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Relativistic calculation of the meson spectrum:
A fully covariant treatment versus standard treatments
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A large number of treatments of the meson spectrum have been tried that consider mesons as quark-
antiquark bound states. Recently, we used relativistic quantum ‘‘constraint’’ mechanics to introduce a fully
covariant treatment defined by two coupled Dirac equations. For field-theoretic interactions, this procedure
functions as a ‘‘quantum mechanical transform of the Bethe-Salpeter equation.’’ Here, we test its spectral fits
against those provided by an assortment of models: Wisconsin model, Iowa State model, Brayshaw model, and
the popular semirelativistic treatment of Godfrey and Isgur. We find that the fit provided by the two-body Dirac
model for the entire meson spectrum competes with the best fits to partial spectra provided by the others and
does so with the smallest number of interaction functions without additional cutoff parameters necessary to
make other approaches numerically tractable. We discuss the distinguishing features of our model that may
account for the relative overall success of its fits. Note especially that in our approach for QCD, the resulting
pion mass and associated Goldstone behavior depend sensitively on the preservation of relativistic couplings
that are crucial for its success when solved nonperturbatively for the analogous two-body bound states of QED.

DOI: 10.1103/PhysRevD.70.034026 PACS number~s!: 12.39.Ki, 03.65.Pm, 12.39.Pn
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I. INTRODUCTION

Over 50 years after the discovery of the first meson a
over 25 years after the identification of its underlying qua
degrees of freedom, the strong-interaction bound-state p
lem remains unsolved. Perhaps eventually the full spect
of mesonic and baryonic states will be calculated direc
from quantum chromodynamics via lattice gauge theo
This would require use of techniques that were unknown
the founding fathers of QED. For the present though,
searchers have had to content themselves with attemp
extend bits and pieces of traditional QED bound-state tr
ments into the realm of QCD. Unfortunately, for those bou
systems whose constituent kinetic or potential energies
comparable to constituent rest masses, nonrelativistic t
niques are inadequate from the start.

In the QED bound-state problem, weakness of the c
pling permitted calculation through perturbation about
nonrelativistic quantum mechanics of the Schro¨dinger equa-
tion. Using the equation adopted by Breit@1–3# ~eventually
justified by the Bethe-Salpeter equation@4#!, one was faced
with the fact that a nonperturbative numerical treatment
the Breit equation could not yield spectral results that ag
to an appropriate order with a perturbative treatment of
semirelativistic form of that equation@4–9#. This form of the
equation contained such terms as contact terms bred by
vector Darwin interaction that could be treated only pert
batively, spoiling the interpretation of the Breit equation a
bona fide wave equation. Forays into the full relativis
structure defined by the Bethe-Salpeter equation turned
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fundamental problems that fortunately could be sidestep
for QED due to the smallness ofa.

In the absence of definitive guidance from QED, in rece
years researchers in QCD have felt free to jump off from a
point that had proven historically useful in QED. Some ha
chosen to approach the spectrum using time-honored fo
from the ‘‘relativistic correction structure’’ of atomic phys
ics. Others have employed truncations of field-theore
bound-state equations in hopes that the truncations do
violence to the dynamical structures or their relativis
transformation properties. A third set have broken away fr
QED by choosing to guess at ‘‘relativistic wave equation
as though such equations have no connection to field the

Is there another way to attack this problem? Imagine t
we could replace the Schro¨dinger equation by a many-bod
relativistic Schro¨dinger equation or improved Breit equatio
that could be solved numerically. One would have to est
lish its validity by connecting it to quantum field theory, an
its utility by solving it for QCD. Of course such an approac
would apply equally as well to QED and so would have
recapitulate the known results of QED.~These results migh
reemerge in unfamiliar forms since they do not originate
the usual expansion about the nonrelativistic limit.!

Now, for the two-body bound-state problem, there is su
an equation or rather a system of two coupled Dir
equations—for an interacting pair of relativistic spin one-h
constituents. It turns out that for the two-body case, use
Dirac’s constrained Hamiltonian mechanics@10–15# in a
form appropriate for two spinning particles@16,17#
~pseudoclassical mechanics using Grassmann degree
freedom@18,19#! leads to a consistent relativistic quantu
description. In the two-body case, one may explicitly co
struct the covariant center of momentum rest frame of
interacting system. In fact, the relativistic two-body proble
©2004 The American Physical Society26-1
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may be written as an effective relativistic one-body probl
@12,20,21#. The proper formulation of this relativistic schem
requires the successful treatment of the quantum ghost s
~due to the presence of the ‘‘relative time’’! that first ap-
peared in Nakanishi’s work on the Bethe-Salpeter equa
@22#.

It might seem that although fully covariant and quantu
mechanically legitimate, such an approach would mer
give a sophisticated method for guessing relativistic wa
equations for systems of bound quarks. However,
method assumes its full power when combined with
field-theoretic machinery of the Bethe-Salpeter equati
When used with the kernel of the Bethe-Salpeter equation
QED, our approach combines weak-potential agreement
QED @23# and the nonperturbative structure of the fie
theoretic eikonal approximation@24,25#. The extra structure
is automatically inherited from relativistic classical@26,27#
and quantum mechanics@25#. In QED our approach amount
to a ‘‘quantum-mechanical transform’’@28,29# of the Bethe-
Salpeter equation provided by two coupled Dirac equati
whose fully covariant interactions are determined by QED
the Feynman gauge@30,23#. These ‘‘Two-Body Dirac equa-
tions’’ are legitimate quantum wave equations that can
solved directly@31,23# whose numerical or analytic solution
automatically agree with results generated by ordinary p
turbative treatment.~In our opinion the importance of thi
agreement cannot be overemphasized. A common fau
most of the models we discuss in this paper is that they l
such agreement. But, if a numerical approach to a two-b
bound-state formalism when specialized to QED cannot
produce the results given by its own perturbative treatm
how can one be certain that its application to highly relat
istic QCD bound states will not include spurious short-ran
contributions?!

Of course there is a fly in the ointment—but one to
expected on fundamental grounds. It turns out that the o
separable interacting system as yet explicitly constructed
canonical relativistic mechanics is the two-body system.
practical terms, this means that we must confine the pre
treatment to the meson spectrum. So far, even the relativ
treatment of the three-body problem of QED in the constra
approach is unknown. No one has been able to produce t
compatible separable Dirac equations which include not o
mutual interactions but also necessary three-body force
closed form@13#.

Although still considered unusual or unfamiliar by th
bulk of bound-state researchers, the structures appearin
these equations may have been anticipated classically b
L. Synge, the spin structures were introduced into QED~in-
correctly! by Eddington and Gaunt@32,33#, and they have
appeared in approximate forms appropriate for weak po
tials in the works of Rizov and co-workers@34# and of
Pilkuhn and co-workers@35#. Of greatest surprise but grea
est value~to the authors!, their perturbative weak-potentia
versions were uncovered in QED by J. Schwinger in
virial treatment of the positronium spectrum@36,37#. The
associated relativistic mechanics transforms properly un
spin-dependent generalizations of generators found by P
@38# and Newton and Wigner@39#. The techniques for quan
03402
tes

n

ly
e
is
e
.

or
th

s
n

e

r-

of
k
y
-
t,
-
e

ly
a

n
nt

tic
t
ee
ly
in

in
J.

n-

s

er
ce

tization go back to those found by Dirac@10#, and applied by
Hanson and Regge to the relativistic top@40#, by Nambu to
the string@41#, by Galvao and Teitelboim to the single sp
one-half particle@19#, and by Kalb and Van Alstine@11# and
by Todorov@12# to the pair of spinless particles. Their pro
genitors can be found in the bilocal field theories of Yukaw
Markov, Feynman, and Gell-Mann as well as the myri
treatments of the relativistic oscillator beginning with th
work of Schrödinger.

In this paper, we will compare our latest results for t
meson spectrum provided by the Two-Body Dirac equatio
with the corresponding results given by a representa
sample of alternative methods. The present paper is n
detailed account of this method~already presented
elsewhere—see Refs.@23,42# and references containe
therein!. Neither is it an attempt to conduct an even-hand
or thorough review. Rather, its purpose is to show how s
an organized scheme fares in the real world of calculation
a relativistic spectrum and to contrast its results with tho
produced by an array of approaches, each chosen on acc
of popularity or structural resemblances or differences w
our approach. In this paper we consider only approaches
ours that do not restrict themselves to the heavy mesons
attempt fits to the entire spectrum thus obtaining a m
demanding comparison.~We do not consider here the myria
of partial spectral results for either the light or heavy meso
appearing in the recent literature.! Where possible, we shal
show how certain distinguishing features of the various
proaches are responsible for success or failure of the re
ing fits to the meson spectrum. Whether our equations u
mately prove correct or not, they have the virtue that they
explicitly numerically solvable without additional revision
cutoffs, etc., unlike certain other approaches whose spe
consequences depend on ad hoc revision necessary fo
merical solution.

All of the treatments we examine attempt to describe
interactions of QCD through the inclusion of spin-depend
interactions that in part first appeared as small correction
atomic physics. All include relativistic kinematics for th
constituents. One contributor to the use of such techniq
@43# has even asserted that all of the alternative approac
that include relativistic kinematics are actually equivalent
the nonrelativistic quark model, so that the detailed rela
istic structure of the interaction makes no difference to
bound state spectrum. However, as we shall see in a f
relativistic description with no extraneous parameters,
detailed relativistic interaction structure in fact determin
the success or failure of a calculation of the full meson sp
trum from a single equation.

The order of the paper is as follows. First, in Sec. II, w
review enough of the structures of our Two-Body Dir
equations and their origins in relativistic constraint dynam
to make clear the equations that we are solving and the r
tivistic significances of the potential structures appearing
them. ~Those readers who are already familiar with co
straint dynamics might wish to go directly to the QCD a
plications of Sec. III.! In Sec. III, we detail how we incorpo
rate the interactions of QCD into our equations
constructing the relativistic version of the Adler-Piran sta
6-2
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RELATIVISTIC CALCULATION OF THE MESON . . . PHYSICAL REVIEW D70, 034026 ~2004!
quark potential@44# that we use when we apply our equ
tions to meson spectroscopy. In Sec. IV, we examine
numerical spectral results that are generated by this app
tion of the Two-Body Dirac equations.

The feature of our approach that most distinguishe
from other more traditional two-body formalisms is its use
two coupled constituent equations~instead of one! contain-
ing two-body minimal substitution forms and related stru
tures that incorporate the minimal interaction form of t
original one-body Dirac equation. In Sec. V we rewrite th
form of the Two-Body Dirac equations first as an equivale
one that incorporates the interactions through the ke
structures that appear in most older approaches and se
as an equivalent form closely related to the Breit equation
this section we examine how the relativistic interaction str
tures of the constraint approach lead even for QED to c
sifications of interaction terms that differ from the design
tions used in some of the other approaches. In Sec. VI,
examine an attempt to use the Salpeter equation to trea
meson spectrum: the Wisconsin model of Gara, Durand,
rand, and Nickisch@45#. Although these authors try to kee
relativistic structures, they ultimately employ weak-potent
approximations and structures obtained from perturba
QED in a nonperturbative equation~with no check to see tha
the procedure even makes nonperturbative sense in QE
self!. In Sec. VII we examine the Iowa State model of So
merer, Spence, and Vary@46#, which uses a new quasipoten
tial approach for which, in contrast to the Wisconsin mod
the authors check that the equation makes nonperturba
sense in QED at least for the positronium ground state
Sec. VIII, we examine the Breit equation model of Braysh
@47#, which illustrates the sort of successful fit that one c
still obtain when one is allowed to introduce confining inte
actions~into the Breit equation! through terms whose rela
tivistic transformation properties are ambiguous. In Sec.
we look at the most popular treatment—the semirelativis
model of Godfrey and Isgur@48#. This model includes a
different smearing and momentum-dependent factor for e
part of the various spin-dependent interactions. Althou
each interaction is introduced for apparently justifiab
physical reasons, this approach breaks up~or spoils! the full
relativistic spin structure that is the two-body counterpart
that of the one-body Dirac equation with itsautomaticrela-
tions among the various interaction terms. We examine
model to see how well our fully covariant set of Two-Bod
Dirac equations, employing only three potential parame
used in two different invariant interaction functions, can
versus the Godfrey-Isgur semirelativistic equation with re
tivistic kinematics and pieces of relativistic dynamical co
rections~introduced in a patchwork manner with ten pote
tial parameters used in six different interaction function!,
when required to fit the whole meson spectrum~including
the light-quark mesons!. Finally, in Sec. X, we conclude th
paper by reviewing some of the features of the constr
approach that played important roles in the relative succ
of its fit to the meson spectrum. We then use apparent
cesses of recent fits produced by the ordinary nonrelativ
quark model to point out dangers inherent in judging riv
formalisms on the basis of fits to portions of the spectrum
03402
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the end of the paper, we supply sets of tables for spec
comparisons and appendices detailing the radial form of
Two-Body Dirac equations that we use for our spectral c
culations, and the numerical procedure that we use to c
struct meson wave functions. We also include a table su
marizing the important features of the various methods t
we compare in this paper.

II. THE TWO-BODY DIRAC EQUATIONS
OF CONSTRAINT DYNAMICS

In order to treat a single relativistic spin-one-half partic
Dirac originally constructed a quantum wave equation fro
a first-order wave operator that is the matrix square roo
the corresponding Klein-Gordon operator@49#. Our method
extends his construction to the system of two interact
relativistic spin-one-half particles with quantum dynami
governed by a pair of compatible Dirac equations on a sin
16-component wave function. For an extensive review of t
approach, see Refs.@21,23,42# and works cited therein. Fo
the reader unfamiliar with this approach, we present a b
review.

About 27 years ago, the relativistic constraint approa
first successfully yielded a covariant yet canonical formu
tion of the relativistic two-body problem for two interactin
spinless classical particles. It accomplished this by cov
antly controlling the troublesome relative time and relati
energy, thereby reducing the number of degrees of freed
of the relativistic two-body problem to that of the corr
sponding nonrelativistic problem@11–15#. In this method,
the reduction takes place through the enforcement of a g
eralized mass shell constraint for each of the two interac
spinless particles:pi

21mi
21F i'0. Mathematical consis-

tency then requires that the two constraints be ‘‘compatib
in the sense that they be conserved by a covariant sys
Hamiltonian. Upon quantization, the quantum version of t
‘‘compatibility condition’’ becomes the requirement that th
quantum versions of the constraints~two separate Klein-
Gordon equations on the same wave function for spinl
particles! possess a commutator that vanishes when app
to the wave function. In 1982, the authors of this paper u
a supersymmetric classical formulation of the single-parti
Dirac equation due to Galvao and Teitelboim to successf
extend this construction to the ‘‘pseudoclassical’’ mechan
of two spin-one-half particles@16,19#. Upon quantization,
this scheme produces a consistent relativistic quantum
chanics for a pair of interacting fermions governed by tw
coupled Dirac equations.

When specialized to the case of two relativistic spin-on
half particles interacting through four-vector and scalar p
tentials, the two compatible 16-component Dirac equatio
@21,23,42# take the form

S1c5g51@g1•~p12A1!1m11S1#c50, ~2.1a!

S2c5g52@g2•~p22A2!1m21S2#c50, ~2.1b!

in terms ofSi operators that in the free-particle limit becom
operator square roots of the Klein-Gordon operator.
6-3
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The relativistic four-vector potentialsAi
m and scalar po-

tentials Si are effective constituent potentials that in eith
limit mi→` go over to the ordinary external vector and sc
lar potentials of the light-particle one-body Dirac equatio
Note that the four-vector interactions enter through ‘‘minim
substitutions’’ inherited~along with the accompanying gaug
structure! from the corresponding classical field theo
@20,26,27#. The covariant spin-dependent terms in the co
stituent vector and scalar potentials@see Eqs.~2.10! and
~2.11! below# are recoil terms whose forms are nonperturb
tive consequences of the compatibility condition

@S1 ,S2#c50. ~2.2!

This condition also requires that the potentials depend on
spacelike interparticle separation only through the comb
tion

x'
m5~hmn1 P̂mP̂n!~x12x2!n ~2.3!

with no dependence on the relative time in the center
momentum~c.m.! frame. This separation variable is orthog
nal to the total four-momentum

Pm5p1
m1p2

m ;2P2[w2. ~2.4!

P̂ is the timelike unit vector

P̂m[Pm/w. ~2.5!

The accompanying relative four-momentum canonically c
jugate tox' is

pm5~e2p2
m2e1p2

m!/w; e11e25w,

e12e25~m1
22m2

2!/w ~2.6!

in which w is the total c.m. energy. Thee i ’s are the invariant
c.m. energies of each of the~interacting! particles@50#.

The wave operators in Eqs.~2.1a! and~2.1b! operate on a
single 16-component spinor that we decompose as

c5S c1

c2

c3

c4

D ~2.7!

in which thec i are four-component spinors. Once we ha
ensured that the compatibility condition is satisfied, E
~2.1a! and~2.1b! provide a consistent quantum description
the relativistic two-body system incorporating several imp
tant properties@21,23,42#. They are manifestly covarian
They reduce to the ordinary one-body Dirac equation in
limit in which either of the particles becomes infinite
heavy. They can be combined to give@23,51# coupled
second-order Schro¨dinger-like equations~Pauli forms! for
the sixteen component Dirac spinors. In the c.m. system,
the vector and scalar interactions of Eq.~2.10! and Eq.~2.11!
below, these equations resemble ordinary Schro¨dinger equa-
tions with interactions that include central-potential, Darw
03402
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spin-orbit, spin-spin, and tensor terms. These custom
terms are accompanied by others that provide important
ditional couplings between the upper-upper (c1) and lower-
lower (c4) four-component spinor portions of the fu
sixteen-component Dirac spinor. The interactions are co
pletely local but depend explicitly on the total energyw in
the c.m. frame. In this paper we use a recently develo
rearrangement of these equations@51# ~similar to that first
presented in Ref.@52#! that provides us with ones simpler t
solve but physically equivalent. The resulting loc
Schrödinger-like equation depending on the four-compon
spinorf1[c11c4 takes the general c.m. form

@2“

21F~r ,s1 ,s2 ,w!#f15b2~w!f1 , ~2.8!

with no coupling to other four-component spinors. The e
plicit version of the potentialF in Eq. ~2.8! that results from
the rearrangement has a structure that produces coup
between the spin components off1 that are no more com
plicated than those of its nonrelativistic counterpart—w
the customary spin-spin, spin-orbit, noncentral tensor,
spin-orbit difference terms appearing. We have checked
both the simpler form, Eq.~2.8!, and the equivalent couple
forms give the same numerical spectral results when te
for QED bound states as in Ref.@23# and when tested for ou
new QCD spectral results appearing in this paper.~This pro-
vides an important cross-check on our numerical calcula
of the meson spectra!. Equation ~2.8! is accompanied by
similar equations forf2[c12c4 and x6[c26c3. Once
Eq. ~2.8! is solved, one can use Eqs.~2.1a! and ~2.1b! to
determinef2 and x6 . Because of the decoupling it is no
necessary to determinef2 and x6 to solve the eigenvalue
equation~2.8!. However, the detailed form ofF for f1 re-
sults from their elimination through the Pauli reduction pr
cedure. In these equations, the usual invariant

b2~w![@w422w2~m1
21m2

2!1~m1
22m2

2!2#/4w2 ~2.9!

plays the role of energy eigenvalue. This invariant is the c
value of the square of the relative momentum expressed
function of the invariant total c.m. energyw. Note that in the
limit in which one of the particles becomes very heavy, th
Schrödinger-like equation turns into the one obtained
eliminating the lower component of the ordinary one-bo
Dirac equation in terms of the other component.

