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Shape function effects inB\Xsg and B\Xuøn̄ decays
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We calculate the decay distributions for inclusiveB→Xsg and B→Xu, n̄ decays in the endpoint region,
where radiative corrections are large. The computation is done using effective field theory methods. The
matching coefficients are computed toO(as) and the anomalous dimensions to next-to-leading order. The final
expressions for the differential decay spectra include the completeO(as) corrections and sum the leading and
next-to-leading Sudakov series. We present results for regions of phase space where the shape function can be
expanded in local operators and give the matching coefficients of the resulting enhanced non-perturbative
effects to orderas . We show that moments of the shape functionare notgiven by moments of local operators
once perturbative effects are included, explain why the shape function and its moments satisfy different
renormalization group equations, and contrast this with the situation for deep inelastic scattering. We show that
there are large perturbative corrections in the usual definition of the shape function. This renders incorrect
previous prescriptions for combining radiative corrections with the shape function.
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I. INTRODUCTION

The inclusive decay rates and differential decay distri

tions forB→Xsg, B→Xse
1e2, andB→Xu, n̄ can be com-

puted @1–4# in a systematic expansion in powers
LQCD/mb and as(mb) using heavy quark effective theor
~HQET! and the operator product expansion. The opera
product expansion for the differential decay distribution fa
in certain kinematic regions, but one can still compute
suitably smeared decay distribution. InB→Xsg decay, the
operator product expansion gives an expansion for the p
ton spectrum dG/dEg containing derivatives ofd-functions
of the formLQCD

n d (n)(mb22Eg), which are singular in the
endpoint region 2Eg;MB . Nevertheless, one can still com
pute the differential decay rate in the endpoint region p
vided one smears over a range of photon energies whic
large compared withLQCD. Smearing over a range of photo
energies of orderD converts the expansion of dG/dEg from
an expansion in singular terms to an expansion in power
(LQCD/D)n.1 In the resonance region defined byD
;LQCD

2 /MB , the operator product expansion breaks dow
In this region the invariant mass of the final hadronic syst
satisfiesMX

2;LQCD
2 , and the inclusiveB→Xsg rate is com-

puted by summing over form factors for a few exclusi
modes.

In the shape function region defined byD;LQCD, all the
(LQCD/D)n terms are equally important. The most singu
terms LQCD

n d (n)(mb22Eg) can be summed into a non
perturbative shape function@6# S(Eg) that describes the pho
ton spectrum in the endpoint region. The subleading sin
larities, LQCD

n d (n21)(mb22Eg), give rise to subleading

1See, for example, Ref.@5# where smeared moments forB
→Xsg are computed to orderas

2b0 .
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shape functions suppressed byLQCD/mb @7#, and will be
neglected here. The final state invariant mass in the sh
function region isMX

2;MBLQCD!MB
2 , so the final state is

jet like. In this kinematic region, the final state is describ
by a collinear quark, and the appropriate effective theory
use is soft-collinear effective theory~SCET! @8–11#.

The shape function region is important for measureme

of B→Xsg andB→Xu, n̄ decays, because experimental cu
needed to eliminate backgrounds restrict the measurable
gion of the allowed phase space. The shape functions foB

→Xsg andB→Xu, n̄ decays are related, so the shape fun
tion can be measured in one process and then used in
other @12,13#. This avoids introducing model dependen
into the analysis of experimental results. QCD radiative c
rections are large in the shape function region, due to Su
kov double logarithms, which need to be summed. The ef
of Sudakov resummation inB decays and its effects on th
extraction of CKM parameters such asVub have been studied
in detail previously in a series of papers by Leibovich, Lo
and Rothstein@14#.

In this paper, we will study the shape function region

B→Xsg and B→Xu, n̄ using SCET. Our results are give
for arbitraryq2, and so can be used forB→Xse

1e2 decay.
The weak decay Hamiltonian forB→Xse

1e2 is consider-
ably more complicated than for the other two cases, and
sum over the different operators. The expressions forB
→Xse

1e2 can be obtained using the methods of this pap
and are not given explicitly.

Another region of interest is when the smearing sizeD is
large compared withLQCD, mB@D@LQCD. In this case,
one has an expansion in terms of local operators. Som
the non-perturbative corrections are enhanced, and o
(LQCD/D)m, rather than (LQCD/mb)m. These enhanced non
perturbative corrections will also be computed in this pap
©2004 The American Physical Society24-1
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The SCET renormalization group equations allow one
sum the Sudakov double logarithms in the endpoint reg
The matching conditions are computed to orderas and the
renormalization group evolution to next-to-leading ord
The matching conditions and anomalous dimensions for
first part of our calculation have been computed previou
@8#. We extend the results to include all non-vanishing ter
for large moments. In the regimeD@LQCD, the total order
as part of the calculation~i.e. not including renormalization
group evolution! agrees with an existing calculation by D
Fazio and Neubert@15#. The total orderas contribution is
generated at different scales. Our calculation shows that
most singular orderas terms, of the form ln(12x)/(12x), are
generated at two different scales, and some of them are
cluded in the shape function. As a result, shape func
effects cannot simply be incorporated by convoluting a n
perturbative shape function with the orderas decay distribu-
tions, as was done in Ref.@15#, and we disagree with thei
results in the shape function regionD;LQCD.

We study the connection between the shape function
its moments. Unlike the case of deep inelastic scattering,
shape function and its moments satisfy different renormal
tion group evolution, and are not simply related. The diff
ences arise because of the existence of the velocityv in
heavy quark decays, which couples the1 and2 light cone
components of momentum, and because the twist expan
of deep inelastic scattering is not valid for heavy hadr
decays. This implies that moments of the shape function
not related to matrix elements of local operators as was
viously assumed.

The outline of the paper is as follows. The kinematics a
notation are summarized in Sec. II and the important m
scales in Sec. III. The decay distributions and hadronic t
sors that we compute are discussed in Sec. IV. The detai
the computation are given in Sec. V and the relation betw
the shape function and its moments in Sec. VI. Some ap
cations are discussed in Sec. VIII. The reader not intere
in theoretical details can skip directly to Sec. VIII.

II. NOTATION AND KINEMATICS

The velocity of the decayingB meson isvm, and we will
work in the rest frame vm5(1,0,0,0). For B→Xsg,
B→Xse

1e2, andB→Xu, n̄ decay, theb quark decays into a
light quark with momentump and a gauge boson with mo
mentumq. The coordinate axes are chosen so that the vir
gauge boson is emitted in thez direction and the light quark
in the negativez direction. It is convenient to define the nu
vectorsnm5(1,0,0,21) andm̄5(1,0,0,1), which satisfy

2vm5nm1n̄m, n25n̄250, n•n̄52.

Any four-vectoram can be written as

a5
1

2
a1n̄m1

1

2
a2nm1a' ,

where
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a15n•a, a25n̄•a.

The' components satisfyn•a'5n̄•a'5v•n•a'50.
The e tensor is defined so thate012352e012351, and

e'
mn5emnabvanb ,

g'
mn5gmn2~nmvn1nnvm!1nmnn.

The momentum of theb quark in theB rest frame is
pb5mbv1k, where k;LQCD is the residual momentum
and the coordinate choice is such thatk'50. Let q2 be the
invariant mass of the virtual gauge boson;q250 for
B→Xsg. Theb quark decays into a light quark with momen
tum p and gauge boson with momentumq, pb5p1q. The
momentum components of the particles are

pb
15mb1k1, pb

25mb1k2,

q15mbx, q25
q2

mbx
,

p15mb~12x!1k1, p25
mb

2x2q2

mbx
1k2,

pb'5p'5q'50. ~1!

For B→Xsg decay, the momentum components are given
Eqs.~1! for q andp, with q2→0.

The kinematics simplifies in the shape function regi
x→1 with mb(12x);k1;LQCD. For B→Xsg,

p2;mb ,

p1;mb~12x!1k1,

and forB→Xe1e2 andB→Xu, n̄ decays,

q15mb , q25
q2

mb
,

p15mb~12x!1k1, p25
mb

22q2

mb
.

Instead of decay distributions as a function ofx, one can
also study their moments. For a functionf (x) defined on
xP@0,1#, the moments are defined by

MN~ f !5E
0

1

dxxN21f ~x!.

The endpoint regionx→1 corresponds to large momentsN
→` with the heuristic relation 12x;1/N. For smeared ob-
servables in the endpoint region with smearing widthD, the
relation isN;1/D. The shape function region corresponds
taking large moments withmb /N;LQCD. It is also conve-
nient to defineN̄5NegE51.78N. We will compute all terms
which do not vanish in the limit N→`. The
4-2
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vanishing terms can be obtained by computing to higher
der in the SCET expansion parameterl.

III. MASS SCALES

B decays in the endpoint region have four importa
scales which are relevant for our computation. The larg
scale in the calculation is of the order of theb quark mass,
and is chosen to bem15mb or m15p25(mb

22q2)/mb . At
this scale,p1 and LQCD are infrared scales and can be n
glected, so the final state quark can be treated as mass
The appropriate effective theory to use at this scale is SC
where the quark is described by an-collinear field. The QCD
operators match onto SCET currents atm1 . Our calculation
does not simultaneously minimize logarithms ofmb /m and
p2/m, so the choice ofm1 is a matter of taste.m15mb has
the advantage that it does not depend on the kinematic v
able q2. We will assume thatp2 is of order mb , i.e. that
q2'” mb

2 .
The next important scale is the invariant mass of the fi

hadronic system,m25Ap2[p5(mb
22q2)(12x). Below

this scale, the invariant mass of the final state hadron
large, and they can be integrated out. At the scalem2 , one
integrates out the final hadronic states by computing
time-ordered product of two SCET currents, integrating
the intermediate collinear quark and matching on to bilo
heavy quark operators. The non-locality of the operator
set by m35p1. Below the next scalem3 , these non-local
operators can be replaced by local operators. Finally, la
logarithms in the matrix elements of the operators can
minimized by renormalizing them at the scalem4 of order
the scaleLQCD of non-perturbative dynamics.m4 is chosen
to be large enough that perturbation theory is still valid. T
scales are summarized in Table I.

