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Solution of the Kwieciński evolution equations for unintegrated parton distributions
using the Mellin transform

Enrique Ruiz Arriola*
Departamento de Fı´sica Moderna, Universidad de Granada, E-18071 Granada, Spain

Wojciech Broniowski†

H. Niewodniczan´ski Institute of Nuclear Physics, Polish Academy of Sciences, PL-31342 Krako´w, Poland
~Received 1 April 2004; published 18 August 2004!

The Kwieciński equations for QCD evolution of unintegrated parton distributions in transverse-coordinate
space~b! are analyzed with the help of the Mellin-transform method. The equations are solved numerically in
the general case, as well as in a small-b expansion which converges fast forbLQCD sufficiently small. We also
discuss the asymptotic limit of largebQ and show that the distributions generated by the evolution decrease
with b according to a power law. Numerical results are presented for the pion distributions with a simple
valencelike initial condition at the low scale, following from chiral large-Nc quark models. We use two models:
the spectral quark model and the Nambu–Jona-Lasinio model. Formal aspects of the equations, such as the
analytic form of theb-dependent anomalous dimensions, their analytic structure, as well as the limits of
unintegrated parton densities atx→0, x→1, and at largeb, are discussed in detail. The effect of the spreading
of the transverse momentum with increasing scale is confirmed, with^k'

2 & growing asymptotically as
Q2a(Q2). Approximate formulas for̂k'

2 & for each parton species are given, which may be used in practical
applications.
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I. INTRODUCTION

The unintegratedparton distributions~UPDs! have been
considered in numerous works on applications of pertur
tive QCD @1–16#. These distributions are generalizations
the usual integrated parton distributions~PDs! and in some
sense more basic objects, as PDs are obtained from UPD
integration over the transverse momentum of the parton.
notion of UPDs relies on thek' factorization and, in the
spirit of the CCFM equations@17–20#, introduces two scales
the probing scaleQ and the transverse-momentum scalek' .
Recently, the UPDs have gained substantial attention, s
they enter many exclusive physical processes, such as
production of the Higgs boson@21,22#, the W boson@23#,
heavy flavors@21,24–27#, jet production @21,28#, particle
production@29#, or hadron production in relativistic heavy
ion collisions @30,31#. The unintegrated distributions wer
also used in studies of the longitudinal@32#, charmed@33#,
and spin@34,35# structure functions of the nucleon, as we
as analyzed in the dipole picture of QCD@36#. Thus, UPDs
are needed for phenomenological studies, although ad
tedly the traditional colinear factorization approach expla
most of the currently available data. Moreover, effects
resummations or partonic thresholds are important in ex
sions of the theoretical techniques.

The UPDs, similarly to other entities in QCD, underg
evolution with the change of the probing scaleQ. The phi-
losophy adopted here is similar to the case of the integra
PDs. At some initial scaleQ0 we need to know the nonper
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turbative quantity from measurements, models, or lattice
culations, and then we can evolve it to a different scaleQ
with the help of suitable QCD evolution equations. In t
case of integrated PDs we need to assume the dependen
PDs on the Bjorkenx variable at the initial scaleQ0 . For the
UPDs we need to know in addition the dependence on
transverse momentumk' or, equivalently, the transverse co
ordinateb, which is the variable Fourier-conjugated tok' .
Knowing this, we compute, with no extra physical inp
apart for the assumptions entering the QCD evolution,
unintegrated distribution at the final scaleQ.

Important physics questions may be answered. In part
lar, the UPDs evolve in such a way that the average tra
verse momentum increases in a specified way with the s
@14–16,21#. This spreading can be studied quantitative
within the approach. This constrains the freedom in pheno
enological analyses of processes involving the UPDs.

In his studies of the problem, Kwiecin´ski started from the
CCFM formalism @17–20#, which explicitly involves two
separate scales: the probing scaleQ and the transverse mo
mentum of the parton,k' . The CCFM equations were sub
sequently extended to include the quarks, as well as redu
to the single-loop approximation. In addition, the no
Sudakov form factor was dropped. Kwiecin´ski found that in
this approximation the equations diagonalize in the sp
Fourier-conjugated to the transverse momentum, where
assume a particularly simple and elegant form in a cl
resemblance to the Dokshitzer-Gribov-Lipatov-Altarel
Parisi ~DGLAP! @37–40# equations for the integrated PD
The only, but most important, difference is the appearanc
the Bessel functionJ0(Qb) in the evolution kernel. Thus, the
evolution depends on the transverse coordinateb. In the
original work of Ref.@16# these equations were called ‘‘th
CCFM equations for the UPDs in the transverse-coordin
©2004 The American Physical Society12-1
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E. RUIZ ARRIOLA AND W. BRONIOWSKI PHYSICAL REVIEW D70, 034012 ~2004!
space in the single-loop approximation.’’ As a result of n
merous steps leading away from the original CCFM, we fi
it more appropriate to call the equations of Ref.@16# the
Kwieciński equations for the UPD evolution. Since in the
case of integrated PDs these equations reduce to the u
leading-order~LO! DGLAP equations, the range of applica
bility of the Kwieciński equations is not larger as for the L
DGLAP equations, with not too small and not too large v
ues of the Bjorkenx variable.

Formally, the Kwiecin´ski equations are integro
differential equations with the kernel depending on the tra
verse coordinateb ~cf. Sec. II!. As such, they are not trivia
to solve numerically. The method of the original works@14–
16# involved the Chebyshev interpolation in thex and Q
spaces for each value ofb. In this paper we offer an alterna
tive method, based on the evolution of thex moments of
UPDs. In the moment~Mellin! space, the evolution equa
tions become a set of ordinary differential equations, wh
can be solved numerically in a very efficient way~see Sec.
III !. We derive analytic expressions for theb-dependent
anomalous dimensions, which can be written in terms of
pergeometric functions. Then, the inverse Mellin transfo
to the originalx space is performed via numerical integrati
with oscillatory functions. We show that the procedure is f
and stable, providing a useful numerical tool for evolving t
UPDs.

The Mellin-transform method allows us to carry out an
lytic considerations, such as studies of certain limits of
equations, specifically the cases of low and largeb, and x
approaching the end points. We pursue these considerat
which can be done since the form of theb-dependent anoma
lous dimensions is analytic.

In addition to developing a different numerical meth
~Sec. III!, our study differs from Ref.@16# in two physical
aspects. First, rather than guessing the initial shape inb, we
use the results of low-energy chiral quark models~Sec. IV!.
We consider two models: the recently proposed spec
quark model of Refs.@41–43# and the Nambu–Jona-Lasini
model with Pauli-Villars regularization@44#. These models
were used before to describe the integrated PD@45–48# and
were shown to do a surprisingly good job, in particular f
the valence distribution in the pion. They were also used
describe successfully other aspect of high-energy proces
such as the pion distribution amplitude@49# and generalized
~off-forward! PD of the pion@50,51#. The models give the
initial condition at the model scaleQ0 in a particularly
simple, factorized form. The valence quarks are distribu
uniformly in x, while the gluons and sea quarks vanish. T
b dependence is a simple, analytic function with exponen
falloff at large b. We stress that theb dependence is a pre
diction of the model, rather than a mere guess, as is
quently made. Second, our implementation of the evolut
switches from three to four flavors above the char
production threshold, customarily taken atQ254 GeV2. Our
numerical results are presented in Sec. V, where we show
dependence of the UPDs onx andb.

Since the analytic forms of the anomalous dimensions
volve generalized hypergeometric functions, which may
cumbersome to program, we have developed a low-b expan-
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sion ~Sec. VI!, which makes the calculations simpler whenb
is not too large. The expansion is in powers ofbLQCD, and
is fast and stable. For the opposite problem, whereQb is
large, we have obtained asymptotic expansions~Sec. VII!,
which allow us to deal numerically with the generalized h
pergeometric functions.

Our method of solving the equations in Mellin space c
ries additional bonuses. In particular, it allows for analy
considerations in the investigation of formal limits atx→1
~Sec. VIII! and x→0 ~Sec. IX!. At x→1 we show that the
b-dependent nonsinglet distribution approaches very fast
integrated nonsinglet distribution. Atx→0 we find generali-
zations of the double-leading-logarithm~DLLA ! formulas of
Ref. @52#. Finally, we examine the large-b behavior, where
we show that the evolution-generated UPDs from
Kwieciński equations exhibit power-law behavior at largeb.
The falloff is much faster for the gluons than for the quark

Widening in the transverse momentum of all partonic d
tributions is confirmed. We show that^k'

2 & grows with prob-
ing scale asQ2a(Q2). We write an approximating formula
for the width for each partonic species, which may be use
in practical applications with the pion~Sec. X!. The widen-
ing effect becomes stronger and stronger asQ increases orx
decreases, and it is bigger for the gluons than for the n
singlet and singlet quarks~see Sec. X!.

