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Relativistic calculation of the meson spectrum:
A fully covariant treatment versus standard treatments
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A large number of treatments of the meson spectrum have been tried that consider mesons as quark-
antiquark bound states. Recently, we used relativistic quantum “constraint” mechanics to introduce a fully
covariant treatment defined by two coupled Dirac equations. For field-theoretic interactions, this procedure
functions as a “quantum mechanical transform of the Bethe-Salpeter equation.” Here, we test its spectral fits
against those provided by an assortment of models: Wisconsin model, lowa State model, Brayshaw model, and
the popular semirelativistic treatment of Godfrey and Isgur. We find that the fit provided by the two-body Dirac
model for the entire meson spectrum competes with the best fits to partial spectra provided by the others and
does so with the smallest number of interaction functions without additional cutoff parameters necessary to
make other approaches numerically tractable. We discuss the distinguishing features of our model that may
account for the relative overall success of its fits. Note especially that in our approach for QCD, the resulting
pion mass and associated Goldstone behavior depend sensitively on the preservation of relativistic couplings
that are crucial for its success when solved nonperturbatively for the analogous two-body bound states of QED.
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[. INTRODUCTION fundamental problems that fortunately could be sidestepped
for QED due to the smallness of.

Over 50 years after the discovery of the first meson and In the absence of definitive guidance from QED, in recent
over 25 years after the identification of its underlying quarkyears researchers in QCD have felt free to jump off from any
degrees of freedom, the strong-interaction bound-state protpoint that had proven historically useful in QED. Some have
lem remains unsolved. Perhaps eventually the full spectrurihosen to approach the spectrum using time-honored forms
of mesonic and baryonic states will be calculated directlyfrom the “relativistic correction structure” of atomic phys--
from quantum chromodynamics via lattice gauge theoryiCS: Others have _empl_oyed truncations of f|elq-theoret|c
This would require use of techniques that were unknown t@0Und-state equations in hopes that the truncations do no
the founding fathers of QED. For the present though re_v|oIence to the dynamical structures or their relativistic
searchers have had to content themselves with attempts nsformation properties. Athird set.h.av.e broken away from
extend bits and pieces of traditional QED bound-state treat> ED by choosing to guess at “relativistic wave equatlons
ments into the realm of QCD. Unfortunately, for those boun s though such equations have no connection to f|e|c_1 theory.

. C - . Is there another way to attack this problem? Imagine that
systems whose constituent kinetic or potential energies are

ble t ituent rest lativistic 1 could replace the Schdimger equation by a many-body
comparable 10 constituent rest masses, nonrelativistic eC'?élativistic Schrdinger equation or improved Breit equation
niques are inadequate from the start.

that could be solved numerically. One would have to estab-
In the QED bound-state problem, weakness of the coujigp, its validity by connecting it to quantum field theory, and
pling permitted calculation through perturk_)_auon about thejg utility by solving it for QCD. Of course such an approach
nonrelativistic quantum mechanics of the Sclinger equa-  \yould apply equally as well to QED and so would have to
tion. Using the equation adopted by BrElt-3] (eventually  recapitulate the known results of QEThese results might
justified by the Bethe-Salpeter equatiph), one was faced reemerge in unfamiliar forms since they do not originate in
with the fact that a nonperturbative numerical treatment othe usual expansion about the nonrelativistic limit.
the Breit equation could not yield spectral results that agree Now, for the two-body bound-state problem, there is such
to an appropriate order with a perturbative treatment of thean equation or rather a system of two coupled Dirac
semirelativistic form of that equatidd —9]. This form of the  equations—for an interacting pair of relativistic spin one-half
equation contained such terms as contact terms bred by tlwnstituents. It turns out that for the two-body case, use of
vector Darwin interaction that could be treated only pertur-Dirac’s constrained Hamiltonian mechanif$0-15 in a
batively, spoiling the interpretation of the Breit equation as aform appropriate for two spinning particle$16,17
bona fide wave equation. Forays into the full relativistic (pseudoclassical mechanics using Grassmann degrees of
structure defined by the Bethe-Salpeter equation turned ujpeedom[18,19) leads to a consistent relativistic quantum
description. In the two-body case, one may explicitly con-
struct the covariant center of momentum rest frame of the
*Electronic address: hcrater@utsi.edu interacting system. In fact, the relativistic two-body problem
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may be written as an effective relativistic one-body problemtization go back to those found by Dirét0], and applied by
[12,20,2]. The proper formulation of this relativistic scheme Hanson and Regge to the relativistic tigf], by Nambu to
requires the successful treatment of the quantum ghost statdse string[41], by Galvao and Teitelboim to the single spin
(due to the presence of the “relative timethat first ap-  one-half particlg 19], and by Kalb and Van Alstingl1] and
peared in Nakanishi's work on the Bethe-Salpeter equatioty Todorov[12] to the pair of spinless particles. Their pro-
[22]. genitors can be found in the bilocal field theories of Yukawa,
It might seem that although fully covariant and quantumMarkov, Feynman, and Gell-Mann as well as the myriad
mechanically legitimate, such an approach would merelytreatments of the relativistic oscillator beginning with the
give a sophisticated method for guessing relativistic wavevork of Schralinger.
equations for systems of bound quarks. However, this In this paper, we will compare our latest results for the
method assumes its full power when combined with themeson spectrum provided by the Two-Body Dirac equations
field-theoretic machinery of the Bethe-Salpeter equationwith the corresponding results given by a representative
When used with the kernel of the Bethe-Salpeter equation fosample of alternative methods. The present paper is not a
QED, our approach combines weak-potential agreement witdetailed account of this methodalready presented
QED [23] and the nonperturbative structure of the field- elsewhere—see Refd.23,42 and references contained
theoretic eikonal approximatioi24,25. The extra structure therein. Neither is it an attempt to conduct an even-handed
is automatically inherited from relativistic classida@6,27]  or thorough review. Rather, its purpose is to show how such
and quantum mechani¢25]. In QED our approach amounts an organized scheme fares in the real world of calculation of
to a “quantum-mechanical transformi28,29 of the Bethe- a relativistic spectrum and to contrast its results with those
Salpeter equation provided by two coupled Dirac equationproduced by an array of approaches, each chosen on account
whose fully covariant interactions are determined by QED inof popularity or structural resemblances or differences with
the Feynman gaugie80,23. These “Two-Body Dirac equa- our approach. In this paper we consider only approaches like
tions” are legitimate quantum wave equations that can beurs that do not restrict themselves to the heavy mesons but
solved directly{ 31,23 whose numerical or analytic solutions attempt fits to the entire spectrum thus obtaining a more
automatically agree with results generated by ordinary perdemanding comparisofWe do not consider here the myriad
turbative treatment(ln our opinion the importance of this of partial spectral results for either the light or heavy mesons
agreement cannot be overemphasized. A common fault acdppearing in the recent literatur&here possible, we shall
most of the models we discuss in this paper is that they lackhow how certain distinguishing features of the various ap-
such agreement. But, if a numerical approach to a two-bodproaches are responsible for success or failure of the result-
bound-state formalism when specialized to QED cannot reing fits to the meson spectrum. Whether our equations ulti-
produce the results given by its own perturbative treatmentnately prove correct or not, they have the virtue that they are
how can one be certain that its application to highly relativ-explicitly numerically solvable without additional revisions,
istic QCD bound states will not include spurious short-rangecutoffs, etc., unlike certain other approaches whose spectral
contributions? consequences depend on ad hoc revision necessary for nu-
Of course there is a fly in the ointment—but one to bemerical solution.
expected on fundamental grounds. It turns out that the only All of the treatments we examine attempt to describe the
separable interacting system as yet explicitly constructed in mteractions of QCD through the inclusion of spin-dependent
canonical relativistic mechanics is the two-body system. Innteractions that in part first appeared as small corrections in
practical terms, this means that we must confine the preseatomic physics. All include relativistic kinematics for the
treatment to the meson spectrum. So far, even the relativisticonstituents. One contributor to the use of such techniques
treatment of the three-body problem of QED in the constrainf43] has even asserted that all of the alternative approaches
approach is unknown. No one has been able to produce threleat include relativistic kinematics are actually equivalent to
compatible separable Dirac equations which include not onlghe nonrelativistic quark model, so that the detailed relativ-
mutual interactions but also necessary three-body forces iistic structure of the interaction makes no difference to the
closed form[13]. bound state spectrum. However, as we shall see in a fully
Although still considered unusual or unfamiliar by the relativistic description with no extraneous parameters, the
bulk of bound-state researchers, the structures appearing detailed relativistic interaction structure in fact determines
these equations may have been anticipated classically by the success or failure of a calculation of the full meson spec-
L. Synge, the spin structures were introduced into QED  trum from a single equation.
correctly) by Eddington and Gaurt32,33, and they have The order of the paper is as follows. First, in Sec. I, we
appeared in approximate forms appropriate for weak poterreview enough of the structures of our Two-Body Dirac
tials in the works of Rizov and co-workel84] and of equations and their origins in relativistic constraint dynamics
Pilkuhn and co-workerg35]. Of greatest surprise but great- to make clear the equations that we are solving and the rela-
est value(to the authorg their perturbative weak-potential tivistic significances of the potential structures appearing in
versions were uncovered in QED by J. Schwinger in hishem. (Those readers who are already familiar with con-
virial treatment of the positronium spectruf86,37. The  straint dynamics might wish to go directly to the QCD ap-
associated relativistic mechanics transforms properly undepglications of Sec. llI). In Sec. I, we detail how we incorpo-
spin-dependent generalizations of generators found by Pryaate the interactions of QCD into our equations by
[38] and Newton and Wigndi39]. The techniques for quan- constructing the relativistic version of the Adler-Piran static
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quark potentia[44] that we use when we apply our equa- the end of the paper, we supply sets of tables for spectral
tions to meson spectroscopy. In Sec. IV, we examine theomparisons and appendices detailing the radial form of our
numerical spectral results that are generated by this applicdwo-Body Dirac equations that we use for our spectral cal-
tion of the Two-Body Dirac equations. culations, and the numerical procedure that we use to con-
The feature of our approach that most distinguishes jstruct meson wave functions. We also include a table sum-
from other more traditional two-body formalisms is its use of Marizing the important features of the various methods that
two coupled constituent equatiofigstead of ongcontain- We compare in this paper.
ing two-body minimal substitution forms and related struc-
tures that incorporate the minimal interaction form of the [l. THE TWO-BODY DIRAC EQUATIONS
original one-body Dirac equation. In Sec. V we rewrite this OF CONSTRAINT DYNAMICS
form of the Two-Body Dirac equations first as an equivalent
one that incorporates the interactions through the kernel . . !
structures that appear in most older approaches and seco ac originally constructed a quantum wave equation from
as an equivalent form closely related to the Breit equation. I irst-order wave operator that is the matrix square root of
this section we examine how the relativistic interaction struc-the correspondmg KIe_m-Gordon operafeid]. Our method .
tures of the constraint approach lead even for QED to c|as‘?XteT“?'5_h'S construction to _the system of two Interacting
sifications of interaction terms that differ from the designa—rGIat'VIStIC spln—one—half part!cles ‘.N'th guantum dy“a”.”"cs
tions used in some of the other approaches. In Sec. VI, wi overned by a pair of com_patlble Dirac equations on a smg_le
examine an attempt to use the Salpeter equation to treat t -component wave function. For an extenswe review of this
meson spectrum: the Wisconsin model of Gara, Durand, Du@pproach, see Rgf_521,2_3,42,_and works cited therein. For_
rand, and Nickischi45]. Although these authors try to keep the_reader unfamiliar with this approach, we present a brief
relativistic structures, they ultimately employ weak-potential €V'€W: o .
approximations and structures obtained from perturbativ?. About 27 years ago, the relaywstlc constraint approach
QED in a nonperturbative equatiéwith no check to see that irst successfully yielded a covariant yet canonical formula-

the procedure even makes nonperturbative sense in QED irti-On of the relativistic two-body problem for two interacting

self). In Sec. VIl we examine the lowa State model of SOm_spinless classical particles. It accomplished this by covari-

merer, Spence, and Vaf¢6], which uses a new quasipoten- antly controlling the troublesome relative time and relative
tial approach for which, in contrast to the Wisconsin model,enerr]gy' tTerepy_ reducut’:g dthe nubrrber of ?]egre?shof freedom
the authors check that the equation makes nonperturbatiid e relativistic two-body problem to that of the corre-

sense in QED at least for the positronium ground state. "§ponding nonrelativistic problerfil1-13. In this method,

Sec. VIII, we examine the Breit equation model of BrayshawiN€ reduction takes place through the enforcement of a gen-

[47], which illustrates the sort of successful fit that one Caneralized mass shell constraint for each of the two interacting

. 2 2 — . .
still obtain when one is allowed to introduce confining inter- SPiNIess particlespy+my+ d;~0. Mathemaﬂcill consis- -
actions(into the Breit equationthrough terms whose rela- _tency then requires that the two constraints be “compatible

tivistic transformation properties are ambiguous. In Sec. Ixin the sense that they be conserved by a covariant system
we look at the most popular treatment—the semirelativistid 1amiltonian. Upon quantization, the quantum version of this
model of Godfrey and Isguf48]. This model includes a “compatibility condition” becomes the requirement that the
different smearing and momentum-dependent factor for eacfu@ntum versions of the constraintsvo separate Klein-
part of the various spin-dependent interactions. AlthougH>0rdon equations on the same wave function for spinless
each interaction is introduced for apparently justifiableP@rticles possess a commutator that vanishes when applied
physical reasons, this approach breaksampspoilg the full to the wave funqtlon. In .1982, the agthors of thl§ paper u_sed
relativistic spin structure that is the two-body counterpart ofd SUpersymmetric classical formulation of the single-particle
that of the one-body Dirac equation with #sitomaticrela- Dirac equation due to Galvao and Teitelboim to successfully
tions among the various interaction terms. We examine thi§xt€nd this construction to the “pseudoclassical” mechanics
model to see how well our fully covariant set of Two-Body ©f tWo spin-one-half particle$16,19. Upon quantization,

Dirac equations, employing only three potential parameter&is scheme produces a consistent relativistic quantum me-
used in two different invariant interaction functions, can dochanics for a pair of interacting fermions governed by two

versus the Godfrey-Isgur semirelativistic equation with rela-coOUpled Dirac equations.

tivistic kinematics and pieces of relativistic dynamical cor- When specialized to the case of two relativistic spin-one-
rections(introduced in a patchwork manner with ten poten-ha” particles interacting through four-vector and scalar po-

tial parameters used in six different interaction functipns tentials, the two compatible 16-component Dirac equations

when required to fit the whole meson spectriimcluding  [21,23,43 take the form
the light-quark mesonsFinally, in Sec. X, we conclude the

In order to treat a single relativistic spin-one-half particle,

paper by reviewing some of the features of the constraint Sip=7ysv1-(P1—A)+m+S]y=0, (2.1a
approach that played important roles in the relative success
of its fit to the meson spectrum. We then use apparent suc- Sotp=ysd v2- (P2—Az) + M+ S,]p=0, (2.1b

cesses of recent fits produced by the ordinary nonrelativistic
guark model to point out dangers inherent in judging rivalin terms ofS; operators that in the free-particle limit become
formalisms on the basis of fits to portions of the spectrum. Atoperator square roots of the Klein-Gordon operator.

034026-3



H. CRATER AND P. VAN ALSTINE PHYSICAL REVIEW D70, 034026 (2004

The relativistic four-vector potentiald/ and scalar po- spin-orbit, spin-spin, and tensor terms. These customary
tentials S, are effective constituent potentials that in eitherterms are accompanied by others that provide important ad-
limit m;— o go over to the ordinary external vector and sca-ditional couplings between the upper-uppé# ) and lower-
lar potentials of the light-particle one-body Dirac equation.lower (i,) four-component spinor portions of the full
Note that the four-vector interactions enter through “minimal Sixteen-component Dirac spinor. The interactions are com-
substitutions” inheritedalong with the accompanying gauge pletely local but depend explicitly on the total enengyin
structurg¢ from the corresponding classical field theory the c.m. frame. In this paper we use a recently developed
[20,26,27. The covariant spin-dependent terms in the con+earrangement of these equatidiad] (similar to that first
stituent vector and scalar potentidlsee Eqgs.(2.10 and presented in Ref52]) that provides us with ones simpler to
(2.11) below] are recoil terms whose forms are nonperturba-solve but physically equivalent. The resulting local
tive consequences of the compatibility condition Schralinger-like equation depending on the four-component

spinor ¢, = i, + ¢, takes the general c.m. form
[S1,82]4=0. 2.2

This condition also requires that the potentials depend on the [—V2+d(r,00,0,,W) ], =b*(W)¢,, (2.8

spacelike interparticle separation only through the combina-

tion with no coupling to other four-component spinors. The ex-
B vy BUBY B plicit version of the potentia® in Eqg. (2.8) that results from

XE= (" T PEPY) (X1 =), 23 the rearrangement has a structure that produces couplings

with no dependence on the relative time in the center of€tween the spin components #f. that are no more com-

momenturm(c.m) frame. This separation variable is orthogo- plicated than those of its nonrelativistic counterpart—with
nal to the total four-momentum the customary spin-spin, spin-orbit, noncentral tensor, or

spin-orbit difference terms appearing. We have checked that

Pt=pk+ph;—P?=w?, (2.4)  both the simpler form, Eq2.8), and the equivalent coupled
forms give the same numerical spectral results when tested
P is the timelike unit vector for QED bound states as in R¢23] and when tested for our
new QCD spectral results appearing in this papEnis pro-
Pr=PHlw. (2.5  vides an important cross-check on our numerical calculation

of the meson spectraEquation (2.8) is accompanied by
The accompanying relative four-momentum canonically consjmilar equations forp_ = 1— g and y.— =+ ¢h3. ONCe
Jugate tox, Is Eg. (2.8 is solved, one can use Eqg.13 and (2.1b to
determine¢_ and y. . Because of the decoupling it is not
necessary to determing_ and y. to solve the eigenvalue
equation(2.8). However, the detailed form @b for ¢, re-
sults from their elimination through the Pauli reduction pro-
cedure. In these equations, the usual invariant

pr=(ep5—€1p5)IW; €1+ =W,
€1— €= (mi—m3)/w (2.6)

in which w is the total c.m. energy. The’s are the invariant
c.m. energies of each of tH@teracting particles[50].

