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Tetracritical behavior in strongly interacting theories
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We suggest a tetracritical fixed point to naturally occur in strongly interacting theories. As a fundamental
example we analyze the temperature-quark chemical potential phase diagram of QCD with fermions in the
adjoint representation of the gauge group~i.e., adjoint QCD!. Here we show that such a nontrivial multicritical
point exists and is due to the interplay between the spontaneous breaking of a globalU(1) symmetry and the
center group symmetry associated with confinement. Our results demonstrate that taking confinement into
account is essential for understanding the critical behavior as well as the full structure of the phase diagram of
adjoint QCD. This is in contrast to ordinary QCD where the center group symmetry associated with confine-
ment is explicitly broken when the quarks are part of the theory.
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I. INTRODUCTION

Phase diagrams for strongly interacting theories ar
topic of past and current interest@1#, and the relation be-
tween deconfinement and chiral symmetry restoration po
a continuous challenge. In ordinary QCD these proble
have been intensively addressed via computer simulat
@2#. By investigating such a relation in different strongly i
teracting theories, one gains insight on the ordinary Q
dynamics as well. We recall that the order parameter
deconfinement is the Polyakov loop@3#, while that for chiral
symmetry restoration is the quark condensate. The repre
tation of matter with respect to the gauge group is known
play a relevant role in the deconfining dynamics. Much
tention in the literature has been given to ordinary QCD w
two or three flavors. The presence of quarks in the fun
mental representation breaks the center group symmetry
plicitly, and for massless quarks only the chiral phase tra
tion remains well defined. The latter is then expected to dr
the critical behavior@4#. At nonzero and large quark mass
the issue of which transition, i.e., deconfining or chiral sy
metry restoring, dominates is a problem that only latt
computations can currently solve.

The situation becomes clearer, at least in principle,
fermions in the adjoint representation of the gauge gro
Here one has two well defined and independent order par
eters, since the center group symmetry remains intact in
presence of the fermions. Lattice data seem to confirm
independence of the forces driving independently the ch
and deconfining phase transition both for two and three
ors @5,6#.

However, when two or more orders compete the result
phase diagram is expected to have a very interesting and
structure due to the possibility of multicritical behavior. Th
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arises at the intersection of critical lines characterized
different order parameters. Our interest is in the case of
order parameters. If the transition at the multicritical point
continuous, then either bicritical or tetracritical behavior c
occur. Bicritical behavior occurs if a first-order line origina
ing from the multicritical point separates two different o
dered phases, each separated from the disordered phase
line of continuous transitions beginning from the multicri
cal point. Tetracritical behavior, on the other hand, occur
there exists a mixed phase in which both types of order
coexist, and which is bounded by two critical lines meeti
at the multicritical point. It is also possible that the pha
transition at the multicritical point is of first order. This cas
is similar to the bicritical one, with the distinction that th
two lines separating the disordered phase from the orde
ones start from the multicritical point as first-order lines a
then turn to second-order lines at tricritical points. A typic
condensed matter example of multicritical behavior is
phase diagram of anisotropic antiferromagnets in a unifo
magnetic field parallel to the anisotropy axis@7#. Further
examples include4He @8# and high-Tc superconductors@9#.
Also, it has been suggested that multricritical behavior mi
emerge in the phase diagram of hadronic matter at fi
baryon chemical potential@10#. For two colors a tetracritica
behavior induced by a possible competition between a
quark and a quark-antiquark phase has been investigate
Ref. @11#.

In this paper we show that strongly interacting gau
theories with fermions in the adjoint representation may v
naturally display a tetracritical behavior. Interestingly, t
two competing orders we will consider are confinement a
chiral symmetry. The critical behavior arising from two com
peting orders has a long history. Investigations in anisotro
magnetic systems were carried out at the mean field leve
Ref. @8# and subsequently in Ref.@7# to first order ine54
2D, whereD is the dimension of spacetime. More recen
the analysis has been carried up to orderO(e5) in the e
expansion@12#.
©2004 The American Physical Society19-1
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In this work we propose that a nontrivial multicritica
point exists in the temperature-quark chemical poten
phase diagram of QCD with fermions in the adjoint rep
sentation of the gauge group~i.e., adjoint QCD!. The two
competing orders are chiral symmetry and confinement.
results suggest that taking confinement into account is es
tial for understanding the critical behavior as well as the f
structure of the phase diagram of adjoint QCD. This is
contrast to ordinary QCD where the center group symme
associated with confinement is explicitly broken when
quarks are part of the theory.

In Sec. II we briefly review the basic classification of th
multicritical points @7,8,12# relevant for our discussion. In
Sec. III we study Yang-Mills theories with fermions in th
adjoint representation of the group at finite temperature. H
we discuss the critical behavior in the hypothetical case
which chiral symmetry and confinement compete for ord
The early lattice work@6# seems to exclude the presence
multicritical points. Nevertheless, it is instructive to discu
this regime.

