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We calculate the decay distributions for inclusiBe- Xy and Bﬂxué’;decays in the endpoint region,
where radiative corrections are large. The computation is done using effective field theory methods. The
matching coefficients are computed®§«) and the anomalous dimensions to next-to-leading order. The final
expressions for the differential decay spectra include the com@lgig) corrections and sum the leading and
next-to-leading Sudakov series. We present results for regions of phase space where the shape function can be
expanded in local operators and give the matching coefficients of the resulting enhanced non-perturbative
effects to orders. We show that moments of the shape funci@we notgiven by moments of local operators
once perturbative effects are included, explain why the shape function and its moments satisfy different
renormalization group equations, and contrast this with the situation for deep inelastic scattering. We show that
there are large perturbative corrections in the usual definition of the shape function. This renders incorrect
previous prescriptions for combining radiative corrections with the shape function.
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. INTRODUCTION shape functions suppressed Byycp/my, [7], and will be
neglected here. The final state invariant mass in the shape
The inclusive decay rates and differential decay distribufunction region isMm g(NMBAQCD<Mng so the final state is

tions forB— Xsy, B—Xsee™, andB—X,{ v can be com- jet like. In this kinematic region, the final state is described

puted [1-4] in a systematic expansion in powers of by a collinear quark, and the appropriate effective theory to

Aqcp/my, and ag(my,) using heavy quark effective theory use is soft-collinear effective theofsCET) [8—11].

(HQET) and the operator product expansion. The operator The shape function region is important for measurements

product expansion for the differential decay distribution fa|lsof B— X,y andB— X, ¢ » decays, because experimental cuts

in certain kinematic regions, but one can still compute %heeded to eliminate backgrounds restrict the measurable re-

suitably smeared decay .dlstr|_but|on. Bpxsyldecay, the &:jion of the allowed phase space. The shape function8 for
operator product expansion gives an expansion for the pho=

ton spectrum H/dE., containing derivatives of-functions ~ —XsY andB—X,{v decays are related, so the shape func-
of the form Abepd™(m,—2E,), which are singular in the tion can be measured in one process and then used in the
endpoint region E,~M ;. Nevertheless, one can still com- Other [12,13. This avoids introducing model dependence
pute the differential decay rate in the endpoint region proJnto the analysis of experimental results. QCD radiative cor-
vided one smears over a range of photon energies which f&ctions are large in the shape function region, due to Suda-
large compared with ocp. Smearing over a range of photon kov double Iogarlthms,_whl_ch need to be s_ummed. The effect
energies of ordeA converts the expansion of'ddE ., from of Sudakov resummation iB decays and its effects on the
an expansion in singular terms to an expansion in powers a#xtraction of CKM parameters such g, have been studied
(Aocp/A)™.Y In the resonance region defined b in detail previously in a series of papers by Leibovich, Low
~Agep/Mg, the operator product expansion breaks downand Rothsteirj14].

In this region the invariant mass of the final hadronic system In this paper, we will study the shape function region in

satisfiesM%~ Adcp, and the inclusiv8— Xsy rate is com-  B— X,y and B—X,{ v using SCET. Our results are given
puted by summing over form factors for a few exclusivefor arbitraryg?, and so can be used f&— X.e*e™ decay.
modes. The weak decay Hamiltonian fd@— X.e*e™ is consider-

In the shape function region defined Ay~ A ocp, all the  ably more complicated than for the other two cases, and is a
(Agcp/A)" terms are equally important. The most singularsum over the different operators. The expressions Bor
terms ABCDé(”)(mb—ZEY) can be summed into a non- —X.e*e can be obtained using the methods of this paper,
perturbative shape functid6] S(E,) that describes the pho- and are not given explicitly.
ton spectrum in the endpoint region. The subleading singu- Another region of interest is when the smearing izé&s
larities, AgCDﬁ(”*l)(mb—ZEy), give rise to subleading large compared withAocp, Mg>A>Aqcp. In this case,

one has an expansion in terms of local operators. Some of
the non-perturbative corrections are enhanced, and order
Isee, for example, Ref[5] where smeared moments fd (Aqcp/A)™, rather than f gcp/m,)™. These enhanced non-
— Xy are computed to order2g,. perturbative corrections will also be computed in this paper.
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The SCET renormalization group equations allow one to
sum the Sudakov double logarithms in the endpoint region.
The matching conditions are computed to ordgrand the o | components satisfy- a, =n. a, =v-n-a =0.
renormalization group evolution to next-to-leading order.  1nq ¢ tensor is defined so thaP23= — €010 1, and
The matching conditions and anomalous dimensions for the

t*=n.a, a =n-a.

first part of our calculation have been computed previously el = ervaby Ng
[8]. We extend the results to include all non-vanishing terms
for large moments. In the regime> A ocp, the total order g’=g""—(n*v”+n"v")+nkn”.

ag part of the calculatiorti.e. not including renormalization

group evolution agrees with an existing calculation by De  The momentum of théd quark in theB rest frame is
Fazio and Neuberft15]. The total orderas contribution is  p,=muv+k, wherek~Aqcp is the residual momentum,
generated at different scales. Our calculation shows that th&nd the coordinate choice is such that=0. Let g? be the
most singular ordes terms, of the form In(+x)/(1-X), are  invariant mass of the virtual gauge bosog?=0 for
generated at two different scales, and some of them are ifB—>Xsy. Theb quark decays into a light quark with momen-
cluded in the shape function. As a result, shape functioRum p and gauge boson with momentump,=p+q. The

effects cannot simply be incorporated by convoluting @ nonmoementum components of the particles are
perturbative shape function with the ordey decay distribu-

tions, as was done in Reffl5], and we disagree with their Py =my+k*, Pp =Mp+Kk~,
results in the shape function regidn~ A ocp.
We study the connection between the shape function and . . 9?
its moments. Unlike the case of deep inelastic scattering, the g =mMmpX, q :m_bx’
shape function and its moments satisfy different renormaliza-
tion group evolution, and are not simply related. The differ- mex— g2
ences arise because of the existence of the velacity pr=my(1—x)+k*, p*:b—_i_k*,
heavy quark decays, which couples theand — light cone MpX
components of momentum, and because the twist expansion
of deep inelastic scattering is not valid for heavy hadron Po. =P =0, =0. @

decays. This implies that moments of the shape function ar .
y b P eior B— Xy decay, the momentum components are given by

not related to matrix elements of local operators as was pre- )
viously assumed. gs.(1) for g andp, with 4°—0. . .
The outline of the paper is as follows. The kinematics and The _k|nemat|cs S|m£>I|f|es in the shape function region
notation are summarized in Sec. Il and the important mas)éHl with my(1=X)~k™~Aqcp. FOrB—Xsy,
scales in Sec. lll. The decay distributions and hadronic ten-
sors that we compute are discussed in Sec. IV. The details of
the computation are given in Sec. V and the relation between
the shape function and its moments in Sec. VI. Some appli-
cations are discussed in Sec. VIII. The reader not interestegnd forB Xe e~ andB—X €7decays
in theoretical details can skip directly to Sec. VIII. u '

p~mp,

pr~my(1—x)+k*,

. _q
II. NOTATION AND KINEMATICS q =M, q _m_b’

The velocity of the decaying meson isv*, and we will
work in the rest framev#=(1,0,0,0). For B—Xgy, pr=my(l-x)+k*, p _m
B—X."e™, andB— X, { v decay, theb quark decays into a My
light quark with momentunp and a gauge boson with mo- o )
n?entﬂmq. The coordinate I;P;(es are ghogen so that the virtual nstead of decay distributions as a functionxpne can
gauge boson is emitted in thzedirection and the light quark @S0 Study their moments. For a functié(x) defined on
in the negative direction. It is convenient to define the null X<[0,1], the moments are defined by

vectorsn®=(1,0,0-1) and;=(1,0,0,1), which satisfy

1
MN(f)zf dxxN"1f(x).

2v#=n*+n# n?=n?=0, n.-n=2. °

. The endpoint regiolx— 1 corresponds to large momerits

Any four-vectora* can be written as — oo with the heuristic relation +x~ 1/N. For smeared ob-
servables in the endpoint region with smearing widththe
relation isN~ 1/A. The shape function region corresponds to
taking large moments witin, /N~ Aqcp. It is also conve-
nient to defineN=Ne*e=1.78\. We will compute all terms
where which do not vanish in the limit N—«. The