The numerical method of this paper, which is easy
program and numerically fast and efficient, can be used
other initial conditions as well—for instance, for the Glu¨ck-
Reya-Schienbein~GRS! @53# parametrization of the pion o
the Glück-Reya-Vogt ~GRV! parametrization@54#, of the
nucleon, supplied with a profile in the transverse coordina
as originally studied in Ref.@16#. The only difference is in
the form of the initial Mellin moments, which acquire a d
pendence onb. General predictions of the method in form
limits are listed in Sec. XI.

The appendixes contain many technical details, such
the perturbative QCD parameters and splitting functio
~Appendix A!, the analytic form of theb-dependent anoma
lous dimensions which enter the evolution in Mellin spa
~Appendix B!, and their low-b ~Appendix C! and high-b
~Appendix D! expansion, as well as the pole-residue exp
sion ~Appendix E!. The latter is useful in analytic conside
ations nearx50.

II. KWIECIN´ SKI EQUATIONS

In his studies of the UPDs, Kwiecin´ski @14–16,22# started
from the CCFM formalism@17–20# explicitly involving two
separate scales: the probing scaleQ and the transverse mo
mentum of the parton,k' . Then, the original CCFM equa
tions were supplemented with quarks, as well as reduce
the single-loop approximation. The latter approximation
places the angular ordering of the emitted gluons with
ordering of their transverse momenta. In addition, the n
Sudakov form factor was dropped. Kwiecin´ski realized that
the evolution equations for the UPDs acquire a particula
simple form in the transverse-coordinate space,b, conjugated
to the transverse momentumk' . For each distribution one
introduces
2-2
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SOLUTION OF THE KWIECIŃSKI EVOLUTION . . . PHYSICAL REVIEW D70, 034012 ~2004!
f j~x,b,Q!5E
0

`

2pdk'k'J0~bk'! f j~x,k' ,Q!, ~2.1!

where j 5NS ~nonsinglet quarks!, S ~singlet quarks!, or G
~gluons!, and J0 is the Bessel function. In order to avoi
confusion, we stress that the transverse coordinateb, conju-
gated to the parton’s transverse momentum, is not the im
parameter, appearing in the analysis of the generalized P
The latter quantity is conjugated to the transverse momen
transfer in off-forward scattering processes.

At b50 the functionsf j are related to the integrated pa
ton distributionspj (x,Q) as follows:

f j~x,0,Q!5
x

2
pj~x,Q!. ~2.2!

More explicitly, for the case of the pion studied in this pap
~we takep1 for definiteness! we have

pNS5ū2u1d2d̄,

pS5ū1u1d1d̄1 s̄1s1•••,

psea[pS2pNS52d̄12u1 s̄1s1•••,

pG5g, ~2.3!

where the ellipses stand for higher flavors.
The Kwieciński equations read@16#

Q2
] f NS~x,b,Q!

]Q2

5
as~Q2!

2p E
0

1

dzPqq~z!FQ~z2x!

3J0~~12z!Qb! f NSS x

z
,b,QD2 f NS~x,b,Q!G ,

Q2
] f S~x,b,Q!

]Q2

5
as~Q2!

2p E
0

1

dzH Q~z2x!J0~~12z!Qb!

3FPqq~z! f SS x

z
,b,QD1PqG~z! f GS x

z
,b,QD G

2@zPqq~z!1zPGq~z!# f S~x,b,Q!J ,
03401
ct
s.

m

r

Q2
] f G~x,b,Q!

]Q2

5
as~Q2!

2p E
0

1

dzH Q~z2x!J0~~12z!Qb!

3FPGq~z! f SS x

z
,b,QD1PGG~z! f GS x

z
,b,QD G

2@zPGG~z!1zPqG~z!# f G~x,b,Q!J . ~2.4!

The splitting functionsPab(z) are listed in Eq.~A8!.
Following Ref.@16#, a factorized form of the distribution

functions at the initial scaleQ0 is assumed,

f j~x,b,Q0!5FNP~b!
x

2
pj~x,Q0!, ~2.5!

with the profile functionFNP(b) taken to be universal for al
species of partons. The factorization assumption~2.5! is
technical and one can easily depart from this limitation
numerical studies. We note, however, that the models
Refs.@42,44#, studied in Sec. IV, do predict a factorized in
tial condition of the form~2.5!. The input profile function
FNP(b) is linked through the Fourier-Bessel transform to t
k' distribution at the scaleQ0 . At b50 the normalization is
FNP(0)51. The profile function factorizes from the evolu
tion equations. This is clear, since any solution of Eq.~2.4!
remains a solution when multiplied by an arbitrary functi
of b. As a result of evolution, at higher scalesQ we have

f j~x,b,Q!5FNP~b! f j
evol~x,b,Q!, ~2.6!

with f j
evol(x,b,Q) satisfying equationsidentical to Eq. ~2.4!.

We should stress again an important physical differe
betweenFNP(b) and f j

evol(x,b,Q). While FNP(b) originates
entirely from low-energy, nonperturbative physics,
f j

evol(x,b,Q) is given by theperturbative QCD evolution
with Eq. ~2.4! from the initial condition

f j
evol~x,b,Q0!5

x

2
pj~x,Q0!. ~2.7!

Throughout this paper, except for Sec. IV, we focus on
perturbative evolution and the functionsf j

evol(x,b,Q). The
function FNP(b) is referred to as theinitial profile and
f j

evol(x,b,Q) as theevolution-generated UPD.

III. KWIECIN ´ SKI EQUATION IN MELLIN SPACE

We define thex moments of an unintegrated parton dist
bution in impact parameter space as~we retain the same
symbol for the function and its Mellin transform, hoping th
distinction made by the argument prevents any confusion!

f j~n,b,Q!5E
0

1

dxxn21f j~x,b,Q!. ~3.1!
2-3
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E. RUIZ ARRIOLA AND W. BRONIOWSKI PHYSICAL REVIEW D70, 034012 ~2004!
In Mellin space, the evolution equations for the UPDs a
very simple, as they become diagonal in bothb andn. They
involve b-dependent anomalous dimensions, equal to

gn,ab~Qb!54E
0

1

dz@znJ0~~12z!Qb!21#Pab~z!

5gn,ab
(0) 24E

0

1

dzzn@J0~~12z!Qb!21#Pab~z!,

~3.2!

where the values atb50 are

gn,NS
(0) 524E

0

1

dz~zn21!Pqq~z!,

gn,qq
(0) 524E

0

1

dz@~zn2z!Pqq2zPGq#,

gn,qG
(0) 524E

0

1

dzznPqG ,

gn,Gq
(0) 524E

0

1

dzznPGq ,

gn,GG
(0) 524E

0

1

dz@~zn2z!PGG2zPqG#. ~3.3!

Their explicit forms for various channels are listed in Eq
~B6!, ~B7!. The fact that we can write the analytic form o
the integrals in Eq.~3.2! ~see Appendix B! allows for effi-
cient numerical calculations and analytic considerations.

The integration of both sides of Eq.~2.4! with *0
1dxxn21

yields for the nonsinglet case the equation

d fNS~n,b,Q!

dQ2
52

aS~Q2!

8pQ2
gn,NS~Qb! f NS~n,b,Q!.

~3.4!

The formal solution of Eq.~3.4! can be readily obtained as

f NS~n,b,Q!

f NS~n,b,Q0!
5expF2E

Q0
2

Q2 dQ82a~Q82!

8pQ82
gNS~n,b,Q8!G .

~3.5!

In the singlet channel we find the coupled set of equatio

d fS~n,b,Q!

dQ2
52

aS~Q2!

8pQ2
@gn,qq~Qb! f S~n,b,Q!

1gn,qG~Qb! f G~n,b,Q!#,

d fG~n,b,Q!

dQ2
52

aS~Q2!

8pQ2
@gn,Gq~Qb! f S~n,b,Q!

1gn,GG~Qb! f G~n,b,Q!#, ~3.6!
03401
e

.

which has the formal solution

S f S~n,b,Q!

f G~n,b,Q!
D 5P expF2E

Q0
2

Q2 dQ82a~Q82!

8pQ82
Gn~Qb!G

3S f S~n,b,Q0!

f G~n,b,Q0!
D ,

Gn~Qb!5S gn,qq~Qb! gn,qG~Qb!

gn,Gq~Qb! gn,GG~Qb!
D . ~3.7!

