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Chiral soliton model for arbitrary colors and flavors
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The semiclassical quantization of the chiral soliton model is studied for an arbitrary number of colors and
flavors. The quantum numbers of the baryons in the soliton model are derived and are shown to agree with
those in the constituent quark model for normal as well as exotic baryons. The general analysis elucidates the
correct definition of exoticness for the three-flavor case, and allows one to interpret the soliton state in terms
of quark model variables. The quantum numbers of all the allowed soliton states for the physically relevant
case of three flavors are derived.
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I. INTRODUCTION

The discovery of theQ1 baryon@1# has led to renewed
interest in the chiral soliton model for baryons@2#. The Q1

is an S511 baryon, and is a member of a flavorSU(3)
101/2 multiplet. The baryon states in the chiral soliton mod
are obtained by quantizing the rotational motion of the s
ton. The lowest energy states are the81/2 and 103/2, which
contain the nucleon andD baryons@3,4#. The higher rota-
tional excitations include the101/2, 271/2 and 273/2 exotic
baryons@5,6#.

The chiral soliton model constructs normal and exo
baryons from a soliton made up of meson fields. In the n
relativistic quark model, baryons areqqq(qq̄)E states, where
exoticnessE is the minimum number of quark-antiquar
pairs necessary to construct a baryon with given flavor qu
tum numbers@7#. At first sight, the two models do not appe
to have much in common. However, it is remarkable that
completely symmetric spin-flavor states in the quark mo
match the rotational states in the chiral soliton model. T
fact allows one to relate the two models to each other, an
determine quark substructure~and exoticness! in the soliton
model, which does not contain explicit quark degrees of fr
dom.

The connection between chiral soliton and quark mod
is clearer if they are studied as a function of the numbe
colors and flavors. In the case of three flavors, the antis
metric product@333#A53̄, and one cannot distinguish th
flavor quantum numbers of an antiquark from those of t
antisymmetrized quarks. However, if one treats the num
of flavors F as arbitrary, the antiquark is mimicked byF
21 antisymmetrized quarks, and it is possible to separate
soliton flavor quantum numbers into quark and antiqu
contributions in an unambiguous way. Once this is done,
can apply the results to the physically relevant case of th
flavors.

In this paper, we derive the states obtained by collec
coordinate quantization of the chiral soliton model@2#, for an
arbitrary number of colorsNc and flavorsF, and discuss the
importance of the exoticness quantum numberE.

II. SOLITON QUANTIZATION

QCD has aSU(F)L3SU(F)R chiral symmetry, which is
spontaneously broken to the diagonalSU(F) flavor group.
1550-7998/2004/70~3!/034023~7!/$22.50 70 0340
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The Goldstone bosons are elements of anSU(F) matrix
U(x,t), and the dynamics is given by a chiral Lagrangi
Lx ,

Lx5
f p

2

4
Tr ]mU]mU211••• ~1!

where f p is the pion decay constant and the ellipsis deno
terms of higher order in the derivative expansion. The top
ogy of theSU(F) manifold allows for the possibility of soli-
tons. The standard hedgehog configuration for the~static!
soliton is

~2!

with non-trivial fields only in the upper 232 block of the
F3F matrix U. The shape functionF(r ) is determined by
solving the non-linear classical field equations ofLx . The
soliton has winding number one, and has been argue
have baryon number one@3#, even though it is made up
purely of meson fields.

The chiral Lagrangian has an expansion in powers
]/Lx , where Lx;4p f p is the scale of chiral symmetry
breaking, soF(r ) varies over a typical scaler;Lx

