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We suggest a tetracritical fixed point to naturally occur in strongly interacting theories. As a fundamental
example we analyze the temperature-quark chemical potential phase diagram of QCD with fermions in the
adjoint representation of the gauge grdup., adjoint QCD. Here we show that such a nontrivial multicritical
point exists and is due to the interplay between the spontaneous breaking of alg{@hpaymmetry and the
center group symmetry associated with confinement. Our results demonstrate that taking confinement into
account is essential for understanding the critical behavior as well as the full structure of the phase diagram of
adjoint QCD. This is in contrast to ordinary QCD where the center group symmetry associated with confine-
ment is explicitly broken when the quarks are part of the theory.
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[. INTRODUCTION arises at the intersection of critical lines characterized by
different order parameters. Our interest is in the case of two
Phase diagrams for strongly interacting theories are arder parameters. If the transition at the multicritical point is
topic of past and current intereft], and the relation be- continuous, then either bicritical or tetracritical behavior can
tween deconfinement and chiral symmetry restoration posesccur. Bicritical behavior occurs if a first-order line originat-
a continuous challenge. In ordinary QCD these problemséng from the multicritical point separates two different or-
have been intensively addressed via computer simulationdered phases, each separated from the disordered phase by a
[2]. By investigating such a relation in different strongly in- line of continuous transitions beginning from the multicriti-
teracting theories, one gains insight on the ordinary QCDcal point. Tetracritical behavior, on the other hand, occurs if
dynamics as well. We recall that the order parameter fothere exists a mixed phase in which both types of ordering
deconfinement is the Polyakov log®], while that for chiral  coexist, and which is bounded by two critical lines meeting
symmetry restoration is the quark condensate. The represeat the multicritical point. It is also possible that the phase
tation of matter with respect to the gauge group is known tdransition at the multicritical point is of first order. This case
play a relevant role in the deconfining dynamics. Much at-s similar to the bicritical one, with the distinction that the
tention in the literature has been given to ordinary QCD withtwo lines separating the disordered phase from the ordered
two or three flavors. The presence of quarks in the fundaenes start from the multicritical point as first-order lines and
mental representation breaks the center group symmetry effaen turn to second-order lines at tricritical points. A typical
plicitly, and for massless quarks only the chiral phase transicondensed matter example of multicritical behavior is the
tion remains well defined. The latter is then expected to drivgohase diagram of anisotropic antiferromagnets in a uniform
the critical behaviof4]. At nonzero and large quark masses magnetic field parallel to the anisotropy axig]. Further
the issue of which transition, i.e., deconfining or chiral sym-examples includé'He [8] and highT superconductorf9].
metry restoring, dominates is a problem that only latticeAlso, it has been suggested that multricritical behavior might
computations can currently solve. emerge in the phase diagram of hadronic matter at finite
The situation becomes clearer, at least in principle, fobaryon chemical potenti@lL0]. For two colors a tetracritical
fermions in the adjoint representation of the gauge groupbehavior induced by a possible competition between a di-
Here one has two well defined and independent order paranguark and a quark-antiquark phase has been investigated in
eters, since the center group symmetry remains intact in thBef. [11].
presence of the fermions. Lattice data seem to confirm the In this paper we show that strongly interacting gauge
independence of the forces driving independently the chiratheories with fermions in the adjoint representation may very
and deconfining phase transition both for two and three colnaturally display a tetracritical behavior. Interestingly, the
ors|[5,6]. two competing orders we will consider are confinement and
However, when two or more orders compete the resultinghiral symmetry. The critical behavior arising from two com-
phase diagram is expected to have a very interesting and righeting orders has a long history. Investigations in anisotropic
structure due to the possibility of multicritical behavior. This magnetic systems were carried out at the mean field level in
Ref. [8] and subsequently in Reff7] to first order ine=4
—D, whereD is the dimension of spacetime. More recently
*Electronic address: francesco.sannino@nbi.dk the analysis has been carried up to or@ie®) in the e
TElectronic address: kimmo.tuominen@phys.jyu.fi expansior12].
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In this work we propose that a nontrivial multicritical bosonic, and are naturally identified with the physical fluc-
point exists in the temperature-quark chemical potentiatuations of the order parameters. This is the standard ap-
phase diagram of QCD with fermions in the adjoint repre-proach related to the study of phase transitions.
sentation of the gauge groupe., adjoint QCD. The two Before moving to the theories of interest to us, we intro-
competing orders are chiral symmetry and confinement. Ouduce in this section the relevant definitions and the classifi-
results suggest that taking confinement into account is essenation of the multricritical behaviors emerging when two or-
tial for understanding the critical behavior as well as the fullder parameters compete for order. We will keep the
structure of the phase diagram of adjoint QCD. This is indiscussion general.
contrast to ordinary QCD where the center group symmetry Following Refs.[7] and [12] when we have two order
associated with confinement is explicitly broken when theparameters,{ and o, which compete with symmetries
quarks are part of the theory. O(N;) andO(N,), respectively, one can write the effective

