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Enhanced nonperturbative effects inZ decays to hadrons
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We use soft collinear effective field theory to study nonperturbative strong interaction effects inZ decays to
hadronic final states that are enhanced in corners of phase space. These occur, for example, in the jet energy
distribution for two jet events nearEJ5MZ/2, the thrust distribution near unity and the jet invariant mass
distribution near zero. The extent to which such nonperturbative effects for different observables are related is
discussed.
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I. INTRODUCTION

Some of the most successful applications of perturba
QCD are to processes such asZ decay to hadrons ore1e2

annihilation at large center-of-mass energy, in which a s
with no strong interactions decays into final hadronic sta
This paper will discuss the case ofZ decay, but the results in
this paper apply equally well to the other cases. Not only
the total hadronicZ decay width calculable but so are le
inclusive infrared-safe quantities like theZ decay rate into
2-jet and 3-jet events, the thrust distribution and jet m
distributions. Comparison of perturbative predictions
these and other quantities with experimental data onZ de-
cays from LEP and SLD has led to a remarkably accur
extraction of the strong coupling constantas(MZ) @1–7#.
Although the extraction of the strong coupling from eve
shape variables is less accurate than from the total hadronZ
width, it is more model-independent since~neglecting quark
mass effects! it does not depend on the values of the qua
couplings to theZ.

For the totally inclusive hadronicZ decay width, the op-
erator product expansion allows one to include in theoret
predictions nonperturbative strong interaction effects that
characterized by vacuum expectation values of local op
tors. The effects of higher-dimension operators are s
pressed by powers of the strong interaction scaleLQCD di-
vided by the center-of-mass energyMZ . Since theZ mass is
large, these effects are very small. For example, if qu
masses are neglected, the leading nonperturbative effec
the Z decay width come from the vacuum expectation va
of the gluon field strength tensor squared,^GmnGmn&. This
dimension-four operator gives rise to corrections to the to
hadronic width suppressed byLQCD

4 /MZ
4;1029.

Less inclusive variables that characterizeZ decay to had-
rons give rise to nonperturbative effects suppressed
smaller powers ofLQCD/MZ @8–15#. Furthermore, these cor
rections often become even more important in corners
phase space where hadronization effects are significant,
as in the thrust distribution very nearT51. It has been con-
jectured that the enhanced nonperturbative effects to m
event shape distributions have a universal form with a sin
nonperturbative parameter@12,13,15–18#. These arguments
are based on analysis of renormalon ambiguities in the Q
perturbation series and on the behavior of resummed pe
1550-7998/2004/70~3!/034014~16!/$22.50 70 0340
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bation theory. The conjectured relationship between the n
perturbative corrections to event shape distributions has
cently been tested experimentally@7#.

Recently the enhanced nonperturbative effects that oc
for the jet energy distribution in corners of phase space h
been studied using effective field theory methods@19#. This
approach uses the fact that very low momentum degree
freedom which contain the nonperturbative physics couple
the degrees of freedom with energies of orderMZ via Wilson
lines. Nonperturbative effects have been extensively stud
previously @11# using factorization methods to divide th
process into hard, jet-like and soft subprocesses@20,21#.
Nonperturbative effects are computed from the soft subp
cess. The effective field theory approach is similar to the o
based on factorization methods. In this paper we elaborat
the work in @19# and extend it to other shape variables. T
enhanced nonperturbative effects are expressed in term
weighted matrix elements of operators involving Wilso
lines, where the weighting depends on the event varia
being considered. We hope that this paper will help make
results of Ref.@11# more accessible to the community of hig
energy theorists who are most familiar with effective fie
theory methods.

In this paper we study smeared distributions which allo
us to expand the nonperturbative effects in powers ofLQCD,
and write them as matrix elements of Wilson line operat
and their derivatives. The computations are similar to th
of smeared distributions in the end point region inB decay—
the point-by-point computation requires knowing the nonp
turbative shape function, whereas nonperturbative effect
the smeared distributions can be written in terms ofl1,2 pro-
vided the smearing region is large enough.

For pedagogical reasons we start with a detailed treatm
of the jet energyEJ in Z decay to two jets, where the jets a
defined as Sterman and Weinberg did in their original wo
on jets in QCD@22#. We spend considerable effort on th
variable because the theoretical expression for its enhan
nonperturbative corrections is simpler than for other m
phenomenologically interesting variables like thrust. At lo
est order in perturbation theory, theZ boson creates a quar
and an antiquark, each with energyMZ/2, and so the jet
energy distribution is equal to

dG2-jet

dEJ
5G2-jet

(0) d~EJ2MZ/2!, ~1!
©2004 The American Physical Society14-1
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whereG2-jet
(0) is the total two-jet rate at lowest order in pertu

bation theory. This leading order theoretical expression
the jet energy distribution is singular atEJ5MZ/2. Further-
more, the leading perturbative and nonperturbative cor
tions are also singular at that kinematic point. However
non-singular quantity that can be compared with experim
without any resummation of singular terms is obtained
smearing the jet energy distribution over a region of sizeD
that contains the lowest order partonic end point atEJ

5MZ/2. The leading nonperturbative correction to th
smeared energy distribution is suppressed byLQCD/D. So,
for example, withD;10 GeV the nonperturbative correc
tions are expected to be of order 10%, roughly the same
as perturbative corrections, and an order of magnitude la
than the orderLQCD/MZ correction expected in the comple
two jet rate. We argue that forEJ very nearMZ/2 it is not
possible to capture the dominant nonperturbative effects s
ply by shifting,EJ→EJ2mnp, in the perturbative expressio
for dG2-jet/dEJ ~wheremnp is a nonperturbative parameter
orderLQCD).

In the next section, we derive an expression for the le
ing enhanced nonperturbative correction to the smeared
energy distribution for two jet events using methods fro
soft-collinear effective field theory~SCET! @23–26#. This
correction is given by the vacuum expectation value o
nonlocal operator involving Wilson lines. Perturbative ord
as corrections to this variable are derived in Appendix B.

Section III discusses the leading nonperturbative corr
tions for thrust, jet masses, the jet broadening variables,
C parameter and energy-energy correlations. In agreem
with Ref. @11# we find that the correction to jet mass sum a
thrust are related. However, without additional mod
dependent assumptions we do not find that the enhan
nonperturbative corrections to theC parameter and jet broad
ening variables can be related to those for thrust and the
masses. We compare the level of our understanding of
enhanced nonperturbative effects in these variables.

II. OPERATOR PRODUCT EXPANSION FOR THE TWO
JET ENERGY DISTRIBUTION

The nonperturbative corrections to the energy distribut
for Z decay to two jets,dG2-jet/dEJ nearEJ5MZ/2 are com-
puted in this section. The perturbative corrections will
discussed in Appendix B. The results are given for
Sterman-Weinberg jet definition, where a cone of half-an
d contains a jet if the energy contained in the cone is m
than Ecut5bMZ . We take the cone half-angled and the
dimensionless energy cut variableb to be of order a smal
parameterl, and compute in a systematic expansion in po
ers of l. We are interested in the jet energy distributi
within a regionD of MZ/2, whereMZ@D@l2MZ . For ex-
ample,D;lMZ .

SCET is the appropriate effective field theory for the
nematic region of interest, and will be used for the derivat
of the nonperturbative corrections todG2-jet/dEJ near EJ
5MZ/2. It is convenient to introduce two lightlike vectorsn
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andn which satisfyn05n051 andn52n̄. Four-vectors are
decomposed along then, n and perpendicular directions:V
5(V1,V2,V') where V15n•V, V25n̄•V and V'

m5Vm

2V1nm/22V2nm/2. For the problem of interest, SCET con
tainsn-collinear,n̄-collinear and ultrasoft degrees of freedo
@27#. The n-collinear and n̄-collinear degrees of freedom
have typical momenta that scale as

pc
(n);MZ~l2,1,l!, pc

(n̄);MZ~1,l2,l!, ~2!

and the ultrasoft degrees of freedom have momenta that s
as

pu;MZ~l2,l2,l2!. ~3!

We takel;ALQCD/MZ which implies that the typical ‘‘off-
shellness’’ of the ultrasoft degrees of freedom,pu

2;MZ
2l4

;LQCD
2 , is set by the QCD scale while the typical ‘‘off

shellness’’ of the collinear degrees of freedom,pc
2;MZ

2l2

;MZLQCD, is much larger thanLQCD
2 . Hence the collinear

degrees of freedom can be treated in perturbation theory
Cone algorithms for jets, like that of Sterman and We

berg, are ambiguous at higher orders in perturbation the
@28,29#. This arises when there is more than one way
assign a particle to a particular jet. However, in this sect
we work to lowest order in perturbation theory, where t
events consist of two almost back-to-back jets plus ultras
degrees of freedom. Since the cones are well separated,
is no ambiguity in assigning partons to the jets.

