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Low-energy chiral Lagrangian from the spectral quark model
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We analyze the recently proposed spectral quark model in the light of chiral perturbation theory in curved
space-time. In particular, we calculate the chiral coefficientsL1 , . . . ,L10, as well as the coefficientsL11, L12,
and L13, appearing when the model is coupled to gravity. The analysis is carried for the SU~3! case. We
analyze the pattern of chiral symmetry breaking as well as elaborate on the satisfaction of anomalies. Matching
the model results to resonance meson exchange yields the relation between the masses of the scalar, tensor, and
vector mesons,M f 0

5M f 2
5A2MV54A3/Ncp f p . Finally, the large-Nc limit suggests the dual relations in the

vector and scalar channels,MV5MS52A6/Ncp f p and ^r 2&S
1/25^r 2&V

1/251ANc/2p f p50.59 fm.
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I. INTRODUCTION

The low-energy structure of QCD in the presence of
ternal electroweak and gravitational sources is best descr
by chiral perturbation theory~ChPT! @1–5# ~for review see,
e.g., Ref.@6#!. In the meson sector, the spontaneous break
of chiral symmetry dominates at low energies and system
calculations of the corresponding low-energy consta
~LECs! have been carried out in the recent past up to tw
loop accuracy@7–10# or by using the Roy equations@11# ~see
also @12,13#!. For strong and electroweak processes invo
ing pseudoscalar mesons the bulk of the LECs is saturate
terms of resonance exchanges@14#, which can be justified in
the large-Nc limit in a certain low-energy approximation@15#
by imposing the QCD short-distance constraints. In the c
of gravitational processes similar ideas apply@5#, although
less information is known@16#. Nowadays, ChPT can b
used as a qualitative and quantitative test to any mode
low-energy hadron structure.

In the quest to understand the microscopic dynamics
derlying the LECs, their calculation in chiral quark mode
has been undertaken many times@17–30#. The effort has
been made to computeL1 , . . . ,L10, which correspond to the
flat-space-time case. The calculation ofL11,L12, and L13,
encoding the coupling to gravitational sources, has seldo
been considered~see, however,@31#!. Roughly speaking,
these calculations are generally described in terms of s
long-wavelength expansion of the fermion determinant as
ciated with the constituent-quark degrees of freedom. A
tailed scrutiny shows, however, that the implementation
the necessary regularization is not always satisfactory f
several viewpoints. The regularization of a low-energy ch
quark model corresponds to a physical suppression of
high-energy quark states. This can be achieved in a num
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of different ways—e.g., by cutoffs, form factors, o
momentum-dependent masses, provided they do not b
symmetries such as the gauge invariance and chiral sym
try. Thus, the regularization should not be removed in
end. In such a situation, where the high-energy quark st
are suppressed above a certain scaleL, one should expect a
powerlike behaviorLn/Qn for any large-momentum externa
leg of the quark loop in the high-momentum limit. In th
language of the parton model this high-energy behavior c
responds to the onset of scaling.

As a matter of fact, one of the questions which could n
be answered by low-energy calculations concerns the l
energy resolution scale where these models are suppos
defined. Actually, in order to properly answer this questi
one should look instead intohigh-energy processesand de-
mand parton-model relations on the constituent quarks.
pointed out in Ref.@32#, a sensible scheme is obtained b
demanding that the momentum fraction carried by the
lence quarks in a hadron saturate the energy-momentum
rule. Once this initial scale is defined one can use the Q
evolution to compute an observable at a higher scale. T
way the QCD radiative corrections are incorporated. In fa
using the analysis of the Durham group carried out a dec
ago @33# for the case of the pion, one obtains the result t
the valence quarks saturate the energy-momentum sum
at m05313 MeV if the leading-order~LO! Dokshitzer-
Gribov-Lipatov-Altarelli-Parisi~DGLAP! QCD perturbative
analysis is carried out. Although this scale looks quite lo
the impressive agreement obtained for the parton distribu
functions of the pion after the DGLAP evolution in LO
@34,35# and next-to-leading order~NLO! @35# ~see also Ref.
@32#, and Ref.@36# where the comparison to the E615 da
@37# is made! supports this interpretation of the low resol
tion scale. Moreover, using that scale, the pion distribut
amplitude@38# and the off-forward generalized parton fun
tions @36# agree well also with the recent transverse latt
calculations@39,40#, which presumably incorporate the non
perturbative evolution.

A proper identification of the low-energy matrix elemen
entering the high-energy processes is grounded on the
©2004 The American Physical Society31-1
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sence of logarithmic corrections in the low-energy mode
the high-energy limit, since the proper QCD radiative log
rithmic corrections are automatically and completely inc
porated by the QCD evolution. Not surprisingly, this con
tion imposes severe constraints on the kind of admiss
regularization schemes. In a recent work the spectral qu
model ~SQM! has been proposed@41,42#, implementing the
so-called spectral regularization~see below! complying to
these powerlike short-distance constraints.

In the present paper we extend the SQM to the SU~3!
flavor group and include finite current quark mass. Instea
using the construction of vertices based on the Wa
Takahashi identities, employed in Refs.@41,42#, it is by far
more convenient to define the effective action depending
the nonlinear pseudoscalar meson fields in the presenc
external scalar, pseudoscalar, vector, axial, and gravitati
sources. The latter have never been considered in c
quark model calculations. This effective action is defined
Sec. II. We also show in Sec. III how one can explicit
eliminate the spectral function in terms of the qua
momentum-dependent mass and wave-function renorma
tion. Following the standard procedure we perform the g
dient expansion of the spectral-regularized fermion deter
nant for both the anomalous~Sec. IV! and the nonanomalou
sectors in curved space-time~Sec. V!. As a consequence th
structure of the energy-momentum tensor may be analy
Remarkably, our spectral regularization method comp
with the QCD anomaly without removing the regularizatio
Therefore the standard Wess-Zumino-Witten@43,44# term is
generated for a finite regularization. In the nonanomal
sector we find, through the comparison to the standard ch
Lagrangian@3,4#, that the low-energy constants atO(p4) as-
sociated with terms which are nonvanishing in the ch
limit are completely independent of the regularization d
tails. The LECs associated with terms carrying the curr
quark mass coefficients do depend on the particular an
for the spectral regularization, and we evaluate them us
the regularization based on the meson dominance of f
factors @42#. Such a model has provided a satisfactory d
scription of the quark self-energy of the recent lattice d
@45#. Finally ~Sec. VII!, we also confront the large-Nc rela-
tions @15# and discuss the consequences of extending
present model to include these constraints. The Appen
contains details of the formalism in the curved space-tim

II. EFFECTIVE ACTION OF THE SPECTRAL QUARK
MODEL

In a recent work the spectral quark model has been in
duced@41,42#. The approach is similar in spirit to the mod
of Efimov and Ivanov@46#, proposed many years ago. It
based on the formal introduction of the generalized Lehm
representation for the quark propagator:

S~p!5E
C
dv

r~v!

p”2v
[

Z~p2!

p”2M ~p2!
, ~1!

wherer(v) is a ~generally complex! quark spectral function
and C denotes a suitable contour in the complexv plane.
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The functionM (p2) is the quark self-energy, whileZ(p2) is
the quark wave-function renormalization. In the case ofana-
lytic confinement—i.e., when the propagator does not ha
poles, a sensible definition of a constituent quark mas
~from now on we drop the indexC from the v integral,
which is implicitly understood to run along the contourC)

MQ5M ~0!5E dv
r~v!

v Y E dv
r~v!

v2
. ~2!

As discussed at length in Ref.@42#, the proper normalization
and the conditions of finiteness of hadronic observables
achieved by requesting an infinite set ofspectral conditions
for the moments of the quark spectral functio
r(v)—namely,

r0[E dvr~v!51, ~3!

rn[E dvvnr~v!50,

for n51,2,3, . . . . ~4!

Physical observables are proportional to the zeroth and
inverse moments,

r2k[E dvv2kr~v!, for k50,1,2,3, . . . , ~5!

as well as to the ‘‘log moments,’’

rn8[E dv log~v2/m2!vnr~v!

5E dv log~v2!vnr~v!, for n51,2,3,4, . . . . ~6!