21 . All
space derivative terms inLx are equally important, and on
cannot determine the shape~or even whether the soliton i
stable! from the first few terms inLx . Nevertheless, assum
ing the existence of the soliton with some arbitrary sha
function F(r ) allows one to compute the quantum numbe
of the low-lying states in the baryon spectrum in t
Nc→` limit. For large Nc , the pion decay constant is o
orderANc, so thatLx is of orderNc . As a result, the mass
and moment of inertia of the soliton are both of orderNc .
The low-lying states are given by quantizing the rotation
motion of the soliton, and have mass-splittings relative to
lowest baryon state which are order 1/Nc . The semiclassica
expansion of the effective theory is an expansion in pow
of 1/Nc , or equivalently, in powers of time-derivatives. A
results in the soliton model which do not depend on det
of the soliton shape functionF(r ) can be derived directly
from QCD using the 1/Nc expansion@8,9#.
©2004 The American Physical Society23-1
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The collective coordinates for the standard soliton c
figuration are translations, space rotations and flavor r
tions. Translations produce aP2/2M shift in the energy, but
do not affect the quantum numbers of the soliton, and will
neglected here. Space rotations are generated byJi , and fla-
vor rotations byTa. The flavor generators are normalized
Tr TaTb5dab/2 in the fundamental representation. We w
need the decomposition of the flavor groupSU(F)
→SU(2)3SU(F22)3U(1), whereSU(2) isospin acts on
the first two flavors and is generated byI a; SU(F22) acts
on the remaining flavors and is generated bySa; and the
U(1) generator is

TY5AF22

4F
Y, ~3!

where

~4!

For three flavors,SU(F22) is absent, andY53Y, whereY
is the usual SU(3) hypercharge. For two flavors
SU(F22) andU(1) are both absent.

The baryon quantum numbers are determined by quan
ing the rotational motion of the soliton. The soliton in
rotated configuration is described by the matrixA
PSU(F), whereU5AU0(x)A21. Transforming the soliton
by the flavor transformationVPSU(F) gives A→VA, and
transforming by the space rotationW gives A→AW21.
Space rotations are equivalent to right-multiplication ofA by
W21, because spin and isospin are locked together by
t•x dependence of the soliton configuration Eq.~2! which
satisfies (I1J)U0(x)50.

Quantizing the collective coordinateA leads to a tower of
states. Different collective coordinatesA andAh lead to the
same soliton configurationU if U05hU0h21. The elements
h which leave the soliton invariant form the little-group
the solution, and are given byI1J, Sa, andY. The quanti-
zation of the soliton is a simple generalization of that fo
symmetric top, and will not be reproduced here. One fin
that the allowed states of the Skyrme model have wave fu
tionsAdimRDab

(R)(A), whereR is an irreducibleSU(F) rep-
resentation, anda andb label states inR. The soliton trans-
forms like uRa& under flavor, wherea is the particular
element ofR. Each possible choice ofbPR gives a multiplet
RPSU(F). Not all possible choices ofR,b are allowed be-
cause there is a little-group constraint. In the case of th
flavors, the constraint is that the stateuRb& in SU(3) must
have hypercharge 3Y5Y5Nc @3#, and that the soliton spin is
given by the isospin of the stateuRb&.

The little-group constraint for arbitraryF derived
in Ref. @5# generalizes the hypercharge constraint
03402
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three flavors @3#, and is: Decompose the represe
tation R of SU(F) into representations o
SU(2)3SU(F22)3U(1)Y . The allowed wavefunctions
are those for which the stateuRb& is an SU(F22) singlet
and hasY5Nc . The soliton spin is given by the isospin o
uRb&. In this paper, we work out the consequences of t
constraint for arbitrary flavors, starting withF>5 and then
restricting to the special casesF52,3,4. The casesF52,3
are already known, but the generalF analysis allows one to
better understand properties of the allowed baryon state

III. ARBITRARY F

An irreducible representation ofSU(F) is described by
the Dynkin weight (n1 ,n2 , . . . ,nF21), i.e. a Young tableau
with n1 columns of one box,n2 columns with two boxes, etc
Each box in the Young tableau corresponds to an~upper!
index on theSU(F) tensor. Indices in a given column ar
totally antisymmetrized. We will refer to a column withn
boxes as an@n# column, to emphasize the antisymmetry
the n indices. A particular state is described by choosi
values for each index~or box!, i.e. deciding whether to set i
to u, d, s, etc. For example,

~5!

is theT111[12][1234] element of the (3,1,0,1) representation
SU(5), and is astate with hypercharge 712y517/3 using
Eq. ~4!, since each index 1, 2 hasY51, and each index 3,4,5
has hyperchargey522/3.