The vector potentials appearing in Eqs.~2.1a! and ~2.1b!
depend on three invariant functionsE1 , E2, andG that de-
fine timelike vector interactions~proportional to P̂) and
spacelike vector interactions~orthogonal to P̂, with ]m
[]/]xm) @21,23#

A1
m5F ~e12E1!2 i

G

2
g2•S ]E1

E2
1]GDg2• P̂G P̂m

1~12G!pm2
i

2
]G•g2g2

m ,
6-4
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A2
m5F ~e22E2!1 i

G

2
g1•S ]E2

E1
1]GDg1• P̂G P̂m

2~12G!pm1
i

2
]G•g1g1

m , ~2.10!

while the scalar potentialsSi depend onG and two additional
invariant functionsM1 andM2:

S15M12m12
i

2
Gg2•

]M1

M2
,

S25M22m21
i

2
Gg1•

]M2

M1
. ~2.11!

Note that the terms in~2.10! and ~2.11! that are explicitly
spin-dependent through the gamma matrices are essent
order to satisfy the compatibility condition~2.2!. Later on,
when the equation is reduced to second-order ‘‘Pauli form
other spin dependences eventually arise from gamma m
terms ~that, when squared, lose their gamma matrix dep
dence!. These are typical of what occurs in the reduction
the one-body Dirac equation to the Pauli form. The gam
matrices also give rise to spin-independent terms in the P
forms. These terms emerge in a manner similar to the ab
two sources of spin-dependent terms in the Pauli form of
equations.

In the case in which the spacelike and timelike vectors
not independent but combine into electromagneticlike fo
vectors, the constituent vector interactions appear in a m
compact form:

A1
m5~e12G~e12A!!P̂m

1~12G!pm2
i

2
]G•g2g2

m ,

A2
m5~e22 G~e22A!!P̂m

2~12G!pm1
i

2
]G•g1g1

m . ~2.12!

In that caseE1 , E2, andG are related to each other@20,21#
(]E1 /E252] logG) and for our QCD applications~as well
as for QED! are functions of only one invariant functio
A(r ) in which r is the invariant:

r[Ax'
2 . ~2.13!

They take the forms

E1
2~A!5G2~e12A!2,

E2
2~A!5G2~e22A!2, ~2.14!
03402
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G25
1

~122A/w!
. ~2.15!

In the forms of these equations used below, Todorov’s c
lective energy variable

ew5~w22m1
22m2

2!/2w ~2.16!

will eventually appear.
In generalM1 and M2 are related to each other@16,21#

and for QCD applications are functions of two invaria
functionsA(r ) andS(r ) appearing in the forms:

M1
2~A,S!5m1

21G2~2mwS1S2!,

M2
2~A,S!5m2

21G2~2mwS1S2!, ~2.17!

in which

mw5m1m2 /w. ~2.18!

In these equations,mw and ew are the relativistic reduced
mass and energy of the fictitious particle of relative moti
introduced by Todorov@12,24#, which satisfy the effective
one-body Einstein condition

ew
2 2mw

2 5b2~w!. ~2.19!

In the limit in which one of the particles becomes infinite
heavy, mw and ew reduce to the mass and energy of t
lighter particle. The invariant functionS(r ) is primarily re-
sponsible for the constituent scalar potentials sinceSi50 if
S(r )50, while A(r ) contributes to theSi @if S(r )5” 0] as
well as to the vector potentialsAi

m . Originally, we derived
the general forms of Eqs.~2.17!, ~2.14!, ~2.15! for the scalar
and vector potentials using classical field-theoretic ar
ments@26,27# ~see also Refs.@16,24#!. Surprisingly, the re-
sulting forms for the mass and energy potential functio
Mi , G, and Ei automatically embody collective minima
substitution rules for the spin-independent parts of
Schrödinger-like forms of the equations. Classically tho
forms turn out to be modifications of the Einstein conditi
for the free effective particle of relative motion

p21mw
2 5ew

2 . ~2.20!

For the vector interaction they automatically generate
replacement ofew by ew2A and for the scalar interaction
the replacement ofmw by mw1S. The part of Eq.~2.8! that
results from the vector and scalar interactions then takes
form
6-5
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~p212mwS1S212ewA2A 2!f15b2f1 . ~2.21!

Now, we originally found these forms starting from relati
istic classical field theory. The deceptively simple form
Eq. ~2.21! in fact incorporates retarded and advanced effe
through its dependence on the c.m. energyw. On the other
hand, recently Jallouli and Sazdjian@25# obtained Eqs.~2.14!
and~2.17! in quantum field theory after performing a nece
sarily laborious eikonal summation to all orders of ladd
and cross ladder diagrams together with all constraint
grams ~Lippmann-Schwinger-like iterations of the simp
Born diagram! @53#. Thus, the structure first discovered sim
ply in the correspondence limit has now been verifi
through direct but difficult derivation from perturbativ
quantum field theory.

These equations contain an important hidden hyperb
structure~which we could have used to introduce the inte
actions in the first place!. To employ it we introduce two
independent invariant functionsL(x') and G(x'), in terms
of which the invariant functions of Eqs.~2.10! and ~2.11!
take the forms:

M15m1coshL1m2sinhL,

M25m2coshL1m1sinhL, ~2.22!

E15e1coshG2e2sinhG, ~2.23!

E25e2coshG2e1sinhG,G5expG. ~2.24!

In terms ofG and the constituent momentap1 and p2, the
individual four-vector potentials of Eq.~2.12! take the sug-
gestive forms

A15@12cosh~G!#p11sinh ~G!p22
i

2
~] expG•g2!g2 ,

A25@12cosh~G!#p21sinh ~G!p11
i

2
~] expG•g1!g1 ,

~2.25!

Equations~2.22!, ~2.23!, and~2.25! together display a furthe
consequence of the compatibility condition, a kind of re
tivistic version of Newton’s third law in the sense that t
two sets of constituent scalar and vector potentials are e
given in terms of just one invariant function,S and A, re-
spectively.

In terms of these functions the coupled two-body Dir
equations then take the form

S1c5S 2Gb1S1•P21E1b1g511M1g51

2G
i

2
S2•]~Gb11Lb2!g51g52Dc50,
03402
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S2c5S Gb2S2•P11E2b2g521M2g52

1G
i

2
S1•]~Gb21Lb1!g51g52Dc50, ~2.26!

in which

Pi[p2
i

2
S i•]GS i , ~2.27!

depending on gamma matrices with block forms

b15S 18 0

0 218
D , g515S 0 18

18 0 D ,

b1g51[r15S 0 18

218 0 D ,

b25S b 0

0 b D , b5S 14 0

0 214
D ,

g525S g5 0

0 g5
D , g55S 0 14

14 0 D ,

b2g52[r25S r 0

0 r
D , r5S 0 14

214 0 D ,

b1g51g525S 0 g5

2g5 0 D ,

b2g52g515S 0 r

r 0D .

S i5g5ib ig' i . ~2.28!

As described in Appendix A, a procedure analogous to
Pauli reduction procedure of the one-body Dirac equat
case yields
6-6
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Fp212mwS1S212ewA2A 22F2G 82
E2M21E1M1

E2M11E1M2
~L2G!8G i r̂ •p2

1

2
¹2G2

1

4
~G!822~G 81L8!2

1
E2M21E1M1

E2M11E1M2

1

2
G 8~L2G 8!1

L•~s11s2!

r FG 82
1

2

E2M21E1M1

E2M11E1M2
~L2G!8G

2
L•~s12s2!

2r

E2M22E1M1

E2M11E1M2
~L2G!81s1•s2S 1

2
¹2G1

1

2r
L81

1

2
~G 8!22

1

2
G 8~L2G!8

E2M21E1M1

E2M11E1M2
D

1s1• r̂s2• r̂ S 1

2
¹2L2

3

2r
L81G 8L82

1

2
L8~L2G!8

E2M21E1M1

E2M11E1M2
D1

i

2
~L1G!8~s1• r̂s2•p1s2• r̂s1•p!

1
i

2
~L2G!

E1M22E2M1

E2M11E1M2

L•~s13s2!

r Gf15b2~w!f1 . ~2.29!
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Equation~2.29! is the coupled four-component Schro¨dinger-
like form of our equations that we use for our quark mod
bound-state calculations for the mesons in the present pa
It can be solved nonperturbatively not only for quark mod
calculations but also for QED calculations since in that c
every term is quantum-mechanically well defined~less sin-
gular than21/4r 2).

From this equation we obtain two coupled rad
Schrödinger-like equations in the general case. But forj
50 or spin singlet states these equations reduce to
coupled equations. The extra component for the general
arises from orbital angular momentum mixing or spin m
ing, the latter absent for equal mass states. The detailed
dial forms of these equations are given in Appendix A. F
the case of QED (S50, A52a/r ), we have solved thes
coupled Schro¨dinger-like equations numerically obtainin
results that are explicitly accurate through ordera4 ~with
errors on the order ofa6) @23#. We have even obtained ana
lytic solutions to the full system of coupled 16 compone
Dirac equations in the important case of spin-singlet posi
nium @31#. For both numerical and analytic solutions, t
results agree with those produced by perturbative treatm
of these equations and with standard spectral results@54#.

III. MESON SPECTROSCOPY

We use the constraint Eq.~2.29! to construct a relativistic
naive quark model by choosing the two invariant functionsG
andL or equivalentlyA andS to incorporate a version of th
static quark potential originally obtained from QCD by Adl
and Piran@44# through a nonlinear effective action model f
heavy quark statics. They used the renormalization gr
approximation to obtain both total flux confinement and
linear static potential at large distances. Their model u
nonlinear electrostatics with displacement and electric fie
related through a nonlinear constitutive equation with
effective dielectric constant given by a leading log log mo
which fixes all parameters in their model apart from a m
scaleL. Their static potential contains an infinite additiv
constant which in turn results in the inclusion of an unkno
constantU0 in the final form of their potential@hereafter
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calledVAP(r )]. We insert into Eq.~2.29! invariantsA andS
with forms determined so that the sumA1S appearing as
the potential in the nonrelativistic limit of our equations b
comes the Adler-Piran nonrelativisticQQ̄ potential ~which
depends on two parametersL and U0) plus the Coulomb
interaction between the quark and antiquark. That is,

VAP~r !1VCoul5L@U~Lr !1U0#1
e1e2

r
5A1S.

~3.1!

As determined by Adler and Piran, the short- and lon
distance behaviors ofU(Lr ) generate known lattice an
continuum results through the explicit appearance of an
fective running coupling constant in coordinate space. T
is, the Adler-Piran potential incorporates asymptotic freed
through

LU~Lr !1!;1/~r ln Lr !, ~3.2!

and linear confinement through

LU~Lr @1!;L2r . ~3.3!

The long-distance ([Lr .2) behavior of the static potentia
VAP(r ) is given explicitly by

LS c1x1c2ln~x!1
c3

Ax
1

c4

x
1c5D ~3.4!

in which x5Lr while the coefficientsci are given by the
Adler-Piran leading log-log model@44#. In addition to ob-
taining these analytic forms for short and long distances t
converted the numerically obtained values of the potentia
intermediate distances to a compact analytic expression.
nonrelativistic analysis used by Adler and Piran, howev
does not determine the relativistic transformation proper
of the potential. How this potential is apportioned betwe
vector and scalar is therefore somewhat, although not c
pletely, arbitrary. In earlier work@30# we divided the poten-
tial in the following way among three relativistic invarian
V(r ),S, and A ~in our former construction, the additiona
invariantV was responsible for a possible independent tim
like vector interaction!:
6-7
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S5hFLS c1x1c2ln~x!1
c3

Ax
1c51U0D G ,

V5~12h!FLS c1x1c2ln~x!1
c3

Ax
1c51U0D G ,

A5VAP2S2V, ~3.5!

in which h5 1
2 . That is, we assumed that@with the exception

of the Coulomb-like term (c4 /x)] the long-distance part wa
equally divided between scalar and a proposed timelike v
tor. In the present paper we drop the timelike vector
reasons detailed below and assume instead that the s
interaction is solely responsible for the long-distance con
ing terms (h51). The attractive (c4520.58) QCD
Coulomb-like portion~not to be confused with the electro
staticVCoul) is assigned completely to the ‘‘electromagne
clike’’ part A. That is, the constant portion of the runnin
coupling constant corresponding to the exchange diagra
expected to be electromagneticlike.

Elsewhere@20,30,55# we have treated another model e
plicitly containing these features: the Richardson poten
@56#. Its momentum space form

Ṽ~qW !;1/q2ln~11q2/L2! ~3.6!

interpolates in a simple way between asymptotic freed
Ṽ(qW );1/q2ln(q2/L2) and linear confinementṼ(q);1/q4.
Even though the Richardson potential is not tied to any fie
theoretic base in the intermediate region~unlike the Adler-
Piran potential! and does not give as good fits to the data
does provide a convenient form for displaying our poin
about the static quark potential. The Richardson radial fo
is

V~r !58pL2r /2728p f ~Lr !/~27r !. ~3.7!

For r→0, f (Lr )→21/ln(Lr), while for r→`, f (Lr )→1.
Thus, in this model, if the confining part of the potential is
world scalar, then in the larger limit the remaining portion,
regarded as an electromagneticlike interaction correspon
to our invariant functionA(r ), would be an attractive 1/r
potential with a coupling constant on the order of 1. This
in reasonable agreement with the Adler-Piran model, wh
also has an attractive 1/r part. Support for the assumptio
that thec4 term belongs only toA also arises from phenom
enological considerations. We find that attempts to assign
c4 term to the scalar potential have a drastic effect on
spin-spin and spin-orbit splittings. In fact, using this term
S through Eqs.~2.17! generates spin-spin and spin-orb
splittings that are much too small.

In our previous work, we divided the confining pa
equally between scalar and timelike vector so that the s
orbit multiplets would not be inverted. This was done
order to obtain from our model thea0(980) meson, which
was then considered as the prime candidate for the relat
tic counterpart of the3P0 meson. However, recent analys
indicates that meson may be instead a meson-meson or
03402
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quark bound state@see however, Ref.@57#, which even inter-
prets thea0(980) meson as part of a new scalar (1S0) meson
qq̄ multiplet outside of the usual quark model# while a me-
son with mass of 1450 MeV may be the correct candidate
the quark model state@58#. Interpretation of this other stat
as the3P0 meson would in fact require a partial inversion
the spin-orbit triplet~from what one would expect based o
the positronium analog!. This partial inversion is consisten
with the 3P0 candidate for theus̄ system also appearing in
position that partially inverts the spin-orbit splitting. Sinc
the sole purpose of includingV in our previous treatmen
was to prevent the inversion, we exclude it from our pres
treatment. In our older treatment@30#, we neglected the ten
sor coupling, unequal mass spin-orbit difference couplin
and theu-d quark mass differences. In the present treatme
we treat the entire interaction present in our equatio
thereby keeping each of these effects. In our former tre
ment we also performed a decoupling between the up
upper and lower-lower components of the wave functions
spin-triplet states that turned out to be defective but wh
we subsequently corrected in our numerical test of our f
malism for QED@23#. The corrected decoupling@appearing
in Eq. ~2.29!# is included in the new meson calculations a
pearing in this paper.

In the present investigation, we compute the best fit m
son spectrum for the following apportionment of the Adle
Piran potential:

A5exp~2bLr !S VAP2
c4

r D1
c4

r
1

e1e2

r
, ~3.8a!

S5VAP1
e1e2

r
2A5S VAP2

c4

r D @12exp~2bLr !#.

~3.8b!

In order to covariantly incorporate the Adler-Piran potent
into our equations, we treat the short-distance portion
purely electromagneticlike~in the sense of the transforma
tion properties of the potential!. Through the additional pa
rameterb, the exponential factor gradually turns off th
electromagneticlike contribution to the potential at long d
tance except for the 1/r portion mentioned above, while th
scalar portion gradually turns on, becoming fully responsi
for the linear confining and subdominant terms at long d
tance. Altogether our two invariant potential functions d
pend on three parameters:L, U0, andb.

When inserted into the constraint equations,S andA be-
come relativistic invariant functions of the invariant sepa
tion r 5Ax'

2 . The covariant structures of the constraint fo
malism then embellish the central static potential w
accompanying spin-dependent and recoil terms.

