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Low-energy chiral Lagrangian from the spectral quark model
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We analyze the recently proposed spectral quark model in the light of chiral perturbation theory in curved
space-time. In particular, we calculate the chiral coefficiénts. . . Lo, as well as the coefficients,, L1,
and L3, appearing when the model is coupled to gravity. The analysis is carried for ti® 8&ke. We
analyze the pattern of chiral symmetry breaking as well as elaborate on the satisfaction of anomalies. Matching
the model results to resonance meson exchange yields the relation between the masses of the scalar, tensor, and
vector mesonsM =My, =2My=43/N.rf .. Finally, the largeN, limit suggests the dual relations in the
vector and scalar channeld,, =Mg=2\6/N 7 f . and(r?)¥?=(r?){?=1Ny/2f,=0.59 fm.
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I. INTRODUCTION of different ways—e.g., by cutoffs, form factors, or
momentum-dependent masses, provided they do not break
The low-energy structure of QCD in the presence of ex-symmetries such as the gauge invariance and chiral symme-
ternal electroweak and gravitational sources is best describaty. Thus, the regularization should not be removed in the
by chiral perturbation theoryChPT) [1-5] (for review see, end. In such a situation, where the high-energy quark states
e.g., Ref[6]). In the meson sector, the spontaneous breakin@re suppressed above a certain séalene should expect a
of chiral symmetry dominates at low energies and systematipowerlike behaviorA"/Q" for any large-momentum external
calculations of the corresponding low-energy constantseg of the quark loop in the high-momentum limit. In the
(LEC9 have been carried out in the recent past up to twofanguage of the parton model this high-energy behavior cor-
loop accuracy7-10 or by using the Roy equatiof$l] (see  responds to the onset of scaling.
also[12,13). For strong and electroweak processes involv- As a matter of fact, one of the questions which could not
ing pseudoscalar mesons the bulk of the LECs is saturated ipe answered by low-energy calculations concerns the low-
terms of resonance exchandéd], which can be justified in energy resolution scale where these models are supposedly
the largeN, limit in a certain low-energy approximatiqi5]  defined. Actually, in order to properly answer this question
by imposing the QCD short-distance constraints. In the casene should look instead intoigh-energy processesnd de-
of gravitational processes similar ideas apy, although mand parton-model relations on the constituent quarks. As
less information is knowr{16]. Nowadays, ChPT can be pointed out in Ref[32], a sensible scheme is obtained by
used as a qualitative and quantitative test to any model aflemanding that the momentum fraction carried by the va-
low-energy hadron structure. lence quarks in a hadron saturate the energy-momentum sum
In the quest to understand the microscopic dynamics unrule. Once this initial scale is defined one can use the QCD
derlying the LECs, their calculation in chiral quark models evolution to compute an observable at a higher scale. This
has been undertaken many timglsy—30. The effort has way the QCD radiative corrections are incorporated. In fact,
been made to compute, . . . Lo, which correspond to the using the analysis of the Durham group carried out a decade
flat-space-time case. The calculation lof;,L1,, and L3, ago[33] for the case of the pion, one obtains the result that
encoding the coupling to gravitational sources, has seldomlyhe valence quarks saturate the energy-momentum sum rule
been consideredsee, however[31]). Roughly speaking, at wu,=313 MeV if the leading-order(LO) Dokshitzer-
these calculations are generally described in terms of som@ribov-Lipatov-Altarelli-ParisiDGLAP) QCD perturbative
long-wavelength expansion of the fermion determinant asscanalysis is carried out. Although this scale looks quite low,
ciated with the constituent-quark degrees of freedom. A dethe impressive agreement obtained for the parton distribution
tailed scrutiny shows, however, that the implementation ofunctions of the pion after the DGLAP evolution in LO
the necessary regularization is not always satisfactory fromMid4,35 and next-to-leading ord¢NLO) [35] (see also Ref.
several viewpoints. The regularization of a low-energy chiral[32], and Ref.[36] where the comparison to the E615 data
quark model corresponds to a physical suppression of thg37] is made supports this interpretation of the low resolu-
high-energy quark states. This can be achieved in a numbgibn scale. Moreover, using that scale, the pion distribution
amplitude[38] and the off-forward generalized parton func-
tions [36] agree well also with the recent transverse lattice
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sence of logarithmic corrections in the low-energy model inThe functionM (p?) is the quark self-energy, whilg(p?) is

the high-energy limit, since the proper QCD radiative loga-the quark wave-function renormalization. In the casarud-
rithmic corrections are automatically and completely incor-lytic confinement-i.e., when the propagator does not have
porated by the QCD evolution. Not surprisingly, this condi- poles, a sensible definition of a constituent quark mass is
tion imposes severe constraints on the kind of admissibléfrom now on we drop the index from the w integral,
regularization schemes. In a recent work the spectral quanwhich is implicitly understood to run along the contdDy
model (SQM) has been proposdd1,42, implementing the

so-called spectral regularizatidisee below complying to MQZM(O)zf dw%w)/ f dwp(az)).

2

these powerlike short-distance constraints.
In the present paper we extend the SQM to the(3U

flayor group and incIL_Jde finite cu_rrent quark mass. Instead Of\5 giscussed at length in Ré#2], the proper normalization
using the construction of vertices based on the Wardyng the conditions of finiteness of hadronic observables are

Takahashi identities, employed in Refé1,43, itis by far  5chieved by requesting an infinite setsyfectral conditions
more convenient to define the effective action depending ogy, the moments of the quark spectral  function

the nonlinear pseudoscalar meson fields in the presence Btw)—namdy,

external scalar, pseudoscalar, vector, axial, and gravitational

sources. The latter have never been considered in chiral

quark model calculations. This effective action is defined in POEJ dop(w)=1, ©)
Sec. Il. We also show in Sec. Ill how one can explicitly

(O]

eliminate the spectral function in terms of the quark

momentum-dependent mass and wave-function renormaliza- anj doo"p(w)=0,

tion. Following the standard procedure we perform the gra-

dient expansion of the spectral-regularized fermion determi- for n=1,2.3.... (4)

nant for both the anomaloiSec. IV) and the nonanomalous

sectors in curved space-tini§ec. V). As a consequence the Physical observables are proportional to the zeroth and the
structure of the energy-momentum tensor may be analyze¢hverse moments,

Remarkably, our spectral regularization method complies

with the QCD anomaly without removing the regularization. _

Therefore the standard Wess-Zumino-Wit{d3,44 term is p—sz dow “p(w), for k=0123.... (5
generated for a finite regularization. In the nonanomalous

sector we find, through the comparison to the standard chir@s well as to the tog moments

Lagrangiar 3,4], that the low-energy constants@{p*) as-

sociated with terms which are nonvanishing in the chiral p/EJ dw log(w? 12) 0"p(w)

limit are completely independent of the regularization de- "

tails. The LECs associated with terms carrying the current

qguark mass coefficients do depend on the particular ansatz :f dwlog(w?)w"p(w), for n=1,2,34.... (6)

for the spectral regularization, and we evaluate them using

the regularization based on the meson domm_ance of forr@)bviously, when an observable is proportional to the dimen-
ripion of the quatk self-energy of the recent latice daipo7IeSS Zeroth momenio=1, the result does not depend
[45]. Finally (Sec. VII), we also confront the larghs, rela- 6}expllcnly on the regularization. The spectral conditiod$

. ; : remove the dependence on the sqal® Eq. (6), thus guar-
tions [15] and dISC.USS the consequences of extending thgnteeing the absence of any dimensional transmutation. The
present model to include these constraints. The Append%nly exception is the zeroth-log moment

contains details of the formalism in the curved space-time.