The wave operators in Eq&.19 and(2.1b operate on a b2(w)=[w*— 2W2(mf+ m§)+ (mi_ mg)Z]/4W2 (2.9
single 16-component spinor that we decompose as

A plays the role of energy eigenvalue. This invariant is the c.m.
value of the square of the relative momentum expressed as a
= £ 2.7 function of the invariant total c.m. energy. Note that in the
3 limit in which one of the particles becomes very heavy, this
Vs Schralinger-like equation turns into the one obtained by

eliminating the lower component of the ordinary one-body
in which the y; are four-component spinors. Once we haveDirac equation in terms of the other component.
ensured that the compatibility condition is satisfied, Eqs. The vector potentials appearing in E¢8.13 and (2.1b
(2.13 and(2.1b) provide a consistent quantum description of depend on three invariant functioks, E,, andG that de-
the relativistic two-body system incorporating several impor-fine timelike vector interactiongproportional to P) and
tant properties/21,23,43. They are manifestly covariant. spacelike vector interactionorthogonal to P, with 4
They reduce to the ordinary one-body Dirac equation in theo alax™y [21,23 a
limit in which either of the particles becomes infinitely
heavy. They can be combined to gi\j@3,51] coupled
second-order Schdinger-like equationgPauli forms for
the sixteen component Dirac spinors. In the c.m. system, for
the vector and scalar interactions of E2.10 and Eq.(2.1)
below, these equations resemble ordinary Sdimger equa-
tions with interactions that include central-potential, Darwin,

G [dE,
Al= (El_El)_|E7’2' E_2+&G

Y2 P|P*

i
+(1=G)p*=59G- 7273,
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G (oE, . in which
A= (62_E2)+i§71‘(_E1 +9G |y, PP®
1
[ Gl=—— . 2.1
~(1-G)pi+ 530G 11, (2.10 (1-2Alw) (219

In the forms of these equations used below, Todorov’s col-

while the scalar potentialS depend orG and two additional lective energy variable

invariant functionaM; andM,:

i M, €= (W2—mZ—m3)/2w (2.1
S$;=M;—m; = 5Gvy ™,
will eventually appeatr.

In generalM; and M, are related to each othgt6,21]]
and for QCD applications are functions of two invariant

functions A(r) andS(r) appearing in the forms:

i M,
Sz=M2—m2+ EG’ylM—l (21])

Note that the terms ii2.10 and (2.11) that are explicitly
spin-dependent through the gamma matrices are essential in
order to satisfy the compatibility conditiof2.2). Later on,
when the equation is reduced to second-order “Pauli form,” M2(A,S)=m2+G2(2m, S+ S?), 2.17)
other spin dependences eventually arise from gamma matrix

terms (that, when squared, lose their gamma matrix depen-
dence. These are typical of what occurs in the reduction ofin which
the one-body Dirac equation to the Pauli form. The gamma
matrices also give rise to spin-independent terms in the Pauli

forms. These terms emerge in a manner similar to the above

two sources of spin-dependent terms in the Pauli form of th

equations. mass and energy of the fictitious particle of relative motion

In the case in which the spacelike and timelike vectors are +roduced by Todoroy12,24, which satisfy the effective

not independent but combine into electromagneticlike four’one-body Einstein condition

vectors, the constituent vector interactions appear in a more
compact form:

M3(A,S)=mi+G2(2m,S+S?),

m,,=m;m, /w. (2.18

§n these equationgn,, and ¢,, are the relativistic reduced

€2 —m2=b?(w). (2.19

At=(e1—G(ey—A))PH
In the limit in which one of the particles becomes infinitely
i heavy, m,, and ¢, reduce to the mass and energy of the
+H(1-G)p*=59G 7272, lighter particle. The invariant functioB(r) is primarily re-
sponsible for the constituent scalar potentials siBce0 if
S(r)=0, while A(r) contributes to thes; [if S(r)#0] as
Ab=(e;— G(e,— A))PH well as to the vector potentials{“. Originally, we derived
the general forms of Eq$2.17), (2.14), (2.19 for the scalar
i and vector potentials using classical field-theoretic argu-
~(1=G)p*+ 59G-y171. (212 ments[26,27] (see also Refd.16,24)). Surprisingly, the re-
sulting forms for the mass and energy potential functions

In that caseE;, E,, andG are related to each othg20,29 Mi, G, and E; automatically embody collective minimal

(9E,/E,=—dlogG) and for our QCD applicationg@s well subsﬂtitution rules for the spin-independent parts of the
as for QED are functions of only one invariant function Schralinger-like forms of the equations. Classically those
A(r) in whichr is the invariant: forms turn out to be modifications of the Einstein condition

for the free effective particle of relative motion
r=x2. (2.13

p2+mi=eZ. (2.20
They take the forms
For the vector interaction they automatically generate the
EE(A)=G2(61—A)2, replacement ok,, by €,—.4 and for the scalar interaction

the replacement ah,, by m,,+S. The part of Eq(2.8) that

5 5 5 results from the vector and scalar interactions then takes the
Ez(A):G (62_./4) y (214) form

034026-5



H. CRATER AND P. VAN ALSTINE

(p%+2m,S+S*+2e, A— A% p, =0}, . (2.2

Now, we originally found these forms starting from relativ-

istic classical field theory. The deceptively simple form of

Eqg. (2.2)) in fact incorporates retarded and advanced effects
through its dependence on the c.m. energyOn the other

hand, recently Jallouli and Sazdjif2b] obtained Eqs(2.14)

and(2.17) in quantum field theory after performing a neces-in which
sarily laborious eikonal summation to all orders of ladder

and cross ladder diagrams together with all constraint dia-

grams (Lippmann-Schwinger-like iterations of the simple

Sop=

PHYSICAL REVIEW D70, 034026 (2004

GB22 ;- P1+EBrysot Moys,

" Glizl' (GB2+LB1) vs1ys2| =0, (2.2

Born_ diagram [53]. Thus, the s_tru_cture first discovered s_ir_n- P=p- i—2i~§g2i , 2.27
ply in the correspondence limit has now been verified 2
through direct but difficult derivation from perturbative
quantum field theory. . . .
These equations contain an important hidden hyperboli€epending on gamma matrices with block forms
structure(which we could have used to introduce the inter-
actions in the first plage To employ it we introduce two
indepgndent ipvarignt functi(.)ns(xl) and G(x,), in terms 1g O 0 1,
of which the invariant functions of Eqg$2.10 and (2.11) Bi1= . Ys1= :
take the forms: 0 -1 1g O
M 1=m;,coshL +m,sinhL,
0 1
Biysi=p1= 1. o/
. 8
M,=m,coshL +m;sinhL, (2.22
E;= e,c0shG— e,sinhg, (2.23 (ﬁ 0 1, O
P=lo gl P lo -1,)
E,= e,coshG— €;5inhG,G=expg. (2.29
In terms of G and the constituent momentg and p,, the
individual four-vector potentials of Eq2.12) take the sug- (s O (0 1
gestive forms 527 0 ) P 1, o)
_ [
A1=[1—cosh(G)]p,+sinh(G)p,— 5 (I €xpg- y2) 72,
p 0) 0 1,
B2vsz=p2=| o) P21, o)
i
Az=[1—cosh(G)]pz+sinh (G)p,+ 5 (9 €xpgG- y1) y1,
Equationg2.22), (2.23, and(2.25 together display a further Ways2—|{ _, o)
consequence of the compatibility condition, a kind of rela-
tivistic version of Newton’s third law in the sense that the
two sets of constituent scalar and vector potentials are each 0
given in terms of just one invariant functio§,and A, re- Boyerysi= P
spectively. 2752751\ 5 0/
In terms of these functions the coupled two-body Dirac
equations then take the form
2= ysiBivii- (2.28

S19=| —GB121-Pr+E1B1y51t M1ys1

As described in Appendix A, a procedure analogous to the

i
_GEEZ‘ A(GB1+LB2) ys1¥s2| =0,
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24+2m, S+ S*+2€, A— A°— 2g'—M(L—g)' i - —Evzg—l(g)'z—(g'ﬂ')2
P w w E,M,+E.M, P™3 4

EoM,+EgM; 1 L-(o1+o 1 E;M,+E M

2Vl 1 1—g’(L—g’)+ (o1 2) , — E2lVi2 1 1(L—g)’

EoMi+EM, 2 r 2 E;M3+EM,

L~(0'1—0'2) E2M2_E1M1 , 1 2 1 , 1 /N2 1 , ,E2M2+E1Ml
T EMTEM, 9 oo gVt 5 LT S (G 50 (L9 g T E M,

E>M>,+E{M,

“ 1 3 1 i - -
. rl w2 - "N ——L'"(L=-C) ———=——— |+ —(L+0)’ . D+ . .
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E,M,+E,M, r b =b* (W) . (2.29

i
+§(L—g)

Equation(2.29 is the coupled four-component Schinger-  calledVp(r)]. We insert into Eq(2.29 invariants.A andS
||ke form Of our equations that we use f0r our quark mode|W|th forms determined e} that the SLuth_S appearing as
bound-state calculations for the mesons in the present papgke potential in the nonrelativistic limit of our equations be-
It can be solved nonperturbatively not only for quark model;,meg the Adler-Piran nonrelativist@Q potential (which
calculations but also for QED calculations since in that Cas@jepends on two parametess and U,) plus the Coulomb

every term is quantum-mechanically well defindess sin-  iteraction between the quark and antiquark. That is,
gular than—1/4r?).

From this equation we obtain two coupled radial B €.€
Schralinger-like equations in the general case. But for Vap(r) +Veou=ALU(AT) +Uo] + r =A+S.
=0 or spin singlet states these equations reduce to un- (3.1
coupled equations. The extra component for the general casge . . i i
arises from orbital angular momentum mixing or spin mix-%‘S determined by Adler and Piran, the short- and long

ing, the latter absent for equal mass states. The detailed rglstance behaviors ol(Ar) generate known lattice and

dial forms of these equations are given in Appendix A. For ontinuum results through the explicit appearance of an ef-
) fective running coupling constant in coordinate space. That
the case of QED$=0, A= —a/r), we have solved these J ping b

< ; . . e is, the Adler-Piran potential incorporates asymptotic freedom
coupled Schrdinger-like equations numerically obtaining through P P ymp

results that are explicitly accurate through ordet (with
errors on the order of®) [23]. We have even obtained ana- AU(Ar<1)~1/riInAr), (3.2
Iypc solquns to the fL_JII system of coupleq 1(?‘ compon_entand linear confinement through

Dirac equations in the important case of spin-singlet positro-

nium [31]. For both numerical and analytic solutions, the AU(Ars1)~A2r. 3.3
results agree with those produced by perturbative treatment ) ) ] .
of these equations and with standard spectral resdis The long-distance=t Ar>2) behavior of the static potential

Vp(r) is given explicitly by

c C
Ill. MESON SPECTROSCOPY Al cyx+coln(x) + —= + ;4 +Cs (3.4
X

We use the constraint ER.29 to construct a relativistic v
naive quark model by choosing the two invariant functigns in which x=Ar while the coefficientsc; are given by the
andL or equivalently.4 andSto incorporate a version of the Adler-Piran leading log-log moddK4]. In addition to ob-
static quark potential originally obtained from QCD by Adler taining these analytic forms for short and long distances they
and Pirar{44] through a nonlinear effective action model for converted the numerically obtained values of the potential at
heavy quark statics. They used the renormalization groujntermediate distances to a compact analytic expression. The
approximation to obtain both total flux confinement and anonrelativistic analysis used by Adler and Piran, however,
linear static potential at large distances. Their model usedoes not determine the relativistic transformation properties
nonlinear electrostatics with displacement and electric fieldef the potential. How this potential is apportioned between
related through a nonlinear constitutive equation with thevector and scalar is therefore somewhat, although not com-
effective dielectric constant given by a leading log log modelpletely, arbitrary. In earlier work30] we divided the poten-
which fixes all parameters in their model apart from a massial in the following way among three relativistic invariants
scaleA. Their static potential contains an infinite additive V(r),S, and A (in our former construction, the additional
constant which in turn results in the inclusion of an unknowninvariant)’ was responsible for a possible independent time-
constantU, in the final form of their potentia[hereafter like vector interaction
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Cs quark bound statesee however, Ref57], which even inter-
S=n| A| cix+con(x)+ —=+c5+Uq | |, prets theay(980) meson as part of a new scalaBg) meson
Vx gq multiplet outside of the usual quark modiethile a me-
son with mass of 1450 MeV may be the correct candidate for
P Cs the quark model statgb8]. Interpretation of this other state
V=(1=m)| A| exxtean0o+ \/§+C5+ Yol | as the3P, meson would in fact require a partial inversion of

the spin-orbit triplet(from what one would expect based on
A=V, p—S—V, (3.5 the positronium analdg This pirtial inversion is consistent
with the 3P, candidate for theis system also appearing in a
in which »= 3. That is, we assumed thiwith the exception position that partially inverts the spin-orbit splitting. Since
of the Coulomb-like termd,/x)] the long-distance part was the sole purpose of includiny in our previous treatment
equally divided between scalar and a proposed timelike veawyas to prevent the inversion, we exclude it from our present
tor. In the present paper we drop the timelike vector fortreatment. In our older treatmef80], we neglected the ten-
reasons detailed below and assume instead that the scalr coupling, unequal mass spin-orbit difference couplings,
interaction is solely responsible for the long-distance confinand theu-d quark mass differences. In the present treatment,
ing terms (=1). The attractive ¢,=—0.58) QCD we treat the entire interaction present in our equations,
Coulomb-like portion(not to be confused with the electro- thereby keeping each of these effects. In our former treat-
staticVc,,) is assigned completely to the “electromagneti- ment we also performed a decoupling between the upper-
clike” part A. That is, the constant portion of the running upper and lower-lower components of the wave functions for
coupling constant corresponding to the exchange diagram ispin-triplet states that turned out to be defective but which
expected to be electromagneticlike. we subsequently corrected in our numerical test of our for-
Elsewherg[20,30,59 we have treated another model ex- malism for QED[23]. The corrected decouplingppearing
plicitly containing these features: the Richardson potentialn Eq. (2.29] is included in the new meson calculations ap-

[56]. Its momentum space form pearing in this paper.
. In the present investigation, we compute the best fit me-
V(q)~1/g2In(1+ g%/ A?) (3.6)  son spectrum for the following apportionment of the Adler-

Piran potential:
interpolates in a simple way between asymptotic freedom
V(q)~1/g?In(g?/A?) and linear confinemenV/(q)~ 1/g*. c)\ ¢, el
Even though the Richardson potential is not tied to any field- A= €X{ _BA”(VAP_ T) -
theoretic base in the intermediate regi@mlike the Adler-
Piran potentigland does not give as good fits to the data, it ee c
does provide a convenient form for displaying our points s:VAPjL%_A:(VAP_ T“)[l_exp(_ﬁ/\r)].

about the static quark potential. The Richardson radial form
is (3.8b

r

: (3.83

V(r)=8mwA2r/27—8=f(Ar)/(27r). (3.7  In order to covariantly incorporate the Adler-Piran potential
into our equations, we treat the short-distance portion as

Forr—0, f(Ar)— —1/In(Ar), while forr—o, f(Ar)—1. purely electromagneticlikéin the sense of the transforma-
Thus, in this model, if the confining part of the potential is ation properties of the potentialThrough the additional pa-
world scalar, then in the largelimit the remaining portion, rameter 8, the exponential factor gradually turns off the
regarded as an electromagneticlike interaction correspondingjectromagneticlike contribution to the potential at long dis-
to our invariant functionA(r), would be an attractive A/ tance except for the d/portion mentioned above, while the
potential with a coupling constant on the order of 1. This isscalar portion gradually turns on, becoming fully responsible
in reasonable agreement with the Adler-Piran model, whicHor the linear confining and subdominant terms at long dis-
also has an attractive rLpart. Support for the assumption tance. Altogether our two invariant potential functions de-
that thec, term belongs only tod also arises from phenom- pend on three parameters; U,, and S.
enological considerations. We find that attempts to assign the When inserted into the constraint equatioBsnd.A be-
c, term to the scalar potential have a drastic effect on th&ome relativistic invariant functions of the invariant separa-
spin-spin and spin-orbit splittings. In fact, using this term intion r = ﬂ The covariant structures of the constraint for-
S through Egs.(2.17) generates spin-spin and spin-orbit malism then embellish the central static potential with
splittings that are much too small. accompanying spin-dependent and recoil terms.

