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Chiral soliton model for arbitrary colors and flavors
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The semiclassical quantization of the chiral soliton model is studied for an arbitrary number of colors and
flavors. The quantum numbers of the baryons in the soliton model are derived and are shown to agree with
those in the constituent quark model for normal as well as exotic baryons. The general analysis elucidates the
correct definition of exoticness for the three-flavor case, and allows one to interpret the soliton state in terms
of quark model variables. The quantum numbers of all the allowed soliton states for the physically relevant
case of three flavors are derived.
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[. INTRODUCTION The Goldstone bosons are elements of d(F) matrix
U(x,t), and the dynamics is given by a chiral Lagrangian
The discovery of thé®* baryon[1] has led to renewed Ly,
interest in the chiral soliton model for baryof]. The®*
is an S=+1 baryon, and is a member of a flavBiU(3) f2
10,, multiplet. The baryon states in the chiral soliton model Ly=7 Tro"u g U+ (1)
are obtained by quantizing the rotational motion of the soli-
ton. The lowest energy states are e and 10;,, which
contain the nucleon and baryons[3,4]. The higher rota-
tional excitations include th&0,,,, 27,, and 27;, exotic
baryons[5,6]. Th dard hedaeh f. o for (i@t
The chiral soliton model constructs normal and exotic'©"S: The standard hedgehog configuration or ¢t
baryons from a soliton made up of meson fields. In the nonS°liton is
relativistic quark model, baryons ageg(qq)F states, where
exoticnessk is the minimum number of quark-antiquark
pairs necessary to construct a baryon with given flavor quan- Uo(x) =
tum number$7]. At first sight, the two models do not appear
to have much in common. However, it is remarkable that the
completely symmetric spin-flavor states in the quark modelvith non-trivial fields only in the upper 22 block of the
match the rotational states in the chiral soliton model. ThisF X F matrix U. The shape functiof (r) is determined by
fact allows one to relate the two models to each other, and tgolving the non-linear classical field equationsLgf. The
determine quark SUbStrUCtU(’and eXOtiCﬂegSin the soliton soliton has W|nd|ng number one, and has been argued to
model, which does not contain explicit quark degrees of freehaye paryon number on8], even though it is made up

dom. _ _ _ gurely of meson fields.
The connection between chiral soliton and quark model The chiral Lagrangian has an expansion in powers of

is clearer if they are studied as a function of the number ofa A,, where A ~4xf_ is the scale of chiral symmetry

colors and flavors. In the case of three flavors, the amisymbreaking SOF(r) varies over a typical scale~A L. Al

. = .. . X
metric produc 3x3],=3, and one cannot distinguish the space derivative terms i, are equally important, and one

flavor quantum numbers of an antiquark from those of twocannot determine the shager even whether the soliton is
antisymmetrized quarks. However, if one treats the numbegiaplg from the first few terms in_, . Nevertheless, assum-
of flavors F as arbitrary, the antiquark is mimicked By  jng the existence of the soliton with some arbitrary shape
—1 antisymmetrized quarks, and it is possible to separate thgnction F(r) allows one to compute the quantum numbers
soliton flavor quantum numbers into quark and antiquarkyf the low-lying states in the baryon spectrum in the
contributions in an unambiguous way. Once this is done, ONR|_—co limit. For large N,, the pion decay constant is of
can apply the results to the physically relevant case of threg,qer JNg, so thatl , is of orderN, . As a result, the mass
flavors. _ _ _and moment of inertia of the soliton are both of ordér.

