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Hard gluon damping in hot QCD

André Peshier*
Institut für Theoretische Physik, Universita¨t Giessen, 35392 Giessen, Germany

~Received 12 May 2004; published 19 August 2004!

The gluon collisional width in hot QCD plasmas is discussed with emphasis on temperatures nearTc , where
the coupling is large. Considering its effect on the entropy, which is known from lattice calculations, it is
argued that the width, which in the perturbative limit is given byg;g2ln(1/g)T, should be sizeable at
intermediate temperatures but has to be small close toTc . Implications of these results for several phenom-
enologically relevant quantities, such as the energy loss of hard jets, are pointed out.
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I. INTRODUCTION

The dispersion relation and the damping rate of sing
particle excitations in many-particle systems are closely
lated to a variety of phenomenologically important quan
ties. In a QCD plasma at temperatures much higher than
transition temperatureTc;200 MeV, where the couplingg
is small and perturbation theory should be applicable,
quark and gluon excitation energies follow directly from t
real part of the 1-loop self-energies, which are of the or
(gT)2. The calculation of their width, however, requires a
ready to lowest order ing a summation of infinitely many
diagrams. Resumming hard thermal loops~HTL!, Braaten
and Pisarski@1# obtained the widths of quarks and gluons
rest, which are proportional tog2T. The case of excitations
with a finite momentum is more intricate because even w
the HTL resummation the result diverges due to the
change of soft magnetic gluons. With a cutoff of the order
g2T, either a magnetic mass and/or the width itself,
width of moving charged excitations becomes;g2ln(1/g)T
on rather general grounds@2#. The logarithm indicates tha
even in the case of weak coupling the gluon width tests
rectly the nonperturbative sector of QCD.

A similar breakdown of perturbation theory occurs also
the calculation of the thermodynamic potentialV(T)
52p(T)V, at orderO(g6) @3#. The expansion ing, which is
known up toO(g6ln g21) @4#, is not reliable~in the sense of
systematically improvable with the order! in the physically
interesting regime probed in present relativistic heavy
experiments. For the large coupling strength expected at t
peratures nearTc , it does not converge but shows a behav
typical of asymptotic series. In fact, one can hardly expec
converging expansion since it has to be defined in a circl
the complex plane, while in QCD a transitiong2→2g2 is
presumably non-analytic. In perturbation theory, this ma
fests itself in the number of diagrams increasing rapidly w
the order. A strategy to remedy the situation in practical c
culations is a partial resummation of the perturbative ser
taking into account those classes of diagrams whose num
increase most rapidly. These are related to the leading or
in the loop expansion in theF-derivable approximation
scheme@5# to be utilized below. In this scheme, the therm
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dynamic potential is expressed in terms ofdressedpropaga-
tors, which are determined self-consistently. The restrict
to the leading loop order~s! for large coupling may seem
counter-intuitive at first glance. Since it is essential for t
following, it is worth mentioning another, yet related, mo
vation: An asymptotic series, to give the best approximat
possible, should be truncated at an order relatedinverselyto
the coupling; for the QCD thermodynamic potential nearTc

possibly already at the orderO(g2) @6#. Unless the coupling
is small, such a low-order perturbative result is, however,
thermodynamically consistent since various thermodyna
quantities are connected to each other by derivatives w
respect to the temperature. SinceT is also the relevant scal
in the running coupling, the derivatives introduce higher
ders of the coupling, which for large coupling are not neg
gible. Therefore, in addition to the leading order~s! in g, a
thermodynamically consistent approximation has to res
somecontributions of higher orders.1

A truncation of a resummation scheme based on 2-p
functions is,a priori, delicate for QCD because of gaug
invariance. This problem can be evaded by receding to
proximately self-consistent resummations of the thermo
namic potential using appropriate gauge-invariant appro
mations of the propagators. Indeed, results calculated w
HTL propagators@8,9# agree with QCD lattice data down t
temperatures of about 3Tc .2 The HTL propagators may be
reduced even further by neglecting the Landau-damp
parts and retaining only the dominant pole contributions,
proximating as well the dispersion relations by t
asymptotic mass shells. The resulting phenomenolog
models@11# can describe the lattice data even close toTc
because they allow for an infrared enhancement of the r
ning coupling compared to the 2-loop formula used in@8,9#.3

1For a systematic study of resummation improvements of per
bative results, see@7#.

2Note that the HTL propagators, while derived for soft momen
have the correct limit for the thermodynamically relevant large m
menta near the light cone. The results obtained within 2-loop H
perturbation theory@10#, on the other hand, agree with the lattic
data to a lesser extent.

3With an infrared-enhanced coupling, also an approximately s
consistent HTL resummation@12# can describe the lattice data dow
to Tc .
©2004 The American Physical Society16-1
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ANDRÉ PESHIER PHYSICAL REVIEW D70, 034016 ~2004!
In all of these approaches the observed decrease in the e
tive degrees of freedom nearTc is directly related to the
temperature dependent mass scalem;gT that characterizes
the excitations. Interpreted as quasiparticles, they bec
heavy nearTc due to the running coupling and are, thu
suppressed.4 While this apparently grasps important intera
tion effects ~as motivated above!, so far none of the ap
proaches takes into consideration the expected width of
quasiparticles. This, however, isa priori not justified for
large coupling, when the width might become comparable
the mass of the quasiparticles@14#.

In principle, the dressed propagators and the widths
be calculated, by Schwinger-Dyson equations, in
F-derivable approximation scheme. However, apart from
aforementioned sensitivity of the width to the soft QCD se
tor, there is the requirement of gauge invariance of phys
quantities such as the width itself or the deduced thermo
namic potential. Moreover, the resummed propagators n
to be renormalized nonperturbatively. Notwithstanding
recent progress in these issues@15–17#, the problem is in-
volved.