In Sec. Il we briefly review the basic classification of the theory symmetric unde®(N,)@® O(N,). Up to quartic terms
multicritical points[7,8,19 relevant for our discussion. In the effective theory containing both order parameter®in
Sec. Il we study Yang-Mills theories with fermions in the Euclidean dimensions is
adjoint representation of the group at finite temperature. Here
we discuss the critical behavior in the hypothetical case in 1 1 1 N
which chiral symmetry and confinement compete for order. £= 5(0#5)2+ 5((3M0)2+ §m§€2+ §m§02+ E(f’z)2
The early lattice worK6] seems to exclude the presence of '
multicritical points. Nevertheless, it is instructive to discuss 9a 5,5 92,5 5
this regime. + (o) 50 (1)

We then introduce, in Sec. IV, a nonzero quark chemical '
potential for one Dirac flavor in the adjoint representation of 2 <Ny 42 2 <Ny 2 o ,
two colors. Then we proceed to show that a multicritical 1€€¢"=2,2,¢n ando®=2_% o, Itis possible that for a
point is quite likely to occur in the temperature-chemical-certain value of the physical parameters, andDe# 3, the
potential phase diagram. The two orders correspond t@the correlation lengths of the two order parameters diverge si-
symmetryi.e.,0(1)] and theU (1)~ 0(2), respectivelyZ, multangously yle!dlng a multlcrltlca_ll point. At ;uch a point
is the center group symmetry associated with confinementhe C”t'gm behs;wor can be determined by tuning the param-
while O(2) is the baryon number that spontaneously break§tersmg and m; to their critical values and studying the
due to the formation of diquark condensates. Some analdtable fixed points of the renormalization group flow.
gous theories have been investigated directly via lattice
simulatior[1s[13g_i and within the chiral perturbation theory A. Fixed points and critical behavior at one loop
approach[{14,15. We show that the interplay between the . . .
tvf/J(l)3 order parameters substantially affectspth)e/ phase diagram. A fwst—ordt_er_ analysls in the expans_lor[_7] .for the theor_y

The multicritical point is predicted to be in the(3) (l)_ at multicritical point shows that six distinct fixed points
Heisenberg universality class, according to the classificatio Xist. Four. of them havg,=0, and thrge of these, namely
in Ref. [7], if the fixed point analysis is performed at one the Gau53|arQ(N1) andO(N,) SYmmet”C ones, are always
loop in thee=4—D expansior{7]. If higher orders are con- unstable against the perturbations away from gie=0

sidered the fixed point is predicted to be a biconical tetracP!2ne, while the fourth one is stable for sufficiently large

s ; : ; F ot lues ofN; and N,. Sinceg,=0, the two fields behave
ritical point[12]. We finally suggest possible applications of Y& 1 2: 2=, TE W

our results to QCD with fermions in the fundamental repre-Ndependently and this stable fixed point is terrdedoupled
sentation of the gauge group. fixed point. The other two stable fixed points lie at nonzero

g,. The first of them is called the Heisenbe@N;+ Ny)
fixed point, due to enhanced symmetry, and the second one is
Il. CLASSIFICATION OF MULTICRITICAL POINTS called thebiconical fixed point. The fixed points can be de-

In thi il h . Wi termined by computing the zeros of the beta functions of the
n this paper we will argue that certain strongly 'meraCt'theory, which at one loop are

ing theories naturally lead to phase transitions, in the

temperature-quark-chemical-potential plane, possessing mul- A (N;+8) g% N,
ticritical points. The novelty is in the fact that this multicriti- BN)== 5 > a2 \Ee,
cal behavior is a result of the interplay of deconfinement and 6 8x 8m
global symmetry breaking.
One of the most remarkable features of continuous phase gs (N,+8) 93 N,
transitions is their universal character. There is, indeed, arich  B(g,)= 6 82 + 3? P \E€,
a a

variety of systems that exhibit the same identical critical be-
havior. When possible, it is convenient to introduce order
parameters to describe the ph.ase transition. In our case we Mgy (N3 +2)  Gags (Np+2) 9>
will have two order parameters: one associated to deconfine- B(g,)= 5 + +2— —0ze.
ment and the other to a global symmetry. Note, that even 87

though we start from a fermionic theory, near the critical

point of interest the relevant effective degrees of freedom ar&he stability of a generic fixed point is ensured if the matrix

872 6 872
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TABLE I. The critical exponents of the correlation length at the berg fixed point the symmetry is enhanced frdd{N,)

various multicritical points oO(N;=1)®O(N,) theory. ®O(N,) to O(N;+N,), and the theoryl) becomes that of
the isotropic Heisenberd\(; + N,)-component model, as can
FP n=N3+N; V1, V2 be seen by inspecting the Lagrangidn at the fixed point
Decoupled n=10 1 Np2e 1 e given by N=0,=30,. The cr!tlcal exponents;.l and v,
. -, S4+— quoted in Table | are defined in terms of the eigenvalugs
3 2 Npt84 2 12 and\ ,, of the corresponding relevant variable$ andm? in
(N1=1) the linearized renormalization group recursion relations as
Biconical 4=n<10 1 1
(N1=1) ViTyos o V2Ty ©)
N,=3 0.5+0.125@, 0.5+ 0.041% ¢ “
N2i4 0.5+0.1336, 0.5+0.056C These describe the divergence of the correlation lengths as a
N2=5 0.5+0.140%, 0.5+0.066% function of suitable scaling fields, for example, the reduced
N,=6 0.5+0.146¢, 0.5+0.074%k temperaturé=T/T.—1 and, say, a new scaling fietd The
Ny=7 0.5+0.151%, 0.5+0.078% latter can be a magnetic field, a quark mass parameter, etc.
_ N;=8 0.5+0.1568&, 0.5+0.0816 The effect of the perturbation controlled kyis generally
Heisenberg n<4 1n2e 1 1 ¢ captured by the crossover exponeftdefined through the
2 n+t84’ 2 n+82 usual scaling formula for, e.g., the correlation length
&T,9)~t""F(g/t?), 4
P and similarly for other thermodynamical quantities. Here
wjj :a_g» , 2 =y, corresponds tg=0 case andp=v/v,. The crossover
'g* scaling functiorF(z) is finite atz=0, but has divergences at

