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Hard gluon damping in hot QCD
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The gluon collisional width in hot QCD plasmas is discussed with emphasis on temperaturés ,nebere
the coupling is large. Considering its effect on the entropy, which is known from lattice calculations, it is
argued that the width, which in the perturbative limit is given #y g2In(1/g)T, should be sizeable at
intermediate temperatures but has to be small closk, tolmplications of these results for several phenom-
enologically relevant quantities, such as the energy loss of hard jets, are pointed out.
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[. INTRODUCTION dynamic potential is expressed in termsdoéssedoropaga-
tors, which are determined self-consistently. The restriction
The dispersion relation and the damping rate of singleto the leading loop ordés) for large coupling may seem
particle excitations in many-particle systems are closely recounter-intuitive at first glance. Since it is essential for the
lated to a variety of phenomenologically important quanti-following, it is worth mentioning another, yet related, moti-
ties. In a QCD plasma at temperatures much higher than thgation: An asymptotic series, to give the best approximation
transition temperatur@&;~200 MeV, where the coupling  possible, should be truncated at an order relatedrselyto
is small and perturbation theory should be applicable, thghe coupling; for the QCD thermodynamic potential n&ar
quark and gluon excitation energies follow directly from the possibly already at the ordéd(g?) [6]. Unless the coupling
real part of the 1-loop self-energies, which are of the ordejg a1 such a low-order perturbative result is, however, not
(gT)”. The calculation of their width, however, requires al- yormogynamically consistent since various thermodynamic

(rjgady to IO\I/qvest ordgr nghadsuthmmatml)r? of qfll_r;neéy mtany gquantities are connected to each other by derivatives with
lagrams. Resumming har ermal lodp$TL), Braaten respect to the temperature. Sintés also the relevant scale

and Pisarski1] obtained the widths of quarks and gluons in the running coupling, the derivatives introduce higher or-

. . 2 . .
rest, Wh'qh are proporthnal o°T. The case of excltations  yers of the coupling, which for large coupling are not negli-
with a finite momentum is more intricate because even wit ible. Therefore, in addition to the leading or@irin g, a
tt;}e nHTL fres%rrrl]matrl]og th? rﬁsu{}Vi?k:vergis ﬁdu;athto trhde rexlf[hermodynamically consistent approximation has to resum
;2'? g:itgersoa ngngtig gnge?sss.and/ofl fr:leowi?jth ?tsoelfethoesomecontributions of higher orders.
Widt’h of moving charged excitations becomesfln(l/g)'ll A truncation of a resummation scheme based on 2-point

. S functions is,a priori, delicate for QCD because of gauge
on rather general groundg]. The logarithm indicates that invariance. This problem can be evaded by receding to ap-
even in the case of weak coupling the gluon width tests di

. proximately self-consistent resummations of the thermody-
rectly .th? nonperturbative sector Of. QCD. ._hamic potential using appropriate gauge-invariant approxi-
A similar preakdown of perturbation theory oceurs also "Mmations of the propagators. Indeed, results calculated with
the calculation of the thermodynamic potentidl(T) 1| propagatorgs,g] agree with QCD lattice data down to
=—p(T)V, at Orger@_(? ) [3]. The expansion ig, whichis 4o eratures of aboutT3.? The HTL propagators may be
known up toO(g"Ing ) [4], is not reliable(in the sense of o4 ,caq even further by neglecting the Landau-damping
systematically improvable with the orden the physically

) X . bed | lativistic h .__parts and retaining only the dominant pole contributions, ap-
interesting regime probed in present relativistic heavy 'O;Eroximating as well the dispersion relations by the

experiments. For f[he large coupling strength expected at te isymptotic mass shells. The resulting phenomenological
peratures near, it does not converge but shows a behavior

| . : models[11] can describe the lattice data even closeTto
typical of asymptotic series. In fact, one can hardly expect Pecause they allow for an infrared enhancement of the run-

converging expansion since it has to be defined in a circle iMina counling compared to the 2-loop formula useddrl 3
the complex plane, while in QCD a transitigf— —g? is g colipiing P P G8ol.

presumably non-analytic. In perturbation theory, this mani-

fests itself in the number of diagrams_incrgasi_ng rapidly with For a systematic study of resummation improvements of pertur-
the o.rder..A strategy to remedy. the situation in pra_c'ucal C_al'bative results, sef7].

culgtlops is a partial resummation of t_he perturbative series, 2y ote that the HTL propagators, while derived for soft momenta,
taking into account those classes of diagrams whose NUMbREe the correct limit for the thermodynamically relevant large mo-
increase most rapidly. These are related to the leading ordefgenta near the light cone. The results obtained within 2-loop HTL

in the loop expar?sion in th@—deri_vable approximation  perturbation theory10], on the other hand, agree with the lattice
schemd5] to be utilized below. In this scheme, the thermo- gata to a lesser extent.

3with an infrared-enhanced coupling, also an approximately self-
consistent HTL resummatidi 2] can describe the lattice data down
*Electronic address: Andre.Peshier@theo.physik.uni-giessen.deto T..
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In all of these approaches the observed decrease in the effec- Il. PROPAGATOR AND THERMODYNAMICS

tive degrees of freedom nedr, is directly related to _the Following the work of Luttinger and WarfR0], the ther-
temperqtur_e dependent mass seale g_T th?‘t characterizes modynamic potentiaf) of a system of particles with a given
the excitations. Interpreted as quasiparticles, they becomgaraction can be expressed in terms of the exact 2-point
heavy nearT. due to the running coupling and are, thus, fnction(s). Considering a scalar theory with the propagator
suppressei While this apparently grasps important interac- A = the expression reads in the imaginary-time formalism
tion effects (as motivated aboye so far none of the ap- (setting the volume/=1)

proaches takes into consideration the expected width of the

quasiparticles. This, however, & priori not justified for 1 _

large coupling, when the width might become comparable to 0= 2 i(ln(—A )+IIA)—®[A], @
the mass of the quasiparticlgs4].

