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Enhanced nonperturbative effects inZ decays to hadrons
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We use soft collinear effective field theory to study nonperturbative strong interaction effectienays to
hadronic final states that are enhanced in corners of phase space. These occur, for example, in the jet energy
distribution for two jet events nedf ;=M /2, the thrust distribution near unity and the jet invariant mass
distribution near zero. The extent to which such nonperturbative effects for different observables are related is
discussed.
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[. INTRODUCTION bation theory. The conjectured relationship between the non-
perturbative corrections to event shape distributions has re-
Some of the most successful applications of perturbativéently been tested experimentallg]. .
QCD are to processes such Aslecay to hadrons ce*e” Recently the enhanced nonperturbative effects that occur
annihilation at large center-of-mass energy, in which a statéor the jet energy distribution in corners of phase space have
with no strong interactions decays into final hadronic states?®en studied using effective field theory meth@ii3]. This
This paper will discuss the case dilecay, but the results in @PProach uses the fact that very low momentum degrees of
this paper apply equally well to the other cases. Not only idréedom which contain the nonperturbative physics couple to
the total hadronicZ decay width calculable but so are less € degrees of freedom with energies of orfer via Wilson
inclusive infrared-safe quantities like tidecay rate into lines. Nonperturbative effects have been extensively studied

2-jet and 3-jet events, the thrust distribution and jet mas%rewously [11] using factorization methods to divide the

S ; . L rocess into hard, jet-like and soft subprocesgas,21].
distributions. Comparl_sqn Of_ perturbgnve predictions forNonperturbative effects are computed from the soft subpro-
these and other quantities with experimental dataZate-

cess. The effective field theory approach is similar to the one
cays from LEP and SLD has led to a remarkably accuralgyzgeq on factorization methods. In this paper we elaborate on
extraction of the strong coupling constan{(Mz) [1-7.  the work in[19] and extend it to other shape variables. The
Although the extraction of the strong coupling from eventennanced nonperturbative effects are expressed in terms of
shape variables is less accurate than from the total hadfonic\yeighted matrix elements of operators involving Wilson
width, it is more model-independent singeeglecting quark Jines, where the weighting depends on the event variable
mass effectsit does not depend on the values of the quarkbeing considered. We hope that this paper will help make the
couplings to thez. results of Ref[11] more accessible to the community of high
For the totally inclusive hadronig decay width, the op- energy theorists who are most familiar with effective field
erator product expansion allows one to include in theoreticatheory methods.
predictions nonperturbative strong interaction effects that are In this paper we study smeared distributions which allows
characterized by vacuum expectation values of local operais to expand the nonperturbative effects in powera gép,
tors. The effects of higher-dimension operators are supand write them as matrix elements of Wilson line operators
pressed by powers of the strong interaction sc¢eg di-  and their derivatives. The computations are similar to those
vided by the center-of-mass eneryl, . Since theZ massis  of smeared distributions in the end point regiorBidecay—
large, these effects are very small. For example, if quarkhe point-by-point computation requires knowing the nonper-
masses are neglected, the leading nonperturbative effects farbative shape function, whereas nonperturbative effects in
the Z decay width come from the vacuum expectation valuethe smeared distributions can be written in terma pf pro-
of the gluon field strength tensor squaré@,,G*”). This  vided the smearing region is large enough.
dimension-four operator gives rise to corrections to the total For pedagogical reasons we start with a detailed treatment
hadronic width suppressed Wch/M§~ 10°°. of the jet energye; in Z decay to two jets, where the jets are
Less inclusive variables that characterzdecay to had- defined as Sterman and Weinberg did in their original work
rons give rise to nonperturbative effects suppressed bgn jets in QCD[22]. We spend considerable effort on this
smaller powers of\ ocp/M7 [8—15]. Furthermore, these cor- variable because the theoretical expression for its enhanced
rections often become even more important in corners ofonperturbative corrections is simpler than for other more
phase space where hadronization effects are significant, sugfienomenologically interesting variables like thrust. At low-
as in the thrust distribution very ne@ir=1. It has been con- est order in perturbation theory, t@eboson creates a quark
jectured that the enhanced nonperturbative effects to margnd an antiquark, each with ener§¥,/2, and so the jet
event shape distributions have a universal form with a singl@nergy distribution is equal to
nonperturbative paramet¢t2,13,15-18 These arguments dr
are based on analysis of renormalon ambiguities in the QCD ﬂzr(zo) S(E;—M/2), (1)
perturbation series and on the behavior of resummed pertur- dE; et
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WhereI‘(Zcfj)et is the total two-jet rate at lowest order in pertur- angn which satisfyn®=n°=1 andn= —n. Four-vectors are

bation theory. This leading order theoretical expression fOHecomposed along the n and perpendicular directionst
the jet energy distribution is singular B4y=M/2. Further-  _ \ + | - — - e\
more, the leading perturbative and nonperturbative correc-_&l\in’xz’_v\jzn\,cv/gerﬁc}: th enpr\(;inle\:/m ofninYerZQS géE.l\./ con-
tions are also singular at that kinematic point. However, a . . — '
non-singular quantity that can be compared with eXperimerﬁamsn-colImear,_n-colhnea@md gltrasoft degrees of freedom
without any resummation of singular terms is obtained byl27]- The n-collinear andn-collinear degrees of freedom
smearing the jet energy distribution over a region of size Nave typical momenta that scale as

that contains the lowest order partonic end pointEgt

=M,/2. The leading nonperturbative correction to this p(cn)NMz(Az,l)\), (CF)~MZ(1,)\2,)\), )
smeared energy distribution is suppressedAlyp/A. So,

for example, withA~10 GeV the nonperturbative correc- anq the ultrasoft degrees of freedom have momenta that scale
tions are expected to be of order 10%, roughly the same sizgg

as perturbative corrections, and an order of magnitude larger

than the orden ocp/M correction expected in the complete Pu~Mz(AZ N2 \2). 3

two jet rate. We argue that fdg; very nearM /2 it is not

possible to capture the dominant nonperturbative effects simpe taker ~ \/m which implies that the typical “off-
ply by shifting, E;—E;— unp, in the perturbative expression spe|iness” of the ultrasoft degrees of freedopf~M2\*

fo:jdr/zx_ja/?EJ (whereun, is @ nonperturbative parameter of ~A2QCD, is set by the QCD scale while the typical “off-
order A qcp)-

i th . deri on for the leagS€Ness” of the collinear degrees of freedopd~M32\?2
n the next section, we derive an expression for the lead”_ \ . “ic much larger tharh 2¢p. Hence the collinear

ing enhanced nonperturbative correction to the smeared j%tegrees of freedom can be treated in perturbation theory.
energy distribution for two jet events using methods from o aigorithms for jets, like that of Sterman and Wein-
soft-collinear effective field theorySCET) [23-28. This  parg are ambiguous at higher orders in perturbation theory
correction is given by the vacuum expectation value of d28,29. This arises when there is more than one way to
nonlocal operator involving Wilson lines. Perturbative orderassign a particle to a particular jet. However, in this section
as corrections to this variable are derived in Appendix B. we work to lowest order in perturbation theory, where the
Section Ill discusses the leading nonperturbative correcevents consist of two almost back-to-back jets plus ultrasoft
tions for thrust, jet masses, the jet broadening variables, thgegrees of freedom. Since the cones are well separated, there
C parameter and energy-energy correlations. In agreemef$ no ambiguity in assigning partons to the jets.
with Ref.[11] we find that the correction to jet mass sumand  The nonperturbative effects we are after are characterized
thrust are related. However, without additional model-py matrix elements of operators composed from the ultrasoft
dependent assumptions we do not find that the enhancefegrees of freedom. IZ decay into two jets, the jets are
nonperturbative corrections to tkEparameter and jet broad- gimost back-to-back, and is chosen along one of the jet
ening variables can be related to those for thrust and the jefirections. The degrees of freedom in the two jets are then
masses. We compare the level of our understanding of thepresented byn-collinear (for the antiquark jet and

enhanced nonperturbative effects in these variables. n-collinear fields(for the quark jet In this section we work
to lowest order in perturbation theory in the collinear fields.