In this paper, we derive the states obtained by collectiverpg |oy.lying states are given by quantizing the rotational
coordinate quantization of the chiral soliton mofig}, for an  ation of the soliton, and have mass-splittings relative to the
arbitrary number of colorsl; and flavorsF, and discuss the  |o\yest baryon state which are ordeNL/ The semiclassical
importance of the exoticness quantum numier expansion of the effective theory is an expansion in powers
of 1/N., or equivalently, in powers of time-derivatives. All
results in the soliton model which do not depend on details

QCD has aSU(F), X SU(F)g chiral symmetry, which is of the soliton shape functiof(r) can be derived directly
spontaneously broken to the diagor®U(F) flavor group.  from QCD using the N, expansior8,9].

wheref _ is the pion decay constant and the ellipsis denotes
terms of higher order in the derivative expansion. The topol-
ogy of theSU(F) manifold allows for the possibility of soli-

@

II. SOLITON QUANTIZATION
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The collective coordinates for the standard soliton conthree flavors [3], and is: Decompose the represen-
figuration are translations, space rotations and flavor rotatation R of SU(F) into representations of
tions. Translations produceR#/2M shift in the energy, but  SU(2)x SU(F —2)X U(1)y. The allowed wavefunctions
do not affect the quantum numbers of the soliton, and will begre those for which the staf®b) is an SU(F —2) singlet
neglected here. Space rotations are generatell,nd fla-  and hasy=N,. The soliton spin is given by the isospin of
vor rotations byT?. The flavor generators are normalized to |IRb). In this paper, we work out the consequences of this
TrT8T°=6%"/2 in the fundamental representation. We Will constraint for arbitrary flavors, starting wii=5 and then
need the decomposition of the flavor grouBU(F)  regpricting to the special cas€=2,3,4. The caseE=2,3
—SU(2)x SU(F —2)xU(1), whereSU(2) isospin acts 0N are aiready known, but the genefaknalysis allows one to

the first two flayors and is gengrated By SU(F-2) acts better understand properties of the allowed baryon states.
on the remaining flavors and is generated $y and the

U(1) generator is

lll. ARBITRARY F

Y, (3) An irreducible representation @U(F) is described by
the Dynkin weight 6,,n,, ... ,ng_4), i.e. a Young tableau
with n, columns of one box), columns with two boxes, etc.
Each box in the Young tableau corresponds to(appe)

1 index on theSU(F) tensor. Indices in a given column are

1 totally antisymmetrized. We will refer to a column with

2 boxes as arin] column, to emphasize the antisymmetry in

Y= y » YETE Ty 4 the n indices. A particular state is described by choosing

’ values for each indegor boX), i.e. deciding whether to set it
tou, d, s, etc. For example,

TY: ?

where

—

1]1]1]

For three flavorsSU(F — 2) is absent, angy=3Y, whereY
is the wusual SU(3) hypercharge. For two flavors,
SU(F—2) andU(1) are both absent.

The baryon quantum numbers are determined by quantiz-
ing the rotational motion of the soliton. The soliton in a
rotated configuration is described by the matrik
e SU(F), whereU :AUo(_X)Afl- Transforming the soliton  js the T*1112l[1234 glement of the (3,1,0,1) representation of
by the flavor transformatioV e SU(F) givesA—VA, §r11d SU(5), and is astate with hypercharge72y=17/3 using
transforming by the space rotatioW gives A—~AW ".  Eq (4), since each index 1, 2 has=1, and each index 3,4,5
Space rotations are equivalent to right-multiplicatiorAdfy |55 hyperchargg= — 2/3.

W, because spin and isospin are locked together by the e now proceed to solve the little-group constraint. We
X d.ependence of the soliton configuration E&) which need to find arSU(F) state|Rb), denoted by a Young tab-
satisfies .(J.FJ)UO(X):O' . . leau with a choice of indices for each box, such as &y.
Quantizing the collective coordinafeleads to a tower of The hypercharge constraint says that this state)hal
states. Different collective coordinat@sandAh lead to the . e
. ) AN - 1 and must be alsU(F —2) singlet. Each such state we find
same soliton configuratiod if Uy=hUgh™*. The elements . . .
¢ gives an allowed soliton state. TI8J(F) representation of

h which leave the soliton invariant form the little-group o h liton is i by the tabl d1h R b
the solution, and are given by J, S%, and). The quanti- the S0 "OP IS given yt_ € tablea and the spin is given by
the isospin of the specific statRb).

