PHYSICAL REVIEW D 70, 034021 (2004

Glueball production in radiative J/¢,Y decays

Maurizio Melis* and Francesco Murgia
Istituto Nazionale di Fisica Nucleare, Sezione di Cagliari, and Dipartimento di Fisica, Univedsi@agliari, Casella Postale n. 170,
1-09042 Monserrato (CA), Italy

Joseph Parisi
Laboratoire de Physique Theque, Universitede Paris-Sud, Laboratoire associ Centre Nationale de la Recherche Scientifigue UMR
8627, Baiment 210, 91405 Orsay, Cedex, France
(Received 19 April 2004; published 23 August 2004

Using a bound-state model of weakly bound gluons for glueballs made of two gluons and a natural gener-
alization of the perturbative QCD formalism for exclusive hadronic processes, we present results for glueball
production in radiativel/ s, Y decays into several possible glueball states, includi#@ ones. We perform a
detailed phenomenological analysis, presenting results for the more favored experimental candidates and for
decay angular distributions.

DOI: 10.1103/PhysRevD.70.034021 PACS nuntder12.38.Bx, 12.39.Mk, 13.20.Gd

I. INTRODUCTION this implies that the so-called “stickiness” paramef{d]
S=[T I p,Y = vyR)PHyy—R)J[T (yy—R)PI Y
The unambiguous experimental observation of two- or— yR)], whereR is a hadronic resonance aff denotes
three-gluon bound states should be an important test of quathe phase space factor, should be much greater for glueballs
tum chromodynamics and of its internal consistency. In theas compared to ordinary mesonic states. The present status of
last years a huge experimental and theoretical work was ithe glueball search program can be summarized by recalling
fact dedicated to this goal. Unfortunately, lower-mass gluethat there are two main candidates for glueball stgte® 9]:
ball states are supposed to fall in a mass rafgew Ge\ a scalar, 0 state with mas#,++=1.5 or 1.7 GeV and a
which is already largely occupied by mesonic and/or hadtensor, 2 (or 4" ) state with masiVl j++=2.22 GeV,;
ronic states, including exotic states, hybrids, etc. Moreoverthese observations are supported also by lattice QCD calcu-
glueball states are probably not narrow enough to allow dations[3,4]. Other possible experimental candidates [@1e
very clear observation. However, an intense experimentad pseudoscalar, 0" state with masM,-+=2.14 GeV; a
search[1,2], complemented by lattice QCD calculations vector, 1" * state with mas#/,++=2.34 GeV; a pseudoten-
[3,4] and several other theoretical contributions, like bagsor, 2°* state with mas#l,-+=2.04 GeV; and a 3" state
models[5], flux-tube modeld6], QCD sum ruled7], has  with mass M3++=2.0 GeV. Present lattice calculations,
given evidence of a few possible candidates for two-gluorhowever, predict larger masses for most of these s{&fes
bound states. Typically, experimental searches for gluebalbther glueball candidates have also been proposed. In the
candidates have been performed in favorable experimentgbllowing, we will not consider these additional states, lim-
environments. A good place to search for glueballs is in raiting ourself to discussing some selected examples in detail;
diative J/4,Y decays, because of the “gluon-rich environ- it will then be clear how to deal with the remainder. Addi-
ment” produced in th&) Q decayQQ— ygg, which should tional information can be found in Reflsl,2] and references
be particularly suitable for subsequent glueball formationtherein.
Two other processes of interest are central production in had- Motivated by the fundamental role played By, Y ra-
ronic collisions andpp annihilation in the few-GeV energy diative decays in the field of glueball search, in this paper we
range. It is interesting to observe that one can take advantagéudy in detail these decay processes and analyze their im-
also of negative-answer experiments like, e.g., hadron praPlications for glueball production.
duction in photon-photon collisions. In this case, meson pro- To this end, we use an approach previously developed by
duction is expected to be favored with respect to gluebalfome of us and already applied to several processes involv-
formation, which should only proceed via higher-order  ing the production and/or decay of hadronic statesluding
the electromagneti¢e.m) coupling constarjtcontributions. qg mesons and two-gluon bound stateg high energies
In some sense, the situation is reversed compared to radiatiy@0—13. This approach is a generalization of the formalism
quarkonium decays. From a more quantitative point of viewdeveloped, starting from the early 1980s, in the framework
of perturbative QCD for the study of exclusive hadronic pro-
cesses at high transfer moment{ib#]. Our model assumes
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perturbative QCD results in the caselof 0 states. Let us £
clarify from the start that, being based on perturbative QCD,

this model is not suitable for predicting physical observables

which are nonperturbative in their essence. Thus, for ex- 0
ample, it cannot give sensible predictions for the masses and

decay constants of lighjg and two-gluon states. Rather, Pe] ~
these quantities must be taken as input parameters of our >
model, obtained from experimental results or other nonper-
turbative approaches, like, e.g., lattice QCD calculations or
QCD sum rules. In some cases, like for decay-product angu-
lar distributions, it is possible to give predictions for physical
observables which have little dependence on these nonper-
turbative inputs, as will be shown in the following.

Let us recall that our approach was already applied to
glueball production in radiative quarkonium decays in Ref.
[10], in the case of a nonrelativistic distribution amplitude
for the two-gluon bound state. Here we extend and general-
ize the analysis to the case of a generic glueball distribution
amplitude; we also present analytical and numerical results
obtained using several different models for the glueball dis-
tribution amplitude. FIG. 1. Kinematical configuration for the proce®Q— yG in

We derive and discuss, _|n the framework of ou.r model, ,"’\he guarkonium rest fram@) ind for the elem%nta?)?spgartgnic pro-
number of general analytical results for scattering ampll—cessQa_) *g* in the glueball rest framég)
tudes, angular distributions, etc., that may be useful indepen- 79" 9 '
dently of the numerical results presented here. This should
hopefully facilitate the use of our approach for future, more
detailed investigations along these lines.

Notice that we know from first principles that the helicity
amplitudesAM,AG g Can be written, in the quarkonium rest

The paper is organized as follows: In Sec. Il we summafr@me, as
rize our approach and present all relevant relations required. A Nod. A4l
In Sec. Il we consider in detail the radiative deciyy,Y AAMG?NQ( 07’¢7)_A)‘y')‘6 enety d)‘Q'”f"G(ey)’
—vG, deriving the expressions of the helicity scattering am- )

plitudes for several possible two-gluon bound states \8ith where 6, and ., are, respectively, the polar and azimuthal

=0,1,2,L=0,1,2,3,4, and=0,1,2,3,4; we also derive the o . TR
expression of the decay photon angular distribution in theangles specifying the photon outgoing direction in the

. ] . .
quarkonium rest frame. Section IV is devoted to the presendU@rkonium rest framed, ,, are the usual Wigner rotation
tation and discussion of several numerical results and predignatrices, andAAMG are “reduced” amplitudes, depending
tions; we give our final comments and conclusions in Sec. Vonly on \,, A and on the dynamics of the decay process.
A few appendixes contain most of the analytical results forNgtice also that, sincd) ,,(6—0)= 3, ,, Eq.(1) gives
the helicity scattering amplitudes and some useful analytical

integrals required in the calculations. A%we ;AQ( 0,= ¢7:0):AM’KG 5kgv%f%e' 2)

This means that we can evaluate the helicity amplitudes

Il. DESCRIPTION OF THE FORMALISM A}‘y*)‘G;)‘Q in the simple kinematical configuratiof,= ¢,,

AND GENERAL RESULTS R
FOR HELICITY SCATTERING AMPLITUDES =0, find the reduced amplitudes, ) from Eg.(2), and
utilize Eq. (1) to reconstruct the full amplitudes.
In the framework of perturbative QCD and its factoriza-
n theorems for exclusive hadronic processes at high-

