA

2mp
2

8p f 2
1

4gDN
2 mp

5/2

~2p!3/2f 2

1

DL1/2D 1

L
exp~2mpL !,

~17!

wheredLMN2dL
AMN5O@exp(2mpL)/L5/2#. In the MN→`

limit, the leading term in the large-L expansion is in agree

f

7-3
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ment with Ref.@20# and in disagreement with Ref.@7#.5 Fig-
ure 2 ~left panel! plots the ratiodL

AMN /dLMN as a function
of L for various pion masses. Clearly the utility of Eq.~17! is
purely aesthetic; even with heavy pions, the asymptotic
mula Eq.~17! is not accurate forL,10 fm. This points to
the importance of exponential corrections; formpL*1
convergence of the momentum sums requires keep
terms with unW u.1, i.e. one must include corrections o
O@exp(2unWumpL)#.

III. THE NUCLEON MAGNETIC MOMENTS

A. The infinite-volume limit

With the finite-size corrections for the masses, it
straightforward to get the magnetic moments. The lead
operators contributing to the nucleon magnetic moments

L5
e

4MN
Fmn~m0N̄smnN1m1N̄smntj1

3 N!, ~18!

whereFmn is the electromagnetic field strength tensor,MN is
the physical value of the nucleon mass,m0 is the isoscalar
nucleon magnetic moment,m1 is the isovector nucleon mag
netic moment andtj1

a 5 1
2 (j†taj1jtaj†).

In isospin-symmetric QCD one finds the nucleon ma
netic moment matrix at one-loop order in the chiral expa
sion @43–45# as

m̂5m01m1t̂32
MN

4p f 2 FgA
2mp11

2

9
gDN

2 F p1G t̂3 . ~19!

The scale dependence is left implicit. The proton and neu
magnetic moments are the diagonal elements ofm̂. The first
term within the brackets is from Fig. 3~a! while the second
term is from Fig. 3~b!. The functionFi5F(mi ,D,m) is

pF~m,D,m!5AD22m2 logS D2AD22m21 i e

D1AD22m21 i e
D

2D logS m2

m2D . ~20!

5For a detailed discussion of this disagreement, see Ref.@20#.

FIG. 3. One-loop graphs that contribute to the proton and n
tron magnetic moments. A solid, thick solid, or dashed line deno
a nucleon,D resonance, or a meson, respectively. The solid squ
denote axial coupling and the solid circles denote a leading-o
electromagnetic interaction.
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Here again we have used dim reg withMS. In the limit D
→0, F(m,0,m)5m.

B. Finite-size corrections

In the infinite-volume limit, the nucleon magnetic mo
ments may be written as

m̂5m01m1t̂32
4iM N

f 2 FgA
2JR~`,0!1

2

9
gDN

2 JR~`,D!G t̂3 ,

~21!

where

JR~`,D!5
]

]mp
2
IR~`,D!. ~22!

Therefore, the finite-size corrections tom̂ are

dLm̂[m̂~L !2m̂~`!

52
4iM N

f 2 FgA
2dLJ~0!1

2

9
gDN

2 dLJ~D!G t̂3 . ~23!

Using Eqs.~13!, ~14! and ~22!, and the properties of modi
fied Bessel functions, it is straightforward to find

dLJ~D!5
i

24p2Y~D!, ~24!

where

Y~D![E
0

`

dl (
nW Þ0

@3K0~LbDunW u!2~LbDunW u!K1~LbDunW u!#.

~25!

With D50 one has

Y~0!52
p

2
mp (

nW Þ0
~122~LunW ump!21!exp~2LunW ump!.

~26!

Finally one arrives at

dLm̂5
MN

6p2f 2 FgA
2Y~0!1

2

9
gDN

2 Y~D!G t̂3 . ~27!

This is the exact formula for the finite-size corrections to t
nucleon magnetic moments at leading order in baryonxPT.
In Fig. 4 ~right panel!, the ratio of the proton magnetic mo
ment size dependence to the~infinite volume! magnetic mo-
ment has been plotted against the box sizeL. The solid and
dashed lines correspond to the QCD formula of Eq.~27! with
mp5139 MeV and 300 MeV, respectively. The dotted lin
corresponds to PQQCD in the isospin limit taken from E
~B11! with mp5139 MeV andmp

s 5300 MeV.
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FIG. 4. Left panel: The ratio of the asymptotic formula, Eq.~28!, to the exact formula, Eq.~27!, as a function ofL for various values of
mp . The solid, dashed and dotted lines correspond tomp5100, 200, and 300 MeV, respectively. Right panel: The ratio of the nucl
magnetic moment size dependence to the~infinite volume! nucleon magnetic moment vsL. The solid and dashed lines correspond to QC
with mp5139 and 300 MeV, respectively. The dotted line corresponds to PQQCD withmp5139 MeV andmp

s 5300 MeV.
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C. The asymptotic limit