: . . . specific points and these divergences then modifygt®
evaluated at the fixed point* has real and positive eigen- bghaviorp~t*” g et
values. Our results agree with those in Rel. Considering magnetic systems as an examplenfod at

The nature of the multicritical point is determined by the O(e), the crossover corresponds to the weakly anisotropic
sign of the quantityng,—g2/9 [8]. This constraint simpl ! - N

9 q YAGs—QolY Lo rain P n-vector model, where the anisotropy is given by the term
tells us, at the level of the effective Lagrangian, if the phase

. _ _ e ~g¢2%0? in the isotropic Hamiltonian. In other words,
displaying two orders(i.e., nonvanlsh|ng condensates for describes the divergence of the correlation length éas
both order parameterbas a higher or lower free energy with

he ph i~ which ¢ th p ~|t|~*1, wheret is the reduced temperature, while the ex-
respect to the phases in which one of the condensates VaBénentvz describes the divergence of the correlation length

ishes[8]. If the sign is positive we expect a tetracritical be- in the anisotropyg as é~g~ " wheng—0. The crossover
havior. For the negative sign the phase with two orders hagxponent in this case is given tmy=1+ne/2(n+8)
higher free energy than the phases with only partial order. In The decoupled fixed point describes a system consisting

this case a simultaneous existence of two orders is unstabbq effectively independenh,- and N,-component Heisen-

{ahndlat{ump between the tphages_t\_/vnT gar:nal_ orders occurs. Il@erg subsystems, and therefore the critical indices are the
eDa er claze W% eggpec_ al Ii”tl)lca f edawo_r.t i nes of the two independent Heisenberg subsystems and are

ecoupled and biconical stable Txead Points ;“e” 'ON€Yy, that respect trivial. Interestingly, though, the total scaling

abovg _satlsfy. the crllterlon of tgtracrltlga||tyg4>92/9,.at will break, since a single scaling function cannot properly

the critical point, while for the fixed point corresponding t0 jascribe the asymptotic free energy wHepN,. Finally

the Isotropic Nyt N2)-ve(_:t_or model can, mtgr_e_stlngl_y, b€ the biconical fixed point features completely new critical ex-

either bicritical or tetracritica[12]. This possibility arises ponents. However, since they are numerically very close to

due to the presence of a dangerous irrelevant varidfle  he corresponding Heinseberg ones, they may be hard to dis-
Definingn=N;+ N,, the low-ordere-expansion calcula- tinguish experimentally.

tion shows that fom<4 the critical behavior is due to the
stable fixed point corresponding to an isotropi@(n)
Heisenberg model. As increases, the biconical fixed point
(FP) becomes stable and yields a new tetracritical behavior. It is important to note that the numbers quoted in Table |
Finally, for largen, namely forN;N,+2N;+2N,=32, the are a result of a first-order calculation i Furthermore,
stable fixed point is the decoupled one, which leads to th¢hese results must be extrapolatedeto1 to be applicable.
tetracritical behavior in which the two fields do not affect However, past experience has shown that even in this limit,
each other. the e expansion describes the fixed point physics surprisingly
We first summarize in Table | the generic results that weravell. Already theO(¢€) results show that as a function of
obtained in theD(e) calculation, and then we discuss themthe critical behavior in the case of two competing orders
in the context of strong interactions. Each of these fixedeads to a rich spectrum of possibilities. However, in the
points have interesting specific properties: For the Heisenpresent case higher-order contributions are relevant. For the

B. Results from higher-order computations
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case ofO(N;)®O(N,) theory, a remarkabl®(e®) calcula- erators of SU(2Ns). If a democratic Dirac mass term is
tion exists[12], and we will briefly discuss the improve- added into the theory,SU(2Ny) breaks explicitly to
ments for the critical exponents in what follows. First, how- SU(N¢) XU (1), with U(1) the baryon number of the theory.
ever, let us note that the higher orders also lead to importarin this section we consider the massless limit, but note that
changes in the domains of stability of the fixed points in thethe introduction of a small mass term for the fermions in the
(N1,N,) plane. TheO(€®) results for the Heisenberg fixed theory can be introduced and studied in a straightforward
point [17] lead to the stability for N;+N,<4-—2¢ way. At low temperatures the global symmetry is expected to
+3[6£(3)— 1]+ O(€%). break to the maximum diagonal subgro@§2N;) leaving

A calculation toO(€°) further narrows the domains of behind a number of Goldstone bosons, some of them charged
stability for the fixed points: TheD(n) Heisenberg fixed under the ordinary baryon number. We will collectively refer
point is stable only fom=2, i.e., only in the case of two 1O the Goldstone bosons as pions and will also use, at times,
intersecting Ising lines. Then, for=3 the stable fixed point chiral symmetry to indicate the global symmetry of the

is the biconical one, and the decoupled fixed point is stabléheory. In the next section, and for the specific case of two
for all n=4 with any values oN; andN,. For further de- colors and one Dirac flavor, we will work out in detail the

tails we refer to the existing literatuf@,12). global symmetry properties for massless and massive fermi-

