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The Kwiecirski equations for QCD evolution of unintegrated parton distributions in transverse-coordinate
spacegb) are analyzed with the help of the Mellin-transform method. The equations are solved numerically in
the general case, as well as in a sniaéxpansion which converges fast tof ocp sufficiently small. We also
discuss the asymptotic limit of largeQ and show that the distributions generated by the evolution decrease
with b according to a power law. Numerical results are presented for the pion distributions with a simple
valencelike initial condition at the low scale, following from chiral lalgg-quark models. We use two models:
the spectral quark model and the Nambu—Jona-Lasinio model. Formal aspects of the equations, such as the
analytic form of theb-dependent anomalous dimensions, their analytic structure, as well as the limits of
unintegrated parton densities»xat-0, Xx—1, and at largd, are discussed in detail. The effect of the spreading
of the transverse momentum with increasing scale is confirmed, (/kiil) growing asymptotically as
Q2a(Q?). Approximate formulas fo(kf) for each parton species are given, which may be used in practical

applications.
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[. INTRODUCTION turbative quantity from measurements, models, or lattice cal-

culations, and then we can evolve it to a different sd@le
The unintegratedparton distributionUPDs have been with the help of suitable QCD evolution equations. In the
considered in numerous works on applications of perturbacase of integrated PDs we need to assume the dependence of
tive QCD[1-16]. These distributions are generalizations of PDs on the Bjorkemx variable at the initial scal@,. For the
the usual integrated parton distributio2D9 and in some UPDs we need to know in addition the dependence on the
sense more basic objects, as PDs are obtained from UPDs Bjansverse momentui or, equivalently, the transverse co-
integration over the transverse momentum of the parton. Th@rdinateb, which is the variable Fourier-conjugated ko .
notion of UPDs relies on th&, factorization and, in the Knowing this, we compute, with no extra physical input
spirit of the CCFM equationil 7—20), introduces two scales: 2Part for the assumptions entering the QCD evolution, the
the probing scal€ and the transverse-momentum sdaje unintegrated drllstr[bunon at the final EC@? d .
Recently, the UPDs have gained substantial attention, sinqe IThporLtJaPn[t)p yS||cs q.uestlorr:s may ehansr\]/vere - In particu-
they enter many exclusive physical processes, such as tha e S EVOlVE In such a way t. _at the average trans-
. . veérse momentum increases in a specified way with the scale
production of the Higgs b.osoﬁzl,zﬂ,. the W boson[2§], [14-16,2]. This spreading can be studied quantitatively
heavy f_Iavors[21,24—2'], Jet prodpctlgn[Zl,Z_éﬂ_, partlcle within the approach. This constrains the freedom in phenom-
production[29], or hadron production in relativistic heavy- gnqjogical analyses of processes involving the UPDs.
ion collisions[30,31. The unintegrated distributions were

A \ - In his studies of the problem, Kwiedki started from the
also used in studies of the longitudirf@?2], charmed33],  ccrM formalism[17-20, which explicitly involves two

and spin[34,39 structure functions of the nucleon, as well separate scales: the probing sc@lend the transverse mo-
as analyzed in the dipole picture of QGB6]. Thus, UPDs  mentum of the partork, . The CCFM equations were sub-
are needed for phenomenological studies, although admitequently extended to include the quarks, as well as reduced
tedly the traditional colinear factorization approach explaingo the single-loop approximation. In addition, the non-
most of the currently available data. Moreover, effects ofSudakov form factor was dropped. Kwiéski found that in
resummations or partonic thresholds are important in exterthis approximation the equations diagonalize in the space
sions of the theoretical techniques. Fourier-conjugated to the transverse momentum, where they
The UPDs, similarly to other entities in QCD, undergo assume a particularly simple and elegant form in a close
evolution with the change of the probing sc&)e The phi- resemblance to the Dokshitzer-Gribov-Lipatov-Altarelli-
losophy adopted here is similar to the case of the integrateRarisi (DGLAP) [37—-4Q equations for the integrated PDs.
PDs. At some initial scal€, we need to know the nonper- The only, but most important, difference is the appearance of
the Bessel functiody(Qb) in the evolution kernel. Thus, the
evolution depends on the transverse coordirtatén the
*Electronic address: earriola@ugr.es original work of Ref.[16] these equations were called “the
Electronic address: Wojciech.Broniowski@ifj.edu.pl CCFM equations for the UPDs in the transverse-coordinate
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space in the single-loop approximation.” As a result of nu-sion(Sec. VI, which makes the calculations simpler when
merous steps leading away from the original CCFM, we finds not too large. The expansion is in powershdfocp, and