There is one important difference from deep inelas
scattering: the existence of the scalem35p1. Boost invari-
ance in deep inelastic scattering forbids the occurrence
such a scale in the effective theory. However, in the cas
heavy meson decays, boost invariance is broken by
choice of rest frame of theB meson. Equivalently, the deca
amplitudes can depend onv, which does not exist for dee
inelastic scattering, and so one can have the scalep1.

Finally, keep in mind that the ratio of the largest a
smallest scalesm1 /m4 is at most five inB decays.

TABLE I. The scalesm1–m4 that we will use.m4 is a scale of
order LQCD at which perturbation theory is still valid,m4

;1 GeV.

m1
mb , n̄•p5

mb
22q2

mb

m2 p5Ap1p25A(mb
22q2)(12x) 5Amb

22q2

N̄

m3 p15mb~12x! 5
mb

N̄
m4 LQCD
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IV. HADRONIC TENSOR AND THE ENDPOINT REGION

All strong interaction effects for the inclusiveB decays
studied here can be encoded in the hadronic tensor

Wab52
1

p
Im Tab,

where

T( f )
ab52 i E d4xe2 iq•x

^B̄uT@J( f )
†a~x!J( f )

b ~0!#uB̄&
2mB

,

and J(u)
a and J(s)

a are the quark currents mediating th

b→u, n̄ andb→sg transition, respectively:

J(s)
a 5

1

mb
s̄PRsabbqb ,

J(u)
a 5ūPRgab.

A factor of 1/mb has been included in theb→sg current so
that it has the same dimension as theb→u current.

The hadronic tensorWab can only depend on the mo
mentapb andq or, equivalently, on the velocity of the heav
quark, vm, and the momentum of the light quark,pm. The
most general tensor structure possible is

W(u,s)ab52gabW1
(u,s)1vavbW2

(u,s)1 i eabrsvrqsW3
(u,s)

1qaqbW4
(u,s)1~qavb1qbva!W5

(u,s) ~2!

using the convention of Refs.@2,4# for Wi . The coefficient of
theW3 term is the opposite of Refs.@2,4# because we use th
opposite sign convention fore0123. The scalar functionsWi

( f )

depend on all possible Lorentz invariants that can be form
from the two vectorsvm andpm. There are two such invari
ants, and we will chose them to ben̄•p andn•p:

Wi
( f )[Wi

( f )~ n̄•p,n•p!.

The inclusive differential decay rates for the deca
B→Xsg and B→Xu, n̄ written in terms of the scalar func
tions Wi

( f )(n•p,n̄•p) are

dGs

dxg
52mbG0

(s)xg@4W1
(s)2W2

(s)2xgmbW5
(s)#,

dGu

dx,dzdp̂2
512mbG0

(u)$2~12z1 p̂2!W1
(u)1@ x̄,~z2 x̄,!

2 p̂2#W2
(u)1mb~12z1 p̂2!~z22x̄,!W3

(u)%,

~3!

where

G0
(s)5

GF
2 uVtbVtsu2auc7

effu2mb
5

32p4
,

4-3
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G0
(u)5

GF
2 uVubu2mb

5

192p3
,

and we have defined the dimensionless variables

xg5
2Eg

mb
, x,5

2E,

mb
, p̂25

p2

mb
2

, z5
2v•p

mb
,

and x̄,512x, . Here c7
eff is the coefficient of theb→sg

operatorO7 in the weak Hamiltonian at the scalem1 . At
next-to-leading orderc7(mb)520.311@16#.

The decayB→Xs,
1,2 can be treated in a similar way

however, one has to take into account the presence of
and right handed fermions. The expressions of the de
rates in this case can be obtained, for example, from Ref.@3#.

The hadronic tensor can be calculated using an oper
product expansion~OPE! for the time-ordered product of th
two currents in Eq.~2!. This procedure has been explained
great detail in@2# and the scalar functionsWi are known
perturbatively to orderas @15# and non-perturbatively to or
der 1/mb

3 @17#. For these results to be applicable, the ph
space for the decay has to be dominated by a region w
the invariant mass of the final hadronic system is far aw
from zero. Unfortunately, for many experimentally acce
sible observables this condition is not satisfied.

In the endpoint region, wherep2@p1 or equivalently
Ep

2@p2, the traditional OPE breaks down. However, an o
erator product expansion in terms of bilocal operators is
possible. The leading order operator~in the SCET expansion
parameterl;Ap1/p2) is the bilocal operator@13#

Ov~k1!5
1

2pE2`

`

dx2e2 ix2k1
b̄v~0!Y~0, x2!bv~x2!

5b̄vd~ in•D1k1!bv , ~4!

whereY is an eikonal Wilson line in then direction fromx2

to 0. The scalar functionsWi
( f )(n̄•p,n•p) can be written as

convolutions of perturbatively calculable Wilson coefficien
with the matrix element of this operator:

Wi
( f )~ n̄•p,n•p!5E dk1Ci

( f )~ n̄•p,p12k1,m! f ~k1,m!,

~5!

where

f ~k1,m!5
^B̄uOv~k1,m!uB̄&

2mB
. ~6!

The light cone distribution function~shape function! of theB
meson,f (k1), encodes all the non-perturbative effects of t
inclusive decay at leading order in the SCET expansion
rameterl, and has to be determined from experiment.
satisfies

f ~k1,m!50 for k1.2L̄ ~7!
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since the matrix element^BuOv(k1,m)uB& has no disconti-
nuities for k1,2L̄. All the remaining information of the
inclusive decay rates is encoded in the perturbative Wil
coefficientsCi

( f ) .
As explained above, there are four relevant scales in

problem. The region of phase space considered here an
which Eq. ~5! is valid requiresm1@m2@LQCD. The calcu-
lation proceeds as follows:~1! Match from QCD to SCET
currents atm1 . ~2! Run from m1 to m2 using the SCET
anomalous dimensiong1 . ~3! Integrate out the final hadroni
states atm2 by computing the time-ordered product of cu
rents, and match onto bilocal operators.~4! Run the bilocal
operators to some common scalem;1 GeV. The matrix el-
ement of the bilocal operator is the non-perturbative sh
function f (k1,m) and Eq.~5! is the final result.

However, if m3@LQCD, one can proceed further. Th
running in step~4! is then performed down to the scalem3
and then~5! matched onto local operators at the scalem3 . ~6!
Run the local operators down to the scalem4 and compute
matrix elements. The matrix elements of these local ope
tors are the usual HQET parametersl i , r i etc. which also
occur in the OPE for totally inclusive processes.

Steps~1!–~4! will be performed in Sec. V, while step
~5!, ~6! will be performed in Sec. VI.

V. Wi
„f … IN THE SHAPE FUNCTION REGION p¿ÈLQCD

A. Matching from QCD to SCET

The one-loop matching condition between QCD a
SCET is given by computing the on-shell matrix element
QCD using dimensional regularization to regulate both
ultraviolet and infrared divergences, and keeping only
finite part @18#. The required calculations have been p
formed in@9# and we will just collect the results given ther

Since both the light quark field and the heavy quark fie
are given by two component spinors in the effective theo
only three different Dirac structures are possible for heavy
light currents in the effective theory:

j eff5x̄nGbv , with G51, g5, g'
m ,

wherexn is the collinear light quark field.
In order to facilitate writing left and right handed current

we will often write a fourth Dirac structure, which howeve
is related to the previous three:

g'
mg5[e'

mngn
' ,

where, as before,e'
mn5emnabvanb with e0123521. The col-

linear field is defined as

xn~x!5(
p̃

e2 i p̃•x@Wnjn#~x!,

wherep̃ is the label momentum which contains compone
of order 1 and orderl. The orderl2 components are asso
ciated with the spacetime dependence of the fields.Wn(x)
denotes a Wilson line of collinear gluons along the path
4-4
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the n direction fromx to `. This Wilson line is required to
ensure gauge invariance of the current in the effective the
@10#.

Since for the processes we are considering we only n
left handed light quarks, there are only two currents in SC
Define

j 1m
eff 5x̄nPRgm

'bv ,

j 2
eff5x̄nPRbv .

The full theory currents mediating the decaysB→Xsg

and B→Xu, n̄ can be matched onto these effective theo
currents. Using the results of@9# we find

ūPRgmb→C1~ n̄•p,m1! j 1m
eff 1$C2~ n̄•p,m1!nm

1C3~ n̄•p,m1!vm% j 2
eff ,

s̄PRismnb→C4~ n̄•p,m1!~nmgnl2nngml! j 1
effl

1C5~ n̄•p,m1!~vmnn2vnnm1 i emn
' ! j 2

eff .

~8!

The Wilson coefficientsC1 –5 are given by

C1~ n̄•p,mb ,m!512
as~m!CF

4p H g~ n̄•p,mb ,m!

1 ln~ n̄• p̂!S 3n̄• p̂22

12n̄• p̂
D J ,

C2~ n̄•p,mb ,m!512
as~m!CF

4p H g~ n̄•p,mb ,m!

2 ln~ n̄• p̂!F224n̄• p̂1~ n̄• p̂!2

~12n̄• p̂!2 G
1

n̄• p̂

12n̄• p̂
J ,

C3~ n̄•p,mb ,m!5
as~m!CF

4p H 2

~12n̄• p̂!
1

2n̄• p̂ ln~ n̄• p̂!