The nonperturbative effects we are after are character
by matrix elements of operators composed from the ultra
degrees of freedom. InZ decay into two jets, the jets ar
almost back-to-back, andn is chosen along one of the je
directions. The degrees of freedom in the two jets are t
represented byn-collinear ~for the antiquark jet! and
n̄-collinear fields~for the quark jet!. In this section we work
to lowest order in perturbation theory in the collinear field
Hence we match the weak neutral current in full QCD on
the effective theory at tree level,

j m5@ j̄ n̄Wn̄Gm@Wn
†jn#, ~4!

where Gm5gVg'
m1gAg'

mg5 involves the vector and axia
couplings of theZ boson. The fieldsj n̄ andjn are collinear
quark fields in then̄ andn directions, and we have adopte
the convention

jn~x!5(
p̃

e2 i p̃•xjn,p̃~x!, ~5!

where the label momentump̃ contains the components o
order 1 andl, n̄•p andp' , and the orderl2 components are
associated with the space-time dependence of the fields.
Wilson linesWn,n̄ are required to ensure collinear gauge
4-2
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ENHANCED NONPERTURBATIVE EFFECTS IN . . . PHYSICAL REVIEW D70, 034014 ~2004!
variance@25#. Since in this section we work to lowest ord
in QCD perturbation theory, they play no role in the analy
and can be set to unity.

The typical momenta of the partons in the jets are of
order of the collinear momenta, Eq.~2!, where the overall
scale of their momentum is set byMZ . However, it is pos-
sible for the jets to contain partons with momenta that h
an overall scale that is much less thanMZ . Because of the
sum over all values ofp̃ in Eq. ~5!, such partons can still be
represented by collinear fields. The interaction ofn-collinear
fields among themselves is given by the full QCD Lagran
ian, and so the hadronization ofn-collinear partons into a je
is described by the full theory.

The Lagrangian of the effective theory does not cont
any direct couplings between collinear particles moving
the two different lightlike directions labeled byn̄ and n;
however, they can interact via the exchange of ultrasoft g
ons. It is convenient to remove the couplings of the collin
degrees of freedom to the ultrasoft ones via the field red
nition @26#

jn→Yn
†jn , An→Yn

†AnYn , ~6!

whereAn is ann-collinear gluon field and

Yn~z!5P expF igE
0

`

dsn•Au~ns1z!G ~7!

denotes a path-ordered Wilson line of ultrasoft gluons in
n direction froms50 to s5`. This is the appropriate field
redefinition for outgoing collinear fields, since if a factor
exp(2es) is inserted in the integrand to decouple the int
actions at late times, one reproduces the correcti e prescrip-
tion for the collinear quark propagator. For annihilatio
which contains incoming collinear particlesYn is from s
52` to s50 and the daggers are reversed in Eq.~6!. An
analogous field redefinition withn→n̄ removes the cou-
plings in the Lagrangian of ultrasoft fields to then̄-collinear
fields.

The differential decay rate forZ decay to two jets is

dG2-jet5
1

2MZ
(

final states

1

3 (
e

u^JnJn̄Xuu j m~0!emu0&u2

3~2p!4d4~pZ2pJn
2pJn̄

2ku!, ~8!

where the sum over final states includes the usual ph
space integrations ande is the polarization vector of the
decayingZ boson. Since after the field redefinitions shown
Eq. ~6! there are no interactions between the ultrasoft a
collinear degrees of freedom, the matrix element factoriz
and at lowest order in perturbation theory in the colline
degrees of freedom,
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dG2-jet5
1

2MZ

d3pq

~2p!32pq
0

d3pq̄

~2p!32pq̄
0 uM i f

(0)u2

3(
Xu

~2p!4d4~pZ2pq2pq̄2ku!
1

NC

3^0uT̄@Ynd
eYn̄e

† a#~0!uXu~ku!&^Xu~ku!u

3T@Yn̄a
cYnc

† d#~0!u0&. ~9!

In Eq. ~9!, uM i f
(0)u2 is the square of theZ→qq̄ decay ampli-

tude averaged overZ polarizations and summed over th
quark and antiquark spins and colors,T(T̄) denotes time-
~anti-time-! ordering,NC is the number of colors, and w
have explicitly displayed the color indices on the ultras
Wilson lines.

The derivation of Eq.~9! in many ways parallels the us
of the operator product expansion to compute the deep
elastic scattering cross-section, or the rate for inclusive se
leptonic B decay. There is, however, one important distin
tion. The sum over final states in deep inelastic scatter
and B decay is a sum over a complete set of color-sing
hadron states. In Eq.~8!, one is summing over a complete s
of jet and ultrasoft states. These are a complete set of
tonic states, and are not necessarily color-singlet states
fact, unitarity would be violated if one separately impos
the color-singlet condition on each ofuJn&, uJn̄& and uXu&.
The derivation of Eq.~9! is valid to the extent that the sum
over partonic and hadronic states are equivalent. In jet p
duction, the color of the fast quark that turns into a jet
eventually transferred to low-energy partons during the fr
mentation process. The low-energy partons communicate
tween the different jets, and make sure the whole proces
color-singlet. The assumption is that this color recombinat
does not affect the decay rate at orderLQCD/MZ .

To calculatedG2-jet/dEJ we integrate Eq.~9! over the
allowed values of the quark and antiquark three-momen
with the factor d(EJ2pq

0) inserted. This corresponds t
choosing the quark jet as the ‘‘observed’’ jet. If one does n
distinguish between quark and antiquark jets then Eq.~9!
still applies since the value ofdG2-jet/dEJ when the ‘‘ob-
served’’ jet is an antiquark jet is the same. It is convenien
work in the rest frame of the decayingZ, pZ

5(MZ ,MZ ,0'), and align n̄ with the quark three-
momentum pq . The decomposition of the quark’s fou
momentum in terms of label and residual momentum,pq

5 p̃q1kq , has the formpq
15 p̃q

11kq
1 with pq

250, pq'

50. ~Note this means thatp̃q'5kq'50 andkq
250.! Hence

the phase space integration over quark three-momentum
comes

E d3pq

~2p!32pq
0

5
1

4~2p!2(
p̃q

1
p̃q

1E dkq
1 . ~10!

For the antiquark’s four-momentum the decomposition in
residual and label momentum ispq̄

1
5kq̄

1 , pq̄
2

5 p̃q̄
2

1kq̄
2 and
4-3
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pq̄'5p̃q̄'1kq̄' . One cannot setpq̄'50 by a choice ofn,
sincen52n̄, andn̄ has already been fixed by the directio
of the quark jet.

Expressed in terms of label and residual momenta
phase space integration over antiquark three-momentum

E d3pq̄

~2p!32pq̄
05(

p̃q̄

E d4kq̄

~2p!3
d~~ p̃q̄1kq̄!2!

5(
p̃q̄

E dkq̄
2d2kq̄'

2~2p!3

1

p̃q̄2

. ~11!

Here the delta functiond(( p̃q̄1kq̄)2)5d( p̃q̄
2kq̄

1
2p̃q̄'

2 ) was

used to do thekq̄
1 integration settingkq̄

1
5p̃q̄'

2 / p̃q̄
2 . At lead-

ing order in the SCET expansion parameterl the invariant
matrix elementM i f

(0) only depends on the label momentap̃q
1

and p̃q̄
2 . In terms of label and residual momentum t

energy-momentum conserving delta function becomes

d4~pZ2pq2pq̄2ku!52d~pZ
22pq̄

2
2ku

2!d~pZ
12pq

1

2pq̄
1

2ku
1!d2~pq̄'1ku'!

52dMZ ,p̃
q̄
2dMZ ,p̃

q
1d p̃q̄' ,0

2 d~kq̄
2

1ku
2!

3d~kq
11ku

1!d2~kq̄'1ku'!. ~12!

The relationkq̄
1

5p̃q̄'

2 / p̃q̄
2 and the Kronecker delta that se

p̃q̄' to zero imply thatkq̄
1

50, and so this variable does no
appear in the penultimate delta function in Eq.~12!.