It therefore seems interesting to ask a reversed~and sim-
pler! question: What can be inferred about~important fea-
tures of! the propagators from quantities which can be re
ably calculated by other means? E.g., the thermodyna
bulk properties which are known rather precisely from latt
QCD should, by phase space, reflect relevant propertie
the hard excitations with momentak;T. Indeed, the large
asymptotic masses of the excitations ‘‘predicted’’
@8,9,11,12# compare nicely with direct results from lattic
QCD @18#. To address the width as another characteri
feature I will consider its effect on the entropy,s
52]V/]T. Sinces is a measure of the population of pha
space, one expects an increased entropy for a system o
shell particles as described by the width. From the param
ric estimateg;g2ln(1/g)T, the width should become large
with increasingg. This leads to the question whether a lar
width could be reconcilable with the small entropy nearTc ,
as calculated on the lattice.

In this paper, some general relations between propaga
and entropy will be discussed to approach this question. S
tion II starts with a brief outline of the formalism of sel
consistent approximations, which allows to express the
tropy as a simple functional of the propagator. In Sec. III,
case of particles with a Lorentz spectral function is cons
ered in some detail, followed by an analysis of the sensitiv
of the results on the spectral function. For the sake of s
plicity a scalar field theory is discussed before switch
over to QCD in Sec. IV. Given the remarkably univers
scaling behavior of the QCD entropy for various numbers
quark flavors@19#, I consider here the representative case
the quenched limit of QCD. In the conclusions, some imp
cations of the present findings are pointed out. Some for
details were deferred to the Appendix.

4For another quasiparticle model see@13#.
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II. PROPAGATOR AND THERMODYNAMICS

Following the work of Luttinger and Ward@20#, the ther-
modynamic potentialV of a system of particles with a give
interaction can be expressed in terms of the exact 2-p
function~s!. Considering a scalar theory with the propaga
D, the expression reads in the imaginary-time formali
~setting the volumeV51)

V5
1

2 (E ~ ln~2D21!1PD!2F@D#, ~1!

whereP5D0
212D21. The contributionF@D# is the sum of

the 2-particle irreducible skeleton diagrams; for a (k/3!)f3

1(g2/4!)f4 interaction, it reads

The functional in Eq.~1! is to be evaluated with the exac
propagatorD, which is obtained from the stationarity cond
tion dV@D#/dD50. This functional variation is equivalen
to

P52
dF

dD
, ~2!

i.e., the full self-energyP is obtained by cutting a full propa
gator line in the skeleton diagrams ofF. From this exact
representation ofV, self-consistent~‘‘ F-derivable’’! ap-
proximations@5# follow by truncation of the expansion ofF
~and, accordingly, the expansion ofP) at a given loop order.

To derive the entropy in terms of the resummed propa
tor, the Matsubara-sum in Eq.~1! is first transformed into a
contour integral in the complex energy plane. After wrappi
the contour around the real axis one obtains

V5E
k4

n~v!Im~ ln~2D21!1PD!2F, ~3!

where D now denotes the retarded propagator;*k4

5*k3*dv/(2p), *k35*d3k/(2p)3, and n(v)5(exp(v/T)
21)21 is the Bose-Einstein distribution function. Takin
dV/dD50 into account leads to

s52
]V

]T
52E

k4

]n

]T
Im~ ln~2D21!1PD!1

]F

]TU
D

5sdqp1s8, ~4!

where

sdqp52E
k4

]n

]T
~ Im ln~2D21!1Im P ReD!, ~5!

and

s852E
k4

]n

]T
ReP Im D1

]F

]TU
D

. ~6!
6-2
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HARD GLUON DAMPING IN HOT QCD PHYSICAL REVIEW D70, 034016 ~2004!
Remarkably, the first term ins8 exactly cancels the contribu
tions fromF with one and two vertices. This cancellation
basically a topological feature and holds also in other th
ries @21#, including QCD@8#. This implies that the contribu
tion ~5!, given the propagator, is the leading-loop resumm
entropy in theF-derivable scheme, which in the context
Fermi liquid theory is sometimes called thedynamical qua-
siparticle contributionto the entropy. According to the argu
ments put forward in the Introduction, it is a preferable a
proximation of the exact entropy at large coupling,5

s.sdqp5s(0)1Ds. ~7!

Although this approximation is genuinely nonperturbative
has a simple 1-loop structure and it does not depend on
vertices. For the decomposition in Eq.~7!, the integrand in
Eq. ~5! is rewritten using

Im ln~2D21!5p sgn~ Im D!2arg~D!

5p sgn~ Im D!Q~ReD!

2arctan~ Im D/ReD!.

In the first term, the real part of the propagator is negative
small v.0, as shown below, and it changes sign atv2

5vk
2 . Using sgn(ImD(v))52sgn(v), this term yields the

expression of the entropy of free bosons with the dispers
relationvk ~and zero width!,

s(0)5
1

TEk3
~2T ln~12e2vk /T!1vkn~vk!!. ~8!

In the following, vk will simply be referred to as the ‘‘dis-
persion relation’’ of the dynamical quasiparticles although
need not to coincide with the real part of the pole~if existent!
of the propagator. The effects of a non-zero spectral wi
are solely due to the remaining contributions,

Ds5E
k4

dn

dT S arctanl2
l

11l2D , ~9!

wherel5Im D/ReD. For later reference it is noted that th
second term in the parenthesis is ImD times the derivative of
the phase arctanl with respect to ImD.

The sum of the expressions~8! and~9! yields the dynami-
cal quasiparticle entropy as an approximation of the ex
entropy ~for notational convenience the differentiation w
be omitted in the following! as a functional of the propaga
tor. Facing the mentioned difficulties in the calculation of t

5With regard to the application in QCD it is emphasized that
cancellation ins8 holds for any propagator, in particular for th
exact one. Parametrizing later the exact gluon propagator by
dispersion relation and the width, which are physical quantit
ensures the gauge invariance of the results. At the same time,
soning along the same lines as in the Introduction, the deviatio
the entropy calculated from the self-consistent and from the e
propagator should be small.
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dressed propagator, the entropy functional will be evalua
with various physically motivatedAnsätze for the propaga-
tor, taking into account the width. Verified first, under rath
general assumptions, is the expectation that the entrop
increased for a non-zero spectral width,Ds.0. To this end,
the analytic propagator, for complexk0, is expressed in the
Lehmann representation,

Da~k0 ,k!5E
2`

` dv

2p

r~v,k!

k02v
. ~10!