In principle, the dressed propagators and the widths caWhereH:Agl_A—l_ The contributiond®[A] is the sum of
be calculated, by Schwinger-Dyson equations, in thehe 2-particle irreducible skeleton diagrams; fordd) ¢>
®-derivable approximation scheme. However, apart from thet+ (g2/41) ¢* interaction, it reads
aforementioned sensitivity of the width to the soft QCD sec-

tor, there is the requirement of gauge invariance of physical d=3 e +3 (I) +12 @ + ...
guantities such as the width itself or the deduced thermody-

namic potent|al._ Moreover, the re-summed propagatc.)rs neephe functional in Eq(1) is to be evaluated with the exact
to be renormalized nonperturbatively. Notwithstanding the

: ) S propagatorA, which is obtained from the stationarity condi-
recent progress in these issa$-17, the problem is in- tion SQ[A]/6A=0. This functional variation is equivalent

volved. to
It therefore seems interesting to ask a reversed sim-
pler) question: What can be inferred abdimnportant fea- 5P
tures of the propagators from quantities which can be reli- =2+, (]

ably calculated by other means? E.g., the thermodynamic

bulk properties which are known rather precisely from Iatticei_e_' the full self-energyl is obtained by cutting a full propa-
QCD should, by phase space, reflect relevant properties @fator line in the skeleton diagrams d@f. From this exact
the hard excitations with momenta~T. Indeed, the large representation ofQ), self-consistent(* ®-derivable”) ap-
asymptotic masses of the excitations “predicted” in proximations5] follow by truncation of the expansion db
[8,9,11,12 compare nicely with direct results from lattice (and, accordingly, the expansionki at a given loop order.
QCD [18]. To address the width as another characteristic To derive the entropy in terms of the resummed propaga-
feature | will consider its effect on the entropys tor, the Matsubara-sum in El) is first transformed into a
=—0Q/JT. Sincesis a measure of the population of phase contour integral in the complex energy plane. After wrapping
space, one expects an increased entropy for a system of offie contour around the real axis one obtains
shell particles as described by the width. From the paramet-
ric estimatey~g2In(1/g) T, the width should become larger Q
with increasingg. This leads to the question whether a large
width could be reconcilable with the small entropy n&ar
as calculated on the lattice. where A now denotes the retarded propagatafys

In this paper, some general relations between propagators/ k3 dw/(2m), [ie=[d*k/(27)°, and n(w)=(exp@/T)
and entropy will be discussed to approach this question. Sec=1) * is the Bose-Einstein distribution function. Taking
tion Il starts with a brief outline of the formalism of self- 6¢/6A=0 into account leads to
consistent approximations, which allows to express the en- 50 an P
tropy as a simple functional of the propagator. In Sec. lll, the  g—_——— _ | —_|m(In(—A~H)+A)+ —
case of particles with a Lorentz spectral function is consid- al k4T AN
ered in some detail, followed by an analysis of the sensitivity _ dapg o @
of the results on the spectral function. For the sake of sim- '
plicity a scalar field theory is discussed before switching
over to QCD in Sec. IV. Given the remarkably universal
scaling behavior of the QCD entropy for various numbers of an
quark flavord19], | consider here the representative case of sdaP= — f 4a—T(Im IN(—A"YH+ImII ReA), 5)
the quenched limit of QCD. In the conclusions, some impli- K
cations of the present findings are pointed out. Some formaétnd
details were deferred to the Appendix.

=fk4n(w)lm(ln(—A’1)+HA)—<I), 3)

here

aT

= f&nR Il A+a¢ 6
s'= T ell Im —A. (6)

4For another quasiparticle model §8&3].
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Remarkably, the first term ig’ exactly cancels the contribu- dressed propagator, the entropy functional will be evaluated
tions from® with one and two vertices. This cancellation is with various physically motivatednsdze for the propaga-
basically a topological feature and holds also in other theotor, taking into account the width. Verified first, under rather
ries[21], including QCD[8]. This implies that the contribu- general assumptions, is the expectation that the entropy is
tion (5), given the propagator, is the leading-loop resummedncreased for a non-zero spectral wids>0. To this end,
entropy in the®-derivable scheme, which in the context of the analytic propagator, for compléy, is expressed in the
Fermi liquid theory is sometimes called tdgnamical qua- Lehmann representation,

siparticle contributionto the entropy. According to the argu-

ments put forward in the Introduction, it is a preferable ap- A%y k)= fm d_w p(w,k) (10
proximation of the exact entropy at large couplig, 0 —27 Kg—w
s=s9P=5(0) + As, (7)  The spectral function is the discontinuity of the propagator at
) o ) ~_the real axis,
Although this approximation is genuinely nonperturbative, it
has a simple 1-loop structure and it does not depend on the plw,K)=A%w—iek)—A%(w+iek), (11
vertices. For the decomposition in E{), the integrand in
Eq. (5) is rewritten using which is real, odd inw with wp(w)=0, and it satisfies the
sum rule
ImIin(—A~YH)=msgnimA)—argA)
* dw
— 7sgrImA)@(ReA) J,wz“’f’(‘”’k):l (12)

—arctarim A/ReA). for all values ofk. This implies that the propagator ap-

In the first term, the real part of the propagator is negative fOIproaches the free limit at larde,

small >0, as shown below, and it changes signast

= wﬁ. Using sgn(ImM\ (w)) = —sgn(w), this term yields the A3(kg, k)= J'w
expression of the entropy of free bosons with the dispersion 0
relation w, (and zero width,

do p(w,k) ko==

w — .
2 2 2

These general properties of the spectral function have several
1 implications for the retarded propagatak(w)=A%w
(o) — — —aoxlT . . . . . s .
S _Tfkg( Tin(1—e “")+ on(wy)). ® 1) Itsimaginary part, which by the reflection principle is
—1p(w), satisfies

In the following, w, will simply be referred to as the “dis-

persion relation” of the dynamical quasiparticles although it ImA(w=0)=0,
need not to coincide with the real part of the p@feexisteny
of the propagator. The effects of a non-zero spectral width ImA<O for w>0,

are solely due to the remaining contributions,
ImA—Q0 for w—o,

d A
AS:I an arctan\ — , (9)  Similarly, one readily infers
kedT 1+

do' p(w’
whereh =Im A/ReA. For later reference it is noted that the ReA(w=0)=— o A - )
second term in the parenthesis isAntimes the derivative of T
the phase arctan with respect to Im\. _2

