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CP violation in the partial width asymmetries for BÀ\p¿pÀKÀ and BÀ\K¿KÀKÀ decays
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We investigate the possibility of observingCP asymmetries in partial widths for the decaysB2

→p1p2K2 and B2→K1K2K2 produced by the interference of the nonresonant decay amplitude with
resonant amplitudes. The resonant states that subsequently decay intop1p2 andK1K2 or K2p1 are char-

moniumc̄c states withJP501,12,11 or thef(1020) meson. We find that the largest partial width asymmetry
comes from thexc0 resonance, while the resonancec(2S) gives a partial width asymmetry of the order 10%.
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I. INTRODUCTION

The experimental data onB mesons decaying into thre
mesons accumulate@1–4#, and a number of important ques
tions on their decay dynamics and their relevance for
precise determination of theCP-violating phaseg should be
answered@5–14#. Motivated by Belle and BaBar results o
the B meson three-body decays@1–4#, we continue with the
study of CP-violating partial width asymmetry in theB6

→K6p1p2 andB6→K6K1K2 decay amplitudes.
Recently, we have studied a case of the partial wi

asymmetry resulting from the interference of the nonreson
B2→M 1M 2K2, M5p,K, and the resonantB2→xc0K2

→M 1M 2K2 decay amplitudes@5#. In both decay modes
the dominant contribution to the nonresonant amplitu
comes from penguin operators. However, there is a small
level contribution in which the weakCP-violating phaseg
enters. The strong phase, which is necessary to obtain
CP-violating asymmetry, enters through the dispersive p
of both nonresonant and resonant amplitudes.

It was pointed out by the authors of Refs.@9# and@15# that
the dispersive part of the nonresonant amplitude exactly c
cels the dispersive part of the resonant amplitude com
from the intermediate state, which is identical to the fin
state. Therefore, the partial width asymmetry forB6

→RK6→M 1M 2K6, M5p,K, will be proportional to the
decay width of the resonant stateR to all channels excluding
theM 1M 2 state. It means that one would expect a largeCP
asymmetry for the two-meson invariant mass in thexc0 mass
region since the decay width ofxc0 is rather large and its
branching ratio toM 1M 2, M5p,K is negligible. The am-
plitude for thexc0 resonant decay mode was determined
ing the narrow width approximation@5,7# and the experimen
tal results for theB2→xc0K2 and xc0→M 1M 2 decay
rates. The asymmetry was found to be about 20%. In the
of B2→K2M 1M 2 there are, however, additional importa
reasons why the partial width asymmetry can be sizable
fact, if in the B2→K2M 1M 2 decays the partial widths
coming from the nonresonantMnr and the resonantMr am-
plitude are of the same order of magnitude, as in our anal
1550-7998/2004/70~3!/034033~9!/$22.50 70 0340
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at the xc0 resonance region@5#, one obtains a significan
CP-violating asymmetry. In the case of negligible nonres
nant amplitude relative to the resonant amplitude~or vice
versa! one would get a very small partial width asymmetr

In this paper, we extend this analysis to the case of
CP-violating partial width asymmetry when the interferen
with the nonresonant amplitude occurs in the neighborh

of the resonanceR which is a charmoniumc̄c state with
JP501,12,11 or a light vector and scalar meson. We w
restrict our investigation only to those resonant statesR for
which the decayB2→RM 2, M5K,p amplitude does not
have two or more contributions with different weak phase,
from the experimental branching ratio we are able to extr
only the absolute value of the amplitude. For example, in
case ofB2→RK2 with R5r0 there is a penguin and a tre
amplitude and one needs to know their relative sizes to c
strain the partial width asymmetry. In this decay mode it h
also been found that the naive factorization fails to descr
the decay rate@16,17#. Therefore, we concentrate on the pa
tial width asymmetry for the cases in which the releva
two-body amplitude can be completely extracted from
measured decay rates.