We now proceed to solve the little-group constraint. W
need to find anSU(F) stateuRb&, denoted by a Young tab
leau with a choice of indices for each box, such as Eq.~5!.
The hypercharge constraint says that this state hasY5Nc ,
and must be anSU(F22) singlet. Each such state we fin
gives an allowed soliton state. TheSU(F) representation of
the soliton is given by the tableauR, and the spin is given by
the isospin of the specific stateuRb&.

Consider a generic Young tableau, and pick a choice
indices for each box. Each index chosen to be 1, 2~i.e. u, d)
contributes 1 toY, and each index chosen to be 3, . . . ,F
contributesy,0. Thus, the minimum number of boxes
the Young tableau is equal toNc . The Nc-box statesuRb&
must have all indices set equal to 1, 2. Since one can a
symmetrize in at most two indices if they are restricted
have at most two values, the allowed tableaux can only c
tain @1# and@2# columns, if they are to contain a state wi
Y5Nc . The allowed Dynkin weights are w
5(n1 ,n2,0, . . . ,0),wheren1 is the number of@1# columns
and n2 is the number of@2# columns, andn112n25Nc is
the total number of boxes. The alloweduRb& states are:
3-2
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wherei can take on the values 1, 2. Each of these states
Y5Nc , and isospinn1/2. TheSU(F22) constraint is satis-
fied automatically, since no index transforms und
SU(F22), so each of these states is anSU(F22) singlet. A
@2# column with indices 1 and 2 is the antisymmetric co
bination ud2du, and has isospin zero, so the above sta
have isospin 1/2,3/2, . . . ,Nc/2. The spin of the soliton is
given by the isospin of theuRb& state, so we have a tower o
states w5(n1 ,n2,0, . . . ,0), with n112n25Nc and spin
n1/2, which is the usual non-exotic tower of soliton state

There are additional states in the rotational spectrum
the soliton. The hypercharge constraint can be satisfied
representations with more thanNc boxes, by choosing som
of the boxes of the stateuRb& to be 1, 2, and the rest to b
3, . . . ,F, so that the netY is Nc . Since 1, 2 haveY51
.0 and 3, . . . ,F have Y5y,0, one can obtain a ne
Y5Nc by choosingNc boxes with index 1, 2, plus som
additional boxes whoseY adds up to zero. All additiona
boxes with values 3, . . . ,F must form anSU(F22) singlet.
The only way to form anSU(F22) singlet is to completely
antisymmetrize F22 boxes using the e-symbol of
SU(F22), i.e. they must have the form

~7!

Thus, anytime we add an index>2, we also must add on
each of all the remaining indices 3, . . . ,F in an @F22# col-
umn, as well as two more boxes with values 1, 2 to sat
the hypercharge constraint. Letr 8 denote the number of extr
sets of 3, . . . ,F indices added. Then, the hypercharge a
SU(F22) constraints require that all tableaux ha
Nc1r 8F boxes, wherer 8>0 is an integer. Each such tablea
must have at leastr 8 columns with length greater than o
equal to F22, to accomodater 8 structures of the form
Eq. ~7!.

The possible Young tableaux depend on how
Nc12r 8 boxes with labels 1, 2 are added to ther 8 @F22#
columns of Eq.~7!. The allowed tableaux are given by fir
constructing the tableau withr 8 @F22# columns side-by-
side, and then adding the remainingNc12r 8 boxes with
labels 1, 2. There are two possibilities:

~i! The 1, 2 boxes go into completely separate colum
These additional columns can only contain one or two bo
each~i.e., they are@1# or @2# columns!, since one canno
antisymmetrize in three or more indices if each index o
takes on the values 1, 2.
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~ii ! Some of the 1, 2 boxes are added to@F22# columns,
to form @F21# or @F# columns, depending on whether on
or two boxes are added. As in case~i!, one cannot add more
than two boxes with values 1, 2 to a single column.

The above conditions imply that the only allowed co
umns are@1#, @2#, @F22#, @F21# and@F# columns, and the
total number of boxes isNc1r 8F, with r 8 being the total
number of@F22#, @F21# and @F# columns. There can be
no columns with lengths between 3 andF23. This restric-
tion is crucial for an understanding of exoticness and is w
we first consider the case of arbitraryF. The value ofr 8 is
closely related to exoticnessE.