it more appropriate to call the equations of REI6] the is fast and stable. For the opposite problem, wh@ie is
Kwiecirski equations for the UPD evolutiorSince in the large, we have obtained asymptotic expansi¢®ec. VII),
case of integrated PDs these equations reduce to the usuahich allow us to deal numerically with the generalized hy-
leading-orderLO) DGLAP equations, the range of applica- Pergeometric functions.

bility of the Kwiecinski equations is not larger as for the LO  Our method of solving the equations in Mellin space car-

DGLAP equations, with not too small and not too large val-Ti€s additional bonuses. In particular, it allows for analytic
ues of the Bjorkerx variable. considerations in the investigation of formal limits»at- 1

Forma”y, the KWleC,HSkl equations are integro_ (Sec. V”l) and X~>-0 (SeC.- |)Q At x—1 we show that the
differential equations with the kernel depending on the transb-dependent nonsinglet distribution approaches very fast the
verse coordinaté (cf. Sec. I). As such, they are not trivial integrated nonsinglet distribution. At—0 we find generali-
to solve numerically. The method of the original woflig—  Zations of the double-leading-logarithiDLLA ) formulas of
16] involved the Chebyshev interpolation in theand @  Ref.[52]. Finally, we examine the large-behavior, where
spaces for each value bf In this paper we offer an alterna- We show that the evolution-generated UPDs from the
tive method, based on the evolution of tkemoments of Kwiecinski equations exhibit power-law behavior at laige
UPDs. In the momentMellin) space, the evolution equa- The falloff is much faster for the gluons than for the quarks.
tions become a set of ordinary differential equations, which Widening in the transverse momentum of all partonic dis-
can be solved numerically in a very efficient wesee Sec. tributions is confirmed. We show thé>) grows with prob-

). We derive analytic expressions for tedependent ing scale aQ?a(Q?. We write an approximating formula
anomalous dimensions, which can be written in terms of hyfor the width for each partonic species, which may be useful
pergeometric functions. Then, the inverse Mellin transformin practical applications with the piofSec. X. The widen-

to the originalx space is performed via numerical integration ing effect becomes stronger and strongeQdscreases ok

with oscillatory functions. We show that the procedure is fasidecreases, and it is bigger for the gluons than for the non-
and stable, providing a useful numerical tool for evolving thesinglet and singlet quarksee Sec. X

UPDs. The numerical method of this paper, which is easy to

The Mellin-transform method allows us to carry out ana-program and numerically fast and efficient, can be used for
lytic considerations, such as studies of certain limits of theother initial conditions as well—for instance, for the Gk
equations, specifically the cases of low and labgandx  Reya-SchienbeitGRS [53] parametrization of the pion or
approaching the end points. We pursue these consideratiori§g Glick-Reya-Vogt (GRV) parametrization[54], of the
which can be done since the form of thelependent anoma- nhucleon, supplied with a profile in the transverse coordinate,
lous dimensions is analytic. as originally studied in Ref.16]. The only difference is in