zation of the soliton is a simple generalization of that for a b ; ) .
symmetric top, and will not be reproduced here. One finds Consider a generic Young tableau, and pick a choice of
that the allowed states of the Skyrme model have wave fundndices for each box. Each index chosen to be (,&2u, d)
tions VdimRD{)(A), whereR is an irreducibleS U(F) rep- contr!butes 1 to), and each |_nQex chosen to be.3. F .
resentation, and andb label states irR. The soliton trans- ~ Contributesy<<0. Thus, the minimum number of boxes in
forms like |Ra) under flavor, wherea is the particular the Young tableau is equal fd.. The N -box states Rb)
element ofR. Each possible choice fe R gives a multiplet must have all indices set equal to 1, 2. Since one can anti-
Re SU(F). Not all possible choices d®,b are allowed be- symmetrize in at most two indices if they are restricted to
cause there is a little-group constraint. In the case of threbave at most two values, the allowed tableaux can only con-
flavors, the constraint is that the stdfb) in SU(3) must tain[1] and[2] columns, if they are to contain a state with
have hypercharge¥3= Y= N, [3], and that the soliton spinis Y=N.. The allowed Dynkin weights are w
given by the isospin of the staj&by). =(nq,n5,0,...,0),wheren; is the number of 1] columns
The little-group constraint for arbitraryF derived andn, is the number of 2] columns, and;+2n,=N, is
in Ref. [5] generalizes the hypercharge constraint forthe total number of boxes. The allowgdb) states are:

©)

I»lkloo [N
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TAARRREA (ii) Some of the 1, 2 boxes are added Fo- 2] columns,
21212]12(2]2 to form [F—1] or [F] columns, depending on whether one
(1] 1t1]:]414) or two boxes are added. As in cagg one cannot add more
21212122 than two boxes with values 1, 2 to a single column.

(6) The above conditions imply that the only allowed col-
: umns ard1], [2], [F—2], [F—1] and[F] columns, and the
GLLLLL G LG total number of boxes idl.+r’F, with r’ being the total

number of[F—2], [F—1] and[F] columns. There can be
no columns with lengths between 3 aRd- 3. This restric-

wherei can take on the values 1, 2. Each of these states ha$n is crucial for an understanding of exoticness and is why
V=N, and isospim,/2. TheSU(F —2) constraint is satis- W€ first consider the case of arbitralfy The value ofr’ is
fied automatically, since no index transforms underclosely related to exoticneds
SU(F —2), so each of these states is@(F — 2) singlet. A In SU(F), [F] columns are flavor singlet, and can be
[2] column with indices 1 and 2 is the antisymmetric com-thrown away. Thus, the allowed tableagafter throwing
binationud—du, and has isospin zero, so the above stategway [F] columng contain only [1], [2], [F—2], and
have isospin 1/2,3/2 .. Ng/2. The spin of the soliton is [F—1] columns, and havhl.+rF boxes, where the integer
given by the isospin of theRb) state, so we have a tower of T» O=r=r’, is equal to the number ¢f~—2] and[F—1]
statesw=(n;,n,,0, . ..,0), with n;+2n,=N, and spin columns. Translating from tableaux to Dynkin weights
n,/2, which is the usual non-exotic tower of soliton states. Shows that the allowed SU(F) weights are w
There are additional states in the rotational spectrum of*(N1,n2,0....0n_5,n_;), where we have relabelled
the soliton. The hypercharge constraint can be satisfied bjr-2—"N-2 andng_;—n_,. The four non-negative integers
representations with more tha, boxes, by choosing some Ni satisfy
of the boxes of the statgRb) to be 1, 2, and the rest to be

3,...F, so that the nefy is N.. Since 1, 2 havey=1 n_;+n_,=r,
>0 and 3,...F have Y=y<0, one can obtain a net
Y=N. by choosingN, boxes with index 1, 2, plus some ny+2n,+(F=2)n_,+(F—1)n_;=N¢+rF,

additional boxes whos@ adds up to zero. All additional
boxes with values 3 . . ,F must form anSU(F — 2) singlet.
The only way to form arS U(F —2) singlet is to completely
antisymmetrize F—2 boxes using the e-symbol of
SU(F—2), i.e. they must have the form

nl+2n2_2n,2_n,1:NC, (8)