In our previous work, we divided the confining part In general applications of these Two-Body Dirac equa-
equally between scalar and timelike vector so that the spinions one must ensure that the values assumed! land S
orbit multiplets would not be inverted. This was done inalways result in real interaction functiors, M;, and G
order to obtain from our model tha,(980) meson, which while preserving the correct heavy-particle limits. In particu-
was then considered as the prime candidate for the relatividar, a large repulsived will give an imaginaryG while a
tic counterpart of the’P, meson. However, recent analysis large attractiveS would lead in the limit when one particle
indicates that meson may be instead a meson-meson or fouvecomes heavy to
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an incorrect form of the one-body Dirac equatidor m, contribution to the fine structure. Furthermore because the
—oo the interaction mass potential functiov,—|m;+ S| signs of each of the spin-orbit and Darwin terms in the Pauli
instead of m;+S). In the calculations contained in the form of our Dirac equations are opposite for the scalar and
present paper, the best fit parameters turn out to be such thaéctor interactions, the spin-orbit contributions of those parts
A always remains attractive whil® always remains repul- of the interaction produce opposite effects with degrees of
sive so we need not make any modifications. Such problemgancellation depending on the size of the quarkonium atom.
do arise in the nucleon-nucleon scattering problem. See Ref. \We obtain the meson masses given in column three as the
[59] for a discussion of these problems and their resolutionyegyit of a least squares fit using the known experimental
errors, an assumed calculational error of 1.0 MeV, and an
independent error conservatively taken to be 5% of the total
IV. NUMERICAL SPECTRAL RESULTS width of the meson. We employ the calculational error not to
A. Tabulation and discussion of computed meson spectra represent the uncertainty of our algorithm but instead to pre-
vent the mesons that are stable with respect to the strong

We now use our formalism as embodied in EG&29 interaction from being weighted too heavily. Opf is per

and (3.83, (3.8b to calculate the full meson spectrum in- )
cluding the light-quark mesong§As a check on these calcu- datum(89) minus parameteréa).
. ; ; The resulting best fit turns out to have quark massgs
lations we have also used the older forms derived in Ref. - - = -
e - =4.877,m.=1.507,mg= 0.253, m,= 0.0547,my4= 0.0580
[23].) Note that the nonrelativistic quark model when used NSev along with potential parameters = 0 216. AU
conjunction with realistic QCD potentials such as Richard- ' 9 P P o0

son’s potential or the Adler-Piran potential fails for light me- :Iiif?ﬁa?(%vtr?g%é):tr?g;stf:elliifk ZZ'Sa\::tli%i ?fc:g]a;ses
sons since the ordinary nonrelativistic Safirmer equa- P q P ’

tion’s lack of relativistic kinematics leads to increasing our apportioned Adler-Piran potential switches from prima-

- rily vector to scalar at about 0.5 fermi. This shift is a rela-
m nm h rk m r low rtain paint .. . . o T
€so asses as the qua asses drop below a certa pc{n%fshc effect since the effective nonrelativistic limit of the

[55], thereby spoiling proper treatment of the pion, as well as . - o .
other states. Here, we shall see how our relativistic equatio 0;?232' é’j;r S) exhibits no such shifti.e., by construction

remedy this situation. In addition to including the proper . . .
y g prop In Table I, the numbers given in parentheses to the right

relativistic kinematics, our equations also contain energy de—f the experimental Mmeson masses are experimental errors in
pendence in the dynamical quasipotential. Mathematically0 P P

this feature turns our equations into wave equations that dEMeV'. The numbers given in parentheges Fo the right of the,
pend nonlinearly on the eigenvalue. Their solution, which Weoredlctgd meson masszes are the contribution of that meson’s
have treated in detail elsewhe(see[30,60), requires an calculation to the totay” of 101.
efficient iteration scheme to supplement our algorithm for The 17 mesons that containba(or b) quark contribute a
the eigenvalueb?(w) when our equations are written as total of about 5.4 to thg?, at an average of about 0.3 each.
coupled Schidinger-like forms. This is the lowest contribution of those given by any family.
We display our results in Table I. In the first two columns Since the Adler-Piran potential was originally derived for
of each of the tables we list quantum numbers and experistatic quarks, one should not be surprised to find that most of
mental rest mass values for 89 known mesons. We include aline best fit mesons are members of the least relativistic of the
well known and plausible candidates listed in the standardneson families. Note, however, that five of the best fit me-
reference[58]). We omit only those mesons with substantial SOns of this type contain highly relativistic and s quarks
flavor mixing. In the tables, the quantum numbers listed ardfor which our equation reduces essentially to the one-body
those of theg., part of the sixteen-component wave func- Dirac equation for the light quayk
tion. To generate the fits, in addition to the quark masses we The 24 mesons that containcgor ¢) quark contribute a
employ the parameters, U,, and3. We merely insert the total of about 50.7 to thg? at an average of about 2.2 each.
static Adler-Piran potential into our relativistic wave equa- This is the highest contribution of those given by any family.
tions just as we have inserted the Coulomb potential A significant part of this contribution is due to thiemeson
—alr to obtain the results of QE23,31]. Note especially mass being about 32 MeV above its experimental value. An-
that we use a singl&(A,S) for all quark mass ratios— other part of the contribution is due to fact that the mass of
hence a single structure for all tI@Q, 6(1, and?n mesons the high orbital gxcitation of thB* tensp_r meson is_ 80 Me\/
in a single overall fit. In the third column in Table | we below its experimental value. In addition, the high orbital
present the results for the model defined by E@8a,  excitation of theDY is 60 MeV low.
(3.8b. The entire confining part of the potential in this model ~ The 24 mesons that contain arfor s) quark contribute a
transforms as a world scalar. In our equations, this structuretal of about 46.3 to thg? at an average of about 1.3 each,
leads to linear confinement at long distances and quadratiess than that for the-quark mesons. This is important be-
confinement at extremely long distancedere the quadratic cause thes quarks are lighter than thequarks. Part of the
contribution S?> outweighs the linear termr,,S). At dis-  reason for this unexpected effect is that gdrfitting proce-
tances at which exp{8Ar)<1, the corresponding spin-orbit, dure accounts for the fact that our meson model ignores the
Thomas, and Darwin terms are dominated by the scalar inlevel shifts(due to the instability of many of the mesons that
teraction, while at short distancéexp(—BAr)~1] the elec- contain ans quark through the introduction of a theoretical
tromagneticlike portion of the interaction gives the dominanterror on the order of 5% of the width of the unstable mesons.
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TABLE |. Meson masses from covariant constraint dynamics.

Name Expt. Theory Name Expt. Theory
Y:bb 135, 9.4600.2) 9.4530.6)  Ki:sullp, 1.2737.0 1.4083.2)
Y:bb 13p, 9.8601.3 9.8431.4  K*:su13p, 1.4294.0) 1.3140.7)
Y:bb 13pP, 9.8920.7) 9.8890.)  k,:su1pP, 1.4027.0) 1.5061.0)
Y:bb 13P, 9.9130.6 9.9240.5  K3%:su1%pP, 1.4251.3) 1.3940.5)
Y:bb 2%s; 10.0230.3 10.0220.0  kj:sd1%P, 1.4321.3 1.3940.6
Y:bb 2°P, 10.2320.6) 10.2270.2)  k*:su2's, 1.46030.0 1.5910.2)
Y:bb 2°P; 10.2550.5) 10.2570.0  k*:su2%s, 1.41212.0 1.8006.7)
Y:bb 2°P, 10.2690.4) 10.2770.8)  K,:su1'D, 1.7738.0 1.8770.9
Y:bb 33s; 10.3550.5) 10.3590.)  k*:su1°D, 1.71420.0 1.9851.4)
Y:bb 43S, 10.58G3.5) 1061409  k,:su1°D, 1.81610.0 1.9451.3
Y:bb 53S; 10.8658.0) 10.8260.2  K,:su1°D, 1.77010.0 1.7680.0)
Y:bb 6°S; 11.0198.0 11.0130.0  k*:su3's, 1.83030.0 2.1831.9)
B:bu 11S, 5.2791.8) 5.2730.)  K#:su2%p, 1.97522.0 2.0980.2)
B:bd 11S, 5.2791.8) 5.2740.)  k*:su1%F, 2.0459.0) 2.0780.1)
B*:bu 1%, 5.3251.9 5.3210.)  K,:su2°D, 2.24717.0 2.3730.5
B.:bs 11S, 5.3692.0 5.3680.0  Kf:su13G 2.38233.0 2.3440.0)
Bs:bs 135, 5.4163.9 5.4270.)  K*:su2%F, 2.32424.0 2.6361.9
ne:cc 118, 2.9802.1) 297800 K*:su2%F, 2.49020.0 2.7571.6)
yicc 1°8, 3.0970.0 3.12912.6  4:s51%s, 1.0190.0 1.0332.2)
Xo:cc 1P, 3.5260.2) 3.5200.4  f,:s51%P, 1.37040.0 1.3190.0
Yo:cc 13P, 3.4151.0 3.4070.4  f,:551%P, 1.5124.0) 1.5330.3)
y1:cc 13P; 3.5100.1 3.5070.2  f,:s51°%P, 1.5255.0) 1.4930.3)
x2:cc 1%P, 3.5560.1) 3.5490.6  4:552%s, 1.68020.0 1.8500.8)
neicc 21, 3.5945.0 3.6100.)  4:s51%D, 1.8547.0) 1.8480.0)
yicc 285, 3.6860.1) 3.6880.)  f,:552%P, 2.01169.0 2.1600.1)
yicc 1°D, 3.7702.9 3.8082.0  f,:553°%, 2.29728.0 2.6291.6)
yrce 3%, 4.04010.0 4.08102  gud1ls, 0.1400.0) 0.1440.2)
yicc 2°D, 4.15920.0 415700 p:ud 23S, 0.7671.2) 0.7920.1)
yrcc 3°D, 4.4156.0) 4.4540.4  p .ud 1P, 1.231(10.0 1.3922.1)
D:cu 1S, 1.8650.5 1.8660.0  a,:ud 1%P, 1.45040.0 1.49%0.0)
D:cd 1S, 1.8690.5 1.8730.)  ga,:ud 1%P, 1.23040.0 1.5680.7)
D*:cu 135, 2.0070.5 2.0000.4  a,:ud 1°P, 1.3180.7) 1.3100.0
D*:cd 135, 2.0100.5) 2.0050.3  g.ud2s, 1.300100.0 1.5360.1)
D*:cu 1°P, 2.4221.9 2.4070.6)  p:ud 23S, 1.46525.0 1.7751.4)
D*:cd 1°P, 2.4281.9) 241109  g,:ud1'D, 1.67020.0 1.8700.9
D*:cu 1°P, 2.4592.0 2.38311.3  ,.yd 1%D, 1.70020.0 1.9861.9)
D*:cd 1°P, 2.4594.0 2.3863.5  p,:ud 1°D, 1.6915.0 1.7100.0
Dq:cs 1S, 1.9680.6) 1.9760.5  g:ud 3's, 1.79510.0 2.1667.9)
D*:cs 135, 2.1120.7) 212309  ,:4d 3%s, 2.14917.0 2.3330.7)
D? :cs1°P, 2.5350.3 251%6.2  p,.ud 1%, 2.03726.0 2.0330.0
D? :cs 1°P, 2.5741.7) 2.5149.6)  g,:ud 2'D, 2.09029.0 2.3670.5
K:su1's, 0.4940.0 0.4920.0  p,:ud 2°D, 2.25045.0 2.3050.0
K:sd 1'S, 0.4980.0 0.4920.4  ,.:ud 1%G, 2.33035.0 2.3070.0
K*:su 1S, 0.8920.2 0.9100.6) . :ud 13H, 2.450130.0 2.5470.0)
K*:sd 13S; 0.8960.3 0.9100.3  »? 0.0 101.0
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The 36 mesons that containuaor u) quark contribute a responsible for the problems of the two orbitally exci®d
total of about 54.6 to thg? at an average of about 1.5 each and Dy mesons described above. It may be responsible as
while the 16 mesons on our list that contaid (aora) quark well for the. problem of the singlet and tripl&t stfa\tes since
contribute a total of about 18.6 to the at an average of the scalar mtgrachon tends to oﬁ;et the dominant shorter-
about 1.2 each. range vector interaction, at least slightly.

The worst fits produced by our model are those to ghe We also examine the effect of the hyperfine structure of
and theD* andD? high orbital excitations. Although two of OU equr;}tions onSthe splitti3ng between th; and weighted
these mesons contain the lightandd quarks, in our fit the sum[5(*P)+3(*P1) +1("Po)]/9 of bound states. We ob-

more relativistic bound states are not in general fit less weII'Fain pairs of valu_es_egual to 3.520,3.520,1.408,1.432;

In fact, theﬂ-’ K, D, andp mesons are fit better than these 1392,1416 for th@c,us,ud families versus the eXperimen'

two excitedD* andD* mesons. tal pairs of 3.526,3.525;1.402,1.375;1.231,1.303. The agree-
We see that over;II the Two-Body Dirac equations to-ment of the theoretical and experimental mass differences is

gether with the relativistic version of the Adler-Piran poten-€Xcellent for they system, slightly too large and of the
tial account very well for the meson spectrum over the entiréVrong sign for thek system and too small and of the wrong
range of relativistic motions, using just the two parametricsign for theud system. Part of the cause of this pattern is that
functions A and S, pure scalar confinement worsens the fit for the light mesons
We now examine another important feature of ourbecause of its tendency to reverse the spin-orbit splitting,
method: the goodness with which our equations account foihereby shifting the center of gravity. The agreement, how-
spin-dependent  effects (both fine and hyperfine ever, for the light systems is nevertheless considerably better
splittings. Table | shows that the best fit versus experi-than that in the case of the fine-structure splittRgatios.

mental, ground-state singlet-triplet splittings for the Another part of the discrepancy may be due to the uncertain

bu. bs. cc. ou. od. ¢s su. sd. ud systems are 48 vs 46 status of the lighttP, meson as well as the spin mixing in

59 vs 47. 151 vs 117. 134 vs 142. 132 vs 142 147 vs 1a4he case of th&* multiplet. Note that in the case of unequal
418 vs 3,98 418 vs é98 and fina’lly 648 Vs 6’27 MeV. Wer’nassP states, our calculations of the two values incorporate
obtain a uniformly good fit for all hyperfine ground-state the effects of thé - (s, —s,) spin-mixing effects(The use of
splittings except for they.-# system. The problem with the nonrelativistic notation is only for convenienge.

fit for that system of mesons occurs becauseDheP, and These differences between heavy- and light-meson sys-
%3 L ) LS tems also occur in the mixing due to the tensor term between
D: °P, states are significantly low while thg is signifi-

. . . radial S and orbitalD excitations of the spin-triplet ground
cantly high. Furthermore, the singlet and tripiestates are This mixi blv in e us. and
uniformly low. Correcting they mass would require a states. This mixing occurs .most notably in the, us, an'
smaller c-quark mass while correcting the*,D*P state ud systems. The three pairs of values that we obtain are

s

masses would require a largerquark mass. Reducing one 3.808,3.688;1.985,1.800;1.986,1.775, respectively, versus the

discrepancy would worsen the other. Below, we will uncoverdata 3.770,3.686;1.714,1.412;1.700;1.450. Our results are

what we believe is the primary cause for this discrepancy agune reasc_mable for the c.h:_;\rmonlum system but underesti-
. mate considerably the splitting for the light-quark systems.
we examine other aspects of the spectrum.

: . o : As h for the signifi i in th f
For the spin-orbit splittings we obtain values for tRe s happened for the significant disagreement in the case o

. Y 3m 3 the fine structure, our results here worsen significantly for
ratios  ("P2-"P1)/("P1-"Po)  of 0.71,0.67,0.42:0.19, ¢ light-meson systems. The spectroscopy of the lighter me-

—0.58,-3.35 for the twobb triplets, and thecc,ssus,ud  sons is undoubtedly more complex due to their extreme in-
spin triplets compared to the experimental ratios ofstability (not accounted for in our approgciNote, however,
0.66,0.61,0.48,0.09,0.97,-0.4. This fit ranges from very that for the spin-spin hyperfine splittings of the ground states
good in the case of the lighf multiplet to miserably bad for  the more relativisticlighter quark systems yield masses that
the two lightest multiplets. From the experimental point ofagree at least as well with the experimental data as do the
view some of the problem may be blamed on the uncertaimeavier systems. This same mixed behavior shows up again
status of the’P,, light-quark meson bound states and the spinfor the radial excitations.

mixing in the case of th&* multiplet. From the theoretical The incrementaly? contribution for the si%S; states of
point of view, the lack of any mechanism in our model tothe Y system is just 1.8. It is 12.9 over three states for the
account for the effects of decay rates on level shifts undoubtriplet charmonium systengprimarily due to theys devia-
edly has an effect. Another likely cause is that as we proceegon), 3.0 for the twog states, 1.6 for the threks, states of
from the heavy mesons to the light ones, the radial size of thghe K system(note, however that these fits include expected
meson grows so that the long-distance interactions, in whicBrrors due to the lack of level shift mechanisms and are thus
the scalar interaction becomes dominant, play a more impokeduced, 7.3 for the two3S, states of th&* system, 2.2 for
tant role. The spin-orbit terms due to scalar interactions arghe three tripleluEstates, and 8.2 for the three singla?

opposite in sign to and tengt long distanceto dominate o405 The? contribution at first increases, then decreases

the spin-orbit terms due to vector interactions. This results iNvith the lighter systems. Overall, the masses are much too

partial to full multiplet inversions as we proceed from 88  |arge for the radially excited light-quark mesons. These dis-
to the ud mesons. This inversion mechanism may also becrepancies may be due both to neglect of decay-induced
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level shifts and to the increased confining force for large
from linear to quadrati¢there is no term to compensate for 0.0175¢
the quadraticS? term).