We then introduce, in Sec. IV, a nonzero quark chemi
potential for one Dirac flavor in the adjoint representation
two colors. Then we proceed to show that a multicritic
point is quite likely to occur in the temperature-chemic
potential phase diagram. The two orders correspond to thZ2
symmetry@i.e.,O(1)] and theU(1);O(2), respectively.Z2
is the center group symmetry associated with confinem
while O(2) is the baryon number that spontaneously bre
due to the formation of diquark condensates. Some an
gous theories have been investigated directly via lat
simulations@13# and within the chiral perturbation theor
approach@14,15#. We show that the interplay between th
two order parameters substantially affects the phase diag

The multicritical point is predicted to be in theO(3)
Heisenberg universality class, according to the classifica
in Ref. @7#, if the fixed point analysis is performed at on
loop in thee542D expansion@7#. If higher orders are con
sidered the fixed point is predicted to be a biconical tetr
ritical point @12#. We finally suggest possible applications
our results to QCD with fermions in the fundamental rep
sentation of the gauge group.

II. CLASSIFICATION OF MULTICRITICAL POINTS

In this paper we will argue that certain strongly intera
ing theories naturally lead to phase transitions, in
temperature-quark-chemical-potential plane, possessing
ticritical points. The novelty is in the fact that this multicrit
cal behavior is a result of the interplay of deconfinement a
global symmetry breaking.

One of the most remarkable features of continuous ph
transitions is their universal character. There is, indeed, a
variety of systems that exhibit the same identical critical
havior. When possible, it is convenient to introduce ord
parameters to describe the phase transition. In our case
will have two order parameters: one associated to decon
ment and the other to a global symmetry. Note, that e
though we start from a fermionic theory, near the critic
point of interest the relevant effective degrees of freedom
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bosonic, and are naturally identified with the physical flu
tuations of the order parameters. This is the standard
proach related to the study of phase transitions.

Before moving to the theories of interest to us, we intr
duce in this section the relevant definitions and the clas
cation of the multricritical behaviors emerging when two o
der parameters compete for order. We will keep t
discussion general.

Following Refs.@7# and @12# when we have two orde
parameters,, and s, which compete with symmetrie
O(N1) andO(N2), respectively, one can write the effectiv
theory symmetric underO(N1) % O(N2). Up to quartic terms
the effective theory containing both order parameters inD
Euclidean dimensions is

L5
1

2
~]m, !21

1

2
~]ms!21

1

2
m,

2,21
1

2
ms

2s21
l

4!
~,2!2

1
g4

4!
~s2!21

g2

4
,2s2. ~1!

Here,25(n51
N1 ,n

2 ands25(m51
N2 sm

2 . It is possible that for a
certain value of the physical parameters, and forD53, the
correlation lengths of the two order parameters diverge
multaneously yielding a multicritical point. At such a poin
the critical behavior can be determined by tuning the para
etersm,

2 and ms
2 to their critical values and studying th

stable fixed points of the renormalization group flow.

A. Fixed points and critical behavior at one loop

A first-order analysis in thee expansion@7# for the theory
~1! at multicritical point shows that six distinct fixed poin
exist. Four of them haveg250, and three of these, name
the Gaussian,O(N1) andO(N2) symmetric ones, are alway
unstable against the perturbations away from theg250
plane, while the fourth one is stable for sufficiently larg
values ofN1 and N2. Sinceg250, the two fields behave
independently and this stable fixed point is termeddecoupled
fixed point. The other two stable fixed points lie at nonze
g2. The first of them is called the HeisenbergO(N11N2)
fixed point, due to enhanced symmetry, and the second on
called thebiconical fixed point. The fixed points can be de
termined by computing the zeros of the beta functions of
theory, which at one loop are

b~l!5
l

6

~N118!

8p2
13

g2
2

2

N2

8p2
2le,

b~g4!5
g4

6

~N218!

8p2
13

g2
2

2

N1

8p2
2le,

b~g2!5
lg2

6

~N112!

8p2
1

g4g2

6

~N212!

8p2
12

g2
2

8p2
2g2e.

The stability of a generic fixed point is ensured if the mat
9-2



-

he

s
or
h
va
e-
ha
.
ab
s.

e

to
e

e

t
io

th
ct

er
m
e
e

n

s

as a
ed

etc.

t

pic
rm

x-
gth

ting

the
d are
ng
rly

x-
to

dis-

e I

mit,
gly

rs
he
the

he
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v i j 5
]b i

]gi
U

g*
, ~2!

evaluated at the fixed pointg* has real and positive eigen
values. Our results agree with those in Ref.@7#.

The nature of the multicritical point is determined by t
sign of the quantitylg42g2

2/9 @8#. This constraint simply
tells us, at the level of the effective Lagrangian, if the pha
displaying two orders~i.e., nonvanishing condensates f
both order parameters! has a higher or lower free energy wit
respect to the phases in which one of the condensates
ishes@8#. If the sign is positive we expect a tetracritical b
havior. For the negative sign the phase with two orders
higher free energy than the phases with only partial order
this case a simultaneous existence of two orders is unst
and a jump between the phases with partial orders occur
the latter case we expect a bicritical behavior.

Decoupled and biconical stable fixed points mention
above satisfy the criterion of tetracriticality,lg4.g2

2/9, at
the critical point, while for the fixed point corresponding
the isotropic (N11N2)-vector model can, interestingly, b
either bicritical or tetracritical@12#. This possibility arises
due to the presence of a dangerous irrelevant variable@16#.