2\ — 27,2
Il. EFFECTIVE ACTION OF THE SPECTRAL QUARK po(u )—J dw log(o/ u)p(w), (7)
MODEL

In a recent work the spectral quark model has been intro\-NhiCh does depend on a scaleand isnot regularized by the
duced[41,42. The approach is similar in spirit to the model spectral methodsee the discussion belgwNo standard re-

. . quirement of positivity for the spectral strength(w), is

of Efimov and Ivano\46], proposed many years ago. It is q . o A
: Vs : made. Unlike other regularizations, such as the dimensional
?;;Zi::t;?igriof??Lg]tcrlﬁglrjlf t;g;);égteogenerallzed I‘ehmanrr‘egularization o -function regularization, the spectral regu-

larization is physical in the sense that it provides a high-
2 energy suppression in one-quark-loop amplitudes and is not
plw) - 2(p%) (1) removed at the end of the calculation. It also improves on a
p—w p—M(p?)’ Pauli-Villars regularization, because it complies with the fac-
torization property of correlation functions, form factors,
wherep(w) is a(generally complexquark spectral function etc., in the high-energy limit; i.e., it guarantees the absence
and C denotes a suitable contour in the complexplane.  of logarithmic corrections to form factors. The phenomeno-

S(p)=fcdw
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logical success of the SQM in describing structure functionsnalization condition of the pseudoscalar fields. For a bilocal
of the pion, generalized parton distributidr#6,47), and the  (Dirac- and flavor-matrix-valuecoperatorA(x,x’) one has
pion light-cone wave functio{38,48 suggests that the
whole scheme deserves to be thoroughly pursued further.
In Ref.[42] it was argued that there are a number of terms
in the one-quark-loop effective low-energy chiral Lagrangian
which correspond to taking the infinite-cutoff limit. The with tr denoting the Dirac trace and) the flavor trace.
terms with explicit chiral-symmetry breaking do not corre- Moreover,g=detg,,, is the determinant of the curved space-
spond to this class. The purpose of this paper is to analyzeéme metric. Finally, in the second line of E() we have
these terms, which are specific both to the regularization anthtroduced the Dirac operat® corresponding to the exter-
the choice of couplings in the spectral quark Lagrangian. Fonal fields only. TheJ o(1) is taken into account by extending
completeness we also consider the gauge couplings anfe matrix to the B) sector, U—U=Uge78/GH with
gravitational couplings, which allows us a determination ofdetu=1, adding the customary term
all low-energy constants in the $8 sector in the SQM
approach. f2 5 i R 2
The effective action complying to the solution of the L=——m, 10— 5[logdetU—logdetU ] . (13
Ward-Takahashi identities via the gauge technique of Del-
bourgo and Wesf49] corresponds in our case to the mini- The pirac operator given by Eq9) transforms covariantly
mum substitution prescription for the spectral quark. It yieldsnqer local chiral transformatiorsee the Appendix
a quark fermionic determinant of the form Formally, in the flat space-time the effective acti8)
looks quite familiar and we should point out here that the
I'[U,s,p,v,a,9]= _iNCf dwp(w)Trlog(iD), (8) main difference with similar actions, such as, e.g., the one of
Ref.[21], is related to the regularization procedure. Actually,
the method of Ref[21] consists of takingp(w)=6(w
—Myg) with Mg being the constituent-quark mass. This

TrA=f d*x\—gtr(A(x,x)), (12

where the Dirac operator is given by

iD=id— wUS— Mo+ (6 +4&ys—S—iy°p) choice satisfies the normalization conditipg— 1, but does
not comply to thep,,=0 spectral requirements. The problem
=iD — wU°®, 9) can be avoided if one uses suitable regularization methods,

such as the dimensional ¢¢function regularization, but then
The derivatived,, is frame (local Lorenta and general- logarithmic correctiongo form factors are generated and the
coordinate covariant and it includes the spin connecg@@  well-known Landau instability found long ago in Refs.
the Appendix for notation The symbolss, p, v,, anda, [50,51] sets in.
denote the external scalar, pseudoscalar, vector, and axial The pion form factor obtained from thifunction regu-
flavor sources, respectively, given in terms of the generatolarization used, for instance, in RdR1] for t=—Q? be-

of the flavor SU3) group, comes, in the chiral limit,
NZ-1 2 2. \2
Na 4NCMQJ1 X(1=x)Q°+Mg
s= Sa oy 10 F(Q)=———-=| dxlog ——————|,
P (10 (@) iz o X100 L

with A, representing the Gell-Mann matrices. The teisar  \yhere the pion weak-decay constant is given Bj
is the metric external source representing the coupling to ¢4NcMélog(M2/Mé)/(4rr)2. While the proper normalization

. . . . 5_ _ 2
gravitational field. The matrixU>=U?, and U=u F(0)=1 is obtained, at large momenta one has a logarithmic

=¢l2%/T is the flavor matrix representing the pseudoscalahgnayior F(Q2)—log(Q?), instead of the powerlike
octet of mesons in the nonlinear representation: behavior, which poses a problem. On the other hand, the
spectral regularization method yield§48] F(Q?)
I T - K+ —NJA2F2(2p4Q2— 2p4/Q%+ - - ), with no logarithms
V2 J6 present. This twist expansion property allows us to extract in
a clean way the low-energy matrix elements relevant for
H= T — LWOJF i 7 KO _ high-energy process¢s2].
J2 J6 Our effective action looks also similar to Nambu—Jona-
Lasinio (NJL) bosonized modelg52] (for reviews see, e.g.,
K~ KO _ i 7 Refs.[53-57]). Again, the main and important difference has
\/E to do with the interpretation of the regularization method. As

(11)  discussed in Ref$32] in NJL models one can only regular-
. ize quark loops—i.e., closed quark lines—so a direct com-
The matrixmy= Diag(m, ,mq,ms) is the current quark mass parison for the Lehmann representation, where quark lines
matrix andf denotes the pion weak-decay constant in theare open is somewhat misleading. The fact that in the SQM
chiral limit, to be determined later on from the proper nor-the Lehmann “regularization” carries over to open quark
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lines has important consequences as regards the consistency
of high-energy calculations in either a purely hadronic or
partonic interpretatiofi42].

Given the fact that the integration contour is in general

Lo(p?) =p%*Z(p?)——=—p* 2,
? p2—M(p2)?

complex, passing to the Euclidean space and separating the M (p2)
action into the real and imaginary parts becomes a bit incon- Lows1(p?) = kaZ(pz)ﬁ. (21)
venient. Instead, we take the full advantage of the p=—M(p?)

Minkowski space and introduce the auxiliary operator
The casen=2k+ 1 produces the same relations.
The following recursion relations follow directly from the
(14)  spectral condition$4):

—iDs= ys(id— wUT—mo+8 — ysd—Ss+iysp) ¥s,

which corresponds to the Hermitian conjugation in the Eu-
clidean space. Thus, the normal parity action is given by

w'plw) 0" ?p(w)
| f dw pz_wZZp dew, n>2, (22
i
=—=N Trlog(DDx). 1
Shp=" 3 CJ dwp(w)Trlog(DDs) (19 which are obvious when on the right-hand side we wpite
=(p?— w?) +w?. We now pass to the Euclidean spapé,
=p?——p2, and get
Ill. RELATION OF SPECTRAL MOMENTS TO QUARK p PE» g
MASS AND NORMALIZATION

A potential disadvantage of the spectral regularization is
that the inverse problem—i.e., the problem of finding the
spectral functiorp(w) from the known moments—does not
always have an easy explicit solution or perhaps has no so- _ J“d 2| (—p2)=— fwd 202 2 23
lution at all. In this section we show how the negative mo- o UPE n(~Pe) o UPEPE n-2(~Pe)- (23
ments and the log moments can be translated into the inte-

grals involving the quark mass functidf(p?) and the quark  Thus, we have obtained the log moments in termZ ahd

wave-function renormalizatiod(p©). Let us start with Eq. M, The negative moments are simply derivatives of the quark
(1) and assume that the set of spectral conditions is met: propagator at the origin:

® d\" 1t
[ P et

J dww"log(w?)p(w)

f doo"p(w)=6,, N=0,1,.... (16)
- ap n=12,....

w
Then, the following identity, proved by induction, holds: p=0 (24)

The derivative is computed takimaf= pp. Thus, given the
quark propagato8(p) we may just use formula&3), (24)

to translate negative moments and log moments without ever
having to specify explicitly the spectral function. This is a
rather remarkable feature of the spectral approach. The ex-

fdwwp’i(::)zp”s(m—b”‘l n=12,.... 19

Rationalizing the denominators yields

| p+ o I p+M(p?) - pressions forf ., (qq) (the quark condensate for a single
f doo"p(w) Z——=p"Z(p )W_p : flavor), andB (the vacuum energy densjtin the chiral limit
p-w P —M(p%) are
(18
We have two cases of odd and everFor n=2k we find 4N,
f2= 4 )ZJ dww?p(w)(—log w?), (25
+ +M(p? T
f doop(w) o =2z (pt) LN P ooz
pP-w? p?—M(p*?
(19) —_ ANe 3 2
@)=, 3] dewp(w)(~loga?), (26)
w
Defining
2 L g N [ )(—lo 2)—1 0" 27)
L.(p )=f dowo"p(w) o202 (20 - (41)2 wo"p(w )= 4< )

and comparing coefficients of powers pfin Eq. (19) pro-
duces the identities

respectively. Hereg*” is the energy-momentum tens@ee
also Sec. V ¢ We get, for instance,
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AN. (= M(=02)2—p2[Z(—Dp2)—1 conditionsp,=p,=p3=p,=0.
2_ CJ 2 ( pE)2 Pel (2 SE) ] (28) Under chiral(vector and axiallocal transformations the
(4m)=Jo Pe+M(—Ppg) Dirac operator transforms as
or D—etieviX)-iearspgiev(X) —iea(x) vs (32
i AN (7, Z(—PRIM(—PE) with
<QQ>_ (477)2 o EpE p%‘l‘ M(—pé)z . (29)