Hence we match the weak neutral current in full QCD onto
II. OPERATOR PRODUCT EXPANSION FOR THE TWO the effective theory at tree |eve|,

JET ENERGY DISTRIBUTION

The nonperturbative corrections to the energy distribution = WS AT W
for Z decay to two jetsdI', o,/ dE; nearE ;=M /2 are com- J=LEnWal *[Waénl, @
puted in this section. The perturbative corrections will be h o .
discussed in Appendix B. The results are given for the/Nereé I'“=0gvyI+gaylys involves the vector and axial
Sterman-Weinberg jet definition, where a cone of half-angléeOUPIings of theZ boson. The fieldgry and &, are collinear
S contains a jet if the energy contained in the cone is mordluark fields in then andn directions, and we have adopted
than E.,=BM,. We take the cone half-anglé and the the convention
dimensionless energy cut variahfeto be of order a small
parametei, and compute in a systematic expansion in pow- _
ers of \. We are interested in the jet energy distribution ()=, e‘ip'xgn;ﬁ(x), (5)
within a regionA of M,/2, whereM;>A>\?M. For ex- P
ample,A~AMj. _

SCET is the appropriate effective field theory for the ki- where the label momenturp contains the components of
nematic region of interest, and will be used for the derivationorder 1 and\, n-p andp, , and the ordex? components are
of the nonperturbative corrections tl’, /dE; nearE, associated with the space-time dependence of the fields. The
=Mg/2. It is convenient to introduce two lightlike vectans ~ Wilson linesW, ;7 are required to ensure collinear gauge in-
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variance[25]. Since in this section we work to lowest order 1 d%p d®p
in QCD perturbation theory, they play no role in the analysis dT'y je= 3q 5 3q S| M D)2
and can be set to unity. 2Mz (2m)%2p] (27) 2py
The typical momenta of the partons in the jets are of the 1
order of the collinear momenta, E¢R), where the overall XE (2m)45%(Pz— Py— Pa—Ky )=
scale of their momentum is set By, . However, it is pos- < a N
sible for the jets to contain partons with momenta that have — N
an overall scale that is much less thsly . Because of the X(OITLY Y e 1(0) [ Xu(ku) ) Xy(ky)|
sum over all values op in Eq. (5), such partons can still be xT[Y;aCYECd](OHO}. 9)

represented by collinear fields. The interactiomafollinear

fields among themselves is given by the full QCD Lagrang- )2 ; — )

ian, and so the hadronization ofcollinear partons into a jet In Eq. (9), | M¢’|” is the square of thé—qq decay ampli-

is described by the full theory. tude averaged over polarizations and_summed over the
The Lagrangian of the effective theory does not contairguark and antiquark spins and coloT) denotes time-

any direct couplings between collinear particles moving in(anti-timej ordering, N¢ is the number of colors, and we

the two different lightlike directions labeled by and n; hgve exphcnly displayed the color indices on the ultrasoft

however, they can interact via the exchange of ultrasoft gluYVilson lines. _

ons. It is convenient to remove the couplings of the collinear The derivation of Eq(9) in many ways parallels the use

degrees of freedom to the ultrasoft ones via the field redefiof the operator product expansion to compute the deep in-
nition [26] elastic scattering cross-section, or the rate for inclusive semi-

leptonic B decay. There is, however, one important distinc-
tion. The sum over final states in deep inelastic scattering
t t and B decay is a sum over a complete set of color-singlet
= Yabn: Anm oA, © hadron states. In E¢8), one is summing over a complete set
of jet and ultrasoft states. These are a complete set of par-
whereA,, is ann-collinear gluon field and tonic states, and are not necessarily color-singlet states. In
fact, unitarity would be violated if one separately imposed
the color-singlet condition on each ¢f,), |J;) and|X,).
The derivation of Eq(9) is valid to the extent that the sums
() over partonic and hadronic states are equivalent. In jet pro-
duction, the color of the fast quark that turns into a jet is
eventually transferred to low-energy partons during the frag-
denotes a path-ordered Wilson line of ultrasoft gluons in thementation process. The low-energy partons communicate be-
n direction froms=0 to s=<. This is the appropriate field tween the different jets, and make sure the whole process is
redefinition for outgoing collinear fields, since if a factor of color-singlet. The assumption is that this color recombination
exp(—es) is inserted in the integrand to decouple the inter-does not affect the decay rate at ordescp/Mz .
actions at late times, one reproduces the coiiregrescrip- To calculatedl’;, j/dE; we integrate Eq(9) over the
tion for the collinear quark propagator. For annihilation allowed values of the quark and antiquark three-momentum
which contains incoming collinear particleg, is from's  with the factor 5(EJ—pg) inserted. This corresponds to
=—o to s=0 and the daggers are reversed in ). An  choosing the quark jet as the “observed” jet. If one does not
analogous field redefinition witm—n removes the cou- distinguish between quark and antiquark jets then @g.
plings in the Lagrangian of ultrasoft fields to thecollinear  still applies since the value dl’; /dE; when the “ob-
fields. served” jet is an antiquark jet is the same. It is convenient to
The differential decay rate faf decay to two jets is work in the rest frame of the decayindZ, pz
=(M;,M2,0,), and align n with the quark three-
momentump,. The decomposition of the quark's four-

Y. (z)=P ex;{igf dsn-A,(ns+2z)
0

1 L 5 momentum in terms of label and residual momentyn,
drz-jet:WZfinalstates_ 25 |<JnJFXU|J (O)€M|O>| :5q+kQ’ has the form£>q+=f)3+k; with p;:O’ P
A =0. (Note this means thal,, =kq, =0 andk, =0.) Hence
X (2m)*6*(pz—Ps, — Ps—ku), (8 the phase space integration over quark three-momentum be-
comes

where the sum over final states includes the usual phase

space integrations ane is the polarization vector of the d3pq
decayingZ boson. Since after the field redefinitions shown in f 3.0
Eqg. (6) there are no interactions between the ultrasoft and (2m)°2pq
collinear degrees of freedom, the matrix element factorizes,

and at lowest order in perturbation theory in the collinearFor the antiquark’s four-momentum the decomposition into
degrees of freedom, residual and label momentumri%zki, pq:=5q3+ kq: and

1
= > pd| dk. (10)
4(277)2qu+ QJ a
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Pg. =Pq. +Kg. . One cannot sep;, =0 by a choice ofn, At this stage the collinear degrees of freedom have been
5|qncen— _nq andn has already geen fixed by the direction integrated out, and the matrix elements above, which involve

of the quark jet. only ultrasoft degrees of freedom, are evaluated at leading
Expressed in terms of label and residual momenta th?hrdte:h'n tgte SCETV\?Xp%nS'On tpare:me(hae ?Hto) It?elcall ;
phase space integration over antiquark three-momentum is"'at (€ Stérman-vveinberg jet critéria restrict particies out-
side the cones used to define the two jets associated with the

d3pq d%k- quark and antiquark to have energy less tkay which we
f —qO=E d 8((Pgtkg)?) are taking to be ordexM. In the limit \—0 this energy
(277)32% vy (2m)° cut becomes much larger than a typical component of an
ultrasoft four-momentum. Hence, for the matrix elements of
dk:dzkai 1 these operator%s; should be taken to infinity and does not
=Z — 3 = (11 restrict these matrix elements. Similarly the cone angle is
Pg 2(2m)° Py~ taken to be of ordek while the typical angle between com-
ponents of ultrasoft momenta is order unity. Thus the cone
Here the delta functiom((pg+kg)?) = 5(Pq ky =P J_) was  angle should be taken to zero in the effective theory that

used to do thé integration settind. = pi /p- . At lead- ~ contains only ultrasoft degrees of freedom and so there is no
ing order in the SCET expansion pgram(&etﬁe invariant  restriction on the ultrasoft states that are summed over in Eq.