The isospin splitting that we obtain for the spin-singlet
meson system is 1 MeV. The calculation includes the contri- 0.0125}
bution from ouru-d mass difference of 3.3 MeV as well as
that due to different charge states. The effect of the latter

tends to offset the effects of the former since thand u 0.0075}
have the same sign of the charge, theand d have the

0.015¢

opposite yemy>m, . In the experimental data this offset is 0.003

complete(0). In the case of thé®"-D° splitting our mass 0.0025

difference of 7 MeV represents the combined effects of the /

u-d mass difference and the slightly increased electromag-—=3 > 1 1 5 3
netic binding present in the case of thd and the slightly

decreased binding in the case of thé. The experimental FIG. 2. The p(S) wave functions plotted against

mass difference is just 4 MeV. These effects work in theX=109(r/ro).

same way for the spin-triplet splitting resulting in the theo- ) ) _ .
retical value 5 MeV compared with the experimental value 35P0nding mass difference in the Godirey-Isgur model is
MeV. For the 3P, isodoublet we obtain 4 MeV versus about 2-290-2.480=110 MeV. Both are well off the experimental

0 for the experimental values. Our isospin splittings are enMark of 2.572-2.317=255 MeV. Itis not surprising that its
hanced because of the larged quark mass difference that Place in the quark model has been the subject of some de-
gives the best overall fit. For thé-K* family the experi- Pate:

mental value for the isospin splitting is 4 MeV for the singlet ©Overall comparison with the experimental data shows that

and triplet ground states. This splitting actually grows for thet® Primary strength of our approach is that it provides very

orbital excitation K%) to 7 MeV. The probable reason for good estimates for the ground states for all families of me-
this increase is that at the larger distances, the weak influencfsé)nS and for_ the radial excitation and fme-strgcture spll_ttmgs
of the Coulomb differences becomes sm’all while only the or the heavier mesons. On the other hand, it overestimates
actualu-d mass difference influences the restthough it the radial and orbital excitations for the light mesons. Its
does seem rather largdt is difficult to understand why our worst results are those for the fine-structure splittings for the
results stay virtually zero for all three isodoublets. Note that/S, ds, andud mesons. Both weaknesses are probably due
as with theB doublets, the theoretical contributions of the t0 long-distance scalar potential effects. Below, we shall dis-
combined effects of the-d mass differences and the elec- CUSS other aspects of our fit to the spectrum when we com-
trostatic effects tend to cancel. However, the experimentdpare its results to those of other approaches to the relativistic
masses do not show this expected cancellation. two-body bound-state problem.

Implications of our model for the new 2.32 GeV Dmeson B. Explicit numerical construction of meson wave functions

There are 89 mesons in our fit to the meson spectrum. An
important advantage of the constraint formalism is that its
ocal wave equation provides us with a direct way to picture
the wave functions. As examples, we present the wave func-
Wions that result from our overall spectral fit for three me-

sons: therr (Fig. 1), for which we present the radial part of

Recently, the BaBar Collaboratid61] found evidence
for a new 0" strange-charmed meson at 2.32 GeV. Using th
parameters above and assuming the state®8z@cs meson
we find a predicted mass of 2.35 GeV, about 130 MeV belo
our predicted value for théP, counterpart. The corre-

0.008}
0.02
0.006¢
0.015¢
0.01 0.004}
0.005 0.002¢}
R,
-6 -4 -2 2 4 6 -3 -2 -1 1 2 3
FIG. 1. Thes wave function plotted againgt=log(r/ro). FIG. 3. Thep(D) wave function plotted againgt=Ilog(r/ro).
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0.001}

0.0008¢

0.0006¢}

0.0004¢

0.0002¢

-3 -2 -1 1 2 3 -3 -2 -1 1 2 3

FIG. 4. They(S) wave function plotted againgt=log(r/rg). FIG. 5. The (D) wave function plotted against
x=log(r/rg).

¢ =i+ i, that solves Eq(A4); the p (Figs. 2 and Bfor

which we present the radial parts of the wave functigns Using a scheme outlined in Appendix B, we obtain an
for both S and D states that solve Eq$A6) and (A7); and  analytic approximation to the meson wave functions in terms
the ¢/J (Figs. 4 and Hfor which we present the radial parts of harmonic oscillator wave functions. The two primary pa-
of the wave functionsp_. for both SandD states that also rameters we use for each meson are the scale factod the
solve Eq.(A6) and(A7). In each plot the scale, is propor-  leading powelshort-distance behavipexponenk. In addi-
tional to the Compton wavelength corresponding to the nontion we take as parameters the coefficients of the associated
relativistic reduced masa of the two-quark system. In the Laguerre polynomials. We write the radial wave function for
table below, for each of the plotted mesons, we give the scalgach meson in the form

factorry and the root mean square radigis fermis) com- N

puted from these meson wave functions. For thand ¢ u(r)=2>, con(r), (4.2
mesons we also give the computed probabilities for residing n=0

in the SandD states.

Meson rop V(r?) S D where

T 0.0004 0.21 fm 1.00 0.0 2(n!) o K2 o

p 0.013 0.73 fm 0.861 0.139 vn(N)= k= 17g1 SE Y2y L Y9

Y 0.084 0.36 fm 0.9974 0.0026 (4.2

pi and rho masses vs. quark mass
800 T T T T T T T _:_ ______ [ I ———
_________________________ _|.__———-——f+-—“'"""______7__ - H
oo N N " fom) o
700 | 1
600 |- .
500 1
400 - ] FIG. 6. m andp masses versus
guark mass in MeV.

300 .
200 | .
100 | .

0 1 1 1 1 1 1

5 10 15 20 25 30 35 40 45 50 55
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in which y=r/a=ae* and (with z=y?)

We then vary the two parametesisandk to obtain the best

e’z

Ly Y42)=

n! dz"

—k+1/2 dan

fit. The coefficients are fixed by

cnzfowvn(r)u(r)dr.

-z k+n—1/2)

(4.9

4.3

PHYSICAL REVIEW D70, 034026 (2004

merical wave function with the harmonic oscillator wave
function fits since there are no visible differengédso note
that the 7r's short-distance behavior is distinctly different
from those of the other two, having a stronger radial depen-
dence at the origin. All three wave functions possess polyno-
mial coefficients that exhibit an oscillatory behavior.

C. Numerical evidence for Goldstone boson behavior

In our equations, the pion is a Goldstone boson in the
sense that its mass tends toward zero numerically in the limit
in which the quark mass numerically goes toward zero. This

For meson radial wave functions with more than one commay be seen in the accompanying plot Fig(udits are in
ponent(like the /J) we fit each component separately. In MeV). Note that they meson mass approaches a finite value
the table below we give a typical list for parameter&,c,,

for the, p, andy/J (numbers in brackets represent powersfor the excited pion states. None of the alternative ap-

in the chiral limit. This non-Goldstone behavior also holds

of 10): proaches discussed in the following sections has displayed
this property. Another distinction we point out is that aur
™ p Wl andd quark massegon the order of 55—-60 MeNare sig-
k 2.30734—1] 9.85790—1] 9.27248—1] nificantly smaller than the constituent quark masses appear-
ing in most all other modelgon the order of 300 Me)y—
a® 122106-4]  2.04708-1]  5.85947-2] closer to the small current quark masses of a few MeV. Note,
Cp —9.70613—-1] 5.68290—-1] 8.63401—1] however, that the shape of our pion curve is not what one
c, 19718$_ 1] _ 55426'[_ 1] _ 377851_ 1] would expect from the GOIdberger'Trieman relation
c, —1.18926—1] 4.55647—1] 2.70111-1] mq:m,zTF,,. (4.6)
Cs 3932322 2.95969 ~ 1] 1.44888 1] Thus this aspect of our model requires further investigation.
C, —4.7493%5-2] 2.11945-1] 1.05621—-1]
Cs 1.59519-2]  —1.29901—-1] —5.85549-2] V. COMPARISON OF STRUCTURES OF TWO-BODY
Ce —2.21638—2] 8.87707—2] 4.46527 —2] DIRAC EQUATIONS WITH THOSE OF ALTERNATIVE
APPROACHES
c; 9.35388-—3] —5.36537—2] —2.44101-2]
cs —1.12997-2] 3.57731—2] 1.98781— 2] So_far, we have obt_alneq spectral results given by our
equations when solved in their own most convenient form. In
Co 5.74799-3]  —2.1618%—-2] —1.03167-2] Secs. VI-IX we shall compare our results with universal fits
Cip —6.24195—-3] 1.4216T7—2]  9.24913—3] to the meson spectrum produced by a number of other au-
thors. These approaches employ equations whose structures
Ciy 3.44862-3] —8.57381—3] —4.34130-3] (at first sighj appear radically different from ours. However,
Ci, —3.63673—3] 5.67698—3] 4.4967%— 3] as we have shown elsewhef®l], because our approach
_ _ _ . _ starts from a pair of coupled but compatible Dirac equations,
Cis 2.04307-3] 3.31349-3] 1.77086 3] these equations can be rearranged in a multitude of forms all
Cis —2.16019-3] 2.33901-3]  2.29266—3] possessing the same solutions. Among the rearrangements
c;5 1.22870-3] —~1.19431-3] —6.63516—4] are those with structures close to those of the authors whose
spectral fits we shall shortly examine. In order to see how
Cie —1.26919-3] 1.03806-3] 1.23170-3] structural differences in each case may lead to differences in
Cy7 7.72030—4] —3.42741—4] —1.93158—-4] the resulting numerical spectra, we shall begin by consider-
Cis —7.16255—4] 5.20857—4] 6.97788—4] i?(?ngelevant rearrangements of the Two-Body Dirac equa-
Cig 5.18700—4]  —5.02608—-6] —3.64677—7] The first two alternative approaches that we shall discuss
Cyo —3.71156—4] use truncated versions of the Bethe-Salpeter equaB&I)
(Salpeter and quasipotendialvhile the third uses a modified
a1 3.77233—4] form of the Breit equation. In order to relate the detailed
Cy,, —1.56718—4] (4.9  predictions of our approach to these alternatives, we need to

relate our minimal substitution method for the introduction
of interactions to the introduction of interaction through the
use of kernels that dominates the older approaches. The

We note several features. First, the fit to thevave function field-theoretic kernel employs a direct product of gamma
appears to converge significantly more slowly than those fomatrices times some function of the relative momentum or
the p and #/J. (We do not present plots comparing the nu- coordinate. What is the analog of the kernel in our approach?
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In earlier work for the vector and scalar interactions, we F F

found that we could obtain our “external potential” or COX2, ysivr Pysave PH(X)O:/2,
“minimal interaction” form of our two-body Dirac equations

from yet another form displaying a remarkable hyperbolic
structure. We were able to recast our compatible Dirac equaand
tions(2.19, (2.1b as

S1p=[cosHA)S, +sinN(A) S, ]¢=0,

Ys1Y1L Vs2Yau (X ) 0412

o1 UzY(XL)O]_/Z,

respectively. The advantage of the hyperbolic form is that

Soip=[cosiA)S,+sinh(A)S; =0, (5.)  with its aid we may first choose among the 8 interaction
, i types in an unambiguous way to introduce interactioith-
in which [62] out struggling to restore compatibilitnd then, for compu-

. tational convenience, transform the Dirac equations to “ex-
= + = N ! K L
SLY=[51o00SHA) + SzosiNNA) ]9=0, ternal potential” form. In the weak-potential limit of our

—[S)COSHA) + S sin(A) =0, 59 equations, the coefficients of,vys, in the expansion of our
S =[Soo0sHA) + S15iNN(A) 1y 62 A interaction matrix in Eq(5.4) directly correspond to the

in terms of free Dirac operators interaction kernels of the Bethe-Salpeter equation. Note
however, that because of the hyperbolic structure, what we
S10=(=B121- P+ €1B1ys1+ M1ys) ¥, call a " vector interaction” actually corresponds to a particu-
lar combination of vector and pseudovector interactions in
Sooth=(B222- P+ €825 My ys0) (5.9  the older approachdsee Eq(5.15 below].

This difference in classification of interactions becomes
apparent when we put our equations into a Breit-like form.
Consider the linear combination

B1Ys51S1+ B2V52S,. (5.7

We then recover the explicit “external potential” forms of For |ater convenience, form the interaction matrix
our equations(2.13, (2.1b from (5.1), (5.2 by moving the
free Dirac operatorss;, to the right to operate on the wave 1
function. This rearrangement produces the derivative recoil D(x1)= 5 B1Ys1B27s2A (X)) (5.9
terms apparent in Eq$2.13, (2.1b. In generalA may take
any one of(or combination of eight invariant forms. In  After simplification, the linear combinatiof5.7) of our two
terms of hyperbolic equations becomes

O01= = V51752, (5.5

and the kernel

1
Azi)’sl?’sil—(xﬂ"‘ Y1+ ¥29(X1) ] (5.9

WW=[Hqg+Hyot+ V(X ,a1,a2,81,82, Y51, Y52 ]V
these become 5

A(x)=—L(X)O:/2, y1- Py PIX)O412, in which
V= -D 5.1
Yii - ¥209(x,) O4f2 A 510
L . and
or ay-a,F(Xx,)0,/2 for scalar, timelike vector, spacelike
vector, or tensofpolar interactions, respectively. Note that Hig=aq-p, +B1My, Hyp=—as-p, + Bom,.
in our A(x,) in Eq. (5.4 above,G(x,) enters muItiEJIied py (5.11)

the electromagneticlike combinatiof, - y,=—7y,-Pvy,-P

+ 71, - yo, Of time and spacelike parts. This structure ap-

pears as a result of our use of the Lorentz gauge to introduce 1

vector interactions in the classical version of the constraint AX))==[¥s1¥s2) Y1+ ¥2G(X,),

equations or as a result of our use of the Feynman gauge to 2

treat the field-theoretic versidb3]. The axial counterparts

to the constraints with polar interactions are given[bgte

the minus sign compared with the plus sign in E(s1)] 1

[62] D=5G(x,) (e az—1), (5.12
S1¢=[coshA)S,;—sinh(A)S,]4=0,

Spip=[costA)S,—sinN(A)S,; =0, (5.6

in which S; and S, are still given by(5.2) with axial coun-
terparts to the abovA’s given by +w{l—exdg(r)(a;- a,—1)1HV. (5.13

For the electromagnetic vector kernel

D then becomes

so that the relativistic Breit-like equation takes the c.m. form

WV =(ay-p—ay-p+ Bim;+ B,m,
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In lowest order this equation takes on the familiar form [W—w;— w0, ]P(p)

for four-vector interactiongseemingly missing the tradi-

. - . . ~ ~ 3n7

tional Darwin interaction piece-r- ayr - ay): R of , '
=A A(p— P “

(p)y (277)3[ (P=P") 7. P(P")y
W =[ar-p=ay-p+ famy + oMy +S(p—p")@(p")]Y°A " (—p), 6.1
—wG(r)(ay-ap—1)]¥. (5.14

in which A and S are functions that parametrize the electro-
_ ) ) magneticlike and scalar interactions;” are projection op-
However, as we first showed in R¢#2], expanding the  gratorsw is the c.m. energyw; = (p2+m?)*2 while ® is a

simple structure of Eq(5.13 to higher order in fact gener- 4y 4 matrix wave function represented in block matrix form
ates the correct Darwin dynamics. As a consequence, oujg

unapproximated equation yields analytic and numerical

agreement with the field-theoretic spectrum through order o pTT
a*. Explicitly, our full interaction is o= b ot (6.2
exp —@G) They obtain this equation from the full Bethe-Salpeter equa-
exd (e, a,— 1)g]:T{3 costig) + cosh39) tion by making an assumption equivalent to using a position-
space description in which they calculate the interaction po-
+ V5154 3 sinl(G) tential with the equal time constraint, neglecting retardation.
. . [These are the usual ad hoc assumptions that in our approach
—sinh(3G) ]+ a; - ay[ sinh(3G) are automatic consequencis covariant form of our two
+sinh(G)]+ o - o[ cosHG) simultaneous, compatible Dirac equatign$hese restric-
tions turn Eq.(6.1) into the standard Salpeter equation. In
—sinh(3G)1}, (5.19  addition, the Wisconsin group employs what we call the

“weak potential assumption”: W+ w4+ w,)>V. This as-

so that our Breit-like potential contains a combination of SUMPtion turns Eq(6.1) into the reduced Salpeter equation,
“vector” and “pseudovector” interactions originating from which, because of the properties of the projection operator,

the four-vector potentials of the original constraint equation/ows the Wisconsin group to perform a Gordon reduction
in “external-potential” form[63]. of its equation to obtain a reduced final equation in terms of