The spectral function is the discontinuity of the propagato
the real axis,

r~v,k!5Da~v2 i e,k!2Da~v1 i e,k!, ~11!

which is real, odd inv with vr(v)>0, and it satisfies the
sum rule

E
2`

` dv

2p
vr~v,k!51 ~12!

for all values of k. This implies that the propagator ap
proaches the free limit at largek0,

Da~k0 ,k!5E
0

`dv

p
v

r~v,k!

k0
22v2

→
k0→` 1

k0
2

.

These general properties of the spectral function have sev
implications for the retarded propagatorD(v)5Da(v
1 i e). Its imaginary part, which by the reflection principle
2 1

2 r(v), satisfies

Im D~v50!50,

Im D<0 for v.0,

Im D→0 for v→`.

Similarly, one readily infers

ReD~v50!52E dv8

2p

r~v8!

v8
,0,

ReD→v22 for v→`,

and that odd-order derivatives of ReD(v) vanish atv50.
Now consider a generic spectral function with a domina
peak nearvk and a characteristic widthg, and possibly with
some additional minor substructures. In this case ReD(v)
changes its sign only once forv.0, i.e., the ‘‘dispersion
relation’’ vk is unique, which will be the only assumption fo
the following argument. In principle then, there are two typ
cal cases of propagators, see Fig. 1:~i! the imaginary part is
regular, and the real part is smooth, and~ii ! the imaginary
part is singular@but integrable due to Eq.~12!#, and the real
part is discontinuous. Common to both cases is that the
persion relationvk of the dynamical quasiparticles is dete
mined by the real part of the self-energy,

e

he
,

ea-
of
ct
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ANDRÉ PESHIER PHYSICAL REVIEW D70, 034016 ~2004!
ReD21~vk!5D0
21~vk!2ReP~vk!50. ~13!

The dispersion relationvk and the peak position inr coin-
cide for singular spectral functions, but not necessarily
regular spectral functions. The integrand of the entropy c
tribution Ds is discontinuous atvk ; shown in Fig. 2 is the
parenthesis term in Eq.~9!. This factor is, in an approximat

FIG. 1. The real and the imaginary parts of the propagatorsDL

and DP1 defined in Eq.~16! and in Sec. III E, respectively. All
quantities are in units of the widthg, and the energy scaleE in the
spectral functions is chosen such thatvk5A2.

FIG. 2. The functionsl5Im D/ReD, and f (l)5arctanl
2l/(11l2) @occurring in Eq.~9! in the integrand ofDs] for the
propagators shown in Fig. 1.
03401
r
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way, symmetric nearvk , wherel(v)5Im D/ReD is singu-
lar. Since the second factor in the integrand in Eq.~9!,

dn

dT
5

v

T2

exp~v/T!

~exp~v/T!21!2
, ~14!

is monotonically decreasing withv, it is plausible thatDs
.0. A rigorous argument is given in the Appendix. Fro
Fig. 2 it can also be expected that the entropy increas
smaller for singular spectral functions than for regular on

III. SPECTRAL FUNCTIONS

A. Lorentz spectral function

In the previous section, the spectral function was int
duced to deduce some general properties of the propag
and the entropy. At the same time it is more intuitive~and
more efficient due to the analytic properties! to model the
spectral function rather than the propagator. From the sp
tral function of free relativistic particles withD0

215k0
2

2vm
2 , wherevm

2 5m21k2,

r0~v!52p@d~~v2vm!2!2d~~v1vm!2!#,

an often usedAnsatzto describe non-zero width is obtaine
by replacing thed-function by a Lorentzian,

rL~v!5
g

E S 1

~v2E!21g2
2

1

~v1E!21g2D . ~15!

The corresponding retarded propagator can be easily ca
lated by a contour integration,

DL~v!5
1

v22E22g212igv
.

In general, the analytical continuation of the retarded pro
gator to complex energies is analytic in the upper plane
the present case it has poles in the lower plane, atk056E
2 ig. The parameterE is also related to the dispersion rel
tion ~13! of the dynamical quasiparticles. ChoosingE2(k)
5k21m22g2,6 the propagator becomes

DL~v,k!5
1

v22k22m212igv
. ~16!

With this convention, the parameterm2 corresponds directly
to the real part of the retarded self-energy. This has the
vantage that the dispersion relation does not depend ong,
vk5vm .

6There is no ambiguity in the spectral function~15! for g2.k2

1m2 as obvious from the alternative representationrL54gv/(v2

2E22g2)214g2v2). Note, however, that the spectral function b
comes slightly more asymmetric, and that the poles of the propa
tor ~16!, at k052 ig6(vm

2 2g2)1/2, turn purely imaginary forg
.vm .
6-4
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HARD GLUON DAMPING IN HOT QCD PHYSICAL REVIEW D70, 034016 ~2004!
Turning now to the entropy, one should note that in ge
eral the mass and the width parameters are momen
dependent. The resulting effects will be considered bel
for now the parameters are assumed to be constant. Fo
propagator~16!, the contribution~8! to the dynamical quasi
particle entropy,

sL
(0)~m!5

1

TEk3
~2T ln~12e2vm /T!1vmn~vm /T!!,

~17!

is simply the entropy of free bosons with massm. Corre-
sponding expressions for QCD have been the starting p
in the approaches@11#, which interpreted the thermodynam
cally relevant transverse gluon and the quark partic
excitations as quasiparticles with masses given by
asymptotic self-energies~and respective degeneracies!. The
contribution~9! due to the non-zero width reads explicitly

DsL~m,g!5E
k4

]n

]T S arctan
2gv

vm
2 2v2

22gv
vm

2 2v2

~v22vm
2 !21~2gv!2D . ~18!