1= 1
a=za n ~a n a ,
2 2 *
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TABLE I. The scalesu;—u, that we will use.u, is a scale of IV. HADRONIC TENSOR AND THE ENDPOINT REGION

order A at which perturbation theory is still valid . . . .
—1Gev P Y Ha All strong interaction effects for the inclusiv® decays

studied here can be encoded in the hadronic tensor

M1 o mﬁ,qz .
my, N-p= m, WaB:__ImTaB,
po 2_ g2 mp—q? T
K2 p=Vp p =V(mi-g?(1-x) _ —
N where
M3 pr=my(1-x) _M - B .
" - (BITI096,(0)1/B
Ha Aqep Tf?’f:—ij d4xe—lq-x< '\ X)) >'
2mg

and J,, and J{5 are the quark currents mediating the
vanishing terms can be obtained by computing to higher orp— u¢+ and b— sy transition, respectively:
der in the SCET expansion parameker
J& = —sPra*Pbqp,
(9~ m,> R s
Ill. MASS SCALES .
. . . . JEZU):UPR')/ab.
B decays in the endpoint region have four important
scales_ which are re_Ieva_nt for our computation. The largesh factor of 1, has been included in the—sy current so
scale in the calculation is of the order of thequark mass, tnat it has the same dimension as the u current.
and is chosen to bp,=m, or p1=p~ =(mp—g®)/my. At The hadronic tensow®? can only depend on the mo-
this scale,p™ and Aqcp are infrared scales and can be ne-mentap, andq or, equivalently, on the velocity of the heavy
glected, so the final state quark can be treated as masslegsiark, v#, and the momentum of the light quang®. The
The appropriate effective theory to use at this scale is SCETmost general tensor structure possible is
where the quark is described byaollinear field. The QCD (0.)ap P Bl i af 0
operators match onto SCET currentsiat. Our calculation WM 99F= — gPW{*9) 4 2y AWGES) 1 exProy g WE
does not simultaneously minimize logarithmsrof/x and e BAAf(U,S) @ Bt B ey f(UsS)
p~/u, so the choice of; is a matter of tastew; =m, has A AP WL+ (g vf + g )WY 2
the advantage that it does not depend on the kinematic var
able g?>. We will assume thap~ is of orderm,, i.e. that
2.4 2

g+ mg.

Using the convention of RefR2,4] for W; . The coefficient of
the W5 term is the opposite of Reff2,4] because we use the
opposite sign convention fai;,3. The scalar functiongv("

The next |mportant_scale_|s£he |2nvar2|ant mass of the f'nahepend on all possible Lorentz invariants that can be formed
hadronic system,u,= Jp?=p=(m;—q )(1—x). Below  fom the two vectors* andp“. There are two such invari-
this scale, the invariant mass of the final state hadrons is

large, and they can be integrated out. At the sgaje one ants, and we will chose them to bep andn- p:
integrates out the final hadronic states by computing the
time-ordered product of two SCET currents, integrating out
the intermediate collinear quark and matching on to bilocal
heavy quark operators. The non-locality of the operators i
set by us=p*. Below the next scalg.s, these non-local - ) _
operators can be replaced by local operators. Finally, largdons Wi ”(n-p,n-p) are

WO=WO(: p,0-p).

The inclusive differential decay rates for the decays
%—>Xsy and B— X, ¢ v written in terms of the scalar func-

logarithms in the matrix elements of the operators can be qrs

minimized by renormalizing them at the scalg of order — —om.TI®x [4W(S)—W(S)—x m W(s)]
) . . . dx bl 0 Myl 1 2 ybVVs 1y

the scaleA ocp Of non-perturbative dynamicse, is chosen y

to be large enough that perturbation theory is still valid. The

scales are summarized in Table I. dar¢

There is one important difference from deep inelastic m=12nbl“g”){2(1—z+ P2YWEY +[X,(2—X,)
scattering: the existence of the scalg=p*. Boost invari- ¢
ance in deep inelastic scattering forbids the occurrence of —52]W(2u)+mb(1—2+ 62)(2_ ZZ)W(;)},
such a scale in the effective theory. However, in the case of
heavy meson decays, boost invariance is broken by the ()
choice of rest frame of thB meson. Equivalently, the decay

. ' d where

amplitudes can depend an which does not exist for deep
inelastic scattering, and so one can have the gzale G2|V vV |2 |Ceff|2m5

Finally, keep in mind that the ratio of the largest and = FIVib Visl #1071 T
smallest scaleg.1 /1, is at most five inB decays. 327%
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G2| V) 2m? since the matrix (ﬂemer(tB|OU(k+,,u)|B) has no disconti-
nuities fork™<—A. All the remaining information of the
inclusive decay rates is encoded in the perturbative Wilson
coefficientsC{" .

As explained above, there are four relevant scales in the

I‘(U)z —_
0 19273

and we have defined the dimensionless variables

2E 2F p2 20-p problem. The region of phase space considered here and for
X,=—, x€=—€, 52:—2, 7= , which Eq.(5) is valid requiresu;> u,>Aqocp. The calcu-
M M mp My, lation proceeds as followg1) Match from QCD to SCET

o currents atu;. (2) Run from u; to u, using the SCET
and x,=1-x,. Here cS" is the coefficient of theo—sy  anomalous dimensiop, . (3) Integrate out the final hadronic
operatorO- in the weak Hamiltonian at the scaje,;. At  states afu, by computing the time-ordered product of cur-
next-to-leading ordec,(my)=—0.311[16]. rents, and match onto bilocal operato@) Run the bilocal

The decayB— X £ "¢~ can be treated in a similar way; operators to some common scale-1 GeV. The matrix el-
however, one has to take into account the presence of leiment of the bilocal operator is the non-perturbative shape
and right handed fermions. The expressions of the decafunctionf(k™,x) and Eq.(5) is the final result.
rates in this case can be obtained, for example, from|[Béf. However, if u3>Aqcp, one can proceed further. The

The hadronic tensor can be calculated using an operateunning in step(4) is then performed down to the scale
product expansiofOPE) for the time-ordered product of the and then(5) matched onto local operators at the sqaje (6)
two currents in Eq(2). This procedure has been explained in Run the local operators down to the scalg and compute
great detail in[2] and the scalar function8V;, are known matrix elements. The matrix elements of these local opera-
perturbatively to orderg [15] and non-perturbatively to or- tors are the usual HQET parametérs p; etc. which also
der 1m§ [17]. For these results to be applicable, the phaseccur in the OPE for totally inclusive processes.
space for the decay has to be dominated by a region where Steps(1)—(4) will be performed in Sec. V, while steps
the invariant mass of the final hadronic system is far away5), (6) will be performed in Sec. VI.
from zero. Unfortunately, for many experimentally acces-

sible observables this condition is not satisfied. V. Wi(f) IN THE SHAPE FUNCTION REGION p+~AQCD
In the endpoint region, wherp™>p™* or equivalently .
E;>p?, the traditional OPE breaks down. However, an op- A. Matching from QCD to SCET

erator product expansion in terms of bilocal operators is still The one-loop matching condition between QCD and
possible. The leading order operator the SCET expansion SCET is given by computing the on-shell matrix element in
parametei~+/p*/p~) is the bilocal operatofl13] QCD using dimensional regularization to regulate both the
ultraviolet and infrared divergences, and keeping only the
finite part[18]. The required calculations have been per-
formed in[9] and we will just collect the results given there.
Since both the light quark field and the heavy quark field

0,(kH)= % f ~dxe KB, (0)Y(0,x )b, (x)

—Th s + are given by two component spinors in the effective theory,
=b,8(in-D+k")b,, (4) 4 . )
only three different Dirac structures are possible for heavy to
whereY is an eikonal Wilson line in the direction fromx~  light currents in the effective theory:

to 0. The scalar functiong/\”(n-p,n-p) can be written as
convolutions of perturbatively calculable Wilson coefficients
with the matrix element of this operator:

j*f=xalb,, with T=1,9°%

where y,, is the collinear light quark field.

. o In order to facilitate writing left and right handed currents,

w9 (n.p,n- p):J dk"CO(n.p,p*t—k*, w)f (k" ), we will often write a fourth Dirac structure, which however
is related to the previous three:

(5
where Yiy=ey,,
<§|O (kt M)|§> where, as befores”” = e**Py «Ng With €4155= — 1. The col-
f(k*,u)= U2m . (6) linear field is defined as
B
The light cone distribution functiofshape functionof the B Xn(X)= z e*iB»x[ann](X),
meson,f(k™), encodes all the non-perturbative effects of the P

inclusive decay at leading order in the SCET expansion pa-
rameter\, and has to be determined from experiment. Itwherep is the label momentum which contains components
satisfies of order 1 and ordek. The orderA? components are asso-
. ciated with the spacetime dependence of the fielts(x)
f(k*,u)=0 for k*>—A (7)  denotes a Wilson line of collinear gluons along the path in
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the n direction fromx to c. This Wilson line is required to where
ensure gauge invariance of the current in the effective theory

[10].