Obviously, when an observable is proportional to the dim
sionless zeroth moment,r051, the result does not depen
explicitly on the regularization. The spectral conditions~4!
remove the dependence on the scalem in Eq. ~6!, thus guar-
anteeing the absence of any dimensional transmutation.
only exception is the zeroth-log moment

r08~m2!5E dv log~v2/m2!r~v!, ~7!

which does depend on a scalem and isnot regularized by the
spectral method~see the discussion below!. No standard re-
quirement of positivity for the spectral strength,r(v), is
made. Unlike other regularizations, such as the dimensio
regularization orz-function regularization, the spectral regu
larization is physical in the sense that it provides a hig
energy suppression in one-quark-loop amplitudes and is
removed at the end of the calculation. It also improves o
Pauli-Villars regularization, because it complies with the fa
torization property of correlation functions, form factor
etc., in the high-energy limit; i.e., it guarantees the abse
of logarithmic corrections to form factors. The phenomen
1-2
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logical success of the SQM in describing structure functio
of the pion, generalized parton distributions@36,47#, and the
pion light-cone wave function@38,48# suggests that the
whole scheme deserves to be thoroughly pursued furthe

In Ref. @42# it was argued that there are a number of ter
in the one-quark-loop effective low-energy chiral Lagrang
which correspond to taking the infinite-cutoff limit. Th
terms with explicit chiral-symmetry breaking do not corr
spond to this class. The purpose of this paper is to ana
these terms, which are specific both to the regularization
the choice of couplings in the spectral quark Lagrangian.
completeness we also consider the gauge couplings
gravitational couplings, which allows us a determination
all low-energy constants in the SU~3! sector in the SQM
approach.

The effective action complying to the solution of th
Ward-Takahashi identities via the gauge technique of D
bourgo and West@49# corresponds in our case to the min
mum substitution prescription for the spectral quark. It yie
a quark fermionic determinant of the form

G@U,s,p,v,a,g#52 iNcE dvr~v!Tr log~ iD!, ~8!

where the Dirac operator is given by

iD5 id”2vU52m̂01~v”1a”g52s2 ig5p!

5 iD 2vU5. ~9!

The derivativedm is frame ~local Lorentz! and general-
coordinate covariant and it includes the spin connection~see
the Appendix for notation!. The symbolss, p, vm , and am
denote the external scalar, pseudoscalar, vector, and
flavor sources, respectively, given in terms of the gener
of the flavor SU~3! group,

s5 (
a50

NF
2

21

sa

la

2
, . . . , ~10!

with la representing the Gell-Mann matrices. The tensorgmn

is the metric external source representing the coupling
gravitational field. The matrix U55Ug5, and U5u2

5eiA2F/ f is the flavor matrix representing the pseudosca
octet of mesons in the nonlinear representation:

F5S 1

A2
p01

1

A6
h p1 K1

p2
2

1

A2
p01

1

A6
h K0

K2 K̄0 2
2

A6
h

D .

~11!

The matrixm̂05Diag(mu ,md ,ms) is the current quark mas
matrix and f denotes the pion weak-decay constant in
chiral limit, to be determined later on from the proper no
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malization condition of the pseudoscalar fields. For a bilo
~Dirac- and flavor-matrix-valued! operatorA(x,x8) one has

Tr A5E d4xA2g tr^A~x,x!&, ~12!

with tr denoting the Dirac trace and̂ & the flavor trace.
Moreover,g5detgmn is the determinant of the curved spac
time metric. Finally, in the second line of Eq.~9! we have
introduced the Dirac operatorD corresponding to the exter
nal fields only. TheUA(1) is taken into account by extendin
the matrix to the U~3! sector, U→Ū5Ueih8 /(3 f ) with
detU51, adding the customary term

L52
f 2

4
mh1

2 H u2
i

2
@ log detU2 log detU†#J 2

. ~13!

The Dirac operator given by Eq.~9! transforms covariantly
under local chiral transformations~see the Appendix!.

Formally, in the flat space-time the effective action~8!
looks quite familiar and we should point out here that t
main difference with similar actions, such as, e.g., the one
Ref. @21#, is related to the regularization procedure. Actual
the method of Ref.@21# consists of takingr(v)5d(v
2MQ) with MQ being the constituent-quark mass. Th
choice satisfies the normalization conditionr051, but does
not comply to thern50 spectral requirements. The proble
can be avoided if one uses suitable regularization meth
such as the dimensional orz-function regularization, but then
logarithmic correctionsto form factors are generated and th
well-known Landau instability found long ago in Ref
@50,51# sets in.

The pion form factor obtained from thez-function regu-
larization used, for instance, in Ref.@21# for t52Q2 be-
comes, in the chiral limit,

F~Q2!52
4NcMQ

2

~4p!2f p
2 E0

1

dx logF x~12x!Q21MQ
2

m2 G ,

where the pion weak-decay constant is given byf p
2

54NcMQ
2 log(m2/MQ

2 )/(4p)2. While the proper normalization
F(0)51 is obtained, at large momenta one has a logarith
behavior F(Q2)→ log(Q2), instead of the powerlike
behavior, which poses a problem. On the other hand,
spectral regularization method yields@48# F(Q2)
→Nc/4p2f p

2 (2r48/Q
222r68/Q

41•••), with no logarithms
present. This twist expansion property allows us to extrac
a clean way the low-energy matrix elements relevant
high-energy processes@32#.

Our effective action looks also similar to Nambu–Jon
Lasinio ~NJL! bosonized models@52# ~for reviews see, e.g.
Refs.@53–57#!. Again, the main and important difference h
to do with the interpretation of the regularization method.
discussed in Refs.@32# in NJL models one can only regular
ize quark loops—i.e., closed quark lines—so a direct co
parison for the Lehmann representation, where quark li
are open is somewhat misleading. The fact that in the S
the Lehmann ‘‘regularization’’ carries over to open qua
1-3
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lines has important consequences as regards the consis
of high-energy calculations in either a purely hadronic
partonic interpretation@42#.

Given the fact that the integration contour is in gene
complex, passing to the Euclidean space and separating
action into the real and imaginary parts becomes a bit inc
venient. Instead, we take the full advantage of
Minkowski space and introduce the auxiliary operator

2 iD55g5~ id”2vU5†2m̂01v”2g5a”2s1 ig5p!g5 ,
~14!

which corresponds to the Hermitian conjugation in the E
clidean space. Thus, the normal parity action is given by

Sn.p.52
i

2
NcE dvr~v!Tr log~DD5!. ~15!

III. RELATION OF SPECTRAL MOMENTS TO QUARK
MASS AND NORMALIZATION

A potential disadvantage of the spectral regularization
that the inverse problem—i.e., the problem of finding t
spectral functionr(v) from the known moments—does no
always have an easy explicit solution or perhaps has no
lution at all. In this section we show how the negative m
ments and the log moments can be translated into the
grals involving the quark mass functionM (p2) and the quark
wave-function renormalizationZ(p2). Let us start with Eq.
~1! and assume that the set of spectral conditions is met

E dvvnr~v!5dn0 , n50,1, . . . . ~16!

Then, the following identity, proved by induction, holds:

E dv
vnr~v!

p”2v
5p” nS~p” !2p” n21 n51,2, . . . . ~17!

Rationalizing the denominators yields

E dvvnr~v!
p”1v

p22v2
5p” nZ~p2!

p”1M ~p2!

p22M ~p2!2
2p” n21.

~18!

We have two cases of odd and evenn. For n52k we find

E dvv2kr~v!
p”1v

p22v2
5p2kZ~p2!

p”1M ~p2!

p22M ~p2!2
2p” p2k22.

~19!

Defining

Ln~p2!5E dvvnr~v!
1

p22v2
~20!

and comparing coefficients of powers ofp” in Eq. ~19! pro-
duces the identities
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L2k~p2!5p2kZ~p2!
1

p22M ~p2!2
2p2k22,

L2k11~p2!5p2kZ~p2!
M ~p2!

p22M ~p2!2
. ~21!

The casen52k11 produces the same relations.
The following recursion relations follow directly from th

spectral conditions~4!:

E dv
vnr~v!

p22v2
5p2E dv

vn22r~v!

p22v2
, n.2, ~22!

which are obvious when on the right-hand side we writep2

5(p22v2)1v2. We now pass to the Euclidean space,p” 2

5p2→2pE
2 , and get

E dvvnlog~v2!r~v!

5E
0

`

dpE
2Ln~2pE

2 !52E
0

`

dpE
2pE

2Ln22~2pE
2 !. ~23!

Thus, we have obtained the log moments in terms ofZ and
M. The negative moments are simply derivatives of the qu
propagator at the origin:

E dv
r~v!

vn
52S d

dp” D
n21

S~p” !U
p50

n51,2, . . . .

~24!

The derivative is computed takingp25p” p” . Thus, given the
quark propagatorS(p” ) we may just use formulas~23!, ~24!
to translate negative moments and log moments without e
having to specify explicitly the spectral function. This is
rather remarkable feature of the spectral approach. The
pressions forf p , ^qq& ~the quark condensate for a sing
flavor!, andB ~the vacuum energy density! in the chiral limit
are

f 25
4Nc

~4p!2E dvv2r~v!~2 logv2!, ~25!

^q̄q&5
4Nc

~4p!2E dvv3r~v!~2 logv2!, ~26!

2B5
NFNc

~4p!2E dvv4r~v!~2 logv2!5
1

4
^um

m&, ~27!

respectively. Here,umn is the energy-momentum tensor~see
also Sec. V C!. We get, for instance,
1-4
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f 25
4Nc

~4p!2E0

`

dpE
2

M ~2pE
2 !22pE

2@Z~2pE
2 !21#

pE
21M ~2pE

2 !2
~28!

or

^q̄q&5
4Nc

~4p!2E0

`

dpE
2pE

2
Z~2pE

2 !M ~2pE
2 !

pE
21M ~2pE

2 !2
. ~29!