A numerical integration shows—in line with the gener
expectation—that the total entropysL5sL

(0)1DsL increases
with the width and decreases withm, cf. Fig. 3. An notable
detail is thatsL(m5g) is equal to the Stefan-Boltzmann e
tropy of the massless ideal gas,s05 4

90 p2T3. This is proven
in the Appendix, where also the expansion

FIG. 3. Top: The entropysL(m,g) as a function ofg for several
values ofm (g andm are in units ofT). The dotted lines show the
expansion~19! for m50 and m/T51. Bottom: Contour plot of
sL /s0; the contour spacing is 0.25, and the straight line ma
s(m,g)5s0.
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sL~m,g!5s0F12
15

8p2

m2

T2
1

15

8p2

g2

T2
1•••G ~19!

for small values ofm and g is derived. It is interesting to
note that this result coincides with the expansion of
contribution sL

(0) with complex masses, sL(m,g)
' 1

2 (sL
(0)(m1 ig)1sL

(0)(m2 ig)).

B. Momentum-dependent mass and width parameters

Due to phase space, thermodynamic bulk properties
determined by hard momenta. Therefore, the entropy is
pected to be not very sensitive on the exact momentum
pendence of the width as well as on the dispersion rela
~described by a momentum dependent mass paramete! at
soft momenta. To quantify this expectation, the squared m
and the width are varied fork,T by some factor fromm2

andg, which are now considered as the asymptotic valu
Denoting the resulting entropy bys̃L , the quantity

r 512
s̃L

sL
, ~20!

provides a measure of the momentum sensitivity. As sho
in Fig. 4, r is indeed only of the order of a few percent whe
varying the dispersion relation.

The sensitivity to the low-momentum behavior of th
width is even less. The figures show the sensitivity for
rather large asymptotic mass; for smaller masses the se
tivity is even lower. This quantifies the expectation that t
entropy is, to the extent required below, insensitive to det
of the propagator at soft momenta.

s

FIG. 4. The sensitivity~20! of the entropysL on the momentum
dependence ofm2 ~top! andg ~bottom!. The parameters are varie

for k,T ~see text! in the range@ 1
4 ,4# ~outer band! and@

1
2 ,2# ~inner

band!. In both cases the asymptotic mass ism54T.
6-5
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C. Specific shape of spectral function

For a first test of the sensitivity to the specific form of t
spectral function, let us consider the normalized function

rQ~v!5
A2g3

E S 1

~v2E!41g4
2

1

~v1E!41g4D ,

which has a more pronounced peak than the Lorentzian~15!.
It can be expressed in terms of the functionrL with complex
width parameters,

rQ@g#5
1

A2
~AirL@Aig#1A2 irL@A2 ig#!. ~21!

An analogous relation easily allows to obtain the correspo
ing propagator in terms of the Lorentz propagator~16!. Re-
placing furthermoreg→A2g, the result reads

DQ~v,k!5
a312ab224ib3

a414b4
, ~22!

wherea5v22vm
2 andb52gv. The propagator~22! coin-

cides withDL(v,k) for v→0 andv→6` as well as on the
common mass shellv25vm

2 . Thus, differences in the entro
pies can indeed be attributed to the spectral form rather
to a change in the dispersion relation.

The differences in the propagatorsDL andDQ , apart from
the analytic structure, are considerable for typical values
the 4-momentum; see Fig. 5. Nonetheless, there is almos
effect on the entropy even for large values ofm andg. This
example leads to the question which features ofr the en-

FIG. 5. Top: The spectral functions of the propagatorsDL and
DQ with vm5A2 ~all quantities are in units ofg); if g5T, this
corresponds, e.g., tok5m5T. Bottom: The corresponding entro
pies as functions ofg andm ~in units of T); for small masses the
lines practically coincide.
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tropy is actually sensitive to. Already expected in Sec.
were differences between the two generic types of spec
functions shown in Fig. 1. In any case, the integrand of
contribution~9! is notably different from zero only for ener
gies uv2vku&g, cf. Fig. 2. A way to focus on this relevan
interval is to consider large times,t.g21, in the Fourier
transformr(t) of the spectral function.

D. Spectral functions in Fourier space

The Fourier transform of the spectral function is defin
by

r~ t !5E
2`

` dv

2p
e2 ivtr~v!. ~23!

The sum rule~12!,

15E
2`

` dv

2p
vr~v!5E

2`

`

dtr~ t !E
2`

` dv

2p
veivt,

which after a partial integration becomesi *dt ṙ(t)d(t),
translates into

dr~ t !

dt U
t50

52 i . ~24!

It is plausible that the sum rule tests the short-time beha
in Fourier space since in momentum space it is closely
lated to the fact that the propagator approaches the free
at large energies. The Lorentzian spectral function~15!, with

rL~ t !5exp~2gutu!
sinEt

iE
,

obviously complies with the condition~24!. From the fact
that the oscillations and the attenuation ofr(t) are related to
the position and the width, respectively, of the peak ofr(v),
one can easily construct other conceivable spectral functi
In the Ansatz

r f~ t !5 f ~ t !
sinEt

iE
, ~25!

functions withf (0)51 provide candidates for possible spe
tral functions ifvr(v)>0 is satisfied.

The similar entropies for the propagatorsDL and DQ ,
shown in Fig. 5, may now be attributed to the similar lon
time behavior of the spectral functions@with the replacement
g→A2g, which led to the propagator~22!, also rQ(t) de-
creases as exp(2gt), cf. Eq. ~21!#. Before studying this in
more detail, it is noted that in terms ofr(t) the retarded
propagator reads

D~k0!5 i 21E
0

`

dteik0t r~ t !. ~26!

For theAnsatz~25!,
6-6
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HARD GLUON DAMPING IN HOT QCD PHYSICAL REVIEW D70, 034016 ~2004!
D f~k0!5
i

2EE0

`

dteik0t~eiEt2e2 iEt! f ~ t !

5
i

2E
~F~k01E!2F~k02E!!, ~27!

the propagator can be expressed by a ‘‘retarded’’ Fou
transform of the functionf (t),

F~v!5E
0

`

dteivt f ~ t !. ~28!