In the case of theB2→K2p1p2 partial width asymme-
try, the intermediate resonant states of interest would be
light strange mesonsK* (890), K1(1270), K1(1400),
K0* (1430), etc., in the decay chainB2→Rp2→K2p1p2

and the charmoniumc̄c states in the decay chainB2

→RK2→K2p1p2. The B2 decays to these strange m
sons in the final state occur as a pure penguin transit
Among all such decays only the rates forR5K* (890) and
K0* (1430) were measured@3#. However, theK* (890) and
K0* (1430) mesons decay toK2p1 with the branching ratios
close to 100%. In the case we consider it means that
partial decay width to the rest of the states is negligible a
the correspondingCP-violating asymmetry vanishes. Th
relevant charmoniumc̄c states in the decay chainB2

→RK2→p1p2K2 are produced by theb→ c̄cs transition.
The resonantB2→M 1M 2K2 amplitude is obtained from
the tree level contribution, which is proportional to theVcb
©2004 The American Physical Society33-1
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and Vcs Cabibbo-Kobayashi-Maskawa~CKM! matrix ele-
ments, followed by the strong decay of thec̄c state into
p1p2 or K1K2 via the Okubo-Zweig-Iizuka~OZI! sup-
pressed strong interaction. Apart from the already mentio
xc0 state, this category includes alsoJ/c, xc1 , xc2 , c(2S),
etc. We will consider contributions from all the abov
mentioned states, even though theB2→xc2K2 and xc1
→M 2M 1 branching ratios have not been measured y
Nevertheless, we expect that the partial width asymmetr
this decay mode can be rather large. Although one wo
expect that theb→ c̄cs transition will give larger rates for
the two-body decays than in the case of theb→ūus transi-
tion, the fact that the strong transition of the charmoniu
states is OZI suppressed makes the nonresonant and res
partial width to be of the same size and this leads to a siz
CP-violating asymmetry.

In the case of theB2→K2K1K2 decays with the two-
meson invariant mass below the charmonium produc
threshold, the resonant contribution comes from the inter
diate s̄s states. We consider only theCP asymmetry at the
f(1020) resonance and do not consider contributions fr
the scalar meson resonances due to the lack of knowledg
their structure.

In the analysis of the partial widthCP asymmetry, one
needs a knowledge of the nonresonant amplitudes. We c
pute the nonresonant decay amplitudes by using a model
combines the heavy quark effective theory and chiral
grangian, previously developed in Refs.@5–8#. This model
assumes the naive factorization for the weak vertices.
fact that the factorization works reasonably well in the r
evant two-body decay modes encourages us to apply it in
three-body decays we consider here. Even more, the ex
mental investigation of the nonresonant amplitudes done
the Belle Collaboration@3# indicates that one has to rely on
model when discussing the nonresonant background. In c
parison with our previous investigation@5,6#, we include
now the contributions ofB* (01) resonances.

In Sec. II we present the calculation and the results on
nonresonantB2→K2M 1M 2, M5p,K decay modes, while
in Sec. III we analyze the partial width asymmetries. T
summary of our results is given in Sec. IV.

II. NONRESONANT AMPLITUDES

The effective weak Hamiltonian relevant for theB6

→K6M 1M 2 decays and theirCP conjugates after Fierz
reordering of the quark fields and neglecting the contribut
of the color octet operators is@16–21#

He f f5
GF

A2
S Vus* Vub~a1O11a2O2!1Vcs* Vcb~a1cO1c

1a2cO2c!2Vts* Vtb(
i 53

10

aiOi D , ~1!

The effective Wilson coefficients are denoted byai , and the
operatorsOi read
03403
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O15~ ūb!V2A~ s̄u!V2A , O25~ ūu!V2A~ s̄b!V2A , ~2!

O1c5~ c̄b!V2A~ s̄c!V2A , O2c5~ c̄c!V2A~ s̄b!V2A ,
~3!

O35 (
q5u,d,s

~ q̄q!V2A~ s̄b!V2A ,

O45 (
q5u,d,s

~ q̄b!V2A~ s̄q!V2A , ~4!

O55 (
q5u,d,s

~ q̄q!V1A~ s̄b!V2A ,

O6522 (
q5u,d,s

@ q̄~12g5!b#@ s̄~11g5!q#, ~5!

O75 (
q5u,d,s

3

2
eq~ q̄q!V1A~ s̄b!V2A ,

O8522 (
q5u,d,s

3

2
eq@ q̄~12g5!b#@ s̄~11g5!q#, ~6!