In general applications of these Two-Body Dirac equ
tions one must ensure that the values assumed byA and S
always result in real interaction functionsEi , Mi , and G
while preserving the correct heavy-particle limits. In partic
lar, a large repulsiveA will give an imaginaryG while a
large attractiveS would lead in the limit when one particle
becomes heavy to
6-8
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an incorrect form of the one-body Dirac equation~for m2
→` the interaction mass potential functionM1→um11Su
instead of m11S). In the calculations contained in th
present paper, the best fit parameters turn out to be such
A always remains attractive whileS always remains repul
sive so we need not make any modifications. Such probl
do arise in the nucleon-nucleon scattering problem. See
@59# for a discussion of these problems and their resoluti

IV. NUMERICAL SPECTRAL RESULTS

A. Tabulation and discussion of computed meson spectra

We now use our formalism as embodied in Eqs.~2.29!
and ~3.8a!, ~3.8b! to calculate the full meson spectrum in
cluding the light-quark mesons.~As a check on these calcu
lations we have also used the older forms derived in R
@23#.! Note that the nonrelativistic quark model when used
conjunction with realistic QCD potentials such as Richa
son’s potential or the Adler-Piran potential fails for light m
sons since the ordinary nonrelativistic Schro¨dinger equa-
tion’s lack of relativistic kinematics leads to increasin
meson masses as the quark masses drop below a certain
@55#, thereby spoiling proper treatment of the pion, as well
other states. Here, we shall see how our relativistic equat
remedy this situation. In addition to including the prop
relativistic kinematics, our equations also contain energy
pendence in the dynamical quasipotential. Mathematica
this feature turns our equations into wave equations that
pend nonlinearly on the eigenvalue. Their solution, which
have treated in detail elsewhere~see @30,60#!, requires an
efficient iteration scheme to supplement our algorithm
the eigenvalueb2(w) when our equations are written a
coupled Schro¨dinger-like forms.

We display our results in Table I. In the first two colum
of each of the tables we list quantum numbers and exp
mental rest mass values for 89 known mesons. We includ
well known and plausible candidates listed in the stand
reference~@58#!. We omit only those mesons with substant
flavor mixing. In the tables, the quantum numbers listed
those of thef1 part of the sixteen-component wave fun
tion. To generate the fits, in addition to the quark masses
employ the parametersL, U0, andb. We merely insert the
static Adler-Piran potential into our relativistic wave equ
tions just as we have inserted the Coulomb potentialA5
2a/r to obtain the results of QED@23,31#. Note especially
that we use a singleF(A,S) for all quark mass ratios—
hence a single structure for all theQ̄Q, Q̄q, and q̄q mesons
in a single overall fit. In the third column in Table I w
present the results for the model defined by Eqs.~3.8a!,
~3.8b!. The entire confining part of the potential in this mod
transforms as a world scalar. In our equations, this struc
leads to linear confinement at long distances and quad
confinement at extremely long distances~where the quadratic
contribution S2 outweighs the linear term 2mwS). At dis-
tances at which exp(2bLr)!1, the corresponding spin-orbi
Thomas, and Darwin terms are dominated by the scalar
teraction, while at short distances@exp(2bLr);1# the elec-
tromagneticlike portion of the interaction gives the domina
03402
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contribution to the fine structure. Furthermore because
signs of each of the spin-orbit and Darwin terms in the Pa
form of our Dirac equations are opposite for the scalar a
vector interactions, the spin-orbit contributions of those pa
of the interaction produce opposite effects with degrees
cancellation depending on the size of the quarkonium at

We obtain the meson masses given in column three as
result of a least squares fit using the known experime
errors, an assumed calculational error of 1.0 MeV, and
independent error conservatively taken to be 5% of the t
width of the meson. We employ the calculational error not
represent the uncertainty of our algorithm but instead to p
vent the mesons that are stable with respect to the str
interaction from being weighted too heavily. Ourx2 is per
datum~89! minus parameters~8!.

The resulting best fit turns out to have quark massesmb
5 4.877,mc5 1.507,ms5 0.253,mu5 0.0547,md5 0.0580
GeV, along with potential parametersL50.216,LU0
51.865 GeV and parameterb51.936. This value ofb im-
plies that~in the best fit! as the quark separation increase
our apportioned Adler-Piran potential switches from prim
rily vector to scalar at about 0.5 fermi. This shift is a rel
tivistic effect since the effective nonrelativistic limit of th
potential (A1S) exhibits no such shift~i.e., by construction
b drops out!.

In Table I, the numbers given in parentheses to the ri
of the experimental meson masses are experimental erro
MeV. The numbers given in parentheses to the right of
predicted meson masses are the contribution of that mes
calculation to the totalx2 of 101.

The 17 mesons that contain ab ~or b̄) quark contribute a
total of about 5.4 to thex2, at an average of about 0.3 eac
This is the lowest contribution of those given by any fami
Since the Adler-Piran potential was originally derived f
static quarks, one should not be surprised to find that mos
the best fit mesons are members of the least relativistic of
meson families. Note, however, that five of the best fit m
sons of this type contain highly relativisticu and s quarks
~for which our equation reduces essentially to the one-b
Dirac equation for the light quark!.

The 24 mesons that contain ac ~or c̄) quark contribute a
total of about 50.7 to thex2 at an average of about 2.2 eac
This is the highest contribution of those given by any fami
A significant part of this contribution is due to thec meson
mass being about 32 MeV above its experimental value.
other part of the contribution is due to fact that the mass
the high orbital excitation of theD* tensor meson is 80 MeV
below its experimental value. In addition, the high orbi
excitation of theDs* is 60 MeV low.

The 24 mesons that contain ans ~or s̄) quark contribute a
total of about 46.3 to thex2 at an average of about 1.3 eac
less than that for thec-quark mesons. This is important be
cause thes quarks are lighter than thec quarks. Part of the
reason for this unexpected effect is that ourx2 fitting proce-
dure accounts for the fact that our meson model ignores
level shifts~due to the instability of many of the mesons th
contain ans quark! through the introduction of a theoretica
error on the order of 5% of the width of the unstable meso
6-9
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TABLE I. Meson masses from covariant constraint dynamics.

Name Expt. Theory Name Expt. Theory
Y:bb̄ 13S1
9.460~0.2! 9.453~0.6!

Y:bb̄ 13P0
9.860~1.3! 9.842~1.4!

Y:bb̄ 13P1
9.892~0.7! 9.889~0.1!

Y:bb̄ 13P2
9.913~0.6! 9.921~0.5!

Y:bb̄ 23S1
10.023~0.3! 10.022~0.0!

Y:bb̄ 23P0
10.232~0.6! 10.227~0.2!

Y:bb̄ 23P1
10.255~0.5! 10.257~0.0!

Y:bb̄ 23P2
10.269~0.4! 10.277~0.8!

Y:bb̄ 33S1
10.355~0.5! 10.359~0.1!

Y:bb̄ 43S1
10.580~3.5! 10.614~0.9!

Y:bb̄ 53S1
10.865~8.0! 10.826~0.2!

Y:bb̄ 63S1
11.019~8.0! 11.013~0.0!

B:bū 11S0
5.279~1.8! 5.273~0.1!

B:bd̄ 11S0
5.279~1.8! 5.274~0.1!

B* :bū 13S1
5.325~1.8! 5.321~0.1!

Bs :bs̄ 11S0
5.369~2.0! 5.368~0.0!

Bs :bs̄ 13S1
5.416~3.3! 5.427~0.1!

hc :cc̄ 11S0
2.980~2.1! 2.978~0.0!

c:cc̄ 13S1
3.097~0.0! 3.129~12.6!

x0 :cc̄ 11P1
3.526~0.2! 3.520~0.4!

x0 :cc̄ 13P0
3.415~1.0! 3.407~0.4!

x1 :cc̄ 13P1
3.510~0.1! 3.507~0.2!

x2 :cc̄ 13P2
3.556~0.1! 3.549~0.6!

hc :cc̄ 21S0
3.594~5.0! 3.610~0.1!

c:cc̄ 23S1
3.686~0.1! 3.688~0.1!

c:cc̄ 13D1
3.770~2.5! 3.808~2.0!

c:cc̄ 33S1
4.040~10.0! 4.081~0.2!

c:cc̄ 23D1
4.159~20.0! 4.157~0.0!

c:cc̄ 33D1
4.415~6.0! 4.454~0.4!

D:cū 11S0
1.865~0.5! 1.866~0.0!

D:cd̄ 11S0
1.869~0.5! 1.873~0.1!

D* :cū 13S1
2.007~0.5! 2.000~0.4!

D* :cd̄ 13S1
2.010~0.5! 2.005~0.3!

D* :cū 13P1
2.422~1.8! 2.407~0.6!

D* :cd̄ 13P1
2.428~1.8! 2.411~0.5!

D* :cū 13P2
2.459~2.0! 2.382~11.3!

D* :cd̄ 13P2
2.459~4.0! 2.386~3.5!

Ds :cs̄ 11S0
1.968~0.6! 1.976~0.5!

Ds* :cs̄ 13S1
2.112~0.7! 2.123~0.9!

Ds* :cs̄ 13P1
2.535~0.3! 2.511~6.2!

Ds* :cs̄ 13P2
2.574~1.7! 2.514~9.6!

K:sū 11S0
0.494~0.0! 0.492~0.0!

K:sd̄ 11S0
0.498~0.0! 0.492~0.4!

K* :sū 13S1
0.892~0.2! 0.910~0.6!

K* :sd̄ 13S1
0.896~0.3! 0.910~0.3!
03402
K1 :sū 11P1 1.273~7.0! 1.408~3.2!

K0* :sū 13P0
1.429~4.0! 1.314~0.7!

K1 :sū 13P1
1.402~7.0! 1.506~1.0!

K2* :sū 13P2
1.425~1.3! 1.394~0.5!

K2* :sd̄ 13P2
1.432~1.3! 1.394~0.6!

K* :sū 21S0
1.460~30.0! 1.591~0.2!

K* :sū 23S1
1.412~12.0! 1.800~6.7!

K2 :sū 11D2
1.773~8.0! 1.877~0.8!

K* :sū 13D1
1.714~20.0! 1.985~1.4!

K2 :sū 13D2
1.816~10.0! 1.945~1.3!

K3 :sū 13D3
1.770~10.0! 1.768~0.0!

K* :sū 31S0
1.830~30.0! 2.183~1.4!

K2* :sū 23P2
1.975~22.0! 2.098~0.2!

K4* :sū 13F4
2.045~9.0! 2.078~0.1!

K2 :sū 23D2
2.247~17.0! 2.373~0.5!

K5* :sū 13G5
2.382~33.0! 2.344~0.0!

K3* :sū 23F3
2.324~24.0! 2.636~1.9!

K4* :sū 23F4
2.490~20.0! 2.757~1.6!

f:ss̄ 13S1
1.019~0.0! 1.033~2.2!

f 0 :ss̄ 13P0
1.370~40.0! 1.319~0.0!

f 1 :ss̄ 13P1
1.512~4.0! 1.533~0.3!

f 2 :ss̄ 13P2
1.525~5.0! 1.493~0.3!

f:ss̄ 23S1
1.680~20.0! 1.850~0.8!

f:ss̄ 13D3
1.854~7.0! 1.848~0.0!

f 2 :ss̄ 23P2
2.011~69.0! 2.160~0.1!

f 2 :ss̄ 33P2
2.297~28.0! 2.629~1.6!

p:ud̄ 11S0
0.140~0.0! 0.144~0.2!

r:ud̄ 13S1
0.767~1.2! 0.792~0.1!

b1 :ud̄ 11P1
1.231~10.0! 1.392~2.1!

a0 :ud̄ 13P0
1.450~40.0! 1.491~0.0!

a1 :ud̄ 13P1
1.230~40.0! 1.568~0.7!

a2 :ud̄ 13P2
1.318~0.7! 1.310~0.0!

p:ud̄ 21S0
1.300~100.0! 1.536~0.1!

r:ud̄ 23S1
1.465~25.0! 1.775~1.4!

p2 :ud̄ 11D2
1.670~20.0! 1.870~0.9!

r:ud̄ 13D1
1.700~20.0! 1.986~1.9!

r3 :ud̄ 13D3
1.691~5.0! 1.710~0.0!

p:ud̄ 31S0
1.795~10.0! 2.166~7.9!

r:ud̄ 33S1
2.149~17.0! 2.333~0.7!

r4 :ud̄ 13F4
2.037~26.0! 2.033~0.0!

p2 :ud̄ 21D2
2.090~29.0! 2.367~0.5!

r3 :ud̄ 23D3
2.250~45.0! 2.305~0.0!

r5 :ud̄ 13G5
2.330~35.0! 2.307~0.0!

r6 :ud̄ 13H6
2.450~130.0! 2.547~0.0!

x2 0.0 101.0
6-10
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RELATIVISTIC CALCULATION OF THE MESON . . . PHYSICAL REVIEW D70, 034026 ~2004!
The 36 mesons that contain au ~or ū) quark contribute a
total of about 54.6 to thex2 at an average of about 1.5 eac

while the 16 mesons on our list that contain ad ~or d̄) quark
contribute a total of about 18.6 to thex2 at an average o
about 1.2 each.

The worst fits produced by our model are those to thec
and theD* andDs* high orbital excitations. Although two o
these mesons contain the lightu andd quarks, in our fit the
more relativistic bound states are not in general fit less w
In fact, thep, K, D, andr mesons are fit better than the
two excitedD* andDs* mesons.

We see that overall, the Two-Body Dirac equations
gether with the relativistic version of the Adler-Piran pote
tial account very well for the meson spectrum over the en
range of relativistic motions, using just the two paramet
functionsA andS.

We now examine another important feature of o
method: the goodness with which our equations account
spin-dependent effects ~both fine and hyperfine
splittings!. Table I shows that the best fit versus expe
mental, ground-state singlet-triplet splittings for th

bū, bs̄, cc̄, cū, cd̄, cs̄, sū, sd̄, ud̄ systems are 48 vs 46
59 vs 47, 151 vs 117, 134 vs 142, 132 vs 142, 147 vs 1
418 vs 398, 418 vs 398, and finally 648 vs 627 MeV. W
obtain a uniformly good fit for all hyperfine ground-sta
splittings except for thehc-c system. The problem with the
fit for that system of mesons occurs because theD* 3P2 and
Ds*

3P2 states are significantly low while thec is signifi-
cantly high. Furthermore, the singlet and tripletP states are
uniformly low. Correcting thec mass would require a
smaller c-quark mass while correcting theD* ,Ds* P state
masses would require a largerc-quark mass. Reducing on
discrepancy would worsen the other. Below, we will uncov
what we believe is the primary cause for this discrepancy
we examine other aspects of the spectrum.

For the spin-orbit splittings we obtain values for theR
ratios (3P2- 3P1)/( 3P1- 3P0) of 0.71,0.67,0.42,20.19,
20.58,23.35 for the twobb̄ triplets, and thecc̄,ss̄,us̄,ud̄
spin triplets compared to the experimental ratios
0.66,0.61,0.48,0.09,20.97,20.4. This fit ranges from very
good in the case of the lightY multiplet to miserably bad for
the two lightest multiplets. From the experimental point
view some of the problem may be blamed on the uncer
status of the3P0 light-quark meson bound states and the s
mixing in the case of theK* multiplet. From the theoretica
point of view, the lack of any mechanism in our model
account for the effects of decay rates on level shifts undo
edly has an effect. Another likely cause is that as we proc
from the heavy mesons to the light ones, the radial size of
meson grows so that the long-distance interactions, in wh
the scalar interaction becomes dominant, play a more im
tant role. The spin-orbit terms due to scalar interactions
opposite in sign to and tend~at long distance! to dominate
the spin-orbit terms due to vector interactions. This result
partial to full multiplet inversions as we proceed from thess̄

to the ud̄ mesons. This inversion mechanism may also
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responsible for the problems of the two orbitally excitedD*
and Ds* mesons described above. It may be responsible
well for the problem of the singlet and tripletP states since
the scalar interaction tends to offset the dominant shor
range vector interaction, at least slightly.

We also examine the effect of the hyperfine structure
our equations on the splitting between the1P1 and weighted
sum@5( 3P2)13( 3P1)11( 3P0)#/9 of bound states. We ob
tain pairs of values equal to 3.520,3.520;1.408,1.4

1.392,1416 for thecc̄,us̄,ud̄ families versus the experimen
tal pairs of 3.526,3.525;1.402,1.375;1.231,1.303. The ag
ment of the theoretical and experimental mass difference
excellent for thec system, slightly too large and of th
wrong sign for theK system and too small and of the wron

sign for theud̄ system. Part of the cause of this pattern is th
pure scalar confinement worsens the fit for the light mes
because of its tendency to reverse the spin-orbit splitti
thereby shifting the center of gravity. The agreement, ho
ever, for the light systems is nevertheless considerably be
than that in the case of the fine-structure splittingR ratios.
Another part of the discrepancy may be due to the uncer
status of the light3P0 meson as well as the spin mixing i
the case of theK* multiplet. Note that in the case of unequ
massP states, our calculations of the two values incorpor
the effects of theLW •(sW12sW2) spin-mixing effects.~The use of
nonrelativistic notation is only for convenience.!

These differences between heavy- and light-meson
tems also occur in the mixing due to the tensor term betw
radial S and orbitalD excitations of the spin-triplet ground
states. This mixing occurs most notably in thecc̄, us̄, and
ud̄ systems. The three pairs of values that we obtain
3.808,3.688;1.985,1.800;1.986,1.775, respectively, versus
data 3.770,3.686;1.714,1.412;1.700;1.450. Our results
quite reasonable for the charmonium system but undere
mate considerably the splitting for the light-quark system
As happened for the significant disagreement in the cas
the fine structure, our results here worsen significantly
the light-meson systems. The spectroscopy of the lighter
sons is undoubtedly more complex due to their extreme
stability ~not accounted for in our approach!. Note, however,
that for the spin-spin hyperfine splittings of the ground sta
the more relativistic~lighter quark! systems yield masses tha
agree at least as well with the experimental data as do
heavier systems. This same mixed behavior shows up a
for the radial excitations.

The incrementalx2 contribution for the six3S1 states of
the Y system is just 1.8. It is 12.9 over three states for
triplet charmonium system~primarily due to thec devia-
tion!, 3.0 for the twof states, 1.6 for the three1S0 states of
the K system~note, however that these fits include expect
errors due to the lack of level shift mechanisms and are t
reduced!, 7.3 for the two3S1 states of theK* system, 2.2 for
the three tripletud̄ states, and 8.2 for the three singletud̄
states. Thex2 contribution at first increases, then decreas
with the lighter systems. Overall, the masses are much
large for the radially excited light-quark mesons. These d
crepancies may be due both to neglect of decay-indu
6-11
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H. CRATER AND P. VAN ALSTINE PHYSICAL REVIEW D70, 034026 ~2004!
level shifts and to the increased confining force for largr
from linear to quadratic~there is no term to compensate f
the quadraticS2 term!.