In Eq. ~29! we recognize the usual formula for the qua
condensate found in nonlocal models. On the other hand,
~28! is different from analogous quark-model expressio
@58,59#. The reason is that, strictly speaking, the above f
mulas should only be used for functionsM (p2) and Z(p2)
complying with the generalized Lehmann representation,
~1!, with the spectral density satisfying the spectral con
tions.

One can use similar manipulations to get the pion elec
magnetic form factor obtained in Ref.@42#. For spacelike
momentumQ252q2, we obtain

FV~Q2!5
4Nc

~4p!2f p
2 E0

1

dxE
0

`

dpE
2

3
M ~2PE

2 !22PE
2@Z~2PE

2 !21#

PE
21M ~2PE

2 !2
, ~30!

where

PE
25pE

21x~12x!Q2. ~31!

Note that the inversion procedure used in Ref.@42# to deter-
mine the spectral density from vector meson dominance~the
meson dominance version of the SQM! is linear, whereas
written in terms ofM andZ becomes highly nonlinear.

IV. CHIRAL ANOMALIES

One of the major advantages of the spectral regulariza
is that it makes hadronic observables finite and scale in
pendent, a basic requirement of any regularization proced
However, that does not necessarily mean or imply that
full effective action in the presence of external fields is fini
since even in the case of the vanishing pion fields,U51, we
have nonhadronic processes. Actually, it turns out that
photon wave function renormalization@42# is proportional to
r08 ; thus, it depends on the scalem and therefore diverges in
some regularization schemes~such as the dimensional regu
larization!. This scale dependence arises also in other non
dronic terms of the effective action.

In Ref. @42# it was checked that thep0→2g and g
→3p decays comply to the correct values expected from
chiral QCD anomaly. With the help of the effective actio
Eq. ~8!, we now want to show that this is also true for a
anomalous processes. In order to understand the role of r
larization, it is instructive to compute the chiral anoma
first. Next, we will show that in the presence of extern
fields the anomaly does not depend on the pion fieldU and
thus coincides with the anomaly in QCD due to the spec
03403
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Under chiral~vector and axial! local transformations the

Dirac operator transforms as

D→e1 i eV(x)2 i eA(x)g5De2 i eV(x)2 i eA(x)g5, ~32!

with

eV~x!5(
a

eV
a~x!la , eA~x!5(

a
eA

a~x!la . ~33!

Infinitesimally, we have

dD5 i @eV ,D#2 i $eAg5 ,D%. ~34!

If we make a chiral transformation of the effective action~8!
without any additional regularization, we get

dS52 iNcTrE dvr~v!@dDD21#. ~35!

If we assume the cyclic property of the functional trace,
get a contribution from the axial variation only,

dAS[AA5E d4x trE dvr~v!^2i eAg5&

5r0E d4x tr^2i eAg5&, ~36!

a result which, due to the infinite dimensional trace@60,61#,
is ambiguous even in the presence of the spectral regula
tion. Thus, to get rid of the ambiguity we have to introdu
an extra regularization. As is well known, there is no reg
larization preserving the chiral symmetry; thus, the anom
is generated.

The calculation can be done by standard methods. A v
convenient one is thez-function regularization@62#, which
computes the anomaly directly in terms of the Dirac opera
itself ~and not its square! and does not require any redefin
tion of the Diracg5 matrix. This yields the equation

dAS[AA5TrE dvr~v!~2i eAg5@ iD#0!

5E d4xtrE dvr~v!^2i eA~x!g5^xuD0ux&&, ~37!

where the zeroth power of the Dirac operator is underst
as an analytical continuation which can be written in ter
of the Seeley-DeWitt coefficients for the Dirac operato
@62#:

^xuD0ux&5
1

~4p!2 H 1

2
D41

1

3
~D2Gm

2 1GmD2Gm1Gm
2 D2!

1
1

6
~Gm

2 Gn
21~GmGn!21GmGn

2Gm!J , ~38!
1-5
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whereGm5 1
2 $gm ,D% and the operatorD acts to the left. The

result for general couplings in four dimensions has been
tained from Ref.@62#. Direct inspection shows that since th
v dependence is given byiD5 iD 2vU5, the result can be
written as a sum of anv-independent term and a polynomi
remainder:

AA5E dvr~v!~AA@v,a,s,p#1AA@v,a,s,p,v,U# !

5r0AA@v,a,s,p#, ~39!

where thev-dependent polynomial term vanishes due to
spectral conditions. This shows that the anomaly of the sp
tral quark model coincides with the anomaly of QCDafter
introducing an additional suitable regularization, regardl
of the details of the spectral function. This result is comm
also to nonlocal models when one evaluates anoma
@63,64#. This is an important point since if the effective a
tion G@U,s,p,v,a# in Eq. ~8! is both chiral symmetric and
finite, there is apparently no reason for anomalies. We
see below how and where these divergences arise.

To see now how the standard Wess-Zumino-Wit
~WZW! @43,44# term arises in the present context, let
consider for simplicity the chiral limitm̂050 and set the
external fields to zero and work in flat space, so thatD
5 i]” . A convenient representation can be obtained by in
ducing the field

Ut
55eitA2g5F/ f , ~40!

interpolating between the vacuum,Ut50
5 51, and the full

matrix Ut51
5 5U5. Then, we have the trivial but useful iden

tity for the vacuum-subtracted action:

G@U,s, . . . #2G@1,s, . . . #

52 iNcE
0

1

dt
d

dtEC
dvr~v!Tr log~ iD2vUt

5!

5 iNcE
0

1

dtE
C
dvr~v!TrFv

dUt
5

dt

1

iD2vUt
5G . ~41!

Using the representation in Eq.~42! and the formulas of the
Appendix the result can be obtained straightforwardly. Sin
we are interested in abnormal parity processes, it is eno
to identify the terms containing the Levi-Civita` tensor
emnab , which due to the Lorentz invariance requires at le
four derivatives. Taking into account the fact that the deri
tive operator acts to the right we get

Sab
(4)52 iNcE

0

1

dtE
C
dvr~v!E d4xE d4k

~2p!4

1

@k22v2#5

3TrH 2vg5Ut
† dUt

dt
v@vUt

†i]”Ut#
4J . ~42!

After computation of the traces and integrals we finally fi
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(4)5r0

Nc

48p2E0

1

dtE d4xemnab

3 K Ut
† dUt

dt
Ut

†]mUtUt
†]nUtUt

†]aUtUt
†]bUtL ,

~43!

which coincides with the WZW term if the spectral norma
ization conditionr051 is used. External fields can be in
cluded again through the use of Eq.~42!, yielding the gauged
WZW term in the Bardeen-subtracted form. Actually, the d
ferenceG@U,s,p,v,a#2G@1,s,p,v,a# is finite and preserves
gauge invariance but breaks chiral symmetry generating
anomaly of Eq.~39!.

Higher-order corrections to the abnormal parity comp
nent of the action involve negative spectral moments.
instance, the termsO(p6) and higher are regularized, an
involve r22 for terms with no quark mass terms andr21 for
terms containing one quark mass. This is in contrast to
approach of Ref.@21# where the infinite-cutoff limit is con-
sidered for a constant constituent-quark mass. In this reg
let us also note that for the unregularized abnormal pa
action one would get the transition form factor

Fpgg* ~Q2!5
8MQ

2

~4p!2f p

E
0

1

dx
1

~12x!xQ212MQ
2

,

which satisfies the proper anomaly conditionFpgg* (0)
51/(4p2f p). Again, a log-dependent term is obtained
high virtualities~see also Ref.@32#!, in contrast to the correc
twist expansion generated by the spectral method@42#.

V. LOW-ENERGY CHIRAL EXPANSION OF THE ACTION

The chiral expansion of the action, Eq.~8!, corresponds to
a counting where the pseudoscalar fieldU and the curved
space-time metricgmn are zeroth order, the vector and axi
fields vm and am are first order, and any derivative]m first
order. The external scalar and pseudoscalar fieldss andp and
the current mass matrixm̂0 are taken to be second order.
chiral quark models at the one-loop level this chiral expa
sion corresponds to a derivative expansion. With the help
the action of Eq.~8! one can compute the derivative expa
sion in curved space-time~see the Appendix for details!,

S5E d4xA2gL~x!, ~44!

where the effective chiral Lagrangian in the Gass
Leutwyler-Donoghue form@4,5# reads

L5L (0)1L (2,g)1L (2,R)1L (4,g)1L (4,R)1•••, ~45!
1-6
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with the metric~upperscriptg) and curvature~upperscriptR)
terms explicitly separated. The zeroth-order vacuum con
bution reads

L (0)5B5
NFNc

~4p!2
r48 , ~46!

where the vacuum constant is given by Eq.~27!.
ive

ar

.