The sum of the expressio8) and(9) yields the dynami- ReA—w for w—oo,
cal quasiparticle entropy as an approximation of the exact R :
entropy (for notational convenience the differentiation will and that odd-order derivatives of B¢w) vanish atw=0.

be omitted in the followingas a functional of the propaga- 'NOW consider a generic spectral function with a dominant
tor. Facing the mentioned difficulties in the calculation of theP&2k néai and a characteristic width, and possibly with
some additional minor substructures. In this caseARe)

changes its sign only once fas>0, i.e., the “dispersion

SWith regard to the application in QCD it is emphasized that therEIat'on" @ IS Unique, which \_N'”_ be the only assumption for_
cancellation ins’ holds for any propagator, in particular for the the following argument. In principle then, there are two typi-
exact one. Parametrizing later the exact gluon propagator by th@l cases of propagators, see Fig(ilthe imaginary part is
dispersion relation and the width, which are physical quantitiesegular, and the real part is smooth, afiid the imaginary
ensures the gauge invariance of the results. At the same time, reBart is singulafbut integrable due to Eq12)], and the real
soning along the same lines as in the Introduction, the deviation opart is discontinuous. Common to both cases is that the dis-
the entropy calculated from the self-consistent and from the exaddersion relatiorw, of the dynamical quasiparticles is deter-
propagator should be small. mined by the real part of the self-energy,

<0,
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2 way, symmetric neatw, , where\ (w)=Im A/ReA is singu-
I ] lar. Since the second factor in the integrand in &,

dn_ ) exp w/T)
dT T2 (expw/T)— 1)’

AV

(14)

is monotonically decreasing with, it is plausible thatAs
>0. A rigorous argument is given in the Appendix. From
Fig. 2 it can also be expected that the entropy increase is

w
smaller for singular spectral functions than for regular ones.
0.5 ——T——1——7
K— lll. SPECTRAL FUNCTIONS
0.0 frorrrerrerrenreneeniiee g .
> S. ,,—"‘ A. Lorentz spectral function
4 05l \\ N | In the previous section, the spectral function was intro-
' \:' duced to deduce some general properties of the propagator
I'.: l and the entropy. At the same time it is more intuitiiaad
1.0 — i L é : é — more efficient due to the analytic properlige model the
spectral function rather than the propagator. From the spec-
w

tral function of free relativistic particles with\,*=k3

FIG. 1. The real and the imaginary parts of the propagaters — w?,, wherew?=m?+k?,
and Ap; defined in Eq.(16) and in Sec. Il E, respectively. All 5 5
quantities are in units of the width, and the energy scaiin the po(@) =27 d((0—wy)) = d((w+ wy))],

spectral functions is chosen such that= 2. . o .
an often usedinsatzto describe non-zero width is obtained

1 . by replacing thes-function by a Lorentzian,

ReA™ Y (wy)=A, (wy) —Rell(w,)=0. (13

S — (15
| = R =]

The dispersion relatiow, and the peak position ip coin-
cide for singular spectral functions, but not necessarily for
regular spectral functions. The integrand of the entropy conThe corresponding retarded propagator can be easily calcu-
tribution As is discontinuous aty,; shown in Fig. 2 is the |ated by a contour integration,
parenthesis term in E¢9). This factor is, in an approximate

1

w?—E%2— 72+ 2i yw.

A (w)=

In general, the analytical continuation of the retarded propa-
gator to complex energies is analytic in the upper plane. In
the present case it has poles in the lower plan&yat=E
—i7y. The parameteE is also related to the dispersion rela-
tion (13) of the dynamical quasiparticles. Choosi&g(k)
=k%+m?— y2,° the propagator becomes

(16)

A(w,k)= :
T T T L(w ) w2—k2—m2+2iyw

/2

With this convention, the parameter’ corresponds directly

to the real part of the retarded self-energy. This has the ad-
vantage that the dispersion relation does not depeng,on
W= Wp.

o 1 2 3 4 5There is no ambiguity in the spectral functi¢hs) for y?>k?

+m? as obvious from the alternative representatign- 4 yw/(w?

—E2-9%)2+49?w?). Note, however, that the spectral function be-
FIG. 2. The functionsA=ImA/ReA, and f(\)=arctam comes slightly more asymmetric, and that the poles of the propaga-

—\(1+\?) [occurring in Eq.(9) in the integrand ofAs] for the  tor (16), at ko= —iy* (w2~ y?)*2 turn purely imaginary fory

propagators shown in Fig. 1. > W .
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FIG. 3. Top: The entropg, (M, ) as a function ofy for several FIG. 4. The séensitivit)(zo) of the entropys, on the momentum
values ofm (v andm are in units ofT). The dotted lines show the dependence aft (.top) andy (bi)ttom). The parameteis arg varied
expansion(19) for m=0 andm/T=1. Bottom: Contour plot of ~for k<T (see textin the rang¢ 7,4] (outer bangland[3,2] (inner
s, /sy, the contour spacing is 0.25, and the straight line markgPand. In both cases the asymptotic massris-4T.

s(m,y) =sp.