E. Non-exponential time behavior

Although often assumed, an exponential decrease ofr(t)
is not dictated by any fundamental requirement@22#. In any
case, as already argued, the contribution~9! to the entropy
due to the nonzero width is determined by the long-ti
behavior of the spectral function; it will increase ifr(t) de-
creases faster, either by a larger value ofg or due to the
functional form of r(t). In the following, this is demon-
strated systematically by some models for the spectral fu
tion ~25!, which are summarized in Table I.

In the modelsP1 and P1
!, r(t); f (t) decreases asymp

totically ast21. This implies that the spectral function

r~v!522 ImD~v!52
1

E
~Fc~v1E!2Fc~v2E!!,

~29!

where Fc(v)5*0
`dt cosvtf(t) is the cosine transform o

f (t), diverges logarithmically atv56E, see Figs. 1 and 6
For g→0, the free propagator is recovered. For the mo
P1, e.g., this follows fromG(0,x)5ex(x211•••) for x
→`. Moreover, the incompleteG-functionG(0,z) is discon-
tinuous at the negative axis. Accordingly, the retarded pro
gatorDP1 has cuts in the lowerk0-plane, starting at the sin
gularities. The entropies for the modelsP1 andP1

! are shown
in Fig. 6.

As anticipated before, the entropy increases withg much
less than in the case of a regular spectral function. On

TABLE I. Damping models forr(t), cf. Eq.~25!, together with
their Fourier transformsF as defined in Eq.~28!. G(0,z) denotes
the incompleteG-function, K0 is the modified Bessel function o
the second kind,L0 is the modified Struve function, Erf is the erro
function, andx5v/g.

Model f (t) gF(v)

L exp(2gutu) (12 ix)21

P1 (11gutu)21 e2 ixG(0,2 ix)
P2 (11gutu)22 11 ixe2 ixG(0,2 ix)
A A A
Pn (11gutu)2n (11 ix@gFn21#)/(n21)
P1

! (11(gt)2)21/2

K0(uxu)1
p

2
sgn(x)@ I 0(uxu)2L0(uxu)#

G exp(2(gt)2) 1
2Ap exp(2(x/2)2)@11Erf( ix/2)#
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other hand, the deviations between the modelsP1 andP1
! are

only at the level of a few percent. This quantifies that t
entropy is indeed sensitive to the long-time behavior ofr(t),
while the short-time behavior is far less relevant.

In the modelsPn , the spectral function decreases ast2n.
Since for differentn the functionsf Pn(t) are related by de-
rivatives with respect tot, their Fourier transform~28! can be
calculated by a simple recursion relation given in Table
Figure 7 shows the spectral functions forn51 . . . 4 along

FIG. 6. Comparison of the modelsP1 andP1
! with L, analogous

to Fig. 5. The entropies almost coincide for the casesP1 andP1
!.

FIG. 7. Results for the modelsPn(n51 . . . 4), similar to Fig. 5.
The upper plot compares the spectral functionsrn with a width

parametergn5g̃/n andrL with g5g̃51; the lower plot shows the

entropies as a function ofg̃.
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with the corresponding entropies. Plottings as a function of

g̃5ng confirms again the general expectation that the
tropy is not determined by the short-time behaviorrn(t)

'12g̃t, but rather by the large-time behavior of the spect
function. As expected, the fasterr(t) decreases, the large
the entropy. Leaving the class of polynomial models, t
trend is also obvious when considering the Gaussian m
G in Fig. 8.

To conclude this section, the entropy functional~7! is, in
general, sensitive to the spectral width of the hard mod
Numerically, the effects of the width and that of a mass s
are comparable, also if both are large,m;g;T. Details are
closely related to the long-time behavior of the Fourier tra
form of the spectral function.

IV. QCD

In QCD, the entropy for various numbers of quark flavo
plotted as a function ofT/Tc and scaled by the free limit, ha
a remarkably universal behavior as found in lattice calcu
tions @19#. I focus here on the representative case of
quenched limit of QCD, and point out briefly expected d
ferences for the physical case.

The gluon propagator has a transverse and a longitud
part which leads to a corresponding decomposition of
entropy. In theF-derivable approach, the contributions ha
the form ~5! multiplied by the respective degeneracies@8#.
The longitudinal modes are collective excitations who
spectral strength is exponentially suppressed for larger
menta, which leads to only a minor contribution to the e
tropy. In the perturbative limit, it is of the orderg3 while the
transverse modes yield aO(g2) term. Also for larger cou-
pling the longitudinal contribution is rather small as demo

FIG. 8. Results for the Gaussian modelG, analogous to Fig. 5.
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strated in the HTL calculations@8,9#.7 Taking therefore into
account only the dominating transverse excitations with
propagatorD, the resummed entropy reads

s522~Nc
221!E

k4

]n

]T
~ Im ln~2D21!1Im P ReD!.

~30!

In a self-consistent approximation, the propagator will hav
residual gauge dependence, leading to an unphysical re
for the entropy. However, as motivated before, a parame
zation of the exact propagator by the dispersion relation
the width, which are gauge-invariant, can be used in
~30!.

The Ansatzof the quasiparticle models@11# is to neglect
the width altogether, and to describe the propagator sim
by the perturbative self-energy on the light-cone, which i
gauge-invariant mass term,8

M25
Nc

6
g2T2, ~31!

whereNc53. The resulting ‘‘minimal’’ resummation of the
entropy can indeed nicely describe the lattice data for
temperatures aboveTc if an infrared enhancement of th
running coupling is permitted, for example in the form@11#

g2~T!5
48p2

11Ncln~l~T2Ts!/Tc!
2

. ~32!

For the physical number of degrees of freedom,dg52(Nc
2

21), a fit of the parametersl and Ts /Tc leads in the en-
tropy to small but systematic deviations from the lattice
sult for T.2Tc , cf. fit 1 in Fig. 9. This can be improved
when consideringdg as an additional parameter in fit 2
which yields a value not too far from the physical one,
Table II.9

Taking now into account the width on the same footing
the mass~31!, I will first consider a perturbativeAnsatzfor
g. In the weak coupling limit, the width of a hard transver
gluon was obtained by Pisarski@23# in a resummed calcula
tion,

7This approach might actually overestimate the longitudinal c
tribution since at very largeg it leads to a negative result for th
total entropy. This is due to the negative definite ghost contribut
which in Ref. @8# is implicitly included in the longitudinal contri-
bution.