03403
i-
A. Metric contributions

The metric contributions read

L (2,g)5
f 2

4
^DmU†DmU1~x†U1U†x!& ~47!

and
L (4,g)5L1^DmU†DmU&21L2^DmU†DnU&21L3^~DmU†DnU !2&1L4^DmU†DmU&^x†U1U†x&1L5^DmU†DmU~x†U

1U†x!&1L6^x
†U1U†x&21L7^x

†U2U†x&21L8^~x†U !21~U†x!2&2 iL 9^Fmn
L DmUDnU†1Fmn

R DmU†DnU&

1L10̂ Fmn
L UFmn

R U†&1H1^~Fmn
R !21~Fmn

L !2&1H2^x
†x&. ~48!
ts
r

ere
-
s
the
s

er-
y in
-

nal
uld
o
gu-

s to
l

We have introduced the standard chiral covariant derivat
and gauge field strength tensors

DmU5Dm
L U2UDm

R5]mU2 iAm
L U1 iUAm

R ,

Fmn
r 5 i @Dm

r ,Dn
r #5]mAn

r 2]nAm
r 2 i @Am

r ,An
r #,

~49!

with r 5L,R. The pion weak-decay constant and the qu
condensate in the chiral limit read

f 252
4Nc

~4p!2
r28 , ~50!

f 2B052^q̄q&5
4Nc

~4p!2
r38 , ~51!

while the chiral coefficients are1

L3522L2524L152
Nc

~4p!2

r0

6
, ~52!

L45L650, ~53!

L552
Nc

~4p!2

r18

2B0
, ~54!

L75
Nc

~4p!2

1

2NF
S r18

2B0
1

r0

12D , ~55!

1The value ofL7 displayed here corresponds to the SU~3! model
only. For the U~3! model one getsL750 but then the term of Eq
~13! should be added, and the value ofL7 is changed.
s

k

L85
Nc

~4p!2 F r28

4B0
2

2
r18

4B0
2

r0

24G , ~56!

L9522L105
Nc

~4p!2

r0

3
, ~57!

H15
Nc

~4p!2

r08

6
, ~58!

H25
Nc

~4p!2 S r28

B0
2

1
r18

2B0
1

r0

12D , ~59!

where NF52,3. As we can see, the coefficien
L1 ,L2 ,L3 ,L4 ,L6 ,L9 ,L10 are pure numbers and coincide fo
convergent integrals with those expected in the limit wh
the regularization is removed@21#. The argument anticipat
ing this result in Ref.@42# has to do with the dimensionles
character of the low-energy couplings which thus involve
zeroth momentr051. Note that this remarkable result hold
without removing the regularization.2 The fact thatH1 is
proportional tor08 corresponds to a scale-dependent or div
gent gauge-field wave function and was observed alread
Ref. @42#. Hence, the finite piece ofH1 depends on the regu
larization scheme.

We can usef and L5 in order to determineL7 , L8 , B0,
andH2, which immediately yields

2Actually, the kinetic energy term obtained in Ref.@21# within the
zeta-function regularization was scale dependent, so dimensio
transmutation sets in. If dimensional regularization is used, it wo
lead to a 1/e divergence, which after renormalization would als
lead to dimensional transmutation. The point of the spectral re
larization is that dimensional transmutation is precluded thank
the spectral conditions, Eqs.~4!, and any choice of the spectra
function yields the same finite result.
1-7
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TABLE I. The dimensionless low energy constants~multiplied by 103) compared with some referenc
values and other models. The errors for the SQM in the MDM realization reflect the errors inMS andMQ of
Eq. ~86!.

SQM Dual
3103 ~MDM ! ChPTa LargeNc

b NJL c largeNc

L1 0.79 0.5360.25 0.9 0.96 0.79
L2 1.58 0.7160.27 1.8 1.95 1.58
L3 23.17 22.7261.12 24.3 25.21 23.17
L4 0 0 0 0 0
L5 2.060.1 0.9160.15 2.1 1.5 3.17
L6 0 0 0 0 0
L7 20.0760.01d 20.3260.15 20.3
L8 0.0560.04 0.6260.20 0.8 0.8 1.18
L9 6.33 5.9360.43 7.1 6.7 6.33
L10 23.17 24.4060.70e 25.4 25.5 24.75
L11 1.58 1.8560.90f 1.6
L12 23.17 22.7f 22.7
L13 0.3360.01 1.760.80f 1.1
in

a

r,

alar
the
el.

n’s
-
l

r a
L752
L5

2Nf
1

Nc

384p2Nf

.20.3531023,

L85
L5

2
2

Nc

384p2
2

f 2

16B0
2

.0.0531023,

H252L51
Nc

192p2
2

f 2

4B0
2

.21.0231023.

~60!

The numerical values displayed here have been obta
with the large-Nc value ofL5 from Table I.

B. Curvature contributions

The curvature contributions to the chiral Lagrangian c
be written in the form proposed in Ref.@5# and are given by

L (2,R)5H0R ~61!

and

L (4,R)52L11R^DmU†DmU&2L12R
mn^DmU†DnU&

2L13R^x†U1U†x&1H3R21H4RmnRmn

1H5RmnabRmnab. ~62!

Here Rsmn
l , Rmn , andR are the Riemann curvature tenso

the Ricci tensor, and the curvature scalar, respectively:3

3Note the opposite sign of our definition for the Riemann tenso
compared to Ref.@5#. We follow Ref. @65# ~see the Appendix!.

aThe two-loop calculation of Ref.@9#.
bReference@14#.
cReference@24#.
03403
ed

n

2R smn
l 5]mGns

l 2]nGms
l 1Gma

l Gns
a 2Gna

l Gms
a ,

Rmn5R mln
l ; R5gmnRmn . ~63!

The Christoffel symbols are specified in Eq.~A22!. The cur-
vature terms reflect the composite nature of the pseudosc
fields, since in the considered model they correspond to
coupling of the gravitational external field at the quark lev
After some algebra we get

H052
f 2

4
NF/6 , ~64!

L12522L1152
Nc

~4p!2

r0

6
, ~65!

L1352
Nc

~4p!2

r18

12B0
5

1

6
L5 , ~66!

H351
Nc

~4p!2
NF

r08

144
, ~67!

H452
Nc

~4p!2
NF

r08

90
, ~68!

H552
Nc

~4p!2
NF

7r08

720
. ~69!

Note that there is a finite strong renormalization to Newto
gravitational constantG, since the classical Einstein’s La
grangian isL52R/(16pG). This correction, proportiona
to the ratio of the hadronic to the Planck scalef 2Gp/3, is
numerically tiny.
s

dSee footnote 1.
eReferences@10,67#.
fReference@5#.
1-8
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C. Energy-momentum tensor

Using the action of Eq.~8! one can compute the energ
momentum tensor as a functional derivative of the act
with respect to an external space-time-dependent me
gmn(x), around the flat space-time metrichmn @we take the
signature (1222)]:

1

2
umn~x!5

dG

dgmn~x!
U

gmn5hmn

52 i
Nc

2 E
C
dvr~v!

3^xu$Omn,~ iD!21%ux&, ~70!

where

Omn5
i

2
~gm]n1gn]m!2gmn~ i]”2v!. ~71!

In the flat space-time limitgmn5hmn, the chiral Lagrangian
contains only metric contributions and takes the form giv
in Refs.@3,4#:
ira

he
i.e
g

u-
u

d
rk

03403
n
ic,

n

L5L (0)1L (2)1L (4)1•••, ~72!

where

L (2)5L (2,g)ugmn5hmn
,

L (4)5L (4,g)ugmn5hmn
. ~73!

If we do a derivative expansion~see the Appendix for de
tails!, the effective chiral energy-momentum tensor up to a
including fourth-order corrections in the chiral countin
reads@5#

umn5umn
(0)1umn

(2)1umn
(4)1•••, ~74!

where

umn
(0)52gmnL (0), ~75!

umn
(2)5

f 2

4
^DmU†DnU&2gmnL (2), ~76!
umn
(4)52gmnL (4)12L4^DmU†DnU&^x†U1U†x&1L5^DmU†DnU1DnU†DmU&^x†U1U†x&22L11~gmn]22]m]n!

3^DaU†DaU†&22L13~gmn]22]m]n!^x†U1U†x&2L12~gmbgna]21gmn]a]b2gma]n]b2gna]m]b!^DaU†DbU&.

~77!
etic

t is
s of
Note that the coefficientsL1–L10 appear inL (4) given by
Eq. ~48!. The terms containingL11–L13 cannot be obtained
by computing the energy-momentum tensor from the ch
effective Lagrangian in flat-space time~72! and from this
viewpoint are genuine quark contributions toumn in this
model. Actually, the difference between computing t
energy-momentum tensor from an action at the quark—
starting from Eq.~71!—or at the meson level—i.e., startin
from Eq. ~72!—is

dG

dgmn~x!
U

gmn

2
dSg

dgmn~x!
U

gmn

5
dSR

dgmn~x!
U

gmn

, ~78!

with Sg andSR denoting the metric and curvature contrib
tions to the action, and is precisely related to the curvat
terms corresponding to the couplingsL11,L12, andL13.

