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Parton model in Lorentz invariant noncommutative space

M. Haghighat1,2* and M. M. Ettefaghi1
1Department of Physics, Isfahan University of Technology (IUT) Isfahan, Iran

2Institute for Studies in Theoretical Physics and Mathematics (IPM) P. O. Box: 19395-5531, Tehran, Iran
~Received 19 April 2004; published 19 August 2004!

We consider the Lorentz invariant noncommutative QED and complete the Feynman rules for the theory up
to the orderu2. In the Lorentz invariant version of the noncommutative QED the particles with fractional
charges can be also considered. We show that in the parton model, even at the lowest order, the Bjorken scaling
violates as;u2Q4.
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I. INTRODUCTION

Noncommutative field theories and its phenomenolog
aspects has been, recently, considered by many au
@1–8#. Such theories are mostly characterized on a nonc
mutative space-time with the noncommutativity parame
umn . In the canonical version of the noncommutative spa
time one has

umn52 i @ x̂m,x̂n#, ~1!

where a hat indicates a noncommutative coordinate andumn

is a real, constant antisymmetric matrix. Obviously, the c
stant vectorsu0i andu i j imply preferred directions in a given
Lorentz frame which leads to violation of the Lorentz sym
metry. Since the Lorentz symmetry is an almost exact sy
metry of nature, it is natural to explore the noncommutat
~NC! field theories that are Lorentz invariant from the beg
ning. In this new class of NC theories the parameter of n
commutativity is not a constant but is an operator wh
transforms as a Lorentz tensor@9,10#. Of course in this way
one needs to generalize the star product and operator
for functions of bothxm andumn , appropriately. However, in
both cases experiment should confirm the theories. The
tained upper bounds for the violating Lorentz noncommu
tive field theory are two folds: the first one comes fro
bound states such as the hydrogen atom or the positron
@6,7# and the second one is obtained by scattering proce
for example the electron-electron and the electron-pho
scattering and so on@5,8#; see Table I. In the case of Loren
conserving noncommutative~LCNC! field theory scattering
process is only investigated. The dimensional quantityu in
the noncommutative space imply new aspects in the pa
model as well. In this paper we explore parton model in
lowest order in which a virtual photon interacts with parto
inside a nucleon in a LCNC space. For this purpose
should consider LCNCQED to find the effect of noncomm
tativity on the form factors.

In Sec. II we introduce Feynman rules for LCNCQED.
Sec. III we study the parton model in the noncommutat
space in the lowest order and show how the form factor
the electron-nucleon scattering depend onQ2 and the
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Bjorken scaling is violated. Finally, we compare our resu
with the experimental data and give an upper bound on
parameter of noncommutativity.

II. LORENTZ CONSERVING NCQED

To construct the noncommutative field theories that
Lorentz invariant one needs to generalize the paramete
noncommutativity. Now we review the formalism of the Lo
entz conserving NCQED introduced by Carlson, Carone

Zobin ~CCZ! @9#. In the CCZ approach of NCQEDûmn is an
operator and satisfies the following algebra:

@ x̂m,x̂n#5 i ûmn,

@ ûmn,x̂l#50, ~2!

@ ûmn,ûab#50,

where ûmn is antisymmetric tensor that is not constant b
transforms as a Lorentz tensor. The action for field theo
on noncommutative spaces is then obtained using the W
Moyal correspondence, according to that, in order to find
noncommutative action, the usual product of fields should
replaced by the star product:

f * g~x,u!5 f ~x,u!expS 1

2
]Qmumn]W nDg~x,u!. ~3!

It should be noted that here the mapping to c-number co
dinates involveumn as a c-number due to the presence of
operatorûmn in the Lorentz-conserving case. In this form
lation, the operator trace that is a map from operator spac
numbers, is defined as

Tr f̂ 5E d4xd6uW~u! f ~x,u!, ~4!

where W(u) is a Lorentz invariant weight function and i
assumed to be positive and even function ofu therefore one
has

E d6uW~u!umn50. ~5!
©2004 The American Physical Society17-1
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Furthermore, the weight function is assumed to fall su
ciently fast so that all integrals are well defined. Now t
properties ofW(u) and the definition of the operator trac
Eq. ~4! allows one to extract the interactions in the Loren
conserving noncommutative field theory. To this end the
tion can be written as follows

s5E d4xd6uW~u!L~f,]f!* , ~6!

whereL(f,]f)* depends on bothx andu and its subscript
indicates the* -product which is defined in Eq.~3!. For a
U(1) gauge theory the gauge invariant Lagrangian is

L5E d6uW~u!F2
1

4
Fmn* Fmn1c̄* ~ iD” 2m!* c G , ~7!

where c is a matter field with chargeq and for a gauge
field A

Dm5]m1 iqAm , ~8!

and

Fmn5]mAn2]nAm1 iq@Am ,An#* . ~9!