where the first relation definasas the number of F—1]
and[F—2] columns, and the second relation sets the total
number of boxes equal thl.+rF. The third relation is a
linear combination of the first two.
7) The soliton spin is given by the isospin of the
SU(F —2) singlet, Y=N, state that we have constructed.
The isospin transformation properties of the state are given
by dropping all boxes with indices, 3. . ,F, since these are
Thus, anytime we add an index2, we also must add one all SU(2) singlets. A F—2] column has the form Ed7),
each of all the remaining indices 3.. F inan[F—2] col-  is anSU(2) singlet, and can be dropped. TH columns
umn, as well as two more boxes with values 1, 2 to satisfyalso areSU(2) singlets, and can be dropped. Only {iié
the hypercharge constraint. Ligtdenote the number of extra and[F—1] columns of the Young tableau are left. Eddf
sets of 3... F indices added. Then, the hypercharge andcolumn has isospin 1/2. Eaglfr —1] column has the form
SU(F—2) constraints require that all tableaux haveEd. (7) plus one box set equal to 1, 2, and so transforms as
N.+r'F boxes, where’ =0 is an integer. Each such tableau isospin 1/2. Then; [1] columns are completely symmetrized,
must have at least’ columns with length greater than or and so have isospim/2. Then_; [F—1] columns are com-
equal toF—2, to accomodate’ structures of the form pletely symmetrized, and so have isospiry/2. There is no
Eq. (7). symmetry relation between tli&] and[F—1] columns. The

The possible Young tableaux depend on how theallowed isospins fofRb) are given by the tensor product of
N.+2r' boxes with labels 1, 2 are added to the[F —2] isospinsn,/2 andn_4/2, so the allowed soliton spins aje
columns of Eq.7). The allowed tableaux are given by first =(n./2)®(n_4/2). Each flavor and spin representation oc-
constructing the tableau with’ [F—2] columns side-by- curs at most once in the collective coordinate quantization.
side, and then adding the remainitd;+2r’ boxes with  To get multiple copies of the same state, such as By@)X
labels 1, 2. There are two possibilities: states, requires vibrational excitations of the soliton.

(i) The 1, 2 boxes go into completely separate columns. The above analysis gives the classification of states for
These additional columns can only contain one or two boxe§ =5 presented in Ref.7]: The soliton states have Dynkin
each(i.e., they are[1] or [2] columng, since one cannot weightsw=(ny,n,,0...,0n_,,n_,) which satisfy Eq(8),
antisymmetrize in three or more indices if each index onlyand sping in the tensor product,/2®n_ /2. Taking the last
takes on the values 1, 2. relation in Eg.(8) modulo two shows that the soliton is a
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fermion or boson depending on whethég is odd or even. Y
The cased=4,3,2 are all special and must be considered
individually.

A F=4

For F=4, the above analysis remains valid. However,
one cannot distinguish columns with 2 aRd-2 boxes in
the final Young tableau. The total number of columns with
two boxes is the sum of thg2] and[F—2] columns, and
will be denoted byng=n,+n_,. With this substitution, the
allowed weights forfF=4 arew=(n;,ny,n_4) with spins
(ny/2)®(n_4/2). Equation(8) also is modified to account
for the equality 22F—2. The second relation in Eq8)
becomes

ny+2n,+2n_,+3n_;=N.+4r, 9 FIG. 1. (Color online SU(3) weight diagram for thed=2,q

which aives =5) representation. The upper edge sl weights, and the
9 lower edge hag+ 1 weights. The outermost layéopen circlg has
ny+2ng+3n_;=N,+4r, (10) multiplicity one, the next layefsolid circle has multiplicity two,

and the multiplicities increase by one until one gets to a triangular
layer (red triangle, after which they stay constant. The horizontal
blue dashed line is drawn through the corners of the weight dia-
gram.