Since the domain of stability of the Heisenberg fixed pointons. We will also discuss the breaking patterns of the global
shrinks down ton=2 it will not play a role in our strong Symmetry, and consider old and new arguments supporting
interaction examples. The biconical fixed point is stable forthese patterns. At high temperatures it is natural to expect a
n=3. We will see that this fixed point will be relevant for global symmetry restoration. Such a global symmetry resto-
our investigations. For all of the other combinationshof ~ ration is also termed, at times, chiral symmetry restoration.
and N, such thatN;+N,=>4, the stable fixed point is the =~ We now naturally have two well defined order param-
decoupled one with well known independe®(N,) and  ©ters: T_he Polyakqv loop and t_h(_—:-_ferm|on condensate. It is
O(N,) exponents. Therefore, to conclude this section, let ugnteresting to consider the possibility that they may compete
state the high-order values for the critical exponents relativé0r order when considering a temperature driven phase tran-
to the biconical fixed point aé=1. Using the general defi- Sition. The hope being, as already mentioned in the Introduc-
nitions v=, and ¢=1v/v,, the numerical PadBorel re- t|o_n,_that by studyln_g strongly_mteractlng theories such as
summed (%) values for the biconical exponents by~ adioint QCD, one might shed light on ordinary QCD.

—1 andN,=2 arevg=0.703), ¢g=1.251). As already .. Having outlined the gengrql behavior, symmetries and de-
mentioned, these are very close to the corresponding Heisefined the order parameters it is now natural to use the results

berg O(3) exponentsw, = 0.7045(55), ¢, = 1.260(11) at and methodology presented in the preceding section to make
0(35) [(18)] P "H (58). ¢ (11) predictions for the critical exponents related to the phase

Away from the tetracritical points the second-order linestransitions of adjoint QCD. o _
have independent critical behaviors and the two order param- FOF two colors the center groupZs, which is equivalent
eters do not compete. We have now the basic terminolog§f @ ©(1) symmetry and the associated order parameter is
and tools to analyze and make predictions for strongly interdenoted by¢. The flavor groupsSU(4) for Ny=2 and

acting theories exhibiting multicritical behavior. SU(2) for Ny=1 are locally isomorphic, respectively, to
0O(6) andO(3), and theorder parameter with such symme-

try is denoted by

Here the results of Ref12], denoted byD(1)® O(6) and

Let us now turn to the possibility of tetracritical behavior O(1)®O(3), aredirectly applicable. The first phase dia-
in the theories of strong interactions. To be specific, considegram we draw is the one in which the temperature drives the
two-color QCD with Ny<2 massless Dirac flavors in the phase transition at zero quark chemical potential. We know
adjoint representation of the gauge group. One of the maif3] that at high temperatures we have center group order and
motivations for studying the phase diagram of gauge theorieat low temperatures chiral order. This sorts for us the orien-
with fermions in the adjoint representatigadjoint QCD is tation for a possible phase structure with respect to the con-
that, contrary to ordinary QCD, in adjoint QCD there is adensed matter ong42].
well defined symmetry associated to confinement. The sym- Besides the temperature, which can be tuned, we also
metry is identified with the center of the gauge group whichhave two independent and dynamically generated scales in
for a genericSU(N) gauge theory iZ,,. Here we consider the problem: the deconfining scalg, and the chiral symme-
explicitly the caseN=2. The breaking of this symmetry is try restoration scalé\ .. These two scales are intimately re-
monitored by the expectation value of the Polyakov I6®fp  lated to the number of colors and flavors of the theory.
which is the order parameter of the theory. However, it is the relative magnitude of these scales that

Besides the center group symmetry, and in absence a$ of importance for the phase diagram. One might argue that
quark masses, adjoint QCD possesses a global quantum sym-strong interactions only one scale is dynamically gener-
metry which forN; Dirac fermions isSU(2Ns) [19]. The ated. On the other hand, it is quite reasonable to imagine the
fact that the symmetry group here $J(2N;) rather than dynamics driving chiral symmetry breaking to be different
SU(N¢) X SU(N;) X U(1) is due to the fact that the fermions than the one for center group breaking.
belong to a real representation of the gauge group. We note There are also theoretical argumef26] suggesting that
that the ordinary baryon number is one of the diagonal genA <A (see the next section for a more detailed discugsion

Ill. FINITE TEMPERATURE ADJOINT QCD
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4 adjoint, there are numerical computatiof® that indicate
that the chiral and deconfinement phase transitions happen at
different temperatures. This correspondg 0 and the two

g ] transitions have the expected independent critical behavior. It
Chiral would be interesting if more recent simulations might further
Cont. investigate how competing the two orders actually are.