Define
j EZ:;‘IPRﬁbU ’
J5"=xXnPRD, -

The full theory currents mediating the decags-Xgy

and B—»Xu€7 can be matched onto these effective theory

currents. Using the results 6] we find
UPR)’,Lb—’Cl(F' P, 1) if,i"‘{cz(?' p,u)N,

+Cy(n- P, 1)V ] g,

SPRiT,,b—Ca(N- P, ) (NG00~ NG00 i 5

+ CS(F pyﬂl)(v,unv_ UVn,u+ [ etv)j gﬁ'
(€S)

The Wilson coefficient€, _5 are given by

as(n)Cr -
T g(n p,my ,,LL)

+|n(F-|6)(M)],

1-n-p

Cy(n-p,my,pu)=1-

as(n)Cr

CZ(F’pambwu):l_ A1 {g(ﬁpimbwu)

n(m6) 2—4F-|6+(R;3)2]
—In(n- —=
(n-p (1-n-p)?
1-n-p
— as(w)Ce| 2 2n-pin(n-p)
Ca(n-p,my, )= — —
s(n-p,my, ) . [(1—n~p)+ (1—n-p)2 ]
— (W)Ce| — 2
Cal-p. My )= 1= = =5 g(0-pumy ) +In
—zm(m)],
— (wCe| — 2
c5<n~p,mb,m=1—%{g(n-p,mb,wmg—g
. (4?;3—2)]
+In(n-p)| ———=| {, 9
1-n-p

_ 1 ,w® 5
Since for the processes we are considering we only needg(n' P.My, )= 2 In m? + 2
left handed light quarks, there are only two currents in SCET.

2 2 2

me 5 u ne—

INn—-—-2In—In(n-
m? m; (n-p)

b b

2
- A — A v
+21In(n-p)+2 Lio(1=n-p)+ 75 +6

and

The matching coefficients foo*” have an extra Iwzlmf,

contribution which corresponds to the anomalous dimension

for this operator in full QCD.
The matching scale can be chosen to be eijbgen-p

or u=m,. At these scales the matching coefficients are

given by Eq.(9) with
2

g(n-p,my.n-p)=5In(n-p)+2 Li(1—n- ﬁ)+%+6,

77_2

g(n-p,m,,mp) =2 In¥(n-p)+2 Li,(1—n-p)+ 5+

B. Renormalization of the SCET currents

The running of the currents in the effective theory has

also been calculated {®]. The currents are multiplicatively

renormalized, and satisfy the renormalization group equation

d — _ _
Maci(n' p,Mp,u)=y(p,n-p)Ci(N-p,my,u).

The leading ordeLO) and next to leading ordefNLO)
anomalous dimensions are

ag(u)Ce (M)
A e

YLo= p 1
_ as(u)Cg| 5 M1
YNo= T 5 |5 +2In _n-_p
2
as(u)C
—ZBﬁln(i), (10)
(2m)? M1
where[19]
B_c 67 w?| 5 "
=Cal1g™ ) 9™ @y

Note that the value oft; in these anomalous dimensions is

chosen to coincide with the choice made for the matching

scale in Eq.9). The u; dependence in theg term cancels
betweeny, o andyy o . The difference between the two pos-
sible choices fop, in the «? term is NNLO.
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FIG. 1. Tree graph for the product of two currents. The dashed FIG. 2. Tree level matrix element of the shape function operator.
line depicts a collinear particle. The double line between the two currents depicts a Wilson line in
the n direction.

The solution to this renormalization group equation is

given by the discontinuity of the diagram, since the operator is a prod-
Ci(n- puMy 1) ro(2) uct, not a time-ordered product.
0 PMo . 4 =exp{ 0 +r4(2)|, Spinors in SCET have only two components, which can
Ci(n-p,mp, p1) as(pa) be used to simplify the results significantly. One can easily
ith show that after taking matrix elements between pseudoscalar
wit B mesons that the only non-vanishing time-ordered products
47C have two identical current;slﬁ. Furthermore, perturbative
ro(2)=——; F[——1+Inz corrections in SCET are independent of the Dirac structure
By L2 of the currents. As a result, one can show that the only non-
vanishing time-ordered products in SCET can be written in
C 1
r(z)=- Ffl 1-z+Inz— zlnzz the form
Bo
i f d*xe™ "9 X(B|T[j§h (x),j55(0)1IB)
Ce|5 M1
+—|= + 2Inf=—||Inz
Bo| 2 n-p R = =
- Z(gaﬁ+ I 6aﬁ)<B|7-(p )|B>1
B
—[z-1-Inz], (12)
0
where fd“xe a-xBIT[jS™(x),j(0)]B)
_ as(M) 1 _ o
ag(p1)’ =7(BIT(p")|B).
11 2
Bo=3 = Ca— 3Nt . _ _ .
Combining this result with Eqg2) and (8) we find, for the
34 10 decayB— X (v,
B1= gc/zx_ 3 Cant—2Ceny,
2 /ol EENT=Y
d _ :80 5 ﬁl 3 Wg-u):&<B|W(p )|B>'
M@as——g%—ﬁasr 4 2mg

Ca=3, C,=4/3 andn;=4 is the number of light quark

flavors. W(u):{n-_p—l ., [ Ca Cs\*|(BIWp)IB)

2 n)2 ! ) 2m :
C. Matching to bilocal operators (n-p) n-p B
Below the scaleu,=p the final hadronic state is heavy

and can be integrated out. This is done by matching the 1 <§|W(p+)|§)

time-ordered product of two SCET currents onto bilocal op- W(3U): —C? ,

erators by integrating out the-collinear fields at the scale 2mgn-p 2mg

Mo. The tree level time-ordered product graph is shown in

Fig. 1. The tree level graph for the bilocal operator is shown

in Fig. 2 and matches onto a bilocal heavy quark operator, 1 , (B | |B)

the shape function operator defined in E4. The Feynman WE{‘)= == 2(C2 1)

rules for matrix elements of this operator are given by taking mg(N-p) Mg
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Comparing the tree-level matrix element of the time-
TR ! ! & R - S ! ordered product shown in Fig. 1 with the tree-level matrix
kmg N s CERIRI g element of the shape function operator shown in Fig. 2, one
® ©

(@) finds

q ,,\,,:, _ q q o q q _ _:" B q + _ O + + .
;}@ TS § %@6@ << % oo Q\i MpT)=0,(p")+O(as)
@ - o The one-loop matching condition is evaluated by comput-

ing the graphs in Fig. 3 and subtracting from it the one-loop
matrix element of the tree-level operatW(p™) in the ef-
fective theory, shown in Fig. 4. The matrix element of
O,(p™) at one loop exactly reproduces the graphs in Figs.
3(a)—3(d), since the coupling of soft gluons to thecollinear
quark is identical to the coupling to the Wilson livg[19].
The matching condition is therefore given by graphs Figs.
3(e)—3(g). The Feynman rules for graphs Fig$e3-3(g) do
not depend on the external quark field, so the graphs have the
W 1 ) — 5 same value as the matching graphs for deep inelastic scatter-
5 = m[cl(z_n' p)—2C; ing [20], with the replacemen— 0, g— p. The discontinu-
b{N-P ity of the graph extends over the infinite range p* <o,
o (§|W(p+)|§) rather than a finite interval such g3,1]. For this reason, it is
—C,C3n-pl———, (13 convenient to regulate the singularity@t=0 by a modified
2mg + distribution, called thew distribution since it depends on
the scalew. The u distribution, its properties, and relation to
where the + distribution are given in the Appendix. The resulting
expression foV(p*) is

FIG. 3. One loop correction to the current product. Grafzhs
(b) and(e) also have mirror image graphs where the gluon attache
to the other side.

1
W(p™)=——ImT(p*).
(p7)=——Im7(p") W(pﬂ:fdr+C(p+—f+,M)Ou(r+):

For the decayB— X4y we find (usingq?=0)

C
, — _ C(q+1M):C(O)(q+1M)+%C(l)((f,#),
W(S):g<BIW(p*)IB>
17 g 2mg ’ cO(q*,m)=5(q"),
(s) — In(q*/wm)6(q* n.
W2'=0. Wt u)=4 In(a /w07 “j d )] +{4In7p—3}
q
— — M
Ci (BW(p")IB)
W= {G(QW
b B X "
— J— q i
1 (B[W(p")|B) — —
W)= — (C2-4CH———, n n
N 4m§( 5740 om, 2P s P s 2 sigh).
M 7
c2 (B)W(p*)|B) (17)

D. Renormalization of the shape function
We can study the renormalization of the shape function by
Gauge invariance impliefusing g?=0) that W$?=0 and  computing the on-shell matrix element of the shape function
2W=m W | so these relations are true to all orders inoperatorO,(r*) in a heavy quark target, with residual mo-
perturbation theory. For the photon spectrunBin: Xgy, we ~ mentumk=0.

2my 2mg

will need the linear combination The tree level matrix element is given by the graph shown
in Fig. 2. The spin-averaged matrix element is
WIS = 2m, (AW — WS — mpWi), (15 i 1
Itree: Disc=— 5 AT
obtained from Eq.(3) with x,—1. The matching for this 2m o +i0
linear combination ofV(® is =8(r*). (18)
(§|W(p+)|§> The loop corrections to the shape function matrix element
we = mbcf1 ) (16) are the graphs in Fig. 4 and wave function graphs. The graph
7 2mg of Fig. 4a) gives
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FIG. 4. One loop correction to the shape function operator.