In this section we outline the formalism utilized in the
following calculations and present some general expressio%

for the scattering amplitudes. We limit ourselves to summa- le§14] (i thed O bound-stat
rizing the main steps of our approach. The interested read ergy scale$14] (in our case, theQQ bound-state mass

will find more details in Refs[10—-13, where the same ap- o). the helicity amp“tUde@‘M'Ke*Q for the physical pro-
proach was formulated and applied to several hadronic pro=€ss may be evaluated starting from the helicity amplitudes
duction and decay processes at high-energy scales. for the elementary hard processQQ— yg*g*,

The basic ingredients we need in order to evaluate observr, AL dpikg Age where\;,\, are the helicities of the two
ables for the proces¥ ¢, Y — yG are the corresponding he- fina (virtual) gluons.
licity scattering amplitudes\, ., where the\’s indi- The partonic process is schematically represented in Fig.
cate the helicities of the corresponding particles. From now  poth in theQQ c.m. reference framéhe quarkonium rest
on we always indicate by the subscrigtall quantities re-  framg (A) and in the glueball rest fram@), where the two
lated to the generiQQ bound stateQ=J/4,Y . constituent gluons are moving with relative momentukn 2
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As a first step, using the we_ll-known nonrelativistic colori 1/2L+1\2 2i \beL+ 1y | dt
singlet model for the quarkonium bound state, we can easily g =5\ 5-m v —Ru(1) ;
find the connection between the helicity amplitudes m™le G : dr r=0

TM:MM:AQJ\E and those relative to the proces® (5)

—79"g%, My i Afurther step will in turn connect g (1) s the glueball radial wave function in momentum

the amplitudesM to the hadronic amplitudes, Eq. (1),  space®(z) is the glueball distribution amplitude, which de-

which describe the full hadronic process. scribes how the glueball longitudinal momentyim the so-
Let us remark at this point that in the last years the cruciakalled infinite momentum frames shared between its two

role of color-octet contributions in hadronic processes in-constituent gluongx, ,=(1+2)/2 is the fractional longitu-

volving the production and decay of charmonium boundginal momentum carried by gluons 1, 2 respectiyeind

states has been discussed in the framework of nonrelativistic

QCD (NRQCD) [15]. It has been shown that color-octet con- ¢57*¢(g,¢)=Cc 22c ! | Se hedd’ —(9), (6)

tributions are crucial for the consistency of a nonrelativistic ~*"2 o2 G

model of quarkonium. To our knowledge, only a few at- herefz)\l—)\z

temp'ts have been made to apply NRQCD and co]or-octe\{v It can be easily checked that E@) reduces to the usual

contributions to the treatment of exclusive charmonium de< ¢ it of perturbative QCD fdr =0 bound states, apart from

cgys[16]. These attempts_have shown that color-octet CONSome trivial redefinitions of the decay constants. In fact the
tributions are probably of little relevance in the caselbf,

Y exclusive decays. In what follows, then, we stick to theSame expression, v&th obvious appropriate modifications,
| color-singlet model for théS Qa bound state. In can be used for Q bound state, and Eq3) could be

usua 9 . 1 : retrieved from Eq.(4) by substituting the gluons with the
this case we can write — ) . .
QQ pair, puttingL=0, S=J=1, and using for thd/ ¢ dis-
tribution amplitude the nonrelativistic limibNR(z) = 5(2).

Let us now consider in more detail the total glueball wave
function . It must be completely symmetric under ex-

M}\7|)\1.)\2;)\Q( 07!¢y;ﬁ161 d))

:f_Q E Ci/l 1@ 1A change of the two gluong,; < g,. W is factorized into the
2\3 rgrg Q@ e product of the color, spin, and orbital wave functions and of

) the distribution amplitude¥ =® . ®<P, ®(z). Since the

XTMMM;’\Q 'AE( Oy ¢y:B.0,9), 3 two gluons must be in a color-singlet stade, is symmetric.

o The combination of twos=1 particles can gives=0,1,2,
where f is the quarkonium decay constant; t 2 and ®¢(g;—g,)=(—1)5bg; the orbital angular momen-

1My, M L. & .
are the well-known Clebsch-Gordan coefficients: ¢ are (UM component has symmetry-)"; finally, in our ap-

the polar and azimuthal angles specifying the direction of throach the distribution amplitud®(2) is always taken as
relative momentum between the two gluonk, n the glue-  SYmmetric inz As a consequence, to have a completely sym-

ball rest frame; ang is the modulus of the relative momen- Metric wave function, only states with evén+S are al-

tum in units of the glueball mass3=2|k|/Ms. Without lowed. We have explicitly checked that all amplitudes with

giving more details of the calculation of the hard scattering®dd L +S would require a nonvanishing, antisymmetric dis-

amplitudesT, let us only recall that, at leading order in the tribution amplitude. We do not consider this “exotic” possi-

strong-coupling constant power expansion, there are SiQ?Iity in the following. The parity of the glueball state is

—(_1L o S
Feynman graphs contributing to the process, correspondingVe"n tﬁ{f_( 1)~, while its charge conjugation i€
to all the possible ways the photon and the two gluons can (~ 1) ~=+1 for all allowed states. b
attach to the fermionic line. The expressions of the helicity A (Pure two-gluoh glueball bound statQ)”") is givenin
amplitudesM, , .., are collected in Appendix A the most general case by a linear combination of states with
y M2 g ’

. . . different values ofL, S and samel],P,C quantum numbers
Following our approactill1,12, the hadronic amplitude [only states with eveh + S and (— 1)-= P may contributé

L, S J ; ~
M'%e?ﬂg(ay’%) for the production of a two-gluon bound In Table | we show, for each glueball state with quantum
stateG(gg) with spin, orbital, total angular momentum, and numbersJ®¢ (up to J=4), all the|L,S) states withL<4
helicity S, L, J, and\g, respectively, is given by contributing. We can put this in a concise form
) o (2) 1 J+S
L, S J - L f,pc|IPCY = —[1+(=1)-"S
A Sl =201 | dz = Zim pdd?= 3 3 I
_ L
f d(cos6)d¢ S HSINe(g 4 X[1+P(=1) AL sfL[L,S), (7)
4 Nk, MRz ’ where f jrc is the decay constant of the physical state and

] A_ s are (compleX mixing coefficients; whenever only one
XMM’MM?AQ( Oy.¢y:8.0.:4), (4 IL,S) state contributes, we takl® s=1 andf,rc=f_. The
expressions of the helicity amplitudes for HlI,S) states of
whereg, is the glueball decay constant, interest are reported in Appendix B.
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TABLE I. For each|J"%) two-gluon glueball state, up td  be that of considering the nonrelativistic limibNR(z)

=4, the contributingL,S) states withL<4 are shown. =6(2). This gives very simple analytical results for the he-
s licity amplitudes; however, it is generally considered inaccu-
137) IL.S) rate, in particular for low-mass bound states; therefore, we
0++ IL=05=0); [L=25=2) will not consider furth_ermore this option in the rest of_ the
o+ IL=1S=1) paper. Let us only notice that the reader can easily derive all
Y e useful results for the nonrelativistic case by himself from
1 IL=2,5=2) y
1+ |L—1’S— 1) Appendix B. We will then consider two more realistic op-
el tions, based on results obtained in the past years for the
++ _ _ . — _ . — _ . — _ 1
§_+ L=05=2); |:::i’2:(l)>j |t:§‘§:i>' L=45=2) production and decay of light mesons at high energies and
s | el >j | el ) largely adopted in the literature in various forms.
37+ IL=25=2); [L=4S=2) (i) A generalized version of the so-called asymptotic dis-
3 |L=35=1) tribution amplitudeg[13]:
a4t IL=25=2); |L=4,5=0); |L=4,5=2)
4= IL=35=1)
’ I'(L+5/2)
D =N(A-2) = (1)
T
Let us remark that in our approach the gluons in the two- 9

gluon bound state have an effective constituent nrags

=(Mg/2)\/(1+2z)%— 2. This fact has two important conse- whereI'(z) is the well-known Euler gamma function.
quences(i) The gluons have three possible helicity states (i) Following Refs.[18—20, a version of the asymptotic
N1,=*1,0. It is easy to checksee Appendix Bthat all  distribution amplitude which suppresses end-point contribu-
amplitudes withh ;=0 and/or\,=0 correctly vanish in the tions:

limit my ,—0. (ii) Yang's theorem states that two massless

spin-1 particles cannot bind to formJ=1 state or a state ~ ®*%(z)=Ny(1—2z*)exd —u/(1-2?)]