~12n̄• p̂!2 J ,

C4~ n̄•p,mb ,m!512
as~m!CF

4p H g~ n̄•p,mb ,m!1 ln
m2

mb
2

22 ln~ n̄• p̂!J ,

C5~ n̄•p,mb ,m!512
as~m!CF

4p H g~ n̄•p,mb ,m!1 ln
m2

mb
2

1 ln~ n̄• p̂!S 4n̄• p̂22

12n̄• p̂
D J , ~9!
03402
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where

g~ n̄•p,mb ,m!5
1

2
ln2

m2

mb
2 1

5

2
ln

m2

mb
2 22 ln

m2

mb
2 ln~ n̄• p̂!

12 ln2~ n̄• p̂!12 Li2~12n̄• p̂!1
p2

12
16

and

n̄• p̂5
n̄•p

mb
512

q2

mb
2 .

The matching coefficients forsmn have an extra lnm2/mb
2

contribution which corresponds to the anomalous dimens
for this operator in full QCD.

The matching scale can be chosen to be eitherm15n̄•p
or m15mb . At these scales the matching coefficients a
given by Eq.~9! with

g~ n̄•p,mb ,n̄•p!55 ln~ n̄• p̂!12 Li2~12n̄• p̂!1
p2

12
16,

g~ n̄•p,mb ,mb!52 ln2~ n̄• p̂!12 Li2~12n̄• p̂!1
p2

12
16.

B. Renormalization of the SCET currents

The running of the currents in the effective theory h
also been calculated in@9#. The currents are multiplicatively
renormalized, and satisfy the renormalization group equa

m
d

dm
Ci~ n̄•p,mb ,m!5g~m,n̄•p!Ci~ n̄•p,mb ,m!.

The leading order~LO! and next to leading order~NLO!
anomalous dimensions are

gLO52
as~m!CF

p
lnS m

m1
D ,

gNLO52
as~m!CF

2p F5

2
12 lnS m1

n̄•p
D G

22B
as

2~m!CF

~2p!2
lnS m

m1
D , ~10!

where@19#

B5CAS 67

18
2

p2

6 D2
5

9
nf . ~11!

Note that the value ofm1 in these anomalous dimensions
chosen to coincide with the choice made for the match
scale in Eq.~9!. The m1 dependence in theas term cancels
betweengLO andgNLO . The difference between the two po
sible choices form1 in the as

2 term is NNLO.
4-5
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The solution to this renormalization group equation
given by

Ci~ n̄•p,mb ,m!

Ci~ n̄•p,mb ,m1!
5expF r 0~z!

as~m1!
1r 1~z!G ,

with

r 0~z!52
4pCF

b0
2 F1

z
211 ln zG ,

r 1~z!52
CFb1

b0
3 F12z1 ln z2

1

2
ln2zG

1
CF

b0
F5

2
12 lnS m1

n̄•p
D G ln z

2
2CFB

b0
2 @z212 ln z#, ~12!

where

z5
as~m!

as~m1!
,

b05
11

3
CA2

2

3
nf ,

b15
34

3
CA

22
10

3
CAnf22CFnf ,

m
d

dm
as52

b0

2p
as

22
b1

8p2 as
3 ,

CA53, CF54/3 and nf54 is the number of light quark
flavors.

C. Matching to bilocal operators

Below the scalem25p the final hadronic state is heav
and can be integrated out. This is done by matching
time-ordered product of two SCET currents onto bilocal o
erators by integrating out then-collinear fields at the scale
m2 . The tree level time-ordered product graph is shown
Fig. 1. The tree level graph for the bilocal operator is sho
in Fig. 2 and matches onto a bilocal heavy quark opera
the shape function operator defined in Eq.~4!. The Feynman
rules for matrix elements of this operator are given by tak

FIG. 1. Tree graph for the product of two currents. The das
line depicts a collinear particle.
03402
e
-

n
n
r,

g

the discontinuity of the diagram, since the operator is a pr
uct, not a time-ordered product.

Spinors in SCET have only two components, which c
be used to simplify the results significantly. One can eas
show that after taking matrix elements between pseudosc
B mesons that the only non-vanishing time-ordered produ
have two identical currentsj i

eff . Furthermore, perturbative
corrections in SCET are independent of the Dirac struct
of the currents. As a result, one can show that the only n
vanishing time-ordered products in SCET can be written
the form

2 i E d4xe2 iq•x^B̄uT@ j 1a
eff†~x!, j 1b

eff ~0!#uB̄&

52
1

4
~gab

' 1 i eab
' !^B̄uT~p1!uB̄&,

2 i E d4xe2 iq•x^B̄uT@ j 2
eff†~x!, j 2

eff~0!#uB̄&

5
1

4
^B̄uT~p1!uB̄&.

Combining this result with Eqs.~2! and ~8! we find, for the
decayB→Xu, n̄,

W1
(u)5

C1
2

4

^B̄uW~p1!uB̄&
2mB

,

W2
(u)5F n̄• p̂21

~ n̄• p̂!2
C1

21S C2

n̄• p̂
1

C3

2 D 2G ^B̄uW~p1!uB̄&
2mB

,

W3
(u)5

1

2mbn̄• p̂
C1

2 ^B̄uW~p1!uB̄&
2mB

,

W4
(u)5

1

mb
2~ n̄• p̂!2

~C2
22C1

2!
^B̄uW~p1!uB̄&

2mB
,

d FIG. 2. Tree level matrix element of the shape function opera
The double line between the two currents depicts a Wilson line
the n direction.
4-6
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W5
(u)5

1

2mb~ n̄• p̂!2
@C1

2~22n̄• p̂!22C2
2

2C2C3n̄• p̂#
^B̄uW~p1!uB̄&

2mB
, ~13!

where

W~p1!52
1

p
Im T~p1!.

For the decayB→Xsg we find ~usingq250)

W1
(s)5

C4
2

4

^B̄uW~p1!uB̄&
2mB

,

W2
(s)50,

W3
(s)5

C4
2

2mb

^B̄uW~p1!uB̄&
2mB

,

W4
(s)5

1

4mb
2 ~C5

224C4
2!

^B̄uW~p1!uB̄&
2mB

,

W5
(s)5

C4
2

2mb

^B̄uW~p1!uB̄&
2mB

. ~14!

Gauge invariance implies~using q250) that W2
(s)50 and

2W1
(s)5mbW5

(s) , so these relations are true to all orders
perturbation theory. For the photon spectrum inB→Xsg, we
will need the linear combination

Wg
(s)52mb~4W1

(s)2W2
(s)2mbW5

(s)!, ~15!

obtained from Eq.~3! with xg→1. The matching for this
linear combination ofWi

(s) is

Wg
(s)5mbC4

2 ^B̄uW~p1!uB̄&
2mB

. ~16!

FIG. 3. One loop correction to the current product. Graphs~a!,
~b! and~e! also have mirror image graphs where the gluon attac
to the other side.
03402
Comparing the tree-level matrix element of the tim
ordered product shown in Fig. 1 with the tree-level mat
element of the shape function operator shown in Fig. 2,
finds

W~p1!5Ov~p1!1O~as!.

The one-loop matching condition is evaluated by comp
ing the graphs in Fig. 3 and subtracting from it the one-lo
matrix element of the tree-level operatorW(p1) in the ef-
fective theory, shown in Fig. 4. The matrix element
Ov(p1) at one loop exactly reproduces the graphs in Fi
3~a!–3~d!, since the coupling of soft gluons to then-collinear
quark is identical to the coupling to the Wilson lineY @19#.
The matching condition is therefore given by graphs Fi
3~e!–3~g!. The Feynman rules for graphs Figs. 3~e!–3~g! do
not depend on the external quark field, so the graphs have
same value as the matching graphs for deep inelastic sca
ing @20#, with the replacementp→0, q→p. The discontinu-
ity of the graph extends over the infinite range 0<p1<`,
rather than a finite interval such as@0,1#. For this reason, it is
convenient to regulate the singularity atp150 by a modified
1 distribution, called them distribution since it depends o
the scalem. Them distribution, its properties, and relation t
the 1 distribution are given in the Appendix. The resultin
expression forW(p1) is

W~p1!5E dr 1C~p12r 1,m!Ov~r 1!,

C~q1,m!5C (0)~q1,m!1
as~m!CF

4p
C (1)~q1,m!,

C (0)~q1,m!5d~q1!,

C (1)~q1,m!54F ln~q1/m!u~q1!

q1 G
m

1F4 ln
n̄•p

m
23G

3Fu~q1!

q1 G
m

1F2 ln2
n̄•p

m
23 ln

n̄•p

m
172p2Gd~q1!.

~17!

D. Renormalization of the shape function

We can study the renormalization of the shape function
computing the on-shell matrix element of the shape funct
operatorOv(r 1) in a heavy quark target, with residual mo
mentumk50.

The tree level matrix element is given by the graph sho
in Fig. 2. The spin-averaged matrix element is

I tree5Disc
i

2p

1

r 11 i01

5d~r 1!. ~18!

The loop corrections to the shape function matrix elem
are the graphs in Fig. 4 and wave function graphs. The gr
of Fig. 4~a! gives

s

4-7
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CHRISTIAN W. BAUER AND ANEESH V. MANOHAR PHYSICAL REVIEW D70, 034024 ~2004!
I a52 i
g2CF

16p2 csc~2ep!G~e!m2e

3Disc
1

~r 11 i01!
~2r 12 i01!22e.

In terms of them distribution,

I a52
g2CF

16p2 H S 1

e2 1
p2

12D d~r 1!2
2

e Fu~r 1!

r 1 G
m

14F ln~r 1/m!u~r 1!

r 1 G
m
J . ~19!

