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Parton model in Lorentz invariant noncommutative space
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We consider the Lorentz invariant noncommutative QED and complete the Feynman rules for the theory up
to the orderé?. In the Lorentz invariant version of the noncommutative QED the particles with fractional
charges can be also considered. We show that in the parton model, even at the lowest order, the Bjorken scaling
violates as~ 62Q*.
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[. INTRODUCTION Bjorken scaling is violated. Finally, we compare our results
with the experimental data and give an upper bound on the
Noncommutative field theories and its phenomenologicaparameter of noncommutativity.
aspects has been, recently, considered by many authors
[1-8]. Such theories are mostly characterized on a noncom- Il. LORENTZ CONSERVING NCQED
mutative space-time with the noncommutativity parameter

8,,. In the canonical version of the noncommutative space- 10 construct the noncommutative field theories that are
time one has Lorentz invariant one needs to generalize the parameter of

noncommutativity. Now we review the formalism of the Lor-
017 = —i[ X" X"] (1) entz conserving NCQED introduced by Carlson, Carone and

Zobin (CC2) [9]. In the CCZ approach of NCQE@” is an
where a hat indicates a noncommutative coordinateégnd  operator and satisfies the following algebra:
is a real, constant antisymmetric matrix. Obviously, the con-

stant vectors),; and¢;; imply preferred directions in a given [X*X"]=i :9#1/,
Lorentz frame which leads to violation of the Lorentz sym-
metry. Since the Lorentz symmetry is an almost exact sym- [9%7 x"]=0 )

metry of nature, it is natural to explore the noncommutative
(NC) field theories that are Lorentz invariant from the begin-
ning. In this new class of NC theories the parameter of non-
commutativity is not a constant but is an operator which A i ) )
transforms as a Lorentz teng@,10]. Of course in this way Where 6“” is antisymmetric tensor that is not constant bgt
one needs to generalize the star product and operator tra#@nsforms as a Lorentz tensor. The action for field theories
for functions of bothx* andé,,,, appropriately. However, in ©n noncommutative spaces is then obtained using the Weyl-
both cases experiment should confirm the theories. The op¥loyal correspondence, according to that, in order to find the
tained upper bounds for the Vi0|ating Lorentz noncommutanoncommutatlve action, the usual prOdUCt of fields should be
tive field theory are two folds: the first one comes from eplaced by the star product:

bound states such as the hydrogen atom or the positronium

[6,7] and the second one is obtained by scattering processes f*g(x,0)=f(x,0)ex;{ E(; 9’“’5v)g(x,9). 3)

for example the electron-electron and the electron-photon 274

scattering and so dib,8]; see Table I. In the case of Lorentz

conserving noncommutativie CNC) field theory scattering It should be noted that here the mapping to c-number coor-
process is on]y investigated_ The dimensional quarwm dinates involveg*” as a c-number due to the presence of the
the noncommutative space imply new aspects in the partooperatorg“” in the Lorentz-conserving case. In this formu-
model as well. In this paper we explore parton model in thdation, the operator trace that is a map from operator space to
lowest order in which a virtual photon interacts with partonsnumbers, is defined as

inside a nucleon in a LCNC space. For this purpose one
should consider LCNCQED to find the effect of noncommu-
tativity on the form factors.

In Sec. Il we introduce Feynman rules for LCNCQED. In
Sec. Il we study the parton model in the noncommutativewhere W(6) is a Lorentz invariant weight function and is
space in the lowest order and show how the form factors imssumed to be positive and even functiordaherefore one
the electron-nucleon scattering depend @% and the has

[6#7,6°F]=0,

Tr?zf d*xd®oW(0)f(x,6), (4)

6 MUY
*Email address: mansour@cc.iut.ac.ir f d*oW(6) o 0. (5)
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TABLE |. Upper bounds on the noncommutativity parameter. —q
Anc=1//® describes the parameter of noncommutativity in the AE},}(X,&)= Tﬁua(X)Au(X)'
standard NC space whil& | cnyc shows NC parameter for LCNC
space. 2

q
AB) (X, )= — —=d,a(X)A, (X)dA,(X),
NC parameter Bound state Scattering unol X, @) 2 F ()AL (X)IAX)
Anc ~100 GeV 0.1-2.5 TeV ) q .
ALcene ? 0.1-1 TeV Al) (x)= AulIAETF ),
q2
Furthermore, the weight function is assumed to fall suffi- Aﬁfy)nﬁp(x): ?(A#Avaéjfgp—avApaﬂA#Aé
ciently fast so that all integrals are well defined. Now the
properties ofW(6) and the definition of the operator trace +A,F° F%)
Eg. (4) allows one to extract the interactions in the Lorentz v op
conserving noncommutative field theory. To this end the ac- q
tion can be written as follows wi}v(x): EA"&”"IJ’
s= | d*xd®OW()L(p,0d), , 6 ar .