The isospin splitting that we obtain for the spin-singletB
meson system is 1 MeV. The calculation includes the con
bution from ouru-d mass difference of 3.3 MeV as well a
that due to different charge states. The effect of the la
tends to offset the effects of the former since theb and ū

have the same sign of the charge, theb and d̄ have the
opposite yetmd.mu . In the experimental data this offset
complete~0!. In the case of theD1-D0 splitting our mass
difference of 7 MeV represents the combined effects of
u-d mass difference and the slightly increased electrom
netic binding present in the case of theD0 and the slightly
decreased binding in the case of theD1. The experimental
mass difference is just 4 MeV. These effects work in t
same way for the spin-triplet splitting resulting in the the
retical value 5 MeV compared with the experimental valu
MeV. For the 3P2 isodoublet we obtain 4 MeV versus abo
0 for the experimental values. Our isospin splittings are
hanced because of the largeu-d quark mass difference tha
gives the best overall fit. For theK-K* family the experi-
mental value for the isospin splitting is 4 MeV for the sing
and triplet ground states. This splitting actually grows for t
orbital excitation (K2* ) to 7 MeV. The probable reason fo
this increase is that at the larger distances, the weak influe
of the Coulomb differences becomes small while only
actualu-d mass difference influences the result~although it
does seem rather large!. It is difficult to understand why our
results stay virtually zero for all three isodoublets. Note t
as with theB doublets, the theoretical contributions of th
combined effects of theu-d mass differences and the ele
trostatic effects tend to cancel. However, the experime
masses do not show this expected cancellation.

Implications of our model for the new 2.32 GeV Ds* meson

Recently, the BaBar Collaboration@61# found evidence
for a new 01 strange-charmed meson at 2.32 GeV. Using
parameters above and assuming the state is a3P0 cs̄ meson
we find a predicted mass of 2.35 GeV, about 130 MeV be
our predicted value for the3P2 counterpart. The corre

FIG. 1. Thep wave function plotted againstx5 log(r/r0).
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sponding mass difference in the Godfrey-Isgur model
2.59022.4805110 MeV. Both are well off the experimenta
mark of 2.57222.3175255 MeV. It is not surprising that its
place in the quark model has been the subject of some
bate.

Overall comparison with the experimental data shows t
the primary strength of our approach is that it provides v
good estimates for the ground states for all families of m
sons and for the radial excitation and fine-structure splittin
for the heavier mesons. On the other hand, it overestim
the radial and orbital excitations for the light mesons.
worst results are those for the fine-structure splittings for
us̄, ds̄, andud̄ mesons. Both weaknesses are probably d
to long-distance scalar potential effects. Below, we shall d
cuss other aspects of our fit to the spectrum when we c
pare its results to those of other approaches to the relativ
two-body bound-state problem.

B. Explicit numerical construction of meson wave functions

There are 89 mesons in our fit to the meson spectrum.
important advantage of the constraint formalism is that
local wave equation provides us with a direct way to pictu
the wave functions. As examples, we present the wave fu
tions that result from our overall spectral fit for three m
sons: thep ~Fig. 1!, for which we present the radial part o

FIG. 2. The r(S) wave functions plotted agains
x5 log(r/r0).

FIG. 3. Ther(D) wave function plotted againstx5 log(r/r0).
6-12
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RELATIVISTIC CALCULATION OF THE MESON . . . PHYSICAL REVIEW D70, 034026 ~2004!
f15c11c4 that solves Eq.~A4!; the r ~Figs. 2 and 3! for
which we present the radial parts of the wave functionsf1

for both S and D states that solve Eqs.~A6! and ~A7!; and
thec/J ~Figs. 4 and 5! for which we present the radial par
of the wave functionsf1 for both S and D states that also
solve Eq.~A6! and~A7!. In each plot the scaler 0 is propor-
tional to the Compton wavelength corresponding to the n
relativistic reduced massm of the two-quark system. In the
table below, for each of the plotted mesons, we give the s
factor r 0 and the root mean square radius~in fermis! com-
puted from these meson wave functions. For ther and c
mesons we also give the computed probabilities for resid
in the S andD states.
Meson r 0m A^r 2& S D

p 0.0004 0.21 fm 1.00 0.0
r 0.013 0.73 fm 0.861 0.139
c 0.084 0.36 fm 0.9974 0.002

FIG. 4. Thec(S) wave function plotted againstx5 log(r/r0).
03402
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Using a scheme outlined in Appendix B, we obtain
analytic approximation to the meson wave functions in ter
of harmonic oscillator wave functions. The two primary p
rameters we use for each meson are the scale factora and the
leading power~short-distance behavior! exponentk. In addi-
tion we take as parameters the coefficients of the associ
Laguerre polynomials. We write the radial wave function f
each meson in the form

u~r !8 (
n50

N

cnvn~r !, ~4.1!

where

vn~r !5A 2~n! !

~n1k21/2!!
exp~2y2/2!ykLn

k21/2~y2!

~4.2!

FIG. 5. The c(D) wave function plotted agains
x5 log(r/r0).
FIG. 6. p andr masses versus
quark mass in MeV.
6-13
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H. CRATER AND P. VAN ALSTINE PHYSICAL REVIEW D70, 034026 ~2004!
in which y5r /a5aex and ~with z5y2)

Ln
k21/2~z!5

ezz2k11/2

n!

dn

dzn
~e2zzk1n21/2!. ~4.3!

We then vary the two parametersa andk to obtain the best
fit. The coefficients are fixed by

cn5E
0

1`

vn~r !u~r !dr. ~4.4!

For meson radial wave functions with more than one co
ponent~like the c/J) we fit each component separately.
the table below we give a typical list for parametersa,k,cn
for thep, r, andc/J ~numbers in brackets represent powe
of 10!:

p r c/J

k 2.30734@21# 9.85790@21# 9.27248@21#

a2 1.22106@24# 2.04708@21# 5.85947@22#

c0 29.70613@21# 5.68290@21# 8.63401@21#

c1 1.97188@21# 25.54267@21# 23.77851@21#

c2 21.18926@21# 4.55647@21# 2.70111@21#

c3 3.93232@22# 22.95969@21# 21.44888@21#

c4 24.74935@22# 2.11945@21# 1.05621@21#

c5 1.59519@22# 21.29901@21# 25.85549@22#

c6 22.21638@22# 8.87707@22# 4.46522@22#

c7 9.35388@23# 25.36537@22# 22.44101@22#

c8 21.12997@22# 3.57731@22# 1.98781@22#

c9 5.74799@23# 22.16185@22# 21.03167@22#

c10 26.24195@23# 1.42167@22# 9.24913@23#

c11 3.44862@23# 28.57381@23# 24.34130@23#

c12 23.63673@23# 5.67698@23# 4.49675@23#

c13 2.04307@23# 23.31349@23# 21.77086@23#

c14 22.16019@23# 2.33901@23# 2.29266@23#

c15 1.22870@23# 21.19431@23# 26.63516@24#

c16 21.26919@23# 1.03806@23# 1.23170@23#

c17 7.72030@24# 23.42741@24# 21.93158@24#

c18 27.16255@24# 5.20857@24# 6.97788@24#

c19 5.18700@24# 25.02603@26# 23.64677@27#

c20 23.71156@24#

c21 3.77233@24#

c22 21.56718@24# ~4.5!

We note several features. First, the fit to thep wave function
appears to converge significantly more slowly than those
the r andc/J. ~We do not present plots comparing the n
03402
-

r

merical wave function with the harmonic oscillator wav
function fits since there are no visible differences.! Also note
that the p ’s short-distance behavior is distinctly differen
from those of the other two, having a stronger radial dep
dence at the origin. All three wave functions possess poly
mial coefficients that exhibit an oscillatory behavior.

C. Numerical evidence for Goldstone boson behavior

In our equations, the pion is a Goldstone boson in
sense that its mass tends toward zero numerically in the l
in which the quark mass numerically goes toward zero. T
may be seen in the accompanying plot Fig. 6~units are in
MeV!. Note that ther meson mass approaches a finite va
in the chiral limit. This non-Goldstone behavior also hol
for the excited pion states. None of the alternative a
proaches discussed in the following sections has displa
this property. Another distinction we point out is that ouru
and d quark masses~on the order of 55–60 MeV! are sig-
nificantly smaller than the constituent quark masses app
ing in most all other models~on the order of 300 MeV!—
closer to the small current quark masses of a few MeV. No
however, that the shape of our pion curve is not what o
would expect from the Goldberger-Trieman relation

mq5mp
2 Fp . ~4.6!

Thus this aspect of our model requires further investigati

V. COMPARISON OF STRUCTURES OF TWO-BODY
DIRAC EQUATIONS WITH THOSE OF ALTERNATIVE

APPROACHES

So far, we have obtained spectral results given by
equations when solved in their own most convenient form
Secs. VI–IX we shall compare our results with universal fi
to the meson spectrum produced by a number of other
thors. These approaches employ equations whose struc
~at first sight! appear radically different from ours. Howeve
as we have shown elsewhere@31#, because our approac
starts from a pair of coupled but compatible Dirac equatio
these equations can be rearranged in a multitude of form
possessing the same solutions. Among the rearrangem
are those with structures close to those of the authors wh
spectral fits we shall shortly examine. In order to see h
structural differences in each case may lead to difference
the resulting numerical spectra, we shall begin by consid
ing relevant rearrangements of the Two-Body Dirac eq
tions.

The first two alternative approaches that we shall disc
use truncated versions of the Bethe-Salpeter equation~BSE!
~Salpeter and quasipotential!, while the third uses a modified
form of the Breit equation. In order to relate the detail
predictions of our approach to these alternatives, we nee
relate our minimal substitution method for the introducti
of interactions to the introduction of interaction through t
use of kernels that dominates the older approaches.
field-theoretic kernel employs a direct product of gamm
matrices times some function of the relative momentum
coordinate. What is the analog of the kernel in our approa
6-14
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RELATIVISTIC CALCULATION OF THE MESON . . . PHYSICAL REVIEW D70, 034026 ~2004!
In earlier work for the vector and scalar interactions,
found that we could obtain our ‘‘external potential’’ o
‘‘minimal interaction’’ form of our two-body Dirac equation
from yet another form displaying a remarkable hyperbo
structure. We were able to recast our compatible Dirac eq
tions ~2.1a!, ~2.1b! as

S1c5@cosh~D!S11sinh~D!S2#c50,

S2c5@cosh~D!S21sinh~D!S1#c50, ~5.1!

in which @62#

S1c[@S10cosh~D!1S20sinh~D!#c50,

S2c[@S20cosh~D!1S10sinh~D!#c50, ~5.2!

in terms of free Dirac operators

S10c5~2b1S1•p1e1b1g511m1g51!c,

S20c5~b2S2•p1e2b2g521m2g52!c ~5.3!

and the kernel

D5
1

2
g51g52@L~x'!1g1•g2G~x'!#. ~5.4!

We then recover the explicit ‘‘external potential’’ forms o
our equations,~2.1a!, ~2.1b! from ~5.1!, ~5.2! by moving the
free Dirac operatorsSi0 to the right to operate on the wav
function. This rearrangement produces the derivative re
terms apparent in Eqs.~2.1a!, ~2.1b!. In generalD may take
any one of ~or combination of! eight invariant forms. In
terms of

O152g51g52, ~5.5!

these become

D~x'!52L~x'!O1/2, g1• P̂g2• P̂J~x'!O1/2,

g1'•g2'G~x'!O1/2

or a1•a2F(x')O1/2 for scalar, timelike vector, spacelik
vector, or tensor~polar! interactions, respectively. Note tha
in our D(x') in Eq. ~5.4! above,G(x') enters multiplied by
the electromagneticlike combinationg1•g252g1• P̂g2• P̂
1g1'•g2' of time and spacelike parts. This structure a
pears as a result of our use of the Lorentz gauge to introd
vector interactions in the classical version of the constra
equations or as a result of our use of the Feynman gaug
treat the field-theoretic version@53#. The axial counterparts
to the constraints with polar interactions are given by@note
the minus sign compared with the plus sign in Eqs.~5.1!#
@62#

S1c5@cosh~D!S12sinh~D!S2#c50,

S2c5@cosh~D!S22sinh~D!S1#c50, ~5.6!

in which S1 andS2 are still given by~5.2! with axial coun-
terparts to the aboveD ’s given by
03402
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C~x'!/2, g51g1• P̂g52g2• P̂H~x'!O1/2,

g51g1'•g52g2'I ~x'!O1/2

and

s1•s2Y~x'!O1/2,

respectively. The advantage of the hyperbolic form is t
with its aid we may first choose among the 8 interacti
types in an unambiguous way to introduce interaction~with-
out struggling to restore compatibility! and then, for compu-
tational convenience, transform the Dirac equations to ‘‘e
ternal potential’’ form. In the weak-potential limit of ou
equations, the coefficients ofg51g52 in the expansion of our
D interaction matrix in Eq.~5.4! directly correspond to the
interaction kernels of the Bethe-Salpeter equation. N
however, that because of the hyperbolic structure, what
call a ’’ vector interaction’’ actually corresponds to a partic
lar combination of vector and pseudovector interactions
the older approaches@see Eq.~5.15! below#.

This difference in classification of interactions becom
apparent when we put our equations into a Breit-like for
Consider the linear combination

b1g51S11b2g52S2 . ~5.7!

For later convenience, form the interaction matrix

D~x'![
1

2
b1g51b2g52D~x'!. ~5.8!

After simplification, the linear combination~5.7! of our two
hyperbolic equations becomes

wC5@H101H201V~x' ,a1 ,a2 ,b1 ,b2 ,g51,g52!#C
~5.9!

in which

C5exp~2D!c ~5.10!

and

H105a1•p'1b1m1 , H2052a2•p'1b2m2 .
~5.11!

For the electromagnetic vector kernel

D~x'!5
1

2
@g51g52#g1•g2G~x'!,

D then becomes

D5
1

2
G~x'!~a1•a221!, ~5.12!

so that the relativistic Breit-like equation takes the c.m. fo

wC5„a1•p2a2•p1b1m11b2m2

1w$12exp@G~r !~a1•a221!#%…C. ~5.13!
6-15
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In lowest order this equation takes on the familiar fo
for four-vector interactions~seemingly missing the tradi
tional Darwin interaction piece; r̂•a1r̂•a2):

wC5@a1•p2a2•p1b1m11b2m2

2wG~r !~a1•a221!#C. ~5.14!

However, as we first showed in Ref.@42#, expanding the
simple structure of Eq.~5.13! to higher order in fact gener
ates the correct Darwin dynamics. As a consequence,
unapproximated equation yields analytic and numer
agreement with the field-theoretic spectrum through or
a4. Explicitly, our full interaction is

exp@~a1•a221!G#5
exp~2G!

4
$3 cosh~G!1cosh~3G!

1g51g52@3 sinh~G!

2sinh~3G!#1a1•a2@sinh~3G!

1sinh~G!#1s1•s2@cosh~G!

2sinh~3G!#%, ~5.15!

so that our Breit-like potential contains a combination
‘‘vector’’ and ‘‘pseudovector’’ interactions originating from
the four-vector potentials of the original constraint equatio
in ‘‘external-potential’’ form @63#.

In this section we have seen how the two-body Dir
equations with field-theoretic interaction structure autom
cally retain the correct Darwin structure of QED. Such
demonstration should be carried out for each alterna
treatment~if possible! in order to check that truncations an
numerical procedures have not destroyed its own versio
the field-theoretic Darwin structure for its treatment of t
vector interaction of QED~and associated vector structur
in QCD!. Explicitly in our own work we find that including
all the couplings to smaller components of the wave funct
is crucial not only for our nonperturbative QED spectral
sults ~see Ref.@23#! but also for our good results forp-r
splittings and the Goldstone behavior of the pion as
quark mass tends toward zero. Without those couplings
good results for the positronium splittings and light meso
evaporate.

VI. THE WISCONSIN MODEL OF GARA, DURAND,
DURAND, AND NICKISCH

A. Definition of the model and comparison of structure
with the Two-Body Dirac approach

The authors of Ref.@45# base their analysis of quark
antiquark bound states on the reduced Salpeter equation
taining a mixture of scalar and vector interactions betwe
quarks of the same or different flavors. When rewritten in
notation that aids comparison with our approach, their bo
state equation takes the c.m. form
03402
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@w2v12v2#F~p!

5L1~p!g0E d3p8

~2p!3
@A~p2p8!gmF~p8!gm

1S~p2p8!F~p8!#g0L2~2p!, ~6.1!

in which A andS are functions that parametrize the electr
magneticlike and scalar interactions,L6 are projection op-
erators,w is the c.m. energy,v i5(p21mi

2)1/2, while F is a
434 matrix wave function represented in block matrix for
as

F5Ff12 f11

f22 f21G . ~6.2!

They obtain this equation from the full Bethe-Salpeter eq
tion by making an assumption equivalent to using a positi
space description in which they calculate the interaction
tential with the equal time constraint, neglecting retardati
@These are the usual ad hoc assumptions that in our appr
are automatic consequences~in covariant form! of our two
simultaneous, compatible Dirac equations.# These restric-
tions turn Eq.~6.1! into the standard Salpeter equation.
addition, the Wisconsin group employs what we call t
‘‘weak potential assumption’’: (w1v11v2)@V. This as-
sumption turns Eq.~6.1! into the reduced Salpeter equatio
which, because of the properties of the projection opera
allows the Wisconsin group to perform a Gordon reduct
of its equation to obtain a reduced final equation in terms
f11 alone. In our approach we make no such ‘‘weak pote
tial assumption’’ and therefore must deal directly with t
fact that our Dirac equations themselves relate compon
of the sixteen-component wave function to each another.
like what happens in the reduced Salpeter equation, in
method this coupling leads to potential-dependent denom
tors, a strong potential structure that we found crucial
demonstrating that our formalism yields legitimate relativ
tic two-body equations. Just as we do, however, the Wisc
sin group works in coordinate space where the dynam
potentials are local and easy to handle. However, in th
method upon Fourier transformation the kinetic factorsv i
then become nonlocal operators. In contrast, the entire
namical structure of our two-body Dirac equations is local
long as the potentials are local.