with oddJ and negative parity. In principle this theorem does

not apply to our model with constituent gluons; in fact, we 3

find nonvanishing amplitudes for theé'T, 1", 37" bound = EGXKU/Z){UZKo(U/ZHU(l—U)

states; however, all amplitudes involved correctly vanish in

the limit my ,—0. The observation of two-gluon,1", 1~ *, XKy(u2)} " Y(1-22)exd —ul(1-2%)], (10

37 * bound states in radiative decays of quarkonium should
indeed be an interesting test in favor of approaches, likgyhereu=M /(2b2) b is a hadronic scale parameter, and

ours, involving massive constituent gluofis7]. Ko andK; are the well-known modified Bessel functions of
the second kind. Notice that whem—0 (or better when
Ill. DECAY RATES AND ANGULAR DISTRIBUTIONS Mg>b), ®A(z)—8(z); for light mesons like, e.g., the

ion, and reasonable values lof-0.5-1.0 GeV,®"¥(2) is

In the previous section we ha\{e preser)ted all gen_eral ”{jery similar to the well-known asymptotic distribution am-
sults regarding the helicity scattering amplitudes required fof)htude [14].

the calculation of decay rates, photon angular distributions,  \yith these choices for the glueball distribution amplitude,
etc. In this section we first discuss the choice of(uh_mper all integrals W, ., .(y), Eq. (8), can be performed analyti-
tgrbatlve glueb_all d|str|but|_on ampllltud@_(z). We W!l! €ON-  cally. A more detailed discussion of these integrals and a
sider two physically plausible and justified possibilities that*collecﬂon of useful results are presented in Appendix C.

on the one hand, give indications of the dependence of U~ e gecay rate and the photon angular distribution for the
merical results orb(z) and that, on the other hand, are such rocessQ— yG(JPC) can be easily obtained from the dif-

that the integrals in the expressions of the helicity amplitude erential decay rate
(see Appendix B can be performed analytically. After this
discussion, we will present the expressions of the decay rate dr
and of the photon angular distribution for the process con-

sidered, in terms of the helicity amplitudes. dé, d(cosd,)
Looking at the results of Appendix B, one sees that all the
integrals appearing in the helicity amplitudes are of the form _—___~ . (1-y) Z 2 p}\g N (Q
v 2 122 2 ®
Lma(Y)= m (1-22)(1—y222)"" XAAy'AG;AQ(Gy,%)AM’)\G;)\,Q( 0,.9,), (11

wherey= Mé/MZQ. To perform numerical calculations, one wherep(Q) is the helicity density matrix of the quarkonium
needs an explicit expression for the glueball distribution amstate, normalized so that p(Q)=1. p(Q) depends on the

plitude ®(z). This function is largely unknown, given its quarkonium production dynamics. For typical production in
nonperturbative origin. The simplest possible option wouldhigh-energy¢ ¢~ colliders all off-diagonal elements are
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TABLE Il. Numerical values of the rati@=TI"(Y — yG)/I"(J/ 4y— yG) for the glueball candidates con-
sidered in this paper; for each case, differgns) contributions(up toL =4) and three possible choices for
the glueball DA(see text are considered; comparison with experimental bounds, when available, is also

shown.
|3P€) Mg (GeV)  |LS) R RexPt
GAS ASI
b=0.5 GeV b=1.0 GeV
o+t 1.71 00 2.%10°? 2.2x1072 2.2x10°2 <3.4x10°1
22 3.1x10°8 2.1x10°8 2.8x10°°
o " 2.14 11 3.&10°4 3.4x1074 3.5x10°4
1+t 2.34 22 2.&10°4 4.3x107* 3.6x10°4
2T+ 2.22 02 7.%10°° 8.8x 103 8.5x10°° <2.9x1071

20 1.3x10°2 2.2x10°1 4.5%10 2

22 7.6<10°°2 6.7x10°3 7.1x10°3

42 2.1x10°2 7.7x10°3 1.8x10°2

2=t 2.04 11 1.%x10°° 1.8x10°° 1.6x10°3
31 1.5x10°2 1.6x10°2 1.7x10°2
3t 2.00 22 1.410°2 9.7x1078 1.2x1072
42 1.0<1072 5.6x10°° 1.0x1072
4+ 2.22 22 3.x10°? 2.0x10°* 2.7x10°t <2.9x10°!

40 55101 2.8x10°° 1.4x10°*

42 3.1x10°1! 1.5x10°1 2.8x10°1
v?niShing,pﬂ,ﬂ_(”Q)21/5,pog(_Q)ZO; in the following ap- 1 dr’ 31-2ri+ry| 1+r13 ©)
plications, we will consider this case. p— =— T3 T3 P11

By using Egs.(1), (2) one can easily see that the total | d(cost,) 4 1+ri+ry (1-2ri+r;
decay width can be written in the form

—[1-3p14( Q)]co@ﬁy] : (15
P(Q—y8) = (1-y)s 3 1A a2 (12
_>'y — _y ~ ) 1 ~ ™ H H
167Mg 32 Mte If |JAL1d=0 and|A,;4#0, we may in turn define

, o . A1l

while the decay polar angular distribution, normalized to r%——' (16)

unity, can be written as

dr 3 1

|A>\7,>\G

)\7, G

X[y, a - ag (O TPIAL %

If |A,; d#0, we can define, for a glueball state with total

angular momentung,

J_|A+l,+i|2

LAY

>

1
T d(cosd,) 2 S A, [2re

PAQ ,)\Q( Q)

13

Ac1d?
and Eq.(15) simplifies to
E
ry—2

1 dr’  3r;-2
= _Pl,l( Q)

9 d(cosd,) 4143
—[1—391,1(9)1005207}- (17)

IV. NUMERICAL RESULTS

Since our approach cannot predict the glueball decay con-
stantsf, , we are not able to give reliable estimates for ab-

(14) solute quantities like decay rates, unless using information

from other nonperturbative approaches. Another source of
uncertainty is that, as we have seen, even considering only
pure two-gluon states, some of the bound states with given

wherei=1,2 and, sincé\g|<J, riJ=0 if J<i. Then, using quantum number3” may result from the mixing of several

Eq. (13), one finds

L,S states, with unknown mixing coefficients. Although for
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FIG. 2. Normalized photon angular distributior(#6,) FIG. 4. Normalized photon angular distributiot(6,)
=(1m)dr'/d(cosé,) for the Y—yG(1"") decay and different =(1M)dI'/d(cose,) for the Y—yG(2*") decay and different
choices of the glueball distribution amplitudéDA) ®(z): IL,S) glueball states, using the asymptotic DASY DA), with b
asymptotic DA(ASY DA), b=0.5 GeV (solid line); ASY DA, b =0.5 GeV:L=0, S=2 (solid ling); L=2, S=0 (dashed ling L
=1.0 GeV(dashed ling generalized asymptoti&GAS) DA (dotted =2, S=2 (dotted ling. Notice that thd. =4, S=2 case(which is
line). not shown, for clarity is almost indistinguishable from the=2,

S=0 case. Moreover, notice that for the=0, S=2 casel(6,) is
eindependent of the glueball DA, for all other cases, use of the ASY
BA with b=1.0 GeV, or of the GAS DA, leads to very similar

results.