f ( ) (d) ¢)* ( ) 1/1-51,237]6()(): - § _|(9”A7I(9V(951/l_qAMA,7(?V(951/f
where L(¢,d¢), depends on botk and # and its subscript _2unf7vAn‘?5¢_unfgn‘95¢
indicates thex-product which is defined in E(3). For a
U(1) gauge theory the gauge invariant Lagrangian is q .

(1) gaug y ihe gaug grang 5 0ADAIICAAD A, (1D
£=J d°oW(6) —ZFW*F“”%(iD—m)*w . (0 whereF,=d,A,—3d,A,. Now we needl(x), to extract

the interactions, that can be obtained by inserting the above

where  is a matter field with charge and for a gauge relations into Eq.(7) and performing the integration oé

field A using the weighted average
D,=dutiaA,, tS) f dGGW(0)«9‘”0”’3=%(9“”9”’3—9“”9””), (12)
and where
Fuv=0,A,= 0, A, F1A[A, A, © ()= [ coworom,. 13

The matter field and the gauge field as well as the parameter )

of the gauge transformatiofi(x, 8) are functions of bothx  Therefore up to the orde” the second term in the Lagrang-
and §. Therefore, using the same method as applied in thén density Eq(7) can be rewritten as follows

construction ofSU(N) noncommutative gauge theorigkl], — B

one should expand the fields as a power series in the variable ~ #* (IR =M)*=Lo+ Lagy+ Lagyy T Laayyy: (14

0 as follows

where
Ao(x,0)=a(x)+ 0" AQ)(x,a)+ 07 07°A2) (X, ) Lo= (i h—m) ),
+ ... _ —
: Lagqy=— (% A©) O 5O p— m) @
A (X, 0)=A,(x)+0*" AL (x)+ or 97AL) - (x) + (i h—m) O,
e Lagyy= — (#O% A®) O — (s A©)
W%, 0)= () + 0P L)(x @) + 0707y Z) (%) — GHOA) 42— gD A y(©)
T (10) — q( 0% ADY) O 1+ 0§ h— m) b,
wherea(x), A(x) andy(x) are gauge parameter, gauge field p = — g OAD YD) — gD AD) y(0)
N\ ; : agyyy= @ q
and matter field in the commutative space, respectively, and o o
the coefficients o, can be obtained as — QY OA@ YO — qyDAO D), (15)
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The Feynman rules can be extracted from Ef, for ex-
ample L, in Eq. (15) leads to the ordinary propagator for a
fermion field while the rest terms contain a variety of verti-
ces. Comparing Eq915 and (11) we see that, up to the
order 62, Lqq, contributes to 2-fermion-1-photong(y),
2-fermion-2-photon qqyy) and 2-fermion-3-photon
(qqyyy) vertices while Lyq,,, has just contribution on
qqyyy-vertex and’,q,, has terms which contains two fer-
mions and two, three and four photons[Ii2] the Feynman
rules forqqy-vertex in general case amphyy-vertex when
all fermions and photons are on the mass shell is obtained.
Here we complete the Feynman rules for the interaction be-
tween fermions and photons up to the ordéras follows.

gqy vertex in general cagd 2]:

<02> 2 1 2.1
7#"'% (p1—m)p3p5—(P,—m)pips

+(po—m)py-pP3pi —(Pr—mM)ps- P3ps FIG. 1. qqyyy vertex with all fermions and photons on mass
shell.
+E((p1'p3)2+(p2'p3)2)7M] .
2 do do (6% 5
dcosé | dcosé 565 (18)
gqqyy vertex with all fermions and photons are on the QED

mass shel[12]:
[12] and for the cross procesS u~ —e~ u~ s should be replaced

. 2<02> byt in Eq. (18).
19755 {P1-Pal P2y" = P{Y"]+P1-Pal PZ¥"~ P17"]
Ill. PARTON MODEL AT THE LOWEST ORDER
+(P3— Pa)[pIPZ—pIPL}. IN LCNC SPACE