The symbolP indicates that powers ofGn are ordered along
the integration path. The qualitative difference between
~3.7! and the LO DGLAP equations is the fact thatGn de-
pends on the evolution variableQ. This makes the single
sector more difficult to analyze analytically. Equations~3.6!
can be solved numerically for any value ofn real or complex
@55#. For the case of integrated PD (b50) Eqs. ~3.4! and
~3.6! reduce to the well-known LO DGLAP equation in Me
lin space.

The corresponding UPD inx space can be reconstructe
using the inverse Mellin transform

f j~x,b,Q!5E
n02 i`

n01 i` dn

2p i
x2nf j~n,b,Q!, ~3.8!

wheren0 has to be chosen in such a way as to leave all
singularities on the left-hand side of the contour. It turns o
that for bÞ0 the analytic structure of theb-dependent
anomalous dimension remains the same as for theb50 case.
This can be inferred directly by studying the analytic stru
ture of the formulas~B6!, ~B7! or the pole-residue expansio
of Eq. ~E4!. Thus, we have the result thatgn,NS(Qb),
gn,qq(Qb), and gn,qG(Qb) have poles atn521,22,
23, . . . , while gn,GG(Qb) andgn,Gq(Qb) have poles atn
50,21,22, . . . . Parametrizing the contour in Eq.~3.8! as
n5n01 i t , we arrive at the inversion formula

f j~x,b,Q!5x2n0E
0

`dt

p
$cos~ t logx!Re@ f j~n01 i t ,b,Q!#

1sin~ t logx!Im@ f j~n01 i t ,b,Q!#%. ~3.9!

For the nonsinglet case we taken050, while for the singlet
casen051. As an additional check we have also verified th
a bended integration pathn5c1reip/4 with 0<r ,`, as
used in@55#, also works nicely.

IV. INITIAL CONDITION FOR THE UPD OF THE PION

As an illustration of our method, we consider the UPDs
the pion with the initial condition atQ0 provided by two
large-Nc low-energy chiral quark models. The original wor
of Ref. @16# tested the GRS parametrization for the pion@53#
and the GRV parametrization for the nucleon@54#, supplied
with a Gaussian profileFNP(b). The considered models gen
erate the functionsFNP(b) as genuine model predictions o
low-energy nonperturbative physics, with no freedom
volved. Our first model is the recently proposed spec
2-4
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quark model~SQM! @41–43#, and the second one is th
popular Nambu–Jona Lasinio model~NJL! with Pauli-
Villars ~PV! regularization@44#, treated for simplicity in the
strict chiral limit.

First, since the chiral quark models have no gluon degr
of freedom, we have, at the model scale,

g~x,Q0!50 ~4.1!

or

f G
evol~x,b,Q0!50. ~4.2!

For the integrated valence quark PD both models predic
the chiral limit and at the model scaleQ0 , that

q~x,Q0!5u~x!u~12x!, ~4.3!

i.e., a constant value with the proper normalization and s
port. Thus the correspondingf evol functions of Eq.~2.2! are
linear in x:

f NS,S
eol ~x,b,Q0!5xu~x!u~12x!. ~4.4!

The scale of the model, as found from the momentum s
rule, is rather low:Q05313 MeV. Although this is admit-
tedly a very low scale, one may hope that the typical exp
sion parametera(Q0

2)/(2p);0.3 is low enough to make th
perturbation theory sensible. This claim gains support fr
the next-to-leading analysis of the integrated PDs@45#,
where the corrections are found to be small. The initial c
ditions provided by the chiral quark models, where only t
valence quarks are present, work well for the nonsing
quarks. On the other hand, in the singlet channel they lea
an underestimation of gluons at largex and too steep gluon
distributions at lowx @56,57#. Hence, in the singlet channe
other initial conditions should be used.

The QCD evolution is crucial for the phenomenologic
success of the considered low-energy chiral quark model
Refs.@45–47# it has been found that the nonsinglet distrib
tion, when evolved to the scale of 2 GeV, agrees very w
with the Sutton-Martin-Roberts-Sterling~SMRS! parametri-
zation of the pion data@58#, while in @59# it has been very
favorably compared to the old E615 data at 4 GeV@60# ~see
the discussion in Sec. V and Fig. 5!.

In the SQM, the valence UPD of the pion at the scaleQ0
is @42#

q~x,k' ,Q0!5q̄~12x,k'!

5
6MV

3

p~k'
2 1MV

2/4!5/2
u~x!u~12x!, ~4.5!

whereMV5770 MeV is the mass of ther meson. Passing to
impact-parameter space with the Fourier-Bessel transf
yields
03401
es

in

p-

m

-

-
e
t
to

l
In

ll

m

q~x,b,Q0![2pE
0

`

k'dk'q~x,k'!J0~k'b!

5S 11
bMV

2 DexpS 2
MVb

2 D u~x!u~12x!.

~4.6!

The expansion at smallb gives

q~x,b,Q0!5S 12
MV

2b2

8
1

MV
3b3

24
1••• D u~x!u~12x!,

~4.7!

and average transverse momentum squared is equal to

^k'
2 &NP

SQM[
E d2k'k'

2 q~x,k'!

E d2k'q~x,k'!

52
4

q~x,b!

dq~x,b!

db2 U
b50

5
MV

2

2
, ~4.8!

which numerically giveŝ k'
2 &NP

SQM5(544 MeV)2 ~all at the
model working scaleQ0). The subscriptNP reminds us that
the quantity comes entirely from the nonperturbative ph
ics, entering the profile functionFNP(b) ~see the discussion
at the end of Sec. II!.

In the NJL model with PV regularization@44# the analo-
gous formulas read@48#

q~x,k' ,Q0!5q̄~12x,k'!

5
L4M2Nc

4 f p
2 p3~k'

2 1M2!~k'
2 1L21M2!2

3u~x!u~12x!, ~4.9!

q~x,b,Q0!5
M2Nc

4 f p
2 p2 S 2K0~bM!22K0~bAL21M2!

2
bL2K1~bAL21M2!

AL21M2 D u~x!u~12x!,

~4.10!

where the pion decay constant is given by

f p
2 5

M2NcS L21~L21M2!log
L21M2

M2 D
4p2~L21M2!

. ~4.11!

The parameters of the model are adjusted in such a way
f p593 MeV—namely, M5280 MeV and L5871 MeV.
The expansion at smallb yields
2-5
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q~x,b,Q0!5S 12

M2NcS L22M2log
L21M2

M2 D b2

16p2f p
2

1•••
D u~x!u~12x!, ~4.12!

and the average transverse momentum squared is equa

^k'
2 &NP

NJL5

M2NcS L22M2log
L21M2

M2 D
4p2f p

2
, ~4.13!

which numerically giveŝk'
2 &NP

NJL5(626 MeV)2 ~at the scale
Q0), which is similar to the number from the SQM.

Finally, in the notation of Eq.~2.6! we can write that the
initial profile function is

FSQM
NP ~b!5S 11

bMV

2 DexpS 2
MVb

2 D , ~4.14!

FNJL
NP ~b!5

M2Nc

4 f p
2 p2 S 2K0~bM!22K0~bAL21M2!

2
bL2K1~bAL21M2!

AL21M2 D . ~4.15!

Both initial profile functions are displayed in Fig. 1. No
that the profiles, although having ab2 correction at smallb,
are not Gaussian and at largeb display an exponential falloff.

As discussed in Sec. II, the form ofFNP(b) factorizes
from the evolution. In both models there is no dependenc
the UPDs onx at the initial scaleQ0 . As a result, we get the
following set of initial moments:

FIG. 1. The initial profile functionsFNP for the SQM and NJL
models, plotted as functions of the transverse coordinateb. The
falloff is exponential, according to Eqs.~4.14! and ~4.10!.
03401
o

of

f NS
evol~n,b,Q0!5

1

n11
,

f S
evol~n,b,Q0!5

1

n11
,

f G
evol~n,b,Q0!50. ~4.16!

We remark that away from the chiral limit the separabil
of the dependence onx and b no longer holds. In this case
the initial conditions for the evolution are more complicat
~they depend onb), but the analysis can be easily gener
ized to account for this case as well.