++ «
In this section we have seen how the two-body Dirac® ~ @lone. In our approach we make no such “weak poten-

equations with field-theoretic interaction structure automatitidl @ssumption” and therefore must deal directly with the

cally retain the correct Darwin structure of QED. Such gfact that our Dirac equations themselves relate components
demonstration should be carried out for each alternativ@’ the sixteen-component wave function to each another. Un-

treatment(if possible in order to check that truncations and k€ what happens in the reduced Salpeter equation, in our
numerical procedures have not destroyed its own version di€thod this coupling leads to potential-dependent denomina-
the field-theoretic Darwin structure for its treatment of the!0rS: @ strong potential structure that we found crucial in
vector interaction of QEQand associated vector structures démonstrating that our formalism yields legitimate relativis-
in QCD). Explicitly in our own work we find that including ti¢ two-body equations. Just as we do, however, the Wiscon-
all the couplings to smaller components of the wave functiorsi! 9r0Up works in coordinate space where the dynamical
is crucial not only for our nonperturbative QED spectral re-Potentials are local and easy to handle. However, in their
sults (see Ref[23]) but also for our good results for-p method upon Fourier transformation the kinetic factars
splittings and the Goldstone behavior of the pion as théhen_ become nonlocal operators. In contrast, the.entlre dy-
quark mass tends toward zero. Without those couplings theamical structure of our two-body Dirac equations is local as

good results for the positronium splittings and light mesond©Ng &s the potentials are local. _ _
The Wisconsin group uses local static potentials that play

evaporate. ! ;
the role of our Adler-Piran potential:
VI. THE WISCONSIN MODEL OF GARA, DURAND 4 ayr) _, B _
! ! = — mor - — — ur
DURAND, AND NICKISCH A==z ——e "'+~ FArj(1-e ),
A. Definition of the model and comparison of structure
with the Two-Body Dirac approach S(r)=(1— 5)( _ é +Br|(1—e #n
r

The authors of Ref[45] base their analysis of quark-
antiquark bound states on the reduced Salpeter equation con- +(CH+Cyr+Cyor?)(1—e #e H. 6.3
taining a mixture of scalar and vector interactions between
qguarks of the same or different flavors. When rewritten in a Note that Garaet al. introduce a confining electromag-
notation that aids comparison with our approach, their boundheticlike vector potential proportional to a parameteiThis
state equation takes the c.m. form differs from our approach in which th&@ominanj linear
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TABLE Il. Comparison of meson masses from Wisconsin modeleasily compare the results of the two methods. We also com-

Il and covariant constraint dynami¢€CD). pare theirR values and®P averages to ours directly in the
discussion below.
Name Expt. Wisconsin 2 CCDh Our results are closer to the experimental results for 16 of
— the 25 mesons. In detail, theR values for theY and ¢
Y:bb 1°S, 9.4600.2 9.42662.6 945420 families of 0.83, 0.78, and 0.60 are less accurate than
Y:bb 1%P, 9.8601.3 9.8620.1) 9.8454.5  two of our values of 0.64, 0.68, and 0.35, respectively.
Y:bb 13P, 9.8920.7) 9.8920.0) 9.8900.1) Their 3P averages [5(3P,)+3(°P;)+1(°Py)]/9 of
vsbr, 9900 oowon oo S3021020285I3adouatoliodeassime e
Y:bEZBSl 10.0230.9 10.0281.3 10.0240.1) 9.900,10.273,3.525 MeV. Their hyperfine splittings for the
Y:bb 2%P, 10.2321.1) 10.2381.5 10.22904  two charmonium multiplets of 200 and 47 MeV are signifi-
Y:bb 23P, 10.2550.6) 10.2560.0) 10.2570.2  cantly worse than our fits of 150 and 79 MeV. Their hyper-
Y:bb 2°P, 10.2680.6) 10.2700.2) 10.2763.1) fine splittings for the_mesons with ong or s quark are
s 10.3560.5) 10.3590.7 10.3590.7 27,51,127 MeV. Our fits of 128,138,420 MeV, respectively,
Y:bb 3%, roIRY o St are much closer to the experimental results of 141,141,398
B:bd 1S, 5.2792.1) 5.381137.2 5.2740.3 MeV.
neicc 1S, 2.9791.9 2.9671.4) 2.9750.1) The radial excitation energies for the two low&stexci-
yrcc 1%s, 3.0970.1) 3.167272.49 3.12q28.9 tations and the singlet and triplet charmonium excitations are
. 3.4151.0 3.4025.1) 3.4120.2 again accounted for significantly better by three of four of
Xo:cC 1°Py AR SOt EAT our values of 569,335,636,568 MeV for the results in the last
xi:cc 13P, 3.5100.1) 3.49317.9 350318 column than by the Wisconsin results of 602,331,654,491
xz:cc 13P, 3.5560.1) 3.5484.0 3.53818.1) MeV. In summary, the major strength of our approach is
76166 215, 3.5945.0) 3.621(1.5) 361106 'eflectedinits better fits to the hyperfine splittings and radial
Ry 3.6860.1) 3.66817.9 3.6880.3 excitations. The Wisconsin group’s results for the fine-
’//-CC_Z Sy : ' ' ’ ’ ' structure splitting are overall about the same as ours. More-
D:cd 11S, 1.8690.5 1.983574.6 1.8791.5  over, even a casual glance at the results shows one glaring
D*:cd 13S; 2.0100.6) 2.0100.0 2.0031.9 discrepancy that results from their approach—their hyperfine
D.:Cs 115, 1.9690.7) 2.097671.9 1.9680.7  Splittings for the light-quark mesons. The cause of this is
Y =, 2.1102.0) 2.14852.7 2.1060.6) probably the fact that their reduced Salpeter approach does
Dsies1°S e ' : LI not include coupling of the upper-upper piece to the other 12
K:sd 1S, 0.4980.0  0.74333409 0.4980.0  components of the 16 component wave function. In fact, the
K*:sd 13S, 0.8960.3 0.8705.1) 0.9183.5 lighter the meson, the worse is their result. In our QED nu-
$:551%S, 1.0190.0) 1.0190.0 1.02q0.00  Merical investi?ar;cions weffounq that couplings tlo_the é)ther
$:652°S, 1.68050.0 1.5100.9 1.4242.1) components of the wave function were essential in order to

s obtain agreement with the standard perturbative spectral re-
X 0.0 5168.9 72.8  sults of QED. We have found that the same strong-potential
effects that led to our successful results in QED are respon-
sible for the goodness of our hyperfine splitting, particularly
portion of the confinement potential has no electromagneticfor the mesons containing the light quarks. It would be im-
like part. Like the Adler-Piran potential, theirs has a long-Portant to test the Wisconsin group’s procedawith its de-
range 1/ part (the so-called Luscher tedmlits short-range '€ted couplings to the other wave functionsumerically

part is electromagneticlike just as is ours, and like that Owggthfetr:taea/ rroatl)rI‘ngS:t?\aIOtrhepc\)/?itsrggrzusrirr]] :ﬁogslter:;ns[n\?vith
Adler and Piran is obtained from a renormalization group . pre - . o
mesonic hyperfine splittings in QCD are reflected in its re-

equation. They base their analysis on a nonperturbative, Nits for QED
merical solution of the reduced Salpeter equa(en) with Garaet al. point out that in their approach the straight line

interaction as in equatiof®.3). Regge trajectoriesj (versusw?) for the light-quark systems
are much too steep, with slopes greater than twice the ob-
served slopes for pure scalar confinement. The best fit ex-
perimental slope and intercept values for tha,,p; trajec-
tory are(0.88,0.48. The slope and intercept values that we
In Table Il we include the Wisconsin variabfe{vector  obtain for our model in Table | ar.87,0.47, in excellent
and scalar confinemeriest fit results, and the best fit results agreement with the best experimental fit. For thef,,¢5
our method gives when restricted to the 25 mesons they conrajectory the experimental values d83,0.1}, while our
sider. For uniformity of presentation we give all of the Wis- model of Table | produces the set of val6s35,0.09%. The
consin results in terms of absolute maséegher than the intercepts are not as accurate as those forgthteajectory
mass differences and averages these authors presented for #ighough our results actually produce a tighter fit to a straight
spin-orbit triplet3. Although Garaet al. did not perform the line trajectory than do the experimental results. Finally we
samey? fit that we do, we preser(in parenthesesthe in-  come to thew,b;, 7, trajectory. We obtain the values
crementaly? contribution for each meson so that we can(0.57,-0.04). Compared to the experimental values of

B. Comparison of Wisconsin fit
with that of Two-Body Dirac equations
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(0.72,-0.04) our slopes are about 25—30 % small, although TABLE Ill. Comparison of meson masses from the Spence-Vary
our fit to the straight line is just as tight. The probable reasorinodel and covariant constraint dynam{€CD).
for the relative advantage of our results over those of the

Wisconsin group is that our bound-state equations include a Name Expt. Spence and Vary cch
strong-potential structure, and are not limited by the Weak_Y'bEl?’Sl 9.4609.460 9.452(— 8) 9.444(- 16)
Eg:‘entlal approximation built into the reduced Salpeter equa\—(:bglsPO 9.8609.860 9.843(~17) 9.836( 24)
' Y:bb 13P, 9.8929.893 9.863(—29) 9.886(—7)
VII. THE IOWA STATE MODEL OF SOMMERER, Y:bb 13p, 9.9139.913 9.928(+15) 9.921(+8)
EL-HADY, SPENCE, AND VARY Y:b32381 10.02310.023 9.996(-27) 10.022(+1)
A. Definition of the model and comparison of structure Y:bb2°P, 10.23210.233  10.198( 34) 10.230(+2)

. _— .Y:bb 28 . . 270¢ . 4+
The lowa State group introduces a new relativistic qu:;15|—Y'bb 2%p,  10.26819.269 10.270(+2)  10.284(+17)
10.35%10.355 10.331(-24) 10.367(+12)

potential reduction of the Bethe-Salpeter equation. They us¥:bb 3°S;
the well-known fact that there are an infinite number of suchY :bb 4°s, ~ 10.58010.580  10.611(+31)  10.627(+47)
reductions[64] to construct a formal quasipotential param-Y:bb 5%S,  10.86%10.865 10.860(-5  10.645(-20)

etrized in terms of two independent constants. They show:pp 635, 11.01911.019 11.086(+67) 11.03617)

that when all of the most often used reductions are SpeCiab:bﬁllso 5.2715.279 5.342(+ 63) 5.267(—12)

ized to QED, they fail to numerically reproduce the correctg, ., ag 5.3525.325 5.347(~5) 5.317(- 8)
: 3 . . . .

ground state result for singlet positronium through oraér =1 _
; 4 : 7c:cc 1S, 2.9792.980 2.993(+ 14) 2.969(- 11)
[65]. These authors then fix the free parameters in their qua co 19, 3.0973.097 3.091(- 6) 3.128(+31)

sipotential by requiring that their resulting ground-state en¥ )
ergy lie close to the well-known perturbative value. In addi-xo:cc 1'P; ~ 3.5263.526  3.471(-55 3.520(-6)
tion, the form of the quasipotential reduction they usexo:cc 1°P 3.4153.415 3.383(-32 3.396(-19

produces a projection to positive energy states only. Theg,:cc 13P, 3.5113.51]) 3.461(-50) 3.504(-7)
lowa State group uses a scalar linear confinement plus masg;.cc 13p, 3.5563.556 3.5560) 3.555(—1)
less vector boson exchange potential with the kernel 7e:CC 215, 3.5943.594 3.640(+ 46) 3.606(+ 12)
—ATasyo Y, X YoV, b lim | 2 Xy, yice 2°s, 3.6863.686 3.688(+2) 3.688(+2)
_(q_q/)Z 40 i _(q_ql)2+M2' (//;C£13D1 3.7703.770 3.741(-29) 3.806(+ 36)

(7.0 Wicc 3%S; 4.0404.040 4.104(+64) 4.083(+43)

yrce 2°D, 4.1594.159 4.136(—23) 4.161(+2)

The QCD couplinges that they use is treated as a running """~
coupling constant that depends on the momentum transféf ¢¢ 3 lDl 4.4154.419 4.456(+ 41) 4.462(t47)
and two parameters. Their quasipotential reduction incorpoP:cu 1'S; ~ 1.8681.8645  1.897(+32  1.854(-10)

rates zero relative energy in the c.m. frame. D*:cu1®s,  2.00742.007 2.004(-3) 1.991(-16)
D*:cu1%p,  2.4202.422 2.358(-72) 2.373(-47)

B. Comparison of the fit with that of the constraint approach Dsicgllso 1.9711.969 1.968(-3) 1.981(+12)
. * 0513 2.1102.11 2.076(— 34 2.137(+25

In Table IIl, we give the lowa State group’s results for a °s fsll St 0 49(10 492 o 495(3 +1) 5 511(+1 )
set of mesons together with our results for the same set df'sul'S -4940.499 495(+ 1) 511(+17)
mesons. In the fourth column of this table we present the<*:su1°S, 0.8920.892 0.916(+24) 0.887(-5)
results we would obtain from our approach if we limited our K;:su 1'P, 1.2701.273 1.287(+17) 1.327(+57)
fit just to the 47 mesons used by the lowa State group. W&* :su 13p, 1.4061.402 1.330(-76) 1.405(+ 3)

use the same rms fitting procedure used by these autho'@zk 'su 1°P, 1.4261.426 1.330(— 96) 1.348(- 79
instead of they? fit used in our Table I. The results are quite K,:su1'D, 1.7701.776 1.633(- 137 1.709(- 85)

similar, 50 for the Ohio State model and 53 for our model. |~ — .
. . . . : 1.0191.01 1.020(+1 1.048(+ 29
Of the 47 mesons in their table, our fits are closer to theqs"'ss_1 381 1 52§1 523 1 526E+ 1; 1 488§f 37;
data in 25. Thus, according to this crude measure there is ng-SS1°P> ' ' ) '

significant difference between the results of the two ap-$:SS2°S: 1.6801.680 1.645(-35  1.803(+123
proacheg66]. We proceed now with a detailed comparison. 7:ud 1'S; 0.1440.149 0.135(-5) 0.143(+3)
Their R values for the two bottomonium and one charmo-p:ud 13S, 0.7680.769 0.812(+44) 0.736(-33
nium multiplets are 3.25,1.09,1.09. OuR values of p, :ud 1P, 1.2321.230 1.219(- 13 1.255(+ 25)
0.70,0.74,0.44 are considerably closer to the experimenta{;}l:uglsp1 1.2601.230 1.223(- 37) 1.534(+ 185
ratios of 0.660.61),0.560.61),0.47.[We make no compari- a,:ud 1°P, 1.3181.318 1.367(+49) 1.223(-95)

son for the three light quark multiplets ¢, su,ud) since the mud 21S, 1.3001.300 1.439(+ 139 1.474174)
lowa State Group did not c_alcuIaE: the, states] We note, mp:ud 11D, 1.6701.670  1.515(-155  1.780(+ 110
however, that for the pairs osu and ud their results o 0.0 50 53

for®P,- 3P, splittings are substantially better than our results
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In particular, unlike our results, theirs do not have an inver-construction of the quasipotential in their wave equation by
sion of the splitting. Our poor results for these splittings aredemanding that it reproduce the ground-state level of singlet
likely due to a larger influence of the scalar than the vectopositronium numerically. This requirement fixes the values
portion of the spin-orbit interaction. Comparing théP av-  of the two parameters of their quasipotential mentioned
erageg 5(3P,) +3(3P;) + 1(3Py)]/9 of 9.859,3.497,1.433, above. In contrast, the constraint approach has no free pa-
1.015 GeV for the lowest-lying spin-orbit multiplets listed in rameters of the type used in R¢46] for the quasipotential

the table with our values of 9.902,3.516,1.470,1.386 and thesductions. Instead, its Green function is fixed. While within
experimental results of 9.900,3.527,1.503,1.303 GeV we sefae constraint approach the connection between the kernel
that ours are closer in each case to the experimental resultsnd the invariant constraint functiorie.g., G,L) does in-

We see also that for charmonium, our average is nearly equablve some freedom of choicgsee Egs.(2.14), (2.19,

to our 'P; level while the lowa State results are 75 MeV (2.17)], that freedom is not determined by the requirement
higher than theP, level. For theud system, our average is that the model fit a particular state but instead is fixed by
25 MeV higher than outtP; level while theirs is 122 MeV fundamental dynamical requirements following equivalently
above their calculatedP, level. Their values of the hyper- from classical or from quantum field theory and resulting in
fine (3S,-1Sy) splittings are 98,48,100,108,421,677 MeV for the appearance of a minimal form of the potenfisge Eq.

the two charmonium multiplets, and the (2.21) and below. Several features separate the two ap-
D-D*,D¢s-Df ,K-K*,7-p pairs. Comparison with the ex- proaches. First, as we found in R¢23] the QED results
perimental splittings of 117,92,142,139,398,628 MeV andprovided by our equation agree with those of standard per-
our results of 159,82,137,156,376,593 MeV show the conturbative QED for more than just the ground state, while it is
straint results closer to the experimental splittings on all butinknown if the parameters that the lowa State model uses
the ground-state charmonium pdlWe have commented ear- that ensured its fit to the singlet ground state of positronium
lier on the origin of the discrepancy between guvalue and  would work for the other states. Second, the constraint ap-
the experimental resultWe next wish to compare the results nrgach generates similar structures for scalar interactions and
generated in both approaches for the spin-spin effect embodysiems of vector and scalar interactions in agreement with
ied in the’P,-*P, splittings. For thecc,su,ud pairs the lowa  the corresponding perturbative field-theoretic results while
State results are 10,43,4 MeV compared to the experimentglgain it is unknown whether the parameters that the lowa
results of 15,13@29,28(0) MeV and the two-body Dirac state model uses that gave good fits to the singlet ground

results of 16,78,279 MeV. For the heavier two pairs, the congtate of positronium would work in the presence of other

straint splitting results are substantially closer to the eXperipotentials. Third, the match to singlet positronium that we

mental results. This resembles the similar spin-spin pattergaineq was an analytic consequence of our equations for
found_ln theSstate hyperfine splittings. Our poor result for QED and therefore a test of those equatif6], not the
theud meson has the same origin as our poor result foRthe regylt of a numerical fit. Fourth, our approach includes es-
value mentioned above. Finally, we compare the radial excigential contributions from all sixteen components of the rela-
tations. The six upsnon states in the experimental column of;istic wave function, not just the “positive energy” compo-
the table occur at intervals of 562,332,225,285,254 MeV. Th‘?]ents [68]. Fifth, an important consequence of the fully
three charmonium triplet states and the two charmonium sinzgativistic dynamics and gauge-theoretic structure of the

glet states occur at intervals of 589,354,614 MeV while thegogiraint equations is that they produce values of the light-
two ssandud states occur at intervals of 661 and 1160 MeV.quark masses closer to current algebra values than do alter-

The corresponding lowa  State intervals  arenative approaches. The quark masses that we obtained in our
544,335,270,259,226,597,416,647,625,1304 MeV while ougomparison fit with the lowa State model arm,
intervals are 578,345,260,218,191,560,395,637,753,1332 314 MeV andm,=my=67 MeV, which are significantly
MeV. The lowa State radial excitation splittings are closer tocloser to the current algebra values mf~125 MeV and

the experimental values on four of the five upsilon splittings,m, , m;~3-6 MeV than the lowa State model's values of
one of the three charmonium splittings, and both of the405 and 346 MeV, respectively.

lighter quark splittings.