matrix elementM (?) only depends on the label momefp (13). .
Mir y dep . 'FI? Using the exponential dependence lgnto translate the
and pq . In terms of label and residual momentum the

) , anti-time ordered product to the space-time paint2, and
energy-momentum conserving delta function becomes  hen ysing the completeness relation to perform the sum over

all ultrasoft intermediate states, we find for the jet energy

8 (pz—Pq—Pg—ku) =28(pz —pg —ky)(pz —Pq distribution
_p__k+)52(pq_L+kuL) dFZ-jet 0
dE, ~T2eSMz/2-Ey) (15

=25MZ,;;5MZ,5+5ZW o0k k)
where the shape functioBis defined by{10]
X 8(Kkq +ky) 6% (kg +ky ). (12)

1 (du . —
— _ L au t
The relationkqi=p—§L/pa and the Kronecker delta that sets S(k) ch 27.,9' YOITY ™Yo 2T(un/2)

5@ to zero imply thalkqi=0, and so this variable does not
appear in the penultimate delta function in Ef2).
Using these results gives

dloge M) ,
dE, ~ BVL(27) f fdk d kqlz 5
+

+ 1
2

XT[ YY1 91(0)]0), (16)

and the total two jeZ-decay width at lowest order in pertur-
bation theory is

M NCMZ
F(Zoj)et_ 1677l\/lz_ ( Ov gA) (17)

(kg +ky ) 8Ky +ky) (kg +Kyy)

having implicitly summed over spins and colors. The
1 n-directed andn-directed ultrasoft Wilson lines commute
><|\|—<0|T[Ynd‘3YT a1(0)|Xy(ky)) since 6;n—s,n)?= —4s,5,<0, and the gauge fields in the
c Wilson lines are space-like separated.
X (X (k) T[ VYT _47(0)|0) In this derivation we chose the jets to be composed en-
tirely of collinear degrees of freedom. This is appropriate
+ since jets are confined to narrow cones. For example, the
( = —”) momentum of any massless particle in the quark jet satisfies
2 2 p~<p*, which is the appropriate scaling for collinear par-
ticles in then direction. However, it is possible to repeat the
><—(0|T[YndeY 21(0)|Xy(ky)) above derivation allowing ultrasoft degrees of freedom to be
inside a jet. Then mstead of msertnégEJ pq) into Eq.(9),
X(Xy(ko) | T[YraSY T .91(0)]0). (13)  one insertss(E;— k9)), wherek®,= (k}y/2)[1+ O\)]
denotes the total ultrasoft energy |nS|de the quark jet. Using
We write the remaining delta function as the integral the delta functions in Eq12) we obtain again Eq13), with

N N k. in the final delta function now denoting the total ultrasoft
5 M £ ky| [ du (M3 £ Ky
2 52T 2T e TR )Y

MR »
T 167M; %

momentumoutside the quark jet. However, as mentioned
previously, at leading order in the cone angle of the jet
shrinks to zero, and one recovers the previous result.
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It is possible to remove the time- and anti-time-orderingfor |E;—M/2|~X\2M,! simply by taking the lowest order
completely in the definition of the shape functi®@Using  perturbative formula in Eq(21) and shiftingE; by a non-
the results from Appendix Al our expression for the shapeerturbative parameter,,, i.e., E;—E;— un,. This ansatz
function becomes results in the shape function

1 (du . _ S(M,/2—E;)=8(M/2—E;)+ 8 (M42—E ) u
S(0= f 5 € (OILY] 2Y . 21 (UN/2)[ Y Yoc1(0)[0) o ) - oo

) +58"(Mz/2—Ey) Mhpt (23
= S (OI[Y] Y 18(k+in - 912)[ Y™ | 0),

Nc where the series of derivatives of delta functions has coeffi-
(18) cients that are simply related b§0|O,,|0) =(0]O4|0)™,
which is not correct.

: : : : : . : For|E;—M/2|~\?M all terms in the series of E¢19)

Since in the kinematic region of intereM ;/2—E; is J 2 z - S

much larger tham- g acting on ultrasoft gauge fields it is are equally important. However foE, M.Z/2| A>A"M,
the vacuum expectation value @, provides the leading

appropriate to expand the delta function above which gives . . S .
pprop P 9 order Aqcp/A nonperturbative correction. In this kinematic

where the overline denotes an anti-triplet Wilson line.

S(lez_ EJ):é(lez_ EJ)+ 5/(MZ/2_ EJ)<0|O]_|0> reg|0n the Sh|ftEJ—>EJ_-,Lan, W|th an=<0|01|0>, cor- )
rectly captures the most important effects of nonperturbative
1, physics.
* 55'('\/'2/2_ E)(0]0o|0)+- -+, (19 We have focused on nonperturbative effects that are en-
hanced in the region ne&;=M/2. If one considers a vari-
where able like the average value of the jet energy over the entire

allowed phase space, then there are sources of nonperturba-

1t afIN m 4 tive corrections that we have not considered.
Om_N_c Yn aYhe o [Yna Yn'cl Using the results of Appendix A 2, the opera®@y in Eq.
(20) can be expressed in terms of the gluon field strength
1 s(in-D|\™M ] tensor[10]:
= N—CTI' Yn T Yn . (20)

1 i

The simple form for the operator®,, arises because the 0,= ETr[Yﬁ(m'D)Y“]

variable E; is totally inclusive on the “unobserved” anti-

quark jet = 1Tr igfdeYI(Z'S 0)n*“n’G,,Yn(z;s,0)
The formula fordI", e/dE; is 2 0 nuer>s AN

AT et (24

G, ~ TSR OM2/2-Ey)+ &'(M2/2-E;)(0]04|0)

0, in Eqg. (24) vanishes if the ultrasoft gauge field is treated
21) as a classical degree of freedom. Then the Wilson lines in
Eq. (24) are unitary matrices and the trace vanishes since the

The delta function term in Eq19) simply reproduces the gluon field strength tensor is in the adjoint repres_entation.
leading perturbative formula fordf(chj)e{d E, while the Note that the vacuum expectation value@f can still be

higher-order terms contain the effects of nonperturbative‘;nonzero because of quantum effects. Usually operators in-

physics. The derivation presented here assumes the obseny&yving products of gluon fields require renormalization;

jetis the quark jet. A similar derivation in the case where thehowever, it is straightforward to show th@ is not renor-

antiquark jet is observed gives operators malized at one loop.

T

m

IIl. ENHANCED NONPERTURBATIVE CORRECTIONS
(22 TO EVENT SHAPE VARIABLES

Op=~—Tr Y] ..