Using these results gives

dG2-jet

dEJ
5

uM i f
(0)u2

8MZ~2p!
E dkq

1E dkq̄
2d2kq̄'(

Xu

dS MZ

2
2EJ

1
kq

1

2 D d~kq̄
2

1ku
2!d~kq

11ku
1!d2~kq̄'1ku'!

3
1

NC
^0uT̄@Ynd

eYn̄e
† a#~0!uXu~ku!&

3^Xu~ku!uT@Yn̄a
cYnc

† d#~0!u0&

5
uM i f

(0)u2

16pMZ
(
Xu

dS MZ

2
2EJ2

ku
1

2 D
3

1

NC
^0uT̄@Ynd

eYn̄e
† a#~0!uXu~ku!&

3^Xu~ku!uT@Yn̄a
cYnc

† d#~0!u0&. ~13!

We write the remaining delta function as the integral

dS MZ

2
2EJ2

ku
1

2 D 5E du

2p
expF2 i S MZ

2
2EJ2

ku
1

2 DuG .
~14!
03401
e
s

At this stage the collinear degrees of freedom have b
integrated out, and the matrix elements above, which invo
only ultrasoft degrees of freedom, are evaluated at lead
order in the SCET expansion parameter~i.e., l→0). Recall
that the Sterman-Weinberg jet criteria restrict particles o
side the cones used to define the two jets associated with
quark and antiquark to have energy less thanEcut which we
are taking to be orderlMZ . In the limit l→0 this energy
cut becomes much larger than a typical component of
ultrasoft four-momentum. Hence, for the matrix elements
these operators,Ecut should be taken to infinity and does n
restrict these matrix elements. Similarly the cone angle
taken to be of orderl while the typical angle between com
ponents of ultrasoft momenta is order unity. Thus the co
angle should be taken to zero in the effective theory t
contains only ultrasoft degrees of freedom and so there is
restriction on the ultrasoft states that are summed over in
~13!.

Using the exponential dependence onku to translate the
anti-time ordered product to the space-time pointun/2, and
then using the completeness relation to perform the sum o
all ultrasoft intermediate states, we find for the jet ene
distribution

dG2-jet

dEJ
5G2-jet

(0) S~MZ/22EJ! ~15!

where the shape functionS is defined by@10#

S~k!5
1

NC
E du

2p
eiku^0uT̄@Ynd

eYn̄e
† a#~un/2!

3T@Yn̄a
cYnc

† d#~0!u0&, ~16!

and the total two jetZ-decay width at lowest order in pertur
bation theory is

G2-jet
(0) 5

uM i f
(0)u2

16pMZ
5

NCMZ

12p
~gV

21gA
2 !, ~17!

having implicitly summed over spins and colors. Th
n-directed andn̄-directed ultrasoft Wilson lines commut
since (s1n2s2n̄)2524s1s2,0, and the gauge fields in th
Wilson lines are space-like separated.

In this derivation we chose the jets to be composed
tirely of collinear degrees of freedom. This is appropria
since jets are confined to narrow cones. For example,
momentum of any massless particle in the quark jet satis
p2!p1, which is the appropriate scaling for collinear pa
ticles in then̄ direction. However, it is possible to repeat th
above derivation allowing ultrasoft degrees of freedom to
inside a jet. Then instead of insertingd(EJ2pq

0) into Eq.~9!,
one insertsd(EJ2pq

02kuJ
0 ), wherekuJ

0 5(kuJ
1 /2)@11O(l)#

denotes the total ultrasoft energy inside the quark jet. Us
the delta functions in Eq.~12! we obtain again Eq.~13!, with
ku

1 in the final delta function now denoting the total ultraso
momentumoutside the quark jet. However, as mentione
previously, at leading order inl the cone angle of the je
shrinks to zero, and one recovers the previous result.
4-4
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It is possible to remove the time- and anti-time-orderi
completely in the definition of the shape functionS. Using
the results from Appendix A1 our expression for the sha
function becomes

S~k!5
1

NC
E du

2p
eiku^0u@Ȳn

† e
dYn̄e

† a#~un/2!@Yn̄a
cȲn

d
c#~0!u0&

5
1

NC
^0u@Ȳn

† e
dYn̄e

† a#d~k1 in•]/2!@Yn̄a
cȲn

d
c#u0&,

~18!

where the overline denotes an anti-triplet Wilson line.
Since in the kinematic region of interestMZ/22EJ is

much larger thann•] acting on ultrasoft gauge fields it i
appropriate to expand the delta function above which giv

S~MZ/22EJ!5d~MZ/22EJ!1d8~MZ/22EJ!^0uO1u0&

1
1

2
d9~MZ/22EJ!^0uO2u0&1•••, ~19!

where

Om5
1

NC
@Ȳn

† e
dYn̄e

† a#S in•]

2 D m

@Yn̄a
cȲn

d
c#

5
1

NC
TrFYn̄

†S in•D

2 D m

Yn̄G . ~20!

The simple form for the operatorsOm arises because th
variable EJ is totally inclusive on the ‘‘unobserved’’ anti
quark jet.

The formula fordG2-jet/dEJ is

dG2-jet

dEJ
5G2-jet

(0) @d~MZ/22EJ!1d8~MZ/22EJ!^0uO1u0&

1•••#. ~21!

The delta function term in Eq.~19! simply reproduces the
leading perturbative formula fordG2-jet

(0) /dEJ while the
higher-order terms contain the effects of nonperturba
physics. The derivation presented here assumes the obs
jet is the quark jet. A similar derivation in the case where
antiquark jet is observed gives operators

Ōm5
1

NC
TrF Ȳn

†S i n̄•D

2 D m

ȲnG . ~22!

Since the vacuum expectation values ofOm and Ōm are
equal by charge conjugation, our results also hold in the c
where one does not distinguish between quark and antiq
jets.

We define the matrix elements using dimensional regu
ization withMS subtraction so that in perturbation theory t
vacuum expectation values^0uOmu0& are zero.

Note thatO2 is a very different operator thanO1 so it is
not possible to capture the effects of nonperturbative phy
03401
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for uEJ2MZ/2u;l2MZ
1 simply by taking the lowest orde

perturbative formula in Eq.~21! and shiftingEJ by a non-
perturbative parametermnp, i.e., EJ→EJ2mnp. This ansatz
results in the shape function

S~MZ/22EJ!5d~MZ/22EJ!1d8~MZ/22EJ!mnp

1
1

2
d9~MZ/22EJ!mnp

2 1•••, ~23!

where the series of derivatives of delta functions has coe
cients that are simply related bŷ0uOmu0&5^0uO1u0&m,
which is not correct.

For uEJ2MZ/2u;l2MZ all terms in the series of Eq.~19!
are equally important. However foruEJ2MZ/2u;D@l2MZ
the vacuum expectation value ofO1 provides the leading
orderLQCD/D nonperturbative correction. In this kinemat
region the shiftEJ→EJ2mnp, with mnp5^0uO1u0&, cor-
rectly captures the most important effects of nonperturba
physics.

We have focused on nonperturbative effects that are
hanced in the region nearEJ5MZ/2. If one considers a vari-
able like the average value of the jet energy over the en
allowed phase space, then there are sources of nonpert
tive corrections that we have not considered.

Using the results of Appendix A 2, the operatorO1 in Eq.
~20! can be expressed in terms of the gluon field stren
tensor@10#:

O15
1

2
Tr@Yn̄

†
~ in•D !Yn̄#

5
1

2
TrF igE

0

`

dsYn̄
†
~z;s,0!nmn̄nGmnYn̄~z;s,0!G .

~24!

O1 in Eq. ~24! vanishes if the ultrasoft gauge field is treat
as a classical degree of freedom. Then the Wilson lines
Eq. ~24! are unitary matrices and the trace vanishes since
gluon field strength tensor is in the adjoint representati
Note that the vacuum expectation value ofO1 can still be
nonzero because of quantum effects. Usually operators
volving products of gluon fields require renormalizatio
however, it is straightforward to show thatO1 is not renor-
malized at one loop.