Even though the rms values obtalne_d in each approach areéy| THE BREIT EQUATION MODEL OF BRAYSHAW
nearly the same, on most of the detailed comparisons made o _
above the constraint approach appears to give better fits. The A. Definition of the model and comparison
exceptions to this are the radial excitations and some of the  of the structure with the Two-Body Dirac approach

heavier light-meson excitations. The largest portion of our grayshaw[47] treats quarkonium with the aid of the Breit
rms values come from the heavy light-meson orbital andygyation and an interaction Hamiltonian with five distinct
radial excitations. S parts, four of which are independent. As usually done for the
We have long argued that any proposed relativistic wavegyeijt equation the times associated with each particle are
equation should be tested in terms of its ability to reproducggentified or related in some favored frarfrormally c.m)

known perturbative results of QED and other relevant relagejected so that the relative time does not enter the potential.
tivistic quantum field theories when solved nonperturbativelyj that frame Brayshaw uses the equation

before being applied to QCD. The lowa State group in fact
adopts this philosophy in order to resolve an ambiguity in the H¥=(Hy+Hc+Hg+Hg+H,+H)VY=w¥ (8.1
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in which Hg is the free Breit Hamiltonian Finally Brayshaw introduces a special short-range attrac-
tive piece solely in order to obtain a good fit to the pion and
Ho=ay-p—ay-p+ Bimy+ Bom;, (8.2 kaon. Instead of a spin-dependent contact term used in a

. ) _number of semirelativistic approachet8,69,7Q he uses
while Hc and Hg are a Coulomb and an associated Breit

interaction Car 6(b—r)

He=Hpg(1,1,+ —_—
Cl S B( 1+2 Blﬁ2)2(ml+m2+C4)

(8.9
This term resembles a cross term between a linear confine-
ment piece and the Breit term that might emerge from some
(8.3 sort of iteration. The short-range character of this part-scalar,
2r part-vector interaction is specified through takingta. In
contrast, our approach possesses a short-range spin-spin in-
As indicated in our discussion about the Salpeter equation iferaction that is quantum mechanically well defined and that
Sec. VI, this part of the interaction comes from the VeCtorariseS Straightforward'y from the Sc"hﬁuger reduction Of

portion of the kernel. The author aCknOWIedgeS the difﬁcul'our Dirac equations_ We do not need to add it in by hand.
ties associated with the Breit interaction, pointing out that

the radial equation has a singularity at a radial separation of
ro=—c¢./w>0. He bypasses Breit's proposal that this inter-
action be used only in first-order perturbation theory by us- In spite of its ad hoc nature, we have included the proce-
ing only positive energy spinors in his variational proce-dure of Brayshaw among our comparisons because it turns
dures. We point out that this was not necessary in ouput that his resultant fit for the 56 mesoftisat overlap with
approach since the hyperbolic structure of our eight basiour fit) is quite good, just slightly worse than our fit. In Table
interactions avoids the problems inherent in Breit's formula-IV we include in the fourth column the fit we would obtain
tion [9]. In particular, it avoids the appearance of midpointwith our model if we included only the 56 mesons that our fit
singularities. Unfortunately, just like the Wisconsin group, has in common with Brayshaw’s. On a meson by meson
having avoided the pitfalls of the Breit equation, he uses hidasis we compare by using incremengdlvalues.
replacement without testing whether or not his formalism Of the 56 mesons in the table, our fits are closer to data in
would yield the standard QED results numerically if he lim- only 26, although overall our fit is better. However, this over-
ited his interaction to the usual Coulomb interaction. Onceall difference may not be as significant as in the previous
again such a test wouldf successful help eliminate the examples because here we did not use identical fitting pro-
possibility that the wave equation introduces spurious physeedures for both models. Brayshawisvalues for the two
ics. upsilon, the one charmonium, ti&*, ¢, andp- triplet P

In Eq. (8.1), H, is a long-range confining portion that multiplets are 0.47, 0.34, 0.32, 0.55, 0.25, 0.19 and are dis-
incorporates the requirement that the wave function vanistinctly different from our values of 0.66,0.69,0.39).71,
identically for radial separations>a with a boundary con- —0.25~-5.67 and the experimental numbers of
dition atr =a. Brayshaw argues for this term over and above0.66,0.61,0.48,0.09,0.97~0.4. Although the constraint/
a linear confinement piece on the grounds that at some sepAdler-Piran combination is distinctly better than the Breit/
rationr , corresponding to a threshold eneifgy, production  Brayshaw approach for the heavier mesons, both give Roor
of qq pairs should become energetically favorable. His radiaresults for the lighter mesons. All of his light spin-orbit mul-
parameter plays the role ofr, in specifying the range at tiplets have masses that increase monotonically jyitimlike
which such effectéamong othersdominate confinement. He the pattern of the experimental numbers. Although our re-
expects thah is of the order of(r) for the light-quark me- Sults show a nonmonotonic pattern, that pattern also differs
sons while wave functions for the heavy-quark mesondrom that of the data. Note that the details of our patterns are
would have fallen to zero for<a. When introducing the ~greatly influenced by the presence of the scalar potential.
explicit form of his linear confinement potential, the author Brayshaw's approach includesee Hs) a partial Hamil-
finds that it cannot simply be added as a Lorentz scalar to th@nian that governs intermediate range behavior, in which
Hamiltonian since such a term produces far too large a madinelike and scalar interactions contribute equally. This may

Cl(a/1~ a/2+ Q- Fa/2~ F)

B. Comparison of the fit with that of the constraint approach

shift for the light-quark systems. Instead he chooses be responsible for the difference between his montonic pat-
tern and that displayed by the data.
Hi=co(B1+ Bo)r, (8.4 Comparing his 3P averages [5(3P,)+3(°P,)

+1(3Py)]/9 to the 'P; mesons for the charmoniuni*,
which he shows contributes very weakly for the light-quarkand p-7 systems we find the following three pairs of num-
systems, while contributing significantly for the heavy-quarkbers:  3.517,3.498;1.335,1.355;1.251,1.202. Comparison
systems with an intermediate contribution for the hydrogento our numbers of 3.519,3.520;1.435,1.421;1.434,1.411
like intermediate mass mesons. Unfortunately, however, wand the experimental numbers of 3.526,3.525;1.402,1.375;
note the important fact that the Lorentz transformation char1.231,1.303 shows that our approach gives better agreement
acter of this confining interaction is ambiguous, being neithefor the heavier mesons and his somewhat better for the
scalar ¢~ B18,) nor (timelike) vector (~1,1,). lighter mesons while both do about the same for Kie
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His values of the hyperfine splittings are We term a “semirelativistic quark model” one that uses a
118,100,143,158,410,636 MeV for the two charmonium mul-two-body wave equation that takes one of the following three
tiplets and theD-D*,D¢-D* ,K-K*,77-p pairs. Comparing forms in the c.m. frame:
with the experimental splittings of 117,92,142,144,398,627
MeV shows a clear pattern of excellent to good results for [p?+®(r,5,,5,) ¢p=(W—m;—m,) ¢,
the heaviest, lightest, and the intermediate, more hydrogen-
like mesons. Our results are 151,79,133,145,416,647 MeV.

Our ground-state charmonium result is not nearly as good a 2. 2 2 —

Brayshaw’s while for the others we have about the sames[ VPP mi+ VP my+ (s, ) J=wy, (9.2)
quality of fit. It may be that his choice dfig rectifies the
problem our treatment encounters. But, the disadvantage of
this is that hisR values for the heavy mesons are worse. This
effect appears to be similar to the trouble we encountered,
mentioned in our discussion of Table | in Sec. IV A.

For the radial excitations, the four upsilon states in theln each of these equatiopg is the square of the c.m. rela-
data portion of the table occur at intervals of 563,332,22%jve momentum while®(r,s;,s,) is an effective potential
MeV while the three charmonium triplet states and the twothat includes central, spin-orbit, spin-spin, tensor, and possi-
charmonium singlet states occur at intervals of 589,354,618ly Darwin terms. In each, the wave function has four com-
MeV. The pion excitation is 1160 MeV. The correspondingponents with no coupling to lower-lower components. The
Brayshaw intervals are 555,335,320,551,566,569,888 MeYhost important difference between the first form and the oth-
while our intervals are 572,337,257,564,395,636,1403 MeVers is that the latter two have exact relativistic kinematics.
With the exception of the second radial triplet upsiloniumThe former is almost always called a nonrelativistic quark
and charmonium excitation intervals, the fits of both modelsmodel, although strictly speaking almost all spin depen-
are of about the same quality. Note that excited pion predicdencedat least those that arise from vector and scalar inter-
tions bracket the experimental results. This appears to be gctiong vanish in the nonrelativistic limit. These equations
common feature of the radial and orbital excitations of thediffer from the two-body Dirac equations and the Breit and
light-quark mesons, with his results on average closer to thihstantaneous Bethe-Salpeter approaches primarily in that
experimental values. Our results are, on average, better feheir spin dependences are put in by hand, abstracted from
the heavier mesons. the Fermi-Breit reductions of the Breit and instantaneous

However, his apparently good fit emerges from a potentiaBethe-Salpeter approaches. For Coulomb-like potentials
structure that has ambiguous Lorentz transformation propeeriginating in the Coulomb gauge, these terms contain sin-
ties. The potentials are chosen in a patchwork manner usingular potentials. Consequently they must either be treated
the 5 parametera,c,,c;,C3,C, (he setdh=a/10). In terms  purely perturbativelythus ruling out application to the light-
of Lorentz transformation properties his scheme uses fouguark mesonsor through the introduction of smoothing pa-
invariant functiongscalar, timelike, electromagneticlike and rameters that may or may not be features of the actual po-
mixed (Hs,Hg, andH,)]. The Adler-Piran potential that we tential. The two-body Dirac equations of constraint
use has only two invariant functions corresponding to scalagynamics, like their one-body cousin, have a natural smooth-
and electromagneticlike interactions. The constraint aping mechanism—potential-dependent denominators in the
proach is not a patchwork; instead its wave equation itselgpin-dependent and Darwin terms of the resultant
(once A andS are chosenfixes the spin, orbital, and radial Schralinger-like form—that eliminates the necessity for ad
aspects of its potential and its spectra. We also note that jusioc introduction of such terms. The Breit equation may also
as in the case of the Wisconsin model, Brayshaw has ngjossess a natural smoothing mechanism, but a nonperturba-
tested the nonperturbative reliability of his equation. On thetive treatment of it leads to erroneous results in JBP The
other hand, an important result of his approach is thatifde  instantaneous Salpeter equation may have a natural smooth-
quark masses required for his fit are very sniaD MeV)  ing mechanism, but has not been tested nonperturbatively for
and significantly closer to the current quark mass values thaQED even though the equation is over 50 years old. Authors
ours. His strange quark mag00 MeV) is also closer to the who have attempted to use these types of semirelativistic
proposed current quark mass values than our value. The mostjuations to treat the entire meson spectrum include
important warning provided by Brayshaw’s approach is thatLichtenberg[69] (the third typé, Stanley and Robsof70]
an ad hoc structure with ambiguous Lorentz properties caand Godfrey and Isgy#8] (the second type and Morpurgo

[p2+ q)(rvsl 182)] lﬁ: bZ(W) lﬂ

do so well at fitting the spectrum. [43] (the first type. Each of these authors ignore the spin-

independent part of the Fermi-Breit interaction. This neglect

IX. THE SEMIRELATIVISTIC MODEL OF GODFREY is not justifiable since this part of the interaction will have
AND ISGUR an effect onS states that is significantly different from

its effect on nonS states, being normally short ranged com-
pared with the rest of the central force part of the problem.
In this paper, we select one of these models for our final
We begin with a general discussion of semirelativisticcomparison, the model of Godfrey and Isgur, since this
quark modelgwith and without full relativistic kinematigs ~ model, even though already 18 years old, is by far the most

A. Definition of the model and comparison of the structure
with the Two-Body Dirac approach
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TABLE IV. Comparison of meson masses from the Brayshaw model and covariant constraint dy(@&m)s

Name Expt. Brayshaw CCD Name Expt. Brayshaw CCD
Y:bb 135, 9.4600.2) 9.4531.3 9.4541.7 D% :cs1%P, 2.5350.3 2.5157.2) 2.5157.0)
Y:bb 1°P, 9.8601.3 9.8680.3 9.84225  p*:cs1%p, 2.5741.7) 2.5463.6) 2.51317.0
Y:bb 13P, 9.8920.7) 9.9104.5) 9.8890.)  K:su1's, 0.4940.0) 0.4950.0) 0.4920.1)
Y:bb 1°P, 9.9130.6 9.9262.9 9.9200.7)  K*:su13s, 0.8920.2) 0.9050.5) 0.9080.7)
Y:bb 23S, 10.0230.3) 10.0074.8) 10.0230.00  K,:su1P, 1.2737.0 1.3551.1) 1.4213.6)
Y:bb 2°P, 10.2320.6) 10.2144.9) 10.2290.1) K} :su1%P, 1.4304.0 1.08410.9 1.3490.6)
Y:bb 2°P, 10.2550.5) 10.2520.1) 10.2580.)  K,:su1°P, 1.4027.0) 1.2943.4) 1.5244.3
Y:bb 2°P, 10.2680.4) 10.2650.2) 10.2781.8) K% :su1%pP, 1.4251.3 1.4090.2) 1.3990.5
Y:bb 33, 10.3550.5) 10.3422.9) 10.36@04  k*:su1°D, 1.71420.0 1.6900.0) 2.0042.6)
Y:bb 4°S, 10.58@3.5) 10.6629.9) 10.6171.9  K,:su1°D, 1.81610.0 1.7640.4) 1.8920.9
B:bu 1'S, 5.2791.8) 5.33213.7) 5.2700.3  K,:su1°D, 1.77410.0 1.7700.0 1.7800.0
B*:bu 135, 5.3251.9) 5.37713.2 5.3170.3)  4:s513S, 1.0190.0 1.0220.1) 1.0302.1)
neicc 1S, 2.9802.1) 3.0113.5) 2.9760.0  f,:5513P, 1.37040.0 1.1850.4) 1.3450.0
yicc 1°8, 3.0970.1) 3.12921.0 3.12717.8  f,:s51%P, 1.5124.0) 1.4484.5) 1.5461.2)
Xo:CC 1P, 3.5240.2) 3.49813.0 3.5200.9  f,:s51%P, 1.5255.0) 1.5110.1) 1.4960.4)
Xo:cc 13P, 3.4151.0 3.4100.3 340904  4:s523S, 1.68020.0 1.7780.4) 1.8601.4)
y1:cc 13P; 3.5100.1) 3.5140.2) 350802  4:551%D, 1.8547.0) 1.9221.4) 1.8580.0
x2:cc 1°P, 3.5560.1) 3.5405.2) 3547119  guud1ls, 0.1400.0) 0.1400.0) 0.1430.2)
7c:cC 21 3.5945.0 3.5800.2 3.6120.3  p:ud1%s, 0.76711.2 0.7760.0 0.7900.2
yicc 23S, 3.6860.1) 3.6800.7) 369404  p,:ud 1'P, 1.23110.0 1.2020.1) 1.4114.4)
yicc 18D, 3.7702.9 3.7730.0 3.8144.0  a,:ud 1°P, 1.45040.0 0.9902.4) 1.5420.1)
yicc 33, 4.04010.0 4.2468.0) 408604  a,:ud 1°P, 1.23040.0 1.2530.0 1.5901.3
yicc 2°D, 4.15920.0 4.2880.8) 4.1630.0  a,:ud 1%P, 1.3187.0 1.3020.2 1.3180.0
D:cu 1's, 1.8650.5 1.90324.2) 186400  5:ud2's, 1.300100.0 1.0280.1) 1.5430.1)
D*:cu 135, 2.0071.4) 2.04624.5 199117 7,:ud 1'D, 1.67020.0 1.5930.2 1.8831.6)
D*:cu 1%P, 2.4231.9 2.4280.1) 241303  ,:ud1°D, 1.70020.0 1.7410.2) 1.9983.4)
D*:cu 1%P, 2.4592.0 2.4580.0) 2.38318.8  p,:ud 1°D, 1.6915.0 1.6800.0 1.7220.2)
D.:cs1ls, 1.9690.6) 1.9760.9) 1.9740.4 X2 0.0 204.2 111.0
D* :cs 135, 2.1122.0) 2.1346.6) 2.1190.7)

often cited in recent experimental works and theoretical panored this part of the Darwin interactions, their results con-
pers on rival approaches. tain none of the dynamical consequences of 8fe or