a relation written solely in terms of “observable” properties
of the Dynkin weightw=(n;,ng,n_;). The first relation in
Eq. (8) involves the “unobservable” integar_,. It leads to

an inequality, ing one of the upper indices by 3, or one of the lower indices
by 1, 2, so that —3Y—3. The minimum hypercharge
n_i<r<ng+n_q, 11 ) -
. orr-t (1D level is reached when the upper indices are all 3 and the
sincen_,=0. lower indices are all 1, 2, soﬁnin:—Zp—q. The total
Equation(10) modulo two again shows that the soliton is Number of hypercharge levels ist-q+ 1.
a fermion or boson depending on wheti\gris odd or even. The little group constraint is that there must be a

Equation(11) is necessary and sufficient for there to be two3Y=Nc level in the weight diagram, which requires
positive integersn.,=0 which satisfyr=n_;+n_, and
Ng=n,+n_,. As an example of why the inequality in

Eqg. (11) is needed, consider the flavor representaon .4 the states we need aresteps below the maximuny
=(1,0,2)=36 for No=3. This representation does not con- states. Sinc¥ ;<0 andN.>0, there are always states with
tain any SU(F —2) singlets withy=3, and so it is not an  3y=N_ if Eq. (12) is satisfied. The three integepsq andr
allowed soliton flavor state foN;=3, F=4. Although it  are related to the; of the generaF=5 analysis by
satisfies the condition Eq10), with r=1, it violates the

inequality of Eq.(11). p=n;+n_,,

p+2g=N.+3r, O0=<r<p-+q, (12

B.F=3 gq=n_;+n,,

Soliton quantization folF=3 has been discussed before
[3-6,10, but the general result derived below is new. For

F=3, the generaSU(3) representation is conventionally where the first two relations follow sindel] and [F— 2]

denoted by p,q), which is a traceless tensﬂi@i:::ﬁg Withp  columns, as well a§2] and[F—1] columns, are indistin-
upper andj lower indices. It corresponds to a Young tableauguishable for F=3. It is also convenient to define
with p columns of one box, and columns of two boxes. s=n;+n,=p+q-r.

We will derive the states for this case directly, rather than The allowed spins are in the produt{/2®n_,/2, so the
from the F=5 results. TheSU(F—2) constraint is absent, minimum spinj is equal to|y,i,=|n;—n_,|/2=|p—r|/2
and the hypercharge constraint implies that there must be &|s—q|/2. To determine the maximum spin, we need to
state with 3(=)=N.. The weights of the,q) represen- determine the maximum isospin of the statesteps below
tation in SU(3) have the form shown in Fig. 1, with the the maximumY states. The horizontal dashed line in Fig. 1
well-known properties described in the figure caption. Thethrough the corners of the weight diagramqisteps below
maximum hypercharge is given by choosing all the uppethe upper edge. if<q, then the states we need are abtwe
indices of the tensor equal to 1, 2, and the lower indiceon) the horizontal dashed line, and lit=q, the states are
equal to 3, and is given by¥3,,,=p+2g. One moves from below (or on the horizontal dashed line. We consider the
a given hypercharge level to the next lower level by replactwo cases separately.

r=n_;+n_,, (13
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Case (r=q). The upper edge states have isospin ten has argued that one must restrict 1c=2J even states
=p/2. As one drops down ilY, one gets states with several for N. even, and 2=2J odd states folN. odd[3].

different values ofl, | =1,in® - - ®lnax- | max iINCreases by

1/2 for each step down i, since the weight diagram gets IV. ENERGY

one weight wider. Thus, the states witly 3 N., which are ) o )
r steps down, havé,,=(p+r)/2. The value ofl ., de- The rotational energy of the soliton is given by the Hamil-

creases by 1/2 at each step, until one reaches the apex of t ian,

“triangular layer” shown by the triangles in Fig. 1, which is 1 1 E_o

min(p,q) levels down from the upper edge. After that point, H=Mgy+ =—J%+ | T2—J?— —Ng . (15
I min INCreases by 1/2 at each step, since the triangular layer 21, 215 4F

gets wider as one moves downYnThusl ,,;, keeps decreas-
ing by 1/2 at each step until eitheror min(p,q) is reached, L q he fi e ired
whichever comes first, after which it increases by 1/2 at eacflf Inertial, ;are orde,. The flavor Casimif“ is required
step. Since we have assunredq, |, decreases by 1/2 for to determine the rotational energy of the soliton. The Casimir

the first minp,r) steps after which it increases by 1/2. If ©f the SU(F) representatiow=(n;,n,,0...,0n_3,n-,)

with corrections of order N2. The masdM, and moments

r<p, then l,,=p/2—r/2. If r=p, |Lwin=p/2—p/2 for F=5 is

+(r—p)/2=(r—p)/2, so in either casé,,=|p—r|/2. The . 1 g Nu(N+2F)(F—2)
values for |,.x and |, are the same as those in T?=-ng| 1+ = |+