O The main problem for not being able to reach a tetracriti-

cal point here is that in order to changene has to change
C}}(ral / y s theory. In cor)densed maitter _physics one can usually tune
Conf. / Ch,éal\ Clil parameters, via other scaling fields than the temperature, e.g.,
Dec. |\ external magnetic fields. The freedom to tune different quan-
! tities in the theory allows, on one hand, to test the theory of
critical phenomena and to shape our understanding of phase
transitions, on the other.
T Since the parameter we have defined for the adjoint QCD
is dimensionless, one would expect it to be proportional to
FIG. 1. Phase diagram displaying a tetracritical point. Thesome combination of number of colors and flavors. Then, in
physically allowed part of the phase diagram lies beneathgthe numerical experiments, it might be possible to use, e.g.,

v

=0 line. number of flavorsN;, as a scaling field. Tuning the value of
_ N; would affect the relative magnitude @y and A. and
It is then natural to define a new parameter: allow, perhaps, the two transitions to close on each other.

The existing numerical investigatiorj§] show the strong

-~ Ad_Ac< dependence on the number of flavors for the chiral phase
9= Ag =<0. (5 transition. As already emphasized, it would be interesting to
have an up to date study of these matters.
Differently from the condensed matter cases, hg@nnot We shall shortly see how we can achieve a multicritical

be tuned but rather defines the theory. A possible phase digoint in strong interactions with diquark condensation and
gram in the ¢, T) plane is the one shown in Fig. 1. We stressconfinement as competing orders by introducing a more
that the expectation\ y<A . forces the physically allowed Ppractical scaling field into the problem, i.e., the quark mass.
part of the phase diagram to lie below the 0 line.

At exactly g=0 tetracritical behavior would be expected,
and for this point we can translate the critical behavior dis-
cussed in the preceding sections for strong interactions. The
deconfinement order parameter symmetry fikgs=1, and In this section we investigate in some detail the two color
we now consider different flavors in turn. gauge theory with one Dirac fermion in the adjoint represen-

Let us start with quenched super Yang-Mills theory. Intation of the gauge group. This is a theory with a number of
this case we have only one Majorana fermion in the adjoinfascinating properties. A relevant one, for our purposes, be-
representation of the gauge group. The only global symmetrjng that when adding a nonzero quark chemical potential,
associated is an axial symmetry that is affected by the Adlerone observes, at sufficiently large baryon chemical potential,
Bell-Jackiw anomaly. However, in the quenched limit such aa color superfluid transition rather than a color superconduc-
symmetry is restored. The chiral symmetry is theil) tive one[14]. This is so since we have some Goldstone
(which is also arR symmetry from the supersymmetry trans- bosons(pions carrying baryonic charge.
formations point of viey; which breaks spontaneously. Here  \We have divided this section into a number of subsections
N,=2 and if a tetracritical point would exist it would be a to help the reader concentrate on one problem at the time,
biconical one. Away from the quenched limit thé(1)-R  and to build up the relevant knowledge. We will first describe
symmetry is explicitly broken by an anomaly and it might the symmetries of the fermionic action of the underlying
still be interesting to study what happens if one considersheory, and then explore the symmetry breaking pattern first
this symmetry almost restorable at large at zero temperature and baryon chemical potential of the

In the case of two Majorana fermions in the adjdiné.,  theory. We briefly review the temperatur@ero-baryon
one Dirac flavoy the chiral symmetry group, after having chemical potentialphase transition scenario, which has es-
taken into account anomalies, $J(2), i.e., O(3) with N,  sentially been studied in the preceding section. Subsequently,
= 3. The physics of the tetracritical point, according to high-we describe the deconfining phase transition at nonzero tem-
order calculations, is the one for which the critical behaviorsperature and baryon chemical potential, while ignoring the
of the two order parameters are unaffected by each other, i.gppssible superfluid phase transition. We then describe the
we have a decoupled fixed point. Finally for two Dirac fla- superfluid phase transition at nonzero temperature and quark
vors we haveN,=6, and again a decoupled fixed point is chemical potential neglecting the deconfining phase transi-
expected. tion. We will consider both transitions simultaneously in the

Lattice simulations can determine how far we are fromnext section. It is important to observe that both, the intro-
the tetracritical point. For two colors with fermions in the duction of the chemical potential as well as the presence of a

IV. DECONFINEMENT —CHIRAL-SYMMETRY
TETRACRITICAL POINT
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Dirac mass for the theory break explicitly the underlyingthe 't Hooft anomaly matching condition®22] to suggest
global SU(2) symmetry group while preserving thé(1) that chiral symmetry must break at low temperatures. Indeed,
baryon symmetry of the theory, as we will explicitly see we can well imagine a low-temperature phase in which chiral
below. At nonzero temperature and nonzero baryon chemicalymmetry is not broken. Although in principle we do not
potential we will then consider only the exact symmetries ofneed massless composite fermions, the simplest fermions we
the problem, i.e., the center group and thgl) symmetries. can construct are composite objects of the typgr

It interesting to note that when this theory has been investi-_ 6aA;5aGﬁ_ Due to the Vafa-Witten theoref23], vector

. . .. . F
gated in the literature at finite temperature and chemical POsymmetries cannot break spontaneously, which, in turn,

tential, so far attention has been paid only to the global symziaans that the fermions do not develop dynamically gener-

metry of the theory. ated Majorana masses. However, a Dirac mass term is of the
form NE_;\.r=» and breaks the glob&U(2) symmetry to
A. Symmetries of the underlying theory the baryon numbed (1).