VI. RESULTS FOR THE MESON DOMINANCE MODEL

The meson dominance model~MDM !, developed in Ref.
@42#, offers a particularly simple realization of the SQM an
provides an explicit form for the spectral function. The qua
propagator becomes
l

.,

re

S~p!5E
C
dv

rV~v!p”1rS~v!v

p22v2
5

Z~p2!

p”2M ~p2!
, ~79!

where

rV~v!5
1

2p i

1

v

1

~124v2/MV
2 !5/2

, ~80!

rS~v!5
1

2p i

12r38

MS
4~124v2/MS

2!5/2
. ~81!

The vector spectral functionrV(v) is determined by impos-
ing vector meson dominance of the pion electromagn
form factor, from which the identity

f 25
NcMV

2

24p2
~82!

is deduced. This relation is subject to chiral corrections. I
remarkable that such a simple relation produces a mas
MV5826 MeV for f p593 MeV which agrees with the
value recently obtained in Ref.@66#. With this value of
f one gets a vacuum energy ofB523NFf 4/Nc
1-9
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;(202–217 MeV)4 for NF53. In contrast torV(v), the
expression for the scalar spectral functionrS(v) is an edu-
cated guess which satisfies the odd spectral conditionsr1

5r35•••50 and reproduces the value of ther38 log mo-
ment. The preferred value for the vector mass is

MV5770 MeV, ~83!

which corresponds to ther-meson mass and which is used
the subsequent numerical analysis.

The integration contourC used in the MDM encircles the
branch cuts—i.e., starts at2`1 i0, goes around the branc
point at 2MV/2, and returns to2`2 i0, with the other
section obtained by a reflection with respect to the ori
@42#. These two sections are connected with semicircle
infinity. The mass function becomes

M ~p2!

M ~0!
5

10p2

MV
2

S MS
2

MS
224p2D 5/2

S MV
2

MV
224p2D 5/2

21

, ~84!

where the constituent quark mass is4

MQ[M ~0!52
48MV

2p2^q̄q&

5MS
4Nc

. ~85!

When M (p2)5p2, then Z(p2)50, such that the quark
propagator has no poles in the complexp2 plane. Instead, it
has a cut starting at the branch pointp25MV

2/4. The expo-
nents reproduce accurately the 1/(2p2)3/2 behavior in the
deep-Euclidean domain. This behavior was seen in the re
QCD lattice simulation in the Landau gauge, linearly e
trapolated to the chiral limit@45#. A fit to the data yields@48#

MQ5303624 MeV,

MS5970621 MeV, ~86!

with the optimum value ofx2 per degree of freedom equal t
0.72, yielding an impressive agreement ofM (p2) up to p2

5216 GeV2. AlthoughZ(p2) is not nearly as good~cf. Ref.
@48#!, leaving room for improvement, we think it worthwhil
to pursue the pattern of chiral-symmetry breaking wh
arises in this particular realization of the SQM. Incidenta
let us note that if the results of Sec. III are used we get

f 25
Nc

4p2E dpE
2 1

S 11
4pE

2

MV
2 D 5/2, ~87!

which reproduces Eq.~82! and shows the consistency of th
approach. For the meson dominance model we get

4In Ref. @48# there were typographical errors in Eqs.~10.6! and
~10.9!, which should carry an extra factor of 2 on the right-ha
side.
03403
n
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nt
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r18
MD5

8p2^q̄q&

NcMS
2

52
5MQMS

2

6MV
2

,

r28
MD52

4p2f 2

Nc
52

MV
2

6
,

r38
MD52

4p2^q̄q&
Nc

5
5MQMS

4

12MV
2

. ~88!

Using these values we get

L55
Nc

96p2

MV
2

MS
2

, ~89!

L75
Nc

32p2Nf
S 1

12
2

MV
2

6MS
2D , ~90!

L85
Nc

16p2 S 2
MV

10

150MQ
2 MS

8
1

MV
2

12MS
2

2
1

24D . ~91!

In the SU~3! case we display our results in Table I. We no
that the predictions forL1,2,3,4,6,9,10 are common to the
scheme of Ref.@21#. The values ofL5,7,8 are specific both to
the SQM and MDM realizations.

In the SU~2! case we have, with the help of the relatio
given in Ref.@4#, to pass form SU~3! to SU~2! @3#. In the
absence of meson loop corrections,5

l̄ 152 l̄ 252
1

2
l̄ 552

1

4
l̄ 652Nc , ~92!

l̄ 35
4Nc

3
1

16NcMV
10

75MQ
2 MS

8
, ~93!

l̄ 45
2MV

2Nc

3MS
2

. ~94!

The vector and scalar pion radii are given by@3#

^r 2&V5
1

16p2f 2
l̄ 65

6

MV
2

,

^r 2&S5
3

8p2f 2
l̄ 45

6

MS
2

, ~95!

respectively. While the vector pion mean squared radius
produces the built-in vector meson dominance of the p

5The relations are l̄ 15192p2(2L11L3), l̄ 25192p2L2 , l̄ 3

5256p2(2L41L524L622L8), l̄ 4564p2(2L41L5), l̄ 5

52192p2L10, l̄ 65192p2L9 , l̄ 115192p2L11, and l̄ 13

5256p2l 13. The constantl 12 is not renormalized by the pion loop
1-10
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electromagnetic~e.m.! form factor, the scalar radius show
that the scalar mass obtained by a fit to the lattice quark m
function does correspond to the mass of a scalar me
dominating the scalar form factor,^r 2&S

1/250.5060.01 fm.
The scalar~spin-0! and tensor~spin-2! components of the

gravitational form factors,u0 and u2 @5#, respectively, pro-
duce the same mean-squared radii

^r 2&G,05^r 2&G,25
Nc

48p2f 2
, ~96!

regardless of the particular realization of the spectral mo
If we saturate the form factors with scalar and tensor mes
f 0 and f 2, we get, for their masses,

M f 0
5M f 2

54p f pA3/Nc51105–1168 MeV, ~97!

depending whether we takef 588 or 93 MeV, respectively
The experimental value for the lowest tensor meson
M f 2

expt51270 MeV. As discussed in Ref.@5#, the u0 ~corre-

sponding to the trace of the energy-momentum tensor! form
factor couples to scalars, whereas theu2 ~corresponding to
the traceless combination ofumn) form factor couples to ten
sor ~spin-2! mesons.

One message is clear from the present model: the sc
meson of massM f 0

which dominates the energy-momentu
tensor does not necessarily coincide with the scalar meso
massMS , which dominates the scalar form factor. Actua
we haveM f 0

5A2MV , whereasMS is a free quantity. This is
natural in the spectral approach, where in the chiral limit
scalar form factorFS involves the odd spectral moment
whereasu0 involves the even spectral moments. In partic
lar, the corresponding mean-squared radii are proportiona
r18 andr0, respectively. Finally, we note that the numeric

value of l̄ 354.65 obtained in MDM amounts to a shift of th
pion mass by less than 1% and an increase off p yielding 89
MeV as compared tof 587 MeV.

VII. LARGE- Nc LIMIT AND DUALITY

Given the fact that our result corresponds to a one-qu
loop approximation, we cannot expect our model to be be
than the leading large-Nc contribution to the low-energy pa
rameters, which is made of infinitely many resonance
changes@15#. On the other hand, the evaluation of the
large-Nc contributions requires additional, not necessar
unreasonable, assumptions such as the convergence
infinite set of states and, moreover, an estimate of the c
tributions of higher resonances. In practice, one works in
single-resonance approximation~SRA!, yielding a reduction
of parameters@5,15#:

2L1
SRA5L2

SRA5
1

4
L9

SRA52
1

3
L10

SRA5
f 2

8MV
2

, ~98!

L5
SRA5

8

3
L8

SRA5
f 2

4MS
2

, ~99!
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L3
SRA523L2

SRA1
1

2
L5

SRA, ~100!

2L13
SRA53L11

SRA1L12
SRA5

f 2

4M f 0

2
, ~101!