Defining n5N11N2, the low-ordere-expansion calcula-
tion shows that forn,4 the critical behavior is due to th
stable fixed point corresponding to an isotropicO(n)
Heisenberg model. Asn increases, the biconical fixed poin
~FP! becomes stable and yields a new tetracritical behav
Finally, for largen, namely forN1N212N112N2>32, the
stable fixed point is the decoupled one, which leads to
tetracritical behavior in which the two fields do not affe
each other.

We first summarize in Table I the generic results that w
obtained in theO(e) calculation, and then we discuss the
in the context of strong interactions. Each of these fix
points have interesting specific properties: For the Heis

TABLE I. The critical exponents of the correlation length at t
various multicritical points ofO(N151)% O(N2) theory.

FP n5N11N2 n1 , n2

Decoupled n>10 1

2
1

N212

N218

e

4
,

1

2
1

e

12
(N151)

Biconical 4<n,10
(N151)
N253 0.510.1250e, 0.510.0417e
N254 0.510.1336e, 0.510.0560e
N255 0.510.1403e, 0.510.0667e
N256 0.510.1460e, 0.510.0741e
N257 0.510.1515e, 0.510.0789e
N258 0.510.1568e, 0.510.0816e

Heisenberg n,4 1

2
1

n12

n18

e

4
,

1

2
1

1

n18

e

2
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berg fixed point the symmetry is enhanced fromO(N1)
% O(N2) to O(N11N2), and the theory~1! becomes that of
the isotropic Heisenberg (N11N2)-component model, as ca
be seen by inspecting the Lagrangian~1! at the fixed point
given by l5g453g2. The critical exponentsn1 and n2
quoted in Table I are defined in terms of the eigenvaluesl,

andls of the corresponding relevant variablesm,
2 andms

2 in
the linearized renormalization group recursion relations a

n15
1

l,
, n25

1

ls
. ~3!

These describe the divergence of the correlation lengths
function of suitable scaling fields, for example, the reduc
temperaturet5T/Tc21 and, say, a new scaling fieldg. The
latter can be a magnetic field, a quark mass parameter,

The effect of the perturbation controlled byg is generally
captured by the crossover exponentf defined through the
usual scaling formula for, e.g., the correlation length

j~T,g!;t2nF~g/tf!, ~4!

and similarly for other thermodynamical quantities. Heren
5n1 corresponds tog50 case andf5n/n2. The crossover
scaling functionF(z) is finite atz50, but has divergences a
specific points and these divergences then modify theg50
behavior;t2n.

Considering magnetic systems as an example, forn,4 at
O(e), the crossover corresponds to the weakly anisotro
n-vector model, where the anisotropy is given by the te
;g,2s2 in the isotropic Hamiltonian. In other words,n1
describes the divergence of the correlation length asj
;utu2n1, wheret is the reduced temperature, while the e
ponentn2 describes the divergence of the correlation len
in the anisotropyg as j;g2n1 when g→0. The crossover
exponent in this case is given byf511ne/2(n18).

The decoupled fixed point describes a system consis
of effectively independentN1- and N2-component Heisen-
berg subsystems, and therefore the critical indices are
ones of the two independent Heisenberg subsystems an
in that respect trivial. Interestingly, though, the total scali
will break, since a single scaling function cannot prope
describe the asymptotic free energy whenN1ÞN2. Finally,
the biconical fixed point features completely new critical e
ponents. However, since they are numerically very close
the corresponding Heinseberg ones, they may be hard to
tinguish experimentally.

B. Results from higher-order computations

It is important to note that the numbers quoted in Tabl
are a result of a first-order calculation ine. Furthermore,
these results must be extrapolated toe51 to be applicable.
However, past experience has shown that even in this li
thee expansion describes the fixed point physics surprisin
well. Already theO(e) results show that as a function ofn
the critical behavior in the case of two competing orde
leads to a rich spectrum of possibilities. However, in t
present case higher-order contributions are relevant. For
9-3
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case ofO(N1) % O(N2) theory, a remarkableO(e5) calcula-
tion exists @12#, and we will briefly discuss the improve
ments for the critical exponents in what follows. First, ho
ever, let us note that the higher orders also lead to impor
changes in the domains of stability of the fixed points in
(N1 ,N2) plane. TheO(e3) results for the Heisenberg fixe
point @17# lead to the stability for N11N2,422e
1 5

12 @6z(3)21#1O(e3).
A calculation toO(e5) further narrows the domains o

stability for the fixed points: TheO(n) Heisenberg fixed
point is stable only forn52, i.e., only in the case of two
intersecting Ising lines. Then, forn53 the stable fixed poin
is the biconical one, and the decoupled fixed point is sta
for all n>4 with any values ofN1 andN2. For further de-
tails we refer to the existing literature@7,12#.