In addition to developing a different numerical method the form of the initial Mellin moments, which acquire a de-
(Sec. 1), our study differs from Ref[16] in two physical —pendence om. General predictions of the method in formal
aspects. First, rather than guessing the initial shapge we  limits are listed in Sec. XI.
use the results of low-energy chiral quark mod@&sc. V). The appendixes contain many technical details, such as
We consider two models: the recently proposed spectrdhe perturbative QCD parameters and splitting functions
quark model of Refd41-43 and the Nambu—Jona-Lasinio (Appendix A), the analytic form of théo>-dependent anoma-
model with Pauli-Villars regularizatiofid4]. These models lous dimensions which enter the evolution in Mellin space
were used before to describe the integrated[PB-48 and  (Appendix B, and their lowb (Appendix Q and highb
were shown to do a surprisingly good job, in particular for (Appendix D expansion, as well as the pole-residue expan-
the valence distribution in the pion. They were also used tsion (Appendix B. The latter is useful in analytic consider-
describe successfully other aspect of high-energy processesjons neax=0.
such as the pion distribution amplitu@49] and generalized
(off-forward) PD of the pion[50,51. The models give the
initial condition at the model scal€, in a particularly
simple, factorized form. The valence quarks are distributed In his studies of the UPDs, Kwieki [14—16,22 started
uniformly in x, while the gluons and sea quarks vanish. Thefrom the CCFM formalisnj17—-20Q explicitly involving two
b dependence is a simple, analytic function with exponentiabeparate scales: the probing sc@end the transverse mo-
falloff at largeb. We stress that thb dependence is a pre- mentum of the partork, . Then, the original CCFM equa-
diction of the model, rather than a mere guess, as is fredons were supplemented with quarks, as well as reduced to
guently made. Second, our implementation of the evolutiorthe single-loop approximation. The latter approximation re-
switches from three to four flavors above the charm-places the angular ordering of the emitted gluons with the
production threshold, customarily taken@t=4 Ge\2. Our  ordering of their transverse momenta. In addition, the non-
numerical results are presented in Sec. V, where we show tHaudakov form factor was dropped. Kwieski realized that
dependence of the UPDs armandb. the evolution equations for the UPDs acquire a particularly

Since the analytic forms of the anomalous dimensions insimple form in the transverse-coordinate spéceonjugated
volve generalized hypergeometric functions, which may bdo the transverse momentuky . For each distribution one
cumbersome to program, we have developed aldlasxpan-  introduces

IIl. KWIECIN SKI EQUATIONS
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SOLUTION OF THE KWIECINSKI EVOLUTION . . .
fj(x,b,Q)=f0 2mdk, k; Jo(bk ) fj(x,k; ,Q), (2.1

where j=NS (nonsinglet quarks S (singlet quarks or G
(gluong, and J, is the Bessel function. In order to avoid
confusion, we stress that the transverse coordibat®nju-
gated to the parton’s transverse momentum, is not the impact

parameter, appearing in the analysis of the generalized PDs.

The latter quantity is conjugated to the transverse momentum
transfer in off-forward scattering processes.
At b=0 the functionsf; are related to the integrated par-
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,9fe(x,b,Q)
Q —an
2y r1
_ “Ség )fo dz[@(z—x)Jo((l—z)Qb)
X X
X PGq(Z)fS(E!bIQ +PGG(Z)fG Z!va):|
_[ZPGG(Z)+ZPqG(Z)]fG(X1b1Q)]- 2.9

ton distributionsp;(x,Q) as follows:

[(x0Q)=3p(%Q). (22

More explicitly, for the case of the pion studied in this paper

(we taken™" for definitenesswe have
pNS:U_ u+d_a,
ps=U+u+d+d+s+s+---,

pseaE ps_ pNS: ZE-i- 2u +§+ S+,

Pc=0, (2.3

where the ellipses stand for higher flavors.
The Kwiecirski equations reafil 6]

2 ast(X,b,Q)
Q —an

aS(QZ) 1
= fodquq(z)

®(z—Xx)

XJO((l—z)Qb)st(g,b,Q) _st(X'b:Q)}

,ts(x,b,Q)
Q T

2y r1
_ “Ség )fodz{@)(z—x)ao((l—z)cgb)

oo

_[Zqu(z)+ZPGq(Z)]fS(X!bIQ)}1

X | Pqqg(2)fs

" 0.0+ Py@c

The splitting functionsP,,(z) are listed in Eq(AS8).
Following Ref.[16], a factorized form of the distribution
functions at the initial scal€, is assumed,

X
fj(XIbIQO):FNP(b)Epj(X!QO)1 (25)

with the profile functionFNP(b) taken to be universal for all
species of partons. The factorization assumpt{@rp) is
technical and one can easily depart from this limitation in
numerical studies. We note, however, that the models of
Refs.[42,44], studied in Sec. IV, do predict a factorized ini-
tial condition of the form(2.5). The input profile function
FNP(b) is linked through the Fourier-Bessel transform to the
k, distribution at the scal®,. At b=0 the normalization is
FNP(0)=1. The profile function factorizes from the evolu-
tion equations. This is clear, since any solution of Ej4)
remains a solution when multiplied by an arbitrary function
of b. As a result of evolution, at higher scal®we have
f;(x,b,Q)=F"(b)f**(x,b,Q), (2.6
with ff"o'(x,b,Q) satisfying equationglenticalto Eq. (2.4).