L12
SRA52

f 2

2M f 2

2
, ~102!

wheref, MV , andMS should stand for the leading large-Nc
contributions to those quantities. To obtain the formulas
L1–L10, the pseudoscalar and axial meson contributio
have been fine-tuned to satisfy the VV-AA and SS-PP tw
point correlation-function high-energy-behavior chiral su
rules plus some well-converging high-energy properties
hadronic form factors.~In particular, M P /MS5MA /MV

5A2, whereM P is the mass of the excited pion.! Obviously,
more short-distance constraints require more resonances
values ofL11,12,13 are obtained from the single scalar an
tensor resonance exchange@5#. On the one hand, a tenso
meson is needed in order to provide a nonvanishingL12 as a
minimal hadronic ansatz; on the other hand, tensor mes
do contribute also other LECs@68#, which is not taken into
account in Eq.~102!. Thus, to simplify the discussion, in
what follows we restrict ourselves to the nongravitation
couplingsL1–L10. In practice, phenomenological success
achieved by using the physical values of the paramet
Note that although there is predictive power, it is done
terms of two dimensionless ratiosf /MV and f /MS . Obvi-
ously, in the chiral limit we expect bothMV andMS to scale
with f p . Therefore, in order to preserve the large-Nc count-
ing rules one should haveMV5cVf p /ANc and MS

5cSf p /ANc with cV andcS denoting someNc-independent
coefficients. Remarkably, in the SQM the low-energy para
eters depend on two dimensionless ratiosr18/B0 andr28/B0

2.
It is therefore tempting to determine the spectral log m
ments from large-Nc , arguments, in a model-independe
way. Actually in the SRA we note that the ratiosL1 :L2 :L9 of
the SQM agree with those of the SRA. The values ofL5 and
L9 can then be used to determiner18 , andr28 , respectively,
yielding

r18
SRA5

8p2^q̄q&
NcMS

2 , ~103!

r28
SRA52

4p2f 2

Nc
52

MV
2

6
, ~104!

in agreement with Eqs.~89! and ~82!. This is not surprising
since the physics of the meson dominance version of
SQM and SRA is alike. The only difference is that one ca
not deduce from Eq.~104! the value of the constituent-quar
massMQ5M (0), which is given by the ratio of two nega
tive moments,MQ5r21 /r22, Eq. ~2!. To determineMQ
1-11
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would require computing terms ofO(p6) in the chiral La-
grangian and comparing to the SRA at largeNc .

One can see that it is not possible to matchL8 or L10. The
disagreement with the large-Nc values ofL8 andL10 has to
do with the fact that the SS-PP sum rule and VV-AA seco
Weinberg sum rule are violated in the present as well as o
quark model calculations@69,70# ~except for the nonloca
models; see@71,72#!. This calls for a modification of our
model. The disagreement has to do with the absence of a
meson exchange inL10 ~1/4 of the total contribution! and
pseudoscalar meson exchange inL8 ~1/4 of the total contri-
bution!. On the other hand, for the value off obtained from
Eq. ~82! the constantsL1 , L2 , L4 , L5 , L6 , L9 reproduce the
large-Nc constraints obtained in Ref.@14#. This agreement is
confirmed in Table I if one corrects for the facto
24p2f p

2 /NcMV
251.15. One could forceL3 to agree with the

large-Nc estimate by takingMV5MS . This agrees with the
observation of the chiral unitary approach of Ref.@66#; in the
large-Nc limit, the scalar and vector mesons becom
degenerate.6 Thus, the marriage of large-Nc in the SRA with
our chiral quark-model calculation produces degenerate
lar and vector mesons. Degenerated scalar and vector me
were suggested very early@73# in the context of supercon
vergent sum rules and have been interpreted more rece
on the basis of mended symmetries@74#. Experimental
claims have been raised@75–77# and contested@78#. Direct
experimental tests have also been suggested@79#.

It is clear that whatever sensible modification of the SQ
is considered, it will only affectL8 and L10, keeping the
remainingL ’s. We leave the explicit construction of such
modified model for a separate study. Regardless of the
ticular way to achieve this, we may anticipate already
consequences for largeNc in the single-resonance approx
mation of takingMS5MV52p fA6/Nc, yielding the duality
relations

2L15L252
1

2
L35

1

2
L55

2

3
L85

1

4
L952

1

3
L10

5
Nc

192p2
. ~105!

This also implies the set of mass dual relations

MA5M P5A2MV5A2MS54pA3/Ncf p . ~106!

The new relationMA5M P agrees with the experimenta
number within the expected 30% of the large-Nc limit. Using
Eqs.~95! we obtain

^r 2&S
1/25^r 2&V

1/251ANc/2p f p . ~107!

6For Nc53,10,20,40, Ref. @66# obtains MS /MV

50.58,0.84,0.96,0.98, respectively, withMS andMV the real parts
of the poles in the second Riemann sheet. We thank J.R. Pela´ez for
providing these numbers.
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These relations are subject to higher 1/Nc and mp correc-
tions. We may account for the latter by allowingf p to vary
between the physical value and the value in the chiral lim
This yields^r 2&S

1/25^r 2&V
1/250.58–0.64 fm. The value of the

scalar radius is compatible with the one obtained in ChPT
two loop @8#, 0.78 fm. Going to the SU~2! case, in the dual
large-Nc model we get

2 l̄ 15 l̄ 25
3

2
l̄ 35

3

2
l̄ 45

1

3
l̄ 55

1

4
l̄ 65Nc , ~108!

whereas the recently extracted values obtained at the
loop level from analysis ofpp scattering@8# and vector and
scalar form factors@7# at the two-loop level are

l̄ 1520.460.6, l̄ 256.061.3, l̄ 352.962.4,

l̄ 454.460.2, l̄ 5513.061.0, l̄ 6516.061.0.
~109!

The l̄ coefficients are in a sense more suitable for comp
son with ChPT since the chiral loop generates a cons
shift in all of them by the same amount,c5 log(m2/m2).
Thus, it makes sense to compare the differences where c
logarithms are cancelled. We find

l̄ 22 l̄ 152Nc ~Exp. 6.461.4!,

l̄ 32 l̄ 15
5Nc

3
~Exp. 3.362.4!,

l̄ 42 l̄ 15
5Nc

3
~Exp. 4.860.4!,

l̄ 52 l̄ 154Nc ~Exp. 13.461.1!,

l̄ 62 l̄ 155Nc ~Exp. 16.461.1!, ~110!

where the errors have been added in quadrature. As we
see, the agreement is excellent, within the uncertainties,
suggests accuracy of the order of 1/Nc

2 rather than the stan
dard a priori 1/Nc error estimate. The constant pion loo
shift can be accommodated with a scalem5513
6200 MeV, comparable to ther meson mass. Taking Eqs
~102!, corresponding to the SRA with the physical valuesf
593 MeV, MS51000 MeV, andMV5770 MeV, as done
in Ref. @15#, yields l̄ 22 l̄ 158.3, l̄ 32 l̄ 156.2, l̄ 42 l̄ 156.2,
l̄ 52 l̄ 1515.2, l̄ 62 l̄ 1518.7. More reasonable values are o
tained by takingMS5600 MeV, but then the SRA relation
M P5A2MS predicts a too low value of the excited pio
state. The present discussion favors phenomenologically
dual relations~105! as compared to the SRA relations~102!
with physical parameters.

VIII. CONCLUSIONS

In the present work we have studied the chiral expans
of the recently proposed spectral quark model in the prese
1-12
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of electroweak and gravitational external sources. The mo
is based on a Lehman representation for the quark propag
with an unconventional spectral function, which is genuin
a complex function with cuts in terms of the spectral ma
We have written down the effective action which reproduc
the Ward-Takahashi identities presented in the previ
work. Thanks to an infinite set of spectral conditions d
manded from the powerlike factorization property of for
factors at high energies, we have been able to show tha
corresponding chiral anomalous contribution to the action
properly normalized without removing the regularizatio
Moreover, the nonanomalous contribution to the action
be written in the long-wavelength limit in terms of 13 low
energy constants. The numerical values are in reason
agreement with the phenomenological expectations, altho
some discrepancies do occur forL8 andL10. In some cases
they can be naturally explained as failures in reproduc
some chiral short-distance constraints which suggest tha
model needs to be improved. On the other hand, if one t
to match the remaining nongravitational LECs to large-Nc
predictions in the single-resonance approximation, a furt
reduction of parameters takes place. In particular, one fi
the best agreement for degenerate scalar and vector me

We have estimated in the framework of chiral quark mo
els the gravitational LECsL11, L12, andL13, describing the
coupling to external gravitational sources.7 These LECs de-
pend on curvature properties of the curved space-time m
ric. This calculation allows a determination of some mat
elements of the energy-momentum tensor. Our analysis
gests that the scalar meson coupling to the quark conden
m0q̄q and the scalar meson coupling to the trace of
energy-momentum tensorum

m do not necessarily coincide
Clearly, these two operators behave differently under ch
symmetry, sincem0q̄q vanishes in the chiral limit wherea
um

m does not. This point is in itself rather intriguing and d
serves further investigation. We note here that this fact m
terializes in our model because these two scalar mesons
pend on odd and even spectral moments, respectively. On
other hand, we obtain M f 0

5M f 2
5A2MV5A2MS

54pA3/Ncf p , a very reasonable result if we take into a
count the large-Nc nature of the one-quark-loop approxim
tion. Further quark-meson duality relations have been
cussed, allowing a rather successfully determination of
best known LECs, consistent up to the experimental er
with the best known values up to two-loop accuracy.
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APPENDIX: DERIVATIVE EXPANSION AND USEFUL
IDENTITIES

Reduction to a vectorlike theory and transformation
properties

The Dirac operator can be rewritten as

D5DRPR1DLPL , ~A1!

with the projection operators on parity,

PR5
1

2
~11g5!, PL5

1

2
~12g5!, ~A2!

such that for a Dirac spinor one has

CR5PRC, CL5PLC. ~A3!