Since the domain of stability of the Heisenberg fixed po
shrinks down ton52 it will not play a role in our strong
interaction examples. The biconical fixed point is stable
n53. We will see that this fixed point will be relevant fo
our investigations. For all of the other combinations ofN1
and N2 such thatN11N2>4, the stable fixed point is the
decoupled one with well known independentO(N1) and
O(N2) exponents. Therefore, to conclude this section, le
state the high-order values for the critical exponents rela
to the biconical fixed point ate51. Using the general defi
nitions n5n1 and f5n/n2, the numerical Pade´-Borel re-
summedO(e5) values for the biconical exponents atN1
51 andN252 arenB50.70(3), fB51.25(1). As already
mentioned, these are very close to the corresponding Hei
berg O(3) exponents:nH50.7045(55),fH51.260(11) at
O(e5) @18#.

Away from the tetracritical points the second-order lin
have independent critical behaviors and the two order par
eters do not compete. We have now the basic terminol
and tools to analyze and make predictions for strongly in
acting theories exhibiting multicritical behavior.

III. FINITE TEMPERATURE ADJOINT QCD

Let us now turn to the possibility of tetracritical behavi
in the theories of strong interactions. To be specific, cons
two-color QCD with Nf<2 massless Dirac flavors in th
adjoint representation of the gauge group. One of the m
motivations for studying the phase diagram of gauge theo
with fermions in the adjoint representation~adjoint QCD! is
that, contrary to ordinary QCD, in adjoint QCD there is
well defined symmetry associated to confinement. The s
metry is identified with the center of the gauge group wh
for a genericSU(N) gauge theory isZN . Here we consider
explicitly the caseN52. The breaking of this symmetry i
monitored by the expectation value of the Polyakov loop@3#,
which is the order parameter of the theory.

Besides the center group symmetry, and in absenc
quark masses, adjoint QCD possesses a global quantum
metry which for Nf Dirac fermions isSU(2Nf) @19#. The
fact that the symmetry group here isSU(2Nf) rather than
SU(Nf)3SU(Nf)3U(1) is due to the fact that the fermion
belong to a real representation of the gauge group. We
that the ordinary baryon number is one of the diagonal g
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erators ofSU(2Nf). If a democratic Dirac mass term i
added into the theory,SU(2Nf) breaks explicitly to
SU(Nf)3U(1), with U(1) the baryon number of the theory
In this section we consider the massless limit, but note t
the introduction of a small mass term for the fermions in t
theory can be introduced and studied in a straightforw
way. At low temperatures the global symmetry is expected
break to the maximum diagonal subgroupO(2Nf) leaving
behind a number of Goldstone bosons, some of them cha
under the ordinary baryon number. We will collectively ref
to the Goldstone bosons as pions and will also use, at tim
chiral symmetry to indicate the global symmetry of th
theory. In the next section, and for the specific case of t
colors and one Dirac flavor, we will work out in detail th
global symmetry properties for massless and massive fe
ons. We will also discuss the breaking patterns of the glo
symmetry, and consider old and new arguments suppor
these patterns. At high temperatures it is natural to expe
global symmetry restoration. Such a global symmetry res
ration is also termed, at times, chiral symmetry restoratio

We now naturally have two well defined order param
eters: The Polyakov loop and the fermion condensate. I
interesting to consider the possibility that they may comp
for order when considering a temperature driven phase t
sition. The hope being, as already mentioned in the Introd
tion, that by studying strongly interacting theories such
adjoint QCD, one might shed light on ordinary QCD.

Having outlined the general behavior, symmetries and
fined the order parameters it is now natural to use the res
and methodology presented in the preceding section to m
predictions for the critical exponents related to the ph
transitions of adjoint QCD.

For two colors the center group isZ2, which is equivalent
to a O(1) symmetry and the associated order paramete
denoted by,. The flavor groupsSU(4) for Nf52 and
SU(2) for Nf51 are locally isomorphic, respectively, t
O(6) andO(3), and theorder parameter with such symme
try is denoted bys.

Here the results of Ref.@12#, denoted byO(1)% O(6) and
O(1)% O(3), are directly applicable. The first phase dia
gram we draw is the one in which the temperature drives
phase transition at zero quark chemical potential. We kn
@3# that at high temperatures we have center group order
at low temperatures chiral order. This sorts for us the ori
tation for a possible phase structure with respect to the c
densed matter ones@12#.

Besides the temperature, which can be tuned, we
have two independent and dynamically generated scale
the problem: the deconfining scaleLd and the chiral symme-
try restoration scaleLc . These two scales are intimately re
lated to the number of colors and flavors of the theory.

However, it is the relative magnitude of these scales t
is of importance for the phase diagram. One might argue
in strong interactions only one scale is dynamically gen
ated. On the other hand, it is quite reasonable to imagine
dynamics driving chiral symmetry breaking to be differe
than the one for center group breaking.

There are also theoretical arguments@20# suggesting that
Ld<Lc ~see the next section for a more detailed discussio!.
9-4
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It is then natural to define a new parameter:

g5
Ld2Lc

Ld
<0. ~5!

Differently from the condensed matter cases, hereg cannot
be tuned but rather defines the theory. A possible phase
gram in the (g,T) plane is the one shown in Fig. 1. We stre
that the expectationLd<Lc forces the physically allowed
part of the phase diagram to lie below theg50 line.