weakly bound systems it is usually assumed that amplitud
corresponding to larger values bbfare suppressed, the over-
all contribution of eachL,S state may be modified by the
inclusion of the mixing coefficients. Therefore, in this paper T'(Y—9G)
we limit ourself to give predictions separately for edc!s

contribution and for quantities that do not depend on the P p=~G)

glueball decay constants—i.e., thg angular distribution of the 1-y, as(M%) 2 fy)2 M, 3 F(y,)

decay products and the branching ratRsI'(Y — yG)/ =1 — 1\ vl E , (19
I'(J/y— yG). For this last quantity some experimental Y, \ as(My) 4 Y (yw)

information is available concerning possible glueball candi- B 2 .
dates. Both these observables can in principle give uselehereyQ_(MG/MQ) andF(y, w) includes the rest of the

information regarding the glueball distribution amplitude Contribution from the helicity amplitudes not explicitly
and, for a givenPC state, regarding the relative weight of shown. We can make use of the well-known leading-order

the variousL,S amplitudes contributing. result
32 f2
r(Q(s,) —e'e )= —na?—> (19
A. Predictions for the ratio R=TI"'(Y—yG)/T"(J/ p— yG) 27 Mg

Let us consider the rati®R=T(Y — yG)/T'(J/ y— yG). and of the leading-order expression for the strong-coupling
Ris independent of the value of the glueball decay constanfonstant:
On the other hand, it depends on the quarkonium decay con-

stantsf,,, fy. From Eq.(12) and the results of Appendix B a(Q?)= 127 (20)
we easily see that s (11In.—2n;)IN(Q%A?)’
1
1 o8|
08} ] o6} T /r""’?’
é M
T o4t 3 02}
02 ] %0 % e0 s 120 150 180

0

0 30 60 90 120 150 180 . o
o, FIG. 5. Normalized photon angular distribution(6,)
=(1/)dI'/d(cos#,) for the J/yy— yG(2" ") decay and different
FIG. 3. Normalized photon angular distribution(6,) IL,S) glueball states, using the asymptotic DASY DA), with b
=(1r)dr/d(cose,) for the J/ yp— ¥G(1* ") decay and different =0.5 GeV:L=0, S=2 (solid ling); L=2, S=0 (dashed ling L
choices of the glueball distribution amplitud€DA) &(2): =2, S=2 (dotted ling; L=4, S=2 (dot-dashed line Notice that
asymptotic DA(ASY DA), b=0.5 GeV (solid line); ASY DA, b for the L=0, S=2 casel(6,) is independent of the glueball DA,
=1.0 GeV(dashed ling generalized asymptoti©GGAS) DA (dotted  for all other cases, use of the ASY DA with=1.0 GeV, or of the
line). GAS DA, leads to very similar results.

034021-6



GLUEBALL PRODUCTION IN RADIATIVE J/¢,Y DECAYS PHYSICAL REVIEW D70, 034021 (2004

1 T T T T T 1

08 E 08 [

06

K®,)
19)

04

0.2 fu”
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. o FIG. 7. Normalized photon angular distributiot(6,)
FIG. 6. Normalized photon angular distributior(#6,) =(1I)dI'/d(cosd,) for the J/y—yG(2~ ") decay and different
=(1m)dr'/d(cos6,) for the Y—yG(2 ) decay and different | 's) glueball statesL=1, S=1 (solid ling; L=3, S=1, ASY
|L,S) glueball statesL. =1, S=1 (solid line); L=3, S=1, ASY DA with b=0.5 GeV (dashed ling ASY DA with b=1.0 GeV
DA with b=0.5 GeV (dashed ling ASY DA with b=1.0 GeV  (dotted ling, GAS DA (dot-dashed line Notice that for thelL
(dotted ling, GAS DA (dot-dashed line Notice that for thelL =1, S=1 casel(6,) is independent of the DA adopted.
=1, S=1 casel(6,) is independent of the DA adopted.

exp exp +—
with n,=3, n;=4,5 for Q=M,,My, respectively, and\ B/ y— ¥£(2220)x BIH(f4(2220 — KK

=0.2 GeV. We then find =(8.1x3.00x10°°, (23
- Tree ) (MMWY BOPY — yfo(1710) X B¥(To(1710 K 'K )
r(J/y—ete )My 1y, <2.6x10°%
X(ZSIn(Mi]Az) ZF(yY) 21 ex ex +K—
23mM2IA7)| Fly,) (21) B&P(Y — yf;(2220) X B¥P(f (2220 —K TK )
<1.5x10°°. (24)

We make also use of the experimental resi8is

Taking the lowest possible value for thé) case, this results
in upper bounds for the ratid&R, which are reported in
Table II.
r*P(Y—e’e )=1.32+0.04+0.03 keV. From Table Il we can see that, apart from two cages,
(220 the L=2, S=0 contribution to the 2* state and the.
=4, S=0 contribution to the 4" stat, the results show
In Table Il we present our results for the rabfor several o a4ively little dependence on the glueball distribution am-

glueba!l bound states. For each state, the mass 1S Chos,ﬁﬂtude, differing at most by a factor of 2—3. Our estimates
according to the most favored experimental candidate availy

o are consistent with the experimental upper limits, when
a_ble [1,2,9. As a consequence of its interest, we als_o Con'available; for the 4 * state, the results are very close(émd
S'ﬁffr one of tfhe St?]t.ef] forbldhden by f‘”g.s tlheorim—Le., thﬁ1 some case slightly larger thatihe upper limit, while in all
1 state—for which we have indicatively takeM -+ other cases they are considerably smaller. For a given state,

=2.34 GeV. . there are remarkable differences between the possilse
For each state, we have also separately considered all POS5

. oo . ontributions, which could be useful once more experimental
sible|L,S) states contributing. This could be useful, together
with a study of the decay angular distributions, to get infor- |
mation on the unknown mixing coefficients. To study the
dependence of our results on the choice of the glueball dis- o8t
tribution amplitude, we present results for the generalized
asymptotic distribution amplitud® >, Eq.(9), and for the
modified asymptotic distribution amplitud®”S, Eq. (10),
using in this case two indicative values for the parambter
b=0.5 GeV andb=1.0 GeV. o T

For two of the most accredited glueball candidates 0 3 80 S0 120 150 180

[9]—i.e., the resonancef,(1710) andf;(2220) J=2 or
4)—some experimental results on branching ratios are avail- FIG. 8. Normalized photon angular distributiont(6,)

rePl(J/y—ete )=5.26+0.37 keV,

9)

able: =(1/)dI'/d(cos@,) for the Y—yG(3" ") decay and different
IL,S) glueball statesL =2, S=2 (solid line); L=4, S=2, ASY
BEP(J/ p— yfo(1710) X BP(fo(1710 - K K ™) DA with b=0.5 GeV (dashed ling ASY DA with b=1.0 GeV
12 4 (dotted ling, GAS DA (dot-dashed line Notice that for thelL
=8.5_59x10°"%, =2, S=2 casel(0,) is independent of the DA adopted.
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FIG. 9. Normalized photon angular distributior(#6,) FIG. 10. Normalized photon angular distributioh(6,)

=(1/I)dr/d(cos#,) for the J/yy— yG(3" ") decay and different =(1/T')dI'/d(cos6,) for the Y —yG(4" ") decay and different
|L,S) glueball states, using the ASY DA with=0.5 GeV:L=2, IL,S) glueball states, using the asymptotic DASY DA), with b
S=2 (solid line); L=4, S=2 (dashed ling Notice that for thel =0.5 GeV:L=2, S=2 (solid ling); L=4, S=0 (dashed ling L
=2, S=2 casel(#,) is independent of the DA adopted, while for =4, S=2 (dotted ling. Use of the ASY DA withb=1.0 GeV, or
the L=4, S=2 case the three choices here adopted give almosbf the GAS DA, leads to very similar results.

indistinguishable results. o o
contribution to the 2 * state; thd. =2, S=2 contribution to

information on the ratioR will hopefully be available. the 3"" state; the.=2, S=2 contribution to the 4™ state;

Complementary information can be found by looking at theit also applies to the 4" state, not considered in Table II.