2

. 9°Ce c
la=—1 WCS({ZEW}F(E)MZ

X Disc (—rt—i0*) 2.

(r +i0")

In terms of thew distribution,

_@Ce((1 A L 26T
'a“ﬁ[(?*ﬁ)‘” e
In(r*/uw)6(r*
J g MTIBTT) r’ﬂ)( ) J (19
M

The spin-averaged loop graph Figb¥is

2

_9Ce (1 +_in+
Ib_IWDISC(E 2In(—r i0") W,
2 +
C9Ce[1 or™)
=52 {;5« ) 2| == it (20)

The 1k is an infrared divergence.

PHYSICAL REVIEW D70, 034024 (2004
restriction | 7>0, so the 6-function is satisfied for—oe
<¢t<r?', rather than &c¢t<r™.

Differentiating Eq.(21) with respect tqu gives the renor-
malization group equation for the shape function operator:

M%OUW):—F dety(rt 69)0,(6%), (23

where

O(r-—¢7)

r+ €+

asC,:

yrt et)=— )

{5(r+—€+)+2
" (24

using Eq.(22). The shape functiorf(k*,u) satisfies the
same equation, since it is the matrix elemenOg{k™).

The convolution in the renormalization group equation
(23) makes this equation difficult to solve and so far no
solution exists in the literature. Methods that are used to
solve a similar equation for the parton distribution functions
do not work in this case because of the difference in the
6-function mentioned above.

E. Expressions forw!"

In this section we combine the results of the previous
sections and give the final expressions for the scalar func-
tions W | from which all differential decay rates can be

The heavy quark wave function graph vanishes on-shelbbtained. As before, we define
when evaluated in pure dimensional regularization, because

the integral is scaleless. One can verify that the graph has the
structure G=1/ey,— 1l/eig with exactly the right coefficient

to convert the infrared divergence in E@O) into an ultra-
violet divergence.

The wave function renormalization of the internal Wilson

line is zero sinca®=0.

The one-loop matrix element of the shape function opera

tor is given by the sum of the tree graph, twice grdgh

W (n-p,n-p=p*)
:fdk+c§”(F-p,p*—ktmf(k*,m, (25

where the shape functiof(k™,«) is given by Eq.(6). The
expressions fo€{(n-p,p* —k", 1) at u= u, to first order

graph (b) and the wave function graphs. From the infinite in a5 can be obtained from Eq$13),(14),(9). As explained

parts, we see that the renormalized oper&igiis related to

earlier, one can choose the matching scale from QCD onto

the bare operator by a convolution with the renormalizatiom>CET to be any scalg,;~m, and in Sec. VA we gave

coefficient

og°>(r+)=f derz(rt, 670, M), (21)

whereO©)(r *) is the bare operato®,(r ) is the renormal-
ized operator, and

¥ phy_ sipt_p+ aCp O(r-—¢")
Z(rm T)=50(r" =€)+ 2776{2{ S

"

+ (22

1) + +
1-—|a(rt =) .

results for bothu,;=m, and ,u1=ﬁ p. In this section we
give all results with the choicg,=m,. We find

Cl(f)(F paWUu‘Z) = S(Iu‘Zimb) al(f)C(W,lbLz)

b{" s(w)

m,)C
+a’s(4b) F +O(C¥§),

(26)

where the coefficientsa(", b{") are functions ofn-p and
m,, . The functionC(w, u,) is universal and does not depend
on the decay process. It is given in E@7).

The scale factoS(u,,m,) is the running of two SCET

The crucial difference from the renormalization of the deepcurrents from the matching scaje;=m, to the scaleu

inelastic structure function is that E(22) does not have the

= u, Where the OPE is performed. We can write

034024-8
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|

wherer y(z) andr(z) are given in Eq(12) (one should pick
m1=m in these expressionsand z= ag(uo)/ ag(my). The

remaining coefficients are different for the decBy»XLﬂ;
andB— Xgy. ForB— X ¢ v we find

ro(2)

ag(mp) )

S(Mzamb):eXP{ 2

al=—",
1
a(zu)—_—”
n-p
1
ail=———,
2mpn-p
al)=o,
1
al=— ——+,
2mpn-p
where
;A_@_mﬁ_qz
P~ m m?
The coefficients{") are given by
1 . 3n.-p—-2 .
b{=— —g(n-p,my,m,)————— logn-p,
1=~ 59(n-p,my,mp) 21-np) 9P

2g(n-p,m, ,m logn-p
g(n-p,my b)+69 p

b§)=— Ll gn-p.
n-p n-p
b(U):_g(Rﬁymb,mb)_ |OgF-f) 3_.[5_2
3 mpn-p myn-p/ 1-n-p’
logn-p| 1—2n-p
v A
mpn-p(1-n-p) mgn-p/ (1—n-p)
b(5u): g(l’l p,TbA,mb) n _ 1 -
mpn-p mbn~p(1—n.p)
logn-p| (3n-p—2)(n-p—2)
mpNn- P (1-n-p)? '
with

2
9(n- P,y My) =2 IP(n- )+ 2 Lin(1=1- p) + 2 +6.

For the decayB— Xy, n p=m,. This simplifies the re-
sulting expression significantly and we find

PHYSICAL REVIEW D70, 034024 (2004

1
()= =
al 4,

al®=0,

o L

3 Zmb

3
aP=— >

21
4mg

ald=m,. 27

For the coefficient$®(® ,

12+ 772
6

bl =— m. (28)

The above equations givé{"(n-p,w,u,), and so must
be integrated with the shape functié(k™,u,) also renor-
malized at the scalg,. One can instead convert to the shape
function at some other scalsuch asu3) by using the renor-
malization group equatiof24) for the shape function.

VI. W IN THE PHASE SPACE REGION p*®Aqcp

As explained earlier, in regions of phase space where
P> Aqcp an additional matching can be performed at the
scaleus=p*. Since the non-locality of the bilocal operator
O,(r") was set by the scalp™, the operators below the
scaleu; will be local operators. In this section we will match
onto these operators at one loop and then determine their
running.

A. Matching onto local operators

The bilocal operatoO,(p*) below x5 can be expanded
in terms of local operator®,,,

034024-9
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ov<p+>=§ Dn(p* 1) Oy, (29)

with coefficientsD,(p*, ), where(at tree level
On=b,(in-D)™b, .

The matrix elements oDy, are of orderA jcp. The coeffi-
cientsD,, are of order p™) ™ 1. The subleading terms in

the endpoint region have coefficients suppressed by powers

of p*/my.
The local operator®,, are related to the moments of

O,(p™). The matrix elements of the first few local operators

are given by{13]
<B|Evbv|B>:2va
(Blb,(in-D)b,[B)=0,

2mg

(Bb,(in-D)%b,[B) =~ —=Na(n),

— 2m
(BIby(in-D)°b,[B)=~ " ps(),

to leading order in bh,. Here\; andp, are given by the
matrix elements of the kinetic and Darwin terms

<B|H;D2bv| B)=—4mg\(u),
gv 5(B|b,(D,G*)b,|B) = —4mgp;(u).

Since the scalgus is now a large scale, the matrix ele-
ment of the operatoO,(r ") can be calculated perturba-

tively, using on-shell partonic states with residual momentum

k=0. At tree level the matching Edq29) is trivial since
O,(p*)=b,8(in-D+p*)b,+O(ay), and we find

m

8(p")+O(as).

N 1
Di(p ):H dp*

The orderag matrix element is given by the finite parts of
Eq. (18), twice Eq.(19) and Eq.(20):

77_2

as(mn)Cr +
S T sp)

<bv|ou(p+)|bv>:5(p+)_ A

6(p")

T

8 In(p™/u)6(p")

+4 0"

)

(30

Sincek™ =0, the matrix elements dd,, vanish except for
m=0, so we get

PHYSICAL REVIEW D70, 034024 (2004

Ck [ 72 o(p™)
Do<p+,u)=a<p+>—“4;{%a<p+>+4 (p‘l
i
In(p* /1) 0(p")

+8 (32

¥

)

This matrix element gives the parton level value for the
shape function:

as(un)Ce

fpart(kJr!M):fE)g)rt(kJrv/*‘“)'i_ A féla)ﬂ(kJr’/‘L)’

Foa(k ™ )= 8(k™),

2

T (k™)
fran k") =— 5 8(k*")—4

k+

In(k*/ ) O(k+)

o

To determine the coefficiend,, for m>0 requires evalu-
ating the matrix element Eq30) for non-zerok™®, with
2k-v=k*+k™ =0, so that the quark is still on-shell. It can
be determined, following the arguments in R&f], in terms
of the lowest order coefficient. The matrix element, Bf),
for non-zerok™ is given by the replacemempt™ —p* +k™*,
which follows from reparametrization invariand¢@1], so
that

(b, (k")|O,(p™)[b,(K"))=Do(p" +k*, )

_ (k+)m
m m!

d\"
(dp*) Do(p™ ).