(p/2)®(r/2), so the allowed isospifand hence spinstates 2 2 4F

are (p/2)®(r/2) +2r2+(2F+NC—4)r

Case(r=q). The stateg levels down from the upper
edge ares=p+q-—r levels above the lower edge. Thus, one
can apply the previous argument, now moving up from the
minimum Y states instead of down from the maximuyn
states. The solution is given by the previous case wittusing the Freudenthal formula, where E8) has been used
p—(q, r—s=p+q-r. to eliminaten.., in favor of N, andr. The expression does

In summary: The allowe&U(3) Skyrme states are(q) not have a nice form, becausés not symmetrically defined
with with respect to charge conjugation. Using the variables

+

5 1 3 5
E_Zr_ENC_F n_1+Z(n_1) (16)

r jq:n1/2, ja=n,1/2, E=n_;+2n_, (17)

— if r<
®2 if r<q,
p

p+2q=Ng+3r, j= qer defined in Ref[7], instead of..; andr, leads to the formula

P

2

1 if r=q N¢(Ng+2F)(F—2

2 ’ T2= c( c )( )
(14) 2F

tigligtd (18

+E(E+2F+Nc—4)+jq(jqt+ 1)

Using the above equations modulo two shows that the soliton
is a fermion or boson depending on whetiés is odd or  \yhich has a nice physical interpretation in terms of quarks.

even. _ _ The variablesj,, j7 and E arise naturally in a quark
ForN.=3, ther=0 states with 3 boxes are: model construction. The baryon is made M+ E quarks
@ (1,1)—=8yp. and E antiquarks, where exoticne&sis the minimumnum-

(b) (3,0)—10,.

Ther=1 states with 6 boxes are:

(©) (0,3)—10y;.

(d) (2,2)—27,5,,275,. Note that since botlp andr are
not zero, there are several spin states with the same flavor

ber of qq pairs required to construct a baryon with the de-
sired flavor quantum numbers. The completely symmetric
spin-flavor states foN;+E quarks are:

representation. Equatiofil4) gives the allowed spins as 1

1®1/2=1/293/2. I=3
(e) (4,1)—35;,,35,. .3 L 1]
(f) (6,0)—28;,,. This is an example where one needs to 7=3

use ther>q case, sincg=6, q=0, r=1. Using ther<q
formula would give bot28;,, and 28;,, states.

One can similarly work out the states for higher values . N.+2 T
of 1. j==—= LTI IIT1]

(19
C.F=2
For F=2, the only constraint is thdt=J, so there is an where each Young tableau hids+ E boxes. There can be at
infinite tower of states with all possible values J=j. Wit-  most two boxes in any column, since there are only two
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quark spin states. The allowed quark states are flavor repréut nowE is not determined uniquely by,g andN.. Since

sentationsif,,n,,0, . . . ,0)with n;+2n,=N.+E, and spin
jq=n4/2. Similarly, the antiquarks form the flavor represen-
tation (Q...,0n_5,n_4) with n_;+2n_,=E and spin

n;=0, one has

r<sEs<r+p, 2r—gqsE<2r. (24

jg=n_4/2. The exotic baryon representation obtained by

combining the quarks and antiquarks has flavor weight
=(ny,n,0,...,0n_5,n_4), since flavor singlelqa pairs
which can annihilate are exclud€d]. The other states in the
tensor product of r{;,n,,0,...,0) and (O, ...,0, ,,n_;)
have index contractions, and so contain flavor singﬁt

pairs. The allowed exotic baryon spins are given by

jq®Jgq- Note that the allowed states in the quark model pre
cisely match those in the soliton model.
For F=5, the “observable” integersi.,, n., in the

Definitions Egs(13), (17) imply thatE=r+n_,, so that
E#r [7,11]. This distinction is important. It was assumed
previously in the literature that exoticness was related to the
number of boxes in the Young tableau. A tableau with
N.+3r boxes was said to have exoticnegssHowever, this
interpretation is incorredt7].