Turning now to the entropy, one should note that in gen- stmy)=so|1-—— —Z+— o+ (19
eral the mass and the width parameters are momentum- 77 77
dependent. The resulting effects will be considered below; _ _ . :
for now the parameters are assumed to be constant. For tigf Small values ofm and y is derived. It is interesting to

propagator(16), the contribution8) to the dynamical quasi- note _tha_t this (r(gsult _coincides with the expansion of the
particle entropy, contribution s with complex masses, s (m,y)

~3(sO(m+i)+s{O(m=iy)).

s(°>(m):l (=TIn(1—e *m M)+ w N(w,/T))
L T/ m m ’ B. Momentum-dependent mass and width parameters

17 Due to phase space, thermodynamic bulk properties are

determined by hard momenta. Therefore, the entropy is ex-

rRected to be not very sensitive on the exact momentum de-
pendence of the width as well as on the dispersion relation

is simply the entropy of free bosons with mass Corre-
sponding expressions for QCD have been the starting poi

in the approacheldl1], which interpreted the thermodynami- )
cally relevant transverse gluon and the quark particle{described by a momentum dependent mass paramater

excitations as quasiparticles with masses given by théon momenta. To quantify this expectation, the squared mass
: : ; : and the width are varied fdt<T by some factor fromm?
asymptotic self-energie@nd respective degeneragieshe hich i h . |
contribution(9) due to the non-zero width reads explicitty ~2nd ¥, which are now considered as the asymptotic values.
Denoting the resulting entropy ts/ , the quantity

A f an 2yw 2
s (m,7y) T arctanm er__L' (20)
SL
w2~ w? . itivi
—2yw m ) . (18  provides a measure of the momentum sensitivity. As shown
(w?— w%)2+(2yw)2 in Fig. 4,r is indeed only of the order of a few percent when

varying the dispersion relation.
A numerical integration shows—in line with the general The sensitivity to the low-momentum behavior of the
expectation—that the total entropy=s{’+ As, increases width is even less. The figures show the sensitivity for a
with the width and decreases with, cf. Fig. 3. An notable rather large asymptotic mass; for smaller masses the sensi-
detall is thats; (m= y) is equal to the Stefan-Boltzmann en- tivity is even lower. This quantifies the expectation that the
tropy of the massless ideal gag= 55 72T>. This is proven entropy is, to the extent required below, insensitive to details
in the Appendix, where also the expansion of the propagator at soft momenta.
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125 ———7——T——T1— tropy is actually sensitive to. Already expected in Sec. Il
il ] were differences between the two generic types of spectral
] functions shown in Fig. 1. In any case, the integrand of the
0.75 contribution(9) is notably different from zero only for ener-
QU F . . .
05 gies|w— w,| =1y, cf. Fig. 2. Away to focus on this relevant
E interval is to consider large times>+y !, in the Fourier
ey transformp(t) of the spectral function.
0.0(;
D. Spectral functions in Fourier space
w
The Fourier transform of the spectral function is defined
by
» do —iwt
IS p(O=| >—e “plw). (23
-
The sum rule(12),
0.0(; ST e—— ;1 1_J’°° dw _foc dtoft J’w do .
; = —wp(w)= - p(t) oL

FIG. 5. Top: The spectral functions of the propagatdrsand ~ which after a partial integration becomeégdt p(t) 8(t),
Ag with wm=12 (all quantities are in units of); if y=T, this  translates into
corresponds, e.g., tt=m=T. Bottom: The corresponding entro-
pies as functions of andm (in units of T); for small masses the dp(t) )
lines practically coincide. dt =l (24)

t=0

C. Specific shape of spectral function . . . .
It is plausible that the sum rule tests the short-time behavior

For a fiI’St test Of the SenSitiVity to the SpeCifiC form Of the in Fourier Space Since in momentum Space |t iS C|ose|y re-
spectral function, let us consider the normalized function |ated to the fact that the propagator approaches the free limit
\/E 3 . 1 at large energies. The Lorentzian spectral functits), with
Y

PQ(‘U): E _ 4 4_ 4 41’ sinEt
(0—E)*+9" (0+E)*+vy pL(t)=exp(—y|t]) =

which has a more pronounced peak than the Loren{Zifin

It can be expressed in terms of the functignwith complex  obviously complies with the conditiof24). From the fact

width parameters, that the oscillations and the attenuatiorpgf) are related to
the position and the width, respectively, of the peak@b),

1 . - - - one can easily construct other conceivable spectral functions.
pal7)= (NIl @y IS P

An analogous relation easily allows to obtain the correspond- B SinEt
ing propagator in terms of the Lorentz propagatbs). Re- pi()=1(1) iE
placing furthermorey— /2y, the result reads

(25

functions withf(0)=1 provide candidates for possible spec-
a®+2ab’—4ib® tral functions ifwp(w)=0 is satisfied.
a%+4b* ' (22 The similar entropies for the propagataks and Ag,
shown in Fig. 5, may now be attributed to the similar long-
wherea= w?2— w% andb=2yw. The propagatof22) coin-  time behavior of the spectral functiohaith the replacement
cides withA (w,k) for @—0 andw— *+ as well as onthe ¥— 27y, which led to the propagata2), also p(t) de-
common mass she#?= w?,. Thus, differences in the entro- creases as exp(y), cf. Eq. (21)]. Before studying this in

pies can indeed be attributed to the spectral form rather thaore detail, it is noted that in terms @i(t) the retarded

Ag(w,k)=

to a change in the dispersion relation. propagator reads

The differences in the propagatakg andAq, apart from B
the analytic structure, are considerable for typicql values of A(ko):iilf dtelkot p(t). (26)
the 4-momentum; see Fig. 5. Nonetheless, there is almost no 0

effect on the entropy even for large valuesnofind y. This
example leads to the question which featurepadhe en-  For theAnsatz(25),
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TABLE |I. Damping models fop(t), cf. Eq.(25), together with 3T T
their Fourier transformsF as defined in Eq(28). I'(0,z) denotes
the incompletel’-function, K, is the modified Bessel function of
the second kind.. is the modified Struve function, Erf is the error
function, andx= w/y. =
Model f(t) yF o)
L exp(—t)) (1-ix)7*
Py (L+9t)) 2 e ™I'(0,—ix)
P, (1+y]t)h) 2 1+ixe ™*T'(0,—ix)
: : : R . . .
Pn (1+9[t)" (L+ix[yFa-1D/(n—1) osf .
H (1+(y)H) 12 T I i L |
' Ko([X))+ 7 sgn@) [ o([x]) — Lo(|x))] Rl ]
G exp(—(1)%) 3T exp(=(¥2)?)[ 1+ Erf(ix/2)] w 04 -
0.2 -_—-‘—""'”ﬂ?’q—:v—ugﬁﬁ _-
i [ ool o -
Aq(ko) = —f dtelo(elFt— e EYf(t) oo et
2E Jo Y

i FIG. 6. Comparison of the modefs, and P with L, analogous
= E(ﬂ Ko+ E)— F(ko—E)), (27)  toFig. 5. The entropies almost coincide for the caBesand PI.