The matrix elements ob,(in-D)™b, are their tree level
value k™)™, since loop graphs are scaleless and vanish, so

1
,Dm(erwu“):H (33)

d m
dp_+) Do(p™, ).

The matching condition, Eq33), is evaluated at a scaje
~p™ to minimize logarithms. At one loop, one can also gen-
erate four-quark operators; the matching coefficients for
these operators is not computed here.

Local operators in deep inelastic scattering

In deep inelastic scattering, the on-shell matrix element of
the parton distribution operator vanishes, so the analogue of
Eq. (32 is fM)=0. An on-shell external state has +0,
k™ =0. The momentunp™ in the operator and the momen-
tum k" of the external state enter the loop integral over the
+ component of the loop integral, but the component of
the loop integral is scaleless, and vanishes. InBhaeson
shape function matrix element, E(B0), the heavy quark
propagatow - £ mixes the+ and— components of the loop
momentum¢, so the scal@™ enters both loop integrals, and
the ¢~ integral is no longer scaleless.

034024-10
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B. Running of the local operators

Since the matrix elements of the Ioﬁj(in-D)mbU op-
erators are equal to the usual HQET operator matrix ele-
ments that define\,, p;, etc., the renormalization group

1
equations for the matrix elements of these two sets of opera- Q
tors must be identical. One can check that the running of the ~9~9 ~9~9~9
local b,(in-D)™b, operators reproduces the known renor-
malization group evolution fok; and p; [22] for m=2,3, (@)
respectively. There is an important difference here between
the evolution of the locab,(in-D)™b, operators and the
corresponding evolution of local operators in deep inelastic

scattering. In deep inelastic scattering, the evolution of the @
o0 !

k/

bilocal parton distribution operator is equivalent to the evo-
lution of the local twist-2 operators; the twist-2 anomalous k
dimensions are given by the moments of the Altarelli-Parisi
evolution kernel for the parton distribution. This is not the (b)
case for the shape function operator and its moments. The
shape function anomalous dimension at one loop depends
only onCg, whereas the anomalous dimensiorpef which

is the same as the anomalous dimension of the Darwin ter

k/
FIG. 5. One loop corrections to the local operator.

lastic scattering, where there is a twist expansion. Fermion
depends orC, [22] felds have twist 1 and 2 quark operators with twist 2 cannot
A . . . _ . .
The two diagrams shown in Fig. 5 contribute to the renorMiX with four-quark operators which have twist 4, so the box

malization of the local operatoi8,. For the first diagram graph Fig. 6 does not contribute to the'anomalou_s dimension.
we find. for the forward matrix elgrﬁenk’(=k) In B decay, there is no analogous twist expansion, and the

mixing graphs of Fig. 6 are presenfhey are precisely the
graphs computed in Ref22] which give the anomalous di-
F(n.k)m, mension of the Darwin term whose matrix elementpis

€

and allow the dimension 6 operaﬂa{(in -D)3b, to mix into

la

, d% [n-(k+€)]" g°C
_ 2 —
|g CFJ (27T)d [U-€]2€2 8772

(34) the dimension 6 operatd?vbqu.
where we have only kept the divergent part of the graph and C. Expressions forw("
used the equation of motiok-v=0 for the external states . ) M )
since we are only working to lowest order inmi/. The _ The final expressions fa#; ” in the regionA> A ocp are
graph in Fig. %b) gives given by combining Eq(25) with the expansion of the shape
function operator, Eq(29). They are given by
m d m—j
d¢ - [n-(k+€)]™!
l,=ig?C f n-ky-lt——=0, — asCr
TG | ™ T W= )= Stz | a(p )+ 2
since all the divergent terms are proportional to powers of
(k-v), and vanish. The wave function graph gives In(p*/uy) 0(p™)
X! 4| ———————
2 p* ;
. s 2
|8ﬂ_26(k-v)—|(k v)6Z, B .
a2 _q]| 20D
so that the wave function graph cancels B4), when mul- o p*
tiplied by the tree-level matrix element #2
(KOglk)=(n- k)", +(2mzw_3m£+7
. M2 M2
la— 8Z(n-k)™=0. The net result is that the operator
b,(in-D)™b, has no anomalous dimension from the graphs 772 bi(f) N
in Fig. 5 at leading order in i, . 6 " 20 o(p") ¢ (35
While this gives the correct result for the running of the !

local operatorsO,, for m<3, it does not reproduce the

known result form= 3. For the latter case, however, there arewhereS(u,,m;), a{” andb{" are the same as in Sec. VE.
additional graphs such as those in Fig. 6, which are divergent

for m=3 and renormalize the local operator. These box

graphs connect the heavy quark to a light quark, and mix into >The Feynman integrals for Fig. 6 for deep inelastic scattering
four fermion operators. Such graphs are absent for deep irinvolve nh=0, whereas foB decay involvens # 0.
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) @ which restricts the coefficients of the dnterms. The results,
) ) Egs. (10),(55), satisfy these constraints, withA
a a =—2asCr/m. The third relation shows that the anomalous
% % dimension ofb,(in-D)™b, should not have a Im term as
m—oo,
FIG. 6. One loop running of the local operator. The anomalous dimefISioﬂfi,z are used fQUU«l?_,U«Z,U«z
and pw,=u=us, respectively. The lm term in y, is not a
VII. CONSTRAINTS ON THE ANOMALOUS DIMENSIONS large logarithm at the upper endpoin, and the Inu term

in y; is not a large logarithm at the lower endpopaj. At

There is a relation between the anomalous dimensions ifj,ocea limits, the effective theories match with full QCD
the effective theory similar to the one obtained for deep in'above,ul which has no Inc anomalous dimension, and the
elastic scattering20]. It is simplest to write the relations in ' . L —
terms of moments. The theory belgw has SCET currents, theory with Ipcal operators belows, which has no IN

anomalous dimension.

and depends on the label momentmp. Anomalous di-

mensions can depend onp, but not on any infrared scales Rge|ation to the factorization form of the anomalous dimension
in this theory such a®-p, and so cannot depend on the . )
momentN. In the theory belowu,, the effective theory is Korchemsky and Stermd@3] have derived an alternative

written in terms of shape function operators that depend ofPr™m for the running of theB— X,y moments between the
the scalep+=mb(1—x)=mblﬁ. The scalep™ has been scalesmy, and my,/N. They have a renormalization group
integrated out, so the anomalous dimension is only a funcgvelution of the form

tion of my/N. Finally, in the theory belows, the scalep™ m,
has also been integrated out, and the theory only knows C(:)zC(mb)eA,
aboutN, since the local operator depends on the moment. N

The anomalous dimensiong in the three theories beloy;  \yhere

can be written as

A= [ P astmay) + ytas(mo9)
= _ ag(m ag(m
2y =1 L= am) |, T AR i
n-p
myydu
N +J' —2I (ag( )| (37)
lLL mpy M
vo(p) =T\~ = as(u) |,
b Changing the order of integration gives
ya()=f(N,ag(p)). m d [ my
=f [ In—=2D(as(u))+ ' (as(u))+2y(as(n))
We have used twice the anomalous dimensignof the m/VN 4 M

uN
In m_2rc(as(/~4))+ [(as(p))
b

SCET current below, since the time-ordered product in- ~d
volves two currents. i fmb’jN haad
The matching conditions at, depend only on the invari- my/N M
ant massp? of the hadronic final state which is integrated . . . . . .
out, so the matching coefficients are functidBs(p?/2) and so is equivalent to integrating the anomalous dimension
=Cz(mbﬁ~ p/(ﬁ,uz)). The matching conditions at; de- 2v, betweemrm, andm,/+/N and the anomalous dimensions

pend only on the scalp® which is integrated out, so the v, betweenmy/ N and mblﬁwhere
matching  coefficients are  functions C3(p*/u)

= C4(my/(Np)). Finally, using the relation that the deriva- 2= — 2 In- T (arg(12)) + T (s )+ 27(arg( 1)),
tive of the matching coefficients with respectiads equal to my

the difference of the anomalous dimensions on either side,
one finds that the anomalous dimensiofis:must be linear B Nu
in In «, and(2) must have the form Y2=2 Inm_bFC(‘)‘S("‘))JFF(“S('“))'

and so satisfies the constraint on the coefficients of the In
terms in Eq.(36), with I' ;= a,C¢ /7. Alternatively, the in-
tegrations fromw;— w, and u,— w5 can be combined into
N the_ sfi_n%le integral, Eq37), since the constraint, E36), is
- _ i satisfied.

v2(K) Alas()in My Balas(u)). The double integral form, Eq.37), has a Landau pole

o singularity for large moments. As for deep inelastic scatter-
v3() =0 INN+Bs(ag(u)), (36) ing, this Landau pole singularity is resolved by the effective