In SU(F), @F# columns are flavor singlet, and can b
thrown away. Thus, the allowed tableaux~after throwing
away @F# columns! contain only @1#, @2#, @F22#, and
@F21# columns, and haveNc1rF boxes, where the intege
r, 0<r<r 8, is equal to the number of@F22# and @F21#
columns. Translating from tableaux to Dynkin weigh
shows that the allowed SU(F) weights are w
5(n1 ,n2,0 . . . ,0,n22 ,n21), where we have relabelled
nF22→n22 andnF21→n21. The four non-negative integer
ni satisfy

n211n225r ,

n112n21~F22!n221~F21!n215Nc1rF ,

n112n222n222n215Nc , ~8!

where the first relation definesr as the number of@F21#
and @F22# columns, and the second relation sets the to
number of boxes equal toNc1rF . The third relation is a
linear combination of the first two.

The soliton spin is given by the isospin of th
SU(F22) singlet, Y5Nc state that we have constructe
The isospin transformation properties of the state are gi
by dropping all boxes with indices 3, . . . ,F, since these are
all SU(2) singlets. An@F22# column has the form Eq.~7!,
is an SU(2) singlet, and can be dropped. The@2# columns
also areSU(2) singlets, and can be dropped. Only the@1#
and@F21# columns of the Young tableau are left. Each@1#
column has isospin 1/2. Each@F21# column has the form
Eq. ~7! plus one box set equal to 1, 2, and so transforms
isospin 1/2. Then1 @1# columns are completely symmetrize
and so have isospinn1/2. Then21 @F21# columns are com-
pletely symmetrized, and so have isospinn21/2. There is no
symmetry relation between the@1# and@F21# columns. The
allowed isospins foruRb& are given by the tensor product o
isospinsn1/2 andn21/2, so the allowed soliton spins arej
5(n1/2)^ (n21/2). Each flavor and spin representation o
curs at most once in the collective coordinate quantizati
To get multiple copies of the same state, such as two (81/2)
states, requires vibrational excitations of the soliton.

The above analysis gives the classification of states
F>5 presented in Ref.@7#: The soliton states have Dynki
weightsw5(n1 ,n2,0 . . . ,0,n22 ,n21) which satisfy Eq.~8!,
and spinsj in the tensor productn1/2^ n21/2. Taking the last
relation in Eq.~8! modulo two shows that the soliton is
3-3
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fermion or boson depending on whetherNc is odd or even.
The casesF54,3,2 are all special and must be conside
individually.

A. FÄ4

For F54, the above analysis remains valid. Howev
one cannot distinguish columns with 2 andF22 boxes in
the final Young tableau. The total number of columns w
two boxes is the sum of the@2# and @F22# columns, and
will be denoted byn05n21n22. With this substitution, the
allowed weights forF54 are w5(n1 ,n0 ,n21) with spins
(n1/2)^ (n21/2). Equation~8! also is modified to accoun
for the equality 25F22. The second relation in Eq.~8!
becomes

n112n212n2213n215Nc14r , ~9!

which gives

n112n013n215Nc14r , ~10!

a relation written solely in terms of ‘‘observable’’ propertie
of the Dynkin weightw5(n1 ,n0 ,n21). The first relation in
Eq. ~8! involves the ‘‘unobservable’’ integern22. It leads to
an inequality,

n21<r<n01n21 , ~11!

sincen22>0.
Equation~10! modulo two again shows that the soliton

a fermion or boson depending on whetherNc is odd or even.
Equation~11! is necessary and sufficient for there to be tw
positive integersn62>0 which satisfy r 5n211n22 and
n05n21n22. As an example of why the inequality i
Eq. ~11! is needed, consider the flavor representationw
5(1,0,2)536 for Nc53. This representation does not co
tain anySU(F22) singlets withY53, and so it is not an
allowed soliton flavor state forNc53, F54. Although it
satisfies the condition Eq.~10!, with r 51, it violates the
inequality of Eq.~11!.