pther hand, the deviations between the moéglandP] are
only at the level of a few percent. This quantifies that the
entropy is indeed sensitive to the long-time behaviop @),
o while the short-time behavior is far less relevant.
}‘(w)zf dte“tf(t). (28 In the modelsP,,, the spectral function decreasestas.
0 Since for differentn the functionsf,,(t) are related by de-
rivatives with respect tt their Fourier transforni28) can be
E. Non-exponential time behavior calculated by a simple recursion relation given in Table I.
Figure 7 shows the spectral functions for=1 . . . 4 along

the propagator can be expressed by a “retarded” Fourie
transform of the functiorf (t),

Although often assumed, an exponential decreasgf
is not dictated by any fundamental requiremg2]. In any
case, as already argued, the contributiento the entropy
due to the nonzero width is determined by the long-time
behavior of the spectral function; it will increasegft) de-
creases faster, either by a larger valueyobr due to the
functional form of p(t). In the following, this is demon-
strated systematically by some models for the spectral func-
tion (25), which are summarized in Table 1.

In the modelsP, and P}, p(t)~f(t) decreases asymp- 0.0
totically ast™ . This implies that the spectral function

2.0

1.5

L 1.0

05

w
p(w)=—2lmA(w)=—é(fc(erE)—fc(w—E)), 1.0
(29 0.75
S
where F.(w)= [;dtcoswtf(t) is the cosine transform of 2 os
f(t), diverges logarithmically ab= *+E, see Figs. 1 and 6. @
For y—0, the free propagator is recovered. For the model 0.25
P,, e.g., this follows fromI'(0x)=e*(x"1+-.-) for x I . . .
— 0. Moreover, the incompletE-functionI'(0,z) is discon- WOy s s
tinuous at the negative axis. Accordingly, the retarded propa- 5
gatorAp; has cuts in the loweky-plane, starting at the sin-
gularities. The entropies for the modéls andP} are shown FIG. 7. Results for the modef,(n=1 ... 4), similar to Fig. 5.
in Fig. 6. The upper plot compares the spectral functignswith a width

As anticipated before, the entropy increases witmuch  parametery,="y/n andp with y="y=1; the lower plot shows the
less than in the case of a regular spectral function. On thentropies as a function of.
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W77 strated in the HTL calculations,9].” Taking therefore into
I T L1 account only the dominating transverse excitations with the
075 — G4
propagatorA, the resummed entropy reads
05 ' ) -
o - 2 an 1
025 i s=—-2(N:—1) k4ﬁ(lm In(—A" )+ ImII ReA).
ool v (30)
0 1 2 3 4
w In a self-consistent approximation, the propagator will have a

residual gauge dependence, leading to an unphysical result
e for the entropy. However, as motivated before, a parametri-
i zation of the exact propagator by the dispersion relation and
the width, which are gauge-invariant, can be used in Eq.

S
= (30).
® . The Ansatzof the quasiparticle mode[d1] is to neglect
------ L] the width altogether, and to describe the propagator simply
s —¢ by the perturbative self-energy on the light-cone, which is a
W 3 1 gauge-invariant mass terin,
Y
2 NC 212
FIG. 8. Results for the Gaussian mod&l analogous to Fig. 5. M =€g Ts, (32)

Xvith the corresponding entropies. Plottiags a function of whereN_=3. The resulting “minimal” resummation of the
y=ny confirms again the general expectation that the enentropy can indeed nicely describe the lattice data for all
tropy is not determined by the short-time behavigi(t)  temperatures abové, if an infrared enhancement of the
~1—t, but rather by the large-time behavior of the spectralrunning coupling is permitted, for example in the foffi]
function. As expected, the faste(t) decreases, the larger

the entropy. Leaving the class of polynomial models, this 48772
trend is also obvious when considering the Gaussian model g%(M)= 5 (32
G in Fig. 8. 1ININ(N(T—=Tg)/Te)

To conclude this section, the entropy functiokal is, in
general, sensitive to the spectral width of the hard modes=or the physical number of degrees of freedm@Fz(Ng
Numerically, the effects of the width and that of a mass shift—1), a fit of the parameters and T./T. leads in the en-

are comparable, also if both are large;- y~T. Details are  tropy to small but systematic deviations from the lattice re-
closely related to the long-time behavior of the Fourier transsult for T>2T,, cf. fit 1 in Fig. 9. This can be improved

form of the spectral function. when consideringdy as an additional parameter in fit 2,
which yields a value not too far from the physical one, cf.
Table 11°
IV. QCD Taking now into account the width on the same footing as

the masg31), | will first consider a perturbativénsatzfor

In QCD, the entropy for various numbers of quark flavors, - In the weak (_:oupling Ii_mit, the v_vidth of a hard transverse
plotted as a function of /T, and scaled by the free limit, has 91Uon was obtained by Pisargi3] in a resummed calcula-

a remarkably universal behavior as found in lattice calculaton:

tions [19]. | focus here on the representative case of the
guenched limit of QCD, and point out briefly expected dif-
ferences for the physical case.

The gluon propagator has a transverse and a longitudin
part which leads to a corresponding decomposition of th
entropy. In thetb-de_rivable approach, t_he contributions have bution.
the form (,5) mumpl'Ed by the reSpeC_t'Ve deg_engrac[ﬂi. 8Being the only scale in the HTL propagators, the asymptotic
The longitudinal modes are collective excitations Whos€yas5(31) appears also in the calculatiofésd].
spectral strength is exponentially suppressed for larger mo-syhile in the first referencéi1] finite-size effects of the lattice
menta, which leads to only a minor contribution to the en-gata or the contribution of the longitudinal modes were considered
tropy. In the perturbative limit, it is of the ordeP while the  as possible explanations, the latter does not seem likely after the net
transverse modes yield @(g?) term. Also for larger cou- longitudinal contribution was found to be negative in the HTL cal-
pling the longitudinal contribution is rather small as demon-culation[8].