O95 (
q5u,d,s

3

2
eq~ q̄q!V2A~ s̄b!V2A ,

O105 (
q5u,d,s

3

2
eq~ q̄b!V2A~ s̄q!V2A , ~7!

where (q̄1q2)V6A stands forq̄1gm(16g5)q2 . HereO1 and
O2 are the tree level operators,O32O6 are the QCD pen-
guin operators andO72O10 are the electromagnetic pengu
operators. From Ref.@21# we takea151.05, a250.07, a4
520.04320.016i , anda6520.05420.016i . The values of
the other Wilson coefficients are at least one order of m
nitude smaller and therefore we can safely neglect them

For the CKM matrix elements the Wolfenstein parame
zation is used@Vub5Al3( r̄2 i h̄), Vus5l, Vts52Al2,
Vtb51], with A50.8, l50.228, r̄50.11820.273 ~the av-
erage value 0.222! and h̄50.30520.393~the average value
0.339! @22#. The matrix elements of the four quark operato
acting in Oi for the B2→K2p1p2 decay can be written
using the factorization assumption as

^p1p2K2u~ s̄b!~ q̄q!uB2&

5^K2u~ s̄b!uB2&^p2p1u~ q̄q!u0&, ~8!

^p1p2K2u~ d̄b!~ s̄d!uB2&

5^p2u~ d̄b!uB2&^K2p1u~ s̄d!u0&, ~9!
3-2
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FIG. 1. Feynman diagrams contributing to th
nonresonant part of the amplitude.
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^p1p2K2u~ ūb!~ s̄u!uB2&

5^p1p2u~ ūb!uB2&^K2u~ s̄u!u0&

1^0u~ ūb!uB2&^K2p1p2u~ s̄u!u0&. ~10!

In the above equations (q̄iqj ) denotes the vector or axia
vector current or scalar or pseudoscalar density. By ana
ing the matrix elements given above, one finds@5# that only
the first term in~10! gives an important contribution to th
nonresonant decay rate. Terms~8! and ~9! contribute to the
resonant part of the amplitude~through resonances whic
decay intop1p2 or K2p2, respectively!, while the annihi-
lation term in~10! is found to be negligible as explained
Refs. @5#. In the matrix element of theO6 operator, addi-
tional terms might arise, but they are either small or can
among themselves@5#.

The B2→K2K1K2 amplitude can be factorized in th
same way by replacingp6 with K6 in ~8!–~10!. However,
in this case, the contribution coming fromB2→r0K2

→K2K1K2 @Eq. ~8!# is part of the nonresonant amplitud
since ther0 mass is below theK2K1 threshold. Neverthe-
less, we find this contribution to be small due to the suppr
sion of ther0 propagator in the high-energy regions and d
to the smallness of its Wilson coefficients (a2 and a9) and
will therefore neglect it. The same argument holds if ther
meson is replaced by similar resonances (s, etc.!.

Next, we proceed with the determination ofAp

5^p1(p2)p2(p1)K2(p3)uO1uB̄2& and AK

5^K1(p2)K2(p1)K2(p3)uO1uB̄2&. The approach used in
the calculation of these matrix elements was already
plained in Refs. @5,23–25#. Here, we follow the same
method, but add the contributions of theB0* scalar meson
03403
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resonances. We introduce thebq̄ states (q5u,d,s), with the
JP511,01 assignment incorporated in the fieldS @26#:

S5
1

2
~11vaga!@D1

mgmg52D0#, ~11!

which then interacts with thebq̄ JP512,02 multiplet ~H!
and the pseudo–Goldstone mesons by the means of the
grangian:

Ls5 ih Tr~Sbgmg5A ba
m H̄a!, ~12!

where A m5 1
2 (j†]mj2j]mj†) with the light pseudoscala

fields in j. The weak current is given by

j m
S5 i

F1

2
Tr@gm~12g5!Sbjba

† #. ~13!

The parameterh520.660.2 is taken from the recent stud
of the Ds(0

1) state@27#, while for the scalar meson deca
constant we useF150.46 GeV3/2 @26#.