III. ENHANCED NONPERTURBATIVE CORRECTIONS
TO EVENT SHAPE VARIABLES

There are a number of event shape distributions that
commonly studied in the literature. Conventionally, one d
fines a general event shape distributionds/de, wheree is an
event shape variable defined such that the regione→0 cor-
responds to the two jet limit. Examples aree512T for

1More correctly the differential cross sectiondG2-jet /dEJ smeared
over a regionD of energy~that containsEJ5MZ/2) with D of order
l2MZ .
4-5
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thrust,e5B for jet broadening ande5C for the C param-
eter. Any event shape distribution inZ decay contains both
perturbative and nonperturbative contributions. The pertur
tive effects can be computed as a perturbation serie
as(MZ). At leading order, only two-jet~i.e.,qq̄) events con-
tribute. Events with more hard partons are suppressed
powers ofas(MZ). In general, nonperturbative effects a
suppressed by powers ofLQCD/MZ , but in corners of phase
space wheree!1 these nonperturbative effects become
hanced. Here we consider the regionLQCD!MZe!MZ and
focus on the enhanced nonperturbative contribution s
pressed only by a single power ofLQCD/(MZe).

Perturbative expressions for the jet variables conside
in this section have been extensively studied in the litera
@30–35#. Our main interest is in nonperturbative physic
Working to leading order inas(MZ), the dominant nonper
turbative effects are corrections to the two-jet distributio
Nonperturbative corrections to higher-order processes
suppressed by additional powers ofas(MZ). We will com-
pute the enhanced nonperturbative corrections to some c
monly measured event shape distributions, just as we did
the jet energy distribution in Sec. II. Recall for the jet ener
distribution the dominant nonperturbative correction ca
from expanding

dS MZ

2
2EJ1

kq
1

2 D 5dS MZ

2
2EJD1d8S MZ

2
2EJD kq

1

2
1•••

~25!

in Eq. ~13! to linear order inkq
1 . The delta function from Eq

~12! setskq
152ku

1 , and we therefore find

dG2-jet
(0)

dEJ
5G2-jet

(0) FdS MZ

2
2EJD2d8S MZ

2
2EJD ^ku

1&
2 G ,

~26!

where

^ku
1&5(

Xu

1

NC
^0uT̄@Ynd

eYn̄e
† a#~0!uXu~ku!&

3^Xu~ku!uT@Yn̄a
cYnc

† d#~0!u0&ku
1 . ~27!

The jet energy distribution has the nice property that one
write ^ku

1& as the vacuum expectation value of an opera
involving Wilson lines of ultrasoft gauge fields@namely, Eq.
~24!#. For some shape variables this is not possible. Ho
ever, expressions analogous to Eqs.~26!–~27! can be de-
rived.

A. Thrust

First we consider the thrust distributiondG/dT where the
thrustT is defined by

MZT5max
t̂

(
i

u t̂•piu, ~28!
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where t̂ is a unit vector that defines the thrust axis. T
maximum is taken over all possible directions oft̂, and the
sum is over all final state particles. To the order we are wo
ing the thrust axist̂ can be set equal to the spatial part of t
lightlike four-vectorn used to define the collinear antiqua
field. It is convenient to call this direction thez axis. The
thrust distribution is calculated analogously to the two
distribution except that the delta functiond(EJ2pq

0) is re-
placed byd(MZT2upq

zu2upq̄
zu2(aukua

z u), where the sum is
over all ultrasoft particles. We adopt the same convention
in the jet energy distribution so that the phase space integ
are again done using the delta function in Eq.~12!. Decom-
posing the total ultrasoft four-momentum,ku5ku

(a)1ku
(b) ,

into the sum of the ultrasoft momentum from particles in t
same hemisphere as the antiquark~type a) and the same
hemisphere as the quark~type b) the thrustT can be written
as

MZT5upq
zu1upq̄

zu1(
a

ukua
z u

5
1

2
~pq̄

2
2pq̄

1
!2

1

2
~pq

22pq
1!1

1

2
~ku

(a)22ku
(a)1!

2
1

2
~ku

(b)22ku
(b)1!

5
1

2
p̃q̄

2
1

1

2
p̃q

11
1

2
~kq̄

2
2kq̄

1
!1

1

2
kq

11
1

2
~ku

(a)22ku
(a)1!

2
1

2
~ku

(b)22ku
(b)1!. ~29!

Now the delta functions in Eq.~12! set p̃q̄
2

5 p̃q
15MZ , kq̄

2

52ku
2 , kq

152ku
1 , andkq̄

1
50. Thus we find

T512
1

MZ
~ku

(a)11ku
(b)2!, ~30!

where we have also usedku5ku
(a)1ku

(b) . Thus,

dG

dT
5G2-jet

(0) Fd~12T!2d8~12T!
^ku

(a)11ku
(b)2&

MZ
G

[G2-jet
(0) Fd~12T!2d8~12T!

^O1
T&

MZ
G . ~31!

The thrust axis and the hemispheres are determined by th
directions, and can be defined in terms of the label mome
of the quark and antiquark. Thust̂ and the hemispheresa and
b are label variables. Nevertheless, because of the he
sphere condition on the ultrasoft momentum in Eq.~31!,
there is not a simple formula expressing the correction
terms of the vacuum expectation value of an operator invo
ing Wilson lines like the one in Eq.~24!.

In a regionu12Tu;l2 the higher order terms in the ul
trasoft momentum that were neglected in Eq.~31! are impor-
4-6
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tant. Equation~31! is appropriate for a regiondT near T
51 that satisfies 1@dT@l2, for example,dT;l.

B. Jet masses

The squared jet massesMa,b
2 are the squares of the invar

ant mass of all the particles in the two hemispheresa andb,
defined by the plane perpendicular to the thrust axis. T
commonly used variables are the sum of jet masses,M̂S

2

5(Ma
21Mb

2)/MZ
2 , and the heavy jet massM̂H

2

5max(Ma
2 ,Mb

2)/MZ
2 . The jet masses areMa

25(pq̄1ku
(a))2 and

Mb
25(pq1ku

(b))2. More explicitly,

Ma
25~pq̄

1
1ku

(a)1!~pq̄
2

1ku
(a)2!2~pq̄'1ku'

(a)!2

Mb
25~pq

11ku
(b)1!~pq

21ku
(b)2!2~pq'1ku'

(b)!2. ~32!

Recall thatpq is aligned alongn̄ so thatpq'50. Also, the
delta function in Eq.~12! sets p̃q̄'50 and p̃q̄

2
5 p̃q

15MZ .
Then, working to linear order in the ultrasoft momenta,Ma

2

5MZku
(a)1 andMb

25MZku
(b)2 , so

dG

dM̂S
2
5G2-jet

(0) Fd~M̂S
2!2d8~M̂S

2!
^O1

MS&

MZ
G ,

dG

dM̂H
2

5G2-jet
(0) Fd~M̂H

2 !2d8~M̂H
2 !

^O1
MH&

MZ
G ,

~33!

where

^O1
MS&5^ku

(a)11ku
(b)2&,

^O1
MH&5^max~ku

(a)1 ,ku
(b)2!&. ~34!

Note that in the kinematic region where expanding to lin
order in ultrasoft and residual momentum is appropriate,
nonperturbative corrections to theMS

2 and 12T distributions
are given by the same nonperturbative matrix element.
nonperturbative corrections to theMS

2 and MH
2 distributions

are different.
Working to higher orders inku /MZ , the definitions of

thrust in Eq.~30! and of jet masses in Eq.~32! become dif-
ferent beyond linear order. However, the corrections to ev
shape distributions at higher orders inLQCD/(MZe) come
not from expanding the argument of the delta functions u
to define these variables to higher orders inku /MZ , but
rather from expanding these delta functions as power se
in the ultrasoft momentum, as in Eq.~25! for the jet energy.
So even at higher orders, the enhanced nonperturbative
rections, i.e., of order@LQCD/(MZe)#n, n.1, come from
the leading-order correction to the argument of the de
function, which are the same for thrust and jet mass sum
the enhanced nonperturbative corrections to thrust and
mass sum are related to all orders inLQCD/(MZe).
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C. Jet broadening

Jet broadening variablesBa,b are defined by

Ba,b5
1

2MZ
(

i Pa,b
upi3 t̂u, ~35!

where the hemispheresa andb are defined as before, andt̂ is
the thrust axis. The jet broadening variables at orderku /MZ
require knowing the thrust axis to orderku /MZ . The thrust
axis t̂ maximizes( i u t̂•pi u.

The angle betweenpq̄ and thez axis is given by

u q̄5
ukq̄'u
MZ/2

, ~36!

and the thrust axist̂ can be written as

t̂5~0,2sinu t ,cosu t!. ~37!