The Wisconsin group uses local static potentials that p
the role of our Adler-Piran potential:

A~r !52
4

3

as~r !

r
e2m8r1dS 2

b

r
1Lr D ~12e2mr !,

S~r !5~12d!S 2
b

r
1Br D ~12e2mr !

1~C1C1r 1C2r 2!~12e2mr !e2mr . ~6.3!

Note that Garaet al. introduce a confining electromag
neticlike vector potential proportional to a parameterd. This
differs from our approach in which the~dominant! linear
6-16
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portion of the confinement potential has no electromagne
like part. Like the Adler-Piran potential, theirs has a lon
range 1/r part ~the so-called Luscher term!. Its short-range
part is electromagneticlike just as is ours, and like that
Adler and Piran is obtained from a renormalization gro
equation. They base their analysis on a nonperturbative,
merical solution of the reduced Salpeter equation~6.1! with
interaction as in equation~6.3!.

B. Comparison of Wisconsin fit
with that of Two-Body Dirac equations

In Table II we include the Wisconsin variable-d ~vector
and scalar confinement! best fit results, and the best fit resu
our method gives when restricted to the 25 mesons they
sider. For uniformity of presentation we give all of the Wi
consin results in terms of absolute masses~rather than the
mass differences and averages these authors presented f
spin-orbit triplets!. Although Garaet al. did not perform the
samex2 fit that we do, we present~in parentheses! the in-
crementalx2 contribution for each meson so that we c

TABLE II. Comparison of meson masses from Wisconsin mo
II and covariant constraint dynamics~CCD!.

Name Expt. Wisconsin 2 CCD

Y:bb̄ 13S1
9.460~0.2! 9.426~62.6! 9.454~2.0!

Y:bb̄ 13P0
9.860~1.3! 9.862~0.1! 9.845~4.5!

Y:bb̄ 13P1
9.892~0.7! 9.892~0.0! 9.890~0.1!

Y:bb̄ 13P2
9.913~0.6! 9.917~0.7! 9.919~1.6!

Y:bb̄ 23S1
10.023~0.3! 10.028~1.3! 10.024~0.1!

Y:bb̄ 23P0
10.232~1.1! 10.238~1.5! 10.229~0.4!

Y:bb̄ 23P1
10.255~0.6! 10.256~0.0! 10.257~0.2!

Y:bb̄ 23P2
10.268~0.6! 10.270~0.2! 10.276~3.1!

Y:bb̄ 33S1
10.355~0.5! 10.359~0.7! 10.359~0.7!

B:bd̄ 11S0
5.279~2.1! 5.381~137.2! 5.274~0.3!

hc :cc̄ 11S0
2.979~1.9! 2.967~1.4! 2.975~0.1!

c:cc̄ 13S1
3.097~0.1! 3.167~272.4! 3.120~28.8!

x0 :cc̄ 13P0
3.415~1.0! 3.402~5.1! 3.412~0.2!

x1 :cc̄ 13P1
3.510~0.1! 3.493~17.5! 3.505~1.8!

x2 :cc̄ 13P2
3.556~0.1! 3.548~4.0! 3.538~18.1!

hc :cc̄ 21S0
3.594~5.0! 3.621~1.5! 3.611~0.6!

c:cc̄ 23S1
3.686~0.1! 3.668~17.9! 3.688~0.3!

D:cd̄ 11S0
1.869~0.5! 1.983~574.6! 1.875~1.5!

D* :cd̄ 13S1
2.010~0.6! 2.010~0.0! 2.003~1.9!

Ds :cs̄ 11S0
1.969~0.7! 2.097~671.1! 1.968~0.1!

Ds* :cs̄ 13S1
2.110~2.0! 2.148~52.7! 2.106~0.6!

K:sd̄ 11S0
0.498~0.0! 0.743~3340.4! 0.498~0.0!

K* :sd̄ 13S1
0.896~0.3! 0.870~5.1! 0.918~3.5!

f:ss̄ 13S1
1.019~0.0! 1.019~0.0! 1.020~0.0!

f:ss̄ 23S1
1.680~50.0! 1.510~0.9! 1.424~2.1!

x2 0.0 5168.9 72.8
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easily compare the results of the two methods. We also c
pare theirR values and3P averages to ours directly in th
discussion below.

Our results are closer to the experimental results for 16
the 25 mesons. In detail, theirR values for theY and c
families of 0.83, 0.78, and 0.60 are less accurate t
two of our values of 0.64, 0.68, and 0.35, respective
Their 3P averages @5( 3P2)13( 3P1)11( 3P0)#/9 of
9.902,10.262,3.513 and ours~9.901,10.264,3.513! are essen-
tially the same compared to the experimental results
9.900,10.273,3.525 MeV. Their hyperfine splittings for t
two charmonium multiplets of 200 and 47 MeV are signi
cantly worse than our fits of 150 and 79 MeV. Their hype
fine splittings for the mesons with oned or s quark are
27,51,127 MeV. Our fits of 128,138,420 MeV, respective
are much closer to the experimental results of 141,141,
MeV.

The radial excitation energies for the two lowestY exci-
tations and the singlet and triplet charmonium excitations
again accounted for significantly better by three of four
our values of 569,335,636,568 MeV for the results in the l
column than by the Wisconsin results of 602,331,654,4
MeV. In summary, the major strength of our approach
reflected in its better fits to the hyperfine splittings and rad
excitations. The Wisconsin group’s results for the fin
structure splitting are overall about the same as ours. Mo
over, even a casual glance at the results shows one gla
discrepancy that results from their approach—their hyper
splittings for the light-quark mesons. The cause of this
probably the fact that their reduced Salpeter approach d
not include coupling of the upper-upper piece to the other
components of the 16 component wave function. In fact,
lighter the meson, the worse is their result. In our QED n
merical investigations we found that couplings to the oth
components of the wave function were essential in orde
obtain agreement with the standard perturbative spectra
sults of QED. We have found that the same strong-poten
effects that led to our successful results in QED are resp
sible for the goodness of our hyperfine splitting, particula
for the mesons containing the light quarks. It would be i
portant to test the Wisconsin group’s procedure~with its de-
leted couplings to the other wave functions! numerically
with A52a/r and S50 for positronium to determine
whether the problems that the Wisconsin model has w
mesonic hyperfine splittings in QCD are reflected in its
sults for QED.

Garaet al.point out that in their approach the straight lin
Regge trajectories (j versusw2) for the light-quark systems
are much too steep, with slopes greater than twice the
served slopes for pure scalar confinement. The best fit
perimental slope and intercept values for ther,a2 ,r3 trajec-
tory are~0.88,0.48!. The slope and intercept values that w
obtain for our model in Table I are~0.87,0.47!, in excellent
agreement with the best experimental fit. For thef1 , f 2 ,f3
trajectory the experimental values are~0.83,0.11!, while our
model of Table I produces the set of values~0.85,0.095!. The
intercepts are not as accurate as those for ther trajectory
although our results actually produce a tighter fit to a strai
line trajectory than do the experimental results. Finally
come to the p,b1 ,p2 trajectory. We obtain the value
(0.57,20.04). Compared to the experimental values

l
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H. CRATER AND P. VAN ALSTINE PHYSICAL REVIEW D70, 034026 ~2004!
(0.72,20.04) our slopes are about 25–30 % small, althou
our fit to the straight line is just as tight. The probable reas
for the relative advantage of our results over those of
Wisconsin group is that our bound-state equations includ
strong-potential structure, and are not limited by the we
potential approximation built into the reduced Salpeter eq
tion.

VII. THE IOWA STATE MODEL OF SOMMERER,
EL-HADY, SPENCE, AND VARY

A. Definition of the model and comparison of structure
with the Two-Body Dirac approach

The Iowa State group introduces a new relativistic qua
potential reduction of the Bethe-Salpeter equation. They
the well-known fact that there are an infinite number of su
reductions@64# to construct a formal quasipotential param
etrized in terms of two independent constants. They sh
that when all of the most often used reductions are spec
ized to QED, they fail to numerically reproduce the corre
ground state result for singlet positronium through ordera4

@65#. These authors then fix the free parameters in their q
sipotential by requiring that their resulting ground-state
ergy lie close to the well-known perturbative value. In ad
tion, the form of the quasipotential reduction they u
produces a projection to positive energy states only. T
Iowa State group uses a scalar linear confinement plus m
less vector boson exchange potential with the kernel

24pasg0gm3g0gm

2~q2q8!2
14pb lim

m→0
F ]

]mG2 g03g0

2~q2q8!21m2
.

~7.1!

The QCD couplingas that they use is treated as a runni
coupling constant that depends on the momentum tran
and two parameters. Their quasipotential reduction incor
rates zero relative energy in the c.m. frame.

B. Comparison of the fit with that of the constraint approach

In Table III, we give the Iowa State group’s results for
set of mesons together with our results for the same se
mesons. In the fourth column of this table we present
results we would obtain from our approach if we limited o
fit just to the 47 mesons used by the Iowa State group.
use the same rms fitting procedure used by these aut
instead of thex2 fit used in our Table I. The results are qui
similar, 50 for the Ohio State model and 53 for our mode

Of the 47 mesons in their table, our fits are closer to
data in 25. Thus, according to this crude measure there i
significant difference between the results of the two
proaches@66#. We proceed now with a detailed compariso
Their R values for the two bottomonium and one charm
nium multiplets are 3.25,1.09,1.09. OurR values of
0.70,0.74,0.44 are considerably closer to the experime
ratios of 0.66~0.61!,0.56~0.61!,0.47. @We make no compari-
son for the three light quark multiplets (ss̄,sū,ud̄) since the
Iowa State Group did not calculate the3P0 states.# We note,
however, that for the pairs ofsū and ud̄ their results
for3P2- 3P1 splittings are substantially better than our resu
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TABLE III. Comparison of meson masses from the Spence-V
model and covariant constraint dynamics~CCD!.

Name Expt. Spence and Vary CCD

Y:bb̄ 13S1
9.460~9.460! 9.452(28! 9.444(216!

Y:bb̄ 13P0
9.860~9.860! 9.843(217! 9.836(224!

Y:bb̄ 13P1
9.892~9.893! 9.863(229! 9.886(27!

Y:bb̄ 13P2
9.913~9.913! 9.928(115! 9.921(18!

Y:bb̄ 23S1
10.023~10.023! 9.996(227! 10.022(11!

Y:bb̄ 23P0
10.232~10.232! 10.198(234! 10.230(12!

Y:bb̄ 23P1
10.255~10.255! 10.214(241! 10.261(16!

Y:bb̄ 23P2
10.268~19.269! 10.270(12! 10.284(117!

Y:bb̄ 33S1
10.355~10.355! 10.331(224! 10.367(112!

Y:bb̄ 43S1
10.580~10.580! 10.611(131! 10.627(147!

Y:bb̄ 53S1
10.865~10.865! 10.860(25! 10.645(220!

Y:bb̄ 63S1
11.019~11.019! 11.086(167! 11.036~17!

B:bū 11S0
5.271~5.279! 5.342(163! 5.267(212!

B* :bū 13S1
5.352~5.325! 5.347(25! 5.317(28!

hc :cc̄ 11S0
2.979~2.980! 2.993(114! 2.969(211!

c:cc̄ 13S1
3.097~3.097! 3.091(26! 3.128(131!

x0 :cc̄ 11P1
3.526~3.526! 3.471(255! 3.520(26!

x0 :cc̄ 13P0
3.415~3.415! 3.383(232! 3.396(219!

x1 :cc̄ 13P1
3.511~3.511! 3.461(250! 3.504(27!

x2 :cc̄ 13P2
3.556~3.556! 3.556~0! 3.555(21!

hc :cc̄ 21S0
3.594~3.594! 3.640(146! 3.606(112!

c:cc̄ 23S1
3.686~3.686! 3.688(12! 3.688(12!

c:cc̄ 13D1
3.770~3.770! 3.741(229! 3.806(136!

c:cc̄ 33S1
4.040~4.040! 4.104(164! 4.083(143!

c:cc̄ 23D1
4.159~4.159! 4.136(223! 4.161(12!

c:cc̄ 33D1
4.415~4.415! 4.456(141! 4.462(147!

D:cū 11S0
1.865~1.8645! 1.897(132! 1.854(210!

D* :cū 13S1
2.007~2.007! 2.004(23! 1.991(216!

D* :cū 13P1
2.420~2.422! 2.358(272! 2.373(247!

Ds :cs̄ 11S0
1.971~1.969! 1.968(23! 1.981(112!

Ds* :cs̄ 13S1
2.110~2.112! 2.076(234! 2.137(125!

K:sū 11S0
0.494~0.494! 0.495(11! 0.511(117!

K* :sū 13S1
0.892~0.892! 0.916(124! 0.887(25!

K1 :sū 11P1
1.270~1.273! 1.287(117! 1.327(157!

K1* :sū 13P1
1.406~1.402! 1.330(276! 1.405(13!

K2* :sū 13P2
1.426~1.426! 1.330(296! 1.348(278!

K2 :sū 11D2
1.770~1.776! 1.633(2137! 1.709(285!

f:ss̄ 13S1
1.019~1.019! 1.020(11! 1.048(129!

f 2 :ss̄ 13P2
1.525~1.525! 1.526(11! 1.488(237!

f:ss̄ 23S1
1.680~1.680! 1.645(235! 1.803(1123!

p:ud̄ 11S0
0.140~0.140! 0.135(25! 0.143(13!

r:ud̄ 13S1
0.768~0.769! 0.812(144! 0.736(233!

b1 :ud̄ 11P1
1.232~1.230! 1.219(213! 1.255(125!

a1 :ud̄ 13P1
1.260~1.230! 1.223(237! 1.534(1185!

a2 :ud̄ 13P2
1.318~1.318! 1.367(149! 1.223(295!

p:ud̄ 21S0
1.300~1.300! 1.439(1139! 1.474~174!

p2 :ud̄ 11D2
1.670~1.670! 1.515(2155! 1.780(1110!

rms 0.0 50 53
6-18
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In particular, unlike our results, theirs do not have an inv
sion of the splitting. Our poor results for these splittings a
likely due to a larger influence of the scalar than the vec
portion of the spin-orbit interaction. Comparing their3P av-
erages@5( 3P2)13( 3P1)11( 3P0)#/9 of 9.859,3.497,1.433
1.015 GeV for the lowest-lying spin-orbit multiplets listed
the table with our values of 9.902,3.516,1.470,1.386 and
experimental results of 9.900,3.527,1.503,1.303 GeV we
that ours are closer in each case to the experimental res
We see also that for charmonium, our average is nearly e
to our 1P1 level while the Iowa State results are 75 Me
higher than their1P1 level. For theud̄ system, our average i
25 MeV higher than our1P1 level while theirs is 122 MeV
above their calculated1P1 level. Their values of the hyper
fine (3S1- 1S0) splittings are 98,48,100,108,421,677 MeV f
the two charmonium multiplets, and th
D-D* ,Ds-Ds* ,K-K* ,p-r pairs. Comparison with the ex
perimental splittings of 117,92,142,139,398,628 MeV a
our results of 159,82,137,156,376,593 MeV show the c
straint results closer to the experimental splittings on all
the ground-state charmonium pair.~We have commented ea
lier on the origin of the discrepancy between ourc value and
the experimental result.! We next wish to compare the resul
generated in both approaches for the spin-spin effect em
ied in the3P1- 1P1 splittings. For thecc̄,sū,ud̄ pairs the Iowa
State results are 10,43,4 MeV compared to the experime
results of 15,136~129!,28~0! MeV and the two-body Dirac
results of 16,78,279 MeV. For the heavier two pairs, the c
straint splitting results are substantially closer to the exp
mental results. This resembles the similar spin-spin pat
found in theS-state hyperfine splittings. Our poor result f
theud̄ meson has the same origin as our poor result for thR
value mentioned above. Finally, we compare the radial e
tations. The six upsilon states in the experimental column
the table occur at intervals of 562,332,225,285,254 MeV. T
three charmonium triplet states and the two charmonium
glet states occur at intervals of 589,354,614 MeV while
two ss̄andud̄ states occur at intervals of 661 and 1160 Me
The corresponding Iowa State intervals a
544,335,270,259,226,597,416,647,625,1304 MeV while
intervals are 578,345,260,218,191,560,395,637,753,1
MeV. The Iowa State radial excitation splittings are closer
the experimental values on four of the five upsilon splittin
one of the three charmonium splittings, and both of
lighter quark splittings.

Even though the rms values obtained in each approach
nearly the same, on most of the detailed comparisons m
above the constraint approach appears to give better fits.
exceptions to this are the radial excitations and some of
heavier light-meson excitations. The largest portion of o
rms values come from the heavy light-meson orbital a
radial excitations.

We have long argued that any proposed relativistic w
equation should be tested in terms of its ability to reprod
known perturbative results of QED and other relevant re
tivistic quantum field theories when solved nonperturbativ
before being applied to QCD. The Iowa State group in f
adopts this philosophy in order to resolve an ambiguity in
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construction of the quasipotential in their wave equation
demanding that it reproduce the ground-state level of sin
positronium numerically. This requirement fixes the valu
of the two parameters of their quasipotential mention
above. In contrast, the constraint approach has no free
rameters of the type used in Ref.@46# for the quasipotential
reductions. Instead, its Green function is fixed. While with
the constraint approach the connection between the ke
and the invariant constraint functions~e.g., G,L) does in-
volve some freedom of choice@see Eqs.~2.14!, ~2.15!,
~2.17!#, that freedom is not determined by the requireme
that the model fit a particular state but instead is fixed
fundamental dynamical requirements following equivalen
from classical or from quantum field theory and resulting
the appearance of a minimal form of the potential@see Eq.
~2.21! and below#. Several features separate the two a
proaches. First, as we found in Ref.@23# the QED results
provided by our equation agree with those of standard p
turbative QED for more than just the ground state, while it
unknown if the parameters that the Iowa State model u
that ensured its fit to the singlet ground state of positroni
would work for the other states. Second, the constraint
proach generates similar structures for scalar interactions
systems of vector and scalar interactions in agreement
the corresponding perturbative field-theoretic results wh
again it is unknown whether the parameters that the Io
State model uses that gave good fits to the singlet gro
state of positronium would work in the presence of oth
potentials. Third, the match to singlet positronium that
obtained was an analytic consequence of our equations
QED and therefore a test of those equations@67#, not the
result of a numerical fit. Fourth, our approach includes
sential contributions from all sixteen components of the re
tivistic wave function, not just the ‘‘positive energy’’ compo
nents @68#. Fifth, an important consequence of the ful
relativistic dynamics and gauge-theoretic structure of
constraint equations is that they produce values of the lig
quark masses closer to current algebra values than do a
native approaches. The quark masses that we obtained in
comparison fit with the Iowa State model arems
5314 MeV andmu5md567 MeV, which are significantly
closer to the current algebra values ofms;125 MeV and
mu ,md;3 –6 MeV than the Iowa State model’s values
405 and 346 MeV, respectively.