At exactlyg50 tetracritical behavior would be expecte
and for this point we can translate the critical behavior d
cussed in the preceding sections for strong interactions.
deconfinement order parameter symmetry fixesN151, and
we now consider different flavors in turn.

Let us start with quenched super Yang-Mills theory.
this case we have only one Majorana fermion in the adjo
representation of the gauge group. The only global symm
associated is an axial symmetry that is affected by the Ad
Bell-Jackiw anomaly. However, in the quenched limit suc
symmetry is restored. The chiral symmetry is thenU(1)
~which is also anR symmetry from the supersymmetry tran
formations point of view!, which breaks spontaneously. He
N252 and if a tetracritical point would exist it would be
biconical one. Away from the quenched limit theU(1)-R
symmetry is explicitly broken by an anomaly and it mig
still be interesting to study what happens if one consid
this symmetry almost restorable at largeT.

In the case of two Majorana fermions in the adjoint~i.e.,
one Dirac flavor! the chiral symmetry group, after havin
taken into account anomalies, isSU(2), i.e., O(3) with N2
53. The physics of the tetracritical point, according to hig
order calculations, is the one for which the critical behavi
of the two order parameters are unaffected by each other,
we have a decoupled fixed point. Finally for two Dirac fl
vors we haveN256, and again a decoupled fixed point
expected.

Lattice simulations can determine how far we are fro
the tetracritical point. For two colors with fermions in th

FIG. 1. Phase diagram displaying a tetracritical point. T
physically allowed part of the phase diagram lies beneath thg
50 line.
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adjoint, there are numerical computations@6# that indicate
that the chiral and deconfinement phase transitions happe
different temperatures. This corresponds togÞ0 and the two
transitions have the expected independent critical behavio
would be interesting if more recent simulations might furth
investigate how competing the two orders actually are.

The main problem for not being able to reach a tetracr
cal point here is that in order to changeg one has to change
theory. In condensed matter physics one can usually t
parameters, via other scaling fields than the temperature,
external magnetic fields. The freedom to tune different qu
tities in the theory allows, on one hand, to test the theory
critical phenomena and to shape our understanding of ph
transitions, on the other.

Since the parameter we have defined for the adjoint Q
is dimensionless, one would expect it to be proportional
some combination of number of colors and flavors. Then
numerical experiments, it might be possible to use, e
number of flavors,Nf , as a scaling field. Tuning the value o
Nf would affect the relative magnitude ofLd and Lc and
allow, perhaps, the two transitions to close on each ot
The existing numerical investigations@6# show the strong
dependence on the number of flavors for the chiral ph
transition. As already emphasized, it would be interesting
have an up to date study of these matters.

We shall shortly see how we can achieve a multicritic
point in strong interactions with diquark condensation a
confinement as competing orders by introducing a m
practical scaling field into the problem, i.e., the quark ma

IV. DECONFINEMENT –CHIRAL-SYMMETRY
TETRACRITICAL POINT

In this section we investigate in some detail the two co
gauge theory with one Dirac fermion in the adjoint repres
tation of the gauge group. This is a theory with a number
fascinating properties. A relevant one, for our purposes,
ing that when adding a nonzero quark chemical potent
one observes, at sufficiently large baryon chemical poten
a color superfluid transition rather than a color supercond
tive one @14#. This is so since we have some Goldsto
bosons~pions! carrying baryonic charge.

We have divided this section into a number of subsecti
to help the reader concentrate on one problem at the ti
and to build up the relevant knowledge. We will first descri
the symmetries of the fermionic action of the underlyi
theory, and then explore the symmetry breaking pattern
at zero temperature and baryon chemical potential of
theory. We briefly review the temperature~zero-baryon
chemical potential! phase transition scenario, which has e
sentially been studied in the preceding section. Subseque
we describe the deconfining phase transition at nonzero t
perature and baryon chemical potential, while ignoring
possible superfluid phase transition. We then describe
superfluid phase transition at nonzero temperature and q
chemical potential neglecting the deconfining phase tra
tion. We will consider both transitions simultaneously in t
next section. It is important to observe that both, the int
duction of the chemical potential as well as the presence
9-5
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Dirac mass for the theory break explicitly the underlyi
global SU(2) symmetry group while preserving theU(1)
baryon symmetry of the theory, as we will explicitly se
below. At nonzero temperature and nonzero baryon chem
potential we will then consider only the exact symmetries
the problem, i.e., the center group and theU(1) symmetries.
It interesting to note that when this theory has been inve
gated in the literature at finite temperature and chemical
tential, so far attention has been paid only to the global sy
metry of the theory.

A. Symmetries of the underlying theory

Consider one massless Dirac flavor in the adjoint rep
sentation of two colors. The flavor group isSU(2), which
spontaneously breaks toO(2). The latter is the conserved
quark number. In order to elucidate all of the symmetries
the problem in detail we write the underlying tree level L
grangian for the fermionic part@21# in presence of the mas
term and quark chemical potential:

1 iQ̄As̄mDm
ABQB2mQ̄As̄0BQA2

m

2
@QAt1QA1H.c.#.