B. FÄ3

Soliton quantization forF53 has been discussed befo
@3–6,10#, but the general result derived below is new. F
F53, the generalSU(3) representation is conventional
denoted by (p,q), which is a traceless tensorTb1 . . . bq

a1 . . . ap with p

upper andq lower indices. It corresponds to a Young table
with p columns of one box, andq columns of two boxes.

We will derive the states for this case directly, rather th
from the F>5 results. TheSU(F22) constraint is absent
and the hypercharge constraint implies that there must b
state with 3Y[Y5Nc . The weights of the (p,q) represen-
tation in SU(3) have the form shown in Fig. 1, with th
well-known properties described in the figure caption. T
maximum hypercharge is given by choosing all the up
indices of the tensor equal to 1, 2, and the lower indi
equal to 3, and is given by 3Ymax5p12q. One moves from
a given hypercharge level to the next lower level by repl
03402
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ing one of the upper indices by 3, or one of the lower indic
by 1, 2, so that 3Y→3Y23. The minimum hypercharge
level is reached when the upper indices are all 3 and
lower indices are all 1, 2, so 3Ymin522p2q. The total
number of hypercharge levels isp1q11.

The little group constraint is that there must be
3Y5Nc level in the weight diagram, which requires

p12q5Nc13r , 0<r<p1q, ~12!

and the states we need arer steps below the maximumY
states. SinceYmin,0 andNc.0, there are always states wit
3Y5Nc if Eq. ~12! is satisfied. The three integersp, q andr
are related to theni of the generalF>5 analysis by

p5n11n22 ,

q5n211n2 ,

r 5n211n22 , ~13!

where the first two relations follow since@1# and @F22#
columns, as well as@2# and @F21# columns, are indistin-
guishable for F53. It is also convenient to define
s5n11n2[p1q2r .

The allowed spins are in the productn1/2^ n21/2, so the
minimum spin j is equal to j min[un12n21u/25up2r u/2
5us2qu/2. To determine the maximum spin, we need
determine the maximum isospin of the statesr steps below
the maximumY states. The horizontal dashed line in Fig.
through the corners of the weight diagram isq steps below
the upper edge. Ifr<q, then the states we need are above~or
on! the horizontal dashed line, and ifr>q, the states are
below ~or on! the horizontal dashed line. We consider t
two cases separately.

FIG. 1. ~Color online! SU(3) weight diagram for the (p52,q
55) representation. The upper edge hasp11 weights, and the
lower edge hasq11 weights. The outermost layer~open circle! has
multiplicity one, the next layer~solid circle! has multiplicity two,
and the multiplicities increase by one until one gets to a triangu
layer ~red triangle!, after which they stay constant. The horizont
blue dashed line is drawn through the corners of the weight
gram.
3-4
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Case (r<q). The upper edge states have isospinI
5p/2. As one drops down inY, one gets states with sever
different values ofI, I 5I min% •••% I max. I max increases by
1/2 for each step down inY, since the weight diagram get
one weight wider. Thus, the states with 3Y5Nc , which are
r steps down, haveI max5(p1r )/2. The value ofI min de-
creases by 1/2 at each step, until one reaches the apex o
‘‘triangular layer’’ shown by the triangles in Fig. 1, which i
min(p,q) levels down from the upper edge. After that poin
I min increases by 1/2 at each step, since the triangular la
gets wider as one moves down inY. ThusI min keeps decreas
ing by 1/2 at each step until eitherr or min(p,q) is reached,
whichever comes first, after which it increases by 1/2 at e
step. Since we have assumedr<q, I min decreases by 1/2 fo
the first min(p,r) steps after which it increases by 1/2.
r<p, then I min5p/22r /2. If r>p, I min5p/22p/2
1(r 2p)/25(r 2p)/2, so in either case,I min5up2r u/2. The
values for I max and I min are the same as those
(p/2)^ (r /2), so the allowed isospin~and hence spin! states
are (p/2)^ (r /2).

Case (r>q). The statesr levels down from the uppe
edge ares5p1q2r levels above the lower edge. Thus, o
can apply the previous argument, now moving up from
minimum Y states instead of down from the maximumY
states. The solution is given by the previous case w
p→q, r→s[p1q2r .