By symmetry,

u t5
ukq̄'u
MZ

, ~38!

which is half the size ofu q̄ ~see Fig. 1!.
Now calculateupi3 t̂u for each particle. To linear order in

ku /MZ we find for the quark,

upq3 t̂u5
MZ

2
sinu t5

ukq̄'u
2

, ~39!

and for the antiquark,

upq̄3 t̂u5ukq̄'ucosu t2
MZ

2
sinu t5

ukq̄'u
2

. ~40!

For each ultrasoft particlea, the cross productka3 t̂ is given
by the determinant

U x̂ ŷ ẑ

ka
x ka

y ka
z

0 2sinu t cosu t

U . ~41!

FIG. 1. Determination of the thrust axis. To the order we a
working, the quark and antiquark have momentaupqu5upq̄u
5MZ/2. The antiquark then makes an angleu q̄52ukq̄'u/MZ with
the z axis, and the thrust axist̂ makes an angleu t5ukq̄'u/MZ with
both the quark and antiquark.
4-7
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Since sinut is already of orderku /MZ the cross product is, to
linear order inku /MZ ,

ka3 t̂5~ka
y ,2ka

x ,0!, ~42!

so uka3 t̂u5uka'u. Combining the contributions of each pa
ticle to the sum in Eq.~35!, and using the delta function in
Eq. ~12! to setkq̄'52ku' , we obtain for the jet broadenin
variables~to linear order inku /MZ):

Ba5
1

2MZ
S uku'u

2
1 (

aPa
uka'u D ,

Bb5
1

2MZ
S uku'u

2
1 (

aPb
uka'u D , ~43!

where the sum ona is over the ultrasoft particles in hem
spherea or b.

One conventionally defines two other broadening va
ables as

Bmax5max~Ba ,Bb!,

Bsum5Ba1Bb . ~44!

The jet broadening distribution is

dG

dB
5G2-jet

(0) Fd~B!2d8~B!
^O1

B&
MZ

G , ~45!

for Ba,b,sum,max, where^O1
B&[MZ^B& is the matrix element

of the appropriate quantity in Eqs.~43,44!. Nonperturbative
effects in the jet broadening measures are not related to
jet energy or thrust.

In this paper, we have assumed that the nonperturba
physics is completely described by ultrasoft degrees of fr
dom. It is possible that some of the subtleties associated
nonperturbative corrections to the jet broadening variab
that have been discussed in the literature@17# can be attrib-
uted to nonperturbative effects in the collinear sector, wh
we have not included.

D. C parameter

The C parameter is defined as

C53~l1l21l2l31l3l1!, ~46!

wherel i are the eigenvalues of

u rs5
1

MZ
(

i

pi
rpi

s

upi u
, ~47!

and r ,s51,2,3 are the space components of the momen
pi of the i th particle.

The largest component ofu rs is uzz. The quark and anti-
quark in the jets havez-momentumpq

z52pq̄
z
5MZ/2 to the

order we are working. Then, to linear order inku /MZ , the
eigenvalues ofu rs are given by
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det~u2lI !5~12l!det~X2lI !, ~48!

whereI is the identity matrix and

X115(
a

ka
x2

MZukau
,

X225(
a

ka
y2

MZukau
, ~49!

X125X215(
a

ka
x ka

y

MZukau
.

Here the sums overa are only over ultrasoft particles.~The
contributions from the quark and antiquark to these com
nents ofu rs are suppressed by another factor of 1/MZ , since
upqu5upq̄u5MZ/2.!

The largest eigenvalue isl151, and the other two eigen
values satisfy

l21l35
1

MZ
(
a

~ka
x !21~ka

y !2

ukau
. ~50!

Thus,

C5
3

MZ
(
a

uka'u2

ukau
. ~51!

The C distribution is then

dG

dC
5G2-jet

(0) Fd~C!2d8~C!
^O1

C&
MZ

G , ~52!

where^O1
C&[MZ^C& defined in Eq.~51!. Like jet broaden-

ing, theC parameter distribution is not local on the ultraso
fields, and the nonperturbative correction is not related
that for any of the above distributions.

E. Energy-energy correlation and jet-cone energy fraction

The angular correlations of radiated energy can be ch
acterized by the one-point and two-point correlatio
@36,37#,

dS

dV
5E dG(

i

Ei

MZ
d~V2V i !,

d2S

dVdV8
5E dG(

i , j

EiEj

MZ
2 d~V2V i !d~V82V j !,

~53!

where the sum is over all particles, and includes the te
with i 5 j . They are normalized so that
4-8
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E dV
dS

dV
5G,

E dV8
d2S

dVdV8
5

dS

dV
. ~54!

The energy-energy correlation functionP(cosx) is de-
fined by

P~cosx!5E dV8dV
d2S

dVdV8
d~cosx2cosuVV8!,

~55!

whereuVV8 is the angle between vectors in theV and V8
directions.

The angular energy correlations Eq.~53! were defined in
Ref. @36,37# for e1e2 annihilation, and the solid angle wa
defined with respect to the beam direction. For unpolarizeZ
decay, there is no preferred direction, sodS/dV is a con-
stant, andd2S/dVdV8 contains the same information as th
energy-energy correlation functionP(cosx). One can, how-
ever, define distributions analogous to Eq.~53! where the
solid angle is measured with respect to the thrust axist̂. The
one-point function is called the jet cone energy fractionJ.

The energy-energy correlation and the jet cone ene
fraction both are proportional tod functions if one considers
the leading order process ofZ decay into a quark-antiquar
pair:

P~cosx!5J~cosx!

5
1

2
G0@d~cosx21!1d~cosx11!#. ~56!

Ultrasoft emission~in two-jet events! changes the distribu
tion in two ways:~a! by changing the energy or~b! by chang-
ing the solid angle of the emitted particles. At orderku /MZ ,
the change in energy can be neglected, because it doe
shift the angles of the partons; thus there is no contribu
proportional tod8(cosx61), as for variables such as thrus
The angle between the quark and antiquark is@compare Eq.
~36!#

cosuqq̄52112
k'

2

MZ
2

, ~57!

and the angle of the quark or antiquark with respect to
thrust axis is@compare Eq.~38!#:

cosuqt̂52cosu q̄t̂512
k'

2

2MZ
2

, ~58!

wherek' is the total' momentum of the ultrasoft particles
The shift in angle is second order inku /MZ , and so to first
order, there is no enhanced contribution near cosx561.
There are nonperturbative contributions at second order.
03401
y

not
n

e

F. Classes of observables

The different observables we have discussed can be
vided into classes, based on the extent to which their n
perturbative corrections are inclusive on the ultrasoft degr
of freedom.

A class I observable is the jet energy distribution. T
nonperturbative correction to the jet energy depends
^ku

1&, whereku is the total ultrasoft momentum, so the j
energy distribution is totally inclusive on the ultrasoft field
The derivation of nonperturbative corrections to the two
energy distribution is not quite on the same footing as
derivation of nonperturbative corrections to theB meson
semileptonic decay rate, because of the additional assu
tion about the equivalence of sums over partonic and h
ronic states discussed after Eq.~9!.

Class II observables are thrust and the jet massesMS,H
2 .

The nonperturbative corrections to these variables require
ultrasoft momentum to be broken up into two parts,ku

5ku
(a)1ku

(b) , corresponding to the contributions from ultra
soft partons in the two hemispheres. The hemispheres
chosen based on the jet directions, i.e., based on the colli
degrees of freedom. The momentum in each hemisphere
then be defined by integrating the ultrasoft energ
momentum tensor over the hemisphere at infinity@11,38–
41#. The class II variables are not totally inclusive on t
ultrasoft variables, but require them to be divided globa
into two parts. Whether our derivation of the nonperturbat
corrections for class II observables~e.g., the relation between
jet mass and thrust distributions! is valid depends on the
nature of hadronization in QCD. The ultrasoft fields end
inside final state hadrons. The final hadron can contain ul
soft partons from different hemispheres, so the hadronic
ergy flow in each hemisphere does not have to equal
parton energy flow in each hemisphere. If the hadronic a
partonic energy flows differ by order unity, the derivation
nonperturbative effects in class II observables is invalid.
for a smearing region of sizeD the mixing of ultrasoft mo-
menta between the two hemispheres during hadronizatio
an effect of orderLQCD/D, then its impact on class II ob
servables is the same size asku

2 effects, which are one highe
order than the terms we have computed.

Class III observables are the jet broadening measu
Ba,b,sum,maxand theC parameter. These depend on knowi
the individual ultrasoft momenta of each parton. This a
pears to be a notion that cannot be made rigorous in fi
theory.