2

(in_-D

1
Nc
_ _ _ There are a number of event shape distributions that are
Since the vacuum expectation values ©f, and Or, are  commonly studied in the literature. Conventionally, one de-
equal by charge conjugation, our results also hold in the casknes a general event shape distributébr/de, whereeis an
where one does not distinguish between quark and antiquaggent shape variable defined such that the regierd cor-

jets. responds to the two jet limit. Examples aee=1—T for
We define the matrix elements using dimensional regular-

ization withMS subtraction so that in perturbation theory the

vacuum eXPeCt?tion vaIuQQ|Om|O) are zero. o More correctly the differential cross sectidir', j,/dE; smeared
Note thatO, is a very different operator tha@; so itiS  over a regiom\ of energy(that contain€ ;= M/2) with A of order
not possible to capture the effects of nonperturbative physics?Mm, .
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thrust,e=B for jet broadening ané=C for the C param- wheret is a unit vector that defines the thrust axis. The
eter. Any event shape distribution fidecay contains both maximum is taken over all possible directionstofand the
perturbative and nonperturbative contributions. The perturbasum is over all final state particles. To the order we are work-
tive effects can be computed as a perturbation series ifhg the thrust axi§ can be set equal to the spatial part of the
as(M7). At leading order, only two-jefi.e., qq) events con- lightlike four-vectorn used to define the collinear antiquark
tribute. Events with more hard partons are suppressed bijeld. It is convenient to call this direction theaxis. The
powers ofas(M). In general, nonperturbative effects are thrust distribution is calculated analogously to the two jet
suppressed by powers &focp/M, but in corners of phase distribution except that the delta functiof{(E;— pg) is re-
space wher@<1 these nonperturbative effects become enpjaced by5(MzT—|pé|—|pﬁ—2a|kﬁa|), where the sum is

hanced. Here we consider the regidgcp<Mze<Mz and  gyer all ultrasoft particles. We adopt the same conventions as

focus on the enhanced nonperturbative contribution sup the jet energy distribution so that the phase space integrals

pressed only by a single power &focp/(Mze). are again done using the delta function in EtR). Decom-
Perturbative expressions for the jet variables considere osing the total ultrasoft four-momenturhu:kf,a)Jrkfjb’,

in this section have been extensively studied in the literature.:, the sum of the ultrasoft momentum from particles in the

[30—35. Our main interest is in nonperturbative physics. same hemisphere as the antiquétype a) and the same

Working to leading order inxs(Mz), the dominant nonper-  pomisphere as the quattype b) the thrustT can be written
turbative effects are corrections to the two-jet distribution. o

Nonperturbative corrections to higher-order processes are

suppressed by additional powers @f(M 7). We will com-

pute the enhanced nonperturbative corrections to some conM ;T =|pg| +|p§ +> K2,

monly measured event shape distributions, just as we did for “

the jet energy distribution in Sec. Il. Recall for the jet energy 1 1 1

distribution the dominant nonperturbative correction came = E(pq:— pqi)—z(p;— p§)+ 5( kf,a)’ — kff‘)*)
from expanding

M, K\ My My ke - %(kﬁb)_—kﬁb”)
5(7—EJ+7>=5<7—EJ +6 T—EJ)7+-~- . . . . .
(25 = SBq+ 5Pa + 5 (kg —ki)+ Skg 5 (K=K
in Eq.(13) to linear order irk; . The delta function from Eq. 1
(12) setsk, = —k, , and we therefore find —E(kf,b)’—kf,b)*). (29)
dr M k.t -~ _
210 | s &—E 5 =2 E (k) Now the delta functions in Eq12) setp-=p. =Mz, k-
dE 2y 2 2 2 ) L a P q
) 20 = ki kg =—ky , andk;=0. Thus we find
1
where T=1— M_Z(kE‘aH +k®), (30)
1
(kiy=> N—<o|T[YndeY%ea](0)|xu(ku)> where we have also uség=k®+k{? . Thus,
X, Nc
K@+ 4 (b) =
X(Xu(ko) I TLYRa"Y 1 “1(0)[0)K, - (27) 3_:—:1_‘(2%4 S(1-T)— 5/(1_T)<“M—“>
z

The jet energy distribution has the nice property that one can
write (k. ) as the vacuum expectation value of an operator
involving Wilson lines of ultrasoft gauge fieldsamely, Eq.
(24)]. For some shape variables this is not possible. How-
ever, expressions analogous to E(®5)—(27) can be de- The thrust axis and the hemispheres are determined by the jet
rived. directions, and can be defined in terms of the label momenta
of the quark and antiquark. Thisind the hemispheresand
A. Thrust b are label variables. Nevertheless, because of the hemi-

. ) . sphere condition on the ultrasoft momentum in Egl),
First we consider the thrust distributiad’/d T where the there is not a simple formula expressing the correction in

(o)
Mz

. (31

r(z‘_’j)m{ﬁ(l—T)—&'(l—T)

thrustT is defined by terms of the vacuum expectation value of an operator involv-
ing Wilson lines like the one in Eq24).

M T=max>, |t-pil, (29 In a region|1—T|~\2 the higher order terms in the ul-
i trasoft momentum that were neglected in E2{) are impor-
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tant. Equation(31) is appropriate for a regiodT nearT
=1 that satisfies  §T>\?, for example,6T~\.

B. Jet masses

The squared jet massMﬁ’b are the squares of the invari-

ant mass of all the particles in the two hemispheresdb,

defined by the plane perpendicular to the thrust axis. Two

commonly used variables are the sum of jet mass&§,
=(M2+M3)/M2, and the heavy jet massMZ
=maxMZ,M2)/M3. The jet masses atd 2= (pz+k{?)? and
MZ=(py+k{)2 More explicitly,

M2=(pg + k") (pg + k)~ (pg. +k{P)?

ME=(pq +k{” ) (pg +K{” )= (pg +kD)Z (32
Recall thatp, is aligned alongn so thatp,, =0. Also, the
delta function in Eq.(12) setspg =0 andp; =py =M.
Then, working to linear order in the ultrasoft momenit2
=Mzk@* andMZ=Mzk{P ", so

dr [ (0l's)
_ 0 1 2 r/Na2
TR KA RUE Vet
dr [ (o'
dl\"Az:F(ij)et S(M)— &' (ME)—— |,
H L
(33
where
(O =(kP™ + k(7).
(O)'"y=(maxk®* kP)")). (34)

Note that in the kinematic region where expanding to linear
order in ultrasoft and residual momentum is appropriate, thd’

nonperturbative corrections to thé3 and 1— T distributions

PHYSICAL REVIEW D0, 034014 (2004

Y

FIG. 1. Determination of the thrust axis. To the order we are

working, the quark and antiquark have momer@y|=|pq]
=Mg/2. The antiquark then makes an angte=2|kg, |/M with
the z axis, and the thrust axismakes an anglé,= kg, [/M with
both the quark and antiquark.

C. Jet broadening
Jet broadening variablés, ,, are defined by

1 n
Ba'bZZMZ iEb |pi X1,

€ea,

(35

where the hemispherasandb are defined as before, ahis
the thrust axis. The jet broadening variables at otdéM 5
require knowing the thrust axis to ordky /M. The thrust
axist maximizesZ;|t-pj|.

The angle betweepy and thez axis is given by

|kaJ_
ML (36)
and the thrust axi§ can be written as
t=(0,—sin 6, ,cosé,). (37
By symmetry,
|ka
et_ MZ ’ (38)

hich is half the size ob (see Fig. 1
Now calculatelp; x f| for each particle. To linear order in

are given by the same nonperturbative matrix element. Théu/Mz we find for the quark,

nonperturbative corrections to thé3 and M3 distributions
are different.

Working to higher orders irk,/M5, the definitions of
thrust in Eq.(30) and of jet masses in E§32) become dif-

ferent beyond linear order. However, the corrections to everid for the antiquark,

shape distributions at higher orders Apcp/(Mz€) come

not from expanding the argument of the delta functions used

to define these variables to higher orderskiiyM,, but

o Mz |kEL|
|pq><t|=75|n9t=T, (39
- Mz |k@|
|pg><t|=|kgi|coset—75m 0= 5 (40

rather from expanding these delta functions as power series

in the ultrasoft momentum, as in E5) for the jet energy.