VIII. THE BREIT EQUATION MODEL OF BRAYSHAW

A. Definition of the model and comparison
of the structure with the Two-Body Dirac approach

Brayshaw@47# treats quarkonium with the aid of the Bre
equation and an interaction Hamiltonian with five distin
parts, four of which are independent. As usually done for
Breit equation the times associated with each particle
identified or related in some favored frame~normally c.m.!
selected so that the relative time does not enter the poten
In that frame Brayshaw uses the equation

HC5~H01HC1HB1HS1HI1HL!C5wC ~8.1!
6-19
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H. CRATER AND P. VAN ALSTINE PHYSICAL REVIEW D70, 034026 ~2004!
in which H0 is the free Breit Hamiltonian

H05a1•p2a2•p1b1m11b2m2 , ~8.2!

while HC and HB are a Coulomb and an associated Br
interaction

HC5
c1

r
,

HB52
c1~a1•a21a1• r̂a2• r̂ !

2r
. ~8.3!

As indicated in our discussion about the Salpeter equatio
Sec. VI, this part of the interaction comes from the vec
portion of the kernel. The author acknowledges the diffic
ties associated with the Breit interaction, pointing out th
the radial equation has a singularity at a radial separatio
r 052c1 /w.0. He bypasses Breit’s proposal that this int
action be used only in first-order perturbation theory by
ing only positive energy spinors in his variational proc
dures. We point out that this was not necessary in
approach since the hyperbolic structure of our eight ba
interactions avoids the problems inherent in Breit’s formu
tion @9#. In particular, it avoids the appearance of midpo
singularities. Unfortunately, just like the Wisconsin grou
having avoided the pitfalls of the Breit equation, he uses
replacement without testing whether or not his formali
would yield the standard QED results numerically if he lim
ited his interaction to the usual Coulomb interaction. On
again such a test would~if successful! help eliminate the
possibility that the wave equation introduces spurious ph
ics.

In Eq. ~8.1!, HL is a long-range confining portion tha
incorporates the requirement that the wave function van
identically for radial separationsr .a with a boundary con-
dition atr 5a. Brayshaw argues for this term over and abo
a linear confinement piece on the grounds that at some s
rationr p corresponding to a threshold energyEp , production
of qq̄ pairs should become energetically favorable. His rad
parametera plays the role ofr p in specifying the range a
which such effects~among others! dominate confinement. He
expects thata is of the order of̂ r & for the light-quark me-
sons while wave functions for the heavy-quark meso
would have fallen to zero forr !a. When introducing the
explicit form of his linear confinement potential, the auth
finds that it cannot simply be added as a Lorentz scalar to
Hamiltonian since such a term produces far too large a m
shift for the light-quark systems. Instead he chooses

HI5c2~b11b2!r , ~8.4!

which he shows contributes very weakly for the light-qua
systems, while contributing significantly for the heavy-qua
systems with an intermediate contribution for the hydrog
like intermediate mass mesons. Unfortunately, however,
note the important fact that the Lorentz transformation ch
acter of this confining interaction is ambiguous, being neit
scalar (;b1b2) nor ~timelike! vector (;1112).
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Finally Brayshaw introduces a special short-range attr
tive piece solely in order to obtain a good fit to the pion a
kaon. Instead of a spin-dependent contact term used
number of semirelativistic approaches@48,69,70# he uses

HS5HB~11121b1b2!
c4ru~b2r !

2~m11m21c4!
. ~8.5!

This term resembles a cross term between a linear con
ment piece and the Breit term that might emerge from so
sort of iteration. The short-range character of this part-sca
part-vector interaction is specified through takingb!a. In
contrast, our approach possesses a short-range spin-sp
teraction that is quantum mechanically well defined and t
arises straightforwardly from the Schro¨dinger reduction of
our Dirac equations. We do not need to add it in by hand

B. Comparison of the fit with that of the constraint approach

In spite of its ad hoc nature, we have included the pro
dure of Brayshaw among our comparisons because it tu
out that his resultant fit for the 56 mesons~that overlap with
our fit! is quite good, just slightly worse than our fit. In Tab
IV we include in the fourth column the fit we would obtai
with our model if we included only the 56 mesons that our
has in common with Brayshaw’s. On a meson by mes
basis we compare by using incrementalx2 values.

Of the 56 mesons in the table, our fits are closer to dat
only 26, although overall our fit is better. However, this ove
all difference may not be as significant as in the previo
examples because here we did not use identical fitting p
cedures for both models. Brayshaw’sR values for the two
upsilon, the one charmonium, theK* , f, andr-p triplet P
multiplets are 0.47, 0.34, 0.32, 0.55, 0.25, 0.19 and are
tinctly different from our values of 0.66,0.69,0.39,20.71,
20.25,25.67 and the experimental numbers
0.66,0.61,0.48,0.09,20.97,20.4. Although the constraint
Adler-Piran combination is distinctly better than the Bre
Brayshaw approach for the heavier mesons, both give poR
results for the lighter mesons. All of his light spin-orbit mu
tiplets have masses that increase monotonically withj, unlike
the pattern of the experimental numbers. Although our
sults show a nonmonotonic pattern, that pattern also dif
from that of the data. Note that the details of our patterns
greatly influenced by the presence of the scalar poten
Brayshaw’s approach includes~see HS) a partial Hamil-
tonian that governs intermediate range behavior, in wh
timelike and scalar interactions contribute equally. This m
be responsible for the difference between his montonic p
tern and that displayed by the data.

Comparing his 3P averages @5( 3P2)13( 3P1)
11( 3P0)#/9 to the 1P1 mesons for the charmonium,K* ,
andr-p systems we find the following three pairs of num
bers: 3.517,3.498;1.335,1.355;1.251,1.202. Compar
to our numbers of 3.519,3.520;1.435,1.421;1.434,1.
and the experimental numbers of 3.526,3.525;1.402,1.3
1.231,1.303 shows that our approach gives better agreem
for the heavier mesons and his somewhat better for
lighter mesons while both do about the same for theK* .
6-20
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His values of the hyperfine splittings ar
118,100,143,158,410,636 MeV for the two charmonium m
tiplets and theD-D* ,Ds-Ds* ,K-K* ,p-r pairs. Comparing
with the experimental splittings of 117,92,142,144,398,6
MeV shows a clear pattern of excellent to good results
the heaviest, lightest, and the intermediate, more hydrog
like mesons. Our results are 151,79,133,145,416,647 M
Our ground-state charmonium result is not nearly as goo
Brayshaw’s while for the others we have about the sa
quality of fit. It may be that his choice ofHS rectifies the
problem our treatment encounters. But, the disadvantag
this is that hisR values for the heavy mesons are worse. T
effect appears to be similar to the trouble we encounte
mentioned in our discussion of Table I in Sec. IV A.

For the radial excitations, the four upsilon states in
data portion of the table occur at intervals of 563,332,2
MeV while the three charmonium triplet states and the t
charmonium singlet states occur at intervals of 589,354,
MeV. The pion excitation is 1160 MeV. The correspondi
Brayshaw intervals are 555,335,320,551,566,569,888 M
while our intervals are 572,337,257,564,395,636,1403 M
With the exception of the second radial triplet upsiloniu
and charmonium excitation intervals, the fits of both mod
are of about the same quality. Note that excited pion pre
tions bracket the experimental results. This appears to b
common feature of the radial and orbital excitations of
light-quark mesons, with his results on average closer to
experimental values. Our results are, on average, bette
the heavier mesons.

However, his apparently good fit emerges from a poten
structure that has ambiguous Lorentz transformation pro
ties. The potentials are chosen in a patchwork manner u
the 5 parametersa,c1 ,c2 ,c3 ,c4 ~he setsb5a/10). In terms
of Lorentz transformation properties his scheme uses
invariant functions@scalar, timelike, electromagneticlike an
mixed (HS ,HB , andHI)#. The Adler-Piran potential that we
use has only two invariant functions corresponding to sc
and electromagneticlike interactions. The constraint
proach is not a patchwork; instead its wave equation it
~onceA andS are chosen! fixes the spin, orbital, and radia
aspects of its potential and its spectra. We also note that
as in the case of the Wisconsin model, Brayshaw has
tested the nonperturbative reliability of his equation. On
other hand, an important result of his approach is that theu,d
quark masses required for his fit are very small~10 MeV!
and significantly closer to the current quark mass values t
ours. His strange quark mass~200 MeV! is also closer to the
proposed current quark mass values than our value. The
important warning provided by Brayshaw’s approach is t
an ad hoc structure with ambiguous Lorentz properties
do so well at fitting the spectrum.

IX. THE SEMIRELATIVISTIC MODEL OF GODFREY
AND ISGUR

A. Definition of the model and comparison of the structure
with the Two-Body Dirac approach

We begin with a general discussion of semirelativis
quark models~with and without full relativistic kinematics!.
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We term a ‘‘semirelativistic quark model’’ one that uses
two-body wave equation that takes one of the following th
forms in the c.m. frame:

@p21F~r ,s1 ,s2!#c5~w2m12m2!c,

@Ap21m1
21Ap21m21F~r ,s1 ,s2!#c5wc, ~9.1!

@p21F~r,s1 ,s2!#c5b2~w!c.

In each of these equationsp2 is the square of the c.m. rela
tive momentum whileF(r ,s1 ,s2) is an effective potential
that includes central, spin-orbit, spin-spin, tensor, and po
bly Darwin terms. In each, the wave function has four co
ponents with no coupling to lower-lower components. T
most important difference between the first form and the o
ers is that the latter two have exact relativistic kinemati
The former is almost always called a nonrelativistic qua
model, although strictly speaking almost all spin depe
dences~at least those that arise from vector and scalar in
actions! vanish in the nonrelativistic limit. These equation
differ from the two-body Dirac equations and the Breit a
instantaneous Bethe-Salpeter approaches primarily in
their spin dependences are put in by hand, abstracted f
the Fermi-Breit reductions of the Breit and instantaneo
Bethe-Salpeter approaches. For Coulomb-like potent
originating in the Coulomb gauge, these terms contain s
gular potentials. Consequently they must either be trea
purely perturbatively~thus ruling out application to the light
quark mesons! or through the introduction of smoothing pa
rameters that may or may not be features of the actual
tential. The two-body Dirac equations of constrai
dynamics, like their one-body cousin, have a natural smoo
ing mechanism—potential-dependent denominators in
spin-dependent and Darwin terms of the result
Schrödinger-like form—that eliminates the necessity for
hoc introduction of such terms. The Breit equation may a
possess a natural smoothing mechanism, but a nonpertu
tive treatment of it leads to erroneous results in QED@5#. The
instantaneous Salpeter equation may have a natural smo
ing mechanism, but has not been tested nonperturbatively
QED even though the equation is over 50 years old. Auth
who have attempted to use these types of semirelativ
equations to treat the entire meson spectrum incl
Lichtenberg@69# ~the third type!, Stanley and Robson@70#
and Godfrey and Isgur@48# ~the second type!, and Morpurgo
@43# ~the first type!. Each of these authors ignore the spi
independent part of the Fermi-Breit interaction. This negl
is not justifiable since this part of the interaction will hav
an effect onS states that is significantly different from
its effect on non-S states, being normally short ranged com
pared with the rest of the central force part of the proble
In this paper, we select one of these models for our fi
comparison, the model of Godfrey and Isgur, since t
model, even though already 18 years old, is by far the m
6-21
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TABLE IV. Comparison of meson masses from the Brayshaw model and covariant constraint dynamics~CCD!.

Name Expt. Brayshaw CCD Name Expt. Brayshaw CCD
Y:bb̄ 13S1
9.460~0.2! 9.452~1.3! 9.451~1.7!

Y:bb̄ 13P0
9.860~1.3! 9.866~0.3! 9.842~2.5!

Y:bb̄ 13P1
9.892~0.7! 9.910~4.5! 9.889~0.1!

Y:bb̄ 13P2
9.913~0.6! 9.926~2.5! 9.920~0.7!

Y:bb̄ 23S1
10.023~0.3! 10.007~4.8! 10.023~0.0!

Y:bb̄ 23P0
10.232~0.6! 10.214~4.9! 10.229~0.1!

Y:bb̄ 23P1
10.255~0.5! 10.252~0.1! 10.258~0.1!

Y:bb̄ 23P2
10.268~0.4! 10.265~0.2! 10.278~1.8!

Y:bb̄ 33S1
10.355~0.5! 10.342~2.8! 10.360~0.4!

Y:bb̄ 43S1
10.580~3.5! 10.662~9.4! 10.617~1.9!

B:bū 11S0
5.279~1.8! 5.332~13.7! 5.270~0.3!

B* :bū 13S1
5.325~1.8! 5.377~13.2! 5.317~0.3!

hc :cc̄ 11S0
2.980~2.1! 3.011~3.5! 2.976~0.0!

c:cc̄ 13S1
3.097~0.1! 3.129~21.0! 3.127~17.8!

x0 :cc̄ 11P1
3.524~0.2! 3.498~13.0! 3.520~0.3!

x0 :cc̄ 13P0
3.415~1.0! 3.410~0.3! 3.409~0.4!

x1 :cc̄ 13P1
3.510~0.1! 3.514~0.2! 3.508~0.2!

x2 :cc̄ 13P2
3.556~0.1! 3.540~5.2! 3.547~1.5!

hc :cc̄ 21S0
3.594~5.0! 3.580~0.2! 3.612~0.3!

c:cc̄ 23S1
3.686~0.1! 3.680~0.7! 3.691~0.4!

c:cc̄ 13D1
3.770~2.5! 3.773~0.0! 3.811~4.0!

c:cc̄ 33S1
4.040~10.0! 4.246~8.0! 4.086~0.4!

c:cc̄ 23D1
4.159~20.0! 4.288~0.8! 4.163~0.0!

D:cū 11S0
1.865~0.5! 1.903~24.2! 1.864~0.0!

D* :cū 13S1
2.007~1.4! 2.046~24.5! 1.997~1.7!

D* :cū 13P1
2.422~1.8! 2.428~0.1! 2.413~0.3!

D* :cū 13P2
2.459~2.0! 2.458~0.0! 2.383~18.8!

Ds :cs̄ 11S0
1.969~0.6! 1.976~0.8! 1.974~0.4!

Ds* :cs̄ 13S1
2.112~2.0! 2.134~6.6! 2.119~0.7!
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Ds* :cs̄ 13P1 2.535~0.3! 2.515~7.2! 2.515~7.0!

Ds* :cs̄ 13P2
2.574~1.7! 2.546~3.6! 2.513~17.0!

K:sū 11S0
0.494~0.0! 0.495~0.0! 0.492~0.1!

K* :sū 13S1
0.892~0.2! 0.905~0.5! 0.908~0.7!

K1 :sū 11P1
1.273~7.0! 1.355~1.1! 1.421~3.6!

K0* :sū 13P0
1.430~4.0! 1.086~10.8! 1.349~0.6!

K1 :sū 13P1
1.402~7.0! 1.294~3.4! 1.524~4.3!

K2* :sū 13P2
1.425~1.3! 1.409~0.2! 1.399~0.5!

K* :sū 13D1
1.714~20.0! 1.690~0.0! 2.004~2.6!

K2 :sū 13D2
1.816~10.0! 1.764~0.4! 1.892~0.8!

K3 :sū 13D3
1.770~10.0! 1.770~0.0! 1.780~0.0!

f:ss̄ 13S1
1.019~0.0! 1.022~0.1! 1.030~2.1!

f 0 :ss̄ 13P0
1.370~40.0! 1.185~0.4! 1.345~0.0!

f 1 :ss̄ 13P1
1.512~4.0! 1.446~4.5! 1.546~1.2!

f 2 :ss̄ 13P2
1.525~5.0! 1.511~0.1! 1.496~0.4!

f:ss̄ 23S1
1.680~20.0! 1.778~0.4! 1.860~1.4!

f:ss̄ 13D3
1.854~7.0! 1.922~1.4! 1.856~0.0!

p:ud̄ 11S0
0.140~0.0! 0.140~0.0! 0.143~0.2!

r:ud̄ 13S1
0.767~1.2! 0.776~0.0! 0.790~0.2!

b1 :ud̄ 11P1
1.231~10.0! 1.202~0.1! 1.411~4.4!

a0 :ud̄ 13P0
1.450~40.0! 0.990~2.4! 1.542~0.1!

a1 :ud̄ 13P1
1.230~40.0! 1.253~0.0! 1.590~1.3!

a2 :ud̄ 13P2
1.318~7.0! 1.302~0.2! 1.318~0.0!

p:ud̄ 21S0
1.300~100.0! 1.028~0.1! 1.543~0.1!

p2 :ud̄ 11D2
1.670~20.0! 1.593~0.2! 1.883~1.6!

r:ud̄ 13D1
1.700~20.0! 1.741~0.1! 1.998~3.4!

r3 :ud̄ 13D3
1.691~5.0! 1.680~0.0! 1.722~0.2!
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often cited in recent experimental works and theoretical
pers on rival approaches.