The matrix elementAp can be written as

Ap52 f 3Fm3
2r nr1

1

2
~mB

22m3
22s!w1

nr1
1

2
~s12t2mB

2

22m2
22m3

2!w2
nrG , ~14!

where the form factorsw1
nr , w2

nr , andr nr are determined by
calculating contributions coming form the Feynman d
grams in Fig. 1:
w1
nr52

g

f 1f 2

f B* mB*
3/2mB

1/2

t2mB*
2 S 12

mB
22m1

22t

2mB*
2 D 1

f B

2 f 1f 2
2

AmBa2

2 f 1f 2mB
2 ~2t1s2mB

22m3
222m1

2!1
F1hAmB

2 f 1mB
2

mB
22t

t2mB
0*

2 ,

~15!

w2
nr5

g

f 1f 2

f BmB*
3/2mB

1/2

t2mB*
2 S 11

mB
22m1

22t

2mB*
2 D 1

AmBa1

f 1f 2
1

F1hAmB

2 f 1mB
2

mB
22t

t2mB
0*

2 , ~16!
3-3
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r nr52
f B

2 f 1f 2~m3
22mB

2 !
~2t1s2mB

22m3
222m1

2!1
f B

2 f 1f 2
1

g fB

f 1f 2~ t2mB*
2

!
~mB

22m1
22t !2

AmBa2

2 f 1f 2mB
2 ~2t1s2mB

22m3
222m1

2!

2
4g2f BmBmB*

f 1f 2~m3
22mB

2 !~ t2mB*
2

!
S s2m1

22m2
2

2
2

~ t1m2
22m3

2!~mB
22m1

22t !

4mB*
2 D 1

F1hAmB

f 1mB
2

mB
22t

t2mB
0*

2

1
F1h2AmB

f 1f 2mB
3

~mB
22t !~ t2m3

2!

~ t2mB0
2

!~m3
22mB

0*
2

!
. ~17!

FIG. 2. Dalitz plots for the nonresonantB2→K2p2p1 ~left! andB2→K2K2K1 ~right! decay modes.
o

he
-

We used Mandelstam’s variabless5(pB2p3)2 and t5(pB
2p1)2. Indices 1, 2, and 3 correspond top2, p1, andK2,
respectively (f 15 f 25 f p , f 35 f K , m15m25mp , m3
5mK). The massesmB , mB* , and mB

0*
correspond to the

B2, B0* (12), andB0* (01) mesons, (12) denoting vector
and (01) scalar states. The rest of parameters are taken t
f p50.132 GeV, f K50.16 GeV, f B50.175 GeV, f Bs
51.16f B , a150.16 GeV1/2, a250.15 GeV1/2 as in Ref.@5#.
For the strong couplingg we useg50.56 according to the
measurement of Ref.@28#. Note that in Ref.@5# there are
misprints in Eq.~16!: the sign in front ofa2 is reversed, as
well as the overall sign in~22!.

The matrix element ofO4 has the same structure as t
matrix element ofO1 , while for determining the matrix ele
ment of O6 we follow the approach described in Ref.@5#.
03403
be

Using the expressions~18!–~20! of Ref. @5#, we find that its
contribution is proportional to the matrix element ofO1 or
O4 with the proportionality factork6522Bf p

2 /mbf K
2 .

The matrix element̂ K1(p2)K2(p1)K2(p3)uO1uB̄2& is
calculated in the same way. The expression forAK and its
form factors can be derived from the Eqs.~14!–~17!, adding
the additional contribution obtained by interchangings andt
and by takingf 15 f 25 f 35 f K , m15m25m35mK . In the
propagators theB meson masses are replaced by theBs mass.

Now, the nonresonant amplitudes forB2→M 1M 2K2

can be written as

Mnr5
GF

A2
AK,p@VubVus* a12VtbVts* ~a41k6a6!#, ~18!
nt

ce

e

FIG. 3. Diagrams presenting the nonresona
~left! and the resonant~right! contributions to dis-
persive part of the amplitude in the phase spa
region of theP2 and P3 invariant mass close to
theR mass. Blob in the left diagram presents th
nonresonant weak decay mode~see Fig. 1!.
3-4
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TABLE I. The decayB2→RK2 width and the branching ratios forR→M 1M 2.