The spin-averaged loop graph Fig. 4~b! is

I b5 i
g2CF

16p3 DiscS 1

e
22 ln~2r 12 i01! D 1

r 11 i01 ,

5
g2CF

8p2 H 1

e
d~r 1!22Fu~r 1!

r 1 G
m
J . ~20!

The 1/e is an infrared divergence.
The heavy quark wave function graph vanishes on-s

when evaluated in pure dimensional regularization, beca
the integral is scaleless. One can verify that the graph has
structure 051/eUV21/e IR with exactly the right coefficient
to convert the infrared divergence in Eq.~20! into an ultra-
violet divergence.

The wave function renormalization of the internal Wilso
line is zero sincen250.

The one-loop matrix element of the shape function ope
tor is given by the sum of the tree graph, twice graph~a!,
graph ~b! and the wave function graphs. From the infin
parts, we see that the renormalized operatorOv is related to
the bare operator by a convolution with the renormalizat
coefficient

Ov
(0)~r 1!5E

2`

`

d,1Z~r 1,,1!Ov~,1!, ~21!

whereOv
(0)(r 1) is the bare operator,Ov(r 1) is the renormal-

ized operator, and

Z~r 1,,1!5d~r 12,1!1
asCF

2pe H 2Fu~r 12,1!

r 12,1 G
m

1S 12
1

e D d~r 12,1!J . ~22!

The crucial difference from the renormalization of the de
inelastic structure function is that Eq.~22! does not have the

FIG. 4. One loop correction to the shape function operator.
03402
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restriction l 1.0, so the u-function is satisfied for2`
,,1,r 1, rather than 0,,1,r 1.

Differentiating Eq.~21! with respect tom gives the renor-
malization group equation for the shape function operato

m
d

dm
Ov~r 1!52E

2`

`

d,1g~r 1,,1!Ov~,1!, ~23!

where

g~r 1,,1!52
asCF

p H d~r 12,1!12Fu~r 12,1!

r 12,1 G
m
J ,

~24!

using Eq. ~22!. The shape functionf (k1,m) satisfies the
same equation, since it is the matrix element ofOv(k1).

The convolution in the renormalization group equati
~23! makes this equation difficult to solve and so far
solution exists in the literature. Methods that are used
solve a similar equation for the parton distribution functio
do not work in this case because of the difference in
u-function mentioned above.

E. Expressions forWi
„f …

In this section we combine the results of the previo
sections and give the final expressions for the scalar fu
tions Wi

( f ) , from which all differential decay rates can b
obtained. As before, we define

Wi
( f )~ n̄•p,n•p5p1!

5E dk1Ci
( f )~ n̄•p,p12k1,m! f ~k1,m!, ~25!

where the shape functionf (k1,m) is given by Eq.~6!. The
expressions forCi

( f )(n•p,p12k1,m) at m5m2 to first order
in as can be obtained from Eqs.~13!,~14!,~9!. As explained
earlier, one can choose the matching scale from QCD o
SCET to be any scalem1;mb and in Sec. V A we gave
results for bothm15mb and m15n̄•p. In this section we
give all results with the choicem15mb . We find

Ci
( f )~ n̄•p,w,m2!5S~m2 ,mb!Fai

( f )C~w,m2!

1
as~mb!CF

4p
bi

( f )d~w!G1O~as
2!,

~26!

where the coefficientsai
( f ) , bi

( f ) are functions ofn̄•p and
mb . The functionC(w,m2) is universal and does not depen
on the decay process. It is given in Eq.~17!.

The scale factorS(m2 ,mb) is the running of two SCET
currents from the matching scalem15mb to the scalem
5m2 where the OPE is performed. We can write
4-8
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S~m2 ,mb!5expH 2F r 0~z!

as~mb!
1r 1~z!G J ,

wherer 0(z) andr 1(z) are given in Eq.~12! ~one should pick
m15mb in these expressions!, andz5as(m2)/as(mb). The
remaining coefficients are different for the decayB→Xu, n̄

andB→Xsg. For B→Xu, n̄ we find

a1
(u)5

1

4
,

a2
(u)5

1

n̄• p̂
,

a3
(u)5

1

2mbn̄• p̂
,

a4
(u)50,

a5
(u)52

1

2mbn̄• p̂
,

where

n̄• p̂5
n̄•p

mb
5

mb
22q2

mb
2 .

The coefficientsbi
(u) are given by

b1
(u)52

1

2
g~ n̄• p̂,mb ,mb!2

3n̄• p̂22

2~12n̄• p̂!
log n̄• p̂,

b2
(u)52

2g~ n̄• p̂,mb ,mb!

n̄• p̂
16

log n̄• p̂

n̄• p̂
,

b3
(u)52

g~ n̄• p̂,mb ,mb!

mbn̄• p̂
2S log n̄• p̂

mbn̄• p̂
D 3n̄• p̂22

12n̄• p̂
,

b4
(u)52

2

mb
2n̄• p̂~12n̄• p̂!

12S log n̄• p̂

mb
2n̄• p̂

D 122n̄• p̂

~12n̄• p̂!2
,

b5
(u)5

g~ n̄• p̂,mb ,mb!

mbn̄• p̂
1

1

mbn̄• p̂~12n̄• p̂!

2S log n̄• p̂

mbn̄• p̂
D ~3n̄•p22!~ n̄• p̂22!

~12n̄• p̂!2
,

with

g~ n̄•p,mb ,mb!52 ln2~ n̄• p̂!12 Li2~12n̄• p̂!1
p2

12
16.

For the decayB→Xsg, n̄•p5mb . This simplifies the re-
sulting expression significantly and we find
03402
a1
(s)5

1

4
,

a2
(s)50,

a3
(s)5

1

2mb
,

a4
(s)52

3

4mb
2

,

a5
(s)5

1

2mb
,

ag
(s)5mb . ~27!

For the coefficientsbi
(s) ,

b1
(s)5232

p2

24
,

b2
(s)50,

b3
(s)52

6

mb
2

p2

12mb
,

b4
(s)5

10

mb
2

1
p2

8mb
2

,

b5
(s)52

6

mb
2

p2

12mb
,

bg
(s)52S 121

p2

6 Dmb . ~28!

The above equations giveCi
( f )(n̄•p,w,m2), and so must

be integrated with the shape functionf (k1,m2) also renor-
malized at the scalem2 . One can instead convert to the sha
function at some other scale~such asm3) by using the renor-
malization group equation~24! for the shape function.

VI. Wi
„f … IN THE PHASE SPACE REGION p¿šLQCD

As explained earlier, in regions of phase space wh
p1@LQCD an additional matching can be performed at t
scalem35p1. Since the non-locality of the bilocal operato
Ov(r 1) was set by the scalep1, the operators below the
scalem3 will be local operators. In this section we will matc
onto these operators at one loop and then determine
running.

A. Matching onto local operators

The bilocal operatorOv(p1) below m3 can be expanded
in terms of local operatorsOm ,
4-9
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CHRISTIAN W. BAUER AND ANEESH V. MANOHAR PHYSICAL REVIEW D70, 034024 ~2004!
Ov~p1!5(
m

Dm~p1,m!Om , ~29!

with coefficientsDm(p1,m), where~at tree level!

Om5b̄v~ in•D !mbv .

The matrix elements ofOm are of orderLQCD
m . The coeffi-

cientsDm are of order (p1)2m21. The subleading terms in
the endpoint region have coefficients suppressed by pow
of p1/mb .

The local operatorsOm are related to the moments o
Ov(p1). The matrix elements of the first few local operato
are given by@13#

^Bub̄vbvuB&52mB ,

^Bub̄v~ in•D !bvuB&50,

^Bub̄v~ in•D !2bvuB&52
2mB

3
l1~m!,

^Bub̄v~ in•D !3bvuB&52
2mB

3
r1~m!,

to leading order in 1/mb . Herel1 and r1 are given by the
matrix elements of the kinetic and Darwin terms

^Bub̄vD2bvuB&524mBl1~m!,

gvb^Bub̄v~DaGab!bvuB&524mBr1~m!.

Since the scalem3 is now a large scale, the matrix ele
ment of the operatorOv(r 1) can be calculated perturba
tively, using on-shell partonic states with residual moment
k50. At tree level the matching Eq.~29! is trivial since
Ov(p1)5b̄vd( in•D1p1)bv1O(as), and we find

Dm~p1!5
1

m! S d

dp1D m

d~p1!1O~as!.

The orderas matrix element is given by the finite parts o
Eq. ~18!, twice Eq.~19! and Eq.~20!:

^bvuOv~p1!ubv&5d~p1!2
as~m!CF

4p H p2

6
d~p1!

14Fu~p1!

p1 G
m

18F ln~p1/m!u~p1!

p1 G
m
J .

~30!

Sincek150, the matrix elements ofOm vanish except for
m50, so we get
03402
rs

D0~p1,m!5d~p1!2
asCF

4p H p2

6
d~p1!14Fu~p1!

p1 G
m

18F ln~p1/m!u~p1!

p1 G
m
J . ~31!

This matrix element gives the parton level value for t
shape function:

f part~k1,m!5 f part
(0) ~k1,m!1

as~m!CF

4p
f part

(1) ~k1,m!,

f part
(0) ~k1,m!5d~k1!,

f part
(1) ~k1,m!52

p2

6
d~k1!24Fu~k1!

k1 G
m

28F ln~k1/m!u~k1!

k1 G
m

. ~32!

To determine the coefficientsDm for m.0 requires evalu-
ating the matrix element Eq.~30! for non-zerok1, with
2k•v5k11k250, so that the quark is still on-shell. It ca
be determined, following the arguments in Ref.@2#, in terms
of the lowest order coefficient. The matrix element, Eq.~30!,
for non-zerok1 is given by the replacementp1→p11k1,
which follows from reparametrization invariance@21#, so
that

^bv~k1!uOv~p1!ubv~k1!&5D0~p11k1,m!