V. NUMERICAL RESULTS

In Fig. 2 we present the results of our numerical calcu
tion with the method using the Mellin transform. The initi
conditions are for the pion in the chiral limit~4.16!, holding
at Q05313 MeV, and the evolution is carried up to the sca
of Q52 GeV. The differential equations for the momen
Eqs. ~3.4!, ~3.6!, are solved numerically for complexn val-
ues along the Mellin contour, and subsequently the inve
Mellin transform ~3.9! is carried out. The figure contain
three families of curves, solid for the gluon, dashed for
valence quarks, and dotted for the sea quarks. In each fa
b assumes the values 0, 1, 2, 3, 4, 5, and 10. Natura
increasingb results in a decrease of the distribution, with t
effect strongest at lowx. At x close to 1 this effect disap
pears, which is explained in Sec. VIII. We also note that
high values ofb the distributions for the gluons becom
negative, reflecting the change of sign of the Bessel func
in the evolution kernel of Eq.~2.4!. As already discussed in
Ref. @16#, this poses no immediate physical problems, as

FIG. 2. The evolution-generated UPDs for the pion for vario
values of the transverse coordinate~from top to bottomb50, 1, 2,
3, 4, 5, and 10 GeV21), plotted as functions of the Bjorkenx. The
evolution is made with the initial condition~4.4! at Q0

5313 MeV up toQ52 GeV. Solid lines: gluons. Dashed line
valence quarks. Dotted lines: sea quarks.
2-6
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distributions ink' remain positive as primary objects and
are the physical cross sections.

The results of Fig. 2 are consistent with the findings
Ref. @16#, where a different numerical method was used,
well as a different initial condition tested.

In Fig. 3 we show the dependence of the evolutio
generated UPDs onb at Q52 GeV andx50.1. The results
are represented by squares for the nonsinglet quarks,
monds for the singlet quarks, and stars for the gluons.
note the much faster falloff withb for the gluons than for the
quarks, as expected from Eq.~7.8!. The quarks exhibit a
long-range tail, according to the power-law formula~7.5!.
The solid line shows the asymptotic form for the case
nonsinglet quarks from Eqs.~7.5!, ~7.6! ~see Sec. VII!, which
becomes accurate forb>10 GeV21. As Q is increased fur-
ther orx decreased, the distributions inb become narrower
leading to larger spreading ink' . For more details and plot
concerning other numerical results see Ref.@16#.

The curve for the gluon atb510 GeV2 turns negative at
low x. The same phenomenon was found in Ref.@16# with a
different initial condition. To our knowledge, this does n
lead to any physical problems. The issue lies in taking
Fourier-Bessel transform of Eq.~2.1!. The UPDs in thek'

representations are positive@16# and so are the physica
quantities computed with the UPDs in the momentum rep
sentation. However, a Fourier-Bessel transform of a posit
definite function need not be positive definite. This is t
case of the gluon in Fig. 2 for certain sufficiently large valu
of b.

VI. LOW- b EXPANSION

Since the anomalous dimensions~B6!, ~B7! involve gen-
eralized hypergeometric functions, they are not easy to us

FIG. 3. Evolution-generated UPDs for the pion forQ52 GeV
and x50.1, plotted as functions ofb. The evolution is made with
the initial condition~4.4! at Q05313 MeV. The numerical results
are represented by squares for the nonsinglet quarks, diamond
the singlet quarks, and stars for the gluons, while the solid
shows the asymptotic formula~7.5! for the case of nonsingle
quarks. We note the much faster falloff for the gluons than for
quarks, as expected from Eq.~7.8!. The quarks exhibit a long-rang
tail, according to the power-law formula~7.5!. As Q is increased or
x decreased, the distributions inb become narrower, leading t
spreading ink' .
03401
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numerical calculations. For that reason we consider
small-b expansion, as well as the asymptotic forms at la
bQ, presented in the next section. It is convenient to int
duce the notation

r k5r k~Q0
2 ,Q2!5E

Q0
2

Q2 dQ82a~Q82!

8pQ82
Q82k. ~6.1!

The explicit form of functionsr k is given in Appendix A.
Next, we apply Eq.~C4! and find the following expansion in
the nonsinglet channel:

f ~n,b,Q!

f ~n,b,Q0!
5egn,NS

(0) r 0expF2CF(
k51

`
~2b2!k412k

k! 2

3@B~2k,n11!1B~2k,n13!#r kG , ~6.2!

whereB is the Euler beta function. We note that although
the level of the differential equation our expansion is fo
mally in Qb, the result~6.2!, together with the fact thatr k is
proportional toLQCD

2k @cf. Eq. ~A4!#, shows that the expan
sion parameter is actuallybLQCD. The rate of convergence
of the method can be deduced from Fig. 4. As we can s
the number of terms needed increases for increasingb and
decreasingx. For x.0.01 eight terms in the expansion see
more than sufficient.

VII. LARGE- b EXPANSION

Appendix D contains asymptotic forms of the generaliz
hypergeometric functions and of theb-dependent anomalou
dimensions. These expressions hold in the limit of largeQb
at n kept fixed. The formulas are of great practical impo
tance in the present study, since they are much simple
implement in numerical calculations than the generalized
pergeometric functions appearing in Eqs.~B6!, ~B7!. Actu-

for
e

e

FIG. 4. The low-b expansion for the evolution-generated UPD
of the pion atb55 GeV21 andQ52 GeV2, plotted as a function of
the Bjorkenx. Solid lines: gluons. Dashed lines: valence quar
Dotted lines: sea quarks. For each kind of parton the curves f
top to bottom correspond to 2, 4, 6, 8, 10, and 16 terms in the sm
b expansion. The initial condition for the evolution is provided b
Eq. ~4.4!.
2-7
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ally, Eqs.~D3!–~D6! should be used wheneverQb is larger
than about 10unu. Since in practical problems the scaleQ
may be as large as the mass of theW boson, there is a
frequent need to use the asymptotic expressions~D3!–~D6!.
Also, if the UPDs in the transverse momentum are need
one has to carry back the Fourier transform fromb space to
k' space, which involves all values ofb.

We start with the nonsinglet case of Eq.~3.4!. With the
help of Eq.~D3!, where at the leading order in 1/(Qb) we
drop the oscillatory parts, we may write Eq.~3.5! at large
Qb:

f NS
evol~n,b,Q!

f NS
evol~n,b,Q0!

5ey01y1n, ~7.1!

where

y1524CFS 2LQCD
2

b
2

1

b3D r 23/2~Q0
2 ,Q2!,

y0524CFS 2LQCD
2

b
r 23/2~Q0

2 ,Q2!1
1

b0
(3)

log
Q

Q0

12F log
bLQCD

2
1g2

3

4G r 0~Q0
2 ,Q2!D ,

for Q2,mc
2 , ~7.2!

and

y1524CFS 2LQCD
2

b
r 23/2~Q0

2 ,mc
2!1

2L4
2

b
r 23/2~mc

2 ,Q2!

2
1

b3
r 23/2~Q0

2 ,Q2!D ,

y0524CFS 2LQCD
2

b
r 23/2~Q0

2 ,mc
2!1

2L4
2

b
r 23/2~mc

2 ,Q2!

1
1

b0
(3)

log
mc

Q0
1

1

b0
(4)

log
Q

mc
12F log

bLQCD

2 G r 0~Q0
2 ,mc

2!

12F log
bL4

2 G r 0~mc
2 ,Q2!1Fg2

3

4G r 0~Q0
2 ,Q2!D ,

for Q2>mc
2 . ~7.3!

Next, we take our initial condition~4.16! and use the inverse
Mellin transform

E
C

dn

2p i
x2n

ey01y1n

n11
5xey02y1QS y11 log

1

xD . ~7.4!

The condition provided by the theta function means that
formula can be used forx,exp(y1). For negativey1 this
03401
d,

e

means that the validity is limited forx not too close to 1.
This, however, has been already tacitly assumed, since
asymptotic expansion holds for fixed values ofn and hence
cannot describex in the vicinity of 1. The above formulas
lead to the following large-b form of f NS

evol in x space:

f NS
evol~x,b,Q!

5xS bLQCD

2 D 28CFr 0(Q0
2 ,Q2)S Q

Q0
D 24CF /b0

(3)

3expS F2g2
3

2G r 0~Q0
2 ,Q2!1

1

b3
r 23/2~Q0

2 ,Q2!D ,

for Q2,mc
2 , ~7.5!

and

f NS
evol~x,b,Q!

5xS b

2D 28CFr 0(Q0
2 ,Q2)

L
QCD
28CFr 0(Q0

2 ,mc
2)

L
4
28CFr 0(mc

2 ,Q2)

3S mc

Q0
D 24CF /b0

(3)S Q

mc
D 24CF /b0

(4)

3expS F2g2
3

2G r 0~Q0
2 ,Q2!1

1

b3
r 23/2~Q0

2 ,Q2!D ,

for Q2>mc
2 . ~7.6!

We note a few facts: the nonsinglet UPD of the pion is
largeQb linear in x for x not too close to 1, with the slope
decreasing withb as a power law@we can neglect here th
small correction due to the last term in Eqs.~7.5!, ~7.6!#. The
exponent ofb is 28CFr 0(Q0

2 ,Q2). The overall constant is
also determined. Note that linearity withx at not-too-largex
is seen in Fig. 2 for the valence quarks~dashed lines! at b
510 GeV21. Numerically, atQ52 GeV we find for lowx
that f NS(x,b55 GeV21,Q52 GeV)50.73x and f NS(x,b
510 GeV21,Q52 GeV)50.35x, in accordance with the ex
act calculation of Fig. 2.