The matter field and the gauge field as well as the param
of the gauge transformationL(x,u) are functions of bothx
and u. Therefore, using the same method as applied in
construction ofSU(N) noncommutative gauge theories@11#,
one should expand the fields as a power series in the var
u as follows

La~x,u!5a~x!1umnLmn
(1)~x,a!1umnuhdLmnhd

(2) ~x,a!

1•••,

Ar~x,u!5Ar~x!1umnAmnr
(1) ~x!1umnuhdAmnhdr

(2) ~x!

1•••,

c~x,u!5c~x!1umncmn
(1)~x ,a!1umnuhdcmnhd

(2) ~x!

1•••, ~10!

wherea(x), A(x) andc(x) are gauge parameter, gauge fie
and matter field in the commutative space, respectively,
the coefficients ofumn can be obtained as

TABLE I. Upper bounds on the noncommutativity paramet
LNC51/AQ describes the parameter of noncommutativity in t
standard NC space whileLLCNC shows NC parameter for LCNC
space.

NC parameter Bound state Scattering

LNC ;100 GeV 0.1–2.5 TeV
LLCNC ? 0.1–1 TeV
03401
-
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Lmn
(1)~x,a!5

2q

2
]ma~x!Am~x!,

Lmnhd
(2) ~x,a!52

q2

2
]ma~x!Ah~x!]dAn~x!,

Amnr
(1) ~x!5

q

2
Am~]nAr1F nr

0 !,

Amnhdr
(2) ~x!5

q2

2
~AmAh]dF nr

0 2]nAr]hAmAd

1AmF nh
0 F dr

0 !,

cmn
(1)~x!5

q

2
Am]nc,

cmnhd
(2) ~x!52

q

8 S 2 i ]mAh]n]dc2qAmAh]n]dc

22qAm]nAh]dc2qAmF nh
0 ]dc

1
q

2
]mAh]nAdc1 iq2AmAd]hAnc D , ~11!

whereF mn
0 5]mAn2]nAm . Now we needL(x), to extract

the interactions, that can be obtained by inserting the ab
relations into Eq.~7! and performing the integration onu
using the weighted average

E d6uW~u!umnuhr5
^u2&
12

~gmhgnr2gmrghn!, ~12!

where

^u2&5E d6uW~u!umnumn . ~13!

Therefore up to the orderu2 the second term in the Lagrang
ian density Eq.~7! can be rewritten as follows

c̄* ~ iD” 2m!* c5L01Lqqg1Lqqgg1Lqqggg , ~14!

where

L05c̄ (0)~ i ]”2m!c (0),

Lqqg52q~ c̄ (0)* A” (0)!c (0)1c̄ (0)~ i ]”2m!c (2)

1c̄ (2)~ i ]”2m!c (0),

Lqqgg52q~ c̄ (0)* A” (0)!c (1)2q~ c̄ (1)* A” (0)!c (0)

2qc̄ (0)A” (0)c (2)2qc̄ (2)A” (0)c (0)

2q~ c̄ (0)* A” (1)!c (0)1c̄ (1)~ i ]”2m!c (1),

Lqqggg52qc̄ (0)A” (1)c (1)2qc̄ (1)A” (1)c (0)

2qc̄ (0)A” (2)c (0)2qc̄ (1)A” (0)c (1). ~15!

.
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The Feynman rules can be extracted from Eq.~7!, for ex-
ampleL0 in Eq. ~15! leads to the ordinary propagator for
fermion field while the rest terms contain a variety of ver
ces. Comparing Eqs.~15! and ~11! we see that, up to the
order u2, Lqqg contributes to 2-fermion-1-photon (qqg),
2-fermion-2-photon (qqgg) and 2-fermion-3-photon
(qqggg) vertices while Lqqggg has just contribution on
qqggg-vertex andLqqgg has terms which contains two fe
mions and two, three and four photons. In@12# the Feynman
rules forqqg-vertex in general case andqqgg-vertex when
all fermions and photons are on the mass shell is obtain
Here we complete the Feynman rules for the interaction
tween fermions and photons up to the orderu2 as follows.

qqg vertex in general case@12#:

2 iqFgm1
^u2&
96 H ~p” 12m!p2

2p3
m2~p” 22m!p1

2p3
m

1~p” 22m!p1•p3p1
m2~p” 12m!p2•p3p2

m

1
1

2
~~p1•p3!21~p2•p3!2!gmJ G .

qqgg vertex with all fermions and photons are on t
mass shell@12#:

iq2 ^u2&
96

$p1•p3@p2
rgh2p1

hgr#1p1•p4@p2
hgr2p1

rgh#

1~p” 32p” 4!@p1
rp2

h2p1
hp2

r%.