photon angular distributions. Regarding Figs. 2—11 one can make the following re-
Regarding the scalar, '0" glueball state, since the marks:

fo(1500) is also reported to be a possible candidate as an (i) Apart from the cases where, for the reasons discussed

alternative to thé 4(1710), we have also considered the case2Pove, there is no dependence on the glueball distribution

Mo+ +=1.5 GeV. The value of the rati® correspondingly amplitude at all, practically all remaining cases show little or

decreasegincreasesby 10%—20%(20%—30% at most for ~ negligible dependence oh(z). The only remarkable case is
theL=0 (L=2) contribution. the L=3, S=1 contribution toY — yG(2~ "), where there

In Spite of the lack of detailed experimenta| information, is a sizable difference between the results obtained with the
we have investigated the dependence of the mtion the ~ generalized asymptotic DA and those with the modified
glueball mass for the other states as well, using other pog@Symptotic DA.
sible mass attribution?]. While the 0" *, 17+, 2** states (i) Regarding the possibility of discriminating among the
show overall a dependence smaller than, or comparable tgifferent|L,S) contributions to a gived”® state, the overall
that of the scalar case, the 2, 3", 4" states show a Situation looks more interesting. There are remarkable differ-
stronger sensitivity. As an example, a 10% change in th€nces in the 2™ case, for thel/ decay; in the 2" case,
mass of the 4* state induces a change of up to a factor offor the Y decay; in the 3™ case, for bothY' and J/y de-
2-3 in the ratioR, the sign and value of the change depend-cays; in the 4™ case, for thel/ ¢ decay.
ing on the particulat. contribution and glueball wave func- (i) The 277, 37", 47" cases are those that, on the
tion considered. This sensitivity could be of some usefulnes¥hole, show the most interesting effects when comparing the
in discriminating among possible candidates in the masy andJ/¢ decays.
range where our model is applicable.

V. CONCLUSIONS

B. Photon angular distributions In this paper we have presented a detailed derivation of

Using the results of Eqg15), (17), we present in Figs. the helicity amplitudes, decay widths, and angular distribu-
2-11 the normalized photon angular distributi®ge,)
=(1m)dr/d(cose,) for the decaysy,J/— yG, consider-

1

ing the glueball candidates of Table II. For edclf state we o8 =
give the angular distribution for all possible S contribu- Y SN //
tions separately and for the three different choices of the g b <

04 F e’

glueball distribution amplitude. Notice that for the © and
0~ " states, where for each,S contribution there is only oz}
one nonvanishing amplitudéhe one withAg=0) 1(6,) 0 ) ) ) ) )
=(3/8)(1+ 005207), which gives no useful information. 0 30 60 9 120 150 180
There are also some cases in which, for a dw® contri-
bution, I (6,) is independent of the glueball distribution am- £ 11, Normalized photon angular distributioh(6.)
plitude. This happens when, at fixédS values, all nonvan- =(LM)dr/d(cosb,) for the J/y— yG(4**) decay and different
ishing amplitudes with different values ﬂt; have the same ||_’S> glueball states, using the asymptotic ASY DA), with b
functional form of the integrals over the varialde More =05 GeV:L=2, S=2 (solid line); L=4, S=0 (dashed ling L
precisely, this situation applies to the following cases: the=4, S=2 (dotted lind. Use of the ASY DA withb=1.0 GeV, or
L=0, S=2 contribution to the 27" state; theL=1, S=1  of the GAS DA, leads to very similar results.
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tions for two-gluon glueball production in radiative quarko- the glueball rest frame; see FigB). A simple Lorentz boost
nium decays. To this end, we have further extended an amlong thez axis connects the two reference frames. We fur-
proach previously developed and applied by some of us tther notice that, as a result of parity invariance, only 27 out
different high-energy hadronic processes. Given the limiteaf all 54 amplitudes are in principle independent. Therefore
knowledge of some of the nonperturbative ingredients enterin the following relations we fixx ,= + 1.

ing the calculationthe glueball distribution amplitude and Let us define

decay constant, the mixing coefficients among diffelerg

contributiong we limited ourself to presenting some indica- 128073/2\/;a5fg

tive numerical results for the decay widths and angular dis- K= oML

tributions in the production of possible glueball candidates in Q

a pureL,S configuration, adopting two different models for 1

the glueball distribution amplitude. These results are mainly X PR 5 >
intended to illustrate the potentiality of our approach in dis- [1+y(B*=Z)]"=(1-y)*(Bcosf—z)
criminating among different glueball candidates and their (A1)
masses, quantum number attributions, etc., once it is comple-

mented by experimental information and other theoreticalyyhere szé/MZQ. We have, for the helicity amplitudes
nonperturbative inputs. We have tried to present in detail al|\/|A oo (0,0),

analytical results, so that they could be used and even further “7"1"2"7¢

extended by the interested reader.

An interesting feature of our model is that it implies the , ~ — —K{(1— 82— 22)(1+coL0)
use of massive constituent gluons, so that two-gluon bound '
states can escape Yang’s theorem and fofrm 11~ ", 37 F2ypl(17 B)*—727]

states, whose observation in the mass range considered here
would then be a strong argument in favor of approaches, like
ours, involving constituent gluons.

We conclude by stressing that our approach can be geM + + =+ = — K sirf(1+ g~ 7?), (A3)

eralized to include lightyq pair (mesoni¢ production and
possibly exotic states made of a diquark-antidiquark pair.M, + == \/EK\/(l—z)z—,B2 sing[(cosf*+yz)(1+2z)

This could be a necessary step if one would consider more 1 o Ad
realistic situations, Wh_ere the observed resonances may result —(A=y)BFypl, (Ad)
from the mixing ofqq, gg, etc., components. Let us also .

remark that a similar approach could be exten@ed! in fact ~M+o++=* V2K \(1+2)%— g2sing[ (cosf+y2)

this has been already done, at least in )patthe case of $(1—2)+(1— 42 A5
hadronic resonance production in photon-photon collisions. ( )T A=VAEYEL, (AS)
The completion of this unified approach would certainly be s T ir?
of great interest for a deeper understanding of hadronic struc-M +.00:+ = 2K\(1+2)*= B*(1—-2)*~ B sirty,

+2z{2B+y[(1F B)?>—z*]}cosh}, (A2)

+

ture and spectroscopy in the mass range of a few G&V/ (AB)
ACKNOWLEDGMENT M+ 0=~ 2Ky *sin [ (1- B>~ 2°)cos
We are grateful to P. Kessler for a critical reading of the +2{2B*y[ (1% B)*~2°]}], (A7)
manuscript and to G.M. Pruna for some help and useful com-
ments regarding Appendix C. J.P. thanks INFN, Sezione diM, . ..,= 2Ky“%e *sin6(15 cos6)
Cagliari, for the very warm hospitality shown to him. M.M. _
and F.M. are partially supported by M.l.U.RMinistero X(1+p°=2z9), (A8)
dell'lstruzione, dell’'Universitae della Ricercaunder Cofi-
nanziamento P.R.I.N. 2001 and P.R.I.N 2003. M+,r,o;o:1KyU2‘/ 1-2)?—p%e '*(15cosh)[(1+2)

X(1+yz+2cosh)*(1-y)B—yB%], (A9)

_ _ _ My ooso=+KyY3/(1+2)2— g% *(1xcosh)[(1-2)
In this appendix we present the expressions of the helicity R

ampIitudesMM,MMmQ for the procesQ— yg*g*, with X(1-yz¥2cosh)F(1-y)B—yB?], (A10)
the kinematics defined in the rest frame@f see Fig. 1A).