Again using Eqs.~13!, ~14! and ~22!, together with Eqs.
~26! and ~A11!, in the large-L expansion one has

dLm̂52FMNgA
2mp

2p f 2 S 12
2

mpL D1
4MNgDN

2 mp
3/2

9~2p!3/2f 2

1

DL1/2G
3exp~2mpL !t̂31 . . . ~28!

where the ellipses denotes contributions
O@exp(2mpL)/L3/2#. Figure 4 ~left panel! plots the ratio
dL

Am/dLm as a function ofL for various pion masses. Th
curves are similar to those of the nucleon mass in Fig. 2
is the conclusion about the practical utility of Eq.~28!.

IV. DISCUSSION AND CONCLUSION

It is hoped that in the near future lattice~PQ!QCD simu-
lations of baryon properties will encounter the chiral regim
where the quark masses are sufficiently small to allow
meaningful chiral expansion in quark masses, box size
lattice spacing. It is likely that this regime has been enco
tered in recent work on heavy-meson systems@1#.

The results of this paper, together with the results of R
@33# and @46#, give the dependence of the nucleon mas
and magnetic moments on the sea and valence quark m
and on the lattice spacing,a, and size,L, to leading order in
the chiral expansion. We eagerly await lattice~PQ!QCD
simulations within the chiral regime where this parame
space may be fruitfully explored.
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APPENDIX A: FINITE SIZE CORRECTIONS

1. The master formula

We wish to evaluate

dLS 1

@ lW21M 2#mD[
1

L3 (
lW

1

~ lW21M 2!m

2E d3l

~2p!3

1

~ lW21M 2!m
. ~A1!

As this difference is ultraviolet finite, we omit the label d
noting the scheme dependence of the individual sum
integral. This expression has been evaluated in many plac6

Using the identity

D2m5
1

G~m!
E

0

`

dhhm21e2hD ~A2!

one finds

dLS 1

@ lW21M 2#mD 5
1

~4p!3/2G~m!
E

0

`

dhhm25/2e2hM 2

3F ~4ph!3/2

L3 (
lW

e2h lW2
21G . ~A3!

Expressing the momentum aslW52pnW /L and using the
Jacobi identity@47#

S~z![ (
n52`

`

e2zn2
, S~z!5Ap

z
SS p2

z D ~A4!

6References that have been of use to the author include R
@15,47,48#.
7-5
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leads to

dLS 1

@ lW21M 2#mD 5
1

~4p!3/2G~m!

3 (
nW Þ0

E
0

`

dhhm25/2e2hM 2
e2L2nW 2/4h.

~A5!

Performing the integral overh then gives the ‘‘master’’ for-
mula

dLS 1

@ lW21M 2#mD 5
221/22mM 322m

p3/2G~m!

3 (
nW Þ0

~LMunW u!23/21mK3/22m~LMunW u!,

~A6!

where Kn(z) is a modified Bessel function of the secon
kind.

A well-chosen change of integration variable and t
properties of modified Bessel functions allow one to wr
Eq. ~14! as

K~D!5 (
nW Þ0

~LunW u!21
1

L

d

dL S L2E
mp

`

djj2~j22mp
2

1D2!21/2K1~LjunW u! D . ~A7!

We find no useful simplification of this formula in the ge
eral case. WithD50 one directly finds

K~0!52Ap

2
mp

3 (
nW Þ0

~LunW ump!21/2K1/2~LunW ump!,

~A8!

which gives Eq.~15!.

2. The asymptotic limit

In the large-L limit, using the expansion of the modifie
Bessel function for large argument, one finds from Eq.~A7!

K~D!53A2p
1

L2

d

dL S L3/2E
mp

`

djj3/2~j22mp
2

1D2!21/2exp~2Lj! D 1 . . . ~A9!

where the ellipses denotes contributions
O@exp(2mpL)/L5/2#. Observe that one can expand the in
grand in powers ofa2[D22mp

2 ,
03450
f
-

E
mp

`

djj,/2~j22mp
2 1D2!21/2e2Lj

5 (
n50

` S 2
1

2

n
D a2nE

mp

`

djj,/22122ne2Lj

5m
p

,/221
1

L
e2mpL (

n50

` S 2
1

2

n
D a2n

mp
2n

1 . . .