We should stress again an important physical difference
betweenFNP(b) and f**(x,b,Q). While FN"(b) originates
entirely from low-energy, nonperturbative physics,
ff""'(x,b,Q) is given by theperturbative QCD evolution
with Eq. (2.4) from the initial condition

££%(x,b,Qo)= 5 ;% Qo). 27

Throughout this paper, except for Sec. IV, we focus on the
perturbative evolution and the functiori$"°'(x,b,Q). The
function FNP(b) is referred to as thenitial profile and
ff""'(x,b,Q) as theevolution-generated UPD

IIl. KWIECIN  SKI EQUATION IN MELLIN SPACE

We define the«¢ moments of an unintegrated parton distri-
bution in impact parameter space @ge retain the same
symbol for the function and its Mellin transform, hoping the
distinction made by the argument prevents any confysion

f,-(n,b,Q):foldxw—lfj(x,b,Q). (3.1
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In Mellin space, the evolution equations for the UPDs arewhich has the formal solution
very simple, as they become diagonal in bbtandn. They

involve b-dependent anomalous dimensions, equal to

1
Yoan(Qb) =4 fo A4 2"35((1-2)Qb) — 1]Po(2)

0) _

= Yn,ab

where the values di=0 are

1
Ys= —4J0 dz(z"—1)Pq4(2),

1
Y= —4f0 d7(2"-2)Pyq—2Psql,

1
Whe= -4 d22pye,

1
yg?gq:—4fodzz*PGq,

1
Yee=—4 fo d7 (2"~ 2)Pe—2Pycl-

1
4]0 dz2[Jo((1—2)Qb)—1]P,4(2),

(3.2

(3.3

( fs(n,b,Q)) :Pexr{ _ jQZ dQ/Za(Q/Z)
fG(n!le) Qg 87TQ,2

X( fs(ﬂ,b,Qo))
fG(nrleO) ,

7n,qq(Qb) '}’n,qG(Qb))
Vn,Gq(Qb) 7n,GG(Qb) .

The symbolP indicates that powers df, are ordered along
the integration path. The qualitative difference between Eq.
(3.7 and the LO DGLAP equations is the fact tHat de-
pends on the evolution variab®. This makes the singlet
sector more difficult to analyze analytically. EquatidBs5)
can be solved numerically for any valuerofeal or complex
[55]. For the case of integrated P<0) Egs.(3.4) and
(3.6) reduce to the well-known LO DGLAP equation in Mel-
lin space.

The corresponding UPD ir space can be reconstructed
using the inverse Mellin transform

rn(Qb)l

Fn(Qb)=( (3.7

no+ie dn

fj(x,b,Q)zf —x""f,(n,b,Q), (3.8

np—ie 2i

whereng has to be chosen in such a way as to leave all the
singularities on the left-hand side of the contour. It turns out
that for b#0 the analytic structure of thé-dependent

Their explicit forms for various channels are listed in Egs.gnomalous dimension remains the same as fobth8 case.
(B6), (B7). The fact that we can write the analytic form of Thjs can be inferred directly by studying the analytic struc-

the integrals in Eq(3.2) (see Appendix B allows for effi-
cient numerical calculations and analytic considerations.
The integration of both sides of E(R.4) with fédxx”‘1

yields for the nonsinglet case the equation

diS(n=b1Q) _

B Ols(QZ)

dQ?

The formal solution of Eq(3.4) can be readily obtained as

2 d 12 12
p[ [ 90D b

fns(n,b,Q) _
fns(n,b, Qo)

In the singlet channel we find the coupled set of equations

8mQ?

2 8mQ'?

Ynns(Qb) frs(n,b,Q).

(3.9

(3.9

ture of the formulagB6), (B7) or the pole-residue expansion
of Eq. (E4). Thus, we have the result that, \ys(Qb),
Ynqq(Qb), and vy, ,c(Qb) have poles atn=-1,-2,
—3,...,while y, cc(Qb) and y, g4(Qb) have poles an
=0,—1,—-2,.... Parametrizing the contour in E¢3.8 as
n=ny+it, we arrive at the inversion formula

>dt
fl-(x,b,Q)zx*”OJ'0 ;{cos{t logx)Re fj(nog+it,b,Q)]

+sin(tlogx)Im[f;(ng+it,b,Q)]}. (3.9

For the nonsinglet case we takg=0, while for the singlet
caseng=1. As an additional check we have also verified that
a bended integration path=c+re'™* with 0<r<w, as
used in[55], also works nicely.