Consider one massless Dirac flavor in the adjoint repre- Therefore, in the absence of 't Hooft anomaly matching
sentation of two colors. The flavor group U(2), which ~ conditions two possible scenarios arise: We can either have
spontaneously breaks ©(2). Thelatter is the conserved Spontaneous chiral symmetry breaking, with associated two
quark number. In order to elucidate all of the symmetries ofGoldstone bosons, or chiral symmetry intact but a massless
the problem in detail we write the underlying tree level La- Composite Dirac fermion. This is very similar to the case of

grangian for the fermionic paf21] in presence of the mass ordinary QCD with two flavors. According to the guide sug-
term and quark chemical potential: gested in Ref[24], the most likely phase in the infrared is

the one for which the degrees of freedom counted according
to the entropy factor, f=No. of real bosons
+(7/4)No. of Weyl fermions, are minimized. Here, the
spontaneously broken phase h&s-2 and the chiral-
Here D/,°Q®=4,8"BQB—ifABSGBQC and fABC are the symmetry-preserving phase hés-7/2. Chiral symmetry,
structure constants of the gauge group. The matrifesre  here theSU(2), is therefore predicted to break at low tem-
the Pauli matrices with the baryon numi@+ ° acting in  peratures. Clearly these results do not depend on the number
the flavor space, and=1,2,3 is the gauge index for the of colors. In the case of larger number of fermion flavors the
fermions in the adjoint representation. The Weyl spi@Qy; 't Hooft anomaly conditions are nontrivial and single out the
with @=1,2 the spin index andi=1,2 the flavor index can infrared phase in which chiral symmetry is broken. 't Hooft

—— —— m
+iQ"rD Q% - uQAe*BQA - S [QA QM+ Hec .

be represented as a vector as follows: anomaly conditions have been generalized, first, at nonzero
temperaturg¢25] and more recently at nonzero quark chemi-
X4 cal potential[26].
QA= o~ | (6) A possible scalar condensate must be of the form:
a
A
eP(Q} (Qp 1) <Es - ®

while in the Dirac representation we have
A The subgroup that leaves the condensate invariant is given
Xa by the generators ddU(2) satisfying the condition:
vh= on | 7
E+ErT=0. (9)

At zero quark mass and chemical potential 81(2) sym-  Since the condensate is symmetric in color and antisymmet-
metry is evident. The extra classicbla(1) symmetry is ric in spin, it must be symmetric in flavoii.e., E=E").
anomalous. The baryon number here is tegenerator of Requiring theSU(2) symmetry to break to its maximal or-
SU(2). At nonzero baryon chemical potential and nonzerothogonal subgrougi.e., O(2)] [27], we can have, for ex-
Dirac quark mass the baryon symmetry is the only symmetrample,E proportional to the X 2 identity matrix or tor?. If

left unbroken at the fundamental level. we choose the identity, then the unbroken generatarjs
but if we chooser?, then the unbroken generatori& Since

B. Chiral symmetry breaking: No anomaly matching we have identified th€@(2) generator corresponding to the

but entropy counting baryon number with-, the condensate must be proportional

. éo , i.e.,
We set, for the moment, the fermion mass term and th

baryon chemical potential to zero. Usually one of the pow-

. P ? . aBIOA OP Voo L 10
erful methods to discover if, in strongly interacting gauge € <Qa,fQB,f'> Tttr - (10)
theories, a global symmetry breaks at low energies, is to
require the global anomaly matching conditid22] among Two Goldstone bosons are present and are associated with
the ultraviolet and the infrared realization of the theory. Un-the generators<®=73/2 with a=1,2. Note, that since the
fortunately, for this theory the global anomalies vanishespions here are associated with the generators that do not
since the flavor group iSU(2), andhence we cannot invoke commute with the baryon generatotthey are automatically
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charged under the baryon number. The low-energy effective

theory in absence of quark chemical potential is T
First Order ?
Lot=F2Tr[o,UTo*U1+F2m2Tr{U+U" 11 /
eff=F5TLd, 1+ FomiTr[ 1 (1) 00 Intact
with /_
P O(2) Broken
U:eiﬂ'axa/Fﬂ.' a:1,2 (12) A =
Rt Second Order

2
where we have also introduced a Dirac masis the under-

lying theory. Such a mass appears in the effective Lagrangian FIG. 2. A schematic T,u) phase diagram when only the di-
as a nonzero mass for the pions, and one expefitsm. U  duark condensation is considered.

14T ; ;
transforms ag7-Ug" for g SU(2). Theprevious effective three massless quarks in the fundamental representation the

Lagraqglan St'!l preserves thg(1) baryon symmetry.' breaking is due to a Cooper pairing phenomenon, i.e., color
Besides chiral symmetry we also have deconf'nememsuperconductivity

Here the order parameter is the Polyakov loop, which is as- For adjoint QCD the situation is different. The spontane-

sociated with the penter group ;ymmeﬂy for .tWO colors. ous breaking of théJ(1) baryon symmetry is a superfluid
Note that the previous analysis is completely independent o henomenori14]. This is so since the pions, in this theory,

the number of (_:olo_rs, which becomes a relevant paramet re charged under the baryon number. We have already
only when considering the center group symmetry as well. proven this statement in Sec. IVB. Actually they have
baryon number two with respect to the quarks, which we