Here Dm
ABQB5]mdABQB2 i f ABCGm

BQC and f ABC are the
structure constants of the gauge group. The matricesta are
the Pauli matrices with the baryon numberB5t3 acting in
the flavor space, andA51,2,3 is the gauge index for th
fermions in the adjoint representation. The Weyl spinorQa, f

A

with a51,2 the spin index andf 51,2 the flavor index can
be represented as a vector as follows:

Qa
A5S xa

A

ca
AD , ~6!

while in the Dirac representation we have

CD
A5S xa

A

c̄ ȧAD . ~7!

At zero quark mass and chemical potential theSU(2) sym-
metry is evident. The extra classicalUA(1) symmetry is
anomalous. The baryon number here is thet3 generator of
SU(2). At nonzero baryon chemical potential and nonze
Dirac quark mass the baryon symmetry is the only symme
left unbroken at the fundamental level.

B. Chiral symmetry breaking: No anomaly matching
but entropy counting

We set, for the moment, the fermion mass term and
baryon chemical potential to zero. Usually one of the po
erful methods to discover if, in strongly interacting gau
theories, a global symmetry breaks at low energies, is
require the global anomaly matching conditions@22# among
the ultraviolet and the infrared realization of the theory. U
fortunately, for this theory the global anomalies vanish
since the flavor group isSU(2), andhence we cannot invoke
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the ’t Hooft anomaly matching conditions@22# to suggest
that chiral symmetry must break at low temperatures. Inde
we can well imagine a low-temperature phase in which ch
symmetry is not broken. Although in principle we do n
need massless composite fermions, the simplest fermion
can construct are composite objects of the typela,F

;Q̄F
ȧAs̄ ȧa

m
Gm

A . Due to the Vafa-Witten theorem@23#, vector
symmetries cannot break spontaneously, which, in tu
means that the fermions do not develop dynamically gen
ated Majorana masses. However, a Dirac mass term is o
form lF51

a laF52 and breaks the globalSU(2) symmetry to
the baryon numberU(1).

Therefore, in the absence of ’t Hooft anomaly matchi
conditions two possible scenarios arise: We can either h
spontaneous chiral symmetry breaking, with associated
Goldstone bosons, or chiral symmetry intact but a mass
composite Dirac fermion. This is very similar to the case
ordinary QCD with two flavors. According to the guide su
gested in Ref.@24#, the most likely phase in the infrared i
the one for which the degrees of freedom counted accord
to the entropy factor, f 5No. of real bosons
1(7/4)No. of Weyl fermions, are minimized. Here, th
spontaneously broken phase hasf 52 and the chiral-
symmetry-preserving phase hasf 57/2. Chiral symmetry,
here theSU(2), is therefore predicted to break at low tem
peratures. Clearly these results do not depend on the num
of colors. In the case of larger number of fermion flavors t
’t Hooft anomaly conditions are nontrivial and single out t
infrared phase in which chiral symmetry is broken. ’t Hoo
anomaly conditions have been generalized, first, at nonz
temperature@25# and more recently at nonzero quark chem
cal potential@26#.

A possible scalar condensate must be of the form:

eab^Qa, f
A Qb, f 8

A &}Ef f 8 . ~8!

The subgroup that leaves the condensate invariant is g
by the generators ofSU(2) satisfying the condition:

taE1EtaT50. ~9!

Since the condensate is symmetric in color and antisymm
ric in spin, it must be symmetric in flavor~i.e., E5ET).
Requiring theSU(2) symmetry to break to its maximal or
thogonal subgroup@i.e., O(2)] @27#, we can have, for ex-
ample,E proportional to the 232 identity matrix or tot1. If
we choose the identity, then the unbroken generator ist2,
but if we chooset1, then the unbroken generator ist3. Since
we have identified theO(2) generator corresponding to th
baryon number witht3, the condensate must be proportion
to t1, i.e.,

eab^Qa, f
A Qb, f 8

A &}t f f 8
1 . ~10!

Two Goldstone bosons are present and are associated
the generatorsXa5ta/2 with a51,2. Note, that since the
pions here are associated with the generators that do
commute with the baryon generatort3 they are automatically
9-6
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charged under the baryon number. The low-energy effec
theory in absence of quark chemical potential is

Le f f5Fp
2 Tr@]mU†]mU#1Fp

2 mp
2 Tr@U1U†# ~11!

with

U5eipaXa/Fp, a51,2 ~12!

where we have also introduced a Dirac massm in the under-
lying theory. Such a mass appears in the effective Lagran
as a nonzero mass for the pions, and one expectsmp

2 }m. U
transforms asgt1UgT for gPSU(2). Theprevious effective
Lagrangian still preserves theU(1) baryon symmetry.