IV. INITIAL CONDITION FOR THE UPD OF THE PION

dfs(nlva) aS(Qz) . . .
= 5 [ Yn,qq(Qb)fs(n,b,Q) As an illustration of our method, we consider the UPDs of
dQ 8mQ the pion with the initial condition af), provided by two
largeN, low-energy chiral quark models. The original work
+ 7nqa(QD)T6(N.b.Q)], of Ref.[16] tested the GRS parametrization for the pj&8]
5 and the GRV parametrization for the nucled@4], supplied
dfe(n,b,Q)  ag(Q )[ (Qb)f(n.b.Q) with a Gaussian profil&eN"(b). The considered models gen-
dQ? 8mQ? Yn.Ga SR erate the function&\"(b) as genuine model predictions of

*¥n,66(Qb)fs(n,b,Q)],

(3.6

low-energy nonperturbative physics, with no freedom in-
volved. Our first model is the recently proposed spectral
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SOLUTION OF THE KWIECINSKI EVOLUTION . . . PHYSICAL REVIEW D70, 034012 (2004

quark model(SQM) [41-43, and the second one is the %
popular Nambu—Jona Lasinio mod¢NJL) with Pauli- Q(X,b,Qo)EZWJ k, dk, g(x,k;)Jo(k, b)
Villars (PV) regularization/44], treated for simplicity in the 0
strict chiral limit.

First, since the chiral quark models have no gluon degrees
of freedom, we have, at the model scale,

bMy Myb
=|1+ 5 )exr{— 5 )G(X)a(l—x).

(4.6)
9(%.Q0) =0 @) The expansion at small gives
or M2b2  M3ps
. q(x.0,Qo)=|1-—g—+—; 0(x)6(1—x),
f&°(x,0,Q0)=0. (4.2) 4.7

For the integrated valence quark PD both models predict, igg average transverse momentum squared is equal to
the chiral limit and at the model scalg,, that

2 1.2
g(x,Qg)=6(x)(1—x), 4.3 <k som_ J d kJ_kJ_q(X,kJ_) 4 dq(x,b)
L/NP = == X.b >
i.e., a constant value with the proper normalization and sup- f d%k, q(x,k,) atx.b)db b=0
port. Thus the correspondirf§"® functions of Eq.(2.2) are
linear inx: P
My
eol - 2 4.8
fs.s(X:0,Qp) =XO(X) H(1—X). (4.4

SQM_
The scale of the model, as found from the momentum Summ?g; nwli)rrnk?rzlcilgalgeg/e)d#he subs(c5r?4N,\FA’?\e/r)121|r(13! ZHS ttuZt
rule, is rather low:Qy=313 MeV. Although this is admit- 9 0 b

tedly a very low scale, one may hope that the typical expanthe guantity comes entirely from the nonperturbative phys-

NP,
sion parametea(Qo)/(Zw) 0.3 is low enough to make the ;sthin;enréngftgicpr)cj)flle functioR™(b) (see the discussion
perturbation theory sensible. This claim gains support from In the NJL model with PV regularizatiof#4] the analo-
the next-to-leading analysis of the integrated P[3$§)], gous formulas reaf4s]
where the corrections are found to be small. The initial con-
ditions provided by the chiral quark models, where only the =
valence quarks are present, work well for the nonsinglet q(x.k. Qo) =a(1-xk,)
guarks. On the other hand, in the singlet channel they lead to

an underestimation of gluons at largeand too steep gluon A*M?N,
distributions at lowx [56,57]. Hence, in the singlet channel - 452 73(K2 + M2) (K2 + A2+ M2)2
other initial conditions should be used. AT (KL (kL )
The QCD evolution is crucial for the phenomenological X O(x)6(1—x), 4.9

success of the considered low-energy chiral quark models. In
Refs.[45—-47 it has been found that the nonsinglet distribu-

tion, when evolved to the scale of 2 GeV, agrees very well  q(x,b,Q,) =
with the Sutton-Martin-Roberts-SterlingMRS parametri-

zation of the pion dat@58], while in [59] it has been very

2K o(bM) — 2K o(bAZ+M?)