"This approach might actually overestimate the longitudinal con-
rIibution since at very largg it leads to a negative result for the
otal entropy. This is due to the negative definite ghost contribution
hich in Ref.[8] is implicitly included in the longitudinal contri-
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1.0 T T y T y TABLE Il. The parameters of the fits shown in Fig. 9.
°r A /T, d c
0.6 [
& ' . fit 1 10.5 0.88 16(fixed) -
© 04f Bwncdl I fit 2 5.2 0.76 175 -
02l o Emerl| fit 3 2.6 0.50 16(fixed) 14.0
0.0 I L = 1 : 1
1 2 3

eters in the coupling32) will improve the result of the fits 1
T/T. and 2. The numerics shows, however, that this is indeed the
case. The enhanced entropy, due to the width, nicely explains

entropy. The symbols represent the lattice d&4]. Fits without f[he (Sjma" (_je\fl_latlons of ft;t 1 fOWZZ(;IVIIEOUI haV|_ng to ad- h
width are depicted by the dotted and dashed line, for the ldfter justdg as in fit 2. As to be expected, the mass is somewhat

was also fittedsee text The full line is the fit 3 with the width. 1arger than in the previous fits, cf. Fig. 10.

FIG. 9. The entropy of the S@3) plasma in units of the free

The parameters are summarized in Table II. More interesting is the behavior of the width neBy.
Because therg/s; is small, the mass and hence the coupling
2 have to be large. At the same time, the width cannot be too
—M? large since it would over-compensate the decreasing effect of
_Ne 5 3 the mass. Within thénsatz(34) this implies that the loga-
y= T\ In— +1.0968 ... ]. (33 . ) .
8w Miag™ 2Mmagy rithm has to become small. It is worth to emphasize that the

optimal value ofc, given in Table I, is surprisingly close to

Several assumptions have been made H@rsoft gluons are the value
HTL dressed while intermediate hard gluons have a Lorent-

zian spectral function{ii) the divergence from the static M2(T,)
magnetic gluons is screened assuming that this sector of c'= 5 £ ~13.7, (35
QCD can be parametrized by a maa§ag~ng. The first TS

supposition follows the concept of a self-consistent calcula-

tion, hencey appears also on the right hand side of BB) 5o the width vanishes almost preciselyTat (and is indeed
as a regulator next to the magnetic mass. Since the argumegésitive for all temperaturgs® Interestingly then, the condi-
of the logarithm is basicallg "2, the width of moving exci-  tion y<m,,,,, which was necessary in the derivation of Eq.
tations is parametrically enhanced compared to the width a33) (put originally considered to not represent the physical
rest, ¥(0)~g?T. Implicit with (i) is the supposition of a sjtuation), can actually be fulfilled in a small vicinity of..
simple pole structure of the propagator, which, however, israking the next-to-leading logarithm result at face value
not warranted by any fundamental requirement. In fact, thgeads to an estimate of the magnetic mass which is consistent
result(33) could only be justified, to separate the pole from apg|ow 101, wherem,,,s>2. This estimateincluding the
branching point, ify<mp,q (although the converse relation «nyredicted” range of applicability is indeed in nice agree-
was considered more likelyWhile the constraint was nec- ment with the lattice datf25] as shown in Fig. 11. The
essary to explore details of the cut-off, the generic behavianagneﬁC mass af., which is difficult to calculate on the

y~gzln(1/g)T is expected on general grounfl3]. There- lattice, is estimated as
fore, and to keep the connection to the re¢88), | analyze

the SUS3) entropy with the Lorentz spectral function and the
mmag(Tc)% \[E

= O 0 2M(T,)?
width in the fornmt (TC) ~5T,. (36)

C
M2

:E¥T|n(M/—T)2, (34)

Y For larger temperatures, the behavior of the magnetic mass

follows the form mmag=dng. Note that the fit from Ref.

wherec parametrizes the soft cut-off. It is emphasized thatf 25], which uses the 2-loop running coupling at the momen-
because the functional relation betwedrand y is fixed, it ~ tum scale ZrT, can be improved by using the coupling as

is not obvious whether a fit of the entropy lattice data isobtained in fit 3.

possible at all, or that introducingin addition to the param-  Itis emphasized that the magnetic and the electric screen-
ing masses have a qualitatively different large-coupling be-

havior: The electric screening mass, as known from lattice

19 mention that although Pisarski considered massless hard gifzalculations[25], becomessmall near T.. This is readily
ons, his result also holds true femallmasses-gT due to a can-  understood in the quasiparticle modéL], where
cellation in the energy difference of the inner and outer gluon. Note
also that the resummation of a widthg?In(1/g)T can generate
powers of logs in the expansion of thermodynamic quantities, cf. it is noted that although the parametsis closely related to the
Eq. (19. small entropy afl, it also tests the global behavior sfT).
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T ) T T 5 v
3Fy | e 1: wi - F s :
o 2:‘:’/21 14, 4k “ o lattice
— 3: with 1 & v
N ol - 3F
S ¥
S E of
1F g L
1k
0 0- 1 L
1 2 4 8
TIT, TIT,

FIG. 10. The masses and the width according to the fits shown FIG. 11. The lattice datf25] for the magnetic gluon mass, and
in Fig. 9. the estimate based on E&3) with the fitted width, which is mean-
ingful only in a small vicinity ofT,, i.e., only for the left data point
(see text Also shown are they?T-fits with the 2-loop running
(37 coupling[25] (dash-dotted lineand, respectively, with the adjusted
coupling (32) from fit 3 (dashed ling

mp =1l @=0p—0)=—2g°N f -
= oo @=0p—0)==20¢"N, | ==

Om

NearTc_, t.he _gxcitations are narrowthus the quasiparticle {A,b,v,f 8! cannot be expected. In any case, within the
picture is justifiedl and heavy, and the Debye mass enlarged parameter space the improvemengg?icompared

mi~g? g¥%e MT T2 (39) to fit 3 are only of the order of a feyv percent. '_I'he changes in

D the plot of the mass and the width, including the distin-

is Boltzmann-suppressed. It is noted that the decrease of tiflished behavior ak., are almost invisible. This robustness
Debye mass cannot be expected, even tendentiously, froRf the results justifies posteriorithe usage of the perturba-

the next-to-leading order perturbative reg@6],*? tive Ansatz(34) also for smaller temperatures.
For largerT, after a distinguished maximum at
V3N, ( 2mp 1”
glln ’ .