8Being the only scale in the HTL propagators, the asympto
mass~31! appears also in the calculations@8,9#.

9While in the first reference@11# finite-size effects of the lattice
data or the contribution of the longitudinal modes were conside
as possible explanations, the latter does not seem likely after th
longitudinal contribution was found to be negative in the HTL c
culation @8#.
6-8
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g5
Nc

8p
g2TS ln

2

3
M2

mmag
2 12mmagg

11.09681 . . . D . ~33!

Several assumptions have been made here:~i! soft gluons are
HTL dressed while intermediate hard gluons have a Lore
zian spectral function;~ii ! the divergence from the stati
magnetic gluons is screened assuming that this secto
QCD can be parametrized by a massmmag;g2T. The first
supposition follows the concept of a self-consistent calcu
tion, henceg appears also on the right hand side of Eq.~33!
as a regulator next to the magnetic mass. Since the argu
of the logarithm is basicallyg22, the width of moving exci-
tations is parametrically enhanced compared to the widt
rest, g(0);g2T. Implicit with ~i! is the supposition of a
simple pole structure of the propagator, which, however
not warranted by any fundamental requirement. In fact,
result~33! could only be justified, to separate the pole from
branching point, ifg!mmag ~although the converse relatio
was considered more likely!. While the constraint was nec
essary to explore details of the cut-off, the generic beha
g;g2ln(1/g)T is expected on general grounds@2#. There-
fore, and to keep the connection to the result~33!, I analyze
the SU~3! entropy with the Lorentz spectral function and t
width in the form10

g5
3

4p

M2

T2
T ln

c

~M /T!2
, ~34!

wherec parametrizes the soft cut-off. It is emphasized th
because the functional relation betweenM andg is fixed, it
is not obvious whether a fit of the entropy lattice data
possible at all, or that introducingc in addition to the param-

10I mention that although Pisarski considered massless hard
ons, his result also holds true forsmall masses;gT due to a can-
cellation in the energy difference of the inner and outer gluon. N
also that the resummation of a width;g2ln(1/g)T can generate
powers of logs in the expansion of thermodynamic quantities,
Eq. ~19!.

FIG. 9. The entropy of the SU~3! plasma in units of the free
entropy. The symbols represent the lattice data@24#. Fits without
width are depicted by the dotted and dashed line, for the lattedg

was also fitted~see text!. The full line is the fit 3 with the width.
The parameters are summarized in Table II.
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eters in the coupling~32! will improve the result of the fits 1
and 2. The numerics shows, however, that this is indeed
case. The enhanced entropy, due to the width, nicely expl
the small deviations of fit 1 forT>2 without having to ad-
just dg as in fit 2. As to be expected, the mass is somew
larger than in the previous fits, cf. Fig. 10.

More interesting is the behavior of the width nearTc .
Because theres/s0 is small, the mass and hence the coupli
have to be large. At the same time, the width cannot be
large since it would over-compensate the decreasing effec
the mass. Within theAnsatz~34! this implies that the loga-
rithm has to become small. It is worth to emphasize that
optimal value ofc, given in Table II, is surprisingly close to
the value

c!5
M2~Tc!

Tc
2

'13.7, ~35!

so the width vanishes almost precisely atTc ~and is indeed
positive for all temperatures!.11 Interestingly then, the condi
tion g!mmag, which was necessary in the derivation of E
~33! ~but originally considered to not represent the physi
situation!, can actually be fulfilled in a small vicinity ofTc .
Taking the next-to-leading logarithm result at face val
leads to an estimate of the magnetic mass which is consis
below 1.1Tc , wheremmag.2g. This estimate~including the
‘‘predicted’’ range of applicability! is indeed in nice agree
ment with the lattice data@25# as shown in Fig. 11. The
magnetic mass atTc , which is difficult to calculate on the
lattice, is estimated as

mmag~Tc!'A2

c

M ~Tc!
2

Tc
'5Tc . ~36!

For larger temperatures, the behavior of the magnetic m
follows the form mmag5dg2T. Note that the fit from Ref.
@25#, which uses the 2-loop running coupling at the mome
tum scale 2pT, can be improved by using the coupling a
obtained in fit 3.

It is emphasized that the magnetic and the electric scre
ing masses have a qualitatively different large-coupling
havior: The electric screening mass, as known from latt
calculations@25#, becomessmall near Tc . This is readily
understood in the quasiparticle model@11#, where

lu-

e

f. 11It is noted that although the parameterc is closely related to the
small entropy atTc , it also tests the global behavior ofs(T).

TABLE II. The parameters of the fits shown in Fig. 9.

l Ts /Tc dg c

fit 1 10.5 0.88 16~fixed! -
fit 2 5.2 0.76 17.5 -
fit 3 2.6 0.50 16~fixed! 14.0
6-9
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mD
2 5P00~v50,p→0!522g2NcE

k3

]n

]vU
vm

. ~37!

Near Tc , the excitations are narrow~thus the quasiparticle
picture is justified! and heavy, and the Debye mass

mD
2;g2 g3/2e2M /T T2 ~38!

is Boltzmann-suppressed. It is noted that the decrease o
Debye mass cannot be expected, even tendentiously,
the next-to-leading order perturbative result@26#,12

mD,n
2 5mD,0

2 F11
A3Nc

2p
gS ln

2mD,n

mmag
2

1

2D G . ~39!

Coming back to the discussion of the width, it is plausib
from the properties of the entropy@e.g., from the factsL(m
5g)5s0 mentioned in Sec. III# that the width has to be
rather small nearTc . However, the functional form~34!,
even as an extrapolation of the perturbative form similar
Eq. ~31!, is a priori not justified nearTc whereM becomes
large~see footnote 10!. Physically, one would rather expect
Boltzmann suppression of the heavy thermal fluctuatio
leading to

ḡ5Ae2bggn T. ~40!