qqggg vertex with all fermions and photons on shell:

q3^u2&
96

@~k11k2!t~k” 11k” 2!gsr1~k11k3!s~k” 11k” 3!gtr

1~k21k3!r~k” 21k” 3!gts1~k21k1!•k3gtgsr

1~k31k1!•k3gsgtr1~k31k2!•k1grgts#, ~16!

whereki ,i 51,2,3, are defined in Fig. 1.
qqgggg vertex in general case is zero because in

~15! terms which contain two fermions and four photons a
2qc̄ (0)A” (0)c (2) and2qc̄ (2)A” (0)c (0) or

iq4

8
~ c̄ (0)A” AmAn8]m8Anc (0)2c̄ (0)AmAn8]m8AnA” c (0)!,

which is equal to zero. For the pure gauge vertices up to
order u2 there is only four photon vertex which has be
already obtained in@9#. These rules for vertices is relevant
study the phenomenology of LCNCQED. For instance at
lowest order~i.e., tree level! the correction toqqg vertex can
be obtained for on shell fermions as

2 iqH 11
^u2&
384

k4J gm, ~17!

wherek is the photon momentum. For the cross section
the processe2e1→m1m2 such a correction results in
03401
d.
e-

.
e

e

e

f

ds

d cosu
5S ds

d cosu D
QED

S 11
^u2&
96

s2D , ~18!

and for the cross processe2m2→e2m2s should be replaced
by t in Eq. ~18!.

III. PARTON MODEL AT THE LOWEST ORDER
IN LCNC SPACE

In the canonical version of NCQED the matter fields w
charges 0 or61 are allowed, i.e., charged leptons and ph
ton. But in the LCNCQED the quarks as well as the lepto
and photon, can be accommodated in the theory. There
we can examine the NC effects for the processes which c
tain quarks. For this purpose we consider inclusive inela
electron-nucleon scattering. In this process the electron
the lowest order of the parton model, interacts with fr
charged partons via one photon exchange therefore mo
cation in the obtained results with respect to the usual sp
can be expected. To this end we explore the differential cr
section for the unpolarizede-N scattering as follows

d2s

dE8dV
U

eN

5
E8a2

EQ4
LmnWmn , ~19!

whereE, E8, A2Q2, Lmn andWmn are initial and final en-
ergy of electron, the momentum transfer, the electron and
nucleon scattering tensor, respectively. Theeeg vertex in the
LCNCQED is given in Eq.~17! thereforeLmn can be easily
obtained as

Lmn5
1

2 S 11
^u2&
384

Q4D 2

tr~~P” 1m!gm~P” 1m!gn!

52S 11
^u2&
384

Q4D 2

~pmpn81pnpm8 2gmnp•p81gmnm2!.

~20!

K
1

K
2

K
3

FIG. 1. qqggg vertex with all fermions and photons on ma
shell.
7-3
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The inelastic nucleon scattering tensor is proportional to
absolute square of the nucleonic current therefore we n
the vertex function (Gm) for the nucleonic current in the NC
space. Since it is a Lorentz vector therefore the most gen
form of Gm can be written as

Gm5Agm1BPm8 1CPm1 iDP8nsmn

1 iEP8nsmn1FPnumn1GP8numn , ~21!

where A,B,. . . ,G depend on the Lorentz invariant quantit
The gauge invariance and using the Gordon identity lead

ū~P8!Gm~P8,P!u~P!5ū~P8!@Agm1 iB~P82P!nsmn

1C~P2P8!numn#u~p!. ~22!

We can now constructWmn as follows:

Wmn5
1

2 (
spin

@ ū~P8!Gmu~P!#* @ ū~P8!Gnu~P!#

5
1

2
tr$„Agm2 iB~P2P8!lsml1C~P2P8!l

3 ûml„P” 81M !…„Agn1 iB~P2P8…rsnr

1C~P2P8!rûnr~P” 1M !…%. ~23!

Since the weight function is an even function ofumn the odd
functions ofumn have not any contribution on the cross se
tion thus Eq.~23! can be cast into

Wmn5Wmn
0 14P•P8

^u2&
12

C~q2gmn2qmqn!, ~24!

whereqm5(P2P8)m , q252Q2 andWmn
0 is the commuta-

tive counterpart of the scattering tensor and is given as

Wmn
0 5S 2gmn1

qmqn

q2 D W11S Pm2qm

P•q

q2 D
3S Pn2qn

P•q

q2 D W2

MN
2

. ~25!

W1 and W2 are the structure functions and depend on
Lorentz invariant quantity such asQ2, n5P.Q and ^u2&.
One can see that the second term in Eq.~24! can be absorbed
in W1 andWmn can be generally written as

Wmn
inel5S 2gmn1

qmqn

q2 D W1~Q2,n,^u2&!

1S Pm2qm

P•q

q2 D S Pn2qn

P•q

q2 D W2~Q2,n,^u2&!