5(
m

~k1!m

m! S d

dp1D m

D0~p1,m!.

The matrix elements ofb̄v( in•D)mbv are their tree level
value (k1)m, since loop graphs are scaleless and vanish,

Dm~p1,m!5
1

m! S d

dp1D m

D0~p1,m!. ~33!

The matching condition, Eq.~33!, is evaluated at a scalem
;p1 to minimize logarithms. At one loop, one can also ge
erate four-quark operators; the matching coefficients
these operators is not computed here.

Local operators in deep inelastic scattering

In deep inelastic scattering, the on-shell matrix elemen
the parton distribution operator vanishes, so the analogu
Eq. ~32! is f (1)50. An on-shell external state hask15” 0,
k250. The momentump1 in the operator and the momen
tum k1 of the external state enter the loop integral over
1 component of the loop integral, but the2 component of
the loop integral is scaleless, and vanishes. In theB meson
shape function matrix element, Eq.~30!, the heavy quark
propagatorv•, mixes the1 and2 components of the loop
momentum,, so the scalep1 enters both loop integrals, an
the ,2 integral is no longer scaleless.
4-10
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SHAPE FUNCTION EFFECTS INB→Xsg AND B→Xu, n̄ DECAYS PHYSICAL REVIEW D70, 034024 ~2004!
B. Running of the local operators

Since the matrix elements of the localb̄v( in•D)mbv op-
erators are equal to the usual HQET operator matrix
ments that definel1 , r1 , etc., the renormalization grou
equations for the matrix elements of these two sets of op
tors must be identical. One can check that the running of
local b̄v( in•D)mbv operators reproduces the known reno
malization group evolution forl1 and r1 @22# for m52,3,
respectively. There is an important difference here betw
the evolution of the localb̄v( in•D)mbv operators and the
corresponding evolution of local operators in deep inela
scattering. In deep inelastic scattering, the evolution of
bilocal parton distribution operator is equivalent to the ev
lution of the local twist-2 operators; the twist-2 anomalo
dimensions are given by the moments of the Altarelli-Pa
evolution kernel for the parton distribution. This is not th
case for the shape function operator and its moments.
shape function anomalous dimension at one loop depe
only onCF , whereas the anomalous dimension ofr1 , which
is the same as the anomalous dimension of the Darwin te
depends onCA @22#.

The two diagrams shown in Fig. 5 contribute to the ren
malization of the local operatorsOm . For the first diagram
we find, for the forward matrix element (k85k),

I a52 ig2CFE dd,

~2p!d

@n•~k1, !#m

@v•,#2,2
52

g2CF

8p2e
~n•k!m,

~34!

where we have only kept the divergent part of the graph
used the equation of motionk•v50 for the external state
since we are only working to lowest order in 1/mb . The
graph in Fig. 5~b! gives

I b5 ig2CF(
j 51

m E dd,

~2p!d
~n•k! j 21

@n•~k1, !#m2 j

v•, ,2
50,

since all the divergent terms are proportional to powers
(k•v), and vanish. The wave function graph gives

2 i
g2

8p2e
~k•v !5 i ~k•v !dZ,

so that the wave function graph cancels Eq.~34!, when mul-
tiplied by the tree-level matrix element

^kuOmuk&5~n•k!m,

I a2dZ(n•k)m50. The net result is that the operat
b̄v( in•D)mbv has no anomalous dimension from the grap
in Fig. 5 at leading order in 1/mb .

While this gives the correct result for the running of t
local operatorsOm for m,3, it does not reproduce th
known result form>3. For the latter case, however, there a
additional graphs such as those in Fig. 6, which are diverg
for m>3 and renormalize the local operator. These b
graphs connect the heavy quark to a light quark, and mix
four fermion operators. Such graphs are absent for deep
03402
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f
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x
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elastic scattering, where there is a twist expansion. Ferm
fields have twist 1 and 2 quark operators with twist 2 can
mix with four-quark operators which have twist 4, so the b
graph Fig. 6 does not contribute to the anomalous dimens
In B decay, there is no analogous twist expansion, and
mixing graphs of Fig. 6 are present.2 They are precisely the
graphs computed in Ref.@22# which give the anomalous di
mension of the Darwin term whose matrix element isr1 ,
and allow the dimension 6 operatorb̄v( in•D)3bv to mix into
the dimension 6 operatorb̄vbvq̄q.

C. Expressions forWi
„f …

The final expressions forWi
( f ) in the regionD@LQCD are

given by combining Eq.~25! with the expansion of the shap
function operator, Eq.~29!. They are given by

Wi~ n̄•p,n•p5p1!5S~m2 ,mb!ai
( f )H d~p1!1

asCF

4p

3H 24F ln~p1/m2!u~p1!

p1 G
m2

1S 4 ln
n̄•p

m2
27D Fu~p1!

p1 G
m2

1S 2 ln2
n̄•p

m2
23 ln

n̄•p

m2
17

2
7p2

6
1

bi
( f )

ai
( f )D d~p1!J , ~35!

whereS(m2 ,mb), ai
( f ) andbi

( f ) are the same as in Sec. V E

2The Feynman integrals for Fig. 6 for deep inelastic scatter
involve n”n”50, whereas forB decay involven”v”5” 0.

FIG. 5. One loop corrections to the local operator.
4-11
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VII. CONSTRAINTS ON THE ANOMALOUS DIMENSIONS

There is a relation between the anomalous dimension
the effective theory similar to the one obtained for deep
elastic scattering@20#. It is simplest to write the relations in
terms of moments. The theory belowm1 has SCET currents
and depends on the label momentumn̄•p. Anomalous di-
mensions can depend onn̄•p, but not on any infrared scale
in this theory such asn•p, and so cannot depend on th
momentN. In the theory belowm2 , the effective theory is
written in terms of shape function operators that depend
the scalep15mb(12x)5mb /N̄. The scalep2 has been
integrated out, so the anomalous dimension is only a fu
tion of mb /N̄. Finally, in the theory belowm3 , the scalep1

has also been integrated out, and the theory only kn
about N̄, since the local operator depends on the mom
The anomalous dimensionsg i in the three theories belowm i
can be written as

2g1~m!5 f S m

n̄•p
,as~m! D ,

g2~m!5 f S N̄m

mb
,as~m! D ,

g3~m!5 f „N̄,as~m!….

We have used twice the anomalous dimensiong1 of the
SCET current belowm1 , since the time-ordered product in
volves two currents.

The matching conditions atm2 depend only on the invari
ant massp2 of the hadronic final state which is integrate
out, so the matching coefficients are functionsC2(p2/m2)
5C2„mbn̄•p/(N̄m2)…. The matching conditions atm3 de-
pend only on the scalep1 which is integrated out, so th
matching coefficients are functions C3(p1/m)
5C3„mb /(N̄m)…. Finally, using the relation that the deriva
tive of the matching coefficients with respect tom is equal to
the difference of the anomalous dimensions on either s
one finds that the anomalous dimensions:~1! must be linear
in ln m, and~2! must have the form

2g1~m!5A„as~m!…ln
m

n̄•p
1B1„as~m!…,

g2~m!52A„as~m!…ln
N̄m

mb
1B2„as~m!…,

g3~m!50 ln N̄1B3„as~m!…, ~36!

FIG. 6. One loop running of the local operator.
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which restricts the coefficients of the lnm terms. The results
Eqs. ~10!,~55!, satisfy these constraints, withA
522asCF /p. The third relation shows that the anomalo
dimension ofb̄v( in•D)mbv should not have a lnm term as
m→`.

The anomalous dimensionsg1,2 are used form1>m>m2
andm2>m>m3 , respectively. The lnm term in g1 is not a
large logarithm at the upper endpointm1 , and the lnm term
in g3 is not a large logarithm at the lower endpointm3 . At
these limits, the effective theories match with full QC
abovem1 , which has no lnm anomalous dimension, and th
theory with local operators belowm3 , which has no lnN̄
anomalous dimension.

Relation to the factorization form of the anomalous dimension

Korchemsky and Sterman@23# have derived an alternativ
form for the running of theB→Xsg moments between the
scalesmb and mb /N̄. They have a renormalization grou
evolution of the form

CS mb

N̄
D 5C~mb!eL,

where

L5E
1/N̄

1 dy

y FG„as~mby!…1g„as~mbAy!…

1E
mby

mAydm

m
2Gc„as~m!…G . ~37!

Changing the order of integration gives

L5E
m/AN̄

mb dm

m F ln
mb

m
2Gc„as~m!…1G„as~m!…12g„as~m!…G

1E
mb /N̄

mb /AN̄ dm

m
F ln

mN̄

mb
2Gc„as~m!…1G„as~m!…G ,

and so is equivalent to integrating the anomalous dimens

2g1 betweenmb andmb /AN̄ and the anomalous dimension

g2 betweenmb /AN̄ andmb /N̄ where

2g1522 ln
m

mb
Gc„as~m!…1G„as~m!…12g„as~m!…,

g252 ln
N̄m

mb
Gc„as~m!…1G„as~m!…,

and so satisfies the constraint on the coefficients of them
terms in Eq.~36!, with Gc5asCF /p. Alternatively, the in-
tegrations fromm1→m2 andm2→m3 can be combined into
the single integral, Eq.~37!, since the constraint, Eq.~36!, is
satisfied.