For lack of better knowledge, I take this generic form as
Ansatzfor large coupling, and smoothly connect it to th
‘‘perturbative’’ form ~34! with the adjusted values o
$l,Ts /Tc ,c%, by

g!5~12Q!ḡ1Qg, ~41!

with Q(T)5 1
2 1p21arctan„(T2T̄)/d…. Since the fit func-

tion s/s0 can basically be described by 3 parameters~say by
the values atTc and in the saturation-like regime, and by th
slope atTc), a conclusive determination of the paramete

12Although apart from the more obvious solution, which is larg
than the leading-order resultmD,05(Nc/3)1/2gT, there is a second

smaller solution@at Tc , with Eq. ~36!, m̄D,n'0.4mD,0], the latter is
unphysical because it does not connect to the perturbative resu
g→0.

FIG. 10. The masses and the width according to the fits sh
in Fig. 9.
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$A,b,n,T̄,d% cannot be expected. In any case, within t
enlarged parameter space the improvements inx2 compared
to fit 3 are only of the order of a few percent. The changes
the plot of the mass and the width, including the dist
guished behavior atTc , are almost invisible. This robustnes
of the results justifiesa posteriori the usage of the perturba
tive Ansatz~34! also for smaller temperatures.

For largerT, after a distinguished maximum at

Tg'1.3Tc , ~42!

the ratiog/T decreases very slowly. Different from what th
parametric form of Eq.~34! might suggest, the width is eve
for very largeT to a good accuracy proportional to the mas
for T/Tc in @5,100#,

g

M
'0.6920.02 ln

T

Tc
. ~43!

This underlines the fact that in this range of temperatu
quasiparticle models as@8,9,11,12# can provide ‘‘only’’ an
effective description, while a relation of the quasiparticles
the actual excitations may be difficult. NearTc , on the other
hand, the transverse hard excitations may be directly in
preted as quasiparticles~with some additional substructur
due to Landau-damping etc.! as visualized in Fig. 12. This
concept is beneficial since~up to rather large temperature!
the coupling is large: terms of higher order ing contribute
significantly in the resummed entropy.

For definiteness, I have considered here the case of a
entz spectral function. However, from the results of S
III E it is obvious that the main result—a small width ne
Tc—should hold true also for other spectral functions, unle
their Fourier transform has an exotic long-time behav
such asr(t);t21, which is not to be expected.

V. CONCLUSIONS

In this work it was shown for the deconfined SU~3!
plasma that the collisional width~or damping rate! of hard
gluons should be sizeable at intermediate temperatures

r

for

n FIG. 11. The lattice data@25# for the magnetic gluon mass, an
the estimate based on Eq.~33! with the fitted width, which is mean-
ingful only in a small vicinity ofTc , i.e., only for the left data point
~see text!. Also shown are theg2T-fits with the 2-loop running
coupling@25# ~dash-dotted line! and, respectively, with the adjuste
coupling ~32! from fit 3 ~dashed line!.
6-10
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HARD GLUON DAMPING IN HOT QCD PHYSICAL REVIEW D70, 034016 ~2004!
has to become small nearTc . While from an extrapolation of
the parametric estimateg;g2ln(1/g)T ~with the logarithm
read as an enhancement factor! this result may seem surpris
ing, a large width would be hard to reconcile with the sm
entropy nearTc as established in lattice calculations. F
QCD with dynamical quarks, the rescaled entropy ha
similar temperature dependence@19#, albeit the lattice data

FIG. 12. The Lorentzian gluon spectral function from fit 3 f
T/Tc51.03, 1.35, 3 (v, k andr are in units ofT). Shown here is
the full phase space although the present approach can make
ments only for hard momenta of the order ofT.
03401
l

a

are so far less precise. Therefore, the main result of a
duced width near the transition should carry over from
quenched to the physical case. Although in full QCD t
ratio s/s0 is slightly larger atTc , which is related to the
nature of the transition, and the widths of the hard transve
gluons and quark particle-excitations might not vanish
quasiparticle picture~in the actual meaning! of the strongly
coupled QCD plasma close toTc may be justified.

There are several interesting implications of the char
teristic temperature dependence of the width besides th
for the screening properties discussed above. As the inv
of the mean free pathl, the width is closely related to trans
port properties as, e.g., equilibration times. Expecting a c
cal slowing-down near a phase transition provides ano
indication that the width has to become small nearTc . An-
other quantity, which is of particular interest with regard
the interpretation of SPS and RHIC experiments, is the
diative energy loss of hard quarks and gluons transvers
the plasma. The results derived in Ref.@27# for a system of
lengthL under the assumption of~several! independent scat
terings, i.e.mD@g, which is not unrealistic in the situation
of interest~see below!, are characterized by the energy sca

Ecr5gmD
2L2. ~44!

In the Landau-Pomeranchuk-Migdal regime, for parton en
giesE.Ecr , the total energy loss reads@27#

2DE5
1

8
CRagmD

2L2ln gL, ~45!

whereR indicates the color representation of the parton.
argued in@28#, already the expected ‘‘critical’’ behavior o
the screening massmD would lead to a reduced energy los
at temperatures nearTc , possibly explaining the absence o
jet quenching at SPS energies@29#. With the temperature
dependence of the width obtained here, the reduction of
energy loss is even more pronounced. Having adjusted
temperature dependence ofa andg to lattice data may allow
for realistic estimates. In order to describe also the De
mass in a simple way, without further assumptions, I ma
use of the empirical observation that for the relevant te
peratures the lattice data@25# are roughly proportional to the
width,

mD'2.7g, ~46!

ate-

FIG. 13. The lattice data@25# for the gluon Debye mass vs th
rescaled width from fit 3.
6-11
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cf. Fig. 13. The resulting behavior of the energy scaleEcr ,
shown in Fig. 14, changes drastically at

TE'1.3Tc . ~47!

Close toTc , the energyEcr becomes very small. Already fo
slightly larger temperatures it is well above the scaleELPM

5mD
2 /g which is relevant for the energy loss in the Beth

Heitler regime. A similar sudden onset, also aroundTE , is
found for the total energy loss, cf. Fig. 15. For larger te
peratures the estimated energy loss agrees basically
other results, while close toTc it becomes very small and
would be hard to observe experimentally. Similar small
sults have been obtained for the corresponding SPS ene
in Ref. @30#.