Notice that according to Eqgél), (2), it is sufficient to evalu- M, 00.0= —22Ky*2\(1+2)2— B2\(1—2)?— B2

ate the helicity amplitudes in the simple kinematical configu-

APPENDIX A: HELICITY AMPLITUDES
FOR THE PROCESS J/#,Y — yg* g*

ration 6,,= ¢, =0. Let us recall that, while the amplitudes x e '’sing coso, (A11)
are given in the quarkonium rest frame, the angleend ¢ _
specify the direction of the two-gluon relative momentum inM ;. . ... =—Kye '??sirf6(1—- pg>—2z%), (A12)
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M, .- =—Kye 2%(1%cosh)?(1+ B2-7?), M, ou. =—2Ky\(1+2)2— g2 2%(1-2)
A13
(A13) X sinf(1=*cosh), (A15)

M, . Ky\(1—2)2— g2e 12¢(1+z .
+20- =~ 2Ky e ) M, g0 = —2Ky\(1+2)%— B%\(1—2)?— g% '?*sirf.
X sin(1=cosh), (Al14) (A16)
APPENDIX B: HELICITY AMPLITUDES FOR THE PROCESS 9Q—yG(L,S,J)

Using Egs.(4), (5), (6) and the results of Appendix A, we here present the expressions of the helicity amplitudes
Ak S}\; AQ(‘%: ¢,=0), for all glueball states up td=4 andL=<4. The full angular dependence of the amplitudes can be
obtained from Eq(1). Moreover, as a result of parity invariana¥;,> * L =(—1)L7STRo ()AL S J.)\ We here

N, G

present only independent amplitudes, by fixing=+1. For each|JPC> state we consider all possibje, S) amplltudes
contributing, according to Table I.

JPC20++:
2562 |Ro(0)] dy(z) 1
A0 00— e z , (B1)
LotT T g3 J—SM MZ2 )1 1-22 1-y?72
1024 fo [RS(0)] (1 D\(2) 1
A2 2 0= T Q z
RN Vaas o MP )10 T2 (1-2)A1-y?)?
><{1+13y+y2+(3+y—8y2—34y3+3y4)z2—y2(9+2y—31y2—5y3)z4+5y2(2—3y)z6}. (B2)
JPC=0"":
fQ |R1(0)| dn(2) 3—(1+4y+y?)z?+3y?7*
Ai W\/_as — z (B3)
V-2 (1-23)(1-y?z%)?
JPC_1++
25602 fo [R0) (1 Dy(2) 1
A2 L=— m < z : B4)
Lot 3,3 Vaa My M2 w2 Y2 - 221y (
p2 2, %:_512J§W_ o fo [RS( 0)|y1,2 dzch(z) 1
o 3V3 Mg MZ2 -1 1-22 (1-¥(1-y*P)°®
X{1+3y+y2—(2—y—T7y?+19y3—3y* 22+ y?(6— 17y + 16y?) 2%} (B5)
JPC=1"":
512\/2 f |R1(0 1
A1,1,1_ Jae—2 _ J (B6)
Lo 33 e Mg M2 vz 1Y) \/1 2 (1 2)(1-y222)
5122 fo [R1(0)] 1 Dy(2) 1-y7
AL LT o a2 yl3(1— J dz . B7)
N ‘/_S g Y V1-22 (1-2%)(1-y?2%)? (
JPC_2++
256 |Ro(0)] dy(2) 1
AQ22=— < z , B8
1,0;1 9\/§W\/;aSMQ Ml/2 - 1,2 1_y222 (B8)
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256 fo [Re(O)] dy(z) 1
=——7'r aa d B9
\/— S Mé/z y /—1 7 1 y Z ( )
25&F fo R <0>| Dy(z) 1
, 2 Q 0 N
= T aa dZ , B10
= v I e (510
2_1024J—0N_a fo [R3(0)]
S
93 o M2
d(2) (1-y)2—y(2—10y+10y?—3y®) 2%+ y3(3— 14y + 13y*— 4y>)Z* + y*28
X , (B11)
Ji-2 (1-22)%(1-y?z%)°
~ 1024/10 fo [R50 d\(2) (1—6y+6y2—2y3)22+y2z*
_ 4\/—77\/—a3 QI 2(5/2)|y1,2 Y )2( y 2y2 y)zzzy 612
Mg - Vi—2z (1-29)%(1—-y*z%)
40965 fo [R50 z 22
2= w—wﬁas—Q%y d Pnl2) (B13)
3\/§ Mo Mg V1-7% (1-27%)2 1yz)
25610 fo [REO)] (1~ Py(2)
= T ————— z 21— 4(1—y)?+(9— 28y — 46y>+28y°
o1 Va Mo w2 | I 1_22)2(1_y222)3{ (1-y)?+(9—28y—46y°+28y
—12yHZ2+y?(— 18+ 92y — 67y>+ 28y>) 24— 7y*z%}, (B14)
,_256/10 e, fQ |IR5( 0)|y1,2 @ Dy(2) 1 (21 2(1y)?
° 97 V1-22 (1-22)%(1-y?2%)°
+(1—14y—44y2+ 14y3—6y*)Z2+y?(— 2+ 46y — 23y?+ 14y3)z* — 7y*2%}, (B15)
512\/5 fo IR5(0) 1 D\(2)
2_ Q N 2 2 3
= dz 21+ 4(1—y)?+(5— 56y + 46y — 56
! 9\/— o7 Ve o M2 EYECR \/Ez(l—zz)z(l—yzzz)3{ L=y ey Y
+ 12y 22+ y?(18— 8y + 25y?) 24— 7y*75}, (B16)
2562 fo IRV r1 @2
=— —— mjaage— ——— z 13+ 152y — 264y>+ 104y°
o3zt Vaasgy ME? J-1 ﬁ(l—zz)“(l—yzz%f’{ S A
+16y*+2(23+ 172y — 1090y%+ 12803 — 244y* — 284y°+ 80y®)z°+ (5— 48y — 352>+ 3923
+54068/*— 10960/°+ 7592/5— 1800y " + 80y®)z* + 4y?( — 5+ 68y + 259°— 1994y°+ 2839*
—1408/°+ 82y®+ 54y ") 28+ y*(46— 1360y + 5520/ — 6760y°+ 3325/% — 456y°) 28
+6y®(34— 152+ 153y%— 56y3) 219+ 21y8712, (B17)
25612 o IRY(0)] d\(2)
= 2 dz —5+32y+108y°— 40y°
o7 ”f‘“s Mz L2 (L PH1yipp o YTy 4y
—32y*+2(—1—86y— 1422+ 518y3— 1114/*+ 796y°— 160y®) 2>+ (— 25— 84y — 460y>+ 723>
—16926/%+ 20156/°— 11548/°+ 2760y" — 160y8) z* + 4y2(31+ 311y — 2408/°+ 44033
— 41994+ 1769°— 1675 —54y") 28+ y*(— 686+ 3716/ — 4884y>+ 4256/°— 1829*+ 372°) 28
+6y®(2— 130y + 1072 — 42y°%) 20+ 63y87'3, (B18)
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512 o IRY(0)] Py(2)
AT 2 2= — o —_ dz 143— 176y + 120y%2— 32y°
SN J_as vz V)2 ARy YLy

+8y*+2(73— 736y + 1246/2— 1256/°+ 700y* — 256y°+ 40y6) 22+ (31— 144y + 17922 — 2720y°
+3618/*—2960y°+ 1768/°— 480y’ + 40y®) 2%+ 4y?(— 13— 284y + 413y%— 784y>+ 659+ — 380y°
+74y®) 28+ y*(362+ 208y + 144y% + 160y>+ 71y*) 28+ 6y®( — 46+ 8y — 25y?) 210+ 63y87'3.