G. Model-dependent relations among event shape variables

Nonperturbative corrections to event shape distributio
have been considered extensively in the literature in the p
For example, in the work of Ref.@11#, nonperturbative shape
functions were derived for thrust and jet mass distributio
The enhanced nonperturbative corrections to these distr
tions are given by first moments of these shape functio
and the results in Secs. III A and III B are in agreement w
Ref. @11#.

The derivations of the enhanced nonperturbative corr
tions in this section have only relied on the fact that th
4-9
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arise from matrix elements of ultrasoft operators. It is
sightful to understand what further conditions have to
imposed to reproduce other proposed relations amongst
perturbative parameters for event shape distributi
@12,13,15,16#.

As an example, consider theC parameter, for which the
nonperturbative matrix element was defined as

^O1
C&53K (

a

uka'u2

ukau L . ~59!

For on-shell soft gluons collinear to the antiquark or qua
jet ~i.e., in hemispherea or b, respectively!, k(a)1!k(a)2 and
k(b)2!k(b)1. This implies that

K (
a

uka'u2

ukau L
coll

52K (
a

uka
1ka

2u

uka
11ka

2u L
52K (

a
uka

(a)1u1(
b

ukb
(b)2u L

52^ku
(a)1ku

(b)2&. ~60!

This leads to

^O1
C&coll56^O1

T&. ~61!

To take into account that ultrasoft gluons can also be
diated at a finite angle, one can impose the condition that
matrix elements ofO1

C and O1
T are given by the one-gluon

contribution in perturbation theory, performing the angu
integrals in the phase space at a fixed value ofuk'u. Under
this assumption, the matrix element ofO1

C is given by

K uka'u2

ukau L
1-gluon

52K E
0

p/2

du sinu
uk�u2

~ uk�u/sinu!

1

sin2u
L ,

5p^uk�u&, ~62!

where the factors of sinu from the phase space, from th
relation uk'u5ukusinu, and from the squared amplitude fo
one gluon emission have all canceled out to give the fi
result. For the matrix element ofO1

T , we calculate

^k(a)11k(b)2&1-gluon52K E
0

p/2

du sinu
uku~12cosu!

sin2u
L

52K E
0

p/2

du
uk�u~12cosu!

sin2u
L

52^uk�u&. ~63!

This leads to the result

^O1
C&1-gluon5

3p

2
^O1

T&1-gluon. ~64!
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Given the assumptions that have to be made to obtain
~64! ~or analogous relations based on higher orders in per
bation theory!, it does not seem likely to us that there is
simple analytic nonperturbative relation between^O1

C& and
^O1

T&.

H. Comparison with the data

Predictions for event shape variables have been comp
with experimental data in Refs.@1,7#. Nonperturbative cor-
rections have been included using the ansatz that their e
on distributions for shape variables is described by shift
the variable bycmnp/Ecm in the perturbative formula for the
distribution. Herec is a constant that depends on the kin
matic variable,mnp is a universal nonperturbative paramet
andEcm is the center-of-mass energy. An analysis in pert
bation theory~similar to what was done in Sec. III G! pro-
vides simple relations between thec’s for some of the event
shape variables. We have found that, provided one is not
kinematic region that is extremely close to the partonic e
point ~i.e., the shape function region!, c for 12T andMS

2 are
the same. However, we argued thatc for other parameters
like the heavy jet mass andC are not connected toc for
thrust. Some experimental evidence for this can be found
the analysis of Ref.@7#. For 12T and the jet mass sum2 a
simultaneous fit foras andmnp under the assumption thatc
takes on its conjectured values~see Fig. 9 in@7#! yields val-
ues ofmnp that are close to each other, and values ofas that
are consistent with other extractions of the strong coupli
However, Ref.@7# finds thatmnp for the heavy jet mass,C
parameter, and jet broadenings are not related tomnp for
thrust in the way that the analysis based on perturba
theory suggests, and, furthermore, a fit to these varia
does not yield a value ofas that is consistent with othe
extractions.

IV. CONCLUDING REMARKS

We have studied nonperturbative effects inZ decay to
hadrons using soft-collinear effective theory~SCET!. The jet
energy distribution for two jet events has enhanced nonp
turbative effects when the jet energy is nearMZ/2. These
nonperturbative effects can be expressed in terms of
vacuum expectation value of operators involving Wils
lines. The Wilson lines arise from the coupling of ultraso
gluons to collinear degrees of freedom in the jet. In Appe
dix B we derive the orderas perturbative corrections to th
jet energy distribution and discuss the implications of pert
bative and nonperturbative physics on the first moment
this distribution.

For a region ofuEJ2MZ/2u that is of sizeD, the leading
nonperturbative corrections to the jet energy distribution
of orderLQCD/D whenD is large compared toLQCD. In this
region they can be characterized by the vacuum expecta
value of a single operator involving ultrasoft fields whic

2Reference@7# advocates the use of a modifiedE-scheme jet mass
to reduce sensitivity to hadronic masses.
4-10
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provides a contribution to the jet energy spectrum tha
proportional tod8(MZ/22EJ). For multijet events, a simila
analysis holds; however, an additional operator analogou
O1 but involving adjoint Wilson lines occurs for a gluon je
@19#.

WhenD;LQCD, one is in the shape function region, an
the functional dependence onEJ is much more complicated
While we focused mostly on the kinematic region whe
MZ@D@LQCD, it was shown that in the shape function r
gion, it is not possible to capture the effects of nonpertur
tive physics by introducing a single nonperturbative para
eter mnp and shifting EJ→EJ2mnp in the perturbative
formula for the jet energy distribution.

The jet energy distribution has the special property tha
is totally inclusive in one of the jets, and hence expressi
for nonperturbative effects can be derived using opera
methods that are similar to those used for the end point
gion in inclusive semileptonicB decay. Other event shap
variables~e.g., thrust, jet mass, jet broadening! have nonper-
turbative effects that are enhanced in the partonic end p
region. We discussed the extent to which these effects ca
understood using field theoretic methods in QCD.
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APPENDIX A: PROPERTIES OF WILSON LINES

In this section we derive some useful properties of
ultrasoft Wilson lines introduced in Eq.~7!.

1. Relations between triplet and anti-triplet Wilson lines

Consider the time- and anti-time-ordering of the Wils
lines in the shape functionSdefined in Eq.~16!. For Yn , the
path ordering is the same as time ordering and soT@Yn#
5Yn . Consider writingYn as the product ofN infinitesimal
integrals over path segments of lengthds,

Yna
b5~eigANds!a

bN21~eigAN21ds!bN21

bN22 . . . ~eigA1ds!b1

b,

~A1!

with the subscripts on the ultrasoft gauge fields denot
their space-time location along the path of integration. T
ing its adjoint

Yna
† b5~e2 igA1ds!a

b1 . . . ~e2 igAN21ds!bN22

bN21

3~e2 igANds!bN21

b. ~A2!

Time ordering this expression,
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T@Yna
† b#

5~e2 igANds!bN21

b~e2 igAN21ds!bN22

bN21 . . . ~e2 igA1ds!a
b1

5~e2 igAN
Tds!b

bN21
~e2 igAN21

T ds!bN21
bN22

. . . ~e2 igA1
Tds!b1

a

5Ȳn
b

a , ~A3!

where the overline denotes an anti-triplet Wilson line.~Re-
call that the generators in the3̄ representation are minus th
transpose of those in the3) Similarly,

T̄@Yna
b#5Ȳn

† b
a , T̄@Yna

† b#5Yna
† b. ~A4!

From these results, Eq.~18! follows.

2. O1 in terms of the gluon field strength

We can express the operatorO1 in terms of the gluon field
strength tensor as written in Eq.~24!. It is convenient for this
purpose to generalize the expression for the ultrasoft Wil
line to

Yn̄~z;b,a!5P expF igE
a

b

ds n̄•A~z1n̄s!G ~A5!

so that witha50 andb5` we recover the standard Wilso
line used above,Yn̄(z)5Yn̄(z;0,̀ ). Differentiating along
the n direction,

n•]Yn̄~z!5 igE
0

`

dsYn̄~z;`,s!@n•]zn̄•A#~z1n̄s!Yn̄~z;s,0!

5 igE
0

`

dsYn̄~z;`,s!@n•]zn̄•A2n̄•]zn•A

1n̄•]zn•A#~z1n̄s!Yn̄~z;s,0!