The right and left Dirac operators are given by

iDR5 i ]”1A” R2M,

iDL5 i ]”1A” L2M †, ~A4!

with

M5s1 ip1vU, M †5s2 ip1vU†, ~A5!

AR
m5vm1am, AL

m5vm2am. ~A6!

The quark mass matrix is included in the scalar fields. Under
left-right unitary transformations,VL and VR , one has the
properties

CR→VRCR , CL→VLCL , ~A7!

U→VLUVR
† , U†→VRU†VL

† , ~A8!

AR
m→VRAR

mVR
†1 iVR]mVR

† , ~A9!

AL
m→VLAL

mVL
†1 iVL]mVL

† . ~A10!

The chiral covariant derivatives and field strength tensor

DmCR5]mCR2 iAm
RCR ,

DmU5Dm
L U2UDm

R5]mU2 iAm
L U1 iUAm

R ,

Fmn
r 5 i @Dm

r ,Dn
r #5]mAn

r 2]nAm
r 2 i @Am

r ,An
r #,

r 5R,L, ~A11!

behave as follows under local chiral transformations:

s

.
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DmCR→VRDmCR , ~A12!

DmCL→VLDmCL , ~A13!

DmU→VLDmUVR
† , ~A14!

DmU†→VRDmU†VL
† . ~A15!

Coupling the spectral quark model to gravity

The coupling of fermions to gravity is well known~see,
e.g., Ref.@80#! but not in the context of chiral quark model
We review it here for completeness and to fix our notati
We use the tetrad formalism of curved space-time~for con-
ventions see, e.g., Ref.@65#!. Given the metric tensor we ge
a local basis of orthogonal vectors~tetrads or vierbein!:

gmn~x!5eA
m~x!eB

n ~x!hAB, ~A16!

with hAB5diag(1,21,21,21) for a flat Minkowski metric.
These vectors satisfy the orthogonality relations

dn
m5hABeA

menB5eA
men

A ,

dB
A5gmnem

AenB5em
AeB

m . ~A17!

Under the coordinatexm→x8m(x) and frame xA→LB
AxB

transformations the transformation properties of the tet
are

em
A→ ]x8n

]xm
en

A ,

em
A→LB

A~x!em
B , ~A18!

respectively. The tetrads map coordinate tensors into fra
tensors~which transform covariantly under local Loren
transformations!—for instance,

TAB5em
Aen

BTmn. ~A19!

Frame tensors are invariant under coordinate transformat
xm→x8m. For a general tensorTnA

a greek indices transform
covariantly under coordinate transformations while latin
dices transform covariantly under frame transformations
cording to Eq.~A18! as follows:

TnA
a →

]xn8

]xm

]x8a

]xb
LA

B~x!TmB
b . ~A20!

The covariant derivative is defined as

dmTnA
a 5]mTnA

a 2Gnm
l TlA

a 1Gml
a TnA

l 1vABmTn
aB ,

~A21!

where the Riemann connection is given by the Christo
symbols

Glm
s 5

1

2
gns$]lgmn1]mgln2]ngml%, ~A22!
03403
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which are symmetric in the lower indices,Glm
s 5Gml

s ~we
assume here no torsion!. In order to preserve the covarianc
of the tetrad mapping we must have

dmen,A5]meA,n2Gnm
l eA,l1vABmen

B50. ~A23!

In addition, the conditiondmgmn50, implying

dmhAB5vABm1vBAm50, ~A24!

requires an antisymmetric spin connectionvABm52vBAm ,
given by

vABm5eA
n @]meB,n2Gnm

l eB,l#. ~A25!

The frame and coordinate covariant derivativedm is defined
according to the spin of the corresponding field. For a spi
U, spin-1/2,C, spin-1, Am , and spin 3/2,Cm , fields the
transformation properties are

U~x!→U~x!,

C~x!→S„L~x!…C~x!, ~A26!

Am~x!→
]xn8

]xm
An~x!, ~A27!

Cm~x!→
]xn8

]xm
S„L~x!…Cn~x!. ~A28!

For infinitesimal Lorentz transformationsLB
A5dB

A1eB
A with

eAB52eBA one hasS(L)512( i /4)sABeAB with sAB de-
fined below@see Eq.~A34!#.

For a scalar~spin-0! field we have the standard definitio

dmU5]mU. ~A29!

For a ~spin-1! vector, one has

dmAn5]mAn2Gnm
l Al , ~A30!

satisfying the property

@dm ,dn#Aa5R amn
l Al , ~A31!

with the Riemann curvature tensor given by Eq.~63!. The
coordinate and Lorentz covariant derivative for Dirac ferm
ons ~spin 1/2! is defined as

dmC5]mC~x!2 ivmC~x!, ~A32!

wherevm is the Cartan spin connection,

vm5
1

4
sABvABm , ~A33!

and

sAB5
i

2
@gA ,gB#, ~A34!
1-14
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with the gA are fixedx-independent Dirac matrices~we use
the conventions of Ref.@81#! satisfying the standard flat
space anticommutation rules

gAgB1gBgA52hAB. ~A35!

The space-time-dependent Dirac matrices are defined as

gm~x!5gAem
A~x! ~A36!

and satisfy

gm~x!gn~x!1gn~x!gm~x!52gmn~x!. ~A37!

The covariant derivative of a frame (x-independent! Dirac
matrix ~behaving as the adjoint representationCC̄) is

dmgA5]mgA2 i @vm ,gA#1vABmgB50. ~A38!

Thus, we obtain a useful identity for the coordinate~and
x-dependent! Dirac matrix:

dmgn~x!50, ~A39!

which implies that for the free Dirac operator the order
irrelevant, d”C5gm(x)dmC5dmgm(x)C. For a mixed
~spin-3/2! tensor the frame and coordinate covariant deri
tive reads

dmCn5Cn;m5]mCn2Gnm
l Cl2 ivmCn . ~A40!

Applying the previous definition todmC one gets the usefu
formulas

@dm ,dn#C51
i

4
sabRabmnC, ~A41!

dmdmC5
1

A2g
$~]m2 ivm!@A2ggmn~]n2 ivn!#C%,

~A42!

wheresab5eA
aeB

bsAB is an antisymmetricx-dependent ma-
trix.

Gauge fields can be included by the standard minim
substitution rule, yielding the covariant derivative for a fe
mion:

¹mC5~dm2 iAm!C. ~A43!

With this notation the full Dirac operator in the presence
external vector, axial-vector, scalar, pseudoscalar, and g
tational fields reads as in Eq.~9!, where

A” 5gm~x!Am~x!, ~A44!

and the pseudoscalar Dirac matrix in the curved case is
fined as

g5~x!5
1

4!A2g
emnabgm~x!gn~x!ga~x!gb~x!
03403
-

l

f
vi-

e-

5
1

4!
eABCDgAgBgCgD5g5 . ~A45!

Here g(x)5det(gmn) since det(eA
n )25det(gmn) with e0123

51 ~both in the frame and in the coordinate sense!.
The full coordinate, frame, and chiral gauge covariant

rivative for pseudoscalar~spin-0!, Dirac spinor ~spin-1/2!,
and a Rarita-Schwinger spinor~spin 3/2! fields are given by
the formulas

¹mU5DmU5]mU2 i @vm ,U#2 i $am ,U%,

¹mC5DmC5]mC2 i ~vm1vm1g5am!C,

¹mCn5]mCn2 i ~vm1vm1g5am!Cn2Gnm
l Cl ,

~A46!

and they correspond to replacing the derivative by the fra
and coordinate covariant derivative,]m→dm , in the chiral
covariant derivativeDm . Note that with this definition nei-
ther DmDnCÞ¹m¹nC nor DmDnU is coordinate covarian
since the second derivative does not include the Riem
connectionGmn

l .

Second-order operator

In the absence of gravitational sources, the normal pa
contribution can be obtained from the second-order oper
@see Eq.~15!#:

D5D5@D” L
21 iM †D” L2 iD” RM †1M †M#PR

1@D” R
21 iMD” L2 iD” RM1MM †#PL . ~A47!

Gravitational fields can be coupled by covariantizing first t
Dirac operator—i.e., making]m→dm or Dm→Dm—and tak-
ing into account that since a spinor field is a coordinate s
lar we have

DmC5¹mC. ~A48!

The same reasoning can be applied to the coordinate s
¹” C, yielding

Dm¹” C5¹m¹” C. ~A49!

This means that we can assumeD” L,R5¹”L,R when acting on
spinor field as follows:

D5DC5@¹” L
21 iM¹”L2 i¹”RM1M †M#PRC

1@¹” R
21 iM †¹”L2 i¹”RM †1MM †#PLC.

~A50!

If we include the gauge fields, we have two vector like the
ries with left and right gauge fieldsVm

L andVm
R , respectively.