5m
p

,/2
1

DL
exp~2Lmp!1 . . . ~A10!

where the ellipses denote contributions
O@exp(2mpL)/L2#. ~Similar technology has been develope
in Ref. @16# in the context of heavy-meson systems.! Plug-
ging this back into Eq.~A9! one finds, in the asymptotic
limit,

K~D!523A2pmp
5/2 1

L3/2D
exp~2Lmp!1 . . . ~A11!

where the ellipses denotes contributions ofO@exp(2mpL)/
L5/2#.

APPENDIX B: PARTIALLY QUENCHED QCD

1. Nucleon masses

We work in PQQCD including isospin breaking, but wit
electromagnetism turned off.7 The Lagrangian describing th
interactions ofBi jk ~containing the nucleon! and Ti jk ~con-
taining D), which transform in the70 and44 of SU(4u2)V ,
respectively, with the pseudo Goldstone bosons at lead
order in the chiral expansion is@26#

L52a~B̄SmBAm!12b~B̄SmAmB!1A3

2
C@~ T̄nAnB!

1~B̄AnT n!#. ~B1!

Here the axial-vector fieldAm is a 636 matrix. Matching to
the QCD effective Lagrangian of Eq.~3! and to the addi-
tional operator

L5g1N̄SmN tr@Am#, ~B2!

one finds that at the tree level,

a5
4

3
gA1

1

3
g1 , b5

2

3
g12

1

3
gA , C52gDN .

~B3!

The finite-size corrections to the proton mass are given

7For details we refer the reader to Ref.@33#.
7-6
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dLM p52
1

8p f 2 S 2gA
2

3p
@K~muu,0!1K~mud,0!12K~mju,0!12K~mlu,0!13Ghu ,hu

~0!#1
g1

2

6p
@K~muu,0!25K~mud,0!

13K~mjd,0!12K~mju,0!13K~mld,0!12K~mlu,0!13Ghu ,hu
~0!16Ghu ,hd

~0!13Ghd ,hd
~0!#1

2gAg1

3p
@K~mju,0!

1K~mlu,0!2K~mud,0!12K~muu,0!13Ghu ,hd
~0!13Ghu ,hu

~0!#1
2gDN

2

9p
@5K~mud ,D!1K~muu ,D!1K~mju ,D!

1K~mlu ,D!12K~mjd ,D!12K~mld ,D!12Ghd ,hd
~D!12Ghu ,hu

~D!24Ghu ,hd
~D!# D , ~B4!

whereGha ,hb
(D)[Hhahb

„K(mha
,D),K(mhb

,D),K(mX ,D)…, Hhahb
is given by

Hhahb
~A,B,C!52

1

2 F ~mj j
2 2mha

2 !~mll
2 2mha

2 !

~mha

2 2mhb

2 !~mha

2 2mX
2 !

A2
~mj j

2 2mhb

2 !~mll
2 2mhb

2 !

~mha

2 2mhb

2 !~mhb

2 2mX
2 !

B1
~mX

22mj j
2 !~mX

22mll
2 !

~mX
22mha

2 !~mX
22mhb

2 !
CG , ~B5!

the mass,mX , is given bymX
25 1

2 (mj j
2 1mll

2 ), andK(mp ,D) is defined in Eq.~14! ~where now themp dependence is mad
explicit!. Note thatmab refers to the Goldstone-boson mass with quark contenta andb ~hencemp65mud , etc.!; j and l label
the sea quark masses.

The finite-size corrections to the neutron mass are given by

dLMn52
1

8p f 2 S 2gA
2

3p
@K~mdd,0!1K~mud,0!12K~mjd,0!12K~mld,0!13Ghd ,hd

~0!#1
g1

2

6p
@K~mdd,0!25K~mud,0!

12K~mjd,0!13K~mju,0!12K~mld,0!13K~mlu,0!13Ghu ,hu
~0!16Ghu ,hd

~0!13Ghd ,hd
~0!#1

2gAg1

3p
@2K~mdd,0!

1K~mjd,0!1K~mld,0!2K~mud,0!13Ghd ,hd
~0!13Ghu ,hd

~0!#1
2gDN

2

9p
@5K~mud ,D!1K~mdd ,D!1K~mjd ,D!

1K~mld ,D!12K~mju ,D!12K~mlu ,D!12Ghd ,hd
~D!12Ghu ,hu

~D!24Ghu ,hd
~D!# D . ~B6!