— a _ a
In Eq. (29) we recognize the usual formula for the quark 6V(X)_§ ev(X)Xa, 6A(X)_§ eA(X)ha. (33

condensate found in nonlocal models. On the other hand, Eq.
(28) is different from analogous quark-model expressiongnfinitesimally, we have
[58,59. The reason is that, strictly speaking, the above for-
mulas should only be used for functioMs(p?) andZ(p?) SD=i[ey,D]—i{eays.D}. (34)
complying with the generalized Lehmann representation, Eq.
(1), with the spectral density satisfying the spectral condi-If we make a chiral transformation of the effective act{@h
tions. without any additional regularization, we get
One can use similar manipulations to get the pion electro-

magnetic form factor obtained in Ref42]. For spacelike i 1
momentumQ?= —q?, we obtain 6S=—iN.Tr | dwp(w)[ DD~ "]. (35
_ c q dp? If we assume the cyclic property of the functional trace, we
WQ9)= (4m)2t2Jo x 0 Pe get a contribution from the axial variation only,
2_p2rz(—p2)—
M( P ) [Z( PE) 1] (30) §ASE~AA:f d4X trJ' dwp(w)(ZiEA‘y5>
P2+ M(—PZ)2 ’
where ~po [ dixu(2ienrs) (36
=pZ+x(1-x) Q> (31

i . . a result which, due to the infinite dimensional tr§66,61],
Note that the inversion procedure used in RéP] to deter- i ampiguous even in the presence of the spectral regulariza-
mine the spectral density from vector meson dominatfte (o Thys, to get rid of the ambiguity we have to introduce
meson dominance version of the SQN8 linear, whereas 4 exira regularization. As is well known, there is no regu-

written in terms ofVl andZ becomes highly nonlinear. larization preserving the chiral symmetry; thus, the anomaly
is generated.
IV. CHIRAL ANOMALIES The calculation can be done by standard methods. A very

convenient one is thé-function regularizatiorf62], which
One of the major advantages of the spectral regularizatiogomputes the anomaly directly in terms of the Dirac operator

is that it makes hadronic observables finite and scale indgtself (and not its squajeand does not require any redefini-
pendent, a basic requirement of any regularization procedurgon of the Diracys matrix. This yields the equation
However, that does not necessarily mean or imply that the
full effective action in the presence of external fields is finite,
since even in the case of the vanishing pion fieldls; 1, we 5ASEAA:Trf dwp(w)(2ieays[iD]%)
have nonhadronic processes. Actually, it turns out that the
photon wave function renormalizati¢A2] is proportional to
p¢; thus, it depends on the scakeand therefore diverges in =f d4xtrf dwp(w)(2iea(X)ys(x|DO|x)), (37
some regularization schemésich as the dimensional regu-

larization). This scale dependence arises also in other nonh"*’\'ﬂ/here the zeroth power of the Dirac operator is understood

dronic terms of the effective action. as an analytical continuation which can be written in terms

H 0
In Ref. [42] it was checked that ther'—2y and y of the Seeley-DeWitt coefficients for the Dirac operators
— 3 decays comply to the correct values expected from th(f 62];

chiral QCD anomaly. With the help of the effective action,

Eqg. (8), we now want to show that this is also true for all

anomalous processes. In order to understand the role of regu- (x|Dx) =
larization, it is instructive to compute the chiral anomaly (4r)
first. Next, we will show that in the presence of external

fields the anomaly does not depend on the pion fi¢ldnd 2 2 2

thus coincides with the anomaly in QCD due to the spectral "% (F LA @)+ T (38

1 1
4 212 2 212
Z[ED +3 (DT +T,DT,+T,D?)
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whereT ,=3{y, D} and the operatoD acts to the left. The N 1
result for general couplings in four dimensions has been ob- Fgﬁ)=p048° f dtf d4X€Mmﬁ
0

tained from Ref[62]. Direct inspection shows that since the r

o dependence is given BYp=iD — wU>, the result can be du

written as a sum of am-independent term and a polynomial X UI—tUI&“UtUI&”Uthﬁ‘YUtUMﬁUt ,
remainder: dt

(43
An f dop(@)(Av.a,spltAxv.a.sp.o.Ul) which coincides with the WZW term if the spectral normal-
ization conditionpy=1 is used. External fields can be in-
=poAalv,a,s,p], (39 cluded again through the use of B42), yielding the gauged
) ) WZW term in the Bardeen-subtracted form. Actually, the dif-
where thew-dependent polynomial term vanishes due to theferenceF[U s,p,v,a]-T[1s,p,v,a] is finite and preserves

spectral conditions. This shows that the anomaly of the spegyayge invariance but breaks chiral symmetry generating the
tral quark model coincides with the anomaly of QGiier anomaly of Eq.(39).

introducing an additional suitable regularization, regardless Higher-order corrections to the abnormal parity compo-

of the details of the spectral function. This result is coOmmon,ant of the action involve negative spectral moments. For

also to nonlocal models when one evaluates anomalieﬁstance, the term&®(p®) and higher are regularized, and

[_63,64]. This is an .important _point sincg if the effec_tive aC- inyolve p_, for terms with no quark mass terms apd, for

tion I'[U,s,p,v,a] in Eq. (8) is both chiral symmetric and erms containing one quark mass. This is in contrast to the

finite, there is apparently no reason for anomah_es. We W'"approach of Ref[21] where the infinite-cutoff limit is con-

see below how and where these divergences arise.  gigered for a constant constituent-quark mass. In this regard
To see now how the standard Wess-Zumino-Wittenig; s also note that for the unregularized abnormal parity

(WZW) [43,44 term arises in the present context, let Usaction one would get the transition form factor

consider for simplicity the chiral limimy=0 and set the

external fields to zero and work in flat space, so that i

=id. A convenient representation can be obtained by intro- 8M2 (1
ducing the field F_ +(Q?)= Q f dx ,
I (4m)2fJo  (1-x)xQ*+2M3

U?Z it \s‘?yscblf’ (40)
_ _ 5 which satisfies the proper anomaly conditiéf,.,«(0)
interpolating between the vacuuri’_,=1, and the full  —1/472f ). Again, a log-dependent term is obtained at
matrix U7_,=U®. Then, we have the trivial but useful iden- high virtualities(see also Ref32]), in contrast to the correct
tity for the vacuum-subtracted action: twist expansion generated by the spectral mefH.

I'NU,s,...]-T[1s,...]
V. LOW-ENERGY CHIRAL EXPANSION OF THE ACTION

- _'NCL dt&fcd“’p(w)-rr log(iD — wUy) The chiral expansion of the action, E8), corresponds to
a counting where the pseudoscalar fieldand the curved
space-time metrig”” are zeroth order, the vector and axial

(4D fieldsv, anda, are first order, and any derivative, first
order. The external scalar and pseudoscalar fieddslp and

Using the representation in EG12) and the formulas of the thg current mass matrim, are taken to be se.cond' order. In
Appendix the result can be obtained straightforwardly. Sinc&hiral quark models at the one-loop level this chiral expan-
we are interested in abnormal parity processes, it is enoughOn corresponds to a derivative expansion. With the help of
to identify the terms containing the Levi-Civiteensor the action of Eq(8) one can compute the derivative expan-
€,.vap, Which due to the Lorentz invariance requires at leasf'0n I curved space-timesee the Appendix for detajls

four derivatives. Taking into account the fact that the deriva-

tive operator acts to the right we get

sSW=—iN fldtfd ( )fd“f d'k !
=i X ——
b 3 P P (2m)* [K2— 2]

du i
—w75UtTd—ttw[wUtT|&Ut]4]. (42

du?
o—r

1
=iN f dtfd Tr —.
“Jo e wp(w) dt iD—wU?