Since exoticness is the minimum valuetfor which one
can construct a given baryon state in a quark model{#).
gives[7]

weightw definej,j5,E uniquely using Eq(17). Thus, one r if r<q
can write the quantum numbers of the solition states in terms E=E,=maxr,2r—q)= ) ' (25)
of quark model variablef,, j5andE. The Casimir Eq(18) 2r—q if r=q,
then has a simple interpretation in terms of the hyperfine .
interactions of quarks and antiquarks, and the constituerlS e minimum allowed value fdz.
mass of the quarkE7]. If r<q, thenE=r, and Eq.(23) gives

For F<5, itis still useful to convert to quark model vari- _
ables, even though the conversion is not as simple as N1=Pp,
Eqg. (17), because the quark and antiquark contributions are
not separated in the weight n_.=r,

F=4 n,=q-—r,

For F=4, the Casimir formula Eq16) continues to hold n_,=0, (26)
forw=(ny,ng,n_4), where Eq(10) has been used to elimi-
nateng in favor of r. One still can define with j4=p/2 andjg=r/2.

If r=q, thenE=2r—q, and Eq.(23) gives
jo=nu/2, fa=n_u/2, (20 q g 239
. , n=p+q-r,
and exoticnesE=n_;+2n_,=2r —n_; still can be deter-
mined from the flavor weight ani., n_,=q
n;+n_;—N
- %mo. (21) n,=0,
Equation(18) remains valid. N-p=r=q, (27)
with jq=(p+q—r)/2 andjg=q/2.
B.F=3 Equations(26), (27) allow one to interpret the soliton
For three flavors, thep(q) Casimir is state in terms of quark variables. Combinipgandjg gives
the same spin states as Ef), which is a non-trivial check
, 1, ) on the analysis. Equatidii8) remains valid, and agrees with
T°=3(p"+pa+q9)+(p+q). (22 Eq. (22 for bothr=q andr=q.

The weight p,q) andN, are the “observable” properties of
the soliton state, and determipeq,r. Equations(13), (17)
can be solved to give the in terms ofp,q,r,E:
n=—E+p+r,
n_,=—-E+2r,
n,=E+q-—2r,

n_,=E-r, (23

C.F=2

For F=2, the quarks are in the representation)(ith
spinj. In this case, for states with spin of order ofesr
=0, jq=], ig=0. The Casimir isr?=j(j+1), and Eq(18)
remains valid.

V. DISCUSSION AND CONCLUSIONS

Collective coordinate quantization is valid for baryons
with E=0, where the Casimif? is of orderN?, so that the
rotational energy is order M. However, forE#0 baryon
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exotics, the Casimir is ordé\., and the rotational energy is in the chiral soliton model for an arbitrary number of colors
orderNg, which is the same order as the vibrational ener-and flavors. Explicit results are given for the case of three
gies. In this case, one has to include vibrational-rotationatolors and flavors. The analysis presented in this paper pro-
mixing to correctly compute the energies, and Edp) is no  vides insight into the connection between the soliton and
longer valid[12]. Nevertheless, the structure of the energyquark models, for normal as well as for exotic baryons, since
still has the form Eq(18), though the coefficients of th€,  there is a non-trivial map between the states and their ener-
E?, Jq(iqT 1) andj(j5+1) terms no longer have the values gies in the two models.

given in Eq.(18) [7]. The interpretation of the soliton states
presented here remains valid. Including vibrational modes
will produce additional states with the quantum numbers of a
soliton plus some number of mesons, which can be thought
of as soliton-meson bound states. This work was supported in part by the Department of

In summary, we have computed the allowed baryon stateEnergy under Grant DE-FG03-97ER40546.
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