Besides chiral symmetry we also have deconfinem
Here the order parameter is the Polyakov loop, which is
sociated with the center group symmetryZ2 for two colors.
Note that the previous analysis is completely independen
the number of colors, which becomes a relevant param
only when considering the center group symmetry as we

C. The temperature-driven phase transition

We have discussed the nonzero temperature case in
III. Here we recall the salient information needed when e
dowing the quarks with a nonzero mass and chemical po
tial. At zero quark chemical potential, theSU(2) symmetry
is restored at a given temperatureTc , while theZ2 decon-
finig phase transition is indicated withTd . The latter is ex-
pected to be somewhat lower thanTc . If the two-phase tran-
sitions are independent, no tetracritical point is expected
occur in this case. As soon as we add a quark mass,
expect a crossover behavior for theSU(2) phase transition
This is true also at nonzero chemical potential, since both
mass term and the chemical potential term explicitly bre
the SU(2) global symmetry. It is also worth emphasizin
again that at zero quark chemical potential and quark m
and due to the absence of the ’t Hooft anomaly condition
satisfy, in principle, a chiral symmetry restoring phase tr
sition before deconfinement might have been possible. H
ever, this is not allowed according to the guide in Ref.@24#,
which selects the chiral symmetry breaking confined ph
as the preferred ground state even in absence of ’t H
anomaly conditions. Summarizing, theSU(2) symmetry is
always broken at nonzero baryon chemical potential
Dirac mass. If a crossover phenomenon exists, it is expe
to happen, for fixed chemical potential and quark mass,
temperature larger or at most equal to the critical tempera
for deconfinement. As we increase the chemical poten
the explicit breaking of theSU(2) symmetry becomes se
vere. We will then neglect theSU(2) symmetry and analyze
the fate of theU(1) baryon symmetry, the only global sym
metry left unbroken.

D. The U„1… baryon superfluid phase transition
at nonzero µ and T

As we increase the baryon chemical potential theU(1)
baryon symmetry may break spontaneously. In QCD w
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three massless quarks in the fundamental representation
breaking is due to a Cooper pairing phenomenon, i.e., c
superconductivity.

For adjoint QCD the situation is different. The spontan
ous breaking of theU(1) baryon symmetry is a superflui
phenomenon@14#. This is so since the pions, in this theor
are charged under the baryon number. We have alre
proven this statement in Sec. IV B. Actually they ha
baryon number two with respect to the quarks, which
have defined to have unit baryon number. One can ea
show that the chemical potential couples directly to the pio
via

]0U→D0U5]02 im@U,B#. ~13!

After having substituted this covariant derivative in the e
fective Lagrangian, a negative mass-squared term pro
tional to m2 is induced. Form.mp/2 the U(1);O(2)
breaks spontaneously. On general grounds we expect
regions on the phase diagram, one with intactO(2) and the
other whereO(2) is spontaneously broken. This is schema
cally represented in Fig. 2. The second-order line starts
mp/2 at zeroT. In literature it is argued that, by computin
the effective action within the chiral perturbation theory a
proach @15#, such a second-order line ends in a tricritic
point, and continues as a first-order line. There is a sim
way to understand why the phase transition line must cu
to the right in theT-m plane: By increasing the chemica
potential, we effectively increase the negative mass squa
of the Goldstone boson. On the other hand, the tempera
contribution to the mass of the Goldstone boson is posi
and tries to compensate the negative contribution of
chemical potential to the squared-mass term. The larger
chemical potential, the higher the temperature must be
restore the symmetry. This is, in a nutshell, the relativis
Bose-Einstein condensation phenomenon pioneered
Haber and Weldon in Ref.@28#.

Both the critical temperature and the critical chemical p
tential of the tricritical point increase with the pion ma
@15#. What is relevant for us is that~i! two well separated
regions exist and~ii ! we have a second-order phase transit
nearm5mp/2.

E. Deconfinement at nonzeroµ and T

As already stated, the presence of quarks in the adj
representation of the gauge group does not break the ce

FIG. 2. A schematic (T,m) phase diagram when only the d
quark condensation is considered.
9-7
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group symmetry. Note also that up to now the color play
little role. In other words, whether the center group isZ2 or
Z3, one expects the chiral symmetry part of the analy
@here also theU(1) baryon symmetry is termed chiral sym
metry# to be to a large extent unaffected. This, however
not true, as we will demonstrate below. In this section
only consider the pure deconfinement phase transition.
distinct regions in the phase diagram occur: in one we h
center group order~i.e., deconfinement! and in the other we
have disorder~i.e., confinement!. If the number of colors is
larger than two we expect a first-order line, while if the nu
ber of colors is two, a second-order line is most likely
occur. Let us consider the two-color case: Then a p
sible phase diagram~for deconfinement only! is provided
in Fig. 3.

We have not considered the possibility of a tricritic
point, but here the important point is that there are two w
separated regions. We have simply estimated the crit
chemical potential for deconfinement to be of the order
;pTd , with Td the deconfinement temperature at ze
chemical potential. This value is meant only to guide o
intuition, and it has been obtained using the bag mo
However, we do expect the correct value to be near the
predicted. More specifically, the contributions to the press
from free gluons and quarks in the adjoint representation
respectively,

Pg5gg

p2T4

90
, ~14!

Pq5gqT4F7p2

180
1

1

6

m2

T2
1

1

12p2

m4

T4G , ~15!

where generallygg5(Nc
221) andgq5Nf(Nc

221), and we
setNc52 andNf51. The phase transition line in the (T,m)
plane is determined through

Pg1Pq5B, ~16!

whereB is the bag constant. We determineB at zero chemi-
cal potential, and using the value so obtained, we find at z
T that md50.9pTd for the deconfinement transition. Ulti

FIG. 3. A schematic (T,m) phase diagram where only deco
finement is considered.
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mately this value will have to be determined via lattice sim
lations. The above computation is meant to be just a ro
estimate. If we take the number of colors larger than two,
second-order deconfinement line is replaced by a first-o
one.