The asymptotic form~7.5!, ~7.6! works very efficiently in
practice. For the case of the nonsinglet quarks this can
seen from Fig. 3, where forQ52 GeV andb.5 GeV21

there is virtually no difference between the exact numeri
calculation and the asymptotic formula.

The power-law behavior inb shows that the evolution
generates a rather weak behavior at largeb. Numerically, at
Q52, 4, and 100 GeV, the power ofb is, respectively,
21.12, 21.29, and21.75. This means that the large-b be-
havior for the nonsinglet quarks is controlled by the init
profile FNP(b), which in chiral quark models of the pion ha
an exponential falloff, rather than by the QCD evolution.

Now we pass to the discussion of the singlet case of
~3.6!. In the large-Qb limit the leading part of the matrixGn
of Eq. ~3.7! becomes
2-8
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Gn~Qb!→S 4CFlog
Q2b2

4
0

0 4Nclog
Q2b2

4

D . ~7.7!

From this form, using methods as for the nonsinglet c
above, we infer that the dependence onb, is asymptotically,

f S~x,b,Q!;b28CFr 0(Q0
2 ,Q2),

f G~x,b,Q!;b28Ncr 0(Q0
2 ,Q2). ~7.8!

Thus the singlet quarks fall off at the same rate as the n
singlet quarks of Eqs.~7.5!, ~7.6!, while the gluons drop
significantly faster, asCf54/3 andNc53. This behavior is
clearly seen in Fig. 3. We note that due to the complicati
of Eq. ~3.7! a more detailed analysis yielding prefacto
such as the one for the nonsinglet case presented abov
more difficult in the present case, and hence we do not
sue it further here.

We end this section with a couple of remarks concern
the observed long-range nature of the tails inb. Our initial
nonperturbative profilesFNP(b) drop exponentially and
therefore suppress the tails generated by the evolution.
means that the large-b or low-k' behavior is controlled by
nonperturbative effects. The larger negative power inf G ,
Eq. ~7.8!, explains the faster shrinkage of gluon distributio
in b space or faster spreading ink' space.

VIII. BEHAVIOR OF F NS AT x\1

According to standard properties of the Mellin transfor
the limit x→1 is obtained form the large-n behavior of the
anomalous dimensions. Using the asymptotic formB(n,m)
→G(m)/nm in Eq. ~C4! or the explicit form of the anoma
lous dimensions~B6!, ~B7!, one obtains that

gn,NS~Qb!2gn,NS
(0) 52CF

b2Q2

n2
1O~1/n3!. ~8.1!

We also need the large-n expansion ofgn,NS
(0) , which is

gn,NS
(0) 58CF@ logn1g23/41R~n!#, ~8.2!

whereR(n)5(k51
` ckn

2k. Thus, according to Eq.~3.5!, we
have the asymptotic form

f NS
evol~n,b,Q2!

f NS
evol~n,b,Q0

2!
5n28CFr 0(Q2,Q0

2)e28CFr 0[g23/41R(n)]

3e2CFb2r 1 /n21O(1/n3). ~8.3!

Using the initial moments~4.16! and expanding the exponen
tials in Eq.~8.3! we obtain
03401
e

n-

s
,
, is
r-

g

is

,

f NS
evol~n,b,Q2!5

1

n11
n28CFr 0S 11 (

k51

`

ck8n
2kD

3@112CFb2r 1 /n21O~1/n3!#. ~8.4!

Next, we use the formula for the inverse Mellin transform

E
C
dnx2n

n2A

n1w
5~2w!2AxwS 12

GS A,2w log
1

x

G~A!
D

→
xwS log

1

xD A

AG~A!
, ~8.5!

which after a straightforward algebra leads to the equatio

f NS
evol~x,b,Q2!

f NS
evol~x,0,Q2!

512
2CFb2r 1~12x!2

~118CFr 0!~218CFr 0!
1O„~12x!3

….

~8.6!

The terms with coefficientsck8 do not enter at the leading
order in (12x). The behavior of Eq.~8.6! agrees with the
behavior of Fig. 2, where close tox51 the departure of the
curves with finiteb from the curve withb50 becomes very
slow, as it is suppressed by (12x)2.

We also obtain that atx→1 the integrated nonsinglet dis
tribution behaves as

f NS~x,0,Q2!→ e2CF(324g)r 0

G~118CFr 0!
~12x!8CFr 0. ~8.7!

This agrees with the fact that a function which origina
behaves atx→1 asf NS(x,0,Q0)→(12x)p evolves into@61#

f NS~x,0,Q2!→~12x!p2(4CF /b0)log[a(Q)/a(Q0)] . ~8.8!

In our approach the integrated function atQ5Q0 has p
50. Numerically, we find that

f NS„x,0,~2 GeV!2
…→1.15~12x!1.13,

f NS„x,0,~4 GeV!2
…→1.08~12x!1.29. ~8.9!

Note that although with the DGLAP evolution the Brodsk
Lepage counting rules for the behavior atx→1 are clearly
disobeyed, our numerical predictions agree within expe
mental uncertainties with the experimental data, includ
the region very close tox51. Figure 5 confronts our result
evolved to the scale ofQ54 GeV to the E615 experimenta
Drell-Yan data@60# which cover the large-x region. In view
of the simplicity of the present model, the quality of th
comparison is impressive.

On the other hand, it is believed that atx→1 it is neces-
sary to resum the soft gluon processes, which leads to s
ming up powers of log(12x). Clearly, such effects are no
included in the considered evolution.
2-9
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IX. BEHAVIOR AT x\0

The results atx→0 are of formal rather than physica
significance, since the considered evolution, being a ge
alization of LO DGLAP equations for UPDs, does not d
scribe properly the physics at very small values ofx. The
low-x behavior of the inverse Mellin transform is encoded
the closest singularities to the integration line. We start w
the nonsinglet case of Eq.~3.4!. Using the pole-residue ex
pansion of Appendix E we find that the closest singularity
at n521, with residue24CFJ0(Qb). With the help of the
expression for the inverse Mellin transform,

E
2 i`

i` dn

2p i

x2n

n11
ea/(n11)55 xI0S 2Aa log

1

xD , a>0,

xJ0S 2Aa log
1

xD , a,0,

~9.1!

we find that

f NS
evol~x,b,Q2!→5 xI0S 2ACFA log

1

xD , A>0,

xJ0S 2ACFA log
1

xD , A,0,

~9.2!

where

A5E
Q0

2

Q2 dQ2

2pQ2
a~Q2!J0~Qb!. ~9.3!

For the singlet case we retain the closest singularity an
50 and rewrite Eq.~3.7! in the form

FIG. 5. Model prediction for theintegratedvalence quark dis-
tribution of the pion, evolved to from the initial condition~4.16! to
the scale ofQ54 GeV, confronted with the E615 Drell-Yan dat
@60#. The behavior atx→1 is (12x)1.29.
03401
r-
-

h

s

S f S~n,b,Q!

f G~n,b,Q!
D 5expF E

Q0
2

Q2 dQ82a~Q82!J0~Q8b!

pQ82

3S 0 0

CF

n

Nc

n
D G S f S~n,b,Q0!

f G~n,b,Q0!
D , ~9.4!

where we have used Eq.~E6! and could drop theP symbol
since in the present approximation the matrix in the expon
does not depend onQ8. After some straightforward algebr
we obtain

f S~n,b,Q!5 f S~n,b,Q0!,

f G~n,b,Q!5 f S~n,b,Q0!
CF

Nc
~e2NcA/n21!

1 f G~n,b,Q0!e2NcA/n. ~9.5!

The equation forf S shows the inadequacy of retaining fo
this case the singularity atn50 only, as in the considered
limit of x→0 the singlet quarks are controlled by the sing
larity at n521. For the case of gluons we use the initi
condition ~4.16!. We need the inverse Mellin transform

E
C
dnx2n

1

n11
expS a

nD

5 (
k50

`

~21!kS log
1

x

a
D k/2

I kS 2Aa log
1

xD

;

expS 2Aa log
1

x
D

A4pAa log
1

x
S 11
Alog

1

x

a
D , a.0,

~9.6!

where in the last line we have used the asymptotic form
the Bessel functions. With this result we find that the un
tegrated gluon distribution atx→0 behaves as

f G~n,b,Q!;expS 2A2NcA log
1

xD , A.0, ~9.7!

with A provided in Eq.~9.3!. If a,0 in Eq.~9.6!, then theI k
functions above are replaced with theJk functions, and the
asymptotics changes the character from exponential to o
latory:
2-10
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f G~n,b,Q!;F S 11
Alog

1

x

2A
D cosS 2A2A log

1

x
D

1S 12
Alog

1

x

2A
D sinS 2A2A log

1

x
D G

3
1

ApA2A log
1

x
S 12

log
1

x

A
D ,

A,0. ~9.8!