In the canonical version of NCQED the matter fields with

vertex with all fermions and photons on shell:
aqrry P charges 0 or=1 are allowed, i.e., charged leptons and pho-

a3(6%) ton. But in the LCNCQED the quarks as well as the leptons
% [(ki+Kky)(Ky+Ky)g7P+ (kq+kg) (K +K3)g™ and photon, can be accommodated in the theory. Therefore

we can examine the NC effects for the processes which con-

+ (Kot ks)P(Ky+ k3) g™+ (Ko + K1) - kg y"g7? tain quarks. For this purpose we consider inclusive inelastic
electron-nucleon scattering. In this process the electron, at

+(Kgt+ky)-ksy’g™+ (ks +ka) - ki y°9™], (16)  the lowest order of the parton model, interacts with free
) ] o charged partons via one photon exchange therefore modifi-
wherek;,i=1,2,3, are defined in Fig. 1. cation in the obtained results with respect to the usual space

aqyyyy vertex in general case is zero because in Edcan pe expected. To this end we explore the differential cross
(15) terms which contain two fermions and four photons aresection for the unpolarizee-N scattering as follows
— g DA Y@ and — gD A O or
S (19
= 2 wvs
en EQ

_— d?c
| — _
%( POAAA, G, AP O -y OA A, G, A AN, dE'dQ

which is equal to zero. For the pure gauge vertices up to th&/nereE E', v=Q, L*” andW,, are initial and final en-

order 62 there is only four photon vertex which has been ergy of electron, the momentum transfer, the electron and the

already obtained if9]. These rules for vertices is relevant to NUcleon scattering tensor, respectively. -EL?’ vertex in the
study the phenomenology of LCNCQED. For instance at the-CNCQED is given in Eq(17) thereforeL“" can be easily
lowest ordefi.e., tree levelthe correction tajqy vertex can  obtained as

be obtained for on shell fermions as L <02 ,
= — 4
(0% 4 b 2(1+ 384 ° ) r((P+m)y,(P+m)y,)
—i y
9] 1+ 3g4%" | 7" (17

<02 4 2 ’ ’ ’ 2
wherek is the photon momentum. For the cross section of 1+ 384Q (PuPyFPuPL=GpP P+ 8,M).
the proces® e*— u* 1™ such a correction results in (20

=2

034017-3



M. HAGHIGHAT AND M. M. ETTEFAGHI PHYSICAL REVIEW D 70, 034017 (2004

The inelastic nucleon scattering tensor is proportional to the (6%

absolute square of the nucleonic current therefore we need Wy(Q?,v,(6%)) =W, +4CP- P'sz,

the vertex function () for the nucleonic current in the NC

space. Since it is a Lorentz vector therefore the most general

form of I' , can be written as WZ(QZ,V,<02>):W2. (27

r,=Ay,+BP,+CP,+iDP""c,,
In the high energy limit the mass of the electron can be

+iEP"Y0,,+FP"0,,+GP""0,,, (21)  neglected and the differential cross section for the inclusive

] ) _e-N scattering, in terms of Bjorken variable= Q%/2v and

where A,B,. . .,Gdepend on the Lorentz invariant quantity. {he inelasticity parameter=(E—E’)/E, can be cast into

The gauge invariance and using the Gordon identity leads to

u(P)HT ,(P",P)u(P)=u(P")[Ay,+iB(P'—P)"c,, d2o Amsa? 62 2
g § g v B E o <3831Q4 xy?FENQ2 x, (%)
+C(P—P")"6,,]u(p). (22 XdYlen  Q
- xyM?
We can now construdtv,,, as follows: 1oy N) FSN(QZ,XKGZ))}, 28)

1 TP *T (D’ ’
W,.,=5 2 [u(P")I,u(P)]*[u(P")I",u(P)]

spin where My is the nucleon massFSN=MWeN, FSN

1 =(vIMy)WS"N ands is the Mandelstam variable. In the par-

= Etr{(AV"_iB(P_ P) o\ +C(P—P)* ton model at the lowest order, one consider the elastic scat-
tering of the electron off a free point charged parton with

massM;, momentumP; and chargey;e. Therefore the cross

7 ' ; N =YAY)
X0 (PTHM))(AY, +IB(P—P")0,, section for this scattering can be easily constructed from the