S= f d*xy—gL(x), (44)

where the effective chiral Lagrangian in the Gasser-

T Leutwyler-Donoghue fornf4,5] reads
.

After computation of the traces and integrals we finally find L=LO+ A4 LCR4 LG4 LERL ... (45
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with the metric(upperscripgg) and curvaturéupperscripR) A. Metric contributions
terms explicitly separated. The zeroth-order vacuum contri-

! The metric contributions read
bution reads

f2
£@9="2(D,U'D U+ (x'U+UTY)) (47

NN
£0=p= ', 46
(477_)21)4 (46)

where the vacuum constant is given by E2j). and

£#9=1L(D,UD*U)?+Ly(D,U'D,U)2+L3((D,UD,U)%)+Ly(D,UD*UNx"U+UTx)+Ls(D,UD*U(x'U
+UT)) +Le(xTU+UT )2+ Lo(xTU = UT )2+ Lg((xTU)?+(UTx)?) —iLo(F},D,UD UT+F} D,U'D,U)

+Lao(F, UF R, UD +H((FF,)%+ (F )% +Ha(x x). (48)
|
We have introduced the standard chiral covariant derivatives N o) ol p
and gauge field strength tensors L= ——| =21 20 (56)
(47)%| 4B3 4Bo 24
D,U=D,U-UD}=4,U—iALU+IUAT,
Lo=—2L :L Po (57)
F,,=i[D},.D}]=d,A,—d,A, —i[A], ,A]], o 0 (4m)2 37
(49)
with r=L,R. The pion weak-decay constant and the quark H,= Ne @, (58)
condensate in the chiral limit read (4m)? 6
4N Ne (P2 P1 . po
f2=— — 2 p! (50) Hy= —— | 24 = 4+ |, 59
(4m)2"? 2" (am?\B2 2B, 12 59
- 4N where Ng=2,3. As we can see, the -coefficients
f2Bo=—(qq)= —Czpé, (51 Lq,Ly,L3,L4,Lg,Lg,L1gare pure numbers and coincide for
(4) convergent integrals with those expected in the limit where
the regularization is remove@1]. The argument anticipat-
while the chiral coefficients ate ing this result in Ref[42] has to do with the dimensionless
character of the low-energy couplings which thus involve the
Ne po zeroth momenpy= 1. Note that this remarkable result holds

Ly;=—2L,=—4L,=— (520 without removing the regularizatioh.The fact thatH; is
proportional top|, corresponds to a scale-dependent or diver-
gent gauge-field wave function and was observed already in

L,=Lg=0, (53 Ref.[42]. Hence, the finite piece df; depends on the regu-

larization scheme.

We can usd andLg in order to determind_;, Lg, By,

(4m)2 6

!
Lg=— Ne i, (54) andH,, which immediately yields
(47)? 2Bg
N, 1 ( Pl Po) 2Actually, the kinetic energy term obtained in REZ1] within the
L,= === 1= (55 zetafunction regularization was scale dependent, so dimensional
(477)2 2Np12Bo 12 transmutation sets in. If dimensional regularization is used, it would
lead to a 1¢ divergence, which after renormalization would also
lead to dimensional transmutation. The point of the spectral regu-
The value ofL, displayed here corresponds to the(Slumodel larization is that dimensional transmutation is precluded thanks to
only. For the W3) model one get& ;=0 but then the term of Eq. the spectral conditions, Eq$4), and any choice of the spectral
(13) should be added, and the valuelof is changed. function yields the same finite result.
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TABLE I. The dimensionless low energy constafsultiplied by 1F) compared with some reference
values and other models. The errors for the SQM in the MDM realization reflect the erfdrgamdM g of

Eq. (86).
SQM Dual
x10° (MDM) ChPT? LargeN, " NJL® large N,
L, 0.79 0.53£0.25 0.9 0.96 0.79
L, 1.58 0.7t0.27 1.8 1.95 1.58
Ls —-3.17 —2.72+-1.12 —-4.3 —-5.21 —-3.17
L, 0 0 0 0 0
Ls 2.0£0.1 0.9 0.15 2.1 15 3.17
Lg 0 0 0 0 0
L, —-0.07+0.01¢ —0.32:0.15 -0.3
Lg 0.05+0.04 0.62-0.20 0.8 0.8 1.18
Lo 6.33 5.93-0.43 7.1 6.7 6.33
Lig —-3.17 —4.40+0.70°¢ —-54 —55 —4.75
Ly 1.58 1.85-0.90" 1.6
Lip -3.17 -2.7 -2.7
Lis 0.33+0.01 1.7-0.80f 1.1
&The two-loop calculation of Ref9]. dSee footnote 1.
bReferencd 14]. *Reference$10,67.
‘Referencd24]. Referencd5].
L _R —(9 Fr):(r_& F)\(r—’_r)\argzr_rtara(r'
L=~ 50 N = 035<10° " oo 8
f 7 Ny R,=R'.,; R=0g"R,,. (63)
Ls N £2 The Christoffel symbols are specified in E&22). The cur-
Lg= > T aani —— =0.05x 103, vature terms reflect the composite nature of the pseudoscalar
3847°  16B; fields, since in the considered model they correspond to the
coupling of the gravitational external field at the quark level.
N¢ f2 . After some algebra we get
Hy=—-Ls+ ————=-1 02x10°3
19272 4B§ f2
(60) Hoz—z Ng/6, (64)
The numerical values displayed here have been obtained N
with the largeN. value ofLg from Table I. L= —2Ly=— c - %, (65)
(4)
B. Curvature contributions
The curvature contributions to the chiral Lagrangian can Lig=— Ne P _ 1 5, (66)
be written in the form proposed in Ré6] and are given by (4m)2 1By 6
EEP=HR ey Hom 4 —2 N bo (67)
and : (4m)? 144
(4,R): — upt _ Y324 1t N p/
L L,R(D*U'D,U)— L ,R*(D,U'D,U) Hy= — czNFg_g)’ 68
—LigR(xTU+UTx)+HaR2+H,4R,, REY (4m)
+HsR, 0 sR* . 62 N 7p4
5 uvap 62 Hom — —C N 20 (69)

A , > (4m)? 720
HereR;,,, R,,, andR are the Riemann curvature tensor,
the RICCI tensor, and the curvature scalar, respectively: Note that there is a finite strong renormalization to Newton’s
gravitational constanG, since the classical Einstein’s La-
grangian isL=—R/(167G). This correction, proportional
3Note the opposite sign of our definition for the Riemann tensor ado the ratio of the hadronic to the Planck scéf& /3, is

compared to Ref[5]. We follow Ref.[65] (see the Append)jx numerically tiny.
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C. Energy-momentum tensor L=LO @y pBq. . (72

Using the action of Eq(8) one can compute the energy
momentum tensor as a functional derivative of the actiorwhere
with respect to an external space-time-dependent metric,

9,,(x), around the flat space-time metrig,, [we take the LBA=LCI _, |
signature (+ ———)]: e
1 sT LO=LODy (73
2707 55,000
* Guv™ v If we do a derivative expansiofsee the Appendix for de-
N tails), the effective chiral energy-momentum tensor up to and
=_i¢ including fourth-order corrections in the chiral counting
i dwp(w)
2 )c reads[5]
X(x|{O*",(iD) ~1}|x), (70 —_ 20) 4 o)1 a4)
0,,= 0,00+ 0,00+ 0,)+ -, (74)
where
) where
i
O¥=—(y*3"+ y"o*)—g""(id— w). (77
2 00)==9,,L, (75)
In the flat space-time limig“”= »*”, the chiral Lagrangian 2
contains only metric contributions and takes the form given,2)_ | t _ ()
in Refs.[3,4]: 0v="7(D,UDU)~0,,L%, (76)
|
604)=—9,,L#+2L4D,UD,UNx"U+U"x)+Ls(D,U'D,U+D,UD,U)x"U+U"x)—2L14(9,,0*—,3,)
X<DaUTDaUT>_ 2'—13(9#,,(?2_ &Mav)<XTU + UTX>_ L12(g,u,ﬁgva0”2+ g,u,vﬁaé’ﬁ_ gp,a&vo”ﬁ_ gva(y,u(?B)<DaUTDBU>'
(77)
|
Note that the coefficients ;—L,, appear inZ 4 given by p(©) B+ ps( @) Z(p?)
Eq. (48). The terms containind.1,—L ;5 cannot be obtained S(p) J d CI) = N (79
by computing the energy-momentum tensor from the chiral P~ w p—M(p°)

effective Lagrangian in flat-space tim{@&2) and from this
viewpoint are genuine quark contributions & in this
model. Actually, the difference between computing the
energy-momentum tensor from an action at the quark—i.e., _ il 1 (80)
starting from Eq.(71)—or at the meson level—i.e., starting pulw)= 27 o (1-4w?IMZ)5?