As we have said, Godfrey and Isgur assume a semir
tivistic wave equation of the second type possessing e
relativistic kinematics but through the inconvenient sum-
square-roots form. They then determine the form of inter
tion in the following way. They assume that the confini
piece of the interaction is a world scalar. They modify t
Coulomb potential with the aid of a smoothing function.
the same time they appear to ignore the Darwin term~e.g.,
the spin-independent contact term present in the one-b

limit ! in the on-shell reduction of theqq̄ scattering ampli-
tude. Although they modify the short-range part of their
teraction with the aid of a smearing function, this modific
tion does not compensate for the ignored Darwin te
Moreover, we have shown elsewhere@26,37# that the Darwin
interactions for scalar and vector interactions lead, throug
canonical transformation, to the quadratic local termsS2 and
A 2 that appear in our equations. Since the authors have
-

a-
ct
-
-

dy

-
-
.

a

g-

nored this part of the Darwin interactions, their results co
tain none of the dynamical consequences of theS2 or
2A 2 pieces. What portion of the Darwin interaction the
include they parametrize separately just as they do the o
portions of the Fermi-Breit interaction. These terms inclu
the spin-spin contact term, the spin-orbit terms, and the
sor terms. In our opinion, this patchwork way of handling t
physics blurs the relativistic significance of their qua
model. In our two-body Dirac equations the Darwin portio
and each of the spin-dependent portions is tied directly
and fixed by the Lorentz formsL(x'),G(x') of the interac-
tion, which are in turn set by theS,A invariant potentials. In
QED these fixed terms yield the correct spectrum with
additional parameters needed to adjust their relative size

In addition to bypassing the problems of singular sp
dependent terms by assuming a smoothing parameter, G
frey and Isgur include nonlocal~momentum-dependent! po-
tentials by replacing the mass-dependentmi

21 in the Fermi-
Breit term by (p21mi

2)21/2. They claim that this is
6-22
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RELATIVISTIC CALCULATION OF THE MESON . . . PHYSICAL REVIEW D70, 034026 ~2004!
necessary because the Fermi-Breit reduction~or the on-shell
qq̄ scattering amplitude in c.m.! does not adequately expre
the full momentum dependence~or nonlocal nature! of the
potential. While this might be true, we have found that su
nonlocal behavior is not necessary to obtain very good
sults either in lowest-order QED or in the quark model.

Like the Adler-Piran potential that we use in our a
proach, their potential includes a running coupling consta
In fact, by convolving a parametric Gaussian fit to the ru
ning coupling constant with the 1/q2, they obtain their de-
sired smoothing of the Coulomb potential, thus disposing
two problems at the same time. In addition, they are able
treat the zero isospin mesons such as theh and h8 by in-
cluding a phenomenological annihilation term. We leave
this term in our results of Table I–IV and in our comparis
with the results of Godfrey and Isgur in Table V. Lichtenbe
@69# has compared an earlier version of our quark model
the meson spectrum with that of Godfrey and Isgur. T
potential we used in that earlier version was the o
parameter Richardson potential, with the confinement pi
chosen to be one-half timelike vector and one-half scalar
Lichtenberg pointed out, Godfrey and Isgur obtained sign
cantly better agreement with the data than we did. He st
that this is because they use significantly more parame
than we do, including four in the potential and six to descr
relativistic effects, ten altogether, compared to our one. Ho
ever, we do not believe that as a general rule the numbe
parameters that appear in the potential is, in itself, of
much significance as how these parameters are distribu
For example, in our present and previous models there
two invariant functions,A and S, related to the single non
relativistic ~Adler-Piran! VAP that itself depends on two pa
rameters. These parametric functions are not entirely in
pendent, being related by Eqs.~3.1!, ~3.8a!, ~3.8b!.
Specifying their form fixes both spin-independent and sp
dependent parts of the quasipotentialFw . We might say that
our formalism has 5 quark mass parameters and two p
metric functions. Increasing the number of parameters
A,S depend on may or may not increase the goodness o
fit. According to our way of counting, Godfrey and Isg
have independent parametric functions for the two spin-o
parts of the potential, the spin-spin contact part, the ten
part, the scalar potential, and the spin-independent part o
vector potential, altogether 6 parametric functions. From
way of counting the number of parameters the number
parametric functions would not increase no matter how m
parameters are included in fixing the functional form of ea
of these six functions. Likewise, in our case, no matter h
many parameters we use in fixingA,S there are only two
independent parametric functions. Our approach is dist
from that of Godfrey and Isgur in that we do not alter t
functional form at the level of the spin dependence but rat
at the level of the kernels.

Finally, before we compare our present work with that
Godfrey and Isgur, we note that our present model diff
from our earlier one used by Lichtenberg in his comparis
of the two approaches. Our present treatment differs in
replacement of the Richardson potential by the Adler-Pi
~AP! potential. The intermediate range form of the AP pote
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tial is closely tied to an effective field theory related to QC
and is therefore superior to Richardson’s ansatz. Furt
more, in calculations based on our earlier treatment we
nored the tensor coupling and unequal mass spin-orbit dif
ence couplings, which we explicitly include in the prese
calculations. We have also corrected a defect in the dec
pling we used between the upper-upper and lower-low
components of the wave functions for spin-triplet states
our older treatment.

B. Comparison of the fit with that of the constraint approach

We now compare the fit given by our model to that pr
vided by the model of Godfrey and Isgur. In Table V w
display in the fourth column the fit we would obtain with ou
model if we included only the 77 mesons that our fit has
common with that of Godfrey and Isgur. We then compa
the fits by examining the incrementalx2 values for each
meson.~In an rms comparison they would obtain about
compared to our value of 79.!

For the 77 mesons in their table, our fits are closer to d
in only 32; overall their fit is better. Generally speaking o
results are better on the newer mesons while their fit is be
on the older mesons. A detailed comparison reveals the
lowing. TheirR values for the two upsilon, the one charm
nium, and theK* , f, and r-p triplet P multiplets are
0.29,0.50,0.57,0.36,0.42,0.47 and are distinctly differ
from our values of 0.68,0.76,0.41,20.66,20.21,24.00 and
the experimental numbers of 0.66,0.61,0.48,0.09,20.97,
20.4. As was true for the Brayshaw analysis, the constra
Adler-Piran combination gives a distinctly better fit than t
Isgur-Wise approach for the heavier mesons, while both g
poor results for the lighter mesons. As was the case for Br
shaw’s spectrum, none of their light multiplets are inverte
whereas although ours are inverted they are not inverte
the same way as the experimental numbers are. Again,
inversions are due to the action of the scalar potential. G
frey and Isgur include a timelike contribution in the spi
orbit part of their Hamiltonian. This may be responsible f
their lack of the partial inversion that appears in the data

Computing their 3P averages @5( 3P2)13( 3P1)
11( 3P0)#/9 along with the 1P1 mesons for the charmo
nium, K* , andr-p system we find the following three pair
of numbers: 3.524,3.520;1.392,1.340;1.262,1.220. Comp
son with our numbers of 3.519,3.520;1.424,1.411;1.4
1.397 and the experimental numbers
3.526,3.525;1.402,1.375;1.231,1.303 shows the constr
approach giving slightly better numbers for the heavier m
sons and theK* while the Godfrey-Isgur results are som
what better for the lighter mesons. Their3D average
@7( 3D2)15( 3D1)13( 3D1)#/15 and their1D2 meson for the
K* are 1.795,1.780 MeV while our results and the expe
mental results are 1.873,1.879 and 1.774,1.773 MeV, res
tively. Our results are relatively closer to one another wh
theirs are closer to the data in an absolute sense. Th
indicative of the general trend of our orbitally excited lig
mesons being somewhat high. We suspect that this is du
the S2 behavior becoming dominant at longer distanc
changing the behavior of the confining potential in the effe
tive Schrödinger-like equation from linear to quadratic.

Their values of the hyperfine splittings ar
130,60,160,150,430,130,620,150,120 MeV for the two ch
6-23
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TABLE V. Comparison of meson masses from Isgur-Wise model and covariant constraint dynamics~CCD!.

Name Expt. Isgur and Wise CCD Name Expt. Isgur and Wise CCD
Y:bb̄ 13S1
9.460~0.2! 9.460~0.0! 9.453~0.8!

Y:bb̄ 13P0
9.860~1.3! 9.850~0.5! 9.842~1.6!

Y:bb̄ 13P1
9.892~0.7! 9.880~1.4! 9.889~0.1!

Y:bb̄ 13P2
9.913~0.6! 9.900~1.8! 9.921~0.6!

Y:bb̄ 23S1
10.023~0.3! 10.000~6.9! 10.023~0.0!

Y:bb̄ 23P0
10.232~0.6! 10.230~0.0! 10.228~0.2!

Y:bb̄ 23P1
10.255~0.5! 10.250~0.3! 10.257~0.0!

Y:bb̄ 23P2
10.269~0.4! 10.260~1.0! 10.277~0.8!

Y:bb̄ 33S1
10.355~0.5! 10.350~0.3! 10.359~0.2!

Y:bb̄ 43S1
10.580~3.5! 10.630~2.4! 10.615~1.2!

Y:bb̄ 53S1
10.865~8.0! 10.880~0.0! 10.828~0.2!

Y:bb̄ 63S1
11.019~8.0! 11.100~1.2! 11.014~0.0!

B:bū 11S0
5.279~1.8! 5.310~3.3! 5.272~0.2!

B* :bū 13S1
5.325~1.8! 5.370~6.9! 5.319~0.1!

Bs :bs̄ 11S0
5.369~2.0! 5.390~1.2! 5.368~0.0!

Bs :bs̄ 13S1
5.416~3.3! 5.450~1.4! 5.426~0.1!

hc :cc̄ 11S0
2.980~2.1! 2.970~0.2! 2.978~0.0!

c:cc̄ 13S1
3.097~0.0! 3.100~0.1! 3.128~14.1!

x0 :cc̄ 11P1
3.526~0.2! 3.520~0.5! 3.520~0.5!

x0 :cc̄ 13P0
3.415~1.0! 3.440~4.4! 3.408~0.4!

x1 :cc̄ 13P1
3.510~0.1! 3.510~0.0! 3.507~0.2!

x2 :cc̄ 13P2
3.556~0.1! 3.550~0.5! 3.548~0.9!

hc :cc̄ 21S0
3.594~5.0! 3.620~0.4! 3.611~0.2!

c:cc̄ 23S1
3.686~0.1! 3.680~0.5! 3.689~0.1!

c:cc̄ 13D1
3.770~2.5! 3.820~4.2! 3.809~2.5!

c:cc̄ 33S1
4.040~10.0! 4.100~0.5! 4.082~0.2!

c:cc̄ 23D1
4.159~20.0! 4.190~0.0! 4.159~0.0!

c:cc̄ 33D1
4.415~6.0! 4.450~0.4! 4.456~0.6!

D:cū 11S0
1.865~0.5! 1.880~2.7! 1.865~0.0!

D* :cū 13S1
2.007~0.5! 2.040~12.6! 1.998~0.8!

D* :cū 13P1
2.422~1.8! 2.440~0.9! 2.408~0.6!

D* :cū 13P2
2.459~2.0! 2.500~3.8! 2.381~13.6!

Ds :cs̄ 11S0
1.968~0.6! 1.980~1.4! 1.976~0.6!

Ds* :cs̄ 13S1
2.112~0.7! 2.130~3.0! 2.121~0.8!

Ds* :cs̄ 13P1
2.535~0.3! 2.530~0.4! 2.512~6.7!

Ds* :cs̄ 13P2
2.574~1.7! 2.590~0.9! 2.513~11.6!

K:sū 11S0
0.494~0.0! 0.470~8.0! 0.494~0.0!

K* :sū 13S1
0.892~0.2! 0.900~0.1! 0.907~0.5!

K1 :sū 11P1
1.273~7.0! 1.340~0.5! 1.411~2.2!
gs
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K0* :sū 13P0 1.429~4.0! 1.240~2.3! 1.323~0.7!

K1 :sū 13P1
1.402~7.0! 1.380~0.1! 1.509~2.3!

K2* :sū 13P2
1.425~1.3! 1.430~0.0! 1.393~0.5!

K* :sū 21S0
1.460~30.0! 1.450~0.0! 1.593~0.2!

K* :sū 23S1
1.412~12.0! 1.580~1.5! 1.801~7.9!

K2 :sū 11D2
1.773~8.0! 1.780~0.0! 1.879~1.1!

K* :sū 13D1
1.714~20.0! 1.780~0.1! 1.988~1.6!

K2 :sū 13D2
1.816~10.0! 1.810~0.0! 1.947~1.5!

K3 :sū 13D3
1.770~10.0! 1.790~0.0! 1.770~0.0!

K* :sū 31S0
1.830~30.0! 2.020~0.5! 2.188~1.7!

K2* :sū 23P2
1.975~22.0! 1.940~0.0! 2.098~0.3!

K4* :sū 13F4
2.045~9.0! 2.110~0.3! 2.080~0.1!

K2 :sū 23D2
2.247~17.0! 2.260~0.0! 2.377~0.7!

K5* :sū 13G5
2.382~33.0! 2.390~0.0! 2.350~0.0!

f:ss̄ 13S1
1.019~0.0! 1.020~0.0! 1.031~1.9!

f 0 :ss̄ 13P0
1.370~40.0! 1.360~0.0! 1.329~0.0!

f 1 :ss̄ 13P1
1.512~4.0! 1.480~0.7! 1.536~0.4!

f 2 :ss̄ 13P2
1.525~5.0! 1.530~0.0! 1.493~0.4!

f:ss̄ 23S1
1.680~20.0! 1.690~0.0! 1.852~0.9!

f:ss̄ 13D3
1.854~7.0! 1.900~0.4! 1.849~0.0!

f 2 :ss̄ 23P2
2.011~69.0! 2.040~0.0! 2.162~0.1!

p:ud̄ 11S0
0.140~0.0! 0.150~1.6! 0.143~0.1!

r:ud̄ 13S1
0.767~1.2! 0.770~0.0! 0.788~0.1!

b1 :ud̄ 11P1
1.231~10.0! 1.220~0.0! 1.397~2.6!

a0 :ud̄ 13P0
1.450~40.0! 1.090~1.0! 1.507~0.0!

a1 :ud̄ 13P1
1.230~40.0! 1.240~0.0! 1.573~0.8!

a2 :ud̄ 13P2
1.318~0.7! 1.310~0.0! 1.309~0.0!

p:ud̄ 21S0
1.300~100.0! 1.300~0.0! 1.535~0.1!

r:ud̄ 23S1
1.465~25.0! 1.450~0.0! 1.774~1.6!

p2 :ud̄ 11D2
1.670~20.0! 1.680~0.0! 1.871~1.0!

r:ud̄ 13D1
1.700~20.0! 1.660~0.0! 1.986~2.2!

r3 :ud̄ 13D3
1.691~5.0! 1.680~0.0! 1.711~0.1!

p:ud̄ 31S0
1.795~10.0! 1.880~0.5! 2.169~9.4!

r:ud̄ 33S1
2.149~17.0! 2.000~0.5! 2.335~0.8!

r4 :ud̄ 13F4
2.037~26.0! 2.010~0.0! 2.036~0.0!

p2 :ud̄ 21D2
2.090~29.0! 2.130~0.0! 2.372~0.6!

r3 :ud̄ 23D3
2.250~45.0! 2.130~0.1! 2.307~0.0!

r5 :ud̄ 13G5
2.330~35.0! 2.340~0.0! 2.311~0.0!

x2 0.0 84.5 104.7
of

int
ed
tion
eV
ar-
monium multiplets, and theD-D* ,Ds-Ds* , two K-K* , and
threep-r pairs. Comparison with the experimental splittin
of 117,92,142,144,398,248,627,165,354 MeV and our re
sults of 150,78,133,145,403,208,645,239,166 MeV dem
strates that while our results are closer than theirs for mos
the newer mesons and theK-K* , their results are more in
line for most of the older mesons. Again this shows a patt
n-
of

n

of our method overestimating the radially excited states
the light mesons.

Let us see if this trend of overestimation by the constra
approach continues for the radial excitations of fix
quantum numbers. The six upsilon states in the data por
of the table occur at intervals of 563,332,225,285,154 M
while the three charmonium triplet states and the two ch
6-24
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monium singlet states occur at intervals of 589,354,6
MeV, whereas the three singletK and the two tripletK*
states occur at intervals of 977,370,520 MeV. Finally t
three pion and three rho excitations occur at 1160,4
and 698,654 MeV. The corresponding Isgur-Wi
intervals are 540,350,280,250,220,580,420,650,980,
680,1150,580,680,550 MeV compared to our interv
of 570,336,256,213,186,561,393,633,1099,495,894,1
634,986,561 MeV. Again we encounter a pattern of our
sults being more accurate overall for the newer mesons w
theirs are more accurate for the older ones~with our results
too large for all of the older ones!.

Primarily what we learn from this comparison is that n
only does the scalar interaction lead to partial triplet inv
sions for the lighter mesons but also yields radial and orb
excitations that are too high for a related reason: the pres
of the S2 term in the effective potential. On the other han
as Godfrey and Isgur themselves point out, their treatmen
the relativistic effects is schematic, with no wave equat
involved, allowing an uncontrolled approach in which the
are no tightly fixed connections among the various sp
dependent and spin-independent parts of the effective po
tial F.

An important feature of our approach that differs sign
cantly from the model of Godfrey and Isgur~as well as those
of the Wisconsin and Iowa State groups! is the size of its
resulting light-quark masses. Ouru,d quark masses ar
about a factor of four or five smaller than theirs, significan
closer to the current algebra values. Godfrey and Isgur a
that since a constituent quark model requires dressed qu
of a finite size~to avoid singular potentials in their wav
equation among other reasons! one should not expect th
model quarks to have current-quark masses. We argue t
properly structured relativistic wave equation should not
quire finite quark sizes. Similar remarks have been m
historically to justify tampering with the wave equation
QED to avoid treating singular terms. However, in QE
those terms are perturbative artifacts. In fact, in the c
straint equations for QED, they arise from the premat
weak-potential approximation to terms that are actually w
behaved at the origin. Similarly, when we apply the co
straint approach to QCD we need no size parameters.

Finally we mention what we consider the major theore
cal shortcoming in the approach of Godfrey and Isgur. T
formalism that they use gives very good results on the
perfine splittings for light and heavy mesons. However, i
unknown if this is an artifact of their smearing factors a
the introduction of relativistic momentum dependent corr
tions to the potentials~that is, through the replacement o
quark massesm by Ap21m2) needed to modify the singula
nature of the potentials that they start with.