As we have said, Godfrey and Isgur assume a semirela- .42 pieces. What portion of the Darwin interaction they
tivistic wave equation of the second type possessing exadtclude they parametrize separately just as they do the other
relativistic kinematics but through the inconvenient sum-of-portions of the Fermi-Breit interaction. These terms include
square-roots form. They then determine the form of interacthe spin-spin contact term, the spin-orbit terms, and the ten-
tion in the following way. They assume that the confiningsor terms. In our opinion, this patchwork way of handling the
piece of the interaction is a world scalar. They modify thephysics blurs the relativistic significance of their quark
Coulomb potential with the aid of a smoothing function. At model. In our two-body Dirac equations the Darwin portion
the same time they appear to ignore the Darwin téemy., and each of the spin-dependent portions is tied directly to
the spin-independent contact term present in the one-bodynd fixed by the Lorentz formis(x, ),G(x,) of the interac-

limit) in the on-shell reduction of thqq scattering ampli- tion, which are in turn set by th§, .4 invariant potentials. In
tude. Although they modify the short-range part of their in-QED these fixed terms yield the correct spectrum with no
teraction with the aid of a smearing function, this modifica-additional parameters needed to adjust their relative sizes.
tion does not compensate for the ignored Darwin term. In addition to bypassing the problems of singular spin-
Moreover, we have shown elsewh¢d®,37 that the Darwin  dependent terms by assuming a smoothing parameter, God-
interactions for scalar and vector interactions lead, through &ey and Isgur include nonloc&momentum-dependenpo-
canonical transformation, to the quadratic local teBhsind  tentials by replacing the mass-dependmﬁt1 in the Fermi-

A? that appear in our equations. Since the authors have igreit term by @?+m?) Y2 They claim that this is
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necessary because the Fermi-Breit reductmrthe on-shell tial is closely tied to an effective field theory related to QCD

qq scattering amplitude in c.mdoes not adequately express and is. therefore_ superior to Richardson’s ansatz. Furth.er—
the full momentum dependender nonlocal natureof the ~ More, in calculations based on our earlier treatment we ig-
potential. While this might be true, we have found that such’©réd the tensor coupling and unequal mass spin-orbit differ-

nonlocal behavior is not necessary to obtain very good re€nee co_uplings, which we explicitly include in _the present
sults either in lowest-order QED or in the quark model calculations. We have also corrected a defect in the decou-

Like the Adler-Piran potential that we use in our ap- pling we used between the upper-upper and lower-lower

. . ) . components of the wave functions for spin-triplet states in
proach, their potential includes a running coupling constant

: . ; ; our older treatment.
In fact, by convolving a parametric Gaussian fit to the run-
ning coupling constant with the ¢7, they obtain their de- B, comparison of the fit with that of the constraint approach
sired smoothing of the Coulomb potential, thus disposing of

: s We now compare the fit given by our model to that pro-

two problems at the same time. In addition, they are able to.
: . f .~ vided by the model of Godfrey and Isgur. In Table V we
treat the zero isospin mesons such as ghand »’ by in isplay in the fourth column the fit we would obtain with our

. . L. . |
cluding a phenomenological annihilation term. We leave ouﬂqodel if we included only the 77 mesons that our fit has in

this term in our results of Table 1-1V and in our comparison .
) . ) common with that of Godfrey and Isgur. We then compare
with the results of Godfrey and Isgur in Table V. L|chtenbergthe fits by examining the in)érementgdz values for eacFr)1

[69] has compared an earlier version of our quark model formeson.(ln an rms comparison they would obtain about 63

the meson spectrum with that of Godfrey and Isgur. Thecompared to our value of 79.

potential we used in that earlier version was the one- porthe 77 mesons in their table, our fits are closer to data
parameter Richardson potential, with the confinement piecg, only 32; overall their fit is better. Generally speaking our
chosen to be one-half timelike vector and one-half scalar. Agesults are better on the newer mesons while their fit is better
Lichtenberg pointed out, Godfrey and Isgur obtained signifi-on the older mesons. A detailed comparison reveals the fol-
cantly better agreement with the data than we did. He statdswing. TheirR values for the two upsilon, the one charmo-
that this is because they use significantly more parametersium, and theK*, ¢, and p-w triplet P multiplets are
than we do, including four in the potential and six to describe0.29,0.50,0.57,0.36,0.42,0.47 and are distinctly different
relativistic effects, ten altogether, compared to our one. Howfrom our values of 0.68,0.76,0.410.66~0.21—4.00 and
ever, we do not believe that as a general rule the number dhe experimental numbers of 0.66,0.61,0.48,0-0R97,
parameters that appear in the potential is, in itself, of as-0.4. As was true for the Brayshaw analysis, the constraint/
much significance as how these parameters are distributeddler-Piran combination gives a distinctly better fit than the
For example, in our present and previous models there akggur-Wise approach for the heavier mesons, while both give
two invariant functions,4 and S, related to the single non- PooOr results for the lighter mesons. As was the case for Bray-
relativistic (Adler-Piran V,p that itself depends on two pa- Shaw’s spectrum, none of their light multiplets are inverted,
rameters. These parametric functions are not entirely indeVhereas although ours are inverted they are not inverted in
pendent, being related by Eqg3.1), (3.89, (3.8. f[he same way as the experlmental numbers are. Agam, our
Specifying their form fixes both spin-independent and spin-;?g’irzfé‘ﬁszrjr ?ﬁ?ﬂﬁéhi ﬁfr?gl?kgfctgﬁtﬁgﬁlt?c:np?rfet?]téaléSrcn)-d_
dependent_ parts of the quasipotenda) . We might say that orbit part of their Hamiltonian. This may be responsible for
our formallsm has 5 ququ mass parameters and two par eir lack of the partial inversion that appears in the data.
metric functions. Increasing the number of parameters tha

. Computing their 3P  averages [5(3P,)+3(°P
A,S depend on may or may not increase the goodness of the 1(3P5]/9 %Iong with the 1P, rr?esons (for Zt)he c(harlr%o-
fit. According to our way of counting, Godfrey and Isgur

. : ; , nium, K*, andp-7 system we find the following three pairs
have independent parametric functions for the two spin-orbigs numbers: 3.524,3.520:1.392,1.340;1.262,1.220. Compari-

parts of the potential, the spin-spin contact part, the tensaon with our numbers of 3.519,3.520;1.424,1.411;1.419,
part, the scalar potential, and the spin-independent part of the 397 and the experimental numbers of
vector potential, altogether 6 parametric functions. From ouB 526,3.525;1.402,1.375;1.231,1.303 shows the constraint
way of counting the number of parameters the number ofpproach giving slightly better numbers for the heavier me-
parametric functions would not increase no matter how mangons and thé* while the Godfrey-Isgur results are some-
parameters are included in fixing the functional form of eachwhat better for the lighter mesons. Theib average
of these six functions. Likewise, in our case, no matter how 7(3D,) +5(3D;) +3(°D,)]/15 and theitD, meson for the
many parameters we use in fixing,S there are only two K* are 1.795,1.780 MeV while our results and the experi-
independent parametric functions. Our approach is distinamental results are 1.873,1.879 and 1.774,1.773 MeV, respec-
from that of Godfrey and Isgur in that we do not alter thetively. Our results are relatively closer to one another while
functional form at the level of the spin dependence but rathetheirs are closer to the data in an absolute sense. This is
at the level of the kernels. indicative of the general trend of our orbitally excited light
Finally, before we compare our present work with that ofmesons being somewhat high. We suspect that this is due to
Godfrey and Isgur, we note that our present model differghe S?> behavior becoming dominant at longer distance,
from our earlier one used by Lichtenberg in his comparisorchanging the behavior of the confining potential in the effec-
of the two approaches. Our present treatment differs in itsive Schralinger-like equation from linear to quadratic.
replacement of the Richardson potential by the Adler-Piran Their values of the hyperfine splitings are
(AP) potential. The intermediate range form of the AP poten-130,60,160,150,430,130,620,150,120 MeV for the two char-
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TABLE V. Comparison of meson masses from Isgur-Wise model and covariant constraint dyt@digs

Name Expt. Isgur and Wise CCD Name Expt. Isgur and Wise CCD
Y:bb 133, 9.4600.2 9.4600.0 9.4530.8  Ki:su1®P, 1.4294.0 1.2402.3 1.3230.7)
Y:bb 13P, 9.86Q1.3 9.8500.5) 9.8421.6) K,:su13p,; 1.4027.0) 1.3800.1) 1.5092.3
Y:bb 13P, 9.8920.7) 9.8801.4) 9.8890.)  K%:su1%P, 1.4251.3 1.4300.0) 1.3930.5)
Y:bb 13P, 9.9130.6) 9.9041.8 9.9210.6)  K*:su2ls, 1.46030.0 1.4500.0) 1.5930.2)
Y:bb 23S, 10.0230.3 10.00@6.9) 10.0230.0) K*:su 23S, 1.41212.0 1.58Q1.5) 1.8017.9
Y:bb 23P, 10.2320.6) 10.2330.0) 10.2280.2  K,:su1'D, 1.7738.0) 1.7800.0) 1.8791.1)
Y:bb 23P, 10.25%0.5) 10.25@0.3 10.2570.0  Kk*:su1D, 1.71420.0 1.7800.1) 1.9881.6)
Y:bb 2°P, 10.2690.4) 10.26@1.0) 10.2770.8  K,:su1°D, 1.81610.0 1.8100.0) 1.9471.5
Y:bb 33s; 10.3550.5) 10.35@0.3 10.3590.2) Kz:su 13D, 1.77010.0 1.7900.0) 1.77Q0.0
Y:bb 43S, 10.58@3.5 10.63Q2.4) 10.6151.2) K*:su 3's, 1.83030.0 2.0200.5 2.1881.7)
Y:bb 53S, 10.8658.0) 10.8830.0) 10.8280.2 K% :su2%P, 1.97522.0 1.9400.0) 2.0980.3
Y:bb 63S, 11.0198.0) 11.10G1.2) 11.0140.00 K% :su1°F, 2.0459.0) 2.1100.3 2.0800.1)
B:bu 1'S, 5.2791.8) 5.3103.3 527202  K,:su2°D, 2.24717.0 2.2600.0) 2.3770.7)
B* :bﬁl381 5.3251.9 5.3706.9 5.3190.1) KE ‘su 13G; 2.38233.0 2.3900.0 2.3500.0
Bs:bs1ls, 5.3692.0) 5.3901.2 5.3680.0 #:ss13S, 1.0190.0 1.0200.0) 1.0311.9
B.:bs 135, 5.4163.3 5.4501.4) 5.4260.)  f,:351%P, 1.37040.0 1.3600.0) 1.3290.0)
neicc 1S, 2.9802.1) 2.9700.2 2.9780.0  f,:551%P, 1.5124.0) 1.4800.7) 1.5360.4)
yicc 138, 3.0970.0 3.1000.2) 3.12814.1) f,:s51%P, 1.5255.0) 1.5300.0) 1.4930.4)
Yo:cC 1P, 3.5260.2) 3.5200.5) 352005  ¢:552%s, 1.68020.0 1.6900.0) 1.8520.9)
Xo:CC 18P, 3.4151.0) 3.4404.9 3.4080.4  4:551%D, 1.8547.0) 1.9000.4) 1.8490.0)
x1:cC 13P, 3.5100.1) 3.5100.0) 350102  f,:352°%P, 2.01%69.0 2.0400.0) 2.1620.1)
yp:icc 13P, 3.5560.1) 3.5500.5) 3.5480.9  s:ud1ls, 0.1400.0) 0.1501.6) 0.1430.1)
neicc 21s, 3.5945.0 3.6200.9) 3.6110.2 piud 135, 0.7671.2) 0.7700.0 0.7880.1)
yicc 23S, 3.6860.1) 3.6800.5) 3.6890.)  p,:ud 1P, 1.23%10.0 1.2200.0) 1.3972.6)
yicc 1°D, 3.7702.5 3.8204.2) 3.80925  a,:ud 1%P, 1.45040.0 1.0901.0) 1.5070.0)
yicc 338, 4.04010.0 4.1000.5) 4.0820.2  a,:ud 1°P, 1.23040.0 1.24Q0.0) 1.5730.9
¢30€23D1 4.15920.0 4.1900.0 4.1590.0 a2:ual3P2 1.3180.7) 1.31Q0.0) 1.3090.0
yicc 3°D, 4.4156.0) 4.4500.4) 4.4560.6) mud 21S, 1.30Q100.0 1.3000.0 1.5350.1)
D:cu 1S, 1.8650.5) 1.8802.7) 1.8650.0  p:ud 2%, 1.46525.0 1.4500.0) 1.7741.6)
D*:cu 135, 2.0070.5 2.04012.6 1.9980.8  s,:ud 1'D, 1.67020.0 1.6800.0) 1.8711.0
D*:cu 1°P, 2.4221.8 2.44Q00.9 2.4080.6) p:ud 1°D, 1.70020.0 1.66Q0.0) 1.9862.2
D*:cu 1%P, 2.4592.0) 2.5003.9) 2381136  p,:ud 1%D, 1.6915.0) 1.6800.0) 1.7110.2)
D.:cs 1'S, 1.9680.6) 1.9801.4) 197606  5:ud 3's, 1.79510.0 1.8800.5) 2.1699.4)
D* :cs 135, 2.1120.7) 2.1303.0) 2.1210.8  p:ud 3Bs, 2.14917.0 2.0040.5) 2.3350.9)
D? ;C§13p1 2.5350.3 2.5300.4) 2.5126.7) p4:ual3F4 2.03726.0 2.0100.0 2.0360.0
D? :cs 1%P, 2.5741.7) 2.5900.9) 2513116  ,:ud 2'D, 2.09029.0 2.1300.0) 2.3720.6)
K:su 1's, 0.4940.0) 0.4708.0) 0.4940.0  p.:ud 2°D, 2.25045.0 2.1300.2) 2.3070.0
K*:su 13S, 0.8920.2) 0.9040.2) 0.9070.5  p.:ud 13G, 2.33035.0 2.3400.0) 2.31%0.0)
K,:su1'P, 1.2737.0) 1.3400.5) 1.4112.20  ¥? 0.0 84.5 104.7

monium multiplets, and th®-D*,Ds-D¥ , two K-K*, and  of our method overestimating the radially excited states of
threes-p pairs. Comparison with the experimental splittings the light mesons.

of 117,92,142,144,398,48,627,165,354 MeV and our re- Let us see if this trend of overestimation by the constraint
sults of 150,78,133,145,403,208,645,239,166 MeV demonapproach continues for the radial excitations of fixed

strates that while our results are closer than theirs for most ajuantum numbers. The six upsilon states in the data portion
the newer mesons and tlike-K*, their results are more in of the table occur at intervals of 563,332,225,285,154 MeV
line for most of the older mesons. Again this shows a patternvhile the three charmonium triplet states and the two char-
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monium singlet states occur at intervals of 589,354,610t be sure whether the method they employ to avoid the
MeV, whereas the three singlét and the two tripletK* singular potentials has distorted the dynamics. The constraint
states occur at intervals of 977,370,520 MeV. Finally theapproach has passed this test in that without introducing ad-
three pion and three rho excitations occur at 1160,49%litional parameters it does faithfully reproduce the correct
and 698,654 MeV. The corresponding Isgur-Wisespectral results in QED.

intervals are 540,350,280,250,220,580,420,650,980,570,

680,1150,580,680,550 MeV compared to our intervals X. CONCLUSION AND WARNINGS

of  570,336,256,213,186,561,393,633,1099,495,894,1383, ABOUT THE DANGERS OF “RELATIVISTIC”
634,986,561 MeV. Again we encounter a pattern of our re- AND “NONRELATIVISTIC” SPECTRAL FITS

sults being more accurate overall for the newer mesons while ) ) _ _
theirs are more accurate for the older ofegth our results N this paper, we have investigated how well the relativ-
too large for all of the older ongs istic constraint approach performs in comparison with se-

Primarily what we learn from this comparison is that not!écted alternatives when used to produce a single fit of ex-
only does the scalar interaction lead to partial triplet inver-Perimental results over the whole meson spectrum. This
sions for the lighter mesons but also yields radial and orbitafPProach is distinguished from others by its foundation—a
excitations that are too high for a related reason: the presen&®t of coupled, compatible, fully covariant wave equations
of the S? term in the effective potential. On the other hand’whose nonperturbative numerical SO|UtIOﬂ yields the mass
as Godfrey and Isgur themselves point out, their treatment gspectrum along with wave functions for thg meson bound
the relativistic effects is schematic, with no wave equationstates. Its virtue—generation of fully covariant spin
involved, allowing an uncontrolled approach in which therestructures—also serves to restrict and relate plausible inter-
are no tightly fixed connections among the various spin-action terms just as the ordinary single-particle Dirac equa-
dependent and spin-independent parts of the effective potetion determines relations among Pauli spin dependences and
tial ®. fixes the proper strength of the Thomas precession term in