R B2→RK2 R→p1p2 R→K1K2

f (7.962.0)31026 (49.260.7)%
J/c (1.0160.05)31023 (1.4760.23)31024 (2.3760.0.31)31024

xc0 (6.561.1)31024 (5.060.7)31023 (5.960.9)31023

xc1 (6.062.4)31024 ,2.131023 ,2.131023

c(2S) (6.660.6)31024 (865)31025 (1.060.7)31024
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with Ap,K defined in Eqs. ~14!–~17!, while for B1

→M 1M 2K1 we have

M̄nr5
GF

A2
AK,p@Vub* Vusa12Vtb* Vts~a41k6a6!#. ~19!

Using the above expressions, we obtain the follow
branching rations:

BR~B6→K6p1p2!nr51431026,

BR~B6→K6K1K2!nr59.031026, ~20!

where BR(B6→K6M 1M 2)nr stands for theCP-averaged
rates forB2→M 2M 1K2 and B1→M 2M 1K1

„@BR(B2

→K2M 1M 2)1BR(B1→K1M 1M 2)#/2…. In Ref. @5# it
was found that due to the imaginary part of thea4 and a6
Wilson coefficients, we can have a largeCP asymmetry be-
tween the nonresonant B1→M 2M 1K1 and B2

→M 2M 1K2 amplitudes. The size of this asymmetry d
pends on ther̄ and h̄ CKM parameters and is rather larg
~60% in the case ofB6→p2p1K6 and 40% in a case o
B6→K2K1K6 decay mode!. The largest error in BR(B6

→K6M 1M 2)nr , due to the model parameters, comes fro
the uncertainty in the CKM weak phaseg, the decay con-
stants, and the couplingg. For example, by taking two time
smallerg, the rate BR(B6→K6p1p2)nr decreases by 40%
and BR(B6→K6p1p2)nr by 30%. Varying r̄ between
0.118 and 0.273 andh̄ between 0.305 and 0.393 give
BR(B6→K6p1p2)nr5(6.2212.6)31026 and BR(B6

→K6K1K2)nr5(11217)31026. The uncertainty in the
branching ratios coming from theB decay constants is no
larger than 10%.

The Dalitz plots forB2→K2M 1M 2 (M5p,K) decays,
are given in Fig. 2 (g50.56). We can see that the nonres
nantB2→K2K1K2 decay amplitude is rather flat, while i
the case ofB2→p2p1K2, an increase at lowK and p
momenta phase space region is evident. The inclusion o
scalar statesB* (01) does not give a significant contributio
to the decay rate, increasing it by a few percent in both de
modes.

RecentlyB factories@1,3,4# obtained some insight into th
nonresonant contribution to theB2→K2M 1M 2 decay
widths. The preliminary results of the Belle Collaboratio
are @1,3# BR(B6→K6p1p2)nr,exp5(1466)31026 and
BR(B6→K6K1K2)nr,exp5(22.564.9)31026, while the
03403
g
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BaBar Collaboration still has only the upper limit1 @1,4#. The
inclusion of the nonresonant contribution in theB6

→K6p1p2 Dalitz plot analysis@3# was motivated by the
obvious deficit of the data in the lowK1p2 invariant mass
phase space region~see Fig. 11, first row of Ref.@3#!. They
used a rather simple fit@see Eq.~11! @3# # for the nonresonan
amplitude. Nevertheless, as pointed out by Fry@1#, this con-
tribution is not yet well understood and more studies of t
problem are expected. Calculated ranges for the branc
ratios within our model BR(B6→K6p1p2)nr5(11–17)
31026 and BR(B6→K6K1K2)nr5(6.2–12.6)31026

agree with the Belle Collaboration results within two sta
dard deviations. Unfortunately, the experimental statistics
still to low to compare the distributions of the differenti
decay rate of the model and the experiment. It is interes
that our model predicts a rather small differential dec
width distribution in the region of the lowp1K2 invariant
mass. In order to describe data given in Fig. 11 of Ref.@3# it
seems that one needs such behavior of the nonresonan
plitude.

In addition the results of Ref.@3# indicate the existence o
the broad structures in the experimental data atAs
.1.3 GeV in theK1p1p2 final state and atAs.1.5 GeV
in theK1K1K2 final state. Although one explanation is th
light scalar resonances might be responsible for this ef
@3#, we suggest that these increases might be induced by
nonresonant effects also, as can be seen in the prese
Dalitz plots ~Fig. 2!.