It would be of interest to test the wave equation used
Godfrey and Isgur numerically withA52a/r andS50 for
positronium to see if any of their successes with meso
hyperfine splittings are reflections of corresponding nonp
turbative successes in QED. If their method were not abl
obtain an acceptable fit to the QED spectral results thro
order a4, then the legitimacy of its fits in QCD would b
seriously called into question. Without such tests one co
03402
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not be sure whether the method they employ to avoid
singular potentials has distorted the dynamics. The constr
approach has passed this test in that without introducing
ditional parameters it does faithfully reproduce the corr
spectral results in QED.

X. CONCLUSION AND WARNINGS
ABOUT THE DANGERS OF ‘‘RELATIVISTIC’’
AND ‘‘NONRELATIVISTIC’’ SPECTRAL FITS

In this paper, we have investigated how well the relat
istic constraint approach performs in comparison with
lected alternatives when used to produce a single fit of
perimental results over the whole meson spectrum. T
approach is distinguished from others by its foundation—
set of coupled, compatible, fully covariant wave equatio
whose nonperturbative numerical solution yields the m
spectrum along with wave functions for theqq̄ meson bound
states. Its virtue—generation of fully covariant sp
structures—also serves to restrict and relate plausible in
action terms just as the ordinary single-particle Dirac eq
tion determines relations among Pauli spin dependences
fixes the proper strength of the Thomas precession term
electrodynamics. The dynamical structures of the constr
approach were originally discovered in classical relativis
mechanics but have since been verified for electrodynam
through diagrammatic summation in quantum field theory
the field-theoretic eikonal approximation@25#.

To use such relativistic equations to treat the phenome
logical chromodynamicqq̄ bound state, one must construct
relativistic interaction that possesses the limiting behavi
of QCD. In our approach we have done this by using
nonrelativistic static Adler-Piran potential to construct
plausible relativistic interaction that regenerates the AP
tential as its nonrelativistic limit. In our equations, this pr
cess generates a host of accompanying interaction te
When describing these interactions, one must guard agai
semantic difficulty in the verbal classification of the vario
parts of the interaction as ‘‘scalar,’’ ‘‘vector,’’ ‘‘pseudovec
tor,’’ etc. The various formalisms classify these in differe
ways but in our equations, the meaning of these terms ca
readily determined through examining their roles in the d
fining equations~2.26!, ~5.1!, ~5.2!, ~5.4!. Once these terms
have been introduced, the constraint formalism automatic
produces a system of important accompanying terms suc
quadratic terms that dominate at long distance~reinforcing or
undermining confinement! or spin dependences that accom
pany chosen interactions producing level splits that agre
disagree with the experimental results in various parts of
spectrum.

After identification of the relativistic transformation prop
erties of interaction terms the constraint method leaves
most no leeway for fiddling with~unnecessary! cutoffs, etc.
Some years ago, when applied to thee2e1 system, its struc-
ture proved restrictive enough to rule out within it the pre
ence of postulated anomalous resonances@23,71#. In recent
work on the relation of our equations to the Breit and ear
Eddington-Gaunt equations for electromagnetic bound sta
the method has explicitly demonstrated the importance
6-25
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H. CRATER AND P. VAN ALSTINE PHYSICAL REVIEW D70, 034026 ~2004!
keeping spin couplings among pieces of the full 1
component wave functions whose counterparts are o
truncated or discarded in alternative treatments@9,33#.

The fits that we have examined as alternatives fall i
different classes: motivated relativistic fits~constraint vs
truncations of standard field-theoretic!, ad hoc relativistic
fits, and cautious semirelativistic fits. Among the relativis
ones, there is a danger exemplified by the Brayshaw mo
which achieves relative success despite the dubious rel
istic nature of its interaction. As always, what makes fits h
to judge at this stage is the ease with which one can ach
apparent success over limited regions of the spectrum u
highly parametrized interactions. We have attempted to av
this problem by limiting comparisons to published treatme
that include both the light- and heavy-meson portions of
spectrum, not just one of the two sectors. Our choices
comparison are meant to be representative~we do not at-
tempt an exhaustive review! ~see Ref.@72# for other impor-
tant treatments!.

With the exception of the Iowa State model@46# all of the
comparison models fail to test whether or not a nonpertur
tive treatment of their wave equations would yield the kno
results if the QCD kernels used were to be replaced by o
appropriate for QED. With the exception of the quark mas
obtained by Brayshaw@47#, our light quark masses are su
stantially closer to the current algebra values than are th
produced by the other comparison models. In our applica
of the constraint approach, it is possible to describe the n
perturbative physics that accommodates a typical size fo
effective or constituent quark mass used in the other
proaches and that at the same time has the size necess
account for baryon magnetic moments. Even though ouu-
and d-quark masses are small compared with constitu
quark masses found in the competing approach, if we c
pute the expectation valuêMi(A,S)& we find a range tha
includes the traditional moment mass values. We find
range of values for this effective mass from 64 MeV for t
pion to 390 MeV for the rho. Its value depends not only
the quantum numbers of the meson but also the flavor of
other quark. For example, for theD meson we find
^Mu(A,S)&5190 MeV, whereas for theB we obtain 258
MeV.

Finally, some authors have even produced unabash
nonrelativistic fits. They claim to obtain good fits to the m
son spectrum through the use of variants of the nonrelati
tic quark model~NRQM! @43,73#. These authors even claim
success at fitting the light-quark mesons for which the
sumptionsT!mc2, uVu!mc2 of the nonrelativistic Schro¨-
dinger equation are patently false. What can account for
apparent success of the NRQM?

Morpurgo states@43# that the various potential models
including the nonrelativistic quark model, are merely diffe
ent parametrizations of an underlying exact QCD Lagrang
description. That is, all use essentially the same spin
flavor structures. For example, for the mesons one can de
a ‘‘parametrized mass’’ with general form~for the present
discussion restricted top,K,r,K* )

‘ ‘parametrized mass’’

5A1B~P1
s1P2

s!1Cs1•s2

1D~P1
s1P2

s!s1•s2 ~10.1!
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in which Pi
s is the projector onto the strange quark sect

These authors say that this structure, although typical o
NRQM description, follows from QCD itself. They state th
the form ~10.1! is common to all of the relativistic or semi
relativistic quark models. They assert that any one of th
can be successful but not superior to any other, if it mer
reproduces the spin flavor structure of the general param
zation. Thus, from their point of view selection of the ‘‘bes
model is entirely a matter of taste and simplicity. We d
agree with this assessment for the following reasons. F
the kinetic and potential parameters have significances
yond simply producing a fit for the two-body bound-sta
sector in isolation. When the spin-flavor structure in~10.1!
appears in the constraint approach, its accompanying c
stituent quark masses turn out to be closer to the curr
quark masses than those produced by most other approa
while the constraint method requires only two parame
functions to be used beyond the parameters of the constit
quark masses. The constraint scheme successfully uses
set of these parametric functions for the entire spectrum
meson states including the radial as well as orbital exc
tions. But most importantly, within the bound-state spectr
itself, in our relativistic approach even though superficia
sharing the basic spin-flavor structure~10.1!, all potentials
do not fare equally well. The essential point is that even
the simplest form of our equations, the parametrization
different from that given in the Morpurgo form in that it
parametersA,B,C,D, are themselves dependent on the e
ergy operator on the left hand side. When that happens, s
relativistic potentials do better than others. In particular,
those we investigated, the potential that works the best~the
Adler-Piran potential! is one possessing many of the featur
important in lattice QCD calculations~e.g., linear and sub-
dominant logarithmic confining pieces!. The combination of
the constraint approach with the Adler-Piran potential e
bodies more of the important physical effects contained
QCD-related effective or numerical field theories.

Can one understand the apparent successes of the NR
fits by starting from the relativistic treatments? Some auth
@74,75# have used bounds on the kinetic square-root oper
Ap21m2 to attempt to understand the apparent succes
the nonrelativistic potential models for relativistic quar
antiquark states. Instead, we will give an explanation t
starts directly from the relativistic constraint approach.

Some years ago, Caswell and Lepage@76# rewrote a rela-
tivistic constraint equation in an effective nonrelativist
Schrödinger-like form. Here, we do the opposite and rec
the NRQM Schro¨dinger equation in a form resembling th
constraint equation. As we have seen our two-body Di
equations lead to an effective Schro¨dinger-like equation of
the form

@p21Fw~x' ,s1 ,s2!#c5b2~w!c. ~10.2!

In the c.m. system this becomes

@p21Fw~r ,s1 ,s2!#c5b2~w!c. ~10.3!
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Even though the stationary state nonrelativistic Schro¨dinger
equation

F p2

2m
1V~r ,s1 ,s2!Gc5EBc ~10.4!

has a similar form, the corresponding structures in each h
entirely different physical significances. For example, in E
~10.4!, the vectorsp and r are nonrelativistic quantities in
contrast with their counterparts in the constraint appro
that appear in the relativistic equation in the c.m. syste
One can easily manipulate the nonrelativistic Schro¨dinger
equation into a form similar in appearance to the constr
Schrödinger form by multiplying both sides of the equatio
by 2m and addingb2(w)22mEB to both sides. The result i

@p21Fw~r ,s1 ,s2!#c5b2~w!c ~10.5!

in which

Fw~r ,s1 ,s2!52mV~r ,s1 ,s2!1b2~w!22mEB .
~10.6!

In numerical calculations thep operator andr variable are
treated in the same manner in calculations based on both
relativistic constraint equation and the nonrelativistic eq
tion. But as we have seen, they have different physical
nificances in each equation. When used to fit parts of
meson spectrum, the apparent success of the NRQM f
this point of view is then due to its incorporation of variabl
numerically indistinguishable from their covariant versio
together with a potential that fortuitously coincides~for a
limited range of states! with a covariant one modified by a
energy-dependent constant term that varies from stat
state.
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APPENDIX A: PAULI FORM OF THE TWO-BODY DIRAC
EQUATIONS FOR f¿Äc1¿c4 AND THEIR RADIAL

FORMS

Reference@51# sets out two-body Dirac equations co
taining general covariant interactions along with their a
companying Schro¨dinger-like forms. The general interac
tions consist of the eight Lorentz invariant form
corresponding to scalar, time and spacelike vector stud
here along with five others: pseudoscalar, time- and space
pseudovector, axial, and polar tensor. When Eq.~2.26! is
written in terms of the four four-component spinorsc1 . . . 4 it
decomposes into eight coupled equations. In Ref.@51# Long
and Crater showed how these may be rearranged in P
form or Schro¨dinger-like equations in terms of the combin
tion f15c11c4 in the process providing a simpler cou
pling scheme than that used in Ref.@23#, which involves
coupled equations betweenc1 and c4. Equation~4.24! of
Ref. @51# yields the following equation~simplified here for
electromagneticlike interactions (]J[]E1 /E252]G) and
scalar interactions alone!:
03402
ve
.

h
.

t

he
-
-
e
m

to

e

-

d
ke

li-

FE1D1
21

1

E1M21E2M1
~M2D1

112M1D2
11!

1M1D1
22

1

E1M21E2M1
~E2D1

111E1D2
11!Gf1

5~E1
22M1

2!f1 ~A1!

in which the kinetic-recoil terms appear through the com
nations:

D1
115expGFs1•p1

i

2
s2•]@L1G~12s1•s2!#G ,

D2
115expGFs2•p1

i

2
s1•]@L1G~12s1•s2!#G ,

D1
215expGFs1•p1

i

2
s2•]@2L1G~12s1•s2!#G ,

D1
225expGFs1•p1

i

2
s2•]@L2G~11s1•s2!#G . ~A2!

Manipulations using both sets of Pauli matrices then lead
the form presented in the text in Eq.~2.29!.

We obtain the radial forms of Eq.~2.29! that we use for
our numerical solution for the general fermion-antifermi
system by forming standard matrix elements of sp
dependent operators~see Appendix C of Ref.@23#!. We start
from the general wave function of the form

c i jm5(
l ,s

cilsRils jYls jm ; i 51,2,3,4 ~A3!

in which Rils j5uils j /r is the associated radial wave functio
and Yls jm is the total angular momentum eigenfunction.
terms ofD5E1M21E2M1 the corresponding radial form
then become, fors50, j 5 l ,

H 2
d2

dr2
1

j ~ j 11!

r 2
12mwS1S212e2A2A 2

2@2G2 log~D!1G1L#8S d

dr
2

1

r D2
1

2
¹2~L14G!

2
1

4
@2L22G12 log~D!#8~2L24G!8J uj 0 j

1exp~2G2L !
w~m12m2!

D ~2G1L !8
Aj ~ j 11!

r
uj 1 j

5b2~w!uj 0 j , ~A4!

coupled to, fors51, j 5 l ,
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H 2
d2

dr2
1

j ~ j 11!

r 2
12mwS1S212e2A2A 2

2@G2L2 log~D!#8
d

dr
2

L8

r
1

1

2
¹2L

1
1

4
@2 log~D!1~2L12G!#8L8J uj 1 j

1exp ~2G2J!
~e12e2!~m11m2!

D

3~2G1L !8
Aj ~ j 11!

r
uj 0 j5b2~w!uj 1 j , ~A5!

and fors51,j 5 l 11,

H S 2
d2

dr2
1

j ~ j 21!

r 2 D 12mwS1S212e2A2A 2

1F log~D!22G1
1

2 j 11
~G1L !G8 d

dr S 2 j log~D!

1
1

2 j 11
@~4 j 21 j 11!G2G2L# D 81

r

1
1

4
@2~G1L !82#1

1

2 j 11F1

2
¹2L1G 8S 2 j 23

4
G

1G1L D 8
2

1

2
log8~D!L8G J uj 211j1

Aj ~ j 11!

2 j 11

3H 2@G1L#8
d

dr
1@~2G2L !~122 j !13G#8

1

r
1¹2~L !

2L8@ log~D!22G#8J uj 111j5b2~w!uj 211j , ~A6!

coupled tos51,j 5 l 21,

H S 2
d2

dr2
1

~ j 11!~ j 12!

r 2 D 12mwS1S212e2A2A 2

1F log~D!22G2
1

2 j 11
~G1L !G8 d

dr F ~ j 11!log~D!

2
1

2 j 11
@~4 j 217 j 14!G2G2L#G81r 1

1

4
@2~G1L !82#

2
1

2 j 11 F1

2
¹2L1G 8S 2 j 15

4
G2G2L2CD 8

1
1

2
log8~D!L8G J uj 111j1

Aj ~ j 11!

2 j 11 H 2@G1L#8
d

dr

1@~2G2L !~2 j 13!13G#8
1

r
12¹2L1L8@ log~D!

22G#8J uj 211j5b2~w!uj 111j . ~A7!
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APPENDIX B: NUMERICAL CONSTRUCTION OF MESON
WAVE FUNCTIONS

We obtain from our computer program a numerical wa
function ū(x) normalized so that

E
2`

1`

ū~x!2dx51. ~B1!

The radial variable is related tox by r 5r 0ex and the radial
wave functionu(r )5ū(x)e2x/2/Ar 0. Hence

E
0

1`

u~r !2dr5E
2`

1`

ū~x!2dx. ~B2!

Now let vn(r ) be some radial basis functions that are o
thonormalized so that

E
0

1`

vn~r !vn8~r !dr5dnn8 . ~B3!

Thus

u~r !5 (
n50

`

unvn~r !, ~B4!

where

un5E
0

1`

vn~r !u~r !dr5E
2`

1`

v̄n~x!ū~x!dx. ~B5!

Note thatv̄n(x)5vn(r )ex/2Ar 0 so that we can compute th
un in a straightforward way. Thus we have as an approxim
tion

u~r !8 (
n50

N

vn~r !E
2`

1`

v̄n~x!ū~x!dx

5 (
n50

N

cnvn~r ![wN~r !. ~B6!

Now we use a least squares fit to determine thecn . In the
limit of large N we havecn→un since we minimize the
quantity

x2[E
2`

1`

uū~x!2w̄N~x!u2dx. ~B7!

For thevn(r ) we use harmonic oscillator~Laguerre! func-
tions defined by

vn
k~y!5c~n,k!e2y2/2ykLn

k21/2~y2! ~B8!

in which

c~n,k!5A 2~n! !

a~n1k21/2!!

is the normalization constant and in terms ofz5y2
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TABLE VI. Comparison of important structural features.

HC-PVA Wisconsin Iowa State Brayshaw Godfrey and Isg

Wave equation Two-Body Dirac Reduced BSE Quasipotential Breit None
Covariance Explicit Implicit Implicit Implicit Implicit
Nonperturb. tests Strng. ptnl.–QED Wk ptnl. Str. ptnl. Str. ptnl Str. ptnl.
Number of parametric fns 2 2 2 3 6
x2 101 5169 vs 73 rms 50 vs 53 204 vs 111 85 vs 105
Locality Local Nonlocal Nonlocal Local Nonlocal
Running coupling constant Yes Yes Yes No Yes
res
Ln
k21/2~z!5

ezz2k11/2

n!

dn

dzn
~e2zzk1n21/2!. ~B9!

So, for example,

L0
k21/2~z!51,

L1
k21/2~z!5k11/22z,

L2
k21/2~z!5

1

2
@~5/21k2z!L1

k21/2~z!2~1/21k!L0
k21/2~z!

5@~k13/2!~k11/2!22~k13/2!z1z2#/2,
~B10!

. . . ,

Ln11
k21/2~z!5

1

n11
@~2n11/21k2z!Ln

k21/2~z!

2~n1k21/2!Ln21
k21/2~z!].

Thus lettingy5r /a5aex we obtain
e

tio
as
e
a

te
i

J.

03402
v̄0~x!5c~0,k!akexp@x~2k11!/2#exp~2a2e2x/2!,

v̄1~x!5A 1

k11/2
v̄0~x!~k11/22a2e2x!,

v̄2~x!5A 2!

~k11/2!~k13/2!
v̄0~x!@~k13/2!~k11/2!

22~k13/2!a2e2x1a4e4x#/2, ~B11!

. . . ,

v̄n~x!5A n!

~k11/2!..~k1n21/2!
v̄0~x! (

m50

n

~21!m

3
~n1k21/2!!

~n2m!! ~k21/21m!!m!
~aex!2m.

APPENDIX C: COMPARISON OF FEATURES

In Table VI we present a comparison of important featu
of approaches treated in this paper.
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