1+ o

2 _ 2
Mp = Mp g

(39 T,~1.3T, (42)

Coming back to the discussion of the width, it is plausiblethe ratioy/T decreases very slowly. Different from what the
from the properties of the entrofg.g., from the fack, (m parametric form of Eq(34) might suggest, t.he width is even
=y)=s, mentioned in Sec. Illthat the width has to be for very I_argeT to a good accuracy proportional to the mass;
rather small neafl,. However, the functional forn34),  for T/T. in [5,100,
even as an extrapolation of the perturbative form similar to
Eq. (31), is a priori not justified neaiT; whereM becomes 1%0 69— 0.02 Inl 43)
large(see footnote 10 Physically, one would rather expect a M ' ' T,

Boltzmann suppression of the heavy thermal fluctuations,
leading to This underlines the fact that in this range of temperatures

. guasiparticle models g#8,9,11,12 can provide “only” an
y=Ae P9g” T. (40 effective description, while a relation of the quasiparticles to
the actual excitations may be difficult. NeB¢, on the other
For lack of better knowledge, | take this generic form as arhand, the transverse hard excitations may be directly inter-
Ansatzfor large coupling, and smoothly connect it to the preted as quasiparticlesvith some additional substructure
“perturbative” form (34) with the adjusted values of due to Landau-damping efcas visualized in Fig. 12. This
{\,Ts/Tc,c}, by concept is beneficial sincip to rather large temperatujes
_ the coupling is large: terms of higher order gncontribute
Y'=(1-0)y+0y, (41)  significantly in the resummed entropy.

_ For definiteness, | have considered here the case of a Lor-
with @(T)=3+ = *arctaf(T—T)/5). Since the fit func- entz spectral function. However, from the results of Sec.
tion s/sy can basically be described by 3 parametsesy by Il E it is obvious that the main result—a small width near
the values alf; and in the saturation-like regime, and by the T _—should hold true also for other spectral functions, unless
slope atT.), a conclusive determination of the parameterstheir Fourier transform has an exotic long-time behavior

such asp(t)~t~1, which is not to be expected.

2pAlthough apart from the more obvious solution, v_vhich is larger V. CONCLUSIONS
than the leading-order resu‘mD,0=(Nc/3)1/ng, there is a second
smaller solutior{at T, with Eq. (36), mp ,~0.4mp g, the latter is In this work it was shown for the deconfined &)
unphysical because it does not connect to the perturbative result fglasma that the collisional widtfor damping rateof hard
g—0. gluons should be sizeable at intermediate temperatures, but
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FIG. 13. The lattice datf25] for the gluon Debye mass vs the
rescaled width from fit 3.

are so far less precise. Therefore, the main result of a re-
duced width near the transition should carry over from the
quenched to the physical case. Although in full QCD the
ratio s/sy is slightly larger atT., which is related to the
nature of the transition, and the widths of the hard transverse
gluons and quark particle-excitations might not vanish, a
quasiparticle picturéin the actual meaningof the strongly
coupled QCD plasma close T, may be justified.

There are several interesting implications of the charac-
teristic temperature dependence of the width besides those
for the screening properties discussed above. As the inverse
of the mean free path, the width is closely related to trans-
port properties as, e.g., equilibration times. Expecting a criti-
cal slowing-down near a phase transition provides another
indication that the width has to become small néar An-
other quantity, which is of particular interest with regard to
the interpretation of SPS and RHIC experiments, is the ra-
diative energy loss of hard quarks and gluons transversing
the plasma. The results derived in REt7] for a system of
lengthL under the assumption ¢éeveral independent scat-
terings, i.e.mp> vy, which is not unrealistic in the situation
of interest(see beloy, are characterized by the energy scale

E,=ym3L2. (44)

In the Landau-Pomeranchuk-Migdal regime, for parton ener-
giesE>E,,, the total energy loss reafl7]

_AE=1 2, 2
AE= 8CRa'ymDL InyL, (45)

whereR indicates the color representation of the parton. As
argued in[28], already the expected “critical” behavior of
the screening massp would lead to a reduced energy loss
FIG. 12. The Lorentzian gluon spectral function from fit 3 for at temperatures nedi;, possibly explaining the absence of
T/T,=1.03, 1.35, 3 {, k andp are in units ofT). Shown here is jet quenching at SPS energi€®9]. With the temperature
the full phase space although the present approach can make statiependence of the width obtained here, the reduction of the
ments only for hard momenta of the orderTof energy loss is even more pronounced. Having adjusted the
temperature dependencefindy to lattice data may allow
has to become small ne@g. While from an extrapolation of for realistic estimates. In order to describe also the Debye
the parametric estimatg~g2n(1/g)T (with the logarithm  mass in a simple way, without further assumptions, | make
read as an enhancement fagtibiis result may seem surpris- use of the empirical observation that for the relevant tem-
ing, a large width would be hard to reconcile with the smallperatures the lattice dafa5] are roughly proportional to the
entropy nearT. as established in lattice calculations. For width,
QCD with dynamical quarks, the rescaled entropy has a
similar temperature dependenfE9], albeit the lattice data mp~2.7y, (46)
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10° g — — magnetic mass existsthe fermion propagator has been cal-
g 3 culated in a Bloch-Nordsieck approa€Bl]. The infrared-
L 10°F 3 finite result is arentire function of the energy. Nonetheless,
= ] the spectral function is strongly peaked, with a characteristic
S E width ~e?In(1/e)T. Since in Fourier space it decreases
R faster than an exponential, the effect for the entropy will be

even more pronounced than for a Lorentzian spectral func-
. tion. Although the situation may be different in QCD, a spec-
8 tral function which has only little effect on the entropy, with
T/T, p(t)~t~1, seems hard to explain. Therefore, although from
the entropy calculated in lattice QCD nothing can be inferred
FIG. 14. The temperature dependence of the energy sEales about the analytic structure of the propagator, the general
andE, py, for the radiative energy loss. The length of the mediumresult of small widths neaf, is arguably robust. This im-
was set taL=5 fm, andT,=170 MeV. plies a characteristic change of several phenomenologically
relevant quantities al*~T,~Tg~1.3T..