III. PARTIAL WIDTH ASYMMETRY

For the resonances in thes channel, the partial deca
width Gp for B2→MM̄K2, M5p1, K1, which contains
both the nonresonant and resonant contributions, is obta
by integrating the amplitude fromsmin5(mR22GR)2 to
smax5(mR12GR)2:

Gp5
1

~2p!3

1

32mB
3Esmin

smax
dsE

tmin(s)

tmax(s)

dtuMnr1M r u2.

~21!

Similarly, the partial decay widthG p̄ for B1→MM̄K1, M
5p1, K1 is defined in the same way. TheCP-violating
asymmetry is then

1After completing this paper, we learned that the BaBar Colla
ration published their new results@29#.
3-5
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Ap5
uGp2G p̄u

uGp1G p̄u
. ~22!

It is important to notice that at the phase space region wh
the invariant mass ofM 1M 2 approaches the mass of theR
resonant state,M 1M 2 can rescatter through that resonan
as it is visualized in Fig. 3~left figure!. If BR(R
→M 1M 2) is large, this can lead to a significant absorpti
amplitude, and it contributes to the partial decay width asy
metry. As mentioned in the Introduction and explained in
Appendix, such a contribution is exactly canceled by
absorptive part of a resonant decay, where the resonance
catters through the intermediate states equal to final st
@Fig. 3 ~right figure!#. This implies that one has to include th
os

03403
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factor @12BR(R→M 1M 2)# in the equation for the partia
decay asymmetry.

In the calculation of theGp2G p̄ , by taking Vub

5uVubueig .Al3( r̄2 i h̄), we derive

TABLE II. The parameters used in our numerical calculation

V KV gVpp gVKK(gVKp)

f 2.2631029 6.34
J/c 1.4131027 2.7631024 4.3731023

c(2S) 2.0431027 1.4131023 .166
xc1 1.6831027 ,0.0126 ,0.0134
Gp2G p̄5sing
4mRGR@12BR~R→M 1M 2!#

~2p!332mB
3 E

smin

smax
dsE

tmin(s)

tmax(s)

dt
GF

A2
uVubuuVus* ua1^KppuO1uB&nr

3uM~B2→RK2!u
1

~s2mR
2 !21~mRGR!2

uM~R→p2p1!u, ~23!
find

me-
while theGp1G p̄ is given by

Gp1G p̄52
1

~2p!332mB
3Esmin

smax
dsE

tmin(s)

tmax(s)

dtH uMnru2

1UM~B2→RK2!
1

s2mR
21 imRGR

3M~R→p2p1!U2J . ~24!

The B2→RK2→K2M 1M 2 amplitudes are obtained from
the experimental data@29# and the measured branching rati
for B2→RK2 andR→M 1M 2 are given in Table I.

For the scalar resonance exchange (x0 in our case! in the
B2→SK2→M 1M 2K2 decay, we have
M„B2→SP1~q1!→P1~q1!P2~q2!P3~q3!…

5M„B2→SP1~q1!…
1

m23
2 2mS

21 iGSmS

3M„S→P2~q2!P3~q3!…, ~25!

wherem23
2 5(q21q3)2, while mS and GS are the mass and

the decay width of the scalar resonance, respectively. We
M(B2→xc0K2)53.3431027 GeV, M(xco→p1p2)
50.118 GeV, andM(xco→K1K2)50.132 GeV.

The amplitude for theB2 decay into light vector and
pseudoscalar resonance and the amplitude for the vector
son decay into two pseudoscalar states are given by

M„B2→V~«!P1~q1!…5KVq1•«* ,

M„V→P2~q2!P3~q3!…5
gVP2P3

A2
~q22q3!•«.