For each ultrasoft particle, the cross produdt, X is given

So even at higher orders, the enhanced nonperturbative cdsy the determinant

rections, i.e., of ordefAqcp/(Mz€)]", n>1, come from

the leading-order correction to the argument of the delta X y z

function, which are the same for thrust and jet mass sum. So KX KY K2
the enhanced nonperturbative corrections to thrust and jet “ “ @

mass sum are related to all ordersAgcp/(Mz€).

(41)

0 —sing, cos6;
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Since sing; is already of ordek, /M5 the cross product is, to de{( 6—Nl)=(1—N)de(X—\l), (48)
linear order ink, /M5,

wherel is the identity matrix and

ko xt= (ki — k3, 0), (42)
X2
so|k,xt|=1k,, |. Combining the contributions of each par- X;= Ka ,
ticle to the sum in Eq(35), and using the delta function in « Mzlk,|
Eq. (12 to setkg, = —k,, , we obtain for the jet broadening
variables(to linear order ink,/My):
| =2 | (49)
uL @ @
Ba 2M ( Ea |kal|)
k"ky
|kuL| X12= X21—E |
Bo= 51" ( +2 |kM|) (43 « Mzlfa

Here the sums over are only over ultrasoft particle$The
where the sum omv is over the ultrasoft particles in hemi- contriputions from the quark and antiquark to these compo-

spherea or b. nents ofg"™ are suppressed by another factor d#1%/, since
One conventionally defines two other broadening vari- bl = |Pgl=M/2.)
ables as

The Iargest eigenvalue is;=1, and the other two eigen-

values satis
Bmar=Max( By, Bp), b

_ 1 (K2 (k)2
Bsun=Ba+ By (44) "2“‘3:M_z > R (50)
The jet broadening distribution is ‘
Thus,
(0) , < 1>
d 2]e 5(8) ) (B) (45)
3 |kaL|2
: _ _ C=1 = (5
for B, p sum,max Where(O7)=Mz(B) is the matrix element Mz “a
of the appropriate quantity in Eq&3,44. Nonperturbative
effects in the jet broadening measures are not related to thehe C distribution is then
jet energy or thrust.
In this paper, we have assumed that the nonperturbative dF (0 <l:>
physics is completely described by ultrasoft degrees of free- ac (Zoj)et{ 8(C)— 5’(C) (52

dom. It is possible that some of the subtleties associated with

nonperturbative corrections to the jet broadening variables

that have been discussed in the literadr@ can be attrib- where(Of)=M,(C) defined in Eq(51). Like jet broaden-

uted to nonperturbative effects in the collinear sector, whiching, theC parameter distribution is not local on the ultrasoft

we have not included. fields, and the nonperturbative correction is not related to
that for any of the above distributions.

D. C parameter
The C parameter is defined as E. Energy-energy correlation and jet-cone energy fraction
The angular correlations of radiated energy can be char-

C=3(AhatAohgtAshy), (46) acterized by the one-point and two-point correlations
where\; are the eigenvalues of (36,37,
dx
r.s
oo L5 PP un do= | oS a0y,
Mz 5 [pi
d2
andr,s=1,2,3 are the space components of the momentum > dr Ei 1 S(Q—-0)8(Q" —Q,
p; of theith particle. dQda’ E z 1) i)
The largest component a@f® is §*% The quark and anti- (53

quark in the jets have—momentumpéz - pé—z M/2 to the
order we are working. Then, to linear orderkp/M;, the  where the sum is over all particles, and includes the terms
eigenvalues of)'* are given by with i=j. They are normalized so that
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a3 F. Classes of observables
j da d_Q:F' The different observables we have discussed can be di-
vided into classes, based on the extent to which their non-
daz d3 perturbative corrections are inclusive on the ultrasoft degrees
f dQ MZ d_Q (54) of freedom.

A class | observable is the jet energy distribution. The
nonperturbative correction to the jet energy depends on

The energy-energy correlation functid(cosy) is de- (k;), wherek, is the total ultrasoft momentum, so the jet

fined by energy distribution is totally inclusive on the ultrasoft fields.
4zs The derivation of nonperturbative corrections to the two jet
P(cosy)= | dQ'dQ————35(cosy—cosfqq), energy distribution is not q_uite on th(_a same footing as the
dQdQ derivation of nonperturbative corrections to tBemeson
(55 semileptonic decay rate, because of the additional assump-
. ) tion about the equivalence of sums over partonic and had-
where 6 is the angle between vectors in theand Q' ronic states discussed after E§).
directions. Class Il observables are thrust and the jet maségs .

The angular energy correlations E§3) were defined i The nonperturbative corrections to these variables require the
Ref.[36,37) for e"e™ annihilation, and the solid angle was jrasoft momentum to be broken up into two parkg
defined with respect to the beam direction. For unpolarized _ b ; TR '

P P =k®+kP, corresponding to the contributions from ultra-

decay, therze is no p,referreq direction, dB/d() is & cON- st partons in the two hemispheres. The hemispheres are
stant, andi“%/d2d€}" contains the same information as the ¢yosen based on the jet directions, i.e., based on the collinear

energy-energy correlation functidh(cosy). One can, how-  gegrees of freedom. The momentum in each hemisphere can
ever, define distributions analogous to E§3) where the  {hon be defined by integrating the ultrasoft energy-
solid angle is measured with respect to the thrust axihe  momentum tensor over the hemisphere at infiritg,38—
one-point function is called the jet cone energy fraction  41]. The class Il variables are not totally inclusive on the
The energy-energy correlation and the jet cone energyitrasoft variables, but require them to be divided globally
fraction both are proportional t6 functions if one considers into two parts. Whether our derivation of the nonperturbative
the leading order process dfdecay into a quark-antiquark corrections for class Il observablgsg., the relation between
pair: jet mass and thrust distributionss valid depends on the
nature of hadronization in QCD. The ultrasoft fields end up
P(cosy)=J(cosy) inside final state hadrons. The final hadron can contain ultra-
1 soft partons from different hemispheres, so the hadronic en-
= ZTo[8(cosy—1)+ 8(cosy+1)]. (56)  ergy flow in each hemisphere does not have to equal the
2 parton energy flow in each hemisphere. If the hadronic and
partonic energy flows differ by order unity, the derivation of
Ultrasoft emission(in two-jet eventg changes the distribu- nonperturbative effects in class Il observables is invalid. If,
tion in two ways:(a) by changing the energy @b) by chang-  for a smearing region of siz& the mixing of ultrasoft mo-
ing the solid angle of the emitted particles. At orég/M,,  menta between the two hemispheres during hadronization is
the change in energy can be neglected, because it does ngi effect of order ocp/A, then its impact on class Il ob-

shift the angles of the partons; thus there is no contributioervables is the same sizelgseffects, which are one higher
proportional tos’ (cosy*1), as for variables such as thrust. order than the terms we have computed.

The angle between the quark and antiquarkc@mpare Eq. Class Il observables are the jet broadening measures
(36)] Ba.b.sum max@nd theC parameter. These depend on knowing
the individual ultrasoft momenta of each parton. This ap-

kf pears to be a notion that cannot be made rigorous in field

COSOyq=—1+2 (57 theory.

2
z

. . . Model- t relati h iabl
and the angle of the quark or antiquark with respect to the G. Model-dependent relations among event shape variables

thrust axis i compare Eq(38)]: Nonperturbative corrections to event shape distributions
have been considered extensively in the literature in the past.
k2 For example, in the work of Ref11], nonperturbative shape
COS0gi= —COSfgi=1— —, (58)  functions were derived for thrust and jet mass distributions.
z The enhanced nonperturbative corrections to these distribu-

tions are given by first moments of these shape functions,
wherek is the totalL momentum of the ultrasoft particles. and the results in Secs. Ill A and Il B are in agreement with
The shift in angle is second order ky/M 5, and so to first Ref.[11].
order, there is no enhanced contribution near ycos1. The derivations of the enhanced nonperturbative correc-
There are nonperturbative contributions at second order. tions in this section have only relied on the fact that they
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arise from matrix elements of ultrasoft operators. It is in-Given the assumptions that have to be made to obtain Eg.
sightful to understand what further conditions have to be64) (or analogous relations based on higher orders in pertur-
imposed to reproduce other proposed relations amongst nobation theory, it does not seem likely to us that there is a
perturbative parameters for event shape distributionsimple analytic nonperturbative relation betwe@S) and
[12,13,15,1% (O]).