JPC=2"":
11,2 1024‘/— fQ | 1(0)| 5 ®\(2) z°
Al g 1= I 77\/_ y(1-y) d 2 2.2\2'
V1-2°2 (1-22)(1-y?7?)
5122 fo IR1(0)] Dy(2) 22
AL L2 270V aa_Q 3/21 2J dz '
R NE va Mo mg Y Y VI=2 (1-2))(1-y?2)?
Aiz;lilzzo!
2048 fo |RY(0)] 1 Dy(2)
A L2 2 3 T v1-vy)?| dz 7+(33-8
1, 0; 1 \/—W\/—as M7/2 y( y) N \/Ez(l—zz)3(l—y222)4{ ( Oy
+26y?)z2— (2+ 16y — 78y%+ 16y>+ 9y*) z*+ y?(12— 80y + 33y?) 25+ 14y*78},
1024 fo |R3(0)] 1 Dy(2)
A3 L2 Q 1/2 1—v)2 d _
516 gy measy Ty YY) -2 (-2 (1—yzryi 1Y)

+(28—15%/+ 188y2— 52y%) 7% —y(3— 144y + 1422+ 10y>— 18y*) z*
—y3(66— 20y — 11y?)z°+ 21y°7%},

31,2 28672\/— fQ |RW(0)| 2 Dn(2) z
Aljz;,’]_:_ W\/—as — (1_ ) Z >3 > 20"
V1—22 (1-72%)3(1—y?2?)
JPC=3++:
AL=0
1024 fQ |R5(0)] 1 dy(2) 1+(3—8y+3y?)z2+y?7*
AL L o= 77‘/—“5 572 y1/2(1_y)2f dz 2 2\2 2,213
Mg -1 11—z (1-29)4(1—-y*“z°)

_— 1024J—W_a fo |R(0)] 1 ®y(z) 1+(3—8y+3y?)z2+y2z
=1 s

2, 1-y)?| dz
12 o MY? Ty YY) 1 J1-22 (1-2H)31-y??)®
[\ 2\ 52 254

b 2 3:10240W_ fQ IR,'( 0)|y( e b 0N 1+(3-8y+3y?)Z 2

Lot 15 M2 -1 12 (1-)Y1-y?P)?

25602 o IRY(0)] 1 ®y(2) 1

A% 23 _ y2(1—y)2 d — 4
LN W_as gz YY) 7 -y o ™

+ (20— 40y — 592+ 128y3— 40y*)Z%+ (7— 28y — 1522+ 664y>— 737y*+ 260y°— 20y®) 2*
+y?(— 25+ 2729 — 716y%+ 6323 — 169y*) 28+ y*( — 43+ 140y — 1122+ 24y3) 28— 3y521%,
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512\/ fo IRY(0)] dy(2)
4, 2, 3_ Q N2 N - 2
Al r=— T aas— ME2 y(1-vy) ) dz\/ﬁ(l—zz)“(l—yzzzf{% 16y +8y

+(200- 712y + 589)/2— 3523+ 80y*)z?+ (—5—280y + 1048/°— 1136/°+ 1063/* — 400y°
+40y®)z* + y2(155— 592 + 664y>— 712y + 215/*) 28+ y4(— 7+ 104y + 8y?) 28— 15y®710}. (B31)

JPC=3"+:

fg |R5(0)]
MZ2

d\(2) 1
12 (1-2(1-y2)
X{1—y+(1—11y+11y>—3y3) 22+ (3—y)y?z*, (B32)

. 4096\/—4

(—)2

fQ |R///(0)|
M7/2

1/2(1 )2 d Pn(2) 1
V1—22 (1-72%)3(1—y?Z2%)*
X{1—y—(1+14y—16y?+5y3) 22— y(3—24y+ 20y>— 7y®)*— y3(3—y+ 2y?)Z%}, (B33)

77\/—01S

2

8192\/—0 f IR’"(O)I (2) z
Aot mlaags 2 y-y? [ dr !

MZ d V1-22 (1-22)3(1—-y?2?)? (B34

JPC:4++:

R3(0 ?
10242 -~ fo IR I >2f 4, O 1+(3-8y+3y*)2* +y’z

A2 24—
Lot 321 My M2 V1=Z  (1-22)3(1—y?22)®

(B35

10245

321

fQ 134 (0)| ®\(z) 1+(3—8y+3y?)z2+y?7*

/1_22 (1_22)2(1_y222)3

g
ob

maas

yY(1—-y)? f dz (B36)

fo |R5(0) 1 dp(2) 1+(3-8y+3y?)22+y?%7*
Jaasc—= ———y(1-y)?| d , B3
B T FRNVEC YAV A T (2 (837

2 24 10245

1,2,-1" 3\/Z_

R R
- V3 Mg -1 I-22 (1-22)%(1-y?2)°
+(2503- 23466/ + 139083/2— 3010243+ 279356/* — 114996/°+ 17210/%) 2%+ y(— 3442+ 67196/
—413514/°+92904%°— 915276+ 425324/°— 8996(/°+ 8605/ ") z* + y?(625— 406 7(/ + 3203232
—798058°+773961*— 321024/°+52013/°— 5788/") 28+ 2y*(1955- 4646 + 1530582

— 1415193+ 4251%*+ 1096/°) 28+ y5(2034 1 83243/ + 74872 — 23940/%) 21+ 2660y°2*2, (B39

{(1-y)?(391- 610/ + 1721y?)

20480 fo IRY(0) iz Dy (2) 22
——TVaas—— 1—-vy)?2 z 3—12y+12y2
Ve Mo M (1-y) T (1 L y222)4{ 2y+12y

—4y3+ (1—20y+ 62y>— 64y>+ 28y*— 4y°) 22+ y2(6— 20y + 15y* — 4y3) 24+ y*2°}, (B39)

(B40)

né 0, 4 20480 (aa. IR'V(O)I( )zj 4, 2N 22[1+(3—8y+3y?) 22 +y?74]
1,21 S e 9/2 y(1 12 (1-22)4(1-y22?)3
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5120 o IRY(0)] 1 ®y(2)
A} 2 9= ™ -y)?| dz 25+ 16y — 8y?+ (96— 17
L0 1 2 1155 Vaasy— M2 VECRE 1 \/ﬁ(l—zz)“(l—yzzzf{ Y= 8y"+ 4
— 247+ 2643 — 80y4)z + (15— 128y — 144y%+ 1240/ — 1101y*+ 400y°— 40y®) 2*+ y?( — 25+ 528y
—1600y2+ 1408/3— 597*+ 88y°) 28+ y4(— 107+ 368y — 272y2+ 88y3) 28— 11y®71%, (B41)
5122 fo IRY(0)] Pp(2)
A 2= - T aa ot oy A(1-y)? | dz 3(51+8y —4y?
1, 1; 0 3@ \/— SMQ Mge/z y ( Y) 1 \/m(l—zz)“(l—yzzz)s{ ( y y )
+ (540 1452+ 9y2+ 308y — 120y*) 22+ (— 5— 500y + 488>+ 2564y> — 187 &*+ 600y° — 60y°) z*
+y?(155+ 528y — 32362+ 2508/° — 1165/* + 220y°) 28+ y*( — 287+ 1124y — 6722+ 220y %) 28— 55y671%},
(B42)
5122 fo, IRY(0)] Py(2) 1
A2 A T L [ L 1-y)2 | dz 3(79— 48y + 24y?) + (1160- 448
+5061y2—3168/3+ 720y*) 22+ (195— 3160/ + 10713/°— 140643+ 1076 F*— 3600/° + 360y°®) z*
+y?(995— 4048/ + 5336/2— 44883+ 1215/4) 28+ y*(17+ 296y + 72y?) 28— 55y°71%. (B43)
JPC=4"":
16384 o IRV(0)] (z) Z2[1+(1—4y+y?)Z2+y?Z*
AZLA T e 1—y)* f dz N B44
1,01 ‘/— S 7/2 —7z Y y) 1 72 (1_22)3(1_y222)4 ( )
20480,2 o IRV(0)] Dp(2) 21+ (1—4y+y?)Z2+y?z*]
Ad LA nlaa 3/ 4f dz , B45
1, 1; 0 9\/— \/— S 7/2 2( y) \/—2 (1_22)3(1_y z ) ( )
AY,L =0 (B46)

APPENDIX C: USEFUL ANALYTICAL INTEGRALS (1— Z2)1/2 2m

In this appendix we collect several relations useful for a Imn(y)= 2]0 (1—y2z2)"
complete analytical calculation of the amplitud!k;ysMG o