~26!
TABLE III. The partial width asymmetry forB2→K2p1p2, calculated withg50.56 and givenr̄ and

h̄. Ap(xc1) is obtained by taking the upper bound forgVMM .

r̄50.118 r̄50.118 r̄50.273 r̄50.273 r̄50.222

h̄50.305 h̄50.393 h̄50.305 h̄50.393 h̄50.339

Ap„c(2S)… 10.2% 13.0% 10.3% 13.1% 11.3%
Ap(J/c) 0.8% 1.1% 0.8% 1.1% 0.9%
Ap(xc1) 3.5% 4.5% 3.5% 4.5% 3.9%
Ap(xc0) 17.3% 21.8% 17.6% 22.1% 19.3%
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TABLE IV. The partial width asymmetry forB2→K2p1p2, calculated withg50.27 and givenr̄ and

h̄. Ap(xc1) is obtained by taking the upper bound forgVMM .

r̄50.118 r̄50.118 r̄50.273 r̄50.273 r̄50.222

h̄50.305 h̄50.393 h̄50.305 h̄50.393 h̄50.339

Ap„c(2S)… 13.5% 17.3% 13.7% 17.3% 15.1%
Ap(J/c) 1.2% 1.6% 1.2% 1.6% 1.4%
Ap(xc1) 5.0% 6.4% 5.0% 6.5% 5.6%
Ap(xc0) 12.8% 16.1% 12.9% 16.3% 14.2%
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The amplitude for the three-body resonant decay for this c
is

M„B2→V~«!P1~q1!→P1~q1!P2~q2!P3~q3!…

5
KVgVP2P3

A2

3
2q1•~q22q3!1@q1•~q21q3!~m2

22m3
2!#/mV

2

m23
2 2mV

21 iGVmV

,

~27!

wherem23
2 5(q21q3)2, while m1 , m2 , m3 , andmV are the

masses of particlesP1 , P2 , P3 , andV, respectively, andGV
is the width of the vector resonance. Using the above form
las, we find the expression for the resonance exchange in
s channel:

M~B2→VK2→K2M 1M 2!

5
KVgVMM

2A2

mB
212mM

2 1mK
2 22t2s

s2mV
21 iGVmV

, ~28!

where M stands forK or p. In the case of theK2K1K6

mode the contributions coming from thes andt channels are
completely symmetric. Values ofKV andgVP1P2

are given in
Table II.

The results for the asymmetries are presented in Ta
III–VI. Tables III and V contain the asymmetries forg
50.56. The off-shell mass effects might reduce this coupl
as mentioned in Ref.@5#, and therefore we present the part
width asymmetries forg50.27 ~Tables IV and VI!. We cal-
culate asymmetries for the rangesr̄50.11820.273~the av-
03403
se

-
he

es

g
l

erage value 0.222! and h̄50.30520.393~the average value
0.339! as in Ref.@22#. The subtraction of BR(R→M 1M 2)
in Eq. ~23! makes a sizable effect in the case of theB2

→K2f→M 1M 2K2 asymmetry, but it is negligible in the
case of partial width asymmetry in the neighborhood of ch
monium resonances. Then we can draw the following c
clusions: In the case ofB2→K2p1p2, all partial width
asymmetries are not very large. The largest asymmetry
found in the case of thexc0 resonance and then in the case
the c(2S). The partial width asymmetryAp(xc1) is calcu-
lated by taking the upper bounds forxc1M 1M 2 coupling.
All these asymmetries are rather stable on the variations og.
In the case ofB2→K2K1K2 the situation is different. Cal-
culated partial width asymmetries except theAp(xc0) are
smaller than in the case ofB2→K2p1p2. They depend
more on the variations of theg coupling. The only relatively
sizable partial width asymmetry in addition toAp(xc0) is
Ap„c(2s)…. We have also estimated the partial width asy
metry for theB2→xc2K2 channel, by assuming theBxc2K

coupling to be of the same size as for the vector~scalar!
mesons and we found it negligible.

IV. SUMMARY

In this paper we have investigated the partial width asy
metry for theB2→M 1M 2K2, M5p,K decays which re-
sults from the interference of nonresonant and resonant
plitudes. First, we have calculated the nonresonant branc
ratios and found that the model we use gives the decay r
in the reasonable agreement with the Belle Collaboration
sults @3#. Comparing the Dalitz plots for the nonresona
decay modes obtained from our model with the experime
data @3#, we find that our model reproduces the data qu
well. The inclusion of theB0* scalar meson is rather insig
TABLE V. The partial width asymmetry forB2→K2K1K2, calculated withg50.56 and givenr̄ andh̄.
Ap(xc1) is obtained by taking the upper bound forgVMM .