As an example, consider th@ parameter, for which the
nonperturbative matrix element was defined as

2
(Of>= 3< E M> ] (59 Predictions for event shape variables have been compared

vkl with experimental data in Ref$l,7]. Nonperturbative cor-
) ] rections have been included using the ansatz that their effect
For on-shell soft gluons collinear to the Z?Equa(g_or quarkon distributions for shape variables is described by shifting
Jef)([e-’ n tlem|s.ph.era or b, respectively, k' <k~ and  the variable bycunp/ Ecm in the perturbative formula for the
k®~<k®)* This implies that distribution. Herec is a constant that depends on the kine-
) L matic variable un, is a universal nonperturbative parameter,
2 K _> E ko Kel andE,, is the center-of-mass energy. An analysis in pertur-
S |k, T kK| bation theory(similar to what was done in Sec. IIl)Gro-
col “o vides simple relations between this for some of the event
shape variables. We have found that, provided one is not in a
:2< > K@+ ||<'(8b)|> kinematic region that is extremely close to the partonic end
@ B point (i.e., the shape function regipre for 1— T andM2 are
@)+ (b) the same. However, we argued tlaafor other parameters
=2(ky” "ky” ). (60)  like the heavy jet mass an@ are not connected to for
) thrust. Some experimental evidence for this can be found in
This leads to the analysis of Ref[7]. For 1~ T and the jet mass stfma
o T simultaneous fit folag and w,, under the assumption that
(O1)cai=6(01). (61) takes on its conjectured valuésee Fig. 9 in(7]) yields val-

. f hat are cl h other, and val h
To take into account that ultrasoft gluons can also be raEjes Ofiunp that are close to each other, and values:pthat

diated at a finite angle, one can impose the condition that thare consistent with other extractions of the strong coupling.
matrix elements OD(f and OI are given by the one-gluon ﬁowever, Ref.[?]_ finds that’u-”p for the heavy jet mas<;

R . . parameter, and jet broadenings are not relategs g for
_contnbungn in perturbation theory,_ performing the angUIarthrust in the way that the analysis based on perturbation
integrals in the phase space at a fixed valugkof. Under o0 suggests, and, furthermore, a fit to these variables
this assumption, the matrix element®f is given by does not yield a value o that is consistent with other
extractions.

H. Comparison with the data

kaL 2 w2 ) k 2 1
2 f désing——
= sin . ,
Kal /1 giuon 0 (|ky|/sin6) sireg IV. CONCLUDING REMARKS

We have studied nonperturbative effects4ndecay to
hadrons using soft-collinear effective thedBCET). The jet
energy distribution for two jet events has enhanced nonper-
turbative effects when the jet energy is nédg/2. These

aponperturbative effects can be expressed in terms of the
vacuum expectation value of operators involving Wilson
lines. The Wilson lines arise from the coupling of ultrasoft
> gluons to collinear degrees of freedom in the jet. In Appen-

:77<|kj_|>1 (62

where the factors of sié from the phase space, from the
relation |k, |=1|k|sin#, and from the squared amplitude for
one gluon emission have all canceled out to give the fin
result. For the matrix element @, , we calculate

|k|(1—cos#)
Sirte

dix B we derive the ordetg perturbative corrections to the
jet energy distribution and discuss the implications of pertur-
bative and nonperturbative physics on the first moment of

_2<J‘ﬂ'/2 |kl|(1_cosg)> this distribution.

w2
(kK@ + k<b>->1_g|uon=2< f désing
0

de - For a region of E;— M /2| that is of sizeA, the leading
0 S’ nonperturbative corrections to the jet energy distribution are
of orderA gcp/A whenA is large compared td ocp. In this
=2([ky[). (63 region they can be characterized by the vacuum expectation

) value of a single operator involving ultrasoft fields which
This leads to the result

(OC> :3_7T<OT> (64) ’Referencd 7] advocates the use of a modifiEescheme jet mass
1/1-gluon™ 5 A ~1/1-gluon- to reduce sensitivity to hadronic masses.
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provides a contribution to the jet energy spectrum that isr[yﬁab]
proportional tos’ (M z/2— E;). For multijet events, a similar
analysis holds; however, an additional operator analogous to
0O, but involving adjoint Wilson lines occurs for a gluon jet = (e 19ANdS)  D(gTigAy-1ds)  by.i  (gTigA1ds) by
[19]. N-1 N-2

WhenA~ Aqcp, one is in the shape function region, and :(efigALdS)bb (efigAL_ldS)bN_lb
the functional dependence @ is much more complicated. N-1
While we focused mostly on the kinematic region where _ b (A3)
Mz>A> A qcp, it was shown that in the shape function re- na
gion, it is not possible to capture the effects of nonperturba-
tive physics by introducing a single nonperturbative param
eter u,, and shifting E;—E;—u,, in the perturbative
formula for the jet energy distribution.

The jet energy distribution has the special property that i
is totally inclusive in one of the jets, and hence expressions
for nonperturbative effects can be derived using operator =0 b1 Stb =t b b
methods that are similar to those used for the end point re- T[Yna'1=Yn 2, T[Yna 1= Yna - (A4)
gion in inclusive semileptoni® decay. Other event shape
variables(e.g., thrust, jet mass, jet broadenitgve nonper-
turbative effects that are enhanced in the partonic end poirftrom these results, E¢18) follows.
region. We discussed the extent to which these effects can be
understood using field theoretic methods in QCD.

AT
- _(e*'gAlds)bla

where the overline denotes an anti-triplet Wilson likiee-
call that the generators in ttf&representation are minus the
franspose of those in ti& Similarly,

2. O, in terms of the gluon field strength

We can express the operatdy in terms of the gluon field
ACKNOWLEDGMENT strength tensor as written in E@4). It is convenient for this
Some of this work was done at the Aspen Center forPUrpose to generalize the expression for the ultrasoft Wilson
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so that witha=0 andb=« we recover the standard Wilson
APPENDIX A: PROPERTIES OF WILSON LINES line used aboveYn(z)=Yq(z;0,°). Differentiating along

In this section we derive some useful properties of thethen direction,

ultrasoft Wilson lines introduced in Eq7).