from Eq.(72—is

where

1 120!
5| ps(w) S 81)

= - . (19 27 MY(1-40? /M3
o 99,0
ez wv

. 0900

T
69,,,(X)

The vector spectral functiopy(w) is determined by impos-
ing vector meson dominance of the pion electromagnetic
with S? and S® denoting the metric and curvature contribu- form factor, from which the identity

tions to the action, and is precisely related to the curvature

terms corresponding to the couplings;,L;,, andL 3. N M2

f2=
2472

(82

VI. RESULTS FOR THE MESON DOMINANCE MODEL . . . . . . .
is deduced. This relation is subject to chiral corrections. It is

The meson dominance mod@&IDM), developed in Ref. remarkable that such a simple relation produces a mass of
[42], offers a particularly simple realization of the SQM and M =826 MeV for f_=93 MeV which agrees with the
provides an explicit form for the spectral function. The quarkvalue recently obtained in Ref66]. With this value of
propagator becomes f one gets a vacuum energy oB=—3NgfYN,
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~(202-217 MeV} for Nc=3. In contrast top,(w), the 872(qq) 5M M3
expression for the scalar spectral functiog(w) is an edu- M= =—

2 2 !
cated guess which satisfies the odd spectral conditigns NcMs 6My
=pz=---=0 and reproduces the value of tpg log mo- e 2
ment. The preferred value for the vector mass is péMDz _ 4m°f — w
N 6’
My=770 MeV, (83) ¢
2/~ 4
which corresponds to themeson mass and which is used in wo__ 47{4a) _ SMoMs 89)
. . P3 5 -
the subsequent numerical analysis. N¢ 12Mmy,
The integration contou€ used in the MDM encircles the _
branch cuts—i.e., starts at+i0, goes around the branch Using these values we get
point at —M,/2, and returns to—>—i0, with the other 5
section obtained by a reflection with respect to the origin N My 89
[42]. These two sections are connected with semicircles at 5" 9672 M2’ (89)
infinity. The mass function becomes s
2\ 52 N 1 M2
Mg L,= > ;N 1_2_6MV2 : (90
M(p?) _10p° |M§-4p’ . S s
MO) w2 [ wm2 |7 A N, Y VI
2 2] Lg= - + —=. (91
My—4p ° 16n?| 150MZME  12M% 24

where the constituent quark mas$ is

2 2/ et His pIEILEMS 1VI1,2,3,4,6,9,
_ A48Mym*(qq) (85) scheme of Refl21]. The values ot 5 ; g are specific both to

Mo=M(0)= 7 : vai
5MgN, the SQM and MDM realizations.

In the SU3) case we display our results in Table I. We note

In the SU2) case we have, with the help of the relations

When M(p?)=p?, then Z(p?)=0, such that the quark given in Ref.[4], to pass form S(B) to SU2) [3]. In the
propagator has no poles in the complgkplane. Instead, it absence of meson loop correctiohs,
has a cut starting at the branch popft= M\2,/4. The expo-

nents reproduce accurately the -£4§%)*? behavior in the - = ll— o EI— N ©92)
deep-Euclidean domain. This behavior was seen in the recent 17 T2m o5 46 T
QCD lattice simulation in the Landau gauge, linearly ex-
trapolated to the chiral limit45]. A fit to the data yield$48] _ 4N, 16NCM\1,°
= +—, 93
Mo=303+24 MeV, 3 75M3ME 99
Mg=970=21 MeV, 86
S (86) — ZM\z/NC 9
with the optimum value of? per degree of freedom equal to 4 3M§
0.72, yielding an impressive agreementM{p?) up to p?
= —16 Ge\2. AlthoughZ(p?) is not nearly as goottf. Ref.  The vector and scalar pion radii are given[13y
[48]), leaving room for improvement, we think it worthwhile
to pursue the pattern of chiral-symmetry breaking which ) 1 — 6
arises in this particular realization of the SQM. Incidentally, (rv= 167212 GZWy
let us note that if the results of Sec. Il are used we get & v
N 1 3 — 6
fz:_cfd 2 , 8 r2)s= =—. (95)
e pETEsli (87) (rs= g —5l4 M2
e
My respectively. While the vector pion mean squared radius re-

which reproduces Eq82) and shows the consistency of the
approach. For the meson dominance model we get

The relations arel,=1927%(2L,+Ls), |,=19272L,,

w

“In Ref. [48] there were typographical errors in Eq20.6 and ~ =256m%(2Ls+Ls—4Le—2Lg),  1,=64m°(2L,4+Ls), _|_5
(10.9, which should carry an extra factor of 2 on the right-hand = —1927%L,o, |4=1927%Lg, 1,,=1927%L,;, and I3
side. =25672l,3. The constant,, is not renormalized by the pion loop.
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electromagneti¢e.m) form factor, the scalar radius shows 1
that the scalar mass obtained by a fit to the lattice quark mass LSRA= —3L3™A+ §L§RA, (100
function does correspond to the mass of a scalar meson
dominating the scalar form factofr )¥?=0.50+0.01 fm.

The scalar(spin-0 and tensofspin-2 components of the 2

SRA__ SRA SRA__
gravitational form factorsg, and 6, [5], respectively, pro- 2Lz =3l +Llp = am2’ (10D
duce the same mean-squared radii fo
2 2 Ne SRA f2
(reo=(r >G,2:m, (96) L3F = (102
fa

regardless of the particular realization of the spectral model.
If we saturate the form factors with scalar and tensor mesonwheref, My, andM g should stand for the leading lardé:-
f, andf,, we get, for their masses, contributions to those quantities. To obtain the formulas for
L,—L4o, the pseudoscalar and axial meson contributions
M = Mf2=4wfw\/3/NC= 1105-1168 MeV, (97) have been fine-tuned to satisfy the VV-AA and SS-PP two-
point correlation-function high-energy-behavior chiral sum
depending whether we takie=88 or 93 MeV, respectively. rules plus some well-converging high-energy properties of
The experimental value for the lowest tensor meson isadronic form factors.(In particular, Mp/Mg=M /My,
M?Zpt: 1270 MeV. As discussed in Reff5], the 6, (corre- = ./2, whereM is the mass of the excited piorDbviously,

sponding to the trace of the energy-momentum tenfssm  more short-distance constraints require more resonances. The
factor couples to scalars, whereas #he(corresponding to  values ofLy; 1, 13are obtained from the single scalar and
the traceless combination 6f,,) form factor couples to ten- tensor resonance exchanffg. On the one hand, a tensor
sor (spin-2 mesons. meson is needed in order to provide a nonvanishipgas a

One message is clear from the present model: the scalfinimal hadronic ansatz; on the other hand, tensor mesons
meson of mas#!;  which dominates the energy-momentum do contribute also other LEJ$8], which is not taken into

tensor does not necessarily coincide with the scalar meson G€coUNt in Eq.(102. Thus, to simplify the discussion, in
massMg, which dominates the scalar form factor. Actually what follows we restrict ourselves to the nongravitational

_ ; - ..~ couplingsL,—Lo. In practice, phenomenological success is
we haverO V2My, whereadsis a free quantity. This is achieved by using the physical values of the parameters.

natural in the spectral approach, where in the chiral limit the\jqie that although there is predictive power, it is done in
scalar form factorf-g involves the odd spectral moments, ;o-ms of two dimensionless ratidéM,, and f/Ms. Obvi-

whereasf, involves_ the even spectral mc'J'ments. In pgrticu—ouswy in the chiral limit we expect bothl,, andM s to scale
lar, the corresponding mean-squared radii are proportional Q. f_. Therefore, in order to preserve the lafgg-count-

, ; . .
p1 andpq, respectively. Finally, we note that the numerical ing rules one should haveM,=cyf /YN, and Mg

value Oﬂ_3:465 obtained in MDM amounts to a shift of the :Csfwl\/N—C with CV and CS denoting Some\]c_independent
pion mass by less than 1% and an increasg,ofielding 89 coefficients. Remarkably, in the SQM the low-energy param-