In summary, it has been argued from the reduced num
of degrees of freedom near the transition temperature tha
width of hard excitations has to become small nearTc .
While for QCD this was demonstrated under the assump
of a Lorentz spectral function, the propagator may hav
more complicated pole structure. For hot QED~where no

FIG. 14. The temperature dependence of the energy scaleEcr

and ELPM for the radiative energy loss. The length of the mediu
was set toL55 fm, andTc5170 MeV.

FIG. 15. The radiative energy loss from Eq.~45! for L55 fm,
unless indicated otherwise. The symbol is an estimate from
@27#. The dashed line results from a 2-loop running coupling, w
mD set tomD,0 and a constantg to match the result from@27#. The
full line is the estimate with theT-dependent width and the adjuste
coupling, as is the dotted line whereL53.5 fm was assumed to
illustrate the scaling behavior.
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magnetic mass exists!, the fermion propagator has been ca
culated in a Bloch-Nordsieck approach@31#. The infrared-
finite result is anentire function of the energy. Nonetheles
the spectral function is strongly peaked, with a characteri
width ;e2ln(1/e)T. Since in Fourier space it decreas
faster than an exponential, the effect for the entropy will
even more pronounced than for a Lorentzian spectral fu
tion. Although the situation may be different in QCD, a spe
tral function which has only little effect on the entropy, wit
r(t);t21, seems hard to explain. Therefore, although fro
the entropy calculated in lattice QCD nothing can be infer
about the analytic structure of the propagator, the gen
result of small widths nearTc is arguably robust. This im-
plies a characteristic change of several phenomenologic
relevant quantities atT!'Tg'TE'1.3Tc .

ACKNOWLEDGMENTS

I acknowledge stimulating discussions on this and rela
subjects with W. Cassing, A. Dumitru, F. Gelis, S. Leupo
C. Lorenz, U. Mosel, R. Pisarski, and A. Rebhan. This wo
is supported by BMBF.

APPENDIX: SOME PROPERTIES OF Ds

In the following it is argued that the entropy is genera
increased for a non-zero width, i.e.Ds.0 in Eq. ~9!. Fur-
thermore, considering the Lorentz spectral function, the
pansion ofsL(m,g) is calculated for small arguments. F
nally it is proven thatsL(m,g) is for m5g equal to the
Stefan-Boltzmann values05s(0)(m50)5(4p2/90)T3.

In order to prove~under the assumption of a unique di
persion relationvk) that Ds.0, consider the relevant inte
gral in Eq.~9! in the form

I 5E
0

`

dv
]n~v!

]T
f ~l~v!!,

where f 5arctanl2l/(11l2), with l5Im D/ReD.
Changing the integration variable tol,

I 5E
2`

`

dl
]v

]l

]n~v~l!!

]T
f ~l!,

the integrand becomes a product of three factors, of wh
f (l) is an odd function. The sign ofI is, thus, determined
only by the other two terms, which can be discussed on
basis of the relationv(l), whose inverse is shown in Fig. 2
In particular, v→$0,vk20,vk10,̀ % corresponds tol
→$01,1`,2`,02%. Then, via the inverse derivativ
]l/]v and the properties of the propagator listed in Sec.
it is easily inferred that]v/]l is positive and that it vanishe
for ulu→`, is non-zero forl→01, and diverges forl
→02, cf. Fig. 16. The product (]v/]l)(]n/]T), however,
vanishes for small negativel due to the second factor, whic
for the corresponding largev is exponentially suppressed. A
small positive l, on the other hand, this factor is Bos
enhanced,]n/]T;v21, while it approaches the valu
]n/]Tuvk

for l→6`. Therefore, the integral o

f.
6-12
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(]v/]l)(]n/]T) over @2`,0# is finite, while for the inter-
val @«,1`# it approaches1` for «→0. This shows that the
integralI, whose integrand includes the odd functionf (l), is
positive ~and finite due to f ;l3 for small l), hence
Ds.0.

Turning now to the expansion of the entropysL(m,g)
5s(0)(m)1DsL(m,g) for a Lorentzian spectral function,
introduce the notationG52g and follow the remark below
Eq. ~9!, writing

DsL~m,G!5E
0

`dv

p

]n

]TEk3
S h2G

]h

]G D ,

whereh5arctan(Gv/(vm
2 2v2)). Considering first the cas

m50, i.e.,vm5k, the two terms of thek-integrand decreas
ask22. In the subtracted integral

I5E
k3S ]h

]G
2

v

k2D
5

v

2p2E0

`

dkk2S k22v2

~k22v2!21G2v2
2

1

k2D ,

FIG. 16. Two functions used in the argumentation thatDs.0,
for the case of the propagators from Fig. 1.
03401
the substitutionsk5xv anda5G/v lead to

I5
v2

2p2E0

`

dxx2S x221

~x221!21a2
2

1

x2D

52
v2

2p2

p

2A2
~A11a221!1/252

vG

8p
1•••.

The remainingv-integral yields

J5E
0

`dv

p

]n

]T
I52

T

24
G1•••.

From DsL(m,G)5*dGJ2GJ, and since DsL(m,G50)
50 ~for any m), one obtains

DsL~m50,G!5
T

48
G21•••.

Furthermore, it is obvious that derivatives of any order
DsL(m,G) with respect tom vanish atG50. Therefore, the
leading term inm in the expansion of the total entropy com
entirely from the contributions(0)(m), which is well known,
and one arrives at the expression~19!.

Finally, the fact thatsL(m,g5m)5s0 holds not only in
the limit of small m and g is readily proven by verifying
]sL(m,g5m)/]m50. After taking the derivative of the in-
tegrand of the total entropy,13 the k-integration yields zero,
indeed. As an aside it is mentioned that forg>m, the poles
of the propagator~16! are purely imaginary for some rang
of momenta, see footnote 6.

13Note that the integrand ofsL , contrary to the integrand ofDsL ,
cf. Eq. ~18!, is a smooth function ofm.
nd,
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