In summary: The allowedSU(3) Skyrme states are (p,q)
with

p12q5Nc13r , j 5H p

2
^

r

2
if r<q,

q

2
^

p1q2r

2
if r>q.

~14!

Using the above equations modulo two shows that the sol
is a fermion or boson depending on whetherNc is odd or
even.

For Nc53, ther 50 states with 3 boxes are:
~a! (1,1)→81/2.
~b! (3,0)→103/2.
The r 51 states with 6 boxes are:
~c! (0,3)→101/2.
~d! (2,2)→271/2,273/2. Note that since bothp and r are

not zero, there are several spin states with the same fl
representation. Equation~14! gives the allowed spins a
1^ 1/251/2% 3/2.

~e! (4,1)→353/2,355/2.
~f! (6,0)→285/2. This is an example where one needs

use ther .q case, sincep56, q50, r 51. Using ther<q
formula would give both285/2 and287/2 states.

One can similarly work out the states for higher valu
of r.

C. FÄ2

For F52, the only constraint is thatI 5J, so there is an
infinite tower of states with all possible valuesI 5J5 j . Wit-
03402
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ten has argued that one must restrict to 2I 52J even states
for Nc even, and 2I 52J odd states forNc odd @3#.

IV. ENERGY

The rotational energy of the soliton is given by the Ham
tonian,

H5M01
1

2I 1
J21

1

2I 2
S T22J22

F22

4F
Nc

2D , ~15!

with corrections of order 1/Nc
2 . The massM0 and moments

of inertia I 1,2 are orderNc . The flavor CasimirT2 is required
to determine the rotational energy of the soliton. The Casi
of the SU(F) representationw5(n1 ,n2,0 . . . ,0,n22 ,n21)
for F>5 is

T25
1

2
n1S 11

n1

2 D1
Nc~Nc12F !~F22!

4F

12r 21~2F1Nc24!r

1S 5

2
22r 2

1

2
Nc2F Dn211

3

4
~n21!2 ~16!

using the Freudenthal formula, where Eq.~8! has been used
to eliminaten62 in favor of Nc and r. The expression doe
not have a nice form, becauser is not symmetrically defined
with respect to charge conjugation. Using the variables

j q5n1/2, j q̄5n21/2, E5n2112n22 ~17!

defined in Ref.@7#, instead ofn61 andr, leads to the formula

T25
Nc~Nc12F !~F22!

2F
1E~E12F1Nc24!1 j q~ j q11!

1 j q̄~ j q̄11! ~18!

which has a nice physical interpretation in terms of quark
The variablesj q , j q̄ and E arise naturally in a quark

model construction. The baryon is made ofNc1E quarks
andE antiquarks, where exoticnessE is theminimumnum-
ber of qq̄ pairs required to construct a baryon with the d
sired flavor quantum numbers. The completely symme
spin-flavor states forNc1E quarks are:

~19!

where each Young tableau hasNc1E boxes. There can be a
most two boxes in any column, since there are only t
3-5



p

n

b
t

b
re

rm

n
e

i-

a

-

f

d
the
ith

h

ns

E. JENKINS AND A. V. MANOHAR PHYSICAL REVIEW D70, 034023 ~2004!
quark spin states. The allowed quark states are flavor re
sentations (n1 ,n2,0, . . . ,0)with n112n25Nc1E, and spin
j q5n1/2. Similarly, the antiquarks form the flavor represe
tation (0, . . . ,0,n22 ,n21) with n2112n225E and spin
j q̄5n21/2. The exotic baryon representation obtained
combining the quarks and antiquarks has flavor weighw

5(n1 ,n2,0, . . . ,0,n22 ,n21), since flavor singletqq̄ pairs
which can annihilate are excluded@7#. The other states in the
tensor product of (n1 ,n2,0, . . . ,0) and (0, . . . ,0,n22 ,n21)
have index contractions, and so contain flavor singletqq̄
pairs. The allowed exotic baryon spins are given
j q^ j q̄ . Note that the allowed states in the quark model p
cisely match those in the soliton model.