014

cf. Fig. 13. The resulting behavior of the energy sdale,
shown in Fig. 14, changes drastically at ACKNOWLEDGMENTS

Te~1.3T,. (47 I acknowledge stimulating discussions on this and related
subjects with W. Cassing, A. Dumitru, F. Gelis, S. Leupold,

Close toT,, the energyE, becomes very small. Already for C. Lorenz, U. Mosel, R. Pisarski, and A. Rebhan. This work
slightly larger temperatures it is well above the scalg,, is supported by BMBF.
=m§,/ v which is relevant for the energy loss in the Bethe-
Heitler regime. A similar sudden onset, also around is APPENDIX: SOME PROPERTIES OF As
found for the total energy loss, cf. Fig. 15. For larger tem- L .
peratures the estimated energy loss agrees basically with " the following it is argued that the entropy is generally
other results, while close td. it becomes very small and Increased for a non-zero width, 1.4s>0 in Eq. (9)' Fur-
would be hard to observe experimentally. Similar small re_thermore, considering the Lorentz spectral function, the ex-

sults have been obtained for the corresponding SPS energiB@nsion ofs,(m,y) is calculated for small arguments. Fi-
in Ref. [30]. nally it is proven thats (m,y) is for m=vy equal to the

() (e O — (42190 T3

In summary, it has been argued from the reduced numbertefan-Boltzmann valugy=s' )(m—O)—_(47r /90)T". .
of degrees of freedom near the transition temperature that the N Order to prove(under the assumption of a unique dis-
width of hard excitations has to become small ndat persion relatiorw,) that As>0, consider the relevant inte-

While for QCD this was demonstrated under the assumptio§"@! i Ed.(9) in the form
of a Lorentz spectral function, the propagator may have a

more complicated pole structure. For hot QEBhere no | = fwdw ana(_;o) f(Mw)),
0
™ r
10% F 4 where f=arctarh—\/(1+)\?), with A=ImA/ReA.
B F 3 Changing the integration variable 1q
= C .
O [ ] = gw In(w(\))
= 10F 3 - e bt S
- E § I ) dA o 0T f(\),
Qo [ ] _ '
~ 1k X [27] __ the integrand becomes a product of three factors, of which
g p— w?tiv . f(\) is an odd function. The sign dfis, thus, determined
C kol B only by the other two terms, which can be discussed on the
[ . ——— ] basis of the relatiom(\), whose inverse is shown in Fig. 2.
0.1 1 9 4 3 In particular, ®—{0,0,—0,w+00} corresponds to\
—{0",+%,—»,07}. Then, via the inverse derivative
T/T I\l dw and the properties of the propagator listed in Sec. Il,
C

it is easily inferred thabw/d\ is positive and that it vanishes

FIG. 15. The radiative energy loss from Hg5) for L=5 fm, for |_)‘|_’°°’_ is non-zero forn—0", and diverges fon
unless indicated otherwise. The symbol is an estimate from Ref~0 » Cf- Fig. 16. The productdw/oN)(Jn/dT), however,
[27]. The dashed line results from a 2-loop running coupling, withVanishes for small negativedue to the second factor, which
mp, set tomp o and a constany to match the result frori27]. The for the corresponding large is exponentially suppressed. At
full line is the estimate with th@-dependent width and the adjusted Small positive A, on the other hand, this factor is Bose
coupling, as is the dotted line whete=3.5 fm was assumed to enhanced,dn/dT~w 1, while it approaches the value
illustrate the scaling behavior. o7n/aT|a,k for N—=*ow. Therefore, the integral of
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4 the substitution&k=xw anda=1"/w lead to
3 - -
< ol i w? [ x2—1 1
S 2 I=—| dx¥| ——-——-—=
A | 27?0 (x*=1)*+a® x?
0
* ‘ w? ol
=—— —(J1+a?-1)YV=— —+....
272 2\2 8w
4
3+ - . . . .
The remainingw-integral yields
c§ L
SN} 1
S :
1F - _ (~dw (?nI_ TF+
[ ' Sl R 7 UL

From As (m,I')=fdI'J—T'J, and since As (m,I'=0)
FIG. 16. Two functions used in the argumentation that-0, =0 (for anym), one obtains
for the case of the propagators from Fig. 1.

(dwlIN)(anldT) over[ —,0] is finite, while for the inter- T
val[ e, + ] it approaches-« for e—0. This shows that the As (m=0I")=—I?+....
integrall, whose integrand includes the odd functidqin), is 48
positive (and finite due tof~\3 for small \), hence
As>0. o . o
Turning now to the expansion of the entropy(m,y) Furthermore, it is obvious that derivatives of any order of
:S(O)(m)+ASL(m,’)’) for a Lorentzian Spectra' function, | ASL(m,F) with reSpeCt tom vanish atl’=0. Therefore, the
introduce the notatiod’ =2y and follow the remark below leading term irmin the expansion of the total entropy comes

Eq. (9), writing entirely from the contributios(® (m), which is well known,
and one arrives at the expressidr®).

As (m,T)= °°d_wf7_” ( _ ﬂ) Finally, the fact thats (m,y=m)=s, holds not only in

L o m IT )3 ar)’ the limit of smallm and y is readily proven by verifying

as_ (m,y=m)/dm=0. After taking the derivative of the in-
whereh=arctan{’ /(w5 — »?)). Considering first the case tegrand of the total entropy, the k-integration yields zero,
m=0, i.e,,on=k, the two terms of thé-integrand decrease indeed. As an aside it is mentioned that feem, the poles
ask™?. In the subtracted integral of the propagatof16) are purely imaginary for some range

sh of momenta, see footnote 6.
w
1= f ks( o p)

0 (= ( k?— w? 1 13 . .
= - Note that the integrand &f_, contrary to the integrand afs,_,
2m%Jo (K= w?)2+T202 K2/’ cf. Eq. (18), is a smooth function ofn.
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