favorably compared to the old E615 data at 4 GéU] (see B bAZKl(bVAZJr M?) 600 8(1—X)
the discussion in Sec. V and Fig).5 JAZ+ M2 ’
In the SQM, the valence UPD of the pion at the s@lg
is [42] (4.10

_ where the pion decay constant is given by
a(x,k ,Qo)=0a(1-xk,)

M2
ol A2+ (A%+ Mz)log

oMy 0(x) 0(1—x) (4.5 2
= —— 0 0(1—x), : £2 = .41
m(ki +My/4)>? i 472 (A2 +M?) “.17

whereM, =770 MeV is the mass of the meson. Passing to The parameters of the model are adjusted in such a way that
impact-parameter space with the Fourier-Bessel transformh_=93 MeV—namely, M =280 MeV and A=871 MeV.
yields The expansion at smdil yields

034012-5
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FIG. 1. The initial profile function$p for the SQM and NJL
models, plotted as functions of the transverse coordibat€he
falloff is exponential, according to Eq&4.14) and(4.10.

A?+M2
M2N, AZ—MZIOQT b2
x,0,Qo)=\| 1—-
a(x,b,Qo) 167212
+- 6(x)0(1—Xx), (4.12

and the average transverse momentum squared is equal to

A?+M2

2_
A“—M 5

M2N, ?log

, (413

K2)NL—
(ki 4772ff,

which numerically givegk?)RN2"= (626 MeVY (at the scale
Qo). which is similar to the number from the SQM.

Finally, in the notation of Eq(2.6) we can write that the
initial profile function is

M Myb
FQSM(b)=(l+ 2V eXp(— ZV) (4.14
M?2N,
NJL(b)— 2 (2K (bM)—2Ky(bVA2+M?)
ﬂ,ﬂT
B bA%K(byAZ+M?) (.15
JAZ+ M2 ' '

Both initial profile functions are displayed in Fig. 1. Note

that the profiles, although havingb& correction at smalb,

are not Gaussian and at largelisplay an exponential falloff.
As discussed in Sec. Il, the form &"P(b) factorizes

PHYSICAL REVIEW D70, 034012 (2004

o °
» (]

fevol(x,b,2GeV)

o
w

0.2

0.1

0.6 0.8 1

X
FIG. 2. The evolution-generated UPDs for the pion for various
values of the transverse coordind&i®m top to bottomb=0, 1, 2,
3,4, 5, and 10 GeVY), plotted as functions of the Bjorken The
evolution is made with the initial condition(4.4) at Q,
=313 MeV up toQ=2 GeV. Solid lines: gluons. Dashed lines:
valence quarks. Dotted lines: sea quarks.

EVO|(n b QO)_

evol —
fS (n!b!QO)_ n+

£2°(n,b,Qy)=0. (4.16

We remark that away from the chiral limit the separability
of the dependence axandb no longer holds. In this case
the initial conditions for the evolution are more complicated
(they depend orb), but the analysis can be easily general-
ized to account for this case as well.

V. NUMERICAL RESULTS

In Fig. 2 we present the results of our numerical calcula-
tion with the method using the Mellin transform. The initial
conditions are for the pion in the chiral limi4.16), holding
atQy,=313 MeV, and the evolution is carried up to the scale
of Q=2 GeV. The differential equations for the moments,
Egs. (3.4), (3.6), are solved numerically for complexval-
ues along the Mellin contour, and subsequently the inverse
Mellin transform (3.9) is carried out. The figure contains
three families of curves, solid for the gluon, dashed for the
valence quarks, and dotted for the sea quarks. In each family
b assumes the values 0, 1, 2, 3, 4, 5, and 10. Naturally,
increasingo results in a decrease of the distribution, with the
effect strongest at low. At x close to 1 this effect disap-
pears, which is explained in Sec. VIIIl. We also note that at
high values ofb the distributions for the gluons become

from the evolution. In both models there is no dependence ofiegative, reflecting the change of sign of the Bessel function

the UPDs orx at the initial scale€,. As a result, we get the
following set of initial moments:

in the evolution kernel of Eq2.4). As already discussed in
Ref.[16], this poses no immediate physical problems, as the
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’>‘0' T * gluons %‘ 0.35
@ * ¢ singlet quarks O o3|
(c':n) 041 & m non-singlet quarks “_‘l :
il .
Go.3 3 %
= 8 o2
= Es
o —_—
0.2 g 0.15
X &
° 0.17
» 0.1
* 0.05
25 0.2 0.4 0.6 0.8 1
b [GeV'] X
FIG. 3. Evolution-generated UPDs for the pion Q=2 GeV FIG. 4. The lowb expansion for the evolution-generated UPDs

andx=0.1, plotted as functions df. The evolution is made with  of the pion ab=5 GeV ! andQ= 2 Ge\?, plotted as a function of

the initial condition(4.4) at Q,=313 MeV. The numerical results the Bjorkenx. Solid lines: gluons. Dashed lines: valence quarks.