C. The temperature-driven phase transition have defined to have unit baryon number. One can easily

We have discussed the nonzero temperature case in S&t)_ow that the chemical potential couples directly to the pions

ll. Here we recall the salient information needed when en-Y'2

dowing the quarks with a nonzero mass and chemical poten- o
tial. At zero quark chemical potential, tf&U(2) symmetry 90U —DoU =do=14[U.B]. 3
is restored at a given temperatufg, while theZ, decon-  After having substituted this covariant derivative in the ef-
finig phase transition is indicated wiffy. The latter is ex- fective Lagrangian, a negative mass-squared term propor-
pected to be somewhat lower tha@p. If the two-phase tran- tional to u? is induced. Foru>m_/2 the U(1)~0(2)
sitions are independent, no tetracritical point is expected t@reaks spontaneously. On general grounds we expect two
occur in this case. As soon as we add a quark mass, Wegions on the phase diagram, one with in@@¢2) and the
expect a crossover behavior for t&J(2) phase transition. other whereD(2) is spontaneously broken. This is schemati-
This is true also at nonzero chemical potential, since both theally represented in Fig. 2. The second-order line starts at
mass term and the chemical potential term explicitly breakn /2 at zeroT. In literature it is argued that, by computing
the SU(2) global symmetry. It is also worth emphasizing the effective action within the chiral perturbation theory ap-
again that at zero quark chemical potential and quark masgroach[15], such a second-order line ends in a tricritical
and due to the absence of the 't Hooft anomaly conditions tgoint, and continues as a first-order line. There is a simple
satisfy, in principle, a chiral symmetry restoring phase tranway to understand why the phase transition line must curve
sition before deconfinement might have been possible. Howo the right in theT-u plane: By increasing the chemical
ever, this is not allowed according to the guide in R2#],  potential, we effectively increase the negative mass squared
which selects the chiral symmetry breaking confined phasef the Goldstone boson. On the other hand, the temperature
as the preferred ground state even in absence of 't Hoofontribution to the mass of the Goldstone boson is positive
anomaly conditions. Summarizing, tf8UJ(2) symmetry is and tries to compensate the negative contribution of the
always broken at nonzero baryon chemical potential an@hemical potential to the squared-mass term. The larger the
Dirac mass. If a crossover phenomenon exists, it is expecteghemical potential, the higher the temperature must be to
to happen, for fixed chemical potential and quark mass, at gestore the symmetry. This is, in a nutshell, the relativistic
temperature larger or at most equal to the critical temperaturgose-Einstein condensation phenomenon pioneered by
for deconfinement. As we increase the chemical potentialHaber and Weldon in Ref28].
the explicit breaking of the&sU(2) symmetry becomes se- Both the critical temperature and the critical chemical po-
vere. We will then neglect th8U(2) symmetry and analyze tential of the tricritical point increase with the pion mass
the fate of theU(1) baryon symmetry, the only global sym- [15]. What is relevant for us is thdt) two well separated
metry left unbroken. regions exist andii) we have a second-order phase transition
nearu=m_/2.
D. The U(1) baryon superfluid phase transition
at nonzerop and T E. Deconfinement at nonzerqu and T

As we increase the baryon chemical potential thel) As already stated, the presence of quarks in the adjoint
baryon symmetry may break spontaneously. In QCD withrepresentation of the gauge group does not break the center
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1
T Second Order Second Order

&
T 5 k T" 7, Broken )
q 75 Broken 2 First Order ?
Z,Zlntﬂct .//_
) O T 2 O(2) Broken
Z, Intact Ras XV\
= maz
Second Order 2 Ty H
T m ’ FIG. 4. A possible T,u) phase diagram when both possible
d

phase transitions, chiral and deconfinement, are taken into account.
FIG. 3. A schematic T,u) phase diagram where only decon- ) ) ) ] ) )

finement is considered. mately this value will have to be determined via lattice simu-

lations. The above computation is meant to be just a rough

group Symmetry_ Note also that up to now the color p|ayecﬁstimate. If we take the number Of CO|OI’S |argel’ than tWO, the
little role. In other words, whether the center grougZisor second-order deconfinement line is replaced by a first-order
Zs, one expects the chiral symmetry part of the analysine.

[here also theéJ(1) baryon symmetry is termed chiral sym-

metry] to be to a large extent unaffected. This, however, is V. EMERGENCE OF A TETRACRITICAL POINT

not true, as we will demonstrate below. In this section we . )

only consider the pure deconfinement phase transition. Two 1he Previous analysis neglects the fact that the two order
distinct regions in the phase diagram occur: in one we hav@arametersi.e., the Polyakov loop and the diquark conden-
center group ordefi.e., deconfinemepiand in the other we _sate can and will compete. To argue that a tetracrmcal point
have disordefi.e., confinement If the number of colors is IS @ natural outcome, take the pion mass to be lighter than
larger than two we expect a first-order line, while if the num-twice the critical chemical potentighear zero temperature
ber of colors is two, a second-order line is most likely tofor deconfinementm <2#Ty. Now the two curves, i.e.,
occur. Let us consider the two-color case: Then a posthe one for deconfinement and the one for thel) baryon

sible phase diagrantfor deconfinement onlyis provided (or chiral) symmetry breaking, meet at a tetracritical point as
in Fig. 3. qualitatively illustrated in the Fig. 4.