271<M>=A(as<m)lnﬁ’_‘—p+Bl(as<m>,

034024-12



SHAPE FUNCTION EFFECTS INB— Xy AND BHXU€7DECAYS PHYSICAL REVIEW D70, 034024 (2004

theory computatlor[zo] For Iarge enough moments, the Slncey(r +) 0 unless€*<r andr =<0 in the inte-

=Agcp, and one needs to stop the renormalization group=? " <O. Letr " =2¢":
evolution atu,. For B decays the conditiop 3> x4, Which d

is required for Eq(37) to be valid is only true for the first pw-—My(O)

two moments. du

asCe [0 e N—1m o [y N-1
VIIl. APPLICATIONS :Tf7 der(€m) Oo(¢ )JAl dz2N o(1—-2)

A. Moments of the shape function
5 0z —€T>¢) é

It is generally believed that moments of the structure +5(1—z)|n—}
1- M

function f(k,) are related to local operators in HQET. This
relation is used to construct models of the structure function
using input from matrix elements of local operators extracted ~ _ asCFJO e+ (eH)N1o(¢*)

from inclusive Bﬂxcej decays or to constrain fits to the
shape function measured from data. We have already seen

that this relation cannot be correct, since the shape function <1421 —€+ 2 } (39
and local operators have different anomalous dimensions. In =
this section we show in more detail why this relation is in-
correct. This shows that the half-infinite moment4, (O) are not
Moments of the bare operat@‘” (k. ) are given by bare multiplicatively renormalized, because of the 4(*/w)
local operators, term in Eq.(38). The half-infinite momenM ;(O) has the
. divergence atr*—o noted earlier. For moments of the
MEO)ZJ dk, (—k, )"0 (k) shape function only the half infinite momekty (O) is rel-

evant, since (r ) vanishes for *<— A. Thus, moments of
_ the shape function are not defined without an additional
=b,(in-D)"b,, renormalization prescription and are not directly related to
matrix elements of local operators once radiative corrections
but the corresponding relatiatioes nothold for renormal-  are included. Models for the shape function should therefore
ized operators. The infinite moments, overe<r <o of  not be constrained to have widdf= —\ 1/(3md) for ex-
the renormalized operat®,(p*) are singular. One way to ample. The parameters of a given model have to be kept
see this is to take the infinite moments of the renormahzaﬂorarb.trary and determined directly from a fit to the data.
group evolution, Eq(23). The integral over/(r *,¢") does Since the shape function is not equivalent to local opera-
not converge at "=, so the infinite moments require ad- tors at ordere, the moments of the shape function are not
ditional regularization. This situation is similar to the case ofgiven by the matrix elements of the local operators. Instead,
moments of théB meson wave function, which also require one has to compute the matching correction onto the local
an additional renormalizatiof24]. operators, as in Eq29). In particular the first moment of the
To gain more insight into the running of these momentsshape function(because of the definition of the moments
without encountering the divergence, one can also study th@ith powers ofN—1, the first moment is the normalization

evolution of half-infinite moments, defined by of the shape functionis not unity. The matrix element of
. Op=b,b, is unity to all orders inag and leading order in
Mmo):j drf(rHN"1o(r ), 1/m,, by heavy quark symmetry, so the first moment of the
0 shape function is given by the first moment DY, the

matching coefficient onto the lowest order operdgr Here

_ O Nelm Dy has a non-zero first moment, as can be seen from Eq.
n(O)=[ dri(r")"rO(r7). (61).
Note that low moments of the photon energy spectrum in
Consider the half infinite momem  (O). We find B— Xgv are still given by the well known matrix elements of

local operatora. ¢, p; etc. This is because for these moments
one integrates over the entire region of phase space and the

,udilvm(o) traditional OPE is therefore applicable. High moments of the
M photon spectrum no longer match onto local operators, and
0 o are discussed in Sec. VIII C.
f drt(rt)N 1j deFy(rt,€TH0o")

B. Expressions for differential decay rates

_ fw d€+O(€+)fO drt(rHON"Iy(rt ). Us_ing the_: results of this paper we can optain expressions
— % for differential decay rates to orders. In this section we
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will giye results for the photon energy spectrudﬁ/dxy' in 1 dr a.Cr In(1-x,)

the limitx,,—1 for the decayB— Xy and the double differ- v =S(,u2,mb){ o(1—-x,)— = 4( T—x )
ential decay ratell’/(dzdx) in the limit x,—1 for the de- o &y Yo
cay B— X, fv. For both decays we give the results in the 2“% wh A
region m,>my(1—X,,)>Aqcp Where an expansion in lo- T ) —|In 27To |HF—5— T)
cal operators is valid, and in the shape function region [ b b
Mp(1—X¢,,)~Agcp. The expressions in the regiom,

>mp(1—X,,,)>Agcp should be used in cases where the X 8(1=X,) J+ (41)

photon spectrum is integrated over a regiorximhich far
exceeds the value ofocp/my, . For example, measurements
of the decayB— Xqy currently require experimental cuts al-
lowing only a limited range ofE, to be observed. If this

where the ellipsis denotes perturbative terms of omﬁeas
well as terms of orderrs which are not singular as,— 1.
: . , Furthermore, we have not given explicitly the power sup-
range is of orderAqcp, as is currently the case in moSt  oqqeq terms proportional to matrix elements of higher di-
measurements, the expressions in Sec. VIII B 3 should bg,ensional operators, which can be included by retaining the
used. If the observed range &f, could be increased signifi- operatorsO,,-;. The explicit logarithms ofu,/m, in Eq.
cantly, one could use the results of Sec. VIII B 1, for which (41) are canceled by the., dependence 08(u,,my). To

knowledge of the shape function is not required. fixed order inas our results agree with the known perturba-
tive corrections(see the next subsectiprbut we improve
1. B—Xgy for my=>my(1—x,)>Agcp this result by including the Sudakov logarithms originating

from running between the scaleg, and u,~1.5 GeV.
In this region of phase space, the differential decay rate
can be expanded around the limi{=1, but we are not in
the shape function region and the non-perturbative effects are
still obtained by matrix elements of local operators. The pho- The photon spectrum iB— X4y decay to ordeg ignor-
ton energy spectrum is given by ing renormalization group evolution is given by using Eg.
(41), and expanding(w,,m,) to orderay:

2. B—Xgy spectrum to ordelag ignoring renormalization
group evolution

drs _ 1 dr S(1-x.) alCe [ [In(1-x,)
_—— = . +: — —_——_— —X —
1_‘(5) dxy(xy) Wy(n prp mb(l X'y))! (39) 1—*8 dxy Y Aar 1_Xy l_X‘y N
472 aCr
{5+ = |8(1=x,)  + 5 —E(X,), (42)
whereW, was defined in Eq(15). Using the expression of m

W as a convolution of a Wilson coefficie, with the bilo-
cal operatoO, , Eq.(25), together with the expansion of the
bilocal operator in terms of local operators given in E2f)
we find

up to termsE(x,) which have vanishing moments &
—o, The scale at whiclyg is evaluated is not determined by
this fixed order result.

A comparison of Eq.(42) with the complete ordegyg
expression8] shows that the terms we have computed agree,

N . and the remaining terms are
Wy:j drmCo(my(1—X,) =1, uy)
E(X)=7+x—2x*>—2(1+x)In(1—x),

(B[Om[B)

2me (40 with moment

X% Dm(r+7lbl‘2)
7 N2—N-4

MNEMX)]= e INT N~ iNe N
In writing this expression we have ignored the running be- N(N+1) N (NTDEN+2)

tween.the scaleg, a_nd,u3 and are therefore perfo_rming the \yhich vanishes abl— . HereH, is the harmonic number
matching onto the bilocal operator and the matching onto the

local operator at the same scale. This allows one to give an Noq

expression for the decay spectrurh/dx,, directly, rather HNZ_E —-.

than for its moments. The complete expression for the mo- =1

ments is given in Sec. VIII C.

Keeping only the lowest dimensional opera{@& O, B)
=2mg and using the explicit expressions for the Wilson co- In the shape function region, the expansion of the bilocal
efficientsC,, and D, given in Eqs.(26), (27), (28) and (31) operator in terms of local operators can not be performed,
we find and we are left with

3. B—= Xy for my(1—x,)~Aqcp
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W= [ dri e, ot K K ), 43

where p*=mb(1—xy). Using the expression faC, given
in Eq. (26) we find

1 drs "
r—gx—yzmbs(,bbzymb) f(p -MZ)
Ct’CF
+ ZW fdk*GS(p+—k+,,u2)f(k+,,u2)}a
(44)
where
1 MZ 3 ,lLZ 7’77'2
N el 0 Tl P -~
Gs(@,u)=| 51 m§+2|nm§ 5——%|dw)
In o/ 2 1
+4 w“) ~[2m% 43 (—)
" mb w M
(45

Note that this expression does not agree with previousr_g dzdx,

PHYSICAL REVIEW D70, 034024 (2004

-
H(z,x€)=ln2(1—x€)—(2Inz—§>ln(1—x€)+lnzz
(3z—1)lnz 2#% 5
21-2 3 T2
(489)

+2 Liy(1-2)+

As for theB— X,y case(Sec. VIII B 1) we have neglected
the running below the scaje, and the dependence @i} in

Eq. (47) cancels. Expandin®(u,,my) to first order inag

we reproduce the result obtained previously obtained by De
Fazio and Neubeiftl5].