are represented by squares for the nonsinglet quarks, diamonds fBotted lines: sea quarks. For each kind of parton the curves from

the singlet quarks, and stars for the gluons, while the solid lingop to bottom correspond to 2, 4, 6, 8, 10, and 16 terms in the small-

shows the asymptotic formulé7.5 for the case of nonsinglet b expansion. The initial condition for the evolution is provided by

quarks. We note the much faster falloff for the gluons than for theEq. (4.4).

quarks, as expected from E.8). The quarks exhibit a long-range

tail, according to the power-law formul@.5). As Q is increased or numerical calculations. For that reason we consider the

x decreased, the distributions Im become narrower, leading to smallb expansion, as well as the asymptotic forms at large

spreading irk; . bQ, presented in the next section. It is convenient to intro-
duce the notation

distributions ink, remain positive as primary objects and so

are the physical cross sections. 02 dQ'?%a(Q’?)

The results of Fig. 2 are consistent with the findings of N=rdQ5.Q%) = JQZ 8—Q’2Q 6D
Ref.[16], where a different numerical method was used, as 0 ™
well as a different initial condition tested. The explicit form of functionsr is given in Appendix A.

In Fig. 3 we show the dependence of the evolution-yey; \ve apply Eq(C4) and find the following expansion in
generated UPDs oh at Q=2 GeV andx=0.1. The results hq nonsinglet channel:

are represented by squares for the nonsinglet quarks, dia-

monds for the singlet quarks, and stars for the gluons. We f(n,b,Q) o “ (—b2)kalk

note the much faster falloff with for the gluons than for the —_— :e'yn,NSrOeXF{ ~Ce >, ——
quarks, as expected from E(7.8). The quarks exhibit a f(n,b,Qo) k=1 k!
long-range tail, according to the power-law formyla5s).

The solid line shows the asymptotic form for the case of YTB(2k.n+1)+B(2k n+3 6.2
nonsinglet quarks from Eqéz.5), (7.6) (see Sec. VI, which [B2kn+1)+B(2kn+3)]ri|, (6.2

becomes accurate fiar=10 GeV !. As Q is increased fur-
ther orx decreased, the distributions lnbecome narrower, whereB is the Euler beta function. We note that although at
leading to larger spreading kn . For more details and plots the level of the differential equation our expansion is for-
concerning other numerical results see R&6]. mally in Qb, the resul(6.2), together with the fact that, is
The curve for the gluon a@i=10 Ge\? turns negative at proportional toAé"CD [cf. Eq. (A4)], shows that the expan-
low x. The same phenomenon was found in R&6] with a  sion parameter is actuallyA ocp. The rate of convergence
different initial condition. To our knowledge, this does not of the method can be deduced from Fig. 4. As we can see,
lead to any physical problems. The issue lies in taking thehe number of terms needed increases for increalsiagd
Fourier-Bessel transform of Eq2.1). The UPDs in thek,  decreasing. Forx>0.01 eight terms in the expansion seem
representations are positijd6] and so are the physical more than sufficient.
guantities computed with the UPDs in the momentum repre-
sentation. However, a Fourier-Bessel transform of a positive- VII. LARGE- b EXPANSION
definite function need not be positive definite. This is the
case of the gluon in Fig. 2 for certain sufficiently large values Appendix D contains asymptotic forms of the generalized
of b. hypergeometric functions and of tledependent anomalous
dimensions. These expressions hold in the limit of la@de
at n kept fixed. The formulas are of great practical impor-
tance in the present study, since they are much simpler to
Since the anomalous dimensiof6), (B7) involve gen-  implement in numerical calculations than the generalized hy-
eralized hypergeometric functions, they are not easy to use ipergeometric functions appearing in EgB6), (B7). Actu-