We have not considered the possibility of a tricritical Ve have chosen, in plotting the curves, the pion mass to
point, but here the important point is that there are two well-P® such that the tetracritical point occurs when the two
separated regions. We have simply estimated the criticatecond-order lines meet. A tetracritical point is a very in-

chemical potential for deconfinement to be of the order offiguing possibility and the two order parameters here will
~nT4, with T4 the deconfinement temperature at zeroinfluence each other. So, the naive expectation that in the

chemical potential. This value is meant only to guide ouradjoint representation chiral symmetry and deconfinement do
intuition, and it has been obtained using the bag modelN0t cOmmunicate is misleading. o

However, we do expect the correct value to be near the one BY tuning the value o, one can tune the position of the
predicted. More specifically, the contributions to the pressuréliquark condensation line with respect to the deconfinement
from free gluons and quarks in the adjoint representation ar®ne. Here the pion mass plays the role of the anisotropy

respectively, parameter. y _
Near the tetracritical point one can apply the results of a
T4 standarde expansion analysis as discussed earlier. The tet-
Py=0g 90 ' (14) racritical fixed point in adjoint QCD with single Dirac flavor,

when the two second-order lines meet, is in the universality
772 1 1 clgss of theD(1)® O(2) theory. The effe_ctive pqtential con-
Pe=0qT% —on+ = =+ —— —|, (15)  tains the Polyakov loog and the matrixU, which corre-
47971180 6712 1242 T4 sponds in practice to a complex scalar field or two-
component real field. Due to such a group structure, using
where generall;gg:(Nﬁ—l) andgq= Nf(Nﬁ—l), and we the results of Refd.7,12], we predict the tetracritical point to
setN.=2 andN;=1. The phase transition line in th& () be a nontrivial(i.e., nondecouplgdbiconical one. The criti-

plane is determined through cal exponents are provided in Sec. Il.
Other interesting phase diagrams can be considered: For
Pyt Pq=B, (16) example, by tuning the quark mass the first-order chiral line

can meet the second-order deconfinement transition. As an-
whereB is the bag constant. We determiBeat zero chemi-  other alternative, while we have assumed here the deconfine-
cal potential, and using the value so obtained, we find at zerment transition to be second order over the whicle plane,
T that uy=0.97T4 for the deconfinement transition. Ulti- we cannot generally exclude the possibility that the decon-
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T For quarks in the fundamental representation of the gauge
Second Order group the possibility of a tetracritical point is not expected,
/ since the center group symmetry is explicitly broken. Be-
sides, the breaking of théy symmetry was used to explain
Fiest Oides in Refs.[4,29], via a simple effective Lagrangian, how de-
O@) Intact confinement and chiral symmetry are intertwined not only at
/ the level of susceptibilities but also at the level of conden-
\ /O@;mkm sates. The results in our earlier investigations were able to
Pl P provide a general qualitative understanding of the lattice
"m'; data. It is, however, still possible, although unlikébee the
Second Oder 2 H discussion in Ref.30]), that the breaking of the center group

FIG. 5. A possible T,x) phase diagram when both possible SYmmetry(due to the quarks in the fundamental representa-
phase transitions, chiral and confinement, are taken into accoufion of the center group symmeiryis dynamically sup-
and meet at a bicritical point. pressed. Such a breaking is much attenuated, for example,

when considering a small ratio of the number of flavors over
finement line develops a tricritical point before meeting thethe number of colors. If such a dynamical suppression of the
chiral line. Also, when the number of colors is larger than 2,center symmetry breaking occurs in the chiral limitiqaia-
the deconfinement line is always first order. We do not exStetracritical point may be observed in lattice simulations.
clude the possibility that for similar theories one could ob-Unfortunately, it is very hard to disentangle such a behavior
serve the appearance of a bicritical point. In this case a typ|l.f the phase transitions are of first order, and hence this be-
cal phase diagram is depicted in Fig. 5. If the pion mass i§1avior might be better tested in two color QCD with two
sufficiently large, deconfinement is expected to occur befor®irac flavors in the fundamental representation. The tetrac-
spontaneous breaking of the baryon number. In this regimétical point on the temperature axis would be characterized
the two order parameters do not compete anymore. Clearlyy aO(1)®0O(6) symmetry. A decoupled tetracritical point
all of these possibilities are intriguing and deserve to be inwould emerge with independent Ising and Heisenberg behav-

7, Broken

Z, Intact
O(2) Intact

vestigated. iors. Considering this scenario at any nonzero quark masses,
the O(1) symmetry would bgquasjexact, and the chiral
VI. CONCLUSIONS AND SUGGESTIONS transition would be then inducdd]. The critical exponents

are well known here. Departures from these limiting behav-
We have shown that when the fermions are in the adjoiniors is a measure of the amount of center symmetry breaking
representation of the gauge group, a tetracritical fixed poininduced by the presence of the quarks in the fundamental
naturally emerges. This is possible since #yg symmetry representation of the gauge group.
associated with deconfinement is well defined in this theory.
The tetracritical point lies in th&-u plane and for two col-
ors may be biconical with a suitable choice of the quark
mass. What is interesting is that in this way we can quanti- We thank P.H. Damgaard, K. Rummukainen, and K. Split-
tatively test the effects of confinement, or center group symtorff for a careful reading of the manuscript. We acknowl-
metry, on a chiral symmetry type phase transition and viceedge useful discussions with A.D. Jackson, K. Kajantie, A.
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