MeV as compared t6=87 MeV. eters depend on two dimensionless rafisB, and p4/B2.
It is therefore tempting to determine the spectral log mo-
VII. LARGE- N LIMIT AND DUALITY ments from largeN., arguments, in a model-independent

vay. Actually in the SRA we note that the ratibs:L,:Lg of

Given the fact that our result corresponds to a one-quar )
loop approximation, we cannot expect our model to be bette‘he SQM agree with those of thg SRA. Th,e valuesghnd
Ly can then be used to determipé, andp;, respectively,

than the leading larghl; contribution to the low-energy pa- ~9 “°
rameters, which is made of infinitely many resonance exYi€lding
changes[15]. On the other hand, the evaluation of these

largeN; contributions requires additional, not necessarily /SRA_ 87%(qa)
unreasonable, assumptions such as the convergence of an P1 = NCME ' (103
infinite set of states and, moreover, an estimate of the con-
tributions of higher resonances. In practice, one works in the
X . K X K L 477'21:2 M2
single-resonance approximati¢8RA), yielding a reduction ISRA_ _ ___V (104)
of parameter$5,15: P2 N, 6’
o SRAZ LSRAZELSRA: _ ELSRA: 2 (98) in agreement with Eqg89) and(82). This is not surprising
1 2479 3710 2’ since the physics of the meson dominance version of the
SQM and SRA is alike. The only difference is that one can-
8 £2 not deduce from Eq104) the value of the constituent-quark
LefA= S LgM=—, (99  massMq=M(0), which is given by the ratio of two nega-
3 4Ms tive moments,Mq=p_1/p_,, Eqg. (2). To determineMq
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would require computing terms @(p®) in the chiral La-  These relations are subject to higheNd/and m,. correc-

grangian and comparing to the SRA at laigg. tions. We may account for the latter by allowirfig to vary
One can see that it is not possible to matgtor L. The  between the physical value and the value in the chiral limit.

disagreement with the largé; values ofLg andL has to  This yields(r2)§?=(r?)j/>=0.58—0.64 fm. The value of the

do with the fact that the SS-PP sum rule and VV-AA secondscalar radius is compatible with the one obtained in ChPT to

Weinberg sum rule are violated in the present as well as othgwo loop[8], 0.78 fm. Going to the S(2) case, in the dual

guark model calculation§69,70 (except for the nonlocal largeN. model we get

models; sed71,77). This calls for a modification of our

model. The disagreement has to do with the absence of axial- T _§|— _§|— B }I— —EI— N (108

meson exchange ihj, (1/4 of the total contributionand 17727 pi8 4 3is 467 e

pseudoscalar meson exchangd.jn(1/4 of the total contri-

bution). On the other hand, for the value bbbtained from Whereas the recently extracted values obtained at the two-

Eq.(82) the constants ;, L,, Ly, Ls, Lg, Lg reproduce the loop level from analysis ofr# scatterind 8] and vector and

largeN,, constraints obtained in Refl4]. This agreement is scalar form factor$7] at the two-loop level are

confirmed in Table | if one corrects for the factor

247%f2/N;MZ=1.15. One could forcé 5 to agree with the 1;=-0.4x06, [,=6.0+13, [3=2.9+24,
largeN, estimate by takindM,,=Mg. This agrees with the _ _ _
observation of the chiral unitary approach of Hé6]; in the 14,=4.4x0.2, 15=13.0:1.0, l=16.0:1.0.

largeN, limit, the scalar and vector mesons become (109
degeneraté.Thus, the marriage of larg; in the SRA with — o ) ) )
our chiral quark-model calculation produces degenerate scd"€ | coefficients are in a sense more suitable for compari-
lar and vector mesons. Degenerated scalar and vector mesctfy! With ChPT since the chiral loop generates a constant
were suggested very eafy3] in the context of supercon- Shift in all of them by the same amount=log(w /). _
vergent sum rules and have been interpreted more recentighusj it makes sense to compare the differences where chiral
on the basis of mended symmetrigg4]. Experimental 0garithms are cancelled. We find
claims have been raisg@5—77 and conteste{l78]. Direct - —
experimental tests have also been suggestet l2=11=2N¢ (Exp. 6.4-1.4),

It is clear that whatever sensible modification of the SQM
is considered, it will only affecLg and L, keeping the T_T
remainingL’s. We leave the explicit construction of such a E 3 (Exp. 3.352.4),
modified model for a separate study. Regardless of the par-

ticular way to achieve this, we may anticipate already the — — 5N
consequences for largé. in the single-resonance approxi- la=1y= 3 (Exp. 4.8£0.4),
mation of takingM =M, =27f6/N, yielding the duality
relations Ts—11=4N, (Exp. 13.4:1.1),
1 1 2 1 1 -
2L;=Ly=—5ls=5Ls=5Lg=7Lo=—3L1 le—11=5N; (Exp. 16.4-1.1), (110
where the errors have been added in quadrature. As we can
N, see, the agreement is excellent, within the uncertainties, and
= 5" (105 suggests accuracy of the order oNi/rather than the stan-
192m dard a priori 1/N. error estimate. The constant pion loop
shift can be accommodated with a scalg=513
This also implies the set of mass dual relations +200 MeV, comparable to the meson mass. Taking Egs.

(102, corresponding to the SRA with the physical valdes
Ma=Mp=12My=\2Mg=4m3Nf,. (106 =93 MeV, Ms=1000 MeV, andM,=770 MeV, as done
in Ref [15], yleldS | 2 I 1:8.3, |3_ | 1:6.2, |4_ I 1= 62,
I5s—1,=15.2,1¢—1,=18.7. More reasonable values are ob-
tained by takingM =600 MeV, but then the SRA relation
Mp=2Mg predicts a too low value of the excited pion
state. The present discussion favors phenomenologically the
<r2>g2:<r2>\1//2:1\/N—c/277fw- (109 gual reIatio%s(lOS) as compared to thg SRA relatiof?EOZ) g

with physical parameters.

The new relationM =M agrees with the experimental
number within the expected 30% of the lafyedimit. Using
Egs.(95) we obtain

SFor N.=3,10,20,40, Ref. [66] obtains Mg/My VIII. CONCLUSIONS
=0.58,0.84,0.96,0.98, respectively, withg andM,, the real parts
of the poles in the second Riemann sheet. We thank J.RePtda In the present work we have studied the chiral expansion
providing these numbers. of the recently proposed spectral quark model in the presence
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manded from the powerlike factorization property of form

factors at high energies, we have been able to show that the APPENDIX: DERIVATIVE EXPANSION AND USEFUL

corresponding chiral anomalous contribution to the action is IDENTITIES

properly normalized without removing the regularization. _ ) )

Moreover, the nonanomalous contribution to the action can ~ Reduction to a vectorlike theory and transformation

be written in the long-wavelength limit in terms of 13 low- properties

energy constants. The numerical values are in reasonable The Dirac operator can be rewritten as

agreement with the phenomenological expectations, although

some discrepancies do occur fog andLy. In some cases D=DgrPrtD_P, (A1)

they can be naturally explained as failures in reproducing . o )

some chiral short-distance constraints which suggest that tHith the projection operators on parity,

model needs to be improved. On the other hand, if one tries 1 1

to match the remaining nongravitational LECs to laMye- Pr==(1+7vs), PL==(1—1vs), (A2)

predictions in the single-resonance approximation, a further 2 2

reduction of parameters takes place. In particular, one finds

the best agreement for degenerate scalar and vector mesoR
We have _es'qmated in the framework of chiral ggark mod- Vo=P¥, W =P, V. (A3)

els the gravitational LECk,,, L,,, andL,3, describing the

coupling to external gravitational source$hese LECs de- The right and left Dirac operators are given by

pend on curvature properties of the curved space-time met-

gch that for a Dirac spinor one has

ric. This calculation allows a determination of some matrix iDr=id+Azg— M,
elements of the energy-momentum tensor. Our analysis sug- _ _
gests that the scalar meson coupling to the quark condensate iDL=i4+A —MT, (A4)

myqq and the scalar meson coupling to the trace of thewith
energy-momentum tensa#;, do not necessarily coincide.