For b50 the result~9.7! is consistent with the DLLA for
the DGLAP equation@52#, where one obtains, with con
stanta,

xg~x,Q!;expS 2ANc

p
a log

Q2

Q0
2

log
1

xD . ~9.9!

See, e.g., the review in Ref.@62#. Our formulas~9.2! and
~9.7! are generalizations of this behavior for the unintegra
distributions evolved with Eq.~2.4!.

The pole-residue expansion of Appendix E is good
not-too-largeQb. This limitation, at any fixedx, carries over
to Eq.~9.2! Numerically, we find that, atx50.1, Eq.~9.2! is
valid for Qb<5. For higher values corrections from furth
residues should be included.

X. EVOLUTION OF Šk�
2
‹

The average transverse momentum squared is a co
nient measure of the width of the UPDs. As a result of
factorization of the initial profile, Eq.~2.6!, ^k'

2 & decomposes
into two terms: the contribution from the initial profileFNP

gives the width at the initial scaleQ5Q0 and the piece
^kT

2&evol, entirely to the evolution and independent of t
profile FNP:

^k'
2 &5^k'

2 &NP1^k'
2 &evol,

^k'
2 &NP524

dFNP~b!/db2

FNP~b!
U

b50

,

^k'
2 &evol524

d fevol~b,x,Q!/db2

f evol~b,x,Q!
U

b50

. ~10.1!

The contribution^kT
2&NP has already been discussed in S

IV; hence, here, we analyze the term generated by the
lution.

Let us denote
03401
d

r

e-
e

.
o-

f j
(1)~x,Q![

d f j
evol~b,x,Q!

db2 U
b50

. ~10.2!

In Mellin space, the equations obtained by expanding
~3.4! up to first order inb2 aroundb50 read

d fNS
(1)~n,Q!

dQ2
52

aS~Q2!

8pQ2
@gn,NS

(0) f NS
(1)~n,Q!

1Q2gn,NS
(1) f NS~n,0,Q!# ~10.3!

and

d fS
(1)~n,Q!

dQ2
52

aS~Q2!

8pQ2
$gn,qq

(0) f S
(1)~n,Q!1gn,qG

(0) f G
(1)~n,Q!

1Q2@gn,qq
(1) f S~n,0,Q!1gn,qG

(1) f G~n,0,Q!#%,

~10.4!

d fG
(1)~n,Q!

dQ2
52

aS~Q2!

8pQ2
$gn,Gq

(0) f S
(1)~n,Q!1gn,GG

(0) f G
(1)~n,Q!

1Q2@gn,Gq
(1) f S~n,0,Q!1gn,GG

(1) f G~n,0,Q!#%,

~10.5!

which form a set of ordinary inhomogeneous different
equations. Since at the scaleQ0 all the width is by construc-
tion generated by the initial profileF, the initial conditions
for Eqs.~10.3!, ~10.6! are

f j
(1)~n,Q0!50. ~10.6!

For the nonsinglet case we have the solution

f NS
(1)~n,Q!52gn,NS

(1) f NS~n,0,Q!r 1~Q0
2 ,Q2!. ~10.7!

In the singlet channel we carry the analysis numerically.
Next, we pass tox space via the numerical inverse Melli

transform. The results for the dynamically generated ro
mean-squared radius of the pion are shown in Fig. 6
various values ofx. In confirmation of the results of Ref
@16#, we note that thek' width increases withQ for all
parton species. The width for the gluons~solid lines! is larger
than the width of the nonsinglet~valence! quarks ~dashed
lines! and the singlet quarks~dotted lines!. With the log-log
scales of Fig. 6 the slopes of the plotted lines become t
good approximation equal to one another at largeQ2.

With the help of previously derived expressions for t
behavior off NS nearx50 andx51 we may obtain the fol-
lowing expressionŝk'

2 &NS
evol near the end points. From Eq

~8.8! we have, atx→0,
2-11
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^k'
2 &NS

evol→ I 1~A24CFr 0logx!

I 0~A24CFr 0logx!
A2

CFlogx

r 0
r 1

;A2
CFlogx

r 0
r 1 . ~10.8!

At large Q2 the leading behavior is

^k'
2 &NS

evol→!
2b0

(4)CFlog
1

x

log
a~mc

2!

a~Q2!

a~Q2!

8p
Q2; ~10.9!

i.e., up to the log logQ2 corrections the spreading procee
with a(Q2)Q2. At x→1 we find from Eq.~8.6! that

^k'
2 &NS

evol→ 2CF~12x!2r 1

~118CFr 0!~218CFr 0!
. ~10.10!

At large Q2 the leading behavior is

^k'
2 &NS

evol→
b0

(4)2~12x!2a~Q2!

64pCFF log
a~mc

2!

a~Q2!
G 2 Q2. ~10.11!

Again, the growth is, up to the log logQ2 corrections, pro-
portional toa(Q2)Q2.

For the gluons the same asymptotic behavior of^k'
2 &G

evol

follows from Eq. ~9.6!. Thus, to summarize, all UPD
grow at largeQ asQ2a(Q2), in accordance to the behavio
in Fig. 6.

FIG. 6. The rms transverse momenta of UPDs of the pion
x50.01, 0.1, and 0.5, plotted as functions of the renormaliza
scaleQ2. Solid lines: gluons. Dashed lines: nonsinglet quarks. D
ted lines: singlet quarks.
03401
Interestingly, it can be noticed from Fig. 6 that atQ
→Q0

1 the k' width for the gluons does not vanish. In th
limit both f G

evol(x,0,Q) and f G
(1)(x,Q) vanish, as is obvious

from Eqs.~4.2!, ~10.6!. Thus one has a 0/0 limit. From Eqs
~2.4!, ~10.3! with the initial condition~4.3!, ~10.6! one can
easily obtain that

lim
Q→Q0

^k'
2 &G

evol5Q0

E
x

1

dzPGq~z!
~12z!2

z

E
x

1

dzPGq~z!
1

z

5Q0

x426x3121x2218x logx210x26

3~x222x logx1x22!
,

~10.12!

which is positive forxP@0,1) and equal to 0 forx51. On
the other hand, since for the quarksf NS,S

evol (x,0,Q)
Þ0, ^k'

2 &NS,S
evol vanish atQ0 .

In phenomenological applications it is sometimes use
to have a simple formula characterizing the discussed be
ior. In the range 2 GeV2,Q2,10 000 GeV2 and 0.005,x
,0.8 the following simpleminded interpolating formul
works to within a few percent:

~^k'
2 & i

evol!1/25Ai S log
1

xD S Q2

LQCD
2 D 0.3510.004 log(Q2/LQCD

2 )

,

~10.13!

wherei 5NS, S, or G, and

ANS~y!520.017y1/210.113y20.057y3/210.010y2,

AS~y!520.021y1/210.120y20.059y3/210.009y2,

AG~y!520.016y1/210.150y20.075y3/210.011y2.
~10.14!

The power ofQ2 of 0.35 in Eq. ~10.13!, rather than 1/2
corresponding tô k'

2 & i
evol;Q2a(Q2), compensates, in the

chosen range forQ, for the logarithmic corrections. We not
that Eq.~10.13! holds for the pion with the initial conditions
~4.16! provided by the chiral quark models.

XI. FORMAL LIMITS FOR OTHER INITIAL CONDITIONS

Certain formal results listed in this paper, such as
formulas for the nonsinglet quarks, Eqs.~7.5!, ~7.6!, ~8.7!,
~8.8!, ~9.2!, ~10.8!, ~10.9!, are specific to the evolution with
the initial condition following from the chiral quark models
Eqs.~4.4!, ~4.16!. However, these results can be easily ge
eralized. Note that most of the popular parametrizations
initial conditions, such as those of Refs.@53,54#, involve
linear combinations ofxa(12x)b. It is understood that the
factorization in the initial condition betweenx andb variable
holds, as assumed in Ref.@16#.

For the case of large-b asymptotics, the relevant formul
is Eq. ~7.4!. With the initial conditionxa(12x)b it becomes

r
n
-

2-12
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E
C

dn

2p i
x2n

ey01y1n

n1a
5xaey02ay1QS y11 log

1

xD ,

~11.1!

and expressions~7.5!, ~7.6! are modified accordingly, withx
replaced byxa andy1 in the exponent multiplied bya. The
formulas~7.8! remain valid. Therefore the power-law beha
ior at largeb is independent of the initial condition and

b28CFr 0(Q0
2 ,Q2) for the quarks andb28Ncr 0(Q0

2 ,Q2) for the glu-
ons.