MN
2

,

~26!

where
03401
e
ed

ral

to

-

e

W1~Q2,n,^u2&!5W114CP•P8
^u2&
12

Q2,

W2~Q2,n,^u2&!5W2 . ~27!

In the high energy limit the mass of the electron can
neglected and the differential cross section for the inclus
e-N scattering, in terms of Bjorken variablex5Q2/2n and
the inelasticity parametery5(E2E8)/E, can be cast into

d2s

dxdyU
eN

5
4psa2

Q4 S 11
^u2&
384

Q4D 2Fxy2F1
eN~Q2,x,^u2&!

1S 12y2
xyMN

2

s DF2
eN~Q2,x,^u2&!G , ~28!

where MN is the nucleon mass,F1
eN5MNW1

eN , F2
eN

5(n/MN)W2
eN ands is the Mandelstam variable. In the pa

ton model at the lowest order, one consider the elastic s
tering of the electron off a free point charged parton w
massMi , momentumPi and chargeqie. Therefore the cross
section for this scattering can be easily constructed from
results for the electron-muon scattering@see Eq.~18!# as

ds i

dQ2
5S ds i

dQ2D
QED

S 11
^u2&t i

2

96 D , ~29!

where t i is the Mandelstam variable for the partoni. If we
neglect the electron and the partons masses in the Briet fr
of reference

qm5~0,0,0,A2q2!5~0,0,0,AQ2!

Pm5~ P̃,0,0,2 P̃!, P̃@MN ,

P25 P̃22 P̃250'MN
2 , ~30!

and after a little algebra the cross section in terms ofx andy
variables becomes

d2s i

dxdy
5

4pa2qi
2x

Q2 S s21u2

2s2 D d~j i2x!S 11
^u2&t2

96 D ,

~31!

wherej i is a fraction of the nucleon’s total momentum ca
ried by thei th parton~i.e., Pi

m5j i P
m) and the Mandelstam

variables fori th parton in terms of the Mandelstam variabl
for the whole nucleon are
7-4
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si5~p1Pi !
25j is,

t i5~Pi2Pi8!25t52Q2, ~32!

ui5~p82Pi !
25j iu.

Various types of partons carry a different fraction of the p
ent nucleon’s momentum therefore for the parton momen
distribution functionf i(j i) with the appropriate normaliza
tion:

E
0

1

dj i f i~j i !51, ~33!

one has

d2s

dxdy
5

2pa2s

Q4
@~y21!211#(

i
f i~x!qi

2xS 11
^u2&t2

96 D .

~34!

Now comparing Eq.~34! with Eq. ~28!, whereMN50, reads

2xy2F1
eN~Q2,x,^u2&!12~12y!F2

eN~Q2,x,^u2&!

5~y212~12y!!(
i

f i~x!qi
2xS 11

^u2&Q4

192 D .

~35!

Equation~35! shows that

F2
eN~Q2,x,^u2&!5(

i
f i~x!qi

2xS 11
^u2&Q4

192 D . ~36!

In other words, the parton model at the lowest order
LCNCQED violates the Bjorken scaling but Callan-Gro
relation still holds:

F2
eN~Q2,x,^u2&!52xF1

eN~Q2,x,^u2&!. ~37!
J

A

.
h

,

ev
F.

ev

03401
-
m

n

One can use the data on the deep inelastice-N scattering to
obtain the upper bound on the value of the parameter
noncommutativity in the LCNCQED,LLCNC . Equation~36!
shows that

F2
NC2F2

0

F2
0

5
^u2&Q4

192
5

Q4

16LLCNC
4

, ~38!

whereLLCNC5(12/̂ u2&)1/4. The measurements ofF2 struc-
ture function in deep inelastic scattering can provide a tes
the noncommutativity of space. For exampleF2 in positron-
proton neutral current scattering has been measured with
tistical and systematic uncertainties below 2%@13#. There-
fore, as an estimation, one percent error in the experime
value of the structure function forAQ25200 GeV results in
LLCNC;300 GeV.

IV. SUMMARY

We completed the Feynman rules for the Lorentz conse
ing noncommutative QED up to the order^u2&. Besides two
fermions and one and two photons vertices which has
ready introduced in@12# there is a two fermions and thre
photon vertex given in Eq.~16!. The parameter of noncom
mutativity is a dimensional quantity therefore the dimensio
less form factors in lepton-nucleon scattering should dep
on ^u2&Q4 and violate the Bjorken scaling. We explicitl
obtained this violation in Eqs.~36! and ~38! while the
Callan-Gross relation still holds as is shown in Eq.~37!. The
obtained results provide an experimental tool to find if t
nature can be described by LCNC-space or not, forQ
;1.1LLCNC22LLCNC there is 10–100 % correction whic
can be easily verified in comparison with the experimen
data.
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