Suppressing momentarily the left and right labels we hav

D” 2C5¹” 2C5F¹m¹m2
1

2
smnFmn1

1

4
RGC, ~A51!
1-15
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where use of the identity

@¹m ,¹n#C5@Dm ,Dn#C

5@Dm ,Dn#C1
i

4
sabRabmnC

~A52!

has been made. The coordinate and frame invariant Lap
ian for a Dirac spinor is given by

¹m¹mC5
1

A2g
Dm~A2ggmnDnC!. ~A53!

Note that for a Dirac spinor fieldC the operatorDm contains
the spin connection. Reinserting the right and left chiral n
tation the second-order operator takes the suitable form

D5D5
1

A2g
@Dm~A2ggmnDn!#1V, ~A54!

with

V5VRPR1VLPL ~A55!

and

VR52
1

2
smnFmn

R 1
1

4
R2 igm¹mM1M †M,

VL52
1

2
smnFmn

L 1
1

4
R2 igm¹mM †1MM †.

~A56!

Derivative expansion

We use the proper-time representation

Tr log~D5D!52TrE
0

`dt

t
e2 itD5D1C, ~A57!

with C and infinite constant. The form of the operatorD5D in
Eq. ~A54! is suitable to make a heat kernel expansion
curved space-time as the one of Ref.@82#. For a review see
e.g., @83# and references therein. In our particular case,
fore undertaking the heat kernel expansion we separatev2

contribution from the operatorD5D which we treat exactly:

^xue2 itD5Dux&5e2 itv2
^xue2 it(D5D2v2)ux&

5
i

~4p it!2
e2 itv2

(
n50

`

an~x!~ it!n.

~A58!

The derivative expansion is done by consideringU zeroth
order the vector and axial fieldsvm and am first order, and
any derivative]m first order. This implies in particular tha
Rmnab, Rmn, andR are taken to be of second order. Final
03403
c-

-

-

the external scalar and pseudoscalar fieldss andp are taken
to be second order as well. Thus, the multiplicative opera
V2v2 is at least first order in the chiral counting. To th
computed orderO(p4) in the heat kernel expansion one h
to go up toa4. The contributions can be separated into t
flat-space nonvanishing contributions and the curvature c
tributions generated by quantum effects. Using the form s
gested in@84# we have

a051,

a15v22V1
1

6
R,

a25
1

180
RmnabRmnab2

1

180
RmnRmn1

1

12
F mnFmn

1
1

30
¹2R2

1

6
¹2V1

1

2 Fv22V1
1

6
RG2

,

a35
1

6 Fv22V1
1

6
RG3

2
1

12
¹mV¹mV1O~p6!,

a45
1

24
@V2v2#41O~p6!, ~A59!

where

Fmn5 i @Dm ,Dn#, ~A60!

¹2V5¹m¹mV. ~A61!

Clearly, the heat kernel coefficients depend on the spec
massv in a polynomial fashion. Using the integrals

E
0

`dt

t
~ it!z22e2 itv2

5~v2!zG~z22!, ~A62!

we get for integerz5n and after using the spectral cond
tions, Eq.~4!, the normal parity contribution of the actio
takes the form

2
i

2
Tr logD5D52

1

2

Nc

~4p!2E d4xA2gE dvr~v!tr

3K 2
1

2
v4logv2a01v2logv2a1

2 log~v2/m2!a21
1

v2
a31

1

v4
a41•••L

5E d4xA2g~L (2)1L (4)1••• !.

~A63!
1-16
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After evaluation of the Dirac traces, the second-order Lagrangian is

L (2)5
Nc

~4p!2E r~v!H 2v2logv2^¹mU†¹mU&12v3logv2^m†U1U†m&1v2logv2
1

12
^R&J , ~A64!

whereas the fourth order becomes

L (4)5
Nc

~4p!2E r~v!H 1
1

6
logv2^~Fmn

R !21~Fmn
L !2&2 logv2K 7

720
RabmnRabmn2

1

144
R21

1

90
RmnRmnL

2
i

3
^Fmn

R ¹mU†¹nU1Fmn
L ¹mU¹nU†&1

1

12
^~¹mU¹nU†!2&2

1

6
^~¹mU¹mU†!2&1

1

6
^¹m¹nU¹m¹nU†&

2
1

6
^Fmn

L UFmn
R U†&1 logv2v2@2^m†m&1^~m†U1U†m!2&#2

1

2
v^¹mU†¹mU~m†U1U†m!&

2 logv2v^¹mU†¹mm1¹mm†¹mU&2v logv2
1

6
R^U†m1m†U&1

1

6
R¹mU†¹mU L . ~A65!

Note that up to this order the momentsr051, r150, andr250 as well as the log momentsr08 , r18 , andr28 appear.
n

t

rix

on
Equations of motion

We define

x52B0m52B0~s1 ip !. ~A66!

For on-shell pseudoscalars one may minimize the actio
lowest order,

S(2)5
f 2

4 E d4xA2gK ¹mU†¹mU1~x†U1U†x!2
1

6
RL ,

~A67!

to obtain the equations of motion~EOM!. SinceU is unitary,
U†U51, we have that the variations onU and U† are not
independent of each other,dU†U1U†dU50. For SU~3!
flavor one has, in addition, to impose the condition DeU
51. One can treatU andU† independently by introducing a
term in the Lagrangian of the form̂LU†U2 il logU&
where the Lagrange multipliers areL, a Hermitian matrix,
andl, a realc number. Thus, the EOM are

¹2U5x1~L2 il!U,

¹2U†5x†1U†~L1 il!, ~A68!

where

¹2U5
1

A2g
Dm~A2ggmnDnU !. ~A69!

Combining these two equations, we get

U†¹2U2¹2U†U5U†x2x†U22il. ~A70!
03403
at

Taking the trace and using the condition that for a mat
with DetU51 one haŝ U†¹mU&50 and hencê U†¹2U
2¹2U†U&50, we get

l5
1

6i
^U†x2x†U& ~A71!

and thus

U†¹2U2¹2U†U5U†x2x†U2
1

3
^U†x2x†U&.

~A72!

On the other hand,L is given by

2L5¹2U†U1U¹2U†2~xU†1x†U !. ~A73!

Using the identities deduced form the unitarity conditi
U†U51,

U†¹mU1¹mU†U50, ~A74!

U†¹2U1¹2U†U522¹mU†¹mU, ~A75!

and combining them with the previous Eqs.~A73!, ~A75!,
we get the identities
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^¹2U†¹2U&5^~¹mU†¹mU !2&2
1

4
^~x†U2U†x!2&

1
1

12
^x†U2U†x&2 ~A76!

and

^x†¹2U1¹2U†x&52^x†x&2
1

2
^~x†U1U†x!2&

2^~x†U1U†x!¹mU†¹mU&

1
1

6
^x†U1U†x&2. ~A77!

In the case of the U~3! group one has DetU5eih0 / fÞ1 and
the last two terms involvinĝ x†U6U†x&2 in Eqs. ~A76!
and~A77! should be dropped.@See the discussion before E
~59!.# The result can be further simplified using the integ
identity

E d4xA2g^¹m¹nU†¹m¹nU&

5E d4xA2g^¹2U†¹2U&

1E d4xA2gRmn^¹
mU†¹nU&, ~A78!

which can be deduced from Eq.~A31! applied to¹mU. Fi-
nally, we also have the SU~3! identity

^~¹mU†¹nU !2&522^¹mU†¹mU&1^¹mU†¹nU&2

1
1

2
^¹mU†¹mU&2. ~A79!

Once the identities~A76!, ~A77!, ~A78!, and ~A79! have
been used one can make the substitute the coordinate-f
covariant derivative by the covariant derivative—i.e.,¹mU
5DmU—since the pseudoscalar matrixU is a coordinate and
frame scalar. In that way Eqs.~48! and ~62! are deduced.
hy

03403
l

me

In four dimensions, one can reduce the form of the c
vature contributions to the Lagrangian if the Gauss-Bon
theorem is used in Eq.~62!—namely, that

k5E d4xA2g@R224RmnRmn1RmnabRmnab#

~A80!

is a topological invariant~the Euler number! and hence

dk50 ~A81!

under metric deformationsgmn→gmn1dgmn . This relation
was not taken into account in Ref.@5# but it does not affect
the calculation of the energy-momentum tensor in flat spa
Eq. ~76!.

Derivative expansion for first-order differential operators

As we see the definition of the action involves the Dir
operatorD only, which is a first-order differential operato
The derivative expansion of the Dirac operator can be d
using the identity

^xu
1

iD” 2M2vU
ux&5E d4k

~2p!4

1

k”1 iD” 2M2vU
,

~A82!

where the differential operator acts on the right. This form
can be justified by requiring vector gauge invariance of
action@85# or by using the asymmetric version of the Wign
transformation presented in Ref.@62#. Expanding in powers
of D andM and squaring the denominator we get

^xu
1

iD” 2M2vU
ux&52 (

n50

` E d4k

~2p!4 F 1

k22v2G n11

3~k”1vU†!@~ iD” 2M!~k”1vU†!#n.

~A83!

In this way Eq.~44! can be derived.
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