In the limit of x→1 the only difference is the appearan
of the extra power ofb in the in Eq.~8.7!. Thus, the UPDs
for finite b approach theb50 case of the integrated distr
butions as (12x)2.

In the limit of x→0 we need generalizations of the Mell
transforms of Eqs.~9.1!, ~9.6! for aÞ1. These are

E
C
dnx2n

1

n1a
expS a

n11D

5x(
k50

`

~21!k~a21!kS log
1

x

a
D k/2

I kS 2Aa log
1

xD

;

x expS 2Aa log
1

x
D

~a21!A4pAa log
1

x

Alog
1

x

a

,

aÞ1, a.0, ~11.2!

and

E
C
dnx2n

1

n1a
expS a

nD

5 (
k50

`

~21!kakS log
1

x

a
D k/2

I kS 2Aa log
1

xD

;

expS 2Aa log
1

x
D

aA4pAa log
1

x

Alog
1

x

a

, aÞ0, a.0.

~11.3!

The analogue of Eqs.~9.2!, ~9.7!, ~10.8!, ~10.9! follow
straightforwardly. In particular, theQ2a(Q2) large-Q behav-
ior for all parton distributions is preserved.
03401
XII. CONCLUSIONS

We have presented a new method of solving the Kwiec´-
ski equations for the leading-order QCD evolution of un
tegrated parton distributions. The method is based on
Mellin transform and parallels the standard analysis of
DGLAP equations. Our main results are as follows.

~1! We have found analytic forms of theb-dependent
anomalous dimensions, expressed through hypergeo
ric functions, which allowed us to study formal aspec
of the equations and their solutions—e.g., the asympt
forms of the evolution-generated UPDs at largeb or at
x→0 andx→1. We have also demonstrated that the p
posed numerical method is fast and stable.

~2! The numerical work can be simplified if low-b or large-
b expansions are used.

~3! At large b the evolution-generatedb-dependent UPDs
exhibit a power-law falloff, with the magnitude of th
exponents growing with the probing scaleQ; cf. Eqs.
~7.5!, ~7.8!. The falloff is steeper for the gluons than fo
the quarks.

~4! At x→0 we have found generalizations of the DLL
behavior; cf. Eqs.~9.2!, ~9.7!. We have also shown tha
for largeb the solution for the valence UPD of the pio
grows linearly withx for not too largex, and the slope
decreases withb as a power law.

~5! At x→1 the evolution-generatedb-dependent UPDs ap
proach the integrated distributions as (12x)2.

~6! Our numerical results fully confirm the finding of Re
@16#, where a different numerical method was used. W
find the spreading of thek' distributions with the prob-
ing scaleQ, with the effect strongest for gluons and in
creasing with decreasingx. We have also shown that th
widths ^k'

2 & i
evol in all channelsi increase at largeQ2 as

Q2a(Q2).
~7! For practical purposes in possible phenomenological

plications, we have parametrized^k'
2 & i

evol with a simple
formula which works with accuracy of a few percent.

Although the specific study of this paper was devoted
the pion with the initial condition following from the chira
models, and several of the more detailed analytic formu
were specific to this case, the developed method is gen
and can be applied to any initial form of the data. In partic
lar, it can be used with the GRS@53# or GRV @54# param-
etrization supplied by a profile inb, such as already studie
in Ref. @16#. The formal results of Sec. XI are general for
wide class of initial conditions, suitable for both the pion a
nucleon.

It should certainly be interesting to extend the pres
analysis of the UPDs to next-to-leading order, which wou
allow for a more accurate analysis. This work is in progre
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APPENDIX A: ELEMENTS OF THE PERTURBATIVE
QCD EVOLUTION

We use the LO QCD evolution with three active flavo
up to the scalemc

254 GeV2 and four active flavors above
Thereforea5g2/(4p) is given by

a~Q2!5
4p

b0
(3)logS Q2

LQCD
2 D , Q2<mc

2 ,

a~Q2!5
4p

b0
(4)logS Q2

L4
2D , Q2.mc

2 ,

L45mcS LQCD

mc
D b0

(3)/b0
(4)

, ~A1!

with b0
(Nf )51122Nf /3 for Nc53, whereNf andNc denote

the number of flavors and colors, respectively. Along t
paper we take

LQCD5226 MeV, ~A2!

as was done in Refs.@42,45–47#. The value of the scaleL4

ensures matching atQ25mc
2 . Numerically, b0

(3)59, b0
(4)

525/3, andL45189 MeV.
The functionsr k , defined in Eq.~6.1!, have the explicit

form

r 0~Q0
2 ,Q2!5

1

2b0
(3)

logS log~Q2/LQCD
2 !

log~Q0
2/LQCD

2 !
D

5
1

2b0
(3)

log
a~Q0

2!

a~Q2!
, Q2<mc

2 ,

r 0~Q0
2 ,Q2!5r 0~Q0

2 ,mc
2!1

1

2b0
(4)

logS log~Q2/L4
2!

log~mc
2/L4

2!
D

5r 0~Q0
2 ,mc

2!1
1

2b0
(4)

log
a~mc

2!

a~Q2!
, Q2.mc

2 ,

~A3!

and, forkÞ0,
03401
/

e

n-
e
is

s

r k~Q0
2 ,Q2!5

LQCD
2k

2b0
(3) FLi S Q2k

LQCD
2k D 2Li S Q0

2

LQCD
2 D G , Q2<mc

2 ,

r k~Q0
2 ,Q2!5r k~Q0

2 ,mc
2!

1
L4

2k

2b0
(4) FLi S Q2k

L4
2kD 2Li S mc

2

L4
2D G , Q2.mc

2 .

~A4!

Above we have used the indefinite integral

E dQ2Q2k

Q2log~Q2/L2!
5L2kLi S Q2k

L2kD , k51,2,. . . ,

~A5!

where the logarithmic integral is

Li ~x!5E
0

x

dt/ log t. ~A6!

At large Q2,

L2kLi S Q2k

L2kD 5Q2kS 1

k log
Q2

L2

1
1

k2log2
Q2

L2

1•••D .

~A7!

The functionsPab(z) are the LO splitting functions cor
responding to real emission—i.e.,

Pqq~z!5CF

11z2

12z
,

PqG~z!5Nf@z21~12z!2#,

PGq~z!5CF

11~12z!2

z
,

PGG~z!52NcF z

12z
1

12z

z
1z~12z!G ,

~A8!

with CF5(Nc
221)/(2Nc)54/3.

APPENDIX B: b-DEPENDENT ANOMALOUS DIMENSIONS

We introduce

u5
Q2b2

4
, ~B1!

as well as the anomalous dimensions for theb50 case of the
DGLAP equations, where for the nonsinglet we have
2-14
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gn,NS
(0) 52CFS 231

2

11n
1

2

21n
14HnD , ~B2!

while for the singlet,

gn,qq
(0) 5gn,NS~0!,

gn,qG
(0) 524Nf S 1

11n
2

2

21n
1

2

31nD ,

gn,Gq
(0) 524CFS 2

n
2

2

11n
1

1

21nD ,

gn,GG
(0) 52NcS 232

4

n
1

8

11n
2

4

21n
1

4

31n
14HnD .

~B3!

The symbolHn denotes the harmonic number

Hn5 (
k51

n
1

k
5

G8~n11!

G~n11!
1g, ~B4!

which is a meromorphic function in the complexn variable,
with poles located at negative integersn521,22,23, . . .
and residues equal to21.

Below we list the anomalous dimensions for the mome
03401
s

of the unintegrated parton distributions inb space, defined in
Eq. ~3.2!. The formulas follow from the basic analytic inte
gral

G~21m1n!

G~11m!G~11n!
E

0

1

dyym~12y!nJ0~2Auy!

5 2F3S 11m

2
,
21m

2
;1,

21m1n

2
,
31m1n

2
;2uD

~B5!

and relations among the generalized hypergeometric fu
tions. For the nonsinglet case we have

gn,NS~Qb!5gn,NS
(0) 1

4CF

~11n!~21n! F2322n

12~21n! 1F2S 1

2
;
21n

2
,
31n

2
;2uD

2 1F2S 3

2
;
31n

2
,
41n

2
;2uD

12u 3F4S 1,1,
3

2
;2,2,

31n

2
,
41n

2
;2uD G ,

~B6!

whereas for the singlet case,
gn,qq~Qb!5gn,NS~Qb!,

gn,qG~Qb!5gn,qG
(0) 1

4Nf

~11n!~21n!~31n!~41n!~51n! S 2H ~41n!~51n!F242n~31n!