Clearly, these two operators behave differently under chiral M=s+ip+oU, MT=s—ip+oUT, (A5)
symmetry, sincangqq vanishes in the chiral limit whereas
¢, does not. This point is in itself rather intriguing and de- Ag=v#+a*, Af'=vt—at (AB)

serves further investigation. We note here that this fact ma-

terializes in our model because these two scalar mesons déhe quark mass matrix is included in the scalar feeldnder
pend on odd and even spectral moments, respectively. On theft-right unitary transformations), and{lg, one has the
other hand, we obtain My =M= \2M\=\2Mg  Properties

=41\3IN.f ., a very reasonable result if we take into ac- Ve Qg¥r, Y —Q (A7)
count the largeN, nature of the one-quark-loop approxima-

tion. Further quark-meson duality relations have been dis- U—-Q.uQk, uf-ogutal, (A8)
cussed, allowing a rather successfully determination of the

best known LECs, consistent up to the experimental errors AQHQRAQQL-HQRW‘Q&, (A9)

with the best known values up to two-loop accuracy.
AL—Q A +iQ 0] (A10)
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D,Vgr—QgD, Vg, (A12)  which are symmetriq in the lower indiceky, =T"7, (v_ve
assume here no torsiprin order to preserve the covariance
D,V —QD, ¥, (A13) of the tetrad mapping we must have
D,U—Q D, UQL, (A14) d.e,a=d,en,~ ) ea\+wap,e5=0.  (A23)
DMUTHQRDMUTQI_ (A15) In addition, the conditiord,,g*“"= 0, implying
d,7a8= @Ayt @B, =0, (A24)

Coupling the spectral quark model to gravity

The coupling of fermions to gravity is well knowfsee, ~€4quIres an antisymmetric spin connectioRs, =~ ®eay ,
e.g., Ref[80]) but not in the context of chiral quark models. 9'V€N by
We review it here for completeness and to fix our notation.

We use the tetrad formalism of curved space-tifice con-
ventions see, e.g., Rd65]). Given the metric tensor we get
a local basis of orthogonal vectoftetrads or vierbein

wABM:eZ[(?MeB,V_FZ;MeB,)\]' (A25)

The frame and coordinate covariant derivatijgis defined
according to the spin of the corresponding field. For a spin-0
U, spin-1/2,¥, spin-1,A,, and spin 3/2,¥,, fields the

pv — oM v AB
g (x)=ea(x)eg) 7, (AL6) transformation properties are

with »*B=diag(1—-1,—1,—1) for a flat Minkowski metric.

These vectors satisfy the orthogonality relations V)=V,
8= P Beke g =ele?, W (x)— S(A(X))V(X), (A26)
=gtvele . =e et X,
%= 0" = k. (ALD AuX)= AL () (A21)
X
Under the coordinatex“—x’#(x) and framex"— Agx®
transformations the transformation properties of the tetrad ox’
are W () — a—;S(A(x))‘PV(x). (A28)
X
A ax"" A
U o v For infinitesimal Lorentz transformationsg= 85+ e with
E.AB: — €EBA one haSS(A) =1- (i/4)(TABEAB W|th JAB de'
eﬁ—> Aé(x) eﬁ, (A18) fined below[see Eq(A34)].

For a scalafspin-0 field we have the standard definition

respectively. The tetrads map coordinate tensors into frame
tensors(which transform covariantly under local Lorentz
transformations—for instance,

d,U=4,U. (A29)

For a(spin-1) vector, one has

A B

TAB_ e,ebTH, (A19) d,A,=d,A,~ ]“’;MAA ; (A30)

Frame tensors are invariant under coordinate transformatio

x*—x"*. For a general tenscF:, greek indices transform

covariantly under coordinate transformations while latin in- [d,,d,JA,=R"

dices transform covariantly under frame transformations ac- prore

cording to Eq.(A18) as follows: with the Riemann curvature tensor given by E63). The
coordinate and Lorentz covariant derivative for Dirac fermi-

ax" . ) )
AR TAg. (A20) ons(spin 1/2 is defined as

r]ssatisfying the property
A, (A31)

apv

!
a 14

-
RANNPNTRPNC

d,¥=3,%(x)—iw,¥(x), (A32)

The covariant derivative is defined as . . .
wherew,, is the Cartan spin connection,

_ " " B
A Toa=d, Toa— 15, Tiat D Toat was, Ty,

1
(A21) ©,=7 0, (A33)
where the Riemann connection is given by the Christoffel
symbols and
(o8 1 vo I
F)\,u.zzg {a)\gﬂv—’_aug)\v_avgu)\}! (A22) GAB:E[7A175]7 (A34)

034031-14



LOW-ENERGY CHIRAL LAGRANGIAN FROM THE . .. PHYSICAL REVIEW D 70, 034031 (2004

with the y, are fixedx-independent Dirac matricesve use 1 _ABCD
the conventions of Ref[81]) satisfying the standard flat- T

space anticommutation rules

YAYBYCYD= V5- (A45)

Here g(x) =det(@**) since detey)?=det(@"") with "
=1 (both in the frame and in the coordinate sense

The full coordinate, frame, and chiral gauge covariant de-
rivative for pseudoscalafspin-0, Dirac spinor(spin-1/2,

Y4By A=24 (A35)

The space-time-dependent Dirac matrices are defined as

v, (X)= yae2 (%) (A36) and a Rarita-Schwinger spintspin 3/2 fields are given by
g . the formulas
and satisfy . .
v.u=p,U=9,U-i[v,,U]-i{a,,U},
YH(X) 7" (X) + y"(X) y*(X) = 2g""(x). (A37)

VVY=D,¥=9,¥—-i(w,+tv,+v5a,)V,
The covariant derivative of a framex{independentDirac

— : A
matrix (behaving as the adjoint representatin?) is VoV, =0V, —i(w,+v,+ysa,)¥,— 17, ¥y,

d#yA=8#yA—i[wM,yA]+wABMyB=O. (A38) (A46)

and they correspond to replacing the derivative by the frame
and coordinate covariant derivativeé,—d,, in the chiral
covariant derivativeD , . Note that with this definition nei-
ther D,D,¥#V,V,¥ nor D,D,U is coordinate covariant

since the second derivative does not include the Riemann
which implies that for the free Dirac operator the order |Sconnect|on1“"

irrelevant, d¥=y*(x)d,¥=d,y*(x)¥. For a mixed
(spin-3/2 tensor the frame and coordinate covariant deriva-
tive reads

Thus, we obtain a useful identity for the coordindsnd
x-dependentDirac matrix:

d,7.(x)=0, (A39)

Second-order operator

In the absence of gravitational sources, the normal parity
contribution can be obtained from the second-order operator

dv,=v,
a a [see Eq(15)]:

=9,%,~I) V,~iw,V,. (A40)
Applying the previous definition td , ¥ one gets the useful

formulas DsD=[DZ+iM D —iDgM T+ MTM]Pg

+[DZ+IMD —iDgM+ MM TP . (A4T)

i
[d,.d,]¥=+—0"R

n . (A41)

Gravitational fields can be coupled by covariantizing first the
Dirac operator—i.e., making,—d, or D ,—D,—and tak-

ing into account that since a spinor field is a coordinate sca-
lar we have

1 ) .
d“d W= fg{(ﬁﬂ—lwﬂ)[J—_gg“”(&y—lwy)]\P},

(A42) _
D,V=V,V.