The double integral form, Eq.~37!, has a Landau pole
singularity for large moments. As for deep inelastic scatt
ing, this Landau pole singularity is resolved by the effecti
4-12
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theory computation@20#. For large enough moments, th

scalesm25mb /AN̄ and m35mb /N̄ get smaller thanm4
5LQCD, and one needs to stop the renormalization gro
evolution atm4 . For B decays the conditionm3.m4 , which
is required for Eq.~37! to be valid is only true for the firs
two moments.

VIII. APPLICATIONS

A. Moments of the shape function

It is generally believed that moments of the structu
function f (k1) are related to local operators in HQET. Th
relation is used to construct models of the structure func
using input from matrix elements of local operators extrac
from inclusive B→Xc, n̄ decays or to constrain fits to th
shape function measured from data. We have already
that this relation cannot be correct, since the shape func
and local operators have different anomalous dimensions
this section we show in more detail why this relation is
correct.

Moments of the bare operatorOv
(0)(k1) are given by bare

local operators,

Mn
(0)5E

2`

`

dk1~2k1!nOv
(0)~k1!

5b̄v~ in•D !nbv ,

but the corresponding relationdoes nothold for renormal-
ized operators. The infinite moments, over2`<r 1<` of
the renormalized operatorOv(p1) are singular. One way to
see this is to take the infinite moments of the renormaliza
group evolution, Eq.~23!. The integral overg(r 1,,1) does
not converge atr 15`, so the infinite moments require ad
ditional regularization. This situation is similar to the case
moments of theB meson wave function, which also requi
an additional renormalization@24#.

To gain more insight into the running of these mome
without encountering the divergence, one can also study
evolution of half-infinite moments, defined by

MN
1~O!5E

0

`

dr 1~r 1!N21O~r 1!,

MN
2~O!5E

2`

0

dr 1~r 1!N21O~r 1!.

Consider the half infinite momentMN
2(O). We find

m
d

dm
MN

2~O!

52E
2`

0

dr 1~r 1!N21E
2`

`

d,1g~r 1,,1!O~,1!

52E
2`

`

d,1O~,1!E
2`

0

dr 1~r 1!N21g~r 1,,1!.
03402
p

n
d

en
n
In

n

f

s
he

Sinceg(r 1,,1)50 unless,1<r 1, and r 1<0 in the inte-
gration region, we can restrict the,1 integration to2`
<,1<0. Let r 15z,1:

m
d

dm
MN

2~O!

5
asCF

p E
2`

0

d,1~,1!N21O~,1!E
1

`

dzzN21H d~12z!

12Fu~z,12,1.j!

12z
1d~12z!ln

j

mG J
5

asCF

p E
2`

0

d,1~,1!N21O~,1!

3F112 ln
2,1

m
22 (

j 51

N21
1

j G . ~38!

This shows that the half-infinite momentsMN
2(O) are not

multiplicatively renormalized, because of the ln(2,1/m)
term in Eq.~38!. The half-infinite momentMN

1(O) has the
divergence atr 1→` noted earlier. For moments of th
shape function only the half infinite momentMN

1(O) is rel-

evant, sincef (r 1) vanishes forr 1,2L̄. Thus, moments of
the shape function are not defined without an additio
renormalization prescription and are not directly related
matrix elements of local operators once radiative correcti
are included. Models for the shape function should theref
not be constrained to have widths252l1 /(3mb

2) for ex-
ample. The parameters of a given model have to be k
arbitrary and determined directly from a fit to the data.

Since the shape function is not equivalent to local ope
tors at orderas , the moments of the shape function are n
given by the matrix elements of the local operators. Inste
one has to compute the matching correction onto the lo
operators, as in Eq.~29!. In particular the first moment of the
shape function~because of the definition of the momen
with powers ofN21, the first moment is the normalizatio
of the shape function! is not unity. The matrix element o
O05b̄vbv is unity to all orders inas and leading order in
1/mb , by heavy quark symmetry, so the first moment of t
shape function is given by the first moment ofD0 , the
matching coefficient onto the lowest order operatorO0 . Here
D0 has a non-zero first moment, as can be seen from
~61!.

Note that low moments of the photon energy spectrum
B→Xsg are still given by the well known matrix elements o
local operatorsl1 , r1 etc. This is because for these momen
one integrates over the entire region of phase space and
traditional OPE is therefore applicable. High moments of
photon spectrum no longer match onto local operators,
are discussed in Sec. VIII C.

B. Expressions for differential decay rates

Using the results of this paper we can obtain expressi
for differential decay rates to orderas . In this section we
4-13
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will give results for the photon energy spectrumdG/dxg in
the limit xg→1 for the decayB→Xsg and the double differ-
ential decay ratedG/(dzdx,) in the limit x,→1 for the de-

cay B→Xu, n̄. For both decays we give the results in t
region mb@mb(12x,,g)@LQCD where an expansion in lo
cal operators is valid, and in the shape function reg
mb(12x,,g);LQCD. The expressions in the regionmb

@mb(12x,,g)@LQCD should be used in cases where t
photon spectrum is integrated over a region inx which far
exceeds the value ofLQCD/mb . For example, measuremen
of the decayB→Xsg currently require experimental cuts a
lowing only a limited range ofEg to be observed. If this
range is of orderLQCD, as is currently the case in mo
measurements, the expressions in Sec. VIII B 3 should
used. If the observed range ofEg could be increased signifi
cantly, one could use the results of Sec. VIII B 1, for whi
knowledge of the shape function is not required.

1. B\Xsg for mbšmb„1Àxg…šLQCD

In this region of phase space, the differential decay r
can be expanded around the limitxg51, but we are not in
the shape function region and the non-perturbative effects
still obtained by matrix elements of local operators. The p
ton energy spectrum is given by

1

G0
s

dGs

dxg
~xg!5Wg„n̄•p,p15mb~12xg!…, ~39!

whereWg was defined in Eq.~15!. Using the expression o
W as a convolution of a Wilson coefficientCg with the bilo-
cal operatorOv , Eq. ~25!, together with the expansion of th
bilocal operator in terms of local operators given in Eq.~29!
we find

Wg5E dr1Cg„mb~12xg!2r 1,m2)

3(
m

Dm(r 1,m2…
^B̄uOmuB̄&

2mB
. ~40!

In writing this expression we have ignored the running b
tween the scalesm2 andm3 and are therefore performing th
matching onto the bilocal operator and the matching onto
local operator at the same scale. This allows one to give
expression for the decay spectrum dG/dxg directly, rather
than for its moments. The complete expression for the m
ments is given in Sec. VIII C.

Keeping only the lowest dimensional operator^BuO0uB&
52mB and using the explicit expressions for the Wilson c
efficientsCg andD0 given in Eqs.~26!, ~27!, ~28! and ~31!
we find
03402
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1

G0
s

dG

dxg
5S~m2 ,mb!H d~12xg!2

asCF

4p F4S ln~12xg!

12xg
D

1

17S 1

12xg
D

1

2S ln2
m2

2

mb
2 15 ln

m2
2

mb
2 252

4p2

3 D
3d~12xg!G J 1 . . . , ~41!

where the ellipsis denotes perturbative terms of orderas
2 as

well as terms of orderas which are not singular asxg→1.
Furthermore, we have not given explicitly the power su
pressed terms proportional to matrix elements of higher
mensional operators, which can be included by retaining
operatorsOm.1 . The explicit logarithms ofm2 /mb in Eq.
~41! are canceled by them2 dependence ofS(m2 ,mb). To
fixed order inas our results agree with the known perturb
tive corrections~see the next subsection!, but we improve
this result by including the Sudakov logarithms originati
from running between the scalesmb andm2;1.5 GeV.

2. B\Xsg spectrum to orderas ignoring renormalization
group evolution

The photon spectrum inB→Xsg decay to orderas ignor-
ing renormalization group evolution is given by using E
~41!, and expandingS(m2 ,mb) to orderas :

1

G0
s

dG

dxg
5d~12xg!2

asCF

4p H 4F ln~12xg!

12xg
G

1

17F 1

12xg
G

1

1F51
4p2

3 Gd~12xg!J 1
asCF

4p
E~xg!, ~42!

up to termsE(xg) which have vanishing moments asN
→`. The scale at whichas is evaluated is not determined b
this fixed order result.

A comparison of Eq.~42! with the complete orderas
expression@8# shows that the terms we have computed agr
and the remaining terms are

E~x!571x22x222~11x!ln~12x!,

with moment

MN@E~x!#5
4N12

N~N11!
HN1

7

N
2

N22N24

~N11!2~N12!
,

which vanishes asN→`. HereHN is the harmonic numbe

HN5(
j 51

N
1

j
.

3. B\Xsg for mb„1Àxg…ÈLQCD

In the shape function region, the expansion of the bilo
operator in terms of local operators can not be perform
and we are left with
4-14
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Wg5E dr1Cg~p12k1,m2! f ~k1,m2!, ~43!

wherep15mb(12xg). Using the expression forCg given
in Eq. ~26! we find

1

G0
s

dGs

xg
5mbS~m2 ,mb!F f ~p1,m2!

1
asCF

4p E dk1Gs~p12k1,m2! f ~k1,m2!G ,
~44!

where

Gs~v,m!5S 1

2
ln2

m2

mb
2

1
3

2
ln

m2

mb
2

252
7p2

6 D d~v!

14S ln v/m

v D
m

2S 2 ln
m2

mb
2

13D S 1

v D
m

.

~45!

Note that this expression does not agree with previ
prescriptions to obtain the photon energy spectrum in
shape function region@15#, where the perturbative spectru
is evaluated with a shiftedb quark massmb→mb1k1 and
k1 is then convoluted with the shape functionf (k1). The
reason for this difference is discussed in more detail in S
VIII B 6.