1. Relations between triplet and anti-triplet Wilson lines n-dYn(z)=ig fo dsYn(z,,8)[n- ;- Al(z+ns) Yn(25,0)

Consider the time- and anti-time-ordering of the Wilson
lines in the shape functioBdefined in Eq(16). ForY,,, the
path ordering is the same as time ordering andTEy¥,]
=Y,. Consider writingY,, as the product oN infinitesimal
integrals over path segments of lengtf

=igf dsYy(z;,s)[n-d,n-A—n-g,n-A
0

. 4 . +n-d,n-Al(z+ns)Yn(zs,0
Ynab:(elgANds)abN71(elgANflds)bele72 . '(elgAlds)blb! z ]( ) F( )

(A1)
with the subscripts on the ultrasoft gauge fields denoting =igf0 dsYn(z;2,8)[n-9;n-A=n-d;n-A]
their space-time location along the path of integration. Tak-
ing its adjoint X(z+ﬁs)Yﬁ(z;s,O)+igf ds

0

T b_/a—igA —igAN_ by
Yha = (e 109 P, (e719MN-1d5),  Pnoa

d(n-A)
ds

X Yn(Z;%2,S) (z+ns)Y+(z;5,00. (AB)

X (g9, P, (A2)

Time ordering this expression, Using the chain rule,
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v _ occur in contributions to the differential decay rate. The jets
f dsgc[Yn(z=,s)[n-Al(z+ns)Y(28,0)] are defined using the Sterman-Weinberg criteria which in-
0 volve an energy cuBM; and a cone half-anglé. Correc-
= | d
=f0 ds[d—SYn%z,m,s)

. tions suppressed hy 8 and asd are neglected.
[n-A](z+ns)Yx(z;s,0)

o d
+J dsY(z;,s)

0

1. Two jet decay rate

ds

) (z+ns)Y+(z;s,0) Using the Sterman-Weinberg definition of jets, there are
three contributions to the two-jet rate @ «s):

(@ One quark and one antiquark each creating a jet.
(b) One quark and one antiquark each creating a jet, plus a
gluon with energyE;<SM; .
(= _ _ (c) One quark and one antiquark each creating a jet, plus a
:_'QJO dsYn(z;%,8)[n-A(z+ns),n-A(z+ns)] gluon with energyE,>SM; inside one of the jets
(within an angles of the quark or antiquajk
Contribution (a) is simply the ratel'(Z—qq). The tree
and virtual gluon graphs give the amplitude:

°° —_|d
+f0 dsYq(z;0,5)[n-Al(z+ns) d—SYﬁ(z;s,O)

XYn(z;s,0)+ f dsYy(z;,s)
0

X din-A) (z+ns)Y+(z;s,0) (A7) — asCr
ds nlZ;5,U). MzﬂqazGM(pz)ua(pq)F'MUa(pE) 1+ o X>,
Using the above equation to eliminate the last term in Eq. (B1)
(A6) yields . .
where the color indexa is summed over valuesa
(> _ i — . =1,... N¢, andC¢ is the Casimir of the fundamental rep-
n- DYW(Z):'QJ'O dsYn(z;%,8)n*n"G,,(z+ns) Yy(2;s,0), resentation. Explicit computation of the one-loop vertex cor-
(A8) rection gives
where ) 2
4 3 2 [—2pg T
| | x=—— =4 S| —Pafa)_, T
n-DYx(2)=n-dYn(z)—ign-A(*)Yx(2) +igYn(z)n-A(z) € € € i 12
A9
| o (A9 L o ~2pqPq| 3, (~2PgPq
and the gluon field strength tensor is defined by —5In 2 +5In 2 (B2)
G,,=d,A,—d,A,—1g[A, Al (A10)
Integrating the square of the amplitude over theimen-
Hence sional two body phase space gives
o) 1T [YXin-D)Y;] N 2
1=z T in- o c B —€
2 n — 2 2 1-e€ €
i 'z .qq 32772(gv+gA) Mz “(4m) 3_6935}
= ZTrli fo. Jiey .
2Tr[|gf0 dsY;(z;s,00n“n*G,,,Yn(z;s,0) |, @ Ce 4 3 2 M2
x| 1+ ————-t=-Ih——4
(A11) 77 € € € pu
which is Eq.(24). 77 1 M3 3 M3
a-(24 — —ZIm—Z+Zin—2| |, (B3)
1227 42 27 42

APPENDIX B: PERTURBATIVE CORRECTIONS

TO dI'/dE, where () is the total solid angle id dimensions. The &

Neglecting ordekr, corrections to the nonperturbative ef- poles will cancel out against divergences from the real gluon
fects proportional to O,, perturbative corrections to emission graphs. We do not need to expand the bracketed
dI';e/dEy in Eq. (9) can be calculated in full QCD using prefactor in Eq.(B3) in powers ofe because the identical
standard methods. In this section we first review the compufactor will appear in the real gluon graphs.
tation of perturbatived(es) corrections to the total two-jet ~ Contributions (b) and (c) come from integrating the
rate I',; and then compute the jet energy distributionsquare of the amplitude for real gluon emissid@n;>qqg,

dI'; e/ dE; at orderas. We work ind=4— € dimensions to  over the three-body phase spacelidimensions. We find for
regulate infrared, collinear and ultraviolet divergences thathe terms that do not vanish gsand § go to zero,
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IVERG e € For the contribution of real gluon emission processes, we
0 __9sMz RCHF o # 2, q2 ite the three-body ph for this rate’
ZHQEQZW(ZW) M, Q, Q5 (g5+02) write the three-body phase space for this rate:
€\? dr, 1 1
_ = Jet _ d—4 d—4
1 1“( 2) i aE, 16|\/|Z(zw)zd—sﬂd*ZQdfldElEl dE,ES
XN === B " (B4)
€ (=) M2~ 2M,(E;+E,)
44 z7 eMzZIBE1TE)
and x d cosé sinf 05[ 2ELE,
© _9Mz NCe [ p) +1-cos6|S(Ey— - - )| M|? (B9)
FZ—»qag_ 256775 (477) MZ 92—693—6 J !

2-€ , ,(28)7[4 where theS(E;— - - -) definesk; according to which partons
X3 (VT —— [;(2,3)5 actually go inside the jet. It is useful to split up the phase
space slightly differently than for the case of the total rate:

3E+13€2
48

T'(—e€)?

1+ T(—2¢)

+92 _ (B5) (@ Gluon with energyE,> BM; inside unobserved jet.

(b) Gluon with any energy inside observed jet.
(¢)  Gluon with energyE,<8M; outside observed jet.

Adding together contribution&) and(c), expanding in pow-
ers ofe and converting to th#1S scheme yields for the total These three regions exhaust the possible gluon energies and

rate forZ—qqg in the two-jet region locations with respect to the jets. It is convenient to introduce

the variable

Nccpa’ _ 2—€

Iz qog= 373 2(g3+93)| M3 6(4W)5E935} M
eJ:TZ ~E, (B10)
4 3 2 M7 3 M7 1 Mj

X &2 + P n? o Eln? +§| ? and focus on a region &f; near the origin with size of order

BMz.
1772 For case(a), where a gluon wittEg> BM; is inside the
—4In28In6=3Iné+ o ——5-|. (B6)  unobserved jet, tak&;=E4, E,=Eg, so ¢ is the angle

between the gluon and antiquark, aBg=E,. Integrating
over # and Ey using the delta functions leaves an integral

Finally, we add together the raté¢y . g andI'z_ ;qq from over E, running between the limits

Egs.(B3) and (B6). The e-dependent prefactors in brackets
in the two equations are identical, as promised. Tlkepbles

in the remainder of the expressions cancel out exdaydo . 2 e;
all the logarithms ofM,/u), so we can see=0 in the =7 |12\ 1= 5
remaining finite parts, leaving Mz

, (B1D

1+

2 and restricts; to lie between
aCr ( 5 =«

NcMz
F2—jet: 127 (g\2/+g;%\)
M 86°
52,8Mz<e3<%. (B12)
: (B7)

—3Iné—41In2BIn 5)

Similarly, for casgb), where a gluon with any energy lies
which agrees with Sterman and Weinberg'’s original resulinside the observed jetE,=E,, E,=Eg4, and E;=E,
[22]. +Eq. Integrate overf and E, using the delta functions.

Then the limits of theE, integral are

2. Differential decay rate dI'; j//dE,

We now turn our attention to the differential decay rate . 2 8e;
dl', i/ dE;. The contribution o, jgto this rate is simply BEg=7 1=\ 1+ Vo5 (B13)
z
dFZan_ _ MZ . . .
d—EJ—FZ_,qqﬁ E;— - | (B8) ande; is restricted to the region
where I'; g is the total rate forZ—qq calculated to B M6

O(as), which is given by Eq(B3). <€<0. (B14)
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Before we proceed to cage), note that the physical ob- d—2 M2p,- pe
servable we actually want to calculate is the smeared distri- |M(Z°) — |2=4NCCF92ME—(92+ 2)#.