An inspection of the results presented in Appendix B shows B Jal(m+1/2) E 12 9\2
that all the required integrals can be cast in the form of Eq. ~ 2I(m+2) 2 1(m+1/2n,m+2y%), (C3
®): 1 ®(2) z2m and ,F4(a,b,c,z) is the well-known hypergeometrical func-

W) mn(y)=2 ﬂ (1= 1y (CD  tion. Itis easy to verify that

We consider separately the two classes of glueball distri- _ a7 (@m-Di
bution amplitudes utilized in this paper. Imo(Y)=ZImn(y=0) om+1 (m+1)! €4

1. Generalized asymptotic distribution amplitude Two useful recursive relations between thg,(y) are

the following:
Using the generalized asymptotic distribution amplitude
®E*Yz), defined in Eq(9), we easily see that the integrals Ti1ne1Y) = 50 5 Zma(y),  n>0, (C5)
W) mn(y) reduce to yday
(1—72)Y/2z2m _ 1
VEmAY)=2N f 4z o = NiTna(Y). T 10010 = [ Tmn 2V = Ina(¥)]. (CH)
y222)n ' y
(€2 From these two relations one can easily get as well the
whereZ, (y), independent of, is given by following one:
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d
Zm,n+1(y)=(1+%@)zm,n(y), n>0. (C7)

Equation(C3) is not very useful for practical calculations.
One can instead utilize the well-known transformation for-
mula for the hypergeometrical functions,

Fuabc= ) b aberr1iae
2 l(av 1C1X)_ F(a’)F(b’)2 l(aa ,C ’ X)

T(e)I'(c)
I'(a)l'(b)

X,Fqi(a’,b’,1-c’;1—-x), (C8)

+(1-x)"°

where a’=c—a, b’'=c—b, and c’=a+b—c, together
with the so-called Gauss recursion formulas

oFi(a,b,c;x)=,F(a+1b—1,c;x)
a—b+1
+ c Xo,Fi(a+1b,c+1;x), (C9)
F.(a,b,c;x)
(c 1)(a—b—-1)
“la_1)(c_b_ 1)2F1(a 1b,c—1;x)
b(c—a)
(a_1)(C_b_1)2F1(a—1,b+1,c;x), (C10

in order to expresg, ,(y) as a combination of several hy-
pergeometrical functions of the simple forgk(r,d,d;x)
=(1—x) ", with arbitrary reald and integer .

For completeness, we present below all the functions
Zmn(y) required in an evaluation of the helicity scattering
amplitudes of interest:

ToAy)= %(1— JI—y?), (C11)
Tiay)= y(l Vi1- y—zy) (C12
ToAy)= (1 Ji- y—— - ) (C13
y
1 1

I34(y)= (1 V1-y?— Y)

(C14

1 5

Z1.AY) (1 Vi- ——y——y— ey 128y)

(c15
Tosy)= 2 2 (C16
0, y 2 \/ﬁzy

PHYSICAL REVIEW D70, 034021 (2004

Lay=T 2 (€17
2yl )
T Ay)= — i P (C18
=y )
Tody)= — (6_5y2 6 297+ Syt (C19
Y= —6+2y°+ y7 ],
2y 4
T AY)=— (8_7y2 8+3y2+ Zyt+ Zy8
Y)=""1 - yot oyt gyl |,
2yl Jiy? 2’ '8
(C20
o 4—3y?
Tody)=3 1=y (C21)
1
13(y)—8—( 1-y7 (C22
T 8—12y?+3y*
Lyy)=—|1- —————— C23
24Y) y6< 8(1—y2)%? (C23
Liy=""{6-y2 24— 40y?+ 15y* (24
33y 2y8 y 4(1_y2)3/2 ’
48— 84y?+ 35y*
— 2_ 4
oY) = (48 12y°— Ty )
(C2H
m 8—12y%+5y*
TodY)= 255 C26
04Y) 16 (1-y2)52 (C26)
m 2—y?
T dy)= 16(1-y2)%" (C27)
T 1
LdY)= 15 (1-y2)52 (C29
16— 40y?+30y*—5
I3 4Y)=— ( Ll (2)}/5/2 v 1), (C29
y® 16(1-y7)
m [ 64—168y2+ 140y*—35y° )
I4,4(y): 2y10( 8(1_y2)5/2 _8+y ’
(C30
T 64—144y2+12(y4 35y°

(1_ y2)7/2
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m 16— 16y%+5y*

Thgy)= m(l——yz)m' (C32
m  8-3y?
Tosy)= ES(;L_—yZ)WZ (C33
5
Ty Y)= e, (c34
, 128 (1_y2)7/2

T 128— 448y%+560y*— 280y5+ 35y8
Tagy)=—5| 1~ 21— y2) 72 d
y 1281-y*)
(C39

_ T 2
15,5()/)—;12 10—y

640— 2304y%+ 3024y*— 1680y°+ 3158
64( 1— y2) 712 !
(C36)

_ T 2_ 4
16,5<y>—8y14(12w20y y

1920 7040y2+ 9504y* — 5544/%+ 11558
16( 1— y2) 712 '
(C37)

2. Modified asymptotic distribution amplitude

PHYSICAL REVIEW D 70, 034021 (2004

\-7|+1,m+l,r‘|(yiu) = u7|+1,m,n(y!u) - \-7|,m,n(y!u)!

d
jl,m,n(y’u), n>01

Jm+1p+(Y,U)= 2ny dy

d
n7l+1,m,n(yau) = _ajl,m,n(yau)a

t7l,m,n+1(yau) =

1+ —y — u n>0
2n dy ‘7|vm,n(y' )s >0.
(C4)1

By definingt+ 1=1/(1—z%) andy=1/(1—y?), the inte-
grals J| mn(Yy,u) can be cast in the form

T mn(Y,1)
:e—u,ynJ dttm—1/2(t+ 1)I—m+n—2(t+,y)—ne—ut_
0
(C42

Solving these integrals is not immediate. However, one
can show that, by performing a certain number of appropri-
ate integrations and differentiations with respectutdthe
order and number of these operations being related to the
values ofl, m, n) and using as boundary conditions the sim-
pler integrals7 m n(y,u=0), they can be related to an inte-
gral representation of the well-known error function Epf(

Without entering into more details of this conceptually
simple but algebraically cumbersome procedure, we present

Using the modified asymptotic distribution amplitude below a minimal set of three integrals of the family

®A(2), defined in Eq(10), the integralsV |, ,(y) take the
form

1 exgd—ul(1-2%)]2%"
\Ifl,m,n()/vu): 2Nuf0 dz(1_22)|—1/2(1_y222)n !
(C39)

with the normalization factor

Nu:gexp(U/Z)[UzKo(U/Z)JrU(l—U)Kl(U/Z)]_l'

(C39
Let us now consider the integrals
1 exgd—ul(1—2%)]z>"
L7I,m,n(yyu):2jo dL(l—zz)'_llz(l—yzzz)“' (C40

It is easy to verify that the following recurrence relations

hold:

1
-7I,m+l,n+l(y!u) = F[uﬂ,m,mrl(yvu) - -7I,m,n(yvu)]v

Ji mn(Y,u) that, using the recurrence relatiof@41), gener-

ate all other integrals required by the calculation of our scat-
tering amplitudes. Since the expressions found are in some
cases quite lengthy and involved, we do not present all of
them explicitly:

Joody,U)=Jmue U= m(u—1/2[1—-Erf(Ju)], (C43

Toody,U)= y—Z{l—Erf( V0= VI=yZexpuy?/(1-y?)]
X[1—-Erf(\Ju/(1—-y?)]},

(C44)

T
Jo2a(y,u)= 8—y68_u{— 2 \/Gy2(4+ y2+2uy?)

+[8+(8u—4)y2+ (4u2+4u—1)y*]me!
X[1—Erf(yu)]-8Vm(1-y?)

xexdu/(1—y?)][1—Erf(yu/(1—y?))]}.
(C4H
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