5. B—»Xuf;for mb(l—X€)~AQCD

As for the decayB— Xgy the expansion of the bilocal
operator cannot be performed in this region of phase space
and differential decay rates in this region of phase space are
given in terms of a convolution of a perturbatively calculable
coefficient and the shape function. Using the results of Sec.
V E for the W}" in the shape function region we find

1 dr

=122(1—2)S(2,my) | F(p™, 1)

prescriptions to obtain the photon energy spectrum in the

shape function regiofil5], where the perturbative spectrum asCg (»7 P 4

is evaluated with a shifteth quark massn,—m,+k* and " o dk™Gu(p™ —kTu2) (k™ 12) |,
k* is then convoluted with the shape functibtk*). The

reason for this difference is discussed in more detail in Sec. (49

VIII B 6.

4. B=X, v for m>my(1—x)>Aqcp

Any differential decay rates can be obtained from the gen-

eral expression of the triple differential rate given in E3).

wherep™=mg(1—x,),

F<p+,m=fop dk f (k") (50

As an illustration, we present results for the double differengng

tial decay rate BY/(dzdx,) in the limit x,—1. Using p?
<1, we find for this double differential rate

! L:122(1—z)j

1y dzdx, 0

mb(l—x

/)
Cdp* [2Wh+ myzWAT.
(46)

ZMw ZMw
Gy(w,u)=21n? m‘; -3In m‘; —41In?z—4Liy(1-2)

5 %
9| 3z—-2 c 772 -
: 1-z 6 ° (52)

As for the decayB—Xsy, one can use the expression for again, our results differ from the results presented in Ref.

W) as a convolution of a Wilson coefficie@") with the

bilocal operato©, , Eq.(25), together with the expansion of
the bilocal operator in terms of local operators given in Eq.
(29). Using the results given in Sec. V E for the Wilson
coefficientsC{' together with the Appendix to perform the

integration over theu distributions in theC{' we find

1 dr” asC,:
—2122(1—Z)S(M2,mb) 1+ ?

m5
2
— In?—
FO dZdX(

2
m,

2
—(4Inz— 5)In'u—§ —2H(z,x,)
My

} : (47)

with

[15], as we will discuss next.

6. Comparison with previous results in the literature

De Fazio and Neubert include shape function effects by
convoluting the perturbative decay spectr(ira. WP?") with
a shape function. This procedure is not correct because there
are large perturbative corrections included in the definition of
the shape function. Consider, for example, the most singular
terms in WP, the Inp*/p* terms. These arise from
CO(p*,w)+fp*,u). Thec™ term gives a coefficient
of 4, and thefpg)rt term gives a coefficient of-8, for a net
contribution of —4. The orderag computation of Ref[15]
gives the net result of-4, without reference to the scale at
which it arises. Our effective theory computation shows that
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it is generated at two different scales, 4 is generated from th&he coeﬁicientcy(p*) has terms of the forms(p™),
matching condition ajt, onto the shape function operator [1/p+]M and[In p*/p+]ﬂ. Using the results of the Appendix,
and— 8 from the matrix element of the shape functionuat Egs.(A2),(A3), one can convert to the form
De Fazio and Neubert convolute the shape function with the
order a¢ spectrum, i.e. with the-4. Instead, one should C,(Myy(1-2),u)=C(1—2z,u)+Iny terms,
convolute it with the orderr coefficientsC(" generated by
the time-ordered product of currents at the sqaje which ~ where C,(1—2) contains §(1-2), [1/(1-2)], and
has a coefficient- 4. The remaining-8 is included in the [IN(1-2)/(1-2)]. terms. In the endpoint regiory—1,
definition of the shape function, since it is produced by tak-ny=In[1+(1-y)]—-0, so the Iry terms can be dropped.
ing the matrix element of the shape function operator in thefhusMy is a product of moments,
B meson. This somewhat surprising conclusion follows from
the fact that the the shape function operator has a non-zero M{=Mn(f)My(C,), (52
one-loop matrix element between on-sheljuark states, as
shown in Eq.(31). In deep inelastic scattering, where the where the moments of the shape function and @heare
parton distribution operator has zero matrix element betweedefined by
on-shell quark states, the cross section can be written as the
convolution of the orders perturbative cross section with a M) JmB/mb \_1(B]O,(my(1-y))[B)

N - ’

non-perturbative parton distribution function. o dyy 2me
Below the scaleus;, the entire orderg coefficient has
been removed from the operators, and included in the coef- 1
ficient functions. The theory belOng’ is an expansion in MN(Cy):f dz21C (1 7,p).
local operators, which is valid whgn"> A cp, and so is no 0
longer the shape function region.
The analogue of Eq(52) holds for anyw", with C,, re-

).
C. Renormalization group improved photon energy moments  Placed byc{":

Moments of the photon energy spectrum as defined in MW =M o (FYM o (CP 53
[8,23] are given by[using Eqs(6),(37),(40)] N(WED) =MD MN(C, ®3
L [ms/my yg 1 dl where
MN:fo dX7X7 F_od_Xy

mg /my .
MN(Mf)):f oM IW(n- p,p T =mp(1—-X)).
0

mg /mp, L, [(Mp(1-x,)
=f ax,x) 1f drt
0 0

The moments of the shape function operator,
(B|O,(r")[B)

X Comp(1=x,)=r7, mg /my, _
7( b( )/) /‘L) 2mB ON(M)ZJO dny lov(mb(l_y))'
mg /m, mg /m,
:me ’ bdeX';'_lj ° bdy where
0 x, B B
B B B|On(1)|B
<B|Ov(mb(1_y))|B> MN(f):M'
ch(mb(y_xy)alu’) 2mB s 2mB

) satisfy the renormalization group equation for its matrix el-
where we have made the change of variablés=my(1  ement:

—v). Note that the physical limit on the photon energy is

mg/2, making the upper limit om,, to bemg/m,, . The limits

of integration onr™ arise because the Wilson coefficient ,ud—<ON(,u)>
vanishes for r+>mb(1—xy) and f(r*) vanishes for

r*<—A. Changing the order of integration and making the

/ o
change of variableg,=yz gives = afFfomB mbdyy”‘lf_ dx(O,(My(1—x)))
e/ (B|O,(My(1-y))[B) o(x—y)my>¢) &
M7= avyN1 _ WA YT ST S _
N fo yy 2mg Xy o(x—y)+2 X—y +Inlu5(x V)i,
ledzzN—lmbyC (Moy(1—2), ). using the anomalous dimension, E@4), with r ™ =my(1
0 7 ’ —y) and¢*=my(1—X). Lettingy=xz gives
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d where
K g On(m)
as(f2)
aCg (mg/my N-1 =2 . (60
=— f dxxN" 10O, (my(1—x))) as(us)
0
1 . n Combining these results we obtain for the renormalization
X fo dzZ" 1 | 1-2 Inm_bx §1-2)+2/7— group improved moments of/":
n

Since we are looking at large moments;»1 and Inx—0, so

that MW =M F(2) IMA CO (22T,
d (On(m)) (1){On(p)) (54)
M AUNG) )= = Yl N7
du MNLCO(12)1=S(a, 1) &ML C(W, 122)]
where the anomalous dimensi is, at one loop,
__asCr (1 2|~ 2o a0
YNT = nmb N—1(»
which for largeN is ag(us)Ce

MN[C(W, o) =1+ MNLC (W, )],

4

aSCF ILLN
W= (1—2Inm—3. (55)

This agrees with the results ¢B]. The complete NLO
anomalous dimension is given by including the two-loop )
InN part of the anomalous dimension, which is given by theAt the partonic level,

MNLF(2) 1= Si(g, ma) ML F(e3) |-

relation, Eq.(36):

YNT 4B

() Cr (Nu
—ln -
2 mb

2)

whereB is given in Eq.(11).

Ml f ()] =1+ 2522

(56) 4 MN[f(l)(Ms)]-

The moments of the perturbative coefficients are, using Eq.