For F>5, the ‘‘observable’’ integersn61 , n62 in the
weight w define j q , j q̄ ,E uniquely using Eq.~17!. Thus, one
can write the quantum numbers of the solition states in te
of quark model variablesj q , j q̄ andE. The Casimir Eq.~18!
then has a simple interpretation in terms of the hyperfi
interactions of quarks and antiquarks, and the constitu
mass of the quarks@7#.

For F,5, it is still useful to convert to quark model var
ables, even though the conversion is not as simple
Eq. ~17!, because the quark and antiquark contributions
not separated in the weightw.

FÄ4

For F54, the Casimir formula Eq.~16! continues to hold
for w5(n1 ,n0 ,n21), where Eq.~10! has been used to elimi
naten0 in favor of r. One still can define

j q5n1/2, j q̄5n21/2, ~20!

and exoticnessE5n2112n2252r 2n21 still can be deter-
mined from the flavor weight andNc ,

E5
n11n212Nc

2
1n0 . ~21!

Equation~18! remains valid.

B. FÄ3

For three flavors, the (p,q) Casimir is

T25
1

3
~p21pq1q2!1~p1q!. ~22!

The weight (p,q) andNc are the ‘‘observable’’ properties o
the soliton state, and determinep,q,r . Equations~13!, ~17!
can be solved to give theni in terms ofp,q,r ,E:

n152E1p1r ,

n2152E12r ,

n25E1q22r ,

n225E2r , ~23!
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but nowE is not determined uniquely byp,q andNc . Since
ni>0, one has

r<E<r 1p, 2r 2q<E<2r . ~24!

Definitions Eqs.~13!, ~17! imply that E5r 1n22, so that
E5” r @7,11#. This distinction is important. It was assume
previously in the literature that exoticness was related to
number of boxes in the Young tableau. A tableau w
Nc13r boxes was said to have exoticnessr. However, this
interpretation is incorrect@7#.

Since exoticness is the minimum value ofE for which one
can construct a given baryon state in a quark model, Eq.~24!
gives @7#

E5Emin5max~r ,2r 2q!5H r if r<q,

2r 2q if r>q,
~25!

as the minimum allowed value forE.
If r<q, thenE5r , and Eq.~23! gives

n15p,

n215r ,

n25q2r ,

n2250, ~26!

with j q5p/2 and j q̄5r /2.
If r>q, thenE52r 2q, and Eq.~23! gives

n15p1q2r ,

n215q,

n250,

n225r 2q, ~27!

with j q5(p1q2r )/2 and j q̄5q/2.
Equations~26!, ~27! allow one to interpret the soliton

state in terms of quark variables. Combiningj q and j q̄ gives
the same spin states as Eq.~14!, which is a non-trivial check
on the analysis. Equation~18! remains valid, and agrees wit
Eq. ~22! for both r<q and r>q.

C. FÄ2

For F52, the quarks are in the representation (2j ) with
spin j. In this case, for states with spin of order one,E5r
50, j q5 j , j q̄50. The Casimir isT25 j ( j 11), and Eq.~18!
remains valid.

V. DISCUSSION AND CONCLUSIONS

Collective coordinate quantization is valid for baryo
with E50, where the CasimirT2 is of orderNc

0 , so that the
rotational energy is order 1/Nc . However, forEÞ0 baryon
3-6
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exotics, the Casimir is orderNc , and the rotational energy i
order Nc

0 , which is the same order as the vibrational en
gies. In this case, one has to include vibrational-rotatio
mixing to correctly compute the energies, and Eq.~15! is no
longer valid @12#. Nevertheless, the structure of the ener
still has the form Eq.~18!, though the coefficients of theE,
E2, j q( j q11) andj q̄( j q̄11) terms no longer have the value
given in Eq.~18! @7#. The interpretation of the soliton state
presented here remains valid. Including vibrational mo
will produce additional states with the quantum numbers o
soliton plus some number of mesons, which can be thou
of as soliton-meson bound states.

In summary, we have computed the allowed baryon sta
03402
-
l

s
a
ht

es

in the chiral soliton model for an arbitrary number of colo
and flavors. Explicit results are given for the case of th
colors and flavors. The analysis presented in this paper
vides insight into the connection between the soliton a
quark models, for normal as well as for exotic baryons, sin
there is a non-trivial map between the states and their e
gies in the two models.
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