5 igE
0

`

dsYn̄~z;`,s!@n•]zn̄•A2n̄•]zn•A#

3~z1n̄s!Yn̄~z;s,0!1 igE
0

`

ds

3Yn̄~z;`,s!Fd~n•A!

ds G~z1n̄s!Yn̄~z;s,0!. ~A6!

Using the chain rule,
4-11
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E
0

`

ds
d

ds
@Yn̄~z;`,s!@n•A#~z1n̄s!Yn̄~z;s,0!#

5E
0

`

dsF d

ds
Yn̄~z;`,s!G@n•A#~z1n̄s!Yn̄~z;s,0!

1E
0

`

dsYn̄~z;`,s!Fd~n•A!

ds G~z1n̄s!Yn̄~z;s,0!

1E
0

`

dsYn̄~z;`,s!@n•A#~z1n̄s!F d

ds
Yn̄~z;s,0!G

52 igE
0

`

dsYn̄~z;`,s!@ n̄•A~z1n̄s!,n•A~z1ns!#

3Yn̄~z;s,0!1E
0

`

dsYn̄~z;`,s!

3Fd~n•A!

ds G~z1n̄s!Yn̄~z;s,0!. ~A7!

Using the above equation to eliminate the last term in
~A6! yields

n•DYn̄~z!5 igE
0

`

dsYn̄~z;`,s!nmn̄nGmn~z1n̄s!Yn̄~z;s,0!,

~A8!

where

n•DYn̄~z!5n•]Yn̄~z!2 ign•A~`!Yn̄~z!1 igYn̄~z!n•A~z!

~A9!

and the gluon field strength tensor is defined by

Gmn5]mAn2]nAm2 ig@Am ,An#. ~A10!

Hence

O15
1

2
Tr@Yn̄

†
~ in•D !Yn̄#

5
1

2
TrF igE

0

`

dsYn̄
†
~z;s,0!nmn̄nGmnYn̄~z;s,0!G ,

~A11!

which is Eq.~24!.

APPENDIX B: PERTURBATIVE CORRECTIONS
TO dGÕdEJ

Neglecting orderas corrections to the nonperturbative e
fects proportional to O1, perturbative corrections to
dG2-jet/dEJ in Eq. ~9! can be calculated in full QCD usin
standard methods. In this section we first review the com
tation of perturbativeO(as) corrections to the total two-je
rate G2-jet and then compute the jet energy distributi
dG2-jet/dEJ at orderas . We work ind542e dimensions to
regulate infrared, collinear and ultraviolet divergences t
03401
.

u-

t

occur in contributions to the differential decay rate. The j
are defined using the Sterman-Weinberg criteria which
volve an energy cutbMZ and a cone half-angled. Correc-
tions suppressed byasb andasd are neglected.

1. Two jet decay rate

Using the Sterman-Weinberg definition of jets, there a
three contributions to the two-jet rate atO(as):

~a! One quark and one antiquark each creating a jet.
~b! One quark and one antiquark each creating a jet, plu

gluon with energyEg,bMZ .
~c! One quark and one antiquark each creating a jet, plu

gluon with energyEg.bMZ inside one of the jets
~within an angled of the quark or antiquark!.

Contribution ~a! is simply the rateG(Z→qq̄). The tree
and virtual gluon graphs give the amplitude:

MZ→qq̄5em~pZ!ūa~pq!Gmva~pq̄!S 11
asCF

2p
XD ,

~B1!

where the color indexa is summed over valuesa
51, . . . ,NC , andCF is the Casimir of the fundamental rep
resentation. Explicit computation of the one-loop vertex c
rection gives

X52
4

e2
2

3

e
1

2

e
lnS 22pq•pq̄

m2 D 241
p2

12

2
1

2
ln2S 22pq•pq̄

m2 D 1
3

2
lnS 22pq•pq̄

m2 D . ~B2!

Integrating the square of the amplitude over thed dimen-
sional two body phase space gives

GZ→qq̄5
NC

32p2
~gV

21gA
2 !FMZ

12e~4p!e
22e

32e
V32eG

3F11
asCF

p S 2
4

e2
2

3

e
1

2

e
ln

MZ
2

m2
24

1
7p2

12
2

1

2
ln2

MZ
2

m2
1

3

2
ln

MZ
2

m2 D G , ~B3!

whereVd is the total solid angle ind dimensions. The 1/e
poles will cancel out against divergences from the real glu
emission graphs. We do not need to expand the brack
prefactor in Eq.~B3! in powers ofe because the identica
factor will appear in the real gluon graphs.

Contributions ~b! and ~c! come from integrating the
square of the amplitude for real gluon emission,Z→qq̄g,
over the three-body phase space ind dimensions. We find for
the terms that do not vanish asb andd go to zero,
4-12
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GZ→qq̄g
(b)

5
gs

2MZ
12eNCCF

256p5
~2p!2eS m

MZ
D e

V22eV32e~gV
21gA

2 !

3S 2
1

e DGS 2
e

2D 2

G~2e!
b2e, ~B4!

and

GZ→qq̄g
(c)

5
gs

2MZ
12eNCCF

256p5
~4p!2eS m

MZ
D e

V22eV32e

3
22e

32e
~gV

21gA
2 !

~2d!2e

2e F4

e
~2b!2e

12S 11
3e

4
1

13e2

8 D G~2e!2

G~22e!G . ~B5!

Adding together contributions~b! and~c!, expanding in pow-
ers ofe and converting to theMS scheme yields for the tota
rate forZ→qq̄g in the two-jet region

GZ→qq̄g5
NCCFas

32p3
~gV

21gA
2 !FMZ

12e~4p!e
22e

32e
V32eG

3S 4

e2
1

3

e
2

2

e
ln

MZ
2

m2
2

3

2
ln

MZ
2

m2
1

1

2
ln2

MZ
2

m2

24 ln 2b ln d23 lnd1
13

2
2

11p2

12 D . ~B6!

Finally, we add together the ratesGZ→qq̄ and GZ→qq̄g from
Eqs. ~B3! and ~B6!. The e-dependent prefactors in bracke
in the two equations are identical, as promised. The 1/e-poles
in the remainder of the expressions cancel out exactly~as do
all the logarithms ofMZ /m), so we can sete50 in the
remaining finite parts, leaving

G2-jet5
NCMZ

12p
~gV

21gA
2 !F11

asCF

p S 5

2
2

p2

3

23 lnd24 ln 2b ln d D G , ~B7!

which agrees with Sterman and Weinberg’s original res
@22#.

2. Differential decay rate dG2-jet ÕdEJ

We now turn our attention to the differential decay ra
dG2-jet/dEJ . The contribution ofGZ→qq̄ to this rate is simply

dGZ→qq̄

dEJ
5GZ→qq̄dS EJ2

MZ

2 D , ~B8!

where GZ→qq̄ is the total rate forZ→qq̄ calculated to
O(as), which is given by Eq.~B3!.
03401
lt

For the contribution of real gluon emission processes,
write the three-body phase space for this rate:

dG2-jet

dEJ
5

1

16MZ

1

~2p!2d23
Vd22Vd21dE1E1

d24dE2E2
d24

3d cosu sind24udFMZ
222MZ~E11E2!

2E1E2

112cosuGd~EJ2••• !uMu2, ~B9!

where thed(EJ2•••) definesEJ according to which partons
actually go inside the jet. It is useful to split up the pha
space slightly differently than for the case of the total rat

~a! Gluon with energyEg.bMZ inside unobserved jet.
~b! Gluon with any energy inside observed jet.
~c! Gluon with energyEg,bMZ outside observed jet.

These three regions exhaust the possible gluon energies
locations with respect to the jets. It is convenient to introdu
the variable

eJ5
MZ

2
2EJ ~B10!

and focus on a region ofeJ near the origin with size of orde
bMZ .

For case~a!, where a gluon withEg.bMZ is inside the
unobserved jet, takeE15Eg , E25Eq̄ , so u is the angle
between the gluon and antiquark, andEJ5Eq . Integrating
over u and Eq̄ using the delta functions leaves an integ
over Eg running between the limits

Eg
65

MZ

4 S 16A12
8eJ

MZd2D , ~B11!

and restrictseJ to lie between

d2bMZ,eJ,
MZd2

8
. ~B12!