V. EMERGENCE OF A TETRACRITICAL POINT

The previous analysis neglects the fact that the two or
parameters~i.e., the Polyakov loop and the diquark conde
sate! can and will compete. To argue that a tetracritical po
is a natural outcome, take the pion mass to be lighter t
twice the critical chemical potential~near zero temperature!
for deconfinement,mp&2pTd . Now the two curves, i.e.,
the one for deconfinement and the one for theU(1) baryon
~or chiral! symmetry breaking, meet at a tetracritical point
qualitatively illustrated in the Fig. 4.

We have chosen, in plotting the curves, the pion mas
be such that the tetracritical point occurs when the t
second-order lines meet. A tetracritical point is a very
triguing possibility and the two order parameters here w
influence each other. So, the naive expectation that in
adjoint representation chiral symmetry and deconfinemen
not communicate is misleading.

By tuning the value ofmp one can tune the position of th
diquark condensation line with respect to the deconfinem
one. Here the pion mass plays the role of the anisotr
parameter.

Near the tetracritical point one can apply the results o
standarde expansion analysis as discussed earlier. The
racritical fixed point in adjoint QCD with single Dirac flavo
when the two second-order lines meet, is in the universa
class of theO(1)% O(2) theory. The effective potential con
tains the Polyakov loop, and the matrixU, which corre-
sponds in practice to a complex scalar field or tw
component real field. Due to such a group structure, us
the results of Refs.@7,12#, we predict the tetracritical point to
be a nontrivial~i.e., nondecoupled! biconical one. The criti-
cal exponents are provided in Sec. II.

Other interesting phase diagrams can be considered:
example, by tuning the quark mass the first-order chiral l
can meet the second-order deconfinement transition. As
other alternative, while we have assumed here the decon
ment transition to be second order over the wholeT-m plane,
we cannot generally exclude the possibility that the dec

FIG. 4. A possible (T,m) phase diagram when both possib
phase transitions, chiral and deconfinement, are taken into acc
9-8
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TETRACRITICAL BEHAVIOR IN STRONGLY . . . PHYSICAL REVIEW D70, 034019 ~2004!
finement line develops a tricritical point before meeting t
chiral line. Also, when the number of colors is larger than
the deconfinement line is always first order. We do not
clude the possibility that for similar theories one could o
serve the appearance of a bicritical point. In this case a t
cal phase diagram is depicted in Fig. 5. If the pion mas
sufficiently large, deconfinement is expected to occur bef
spontaneous breaking of the baryon number. In this reg
the two order parameters do not compete anymore. Cle
all of these possibilities are intriguing and deserve to be
vestigated.

VI. CONCLUSIONS AND SUGGESTIONS

We have shown that when the fermions are in the adjo
representation of the gauge group, a tetracritical fixed p
naturally emerges. This is possible since theZN symmetry
associated with deconfinement is well defined in this the
The tetracritical point lies in theT-m plane and for two col-
ors may be biconical with a suitable choice of the qua
mass. What is interesting is that in this way we can qua
tatively test the effects of confinement, or center group sy
metry, on a chiral symmetry type phase transition and v
versa.

FIG. 5. A possible (T,m) phase diagram when both possib
phase transitions, chiral and confinement, are taken into acc
and meet at a bicritical point.
ys
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For quarks in the fundamental representation of the ga
group the possibility of a tetracritical point is not expecte
since the center group symmetry is explicitly broken. B
sides, the breaking of theZN symmetry was used to explai
in Refs. @4,29#, via a simple effective Lagrangian, how de
confinement and chiral symmetry are intertwined not only
the level of susceptibilities but also at the level of conde
sates. The results in our earlier investigations were able
provide a general qualitative understanding of the latt
data. It is, however, still possible, although unlikely~see the
discussion in Ref.@30#!, that the breaking of the center grou
symmetry~due to the quarks in the fundamental represen
tion of the center group symmetry! is dynamically sup-
pressed. Such a breaking is much attenuated, for exam
when considering a small ratio of the number of flavors o
the number of colors. If such a dynamical suppression of
center symmetry breaking occurs in the chiral limit, a~qua-
si!tetracritical point may be observed in lattice simulation
Unfortunately, it is very hard to disentangle such a behav
if the phase transitions are of first order, and hence this
havior might be better tested in two color QCD with tw
Dirac flavors in the fundamental representation. The tetr
ritical point on the temperature axis would be characteriz
by a O(1)% O(6) symmetry. A decoupled tetracritical poin
would emerge with independent Ising and Heisenberg beh
iors. Considering this scenario at any nonzero quark mas
the O(1) symmetry would be~quasi!exact, and the chira
transition would be then induced@4#. The critical exponents
are well known here. Departures from these limiting beh
iors is a measure of the amount of center symmetry break
induced by the presence of the quarks in the fundame
representation of the gauge group.
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