1~21n!~31n! 2F1S 1

2
;
21n

2
,
31n

2
;2uD22~31n! 1F2S 3

2
;
31n

2
,
41n

2
;2uD

14 1F2S 3

2
;
41n

2
,
51n

2
;2uD G J 124u 1F2S 5

2
;
61n

2
,
71n

2
;2uD D ,

gn,Gq~Qb!5gn,Gq
(0) 1

4CF

n~11n!~21n!~31n!~41n! H 2F ~11n!~21n!~31n!~41n! 1F2S 1

2
;
11n

2
,
21n

2
;2uD G

1~31n!~41n!F41n~31n!22 1F2S 3

2
;
31n

2
,
41n

2
;2uD G112u 1F2S 5

2
;
51n

2
,
61n

2
;2uD J ,
2-15



E. RUIZ ARRIOLA AND W. BRONIOWSKI PHYSICAL REVIEW D70, 034012 ~2004!
gn,GG~Qb!5gn,GG
(0) 18Nc

F 1

n
2

2

11n
1

1

21n
2

1

31n
1

1F2S 1

2
;11

n

2
,
3

2
1

n

2
;2uD

11n
2

1F2S 3

2
;11

n

2
,
3

2
1

n

2
;2uD

n1n2

2

1F2S 3

2
;
3

2
1

n

2
,21

n

2
;2uD

~11n!~21n!
1

2 1F2S 3

2
;21

n

2
,
5

2
1

n

2
;2uD

~11n!~21n!~31n!
2

12u 1F2S 5

2
;31

n

2
,
7

2
1

n

2
;2uD

~11n!~21n!~31n!~41n!~51n!

1

u 3F4S 1,1,
3

2
;2,2,

3

2
1

n

2
,21

n

2
;2uD

~11n!~21n!
G . ~B7!
e

of

hy-
One may verify that the analyticity properties inn of the
anomalous dimensions~B6!, ~B7! are the same as for theb
50 case of Eqs.~B2!, ~B4!.

APPENDIX C: EXPANSION OF ANOMALOUS
DIMENSIONS AT LOW bQ

We may expand in the anomalous dimensions in pow
of Q2b2,

gn, j~Qb!5gn, j
(0)1gn, j

(1)Q2b21•••, ~C1!

which yields

gn,NS
(1) 5gn,qq

(1) 5
2CF~n215n17!

~n11!~n12!~n13!~n14!
,

gn,qG
(1) 5

2Nf~n213n114!

~n11!~n12!~n13!~n14!
,

gn,Gq
(1) 5

2CF~n217n124!

~n11!~n12!~n13!~n14!
,

gn,GG
(1) 5

2Nc@n~n15!~n215n116!1120#

n~n11!n12)~n13!~n14!~n15!
.

~C2!

More generally, introducing the Euler beta functionB(x,y)
5G(x)G(y)/G(x1y) and applying the series expansion
the Bessel function,

J0~x!5 (
k50

`
~2x2!k

2kk! 2
, ~C3!

we arrive at the expansion formulas

gn,NS~Qb!5gn,qq~Qb!5gn,qq
(0) 2CF(

k51

`
~2Q2b2!k412k

k! 2

3@B~2k,n11!1B~2k,n13!#,
03401
rs

gn,qG~Qb!5gn,qG
(0) 2Nf (

k51

`
~2Q2b2!k412k

k! 2

3@B~2k11,n11!22B~2k11,n12!

12B~2k11,n13!#,

gn,Gq~Qb!5gn,Gq
(0) 2CF(

k51

`
~2Q2b2!k412k

k! 2

3@2B~2k11,n!22B~2k11,n11!

1B~2k11,n12!#,

gn,GG~Qb!5gn,GG
(0) 22Nc(

k51

`
~2Q2b2!k412k

k! 2
@B~2k,n12!

1B~2k12,n!1B~2k12,n12!#. ~C4!

APPENDIX D: ASYMPTOTICS OF THE ANOMALOUS
DIMENSIONS AT LARGE bQ

We may use the asymptotic forms of the generalized
pergeometric functions appearing in Eqs.~B6!, ~B7!. One
has@64#

1F2S a1 ;b1 ,b2 ;2
Q2b2

4 D
5

G~b1!G~b2!

G~b12a1!G~b22a1! S 4

Q2b2D a1

1
G~b1!G~b2!

ApG~a1!
H cos~Qb2pc1!

1
c2

Qb
sin~Qb2pc1!J S 4

Q2b2D c1

1•••,
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c15
1

2 S b11b22a12
1

2D ,

c25
1

8
~12a1

228~b11b211!a1

24~b12b2!218~b11b2!23), ~D1!

and @65#

3F4S 1,1,
3

2
;2,2,

n13

2
,
n14

2
;2

Q2b2

4 D
5

4~n11!~n12!

nQ3b3 S QbFn log
Qb

2
2nc0~n!21G1n2D

1
8G~n13!

A2p
cosS Qb2

2n13

4
p D ~Qb!2n/227/2

1•••. ~D2!

Then the following asymptotic expansions for th
b-dependent anomalous dimensions hold:

gNS~n,Qb!

5gqq~n,Qb!

54CFH log
Q2b2

4
12g2

3

2
1

2n12

Qb

1
G~n11!~Qb!2n25/2

4A2p
F24bQ cosS 2n13

4
p2QbD

2~12n113!sinS 2n13

4
p2QbD G J 1•••, ~D3!

gqG~n,Qb!

54Nf H 2
1

Qb
1

G~n11!~Qb!2n25/2

8Ap

3F ~212n18Qb211!cosS np

2
2QbD

1~12n18Qb111!sinS np

2
2QbD G J 1•••, ~D4!
03401
gGq~n,Qb!

54CFH 2
1

Qb
1

G~n!~Qb!2n23/2

4Ap
F ~4n18Qb21!

3cosS np

2
2QbD1~4n28Qb21!sinS np

2
2QbD G J

1•••, ~D5!

gGG~n,Qb!5
4Nf

3
14NcH log

Q2b2

4
12g2

11

6
1

2n12

Qb

2
4G~n!~Qb!2n21/2

A2p
cosS 2n11

4
p2QbD

1
@G~n!220G~n11!#~Qb!2n23/2

4Ap

3FcosS n

2
p2QbD1sinS n

2
p2QbD G J 1•••.

~D6!

The ellipses denote terms subleading in 1/Qb. The above
formulas assume thatn is kept fixed. In actual applications
such as numerical programming of the generalized hyperg
metric functions, it is practical to switch from the gener
formulas~B6!, ~B7! to the asymptotic expressions~D3!, ~D6!
whenQb>10unu.

APPENDIX E: POLE-RESIDUE EXPANSION
OF THE ANOMALOUS DIMENSIONS

For bÞ0 the analytic structure of theb-dependent anoma
lous dimensions remains the same as forb50. This can be
seen by expanding the Bessel function in the integrand of
~3.2! as a power series aroundz50, which yields

gn,ab~Qb!524E
0

1

dz(
k50

`
1

k!
@J0

(k)~Qb!

3~2Qb!kzn1k21#Pab~z!. ~E1!

Applying the trick

15J0~0!524(
k50

`
1

k!
J0

(k)~Qb!~2Qb!k, ~E2!

we find the expansion involving index-shifted anomalous
mensions atb50—namely,

gn,ab~Qb!5 (
k50

`
~2Qb!k

k!
J0

(k)~Qb!gn1k,ab~0!. ~E3!
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Using the explicit expression for the anomalous dimens
this series may be rewritten as a pole-residue expansion

gn,ab~Qb!5 (
k50

` Rk
ab~Qb!

n1k
. ~E4!

In practice this means that the Mellin contour used in
case ofb50 can be used in thebÞ0 case as well. In the
nonsinglet case the first few residues read

R1
NS~A!524CFJ0~A!,

R2
NS~A!524CF@J0~A!1AJ1~A!#,

R3
NS~A!522CF@2~A224!J0~A!13AJ1~A!#,

~E5!

while in the singlet channelRi
qq5Ri

NS and
p

s-

S
ce
,

C

s.

03401
n

e

R1
qG~A!524NFJ0~A!,

R2
qG~A!524NF@22J0~A!1AJ1~A!#,

. . .

R0
Gq~A!528CFJ0~A!,

R1
Gq~A!528CF@2J0~A!1AJ1~A!#,

. . .

R0
GG~A!528NcJ0~A!,

R1
GG~A!528Nc@2J0~A!1AJ1~A!#. ~E6!

The pole-residue expansion controls the behavior of the
lutions of Eq.~2.4! at low x. Since the subsequent residu
carry powers ofAn5(Qb)n, the expansion cannot be use
for Qb too large.
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