(A48)
aff B AB H X -
whereq €x€g0" " IS an antisymmetria-dependent ma The same reasoning can be applied to the coordinate scalar

trix. -
Gauge fields can be included by the standard minimaylp’ yielding

substitution rule, yielding the covariant derivative for a fer-

DYV=V VV¥.
mion: a ®

(A49)
This means that we can assufflg =Y, r When acting on

V,¥=(d,—iA, V. (A43)  spinor field as follows:
With this notation the full Dirac operator in the presence of
external vector, axial-vector, scalar, pseudoscalar, and gravi-

tational fields reads as in E(P), where

A= yH(X)AL(X),

and the pseudoscalar Dirac matrix in the curved case is d

DsDW =[V2+iMYV, —iVaM+ M TMIP¥
+[VEHIMIY = iVeM T+ MM TP W,

(A44) (AS0)

If we include the gauge fields, we have two vector like theo-
Fies with left and right gauge fieldg., andV? , respectively.

fined as Suppressing momentarily the left and right labels we have
(X) = 1 B, (%) 7,(X)74(X) 750 DAY= Y20 = | VAT, hE, R
Ys 41 —g ’Y,U, Yv Ya yﬁ = = w EO’ FMV'F ZR y (A51)
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where use of the identit the external scalar and pseudoscalar fisldsdp are taken
y p p
to be second order as well. Thus, the multiplicative operator
[V, V¥ =[D,,D,]¥ V—w? is at least first order in the chiral counting. To the
) computed orde®(p?) in the heat kernel expansion one has
=[D,,D,]¥+ I_O-aﬁRa,BMV\I, to go up toay. Th_e c_ontributic_ms can be separated into the
4 flat-space nonvanishing contributions and the curvature con-

(A52)  tributions generated by quantum effects. Using the form sug-

has been made. The coordinate and frame invariant Laplag-ested in84] we have

ian for a Dirac spinor is given by

1 aO:l,
VMV”\I,: FD’“( \/_gg/'LVDV\P). (A53) 1
9 a=?-V+ =R,
Note that for a Dirac spinor field" the operatoD,, contains
the spin connection. Reinserting the right and left chiral no- 1 1 1
tation the second-order operator takes the suitable form =— uvaf_ uyy R
p a, 180R“”“5R 180R’”R + 127 Fuv
1 2
_ v 1 1 1
DsD=—[D,(V—9g*'D,)]+V, (A54) ZV2R— ZV2)+ =| 2=Vt =
g " +30VR 3 V+2w V+6R,
with
V=VrPr+ VP, (A55) aa= 2wz v 2R = Lvmw vt o9
"6 6 12 m '
and
1 1 as= i[V— 0?14+ O(p®) (A59)
Vo= =5 0*FL,+ 2RIV M+ MM, 4" 24 '
where
Vo= Lo +1R—iwv MT+MMT
L2 m4 # ' Fu=i[D,,D,], (A60)

(A56)
V2Y=V+V, V. (AB1)
Derivative expansion
Clearly, the heat kernel coefficients depend on the spectral

We use the praper-time representation massw in a polynomial fashion. Using the integrals

dr
Trlog(DsD)=—T e 'sbiC, A57 =d i
rlogDs0)= ¢ [ (AST) | Zinr e iawrire-2, @62
0

with C and infinite constant. The form of the operaiyD in
Eq. (A54) is suitable to make a heat kernel expansion inwe get for integez=n and after using the spectral condi-
curved space-time as the one of R&2]. For a review see, tions, Eq.(4), the normal parity contribution of the action
e.g.,[83] and references therein. In our particular case, betakes the form

fore undertaking the heat kernel expansion we separate a
contribution from the operatddsD which we treat exactly:

[
- ETr logDsD=— > (

—i7 —iTw? —ir —w?
(x|e™"™PsP]x) = eI (x| e~ 1P x) 1
_ ) X —§w4logw2ao+w2|0gw2al
[ _
=———e "3 a(x)in)"
(4iT) n=0 b 1 1
(A58) —log(w*/pn?)a,+ Ea3+ Ea4+ .

The derivative expansion is done by considerlugzeroth
order the vector and axial fields, anda,, first order, and a2 @)
any derivatived,, first order. ThIS implies in particular that _J' d*xV=g(L=+ LI ).
RuvaB Rev, andR are taken to be of second order. Finally, (AB3)
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After evaluation of the Dirac traces, the second-order Lagrangian is
Nc 1
E(Z):Wj p(w)] —w?log w*(V,UTV*U)+20°%log 0*(m'U+U'm)+ w?log w21—2<R> , (A64)

whereas the fourth order becomes

Nc
£(4)=(47T)2j p((,())

LR Y UTUAFL TUTUN 4 (T, UT,UN2) — =((V,UTAUT2) + =(T47UT, T,U"
3< 2% v A7y v > 12<( 1 v )> 6<( M )> 6< v >

1 7 1 1
_ 2 R 2 L 2\ __ 2 aBuv _ 21 T ppy
+ 6Iogw <(F,uv) +(FL.) Y—logw 720R Reguv 144R + 90R RW>

"
1t Ryt 2,2 T T Fry2v] t T t
_€<F,U«VUFMVU Y+log w o 2(m"m)+{(m'U+U"'m) >]—§w<VMU VAU(M'U+U"m))

1 1
—log w?w(V,UTV*m+V,m'V+#U) - w log w26R<UTm+ m'U)+ ERVMUTV“U> . (AB5)

Note that up to this order the momentg=1, p,=0, andp,=0 as well as the log momentg,, p;, andp, appear.

Equations of motion Taking the trace and using the condition that for a matrix
We define with DetU=1 one has(U'V,U)=0 and hencgU'V2U
—Vau'u)=0, we get
X=2Bym=2By(s+ip). (A66)

For on-shell pseudoscalars one may minimize the action at 1 + +
lowest order, A= a(U x—x'U) (A71)

2 L
@=L [ gax /= fyu U+UT) - =
S 4de 9<VMUV U+(x'U+U'y) 6R>’ and thus

(A67)

T2 20t =1t t 1. T
to obtain the equations of motiggEOM). SinceU is unitary, UVU=VAUU=U =X U= §<U X=x'V).
UTU=1, we have that the variations dmh andU" are not (A72)
independent of each otheSUTU+UT6U=0. For SU3)
flavor one has, in addition, to impose the condition Det
=1. One can treat) andU" independently by introducing a On the other hand) is given by
term in the Lagrangian of the forrdAUTU—i\ logU)
where the Lagrange multipliers are, a Hermitian matrix,
and\, a realc number. Thus, the EOM are 2A=V2UTU+UVAUT-(yUT+xTU).  (A73)

V2U=y+(A—iNU,
Using the identities deduced form the unitarity condition

v2UT= T+ U (A +iN), (a6g) UTU=1,
where T +
u'v,U+v,utu=0, (A74)
1
V2U=—D,(V—gg*'D,U). (A69)
V-9 " UTV2U+V2UTUu=-2V,u'vAu, (A75)

Combining these two equations, we get
and combining them with the previous Eq#&73), (A75),
U'v2u-vauTu=uUTy—xTu—2ix. (A70)  we get the identities
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) ) ) ) 1 - In four dimensions, one can reduce the form of the cur-
(V2UTV2U)=((V,UTV+U)?) — Z((XTU—U X)%) vature contributions to the Lagrangian if the Gauss-Bonnet
theorem is used in Eq62)—namely, that

1
+—(x"U—-UTy)? (A76)
12 =f d*x=g[R?— 4R,,,R*"+R,,,sR*"**]
and (A80)
<erzu+V2UTX>:2<XTX>_ §<(XTu+UTX)2> is a topological invariantthe Euler numbegrand hence
S5k=0 (A81)
+ t t
—((x'U+U")v#U'V,U)

1 under metric deformationg,,,—9g,,+ 69,,. This relation
+—(xTU+UTy)2 (A77)  was not taken into account in RéB] but it does not affect
6 the calculation of the energy-momentum tensor in flat space,

In the case of the () group one has Dél=e' 70/ +1 and  EQ.(76).
the last two terms involvingd x'U+U"x)? in Egs. (A76)
and(A77) should be droppedSee the discussion before Eq.  Derivative expansion for first-order differential operators

(59).] The result can be further simplified using the integral As we see the definition of the action involves the Dirac

identity operatorD only, which is a first-order differential operator.
The derivative expansion of the Dirac operator can be done
f d*x\/—g(V*V UTVAV U) using the identity
1 d*k 1
= | d*x—g(V2u'vau _ =f
f V-l ) M mwu (2m)* k+iD-M-oU’
\ . (A82)
+ | d*xy—gR,(V*U'V"U), (A78
j \/_g wrk ) (AT8) where the differential operator acts on the right. This formula
which can be deduced from E¢A31) applied toV,U. Fi- can be justified by_ requiring vector gauge invariance pf the
nally, we also have the S8) identity action[85] or by using the asymmetric version of_ the Wigner
transformation presented in R¢62]. Expanding in powers
(V,UTV,U)%)=-2(V,UTV,U)+(V,UTV,U)2 of D and M and squaring the denominator we get
n+1
+ 2w utveuye, (A79) dk )1
2\ w =g E
iD— M (2w )
Once the identitiegA76), (A77), (A78), and (A79) have s 110
been used one can make the substitute the coordinate-frame X (k+oUD[(ID - M) (k+ U™
covariant derivative by the covariant derivative—i.84U (A83)
=D#U—since the pseudoscalar mattixis a coordinate and
frame scalar. In that way Eq&8) and (62) are deduced. In this way Eq.(44) can be derived.
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