Similarly, for case~b!, where a gluon with any energy lie
inside the observed jet,E15Eq , E25Eg , and EJ5Eg
1Eq . Integrate overu and Eq using the delta functions
Then the limits of theEg integral are

Eg
65

MZ

4 S 16A11
8eJ

MZd2D , ~B13!

andeJ is restricted to the region

2
MZd2

8
,eJ,0. ~B14!
4-13
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Before we proceed to case~c!, note that the physical ob
servable we actually want to calculate is the smeared di
bution

dG

dEJ
U

D

5E dEJwD~EJ!
dG

dEJ
, ~B15!

wherewD is a smooth function which smears the different
rate over a region of jet energy whose size is of orderbMZ .
But the contributions to the rate from cases~a! and~b! have
support only over a region of sized2MZ!bMZ near eJ
50. Consider smearingdG/dEJ , or equivalentlydG/deJ ,
over a region nearEJ5MZ/2 (eJ50) of size of orderbMZ .
Thenw(0);1/bMZ , w8(0);1/(bMZ)2, etc. Expanding,

E deJw~eJ!
dG

deJ
5E deJ@w~0!1w8~0!eJ1•••#

dG

deJ
.

~B16!

Since w8(0)/w(0);1/bMZ , and, for the contributions in
cases~a! and ~b!, eJ;d2MZ in the region wheredG/deJ is
nonzero, the second term is suppressed by a power ofd2/b
!1. Thus only the first term is relevant.3 Keeping only the
first term amounts to replacing the fulldG/deJ by

dG

deJ
→d~eJ!E deJ8

dG

deJ8
. ~B17!

However, integrating the contributions of~a! and ~b! to
dG/deJ over all allowed values ofeJ simply gives their con-
tribution to the total Sterman-Weinberg jet rate, that is, th
will build up part of the termGZ→qq̄gd(EJ2MZ/2) in
dG2-jet/dEJ . Since we have already calculated the total ra
we need not analyze cases~a! and~b! any further, as long as
we can get the remaining contribution to the total rate fr
case~c!.

In case~c! we have a gluon withEg,bMz anywhere
outside the observed jet. HereE15Eq , E25Eg , and EJ
5Eq . Writing out the formula for the rate explicitly,

dG (c)

dEJ
5

1

16MZ

1

~2p!2d23
Vd22Vd21u~eJ!

3u@bMZ~12d2!2eJ#E
eJ(11d2)

bMZ
dEgEg

d24Eq
d24

3sind24uuM Z→qq̄g
(c) u2. ~B18!

The part of the amplitude that gives a contribution that s
vives asb→0 is

3This argument assumes that the integral*deJeJdG/deJ is finite,
which can easily be shown.
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uM Z→qq̄g
(c) u254NCCFgs

2me
d22

d21
~gV

21gA
2 !

MZ
2pq•pq̄

~k•pq!~k•pq̄!
.

~B19!

Substituting Eq.~B19! into the phase space

dG (c)

dEJ
5

MZgs
2NCCF

256p5 S m

MZ
D e

~2p!2e
d22

d21
Vd22Vd21

3~gV
21gA

2 !eJ
212e/2u~eJ!u@bMZ~12d2!2eJ#

3 lnFbMZ2eJ

eJd
2 G . ~B20!

The factor, (1/eJ)ln@(bMZ2eJ)/(eJd
2)#, is singular aseJ→0,

and must be rewritten in terms of an integrable quantity. U
the ‘‘plus distribution’’:

E
0

bMZ
deJf ~eJ!1g~eJ![E

0

bMZ
deJf ~eJ!@g~eJ!2g~0!#,

~B21!

where f diverges ateJ50 andg is a test function finite at
eJ50. To replacef by f 1 , we would write

E
0

bMZ
deJf ~eJ!g~eJ!5E

0

bMZ
deJf ~eJ!1g~eJ!

1g~0!E
0

bMZ
deJf ~eJ!. ~B22!

The second term amounts to replacing

f ~eJ!→d~eJ!E deJ8 f ~eJ8!. ~B23!

But making this replacement in Eq.~B20! means writing a
delta functiond(EJ2MZ/2) and integrating the differentia
rate over all allowed values ofeJ , which again just gives its
contribution to the total Sterman-Weinberg jet rate. Toget
with the contributions from~a! and ~b! this gives the one
loop contribution tod(EJ2MZ/2)G2-jet. Only the plus func-
tion piece gives a deviation of the jet energy distributi
away from EJ5MZ/2. The final result for the differentia
rate toO(as) is

dG2-jet

dEJ
5dS EJ2

MZ

2 DG2-jet1
MZasNCCF

12p2
~gV

21gA
2 !

3u~eJ!u~bMZ2eJ!F 1

eJ
lnS bMZ2eJ

eJd
2 D G

1

,

~B24!

where the total rateG2-jet is given by Eq.~B7!.
4-14
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3. First moment of the jet energy distribution

As an application of the above result consider the fi
moment of the jet energy distribution, defined by

M1~ f !5E
MZ/22 f bMZ

MZ
dEJS 1

G2-jet

dG2-jet

dEJ
D S 1

2
2

EJ

MZ
D ,

~B25!

Using the expression in Eq.~21! for the nonperturbative cor
rection and in Eq.~B24! for the orderas perturbative correc-
tion to the jet energy distribution gives

M1~ f !5
asCFb

p F f logS 1

f d2D2~12 f !log~12 f !G
1

^0uO1u0&
MZ

, ~B26!

for f ,1 and

M1~ f !5
asCFb

p
logS 1

d2D1
^0uO1u0&

MZ
, ~B27!

for f .1. Note that the orderas contribution toM1( f ) is
independent off for f .1. This occurs because the perturb
tive correction vanishes forEJ,MZ/22bMZ .

In Fig. 2 we plot M1( f ), for f ,1. For this figure the
value of the energy cut isb50.15 and the cone half-angle
d515° and the vacuum expectation value ofO1 is set equal
to 500 MeV. We evaluateas at the scalebMZ and find with
these parameters that the orderas corrections reduce the tw
jet rate by about 16% from its tree level value lending su
port to the validity of perturbation theory for the values
the cone angle and energy cut used in Fig. 2.

FIG. 2. Plot of the functionM1( f ). The black solid curve shows
the perturbative contributions only, while the red dashed line rep
sents the moment including the nonperturbative contribution.
figure corresponds tob50.15, d5p/12, ^0uO1u0&50.5 GeV, and
we have evaluated the strong coupling constant at the scam
5bMZ .
03401
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4. Perturbative corrections in the effective theory

Although we have used full QCD to calculate the jet e
ergy distribution it is possible to do the computation in t
effective theory. Here we briefly discuss how that compu
tion would proceed.

The full theory amplitude forZ→qq̄ is reproduced in
SCET by the Wilson coefficient in the current matching:

j QCD
m 5@ j̄ n̄Wn̄#C~m,p̃q• p̃q̄!Gm@Wnn

j #, ~B28!

where there is an implicit sum over label momenta and
matching coefficientC(m,p̃q• p̃q̄) can be read off4 from Eqs.
~B1! and ~B2!:

C~m,p̃q• p̃q̄!511
asCF

2p F241
p2

12
2

1

2
ln2S 22p̃q• p̃q̄

m2 D
1

3

2
lnS 22p̃q• p̃q̄

m2 D G , ~B29!

and the UV renormalization factor for the current in the e
fective theory is

ZV511
asCF

2p F2
4

e2
2

3

e
1

2

e
lnS 22p̃q• p̃q̄

m2 D G .

~B30!

Note that both the renormalization factor and the match
coefficient depend on the label momenta for the quark
antiquark. For outgoing particles, the collinear Wilson lin
are defined as

Wn~z!5P expF igE
0

`

dsn̄•An~ n̄s1z!G , ~B31!

and one must include collinear gluons produced by a Wils
line in real gluon emission to get the correctZ→qq̄g ampli-
tude. We find that the perturbative expressions for the two
rate presented in the previous sections are reproduced b
effective theory if we call any particles inside the observ
quark jet n̄-collinear particles and all other particle
n-collinear. In the effective theory, ultrasoft gluons in th
final state contribute zero in perturbation theory and app
only in the nonperturbative shape function. A similar res
holds for deep inelastic scattering@44#.

4The matching coefficient is just given by the finite part of the f
theory matrix element̂qq̄u j mu0& because the full theory current ha
no anomalous dimension, so the 1/e poles are pure IR divergences
which must cancel out in the matching condition. The loop grap
in the effective theory contributing to this matrix element are ze
in dimensional regularization, so the finite part of the match
coefficient is just the finite part of the QCD matrix element, giv
by Eqs. ~B1! and ~B2!, while the infinite parts become the UV
counterterm in the effective theory@42,43#.
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