+C(P—P"?D, (P+ M)} (23) results for the electron-muon scatterirmpe Eq.(18)] as
vp .
Since the weight function is an even functiondf the odd q d <02>t2
functions of #*” have not any contribution on the cross sec- J9 [ 29 (1+ i ) (29)
tion thus Eq.(23) can be cast into dQ? \dQ? 0ED 96
(6%)

Ww:W?w’LA'P' P’ 12 C(°g,,—0u), (29 wheret; is the Mandelstam variable for the partanlf we
neglect the electron and the partons masses in the Briet frame
whereq,,=(P—P’),, g?=—Q? andW’,, is the commuta- of reference
tive counterpart of the scattering tensor and is given as

0. P.q d,=(0,0,04=0%=(0,0,04Q%
. 0 22 pwr -0, %
PM:(ﬁ,O,O,_ﬁ), T:’)>MN1
P-q| W,
X\ Py, — IVER (29
N

P2=P2-P2=0~M§3, (30
W, and W, are the structure functions and depend on the

Lorentz invariant quantity such @? »=P.Q and(¢?).  and after a little algebra the cross section in terms afdy
One can see that the second term in @4) can be absorbed \5riaples becomes

in Wy andW,,, can be generally written as

el a,d, 5 ) d’o;  Ama’qix | s?+u? <02>t2)
W,uv g,lLV+ q2 )WI(Q 1V’<0 >) dxdy_ Q2 252 5(§| X) 1+ 96 ’
(3D
P-q P-q| W,(Q%1,(6%)
P || PO 3 2 ' _ _
q q MK whereé; is a fraction of the nucleon’s total momentum car-
(26)  ried by theith parton(i.e., P{'= ¢;P*) and the Mandelstam
variables forith parton in terms of the Mandelstam variables
where for the whole nucleon are
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si=(p+P)?=§s, One can use the data on the deep inelasiit scattering to
obtain the upper bound on the value of the parameter of

ti=(P,—P/)?=t=—Q? (32 noncommutativity in the LCNCQEDA | cnc- Equation(36)
shows that

u=(p’ —Pp?=§u. FQC—Fg_WZ)Q“_ Q*

Various types of partons carry a different fraction of the par- FO 192 1At ]
ent nucleon’s momentum therefore for the parton momentum 2 LCNC
distribution functionf;(&;) with the appropriate normaliza- whereA  cyc= (124 %)) The measurements &%, struc-
tion: ture function in deep inelastic scattering can provide a test on
the noncommutativity of space. For examplgin positron-
proton neutral current scattering has been measured with sta-
tistical and systematic uncertainties below 2%3]. There-
fore, as an estimation, one percent error in the experimental
one has value of the structure function fofQ?= 200 GeV results in

<02>t2) ALCNCN300 GeV.

96

(38)

1
fo d&ifi(&)=1, (33

d?c B 2ma’s
dxdy o4

1+

[(y—1)%+ 1]2i fi(x)afx IV. SUMMARY
(34) We completed the Feynman rules for the Lorentz conserv-
ing noncommutative QED up to the ord@?). Besides two
fermions and one and two photons vertices which has al-
2Xy2F(laN(Q2,X,<02>)+2(1_y)F§N(Q2,X,<62>) ready introduced if12] there is a two fermions and three
photon vertex given in Eq.16). The parameter of noncom-
(65Q* mutativity is a dimensional quantity therefore the dimension-
192 ) less form factors in lepton-nucleon scattering should depend
on (#*Q* and violate the Bjorken scaling. We explicitly
(35  obtained this violation in Eqgs(36) and (38) while the
Callan-Gross relation still holds as is shown in E3j7). The
obtained results provide an experimental tool to find if the
(69Q* nature can be described by LCNC-space or not, Gor
192 ) (360  ~1.1A | cne— 2A cne there is 10—100 % correction which
can be easily verified in comparison with the experimental
data.

Now comparing Eq(34) with Eq. (28), whereM =0, reads

1+

=<y2+2<1—y>>2i fi(x)gx

Equation(35) shows that

1+

FS“(QZ,X,<02>>=Ei f,(x)g%x

In other words, the parton model at the lowest order in
LCN_CQEI_D violates the Bjorken scaling but Callan-Gross ACKNOWLEDGMENT
relation still holds:
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