4. B\Xuøn̄ for mbšmb„1Àxø…šLQCD

Any differential decay rates can be obtained from the g
eral expression of the triple differential rate given in Eq.~3!.
As an illustration, we present results for the double differe
tial decay rate dGu/(dzdx,) in the limit x,→1. Using p̂2

!1, we find for this double differential rate

1

G0
u

dGu

dzdx,
512z~12z!E

0

mb(12x,)

dp1@2W1
u1mbzW3

u#.

~46!

As for the decayB→Xsg, one can use the expression f
Wi

(u) as a convolution of a Wilson coefficientCi
(u) with the

bilocal operatorOv , Eq. ~25!, together with the expansion o
the bilocal operator in terms of local operators given in E
~29!. Using the results given in Sec. V E for the Wilso
coefficientsCi

u together with the Appendix to perform th
integration over them distributions in theCi

u we find

1

G0
u

dGu

dzdx,
512z~12z!S~m2 ,mb!H 11

asCF

4p F ln2
m2

2

mb
2

2~4 lnz25!ln
m2

2

mb
2

22H~z,x,!G J , ~47!

with
03402
s
e

c.

-

-

.

H~z,x,!5 ln2~12x,!2S 2 lnz2
7

2D ln~12x,!1 ln2z

12 Li2~12z!1
~3z21!ln z

2~12z!
1

2p2

3
1

5

2
.

~48!

As for the B→Xsg case~Sec. VIII B 1! we have neglected
the running below the scalem2 and the dependence onm2 in
Eq. ~47! cancels. ExpandingS(m2 ,mb) to first order inas
we reproduce the result obtained previously obtained by
Fazio and Neubert@15#.

5. B\Xuøn̄ for mb„1Àxø…ÈLQCD

As for the decayB→Xsg the expansion of the biloca
operator cannot be performed in this region of phase sp
and differential decay rates in this region of phase space
given in terms of a convolution of a perturbatively calculab
coefficient and the shape function. Using the results of S
V E for the Wi

u in the shape function region we find

1

G0
u

dGu

dzdx,
512z~12z!S~m2 ,mb!FF~p1,m2!

1
asCF

4p E
0

p1

dk1Gu~p12k1,m2! f ~k1,m2!G ,
~49!

wherep15mb(12x,),

F~p1,m!5E
0

p1

dk1 f ~k1,m! ~50!

and

Gu~v,m!52 ln2
zmbv

m2
23 ln

zmbv

m2
24 ln2z24Li2~12z!

22 ln
3z22

12z
252

7p2

6
. ~51!

Again, our results differ from the results presented in R
@15#, as we will discuss next.

6. Comparison with previous results in the literature

De Fazio and Neubert include shape function effects
convoluting the perturbative decay spectrum~i.e. Wi

part) with
a shape function. This procedure is not correct because t
are large perturbative corrections included in the definition
the shape function. Consider, for example, the most sing
terms in Wi

part, the lnp1/p1 terms. These arise from
C (1)(p1,m)1 f part

(1) (p1,m). TheC (1) term gives a coefficient
of 4, and thef part

(1) term gives a coefficient of28, for a net
contribution of24. The orderas computation of Ref.@15#
gives the net result of24, without reference to the scale a
which it arises. Our effective theory computation shows t
4-15
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it is generated at two different scales, 4 is generated from
matching condition atm2 onto the shape function operato
and28 from the matrix element of the shape function atm3 .
De Fazio and Neubert convolute the shape function with
order as spectrum, i.e. with the24. Instead, one should
convolute it with the orderas coefficientsCi

( f ) generated by
the time-ordered product of currents at the scalem2 , which
has a coefficient14. The remaining28 is included in the
definition of the shape function, since it is produced by ta
ing the matrix element of the shape function operator in
B meson. This somewhat surprising conclusion follows fro
the fact that the the shape function operator has a non-
one-loop matrix element between on-shellb quark states, as
shown in Eq.~31!. In deep inelastic scattering, where th
parton distribution operator has zero matrix element betw
on-shell quark states, the cross section can be written as
convolution of the orderas perturbative cross section with
non-perturbative parton distribution function.

Below the scalem3 , the entire orderas coefficient has
been removed from the operators, and included in the c
ficient functions. The theory belowm3 is an expansion in
local operators, which is valid whenp1@LQCD, and so is no
longer the shape function region.

C. Renormalization group improved photon energy moments

Moments of the photon energy spectrum as defined
@8,23# are given by@using Eqs.~6!,~37!,~40!#

MN
g 5E

0

mB /mb
dxgxg

N21 1

G0

dG

dxg

5E
0

mB /mb
dxgxg

N21E
0

mb(12xg)

dr 1

3Cg„mb~12xg!2r 1,m…

^B̄uOv~r 1!uB̄&
2mB

5mbE
0

mB /mb
dxgxg

N21E
xg

mB /mb
dy

3Cg„mb~y2xg!,m…

^B̄uOv„mb~12y!…uB̄&
2mB

,

where we have made the change of variablesr 15mb(1
2y). Note that the physical limit on the photon energy
mB/2, making the upper limit onxg to bemB /mb . The limits
of integration onr 1 arise because the Wilson coefficie
vanishes for r 1.mb(12xg) and f (r 1) vanishes for
r 1,2L̄. Changing the order of integration and making t
change of variablesxg5yz gives

MN
g 5E

0

mB /mb
dyyN21 ^B̄uOv„mb~12y!…uB̄&

2mB

3E
0

1

dzzN21mbyCg„mby~12z!,m….
03402
e

e

-
e

ro

n
the

f-

in

The coefficient Cg(p1) has terms of the formd(p1),
@1/p1#m and@ ln p1/p1#m . Using the results of the Appendix
Eqs.~A2!,~A3!, one can convert to the form

Cg„mby~12z!,m…5Cg~12z,m!1 ln y terms,

where Cg(12z) contains d(12z), @1/(12z)#1 and
@ ln(12z)/(12z)#1 terms. In the endpoint regiony→1,
ln y5ln@11(12y)#→0, so the lny terms can be dropped
ThusMN is a product of moments,

MN
g 5MN~ f !MN~Cg!, ~52!

where the moments of the shape function and theCg are
defined by

MN~ f !5E
0

mB /mb
dyyN21 ^B̄uOv„mb~12y!…uB̄&

2mB
,

MN~Cg!5E
0

1

dzzN21Cg~12z,m!.

The analogue of Eq.~52! holds for anyWi
( f ) , with Cg re-

placed byCi
( f ) :

MN~Wi
( f )!5MN~ f !MN~Ci

( f )!, ~53!

where

MN~Wi
( f )!5E

0

mB /mb
dxxN21W„n̄•p,p15mb~12x!….

The moments of the shape function operator,

ON~m!5E
0

mB /mb
dyyN21Ov„mb~12y!…,

where

MN~ f !5
^B̄uON~m!uB̄&

2mB
,

satisfy the renormalization group equation for its matrix
ement:

m
d

dm
^ON~m!&

5
asCF

p E
0

mB /mb
dyyN21E

2`

`

dx^Ov„mb~12x!…&

3H d~x2y!12Fu„~x2y!mb.j…

x2y
1 ln

j

m
d~x2y!G J ,

using the anomalous dimension, Eq.~24!, with r 15mb(1
2y) and,15mb(12x). Letting y5xz gives
4-16
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m
d

dm
^ON~m!&

5
asCF

p E
0

mB /mb
dxxN21^Ov„mb~12x!…&

3E
0

1

dzzN21H S 122 ln
m

mbxD d~12z!12F 2

12zG
1
J .

Since we are looking at large moments,x→1 and lnx→0, so
that

m
d

dm
^ON~m!&52gN~m!^ON~m!&, ~54!

where the anomalous dimensiongN(m) is, at one loop,

gN52
asCF

p H S 122 ln
m

mb
D22HN21J ,

which for largeN is

gN→2
asCF

p
S 122 ln

mN̄

mb
D . ~55!

This agrees with the results of@8#. The complete NLO
anomalous dimension is given by including the two-lo
ln N part of the anomalous dimension, which is given by t
relation, Eq.~36!:

gN54B
as

2~m!CF

~2p!2
lnS N̄m

mb
D , ~56!

whereB is given in Eq.~11!.
The solution to this renormalization group equation

given by

^ON~m3!&5Sf
21~m3 ,m2!^ON~m2!&, ~57!

where theN dependent scale factor is

Sf~m3 ,m2!5expF r f 0~z!

as~m3!
1r f 1~z!G , ~58!

with

r f 0~z!52
8pCF

b0
2 F1

z
211 ln zG ,

r f 1~z!52
2CFb1

b0
3 F12z1 ln z2

1

2
ln2zG

1
2CF

b0
@2HN2122 ln N̄21# ln z

2
4CFB

b0
2 @z212 ln z#, ~59!
03402
e

where

z5
as~m2!

as~m3!
. ~60!

Combining these results we obtain for the renormalizat
group improved moments ofWi

( f ) :

MN@Wi
( f )#5MN@ f ~m2!#MN@Ci

( f )~m2!#,

MN@Ci
( f )~m2!#5S~m2 ,m1!Fai

( f )MN@C~w,m2!#

1
as~mb!CF

4p
bi

( f )G ,

MN@C~w,m2!#511
as~m2!CF

4p
MN@C (1)~w,m2!#,

MN@ f ~m2!#5Sf~m3 ,m2!MN@ f ~m3!#.

At the partonic level,

MN@ f ~m3!#511
as~m3!CF

4p
MN@ f (1)~m3!#.