An important feature of our approach that differs signifi- electrodynamics. The dynamical structures of the constraint
cantly from the model of Godfrey and Isg(as well as those approach were originally discovered in classical relativistic
of the Wisconsin and lowa State groligs the size of its mechanics but have since been verified for electrodynamics
resulting light-quark masses. Our,d quark masses are through diagrammatic summation in quantum field theory in
about a factor of four or five smaller than theirs, significantlythe field-theoretic eikonal approximati¢as].
closer to the current algebra values. Godfrey and Isgur argue To use such relativistic equations to treat the phenomeno-
that since a constituent quark model requires dressed quarksgical chromodynamigq bound state, one must construct a
of a finite size(to avoid singular potentials in their wave relativistic interaction that possesses the limiting behaviors
equation among other reasorsne should not expect the of QCD. In our approach we have done this by using the
model quarks to have current-quark masses. We argue thatnnrelativistic static Adler-Piran potential to construct a
properly structured relativistic wave equation should not replausible relativistic interaction that regenerates the AP po-
quire finite quark sizes. Similar remarks have been madeential as its nonrelativistic limit. In our equations, this pro-
historically to justify tampering with the wave equation in cess generates a host of accompanying interaction terms.
QED to avoid treating singular terms. However, in QED When describing these interactions, one must guard against a
those terms are perturbative artifacts. In fact, in the consemantic difficulty in the verbal classification of the various
straint equations for QED, they arise from the prematureparts of the interaction as “scalar,” “vector,” “pseudovec-
weak-potential approximation to terms that are actually welkor,” etc. The various formalisms classify these in different
behaved at the origin. Similarly, when we apply the con-ways but in our equations, the meaning of these terms can be
straint approach to QCD we need no size parameters. readily determined through examining their roles in the de-

Finally we mention what we consider the major theoreti-fining equationg2.26), (5.1), (5.2), (5.4). Once these terms
cal shortcoming in the approach of Godfrey and Isgur. Thenhave been introduced, the constraint formalism automatically
formalism that they use gives very good results on the hyproduces a system of important accompanying terms such as
perfine splittings for light and heavy mesons. However, it isquadratic terms that dominate at long dista(reénforcing or
unknown if this is an artifact of their smearing factors andundermining confinemehpor spin dependences that accom-
the introduction of relativistic momentum dependent correc-pany chosen interactions producing level splits that agree or
tions to the potentialgthat is, through the replacement of disagree with the experimental results in various parts of the
quark massem by \/p?+m?) needed to modify the singular spectrum.
nature of the potentials that they start with. After identification of the relativistic transformation prop-

It would be of interest to test the wave equation used byerties of interaction terms the constraint method leaves al-
Godfrey and Isgur numerically withll= — a/r andS=0 for =~ most no leeway for fiddling witHunnecessajycutoffs, etc.
positronium to see if any of their successes with mesoniSome years ago, when applied to thee* system, its struc-
hyperfine splittings are reflections of corresponding nonperture proved restrictive enough to rule out within it the pres-
turbative successes in QED. If their method were not able tence of postulated anomalous resonarj@s71]. In recent
obtain an acceptable fit to the QED spectral results througkvork on the relation of our equations to the Breit and earlier
order a*, then the legitimacy of its fits in QCD would be Eddington-Gaunt equations for electromagnetic bound states,
seriously called into question. Without such tests one couldhe method has explicitly demonstrated the importance of
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keeping spin couplings among pieces of the full 16-in which P} is the projector onto the strange quark sector.
component wave functions whose counterparts are oftehese authors say that this structure, although typical of an
truncated or discarded in alternative treatmgt83]. NRQM description, follows from QCD itself. They state that
_The fits that we have examined as alternatives fall intohe form (10.1) is common to all of the relativistic or semi-
different classes: motivated relativistic fitgonstraint vs g|ativistic quark models. They assert that any one of them
truncations of standard field-theorgfiad hoc relativistic -5 pe successful but not superior to any other, if it merely

fits, and cautious semirelativistic fits. Among the relativisticreproduces the spin flavor structure of the general parametri-
ones, there is a danger exemplified by the Brayshaw mode&,

hich achi lat desnite the dubi lati ation. Thus, from their point of view selection of the “best”
which achieves relaliveé SUCCESS despite the dubious rela Jﬁodel is entirely a matter of taste and simplicity. We dis-
istic nature of its interaction. As always, what makes fits har

to judge at this stage is the ease with which one can achie ree W'J.[h this assessment for the foIIowmg. reasons. First,
apparent success over limited regions of the spectrum usin € k|n_et|c and pote_ntlal pgrameters have significances be-
highly parametrized interactions. We have attempted to avoi nd s!mply pr_oducmg a fit for _the two-body bound-state
this problem by limiting comparisons to published treatment$S€Ctor in isolation. When the spin-flavor structure(1.1)
that include both the light- and heavy-meson portions of thétPPears in the constraint approach, its accompanying con-
spectrum, not just one of the two sectors. Our choices foptituent quark masses turn out to be closer to the current-
comparison are meant to be representative do not at- duark masses than those produced by most other approaches
tempt an exhaustive reviéwsee Ref[72] for other impor- ~ While the constraint method requires only two parametric
tant treatmenis functions to be used beyond the parameters of the constituent
With the exception of the lowa State modiéb] all of the  quark masses. The constraint scheme successfully uses one
comparison models fail to test whether or not a nonperturbaset of these parametric functions for the entire spectrum of
tive treatment of their wave equations would yield the knownmeson states including the radial as well as orbital excita-
results if the QCD kernels used were to be replaced by onegons. But most importantly, within the bound-state spectrum
appropriate for QED. With the exception of the quark masseitself, in our relativistic approach even though superficially
obtained by Braysha7], our light quark masses are sub- sharing the basic spin-flavor structu¢®0.1), all potentials
stantially closer to the current algebra values than are thosgo not fare equally well. The essential point is that even in
produced by the other comparison models. In our applicatioghe simplest form of our equations, the parametrization is
of the constraint approach, it is possible to describe the nongifferent from that given in the Morpurgo form in that its
perturbative physig:s that accommodates a typical size for @BarametersA,B,C,D, are themselves dependent on the en-
effective or constituent quark mass used in the other apg o operator on the left hand side. When that happens, some
proaches and that at the same tme has the size necessary I¢h ivistic potentials do better than others. In particular, of
anOéJnt forkbaryon magnetic r?loments. E(\j/en'tr:\ougthur hose we investigated, the potential that works the ttbst
33 ark ?#;‘Srs e;nz)susr? j ir?rti esrggmpce?mgagsm (;Na'éh' Cn? Cvsé'té“'oenr}&_\dler—Plran pote_nt|a)lls one possessing many of the features
pute the expectation valugv;(A,S)) we find a range that Important in Iat_tlce QCD ‘?"".'C“'aF'O”@-g-' Imear. anq sub-
éiomlnant logarithmic confining piecesThe combination of

includes the traditional moment mass values. We find th h : h with the Adl ; ial
range of values for this effective mass from 64 MeV for the!N€ constraint approach with the Adler-Piran potential em-

pion to 390 MeV for the rho. Its value depends not only onPodies more of the important physical effects contained in
the quantum numbers of the meson but also the flavor of th@CD-related effective or numerical field theories.

other quark. For example, for th® meson we find Can one understand the apparent successes of the NRQM
(My(A,9))=190 MeV, whereas for th&® we obtain 258 fits by starting from the relativistic treatments? Some authors
MeV. [74,79 have used bounds on the kinetic square-root operator

Finally, some authors have even produced unabashedlyp?+m? to attempt to understand the apparent success of
nonrelativistic fits. They claim to obtain good fits to the me-the nonrelativistic potential models for relativistic quark-
son spectrum through the use of variants of the nonrelativisantiquark states. Instead, we will give an explanation that
tic quark mode(NRQM) [43,73. These authors even claim starts directly from the relativistic constraint approach.
success at fitting the light-quark mesons for which the as- ggme years ago, Caswell and Lep#gé] rewrote a rela-
sumptionsT<mc”, |V|<m¢c® of the nonrelativistic SCiro g istic constraint equation in an effective nonrelativistic
dinger equation are patently false. What can account for th%chr"cdinger-like form. Here, we do the opposite and recast

apparent success of the NRQM? the NRQM Schrdinger equation in a form resembling the
Morpurgo stateg43] that the various potential models, constraﬁt equation.g As vc\]/e have seen our two-bodyg Dirac

including the nonrelativistic quark model, are merely differ- Lations lead to an effective Stiger-like equation of
ent parametrizations of an underlying exact QCD Lagrangia%qe form fog q

description. That is, all use essentially the same spin an
flavor structures. For example, for the mesons one can derive

a “parametrized mass” with general foriffior the present 24 ® (X, on.0 =b2(W) . 10.
discussion restricted ta,K,p,K*) (P wlXp101,02) JY=bAW) (102

‘‘parametrized mass”

In the c.m. system this becomes

+D(Pi+P3)oy- 0, (10.1 [p%+ D (1,01, 0) = b2(W) . (10.3
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Even though the stationary state nonrelativistic Sdimger . oy .
equation ; EiD; m(Mle -M;D; )
ﬂ"‘V(r,(fl,O'z)

y=Egy (10.4

+M.D; (E2Dy "+EiD; ") |9+

E:M>,+E,M,

has a similar form, the corresponding structures in each have ) 5
entirely different physical significances. For example, in Eq. =(E1-M7)o. (A1)
(10.4), the vectorsp andr are nonrelativistic quantities in

contrast with their counterparts in the constraint approactin which the kinetic-recoil terms appear through the combi-
that appear in the relativistic equation in the c.m. systemnations:

One can easily manipulate the nonrelativistic Sdimger

equation into a form similar in appearance to the constraint [ i

Schralinger form by multiplying both sides of the equation D, " =expg| ;- p+§02'3[L+Q(1—01'Uz)]
by 2u and adding?(w) —2uEg to both sides. The result is )

[P+ ®(r,01,02)]p=b*(W) ¢ (10.95 [ i
D;+=expg (sz+ 5015[L+g(1_0'10'2)]

in which

D, (r,00,0,)=2uV(r,o0,0,)+b>(W)—2uEg. - i
(10.6 DI =expg| 01 p+ 50 Al —L+G(1=0y-02)]
In numerical calculations thp operator and variable are )
treated in the same manner in calculations based on both the - .
r_elativistic constraint equation and the rjonrelativisti(_: equa- D; =expG|o,-p+ LUZ,&[L_Q(1+01,02)]
tion. But as we have seen, they have different physical sig- 2
nificances in each equation. When used to fit parts of the
meson spectrum, the apparent success of the NRQM fromianipulations using both sets of Pauli matrices then lead to
this point of view is then due to its incorporation of variablesthe form presented in the text in E(®.29.
numerically indistinguishable from their covariant versions \We obtain the radial forms of Eq2.29 that we use for
together with a potential that fortuitously coincidéer a  our numerical solution for the general fermion-antifermion
limited range of statgswith a covariant one modified by an system by forming standard matrix elements of spin-
energy-dependent constant term that varies from state t@ependent operatotsee Appendix C of Ref23]). We start
state. from the general wave function of the form

’

. (A2)
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in which Ryis; = Ujsj /1 is the associated radial wave function

APPENDIX A: PAULI FORM OF THE TWO-BODY DIRAC and )jsjm is the total angular momentum eigenfunction. In

EQUATIONS FOR ¢ .=, + ¢, AND THEIR RADIAL terms of D=E;M,+E,M; the corresponding radial forms

FORMS then become, fos=0, j=I,

Reference[51] sets out two-body Dirac equations con- P

taining general covariant interactions along with their ac- d® iG+1) 2 2

) - ) . -—+ +2m,,S+S°+2e,A—- A
companying Schidinger-like forms. The general interac- dr? r2
tions consist of the eight Lorentz invariant forms
corresponding to scalar, time and spacelike vector studied
here along with five others: pseudoscalar, time- and spacelike
pseudovector, axial, and polar tensor. When E{j26) is
written in terms of the four four-component spinafs 4 it 1 , ,
decomposes into eight coupled equations. In R&f] Long N Z[_L_2g+2 log(D)]"(—L—=49)" [ uj;
and Crater showed how these may be rearranged in Pauli-

(Mg —mpy) Vi(j+1)
r

—[2G—log(D)+G+L]

a1 1V2L 4
ar 1) 2V (49

form or Schralinger-like equations in terms of the combina- W
tion ¢, =+, in the process providing a simpler cou- texp—g-L)——5—(=g+L)’
pling scheme than that used in R¢23], which involves

coupled equations betweefy, and ,. Equation(4.24) of 5

Ref. [51] yields the following equatiorisimplified here for =b“(W)ujo;, (A4)
electromagneticlike interactions){=JE,/E,= —dG) and

scalar interactions alofe coupled to, fors=1, j=I,

Ujaj
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d2  j(j+1
+J(J )+2mWS+SZ+262A—A2

’

L—I D’d - 1v2|_
—[G-L-log D) ;7 +3

2
1
+3[210gD)+(~L+2G)1'L" fujy,

(e1— €2)(My+my)
D

+exp(—g—J)

vi+1)

X(—Q‘FL)IijOj:bZ(W)Ujlj, (A5)
and fors=1,j=1+1,
j(i—1)

-5

+ Iog(D)—2g+

+2m,, S+ S+ 26, 4— A2

!

(G+L)

( —]j log(D)

!

[(4j%+] +1)Q—Q—L]) -

+2j+1

VZL Q( Q

Vi(i+1)

2j+1

+2 [ (G+L)* 1+ 545

!

1
+G+L _Elog,(D)L,}}Uj_llj'f‘

d 1
X2+ g I(=g-L(A-2))+3¢]" -+ VA(L)

—L’[IOQ(D)—ZQ]’] Ujr1y=b*(W)uj_13,  (A6)
coupled tos=1,j=1—-1

d> (j+1)(j+2
[( e +W +2m,, S+ S+ 26,4 A2
r r

+|log(D)—2G— ——(G+ L)} d

2141 (j+1)log(D)

!

11
72— G+

[(4j%2+7]j+4)G—-G—L]

2 +1
1V2L , 2j+5 L_c !
I EE PR B
1 JiG+ 1) d
+§Iog (D)L ]Uj+11j+2j—+l 2[G+L] ar

1
+(=G-L)(2j+3)+3¢] ~+ 2V2L+L'[log(D

—29]’]Uj—11j:b2(W)Uj+1lj- (A7)
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APPENDIX B: NUMERICAL CONSTRUCTION OF MESON
WAVE FUNCTIONS

We obtain from our computer program a numerical wave
functionu(x) normalized so that

fjwi(x)deﬂ. (B1)

The radial variable iirelated toby r=rye* and the radial
wave functionu(r) =u(x)e *?r,. Hence

f;wu(r)zdr:fj:?(x)zdx.

Now let v,(r) be some radial basis functions that are or-
thonormalized so that

(B2)

fowvn(r)vnf(r)dr:annr. (B3
Thus
u(r)= 2 Upwn(r), (B4)
where
+ oo +oo__ _
Up= JO vn(r)u(r)dr=J7xvn(x)u(x)dx. (B5)

Note thatv,(X) =v,(r)e’?Jro so that we can compute the
u, in a straightforward way. Thus we have as an approxima-
tion

N
u(r)— n(r)f u(x)dx

N
= 2, Cavn(r)=wy(r). (86)

Now we use a least squares fit to determinedgheln the
limit of large N we havec,—u, since we minimize the
quantity

= [ o000l &7

For thev,(r) we use harmonic oscillatdiLaguerrg func-
tions defined by

vK(y)=c(n,k)e Y RykL K 12y2) (B8)

[ 2y
=\ Fmrk=12

is the normalization constant and in termszefy?

in which
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TABLE VI. Comparison of important structural features.

HC-PVA Wisconsin lowa State Brayshaw Godfrey and Isgur
Wave equation Two-Body Dirac Reduced BSE Quasipotential Breit None
Covariance Explicit Implicit Implicit Implicit Implicit
Nonperturb. tests Strng. ptnl.—QED WK ptnl. Str. ptnl. Str. ptnl Str. ptnl.
Number of parametric fns 2 2 2 3 6
x° 101 5169 vs 73 rms 50 vs 53 204 vs 111 85 vs 105
Locality Local Nonlocal Nonlocal Local Nonlocal
Running coupling constant Yes Yes Yes No Yes
z—k+1/2 4n - _ k _ . 2.2%
Lk_1/2(2)= e’z d—(e‘zzk+”‘1/2) 89) vo(X) =c(0K)a"exd x(2k+1)/2]exp — a“e*/2),
n n! dz" )
_ 1 —
= PR 242X

So, for example, 010 =\ o (k+1/2—a’e™),

L|(()—1/2(Z): 1, - 2| -
Uo(X)= \/(k+1/2)(k+3/2)uo(x)[(k+3/2)(k+ 1/2)

LK Y2Az)=k+1/2—z,

L —2(k+3/2) a’e®+ a*e*]/2, (B11)

L3 2)= 5[(512+ k=2)LT *A2)—(U2+ k)L “(2) _
=[(k+3/2)(k+1/2) — 2(k+3/2)z+ 2?]/2, _ \/ ni o n
= _ m
(B10) v0)= \ kr i ke 0 2, ()
" (n+k—1/2)! )
1 X mmyl (k=12 myrmr (2€)7
Lk Y4 2)= —l(2n+1/2+ k—2z)LK ¥%(z) ' o
K—1/2 APPENDIX C: COMPARISON OF FEATURES
—(n+k—1/2L_792)].
In Table VI we present a comparison of important features
Thus lettingy=r/a= a€* we obtain of approaches treated in this paper.
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