The solution to this renormalization group equation is(A4),

given by
<ON(,U~3)> = Sfl(Ms 1M2)<ON(,U«2)>,

where theN dependent scale factor is

Sf(,U«3a,U«2):eXF{M

f
as(gz)

+r11(2)
with

- swcp[l "
rfoz = - — nz
By L2

2Ce B
ri(2)=——3
0

1
1-z+Inz— Elnzz

2Ce —
+——[2Hy_1—2InN—-1]Inz

Bo

4CeB

2
0

[z—1—-1InZz],

N—1 -
5 H; myn-p
7 MNL[CP(W,up)]=4 D) .—’—(4|n > —3)HN1
=1 1)
mbﬁ'p
+| 2 ———
(58) ( %
myn-
—31In b2p+7—772>,
M2
N_lH' /-LZ
MNLF D (ug)]=—82 ——4 n—i—l)HN_l
i=1 my

2

2 2

M3 M3 T
—In?—=+2Ih— - —]. 61

m2 o ) (61)

+
g 6

These expressions can be used to obtain the renormaliza-
(59 tion group improved moments for thB— Xy spectrum.
Usingald =1,

034024-17



CHRISTIAN W. BAUER AND ANEESH V. MANOHAR PHYSICAL REVIEW D70, 034024 (2004

1
| = (s) 1=
N FS de MN[Wy ] i |
=S(p2, 1) S(pg, ) ML F(13)] £) -
\ -
C: >
_ (s) Z 05
><[:H'471_‘{Cfs(mb)b7S = 05 I
> n
+ag( ) MNLC MW, 1) 1} = -
as(m,)Cr B
1. MWE] (62 i ]
1 1 ‘ 1 1 1 1 | 1 1 1 1 | 1 1 1 1
0 5 10 15 20

The computation to leading order in the SCET expansion

parametei does not include_ the ternts(x) with vanishing FIG. 7. The first twenty momentst,, of the B— X,y photon
moments afN— . We have included these terms so that Wespectrum () (dI'/dx,)—renormalization group improvegolid

can compare the renormalization group improved momentgjacy, ordera, (dotted blug, and tree leveidashed red The kink
with t_he fixed orde:\r result even for small moments. Sincep, the blue curve aN~2.75 is the point whergus=u,, and the
E(x) is generated in the traditional operator product expankink at N~13.5 is wherew,= u,.
sion at the scalan,, we have included these terms with
ag(my,). We have not included the running of local operatorsm [ f(us)]. For u,<u,, one setsu,= w4, drops the per-
below w3. As discussed below, the regime;>u, exists  turbative correctiong V) generated at the scale,, and uses
only for the first few moments, and for these, the local op-for M [ f(u3)] the moments of the non-perturbative matrix
erators have zero anomalous dimension. element of the time-ordered product of currents.

We can now compare the order; moments with the
renormalization group improved moments. For simplicity,
we will compare the two parton model results; i.e. we will Decay spectrum vs its moments

use Eq.(61) for the moments of the shape function. Non-  The effective theory computation is most naturally done
perturbative effects can be includedMy(f) if so desired. i, moment space. The intermediate scalesand u, are

We chooseuy=m, and p,=1 GeY’ which are fixed., given in terms of the momemt asm, /N andm,/N. The
=my/\N and z13=my/N vary with the moment. FoN matching contributions and running depend @5 and u3,

=3, ug=p4. In this case, the regime of local operators doesyhich change withN. Furthermore, for largd, the scales
not exist. One runs the shape function down to the saale ;. . can become smaller thaoep, and the effective theory
and computes its matrix elements in Beneson state g4,  computation has to be modified, as discussed above.

so one can effectively sgtz=pu, in Eq. (62). For even We have not found a simple way to give a theoretically
larger momentsN=14, u,=<u,4. In this case, the shape correct expression for the spectrum sspace which in-
function regime does not exist. One runs the SCET currentg|ydes the renormalization group evolution, and at the same
down to x4 and then takes matrix elements of the time or-time properly takes into account effects suchuas becom-
dered product in thdd meson state. In this case, one canjng smaller tham ocp. The simple double integral form Eq.

effectively setu,=pu3=pu, in Eq. (62). The orderas and  (37) is not valid because it has a Landau pole singularity as
renormalization group improved moments are shown in Figy_ 1.

7. The renormalization group resummation produces a sig-
nificant correction to the moments, and cannot be neglected.
The large moments in the perturbation theory calculation
shown in Fig. 7 become negative. This a reflection of the We have calculated the hadronic tensor for left handed
breakdown of perturbation theory. In obtaining Fig. 7, wevector and tensor currents, relevant for the dec#ys

have stopped the renormalization group evolution at the—>Xu€7and B— X.y in a region of phase space where the
scalepu,, but still computed th@® matrix element using per-  final hadronic system satisfigs"<p~. From this hadronic
turbation theory. The matrix elements in E@1) contain  tensor any differential decay rate can be obtained. This cal-
InN terms, which are an indication of the sensitivity to the cylation has been performed using the soft collinear effective
lower scalesmb/\/ﬁ andm, /N, and cause a breakdown of theory, by performing the matching in multiple steps and
perturbation theory for larghl. The correct computation for summing all the logarithms arising from the different scales.
large moments involves taking the non-perturbative matrixWe considered two possible regions, where~ A ocp and
elements in thd8 meson state. In the shape function regionwherep*»AQCD.

(p3>wa but wo<p,), one setsug= u, in Eq. (62) and uses In the former region, the hadronic tensor is given as a
the non-perturbative results for the shape function momentsonvolution of calculable Wilson coefficients and the light

IX. CONCLUSIONS
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cone distribution function of thd meson. We calculated B a(p™)

these Wilson coefficients to order, including the leading dp*f(p™) 0¥

and subleading Sudakov logarithms. The resulting expres- u

sions, when expanded to ordeg (i.e. without renormaliza- B f(pT)—1f(0) B
tion group improvement agree with the order results :f dp™ T +f(0)In—,
previously given by De Fazio and Neub¢it5]. However, 0 P K
we do not agree with the assumption in REf5] that the N N
structure function of th& meson does not contain any per- do*f(p*) In(p™/p)6(p")

T

turbative effects, so that shape function effects can be inJ -a p

cluded by convoluting the orderg decay distributions with g
the shape function. We have seen that very large perturbative fB Cf(pH—f(0) _p" 1 ,B

: X . . : =| dp" —————In—+ = f(0)In"— (AL)
corrections are included in the shape function matrix ele- 0 no 2 o
ment, Eq.(32), at the scalg.3. We have also shown that the
usual assumption that moments of the light cone distributiofior A=0 andB>0. The u distribution is defined so that
function are given by matrix elements of universal local op-integrals such as E4A1) involve logarithms of dimension-
erators(such as the kinetic or Darwin operatpis incorrect.  less quantities.
This relation only holds at the classical level, but fails once The u distribution satisfies the scaling property
guantum corrections are taken into account.

In the regionp*>Aqcp the structure function can be O(\p™) 1[o(Np™) Inx
expanded in terms of local operators and the the non- At | N ap” +T5(p ),
perturbative physics of the hadronic tenor are parametrized
by matrix elements of these universal local operators. The 4 + + +
results presented here contain the most singular contributions InCrp /'“)f()\p ) = 1 w
in the endpoint region, which are enhanced by powers of Ap u A p L
m,/p* relative to terms we have dropped. The matching nxT oo In2\
coefficients for these enhanced non-perturbative contribu- na o(Ap”) + n s(p*).
tions are again given to orde;. NLoap” L 2h

(A2)
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APPENDIX: THE p DISTRIBUTION J'Adp*f(p*) In(p™/p)0(p™)
R L L
It is convenient to use a modified version of the ustial 0 P +
distribution to regulate singular functions pf on the infi- . .
nite intervalp™ e[0,¢]. The u distribution is defined by _ dep+ f(p™)—1(0) nP
0 p* m
o(p* [o(pt> The conversion is
(p+) =lim b =% — & +5(p+)ln£1
R # 6p")] [6(p") LA
+ = T +o(p7)In—,
P, P, M
In(p*/w)6(p* [In(p*/w)6(p*> :
NTROPT | _ | P ) 0P =) In(p*/wep™)]  [In(p*/wop®)] 1. . A
p -0 p* e = T +§5(p )In®—
wm : p u p N 2
1 +11n2 § r + +
+58(pH)In*=|, In(p™/A)6(p™)
2 )% =
P +
Alo(p* 1 A
and is closely related to the * distribution in REL5]. The u +In— (p+ ) Eé(p*)lnz—,
distribution satisfies the relations P + M

(A3)
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which depends on the size of the intervial We will need

_ | - In(1-2) mbﬁp 1
this conversion formula witth =my, andp®™ =m,(1-2): CO(qt up)=4|——=| +|4In -3
(1-2) |, M% 1-z|,
o(p") u? My myN -
My —+| |77 ~2M"N;%1-2. +| 21In? bzp—3|n b2p+7—w2
p Ju L + b M2 M2
o Xd8(1-2),
In(p™/u)0(p™) In(1-2) 1I p?l 1 ,
m, T = — — 5N In(1—2)
p ] | 1-z 2 my 1-z @) /1 + __glN274 ﬂ_ o
3 + ) + fpar(k JM3) 8 1-2 ++4 | mt2> 1 17,
1 M
+<-68(1-2)In*=. 2 2 2
8 M + —|n2“—§+2|n“—§——)5(1—z).
mg m, 6
Using this, Egs(17), (32) become (A4)
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