; —a99 sPd—19V A p=
bution (k-pg)(k-pg)

(B19
dr _ .
Substituting Eq(B19) into the phase space
dEJ \ f dEJWA(EJ)dE (B15)

wherew, is a smooth function which smears the differential =
rate over a region of jet energy whose size is of oyglst; . dE, 256
But the contributions to the rate from cages and(b) have 1—ef2 2

support only over a region of siz6’M,<BM, near e, *(gutgnes 0(€)) 0l pM (1= 57) —ey]

dF(C) M ;92N<Cr d—2
- ( ) (2m )ZS—Qd 2041

=0. Consider smearindl'/dE;, or equivalentlydl'/de;, BM,—e
over a region nedt ;=M /2 (e;=0) of size of ordelBM . XIn % : (B20)
Thenw(0)~1/8M,, w’(0)~1/(BM5)?, etc. Expanding, €30

The factor, (1¢;)IN[(8M5—e)/(e;8)], is singular ag;—0,
dr , dr and must be rewritten in terms of an integrable quantity. Use
deJW(eJ)d_eJ: de[w(0)+w'(0)ey+-- .]d_eJ' the “plus distribution”:

(B16)

BMz BMz
Since w’ (0)/w(0)~1/8M5, and, for the contributions in JO dle(eJhg(eJ)EfO desf(ey)[g(e;) —9(0)],
cases(a) and (b), e;~ 6°M5 in the region wherell'/de; is (B21)
nonzero, the second term is suppressed by a powéf/gf
<1. Thus only the first term is relevahieeping only the  wheref diverges ate,=0 andg is a test function finite at

first term amounts to replacing the full’/de; by e;=0. To replace by ., we would write
dr dr JBMZdef _[AMz
—_— g sf(ey)a(e;) = desf(e;)g(ey)
dejﬂé(eJ)J' deJdej. (B17) o 0
BMz
However, integrating the contributions ¢&) and (b) to +9(0) fo desf(ey). (B22

dI'/de; over all allowed values of; simply gives their con-
tribution to the total Sterman-Weinberg jet rate, that is, theyrhe second term amounts to replacing
will build up part of the termI';_ o d(E;—Mz/2) in
dI',/dE;. Since we have already calculated the total rate,
we need not analyze cas@s and(b) any further, as long as f(eJ)_)é(eJ)f de) f(e)). (B23)
we can get the remaining contribution to the total rate from
case(c).

In case(c) we have a gluon witlEg<SM, anywhere
outside the observed jet. Hete,=E,, E,=Ey, and E;
=Eq. Writing out the formula for the rate explicitly,

But making this replacement in EB20) means writing a
delta functions(E;—M,/2) and integrating the differential
rate over all allowed values @&, which again just gives its
contribution to the total Sterman-Weinberg jet rate. Together
with the contributions from(a) and (b) this gives the one
dare© 1 1 loop contribution tod(E;—Mz/2)I'; je. Only the plus func-

= Qq--0y-10(ey) tion piece gives a deviation of the jet energy distribution
dE;  16Mz (2qr)20-3 away from E;=M,/2. The final result for the differential
rate toO(«y) is

X 0] BM7(1—6%) — ej]f , dEgEEq ™
ey(1+6%)
ermt z MzaNcCe

><S|nd‘40|/\/l(zclqag|2. (B18) dE, =0\ BEym 5 [Tzt T(QVJFQA)
The part of the amplitude that gives a contribution that sur- BM,—e;
vives asf—0 is X 0(e;)0(BMz—e,) —In o 5 ,

J +
(B24)
3This argument assumes that the integide;e;dI'/de; is finite,

which can easily be shown. where the total raté¢’, j¢; is given by Eq.(B7).
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0.04 — . . ] 4. Perturbative corrections in the effective theory
RSy Although we have used full QCD to calculate the jet en-
0.03 e - ergy distribution it is possible to do the computation in the
L ? effective theory. Here we briefly discuss how that computa-
) 002 7 - 7 tion would proceed.
o ] The full theory amplitude forZz—qq is reproduced in
B . SCET by the Wilson coefficient in the current matching:
0.01 - j
. ] i6co=[EWRIC(1.Pg- PPT W], (B29)
O L 1 1 1 ] 1 1 ‘ 1 1 ‘ 1 1 1
0.2 0.4 0.6 0.8 1 where there is an implicit sum over label momenta and the
f matching coefficien€(u,pq-Pg) can be read offfrom Egs.

FIG. 2. Plot of the functioiM ,(f). The black solid curve shows (B1) and(B2):
the perturbative contributions only, while the red dashed line repre-

sents the moment including the nonperturbative contribution. The o aCr 1 _Zﬁq'ba
figure corresponds t8=0.15, 5= 7/12, (0|0,|0)=0.5 GeV, and C(u,pg-pPg)=1+ 5 —4+ 12~ Eln2 —
we have evaluated the strong coupling constant at the secale ™ K
=M. 3 — 2% B
+ 2| —PaPa) | (B29)
3. First moment of the jet energy distribution 2 /.L2

As an application of the above result consider the first,nq the Uy renormalization factor for the current in the ef-
moment of the jet energy distribution, defined by fective theory is

MZ l drz_'et l EJ
M (f =f dE( B = - ==, aC
) maz—ipmy  \Dojee dEj /12 My =1+ —o—

(B25)

(B30)

Using the expression in EQR1) for the nonperturbative cor- Note that both the renormalization factor and the matching

rection and in Eq(B24) for the ordera, perturbative correc- coefficient depend on the label momenta for the quark and

tion to the jet energy distribution gives antiquark. For outgoing particles, the collinear Wilson lines
are defined as

aSCFB 1 © o .
Mi(f)=———|flog| ;52| (1~ f)log(1—Tf) Wn(z):Pexp{igf dsn-A,(ns+z)|, (B3l
0
(0/04/0) - - -
+ — (B26) and one must include collinear gluons produced by a Wilson
z

line in real gluon emission to get the corrést>qqg ampli-
tude. We find that the perturbative expressions for the two jet
for f<1 and rate presented in the previous sections are reproduced by the
effective theory if we call any particles inside the observed
quark jet n-collinear particles and all other particles
aCeB 1 (0]04]0) n-collinear. In the effective theory, ultrasoft gluons in the
lo 52 * M, (B2Z7)  final state contribute zero in perturbation theory and appear
only in the nonperturbative shape function. A similar result
holds for deep inelastic scatterifig4].

My (f)=

w

for f>1. Note that the order contribution toM,(f) is
independent of for f>1. This occurs because the perturba-
tive correction vanishes fdgE ;<M ,/2— M.

. L “The matching coefficient is just given by the finite part of the full
In Fig. 2 we plotM(f), for f<1. For this figure the

N _ theory matrix elementqq|j#|0) because the full theory current has
value of the energy cut i8=0.15 and the cone half-angle is no anomalous dimension, so the: poles are pure IR divergences,

6=15° and the vacuum expectation value®f is set equal \hich must cancel out in the matching condition. The loop graphs
to 500 MeV. We evaluates at the scalggMz and find with i the effective theory contributing to this matrix element are zero
these parameters that the ordegrcorrections reduce the two in dimensional regularization, so the finite part of the matching
jet rate by about 16% from its tree level value lending sup-coefficient is just the finite part of the QCD matrix element, given
port to the validity of perturbation theory for the values of by Egs. (B1) and (B2), while the infinite parts become the UV
the cone angle and energy cut used in Fig. 2. counterterm in the effective theof$2,43.
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