r̄50.118 r̄50.118 r̄50.273 r̄50.273 r̄50.222

h̄50.305 h̄50.393 h̄50.305 h̄50.393 h̄50.339

Ap(f) 0.3% 0.3% 0.3% 0.3% 0.3%
Ap„c(2S)… 3.1% 3.8% 3.0% 3.7% 3.3%
Ap(J/c) 0.03% 0.04% 0.03% 0.04% 0.03%
Ap(xc1) 0.5% 0.7% 0.5% 0.3% 0.6%
Ap(xc0) 28.8% 35% 27.6% 33.8% 30.6%
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TABLE VI. The partial width asymmetry forB2→K2K1K2, calculated withg50.27 and givenr̄ and

h̄. Ap(xc1) is obtained by taking the upper bound forgVMM .

r̄50.118 r̄50.118 r̄50.273 r̄50.273 r̄50.222

h̄50.305 h̄50.393 h̄50.305 h̄50.393 r̄50.339

Ap(f) 0.3% 0.3% 0.3% 0.3% 0.3%
Ap„c(2S)… 8.1% 10.1% 7.9% 9.8% 8.8%
Ap(J/c) 0.55% 0.71% 0.55% 0.71% 0.61%
Ap(xc1) 3.0% 3.8% 3.0% 3.8% 3.3%
Ap(xc0) 23.1% 28.7% 22.5% 28.0% 25%
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nificant, contributing only by a few percent to the rate.
We then consider the partial width asymmetries for a f

resonant decay modes for which the amplitude does not
tain the weak phaseg. In the case ofB2→p1p2K2 the
largest partial width asymmetry arises from the interfere
of the nonresonant amplitude with the resonant amplit
coming from thexc0 and c(2S) states. In the case ofB2

→K2K1K2 the largest partial width asymmetry com
from thexc0 scalar resonance and is about 10% in the c
of c(2S) state.
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APPENDIX

Following the approach of Ref.@15#, the total amplitude
contributing to the partial decay widthGp can be written as a
sum of the resonant and nonresonant contributions as de
in Eq. ~21! in the following form:

M5Mnr1Mr5Te2 ig1P1R, ~A1!

whereT is the nonresonant tree contribution,P the nonreso-
nant penguin contribution andR the resonant contribution to
the amplitude. The partial width asymmetry defined in E
~22! is proportional to

Ap}sing Im@T~P* 1R* !#, ~A2!

where Im(A) stands for the imaginary part ofA @similarly
Re(A) stands for the real part ofA]. If we neglect the small
imaginary part of the penguin Wilson coefficients,T and P
will have the same strong phase. This implies that the o
contribution to the partial decay asymmetry will come fro
the interference of the tree nonresonant and the resonan
plitude. One can write

Ap}Im~T!Re~R!2Im~R!Re~T!. ~A3!

The imaginary part ofT is given by the absorptive part of th
left diagram on the Fig. 3. Using Cutkosky’s rules, its co
tribution can be written as
03403
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-

Im~T!Re~R!5
~2p!4

2 E Re~T!Re~R!Re~S!dF, ~A4!

where the integration is taken over theP2P3 phase space
Here S denotes the strong rescattering amplitude ofP2P3
trough the resonanceR visualized in Fig. 4. Similarly, the
imaginary part ofR is given by the absorptive part of th
right diagram on the Fig. 3, where now the sum of all po
sible intermediate states into whichR decays should be
taken into account. One can separate this contribution
the part withP2 andP3 as an intermediate state@ Im(R)P2,3

#

and the part with all other intermediate states (Im(R)8).
Again with the use of Cutkosky’s rules, one obtains

Im~RP2,3
!Re~T!5

~2p!4

2 E Re~T!Re~R!Re~S!dF.

~A5!

The right-hand sides of~A4! and ~A5! are equal and there
fore this two contributions to~A3! cancel among themselve
and we have

Ap;Im~R!8Re~T!;GR@12BR~R→P2P3!#. ~A6!

This cancellation is obviously a result of the unitarity and
maintains the equality of the total decay widths for the m
son and the antimeson as required by CPT theorem@30#.
That was already noticed in Refs.@9# and @15#, where the
more general proof is presented.

FIG. 4. Rescattering of theP2 and P3 states trough the reso
nanceR.
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