In the isospin limit, one has

dLMN52
gA

2

24p2f 2 @K~mp,0!18K~mp
s ,0!#2

gDN
2

6p2f 2
@K~mp ,D!1K~mp

s ,D!#1
g1

24p2f 2 ~5g114gA!@K~mp,0!2K~mp
s ,0!#,

~B7!

where we have used the fact thatGhd ,hd
(D)→2 1

2 K(mp ,D) in the isospin limit. Heremp
s denotes the mass of a pion made

one valence quark and one sea quark. These expressions further collapse down to isospin-symmetric QCD in themp
s

→mp .

2. Nucleon magnetic moments

The most general charge matrix whose matrix elements reduce to those of QCD~keeping the valence-quark charges fixe!
is @33#

Q (PQ)5diagS 1
2

3
, 2

1

3
, qj , ql , qj , ql D . ~B8!

The finite-size corrections to the proton magnetic moment in PQQCD are
034507-7
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dLmp52
MN

6p2f 2 H gA
2

9
@4Y~muu,0!25Y~mud,0!24Y~mju,0!24Y~mlu,0!#1

2g1gA

9
@Y~mud,0!1Y~muu,0!2Y~mju,0!

2Y~mlu,0!#1
g1

2

36
@Y~mud,0!14Y~muu,0!23Y~mdd,0!13Y~mjd,0!24Y~mju,0!13Y~mld,0!24Y~mlu,0!#

1qjF2gA
2

3
@Y~mju,0!2Y~muu,0!#1

g1gA

3
@Y~mju,0!2Y~muu,0!#1

g1
2

6 S Y~mju,0!2Y~muu,0!1
3

2
Y~mjd,0!

2
3

2
Y~mud,0! D G1qlF2gA

2

3
@Y~mlu,0!2Y~mud,0!#1

g1gA

3
@Y~mlu,0!2Y~mud,0!#1

g1
2

6 S Y~mlu,0!2Y~mud,0!

1
3

2
Y~mld,0!2

3

2
Y~mdd,0! D G1

gDN
2

27 S Y~mdd ,D!2Y~muu ,D!26Y~mud ,D!2Y~mjd ,D!1Y~mju ,D!2Y~mld ,D!

1Y~mlu ,D!1
3

2
qj@Y~muu ,D!12Y~mud ,D!2Y~mju ,D!22Y~mjd ,D!#1

3

2
ql@Y~mud ,D!12Y~mdd ,D!

2Y~mlu ,D!22Y~mld ,D!# D J , ~B9!

whereY(mp ,D) is defined in Eq.~25! ~where now themp dependence is made explicit!.
The finite-size corrections to the neutron magnetic moment are

dLmn52
MN

6p2f 2 H gA
2

9
@7Y~mud,0!12Y~mld,0!12Y~mjd,0!22Y~mdd,0!#1

g1gA

9
@Y~mjd,0!1Y~mld,0!2Y~mud,0!

2Y~mdd,0!#1
g1

2

18
@3Y~muu,0!12Y~mud,0!2Y~mdd,0!1Y~mjd,0!23Y~mju,0!1Y~mld,0!23Y~mlu,0!#

1qjF2gA
2

3
@Y~mjd,0!2Y~mud,0!#1

g1gA

3
@Y~mjd,0!2Y~mud,0!#1

g1
2

6 S Y~mjd,0!2Y~mud,0!1
3

2
Y~mju,0!

2
3

2
Y~muu,0! D G1qlF2gA

2

3
@Y~mld,0!2Y~mdd,0!#1

g1gA

3
@Y~mld,0!2Y~mdd,0!#1

g1
2

6 S Y~mld,0!2Y~mdd,0!

1
3

2
Y~mlu,0!2

3

2
Y~mud,0! D G1

gDN
2

54
$Y~mdd ,D!24Y~muu ,D!19Y~mud ,D!2Y~mjd ,D!14Y~mju ,D!2Y~mld ,D!

14Y~mlu ,D!13qj@Y~mud ,D!12Y~muu ,D!2Y~mjd ,D!22Y~mju ,D!#13ql@Y~mdd ,D!12Y~mud ,D!2Y~mld ,D!

22Y~mlu ,D!#%J . ~B10!

In the isospin limit~with qj5ql50), one has

dLm̂5
MN

6p2f 2 S gA
2

9
@Y~mp,0!18Y~mp

s ,0!#1
2gDN

2

9
Y~mp ,D!2

g1

18
~g118gA!@Y~mp,0!2Y~mp

s ,0!# D t̂3 . ~B11!

These expressions further collapse down to isospin-symmetric QCD in the limitmp
s →mp .
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