The moments of the perturbative coefficients are, using
~A4!,

MN@C (1)~w,m2!#54 (
j 51

N21
H j

j
2S 4 ln

mbn̄•p

m2
2

23D HN21

1S 2 ln2
mbn̄•p

m2
2

23 ln
mbn̄•p

m2
2

172p2D ,

MN@ f (1)~m3!#528 (
j 51

N21
H j

j
24S ln

m3
2

mb
2 21DHN21

1S 2 ln2
m3

2

mb
2 12 ln

m3
2

mb
2 2

p2

6 D . ~61!

These expressions can be used to obtain the renorma
tion group improved moments for theB→Xsg spectrum.
Using ag

(s)51,
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MNF 1

G0
s

dG

dxg
G5MN@Wg

(s)#

5S~m2 ,m1!Sf~m3 ,m2!MN@ f ~m3!#

3H 11
CF

4p
$as~mb!bg

(s)

1as~m2!MN@C (1)~w,m2!#%J
1

as~mb!CF

4p
MN@E#. ~62!

The computation to leading order in the SCET expans
parameterl does not include the termsE(x) with vanishing
moments asN→`. We have included these terms so that
can compare the renormalization group improved mome
with the fixed order result even for small moments. Sin
E(x) is generated in the traditional operator product exp
sion at the scalemb , we have included these terms wi
as(mb). We have not included the running of local operato
below m3 . As discussed below, the regimem3.m4 exists
only for the first few moments, and for these, the local o
erators have zero anomalous dimension.

We can now compare the orderas moments with the
renormalization group improved moments. For simplici
we will compare the two parton model results; i.e. we w
use Eq.~61! for the moments of the shape function. No
perturbative effects can be included inMN( f ) if so desired.
We choosem15mb and m451 GeV, which are fixed.m2

5mb /AN̄ and m35mb /N̄ vary with the moment. ForN
*3, m3<m4 . In this case, the regime of local operators do
not exist. One runs the shape function down to the scalem4 ,
and computes its matrix elements in theB meson state atm4 ,
so one can effectively setm35m4 in Eq. ~62!. For even
larger moments,N*14, m2<m4 . In this case, the shap
function regime does not exist. One runs the SCET curre
down to m4 and then takes matrix elements of the time
dered product in theB meson state. In this case, one c
effectively setm25m35m4 in Eq. ~62!. The orderas and
renormalization group improved moments are shown in F
7. The renormalization group resummation produces a
nificant correction to the moments, and cannot be neglec

The large moments in the perturbation theory calculat
shown in Fig. 7 become negative. This a reflection of
breakdown of perturbation theory. In obtaining Fig. 7, w
have stopped the renormalization group evolution at
scalem4 , but still computed theB matrix element using per
turbation theory. The matrix elements in Eq.~61! contain
ln N terms, which are an indication of the sensitivity to t

lower scalesmb /AN̄ andmb /N̄, and cause a breakdown o
perturbation theory for largeN. The correct computation fo
large moments involves taking the non-perturbative ma
elements in theB meson state. In the shape function regi
(m3.m4 but m2,m4), one setsm35m4 in Eq. ~62! and uses
the non-perturbative results for the shape function mome
03402
n

ts
e
-

s

-

,

s

ts
-

.
g-
d.
n
e

e

x

ts

MN@ f (m3)#. For m2,m4 , one setsm25m4 , drops the per-
turbative correctionsC (1) generated at the scalem2 , and uses
for MN@ f (m3)# the moments of the non-perturbative matr
element of the time-ordered product of currents.

Decay spectrum vs its moments

The effective theory computation is most naturally do
in moment space. The intermediate scalesm2 and m3 are

given in terms of the momentN asmb /AN̄ andmb /N̄. The
matching contributions and running depend onm2 and m3 ,
which change withN. Furthermore, for largeN, the scales
m2,3 can become smaller thanLQCD, and the effective theory
computation has to be modified, as discussed above.

We have not found a simple way to give a theoretica
correct expression for the spectrum inx-space which in-
cludes the renormalization group evolution, and at the sa
time properly takes into account effects such asm2,3 becom-
ing smaller thanLQCD. The simple double integral form Eq
~37! is not valid because it has a Landau pole singularity
x→1.

IX. CONCLUSIONS

We have calculated the hadronic tensor for left hand
vector and tensor currents, relevant for the decaysB

→Xu, n̄ andB→Xsg in a region of phase space where t
final hadronic system satisfiesp1!p2. From this hadronic
tensor any differential decay rate can be obtained. This
culation has been performed using the soft collinear effec
theory, by performing the matching in multiple steps a
summing all the logarithms arising from the different scal
We considered two possible regions, wherep1;LQCD and
wherep1@LQCD.

In the former region, the hadronic tensor is given as
convolution of calculable Wilson coefficients and the lig

FIG. 7. The first twenty momentsMN of the B→Xsg photon
spectrum (1/G0

s)(dG/dxg)—renormalization group improved~solid
black!, orderas ~dotted blue!, and tree level~dashed red!. The kink
in the blue curve atN'2.75 is the point wherem35m4 , and the
kink at N'13.5 is wherem25m4 .
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cone distribution function of theB meson. We calculated
these Wilson coefficients to orderas including the leading
and subleading Sudakov logarithms. The resulting exp
sions, when expanded to orderas ~i.e. without renormaliza-
tion group improvement!, agree with the orderas results
previously given by De Fazio and Neubert@15#. However,
we do not agree with the assumption in Ref.@15# that the
structure function of theB meson does not contain any pe
turbative effects, so that shape function effects can be
cluded by convoluting the orderas decay distributions with
the shape function. We have seen that very large perturba
corrections are included in the shape function matrix e
ment, Eq.~32!, at the scalem3 . We have also shown that th
usual assumption that moments of the light cone distribu
function are given by matrix elements of universal local o
erators~such as the kinetic or Darwin operators! is incorrect.
This relation only holds at the classical level, but fails on
quantum corrections are taken into account.

In the regionp1@LQCD the structure function can b
expanded in terms of local operators and the the n
perturbative physics of the hadronic tenor are parametr
by matrix elements of these universal local operators. T
results presented here contain the most singular contribut
in the endpoint region, which are enhanced by powers
mb /p1 relative to terms we have dropped. The match
coefficients for these enhanced non-perturbative contr
tions are again given to orderas .
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APPENDIX: THE µ DISTRIBUTION

It is convenient to use a modified version of the usual1
distribution to regulate singular functions ofp1 on the infi-
nite intervalp1P@0,̀ #. Them distribution is defined by

Fu~p1!

p1 G
m

[ lim
j→0

Fu~p1.j!

p1
1d~p1!ln

j

mG

F ln~p1/m!u~p1!

p1 G
m

[ lim
j→0

F ln~p1/m!u~p1.j!

p1

1
1

2
d~p1!ln2

j

mG ,

and is closely related to the * distribution in Ref.@15#. Them
distribution satisfies the relations
03402
s-

n-

ve
-

n
-

e

-
d
e
ns
f

g
u-

t
in
-

E
2A

B

dp1 f ~p1!Fu~p1!

p1 G
m

5E
0

B

dp1
f ~p1!2 f ~0!

p1 1 f ~0!ln
B

m
,

E
2A

B

dp1 f ~p1!F ln~p1/m!u~p1!

p1 G
m

5E
0

B

dp1
f ~p1!2 f ~0!

p1 ln
p1

m
1

1

2
f ~0!ln2

B

m
~A1!

for A>0 and B.0. The m distribution is defined so tha
integrals such as Eq.~A1! involve logarithms of dimension-
less quantities.

The m distribution satisfies the scaling property

Fu~lp1!

lp1 G
m

5
1

l Fu~lp1!

lp1 G
m

1
ln l

l
d~p1!,

F ln~lp1/m!u~lp1!

lp1 G
m

5
1

l F ln~p1/m!u~p1!

p1 G
m

1
ln l

l Fu~lp1!

lp1 G
m

1
ln2l

2l
d~p1!.

~A2!

One can also consider them distribution restricted to a
finite intervalp1P@0,L#. In this case, one can convert to th
usual1 distributions defined by

E
0

L

dp1 f ~p1!Fu~p1!

p1 G
1

5E
0

L

dp1
f ~p1!2 f ~0!

p1 ,

E
0

L

dp1 f ~p1!F ln~p1/m!u~p1!

p1 G
1

5E
0

B

dp1
f ~p1!2 f ~0!

p1 ln
p1

m
.

The conversion is

Fu~p1!

p1 G
m

5Fu~p1!

p1 G
1

1d~p1!ln
L

m
,

F ln~p1/m!u~p1!

p1 G
m

5F ln~p1/m!u~p1!

p1 G
1

1
1

2
d~p1!ln2

L

m

5F ln~p1/L!u~p1!

p1 G
1

1 ln
L

m Fu~p1!

p1 G
1

1
1

2
d~p1!ln2

L

m
,

~A3!
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which depends on the size of the intervalL. We will need
this conversion formula withL5mb andp15mb(12z):

mbFu~p1!

p1 G
m

5F 1

12zG
1

2
1

2
ln

m2

mb
2 d~12z!,

mbF ln~p1/m!u~p1!

p1 G
m

5F ln~12z!

12z G
1

2
1

2
ln

m2

mb
2 F 1

12zG
1

1
1

8
d~12z!ln2

m2

mb
2 .

Using this, Eqs.~17!, ~32! become
ys

.

,

s

03402
C (1)~q1,m2!54F ln~12z!

~12z! G
1

1S 4 ln
mbn̄•p

m2
2

23D F 1

12zG
1

1S 2 ln2
mbn̄•p

m2
2

23 ln
mbn̄•p

m2
2

172p2D
3d~12z!,

f part
(1) ~k1,m3!528F ln~12z!

~12z! G
1

14S ln
m3

2

mb
2 21D F 1

12zG
1

1S 2 ln2
m3

2

mb
2 12 ln

m3
2

mb
2 2

p2

6 D d~12z!.

~A4!
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