VI. LOW- b EXPANSION
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ally, Egs.(D3)—(D6) should be used whenev€b is larger means that the validity is limited fax not too close to 1.
than about 1fh|. Since in practical problems the scale  This, however, has been already tacitly assumed, since the
may be as large as the mass of #eboson, there is a asymptotic expansion holds for fixed valuesrofnd hence
frequent need to use the asymptotic expressi@®B—(D6). cannot describe in the vicinity of 1. The above formulas
Also, if the UPDs in the transverse momentum are neededead to the following largds form of fﬁ,"so' in X space:

one has to carry back the Fourier transform frbrapace to

k. space, which involves all values bf f20(x,b,Q)
We start with the nonsinglet case of E®.4). With the » @
help of Eq.(D3), where at the leading order in Q) we bAqep| “8CF (R [ Q| ~4CF /Ao
drop the oscillatory parts, we may write E(.5 at large =X Q,
Qb:
fRsl(n,b,Q) xexp |2y ﬂro(QS,QzHir 34 Q5. Q%) |,
————=gVotnn (7.0 2 b®
fevol(n b QO)
f 2<u?, 7.
where or Q°<ug (7.9
and
2A2 1
QCD 2 12
y1=—4Cg _) r3Qg,Q%),
b b® fRex,b,Q)
2 ~2
=— QCD 2 "2 =x| = A Froto el A Frolue,
Yo= —4Cr| — 1-22Q0.QY) + —5; ,3(3) |09Q 2 QcD 4
~4ace 18 —acp il
bAQCD 3| A2 A2 x| &e ok ’
2|log = 7/10(Q0, Q%) |, Qo e
2_ 2 3 2 42, L
for Q°<ug, (7.2 Xexp | 2y~ 5|ro(Q0.Q%) + L 34 Q5,Q%) |,
and
for Q%=pu2. (7.6)
—_4C 2AZQCD 2 2 +2A‘21 2 2
Yi= Fl 7 M3 Qo pc) B -k Q ) We note a few facts: the nonsinglet UPD of the pion is for
large Qb linear inx for x not too close to 1, with the slope
1 decreasing witth as a power lawwe can neglect here the
b3f 3 Q5.Q?) |, small correction due to the last term in E¢8.5), (7.6)]. The
exponent ofb is —8CFr0(Q§,Q2). The overall constant is
2A2 22 also determined. Note that linearity withat not-too-largex
_ QCD 4 2 A2 is seen in Fig. 2 for the valence quartdashed linesat b
=— +—
Yo 4CF( b - 3 Q5. 110) o -edke Q) =10 GeV ’. Numerically, atQ=2 GeV we find for lowx

that fyg(x,b=5GeV 1,Q=2GeV)=0.7% and fyg(x,b
5 =10 GeV 1,Q=2 GeV)=0.3%, in accordance with the ex-
ro(Qo.xc)  act calculation of Fig. 2.
The asymptotic forn{7.5), (7.6) works very efficiently in
3 practice. For the case of the nonsinglet quarks this can be
y— Z}ro(Qg,Qz)), seen from Fig. 3, where fo@=2 GeV andb>5 GeV !
there is virtually no difference between the exact numerical
calculation and the asymptotic formula.
for Q?=p2. (7.3 The power-law behavior irb shows that the evolution
generates a rather weak behavior at lasg®lumerically, at
Next, we take our initial conditiof4.16) and use the inverse Q=2, 4, and 100 GeV, the power df is, respectively,
Mellin transform —1.12, —1.29, and— 1.75. This means that the largebe-
havior for the nonsinglet quarks is controlled by the initial
Yot Iog}>. (7.4 profile FNP(b), which in chiral quark models of the pion has
an exponential falloff, rather than by the QCD evolution.
Now we pass to the discussion of the singlet case of Eq.
The condition provided by the theta function means that th€3.6). In the largeQb limit the leading part of the matrik',
formula can be used fox<<expfy,). For negativey, this  of Eq.(3.7) becomes

bA QCD

log

1 Q
,8(3) IogQ—+ ,8(4) Iog—+2

bA,
2| log—— }rO(MC’QZ)"'

dn ey0+yln

—__y—n = -y
aa X hyp X
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Q%b? 1 -
4Crlog 4 0 fﬁvso'(n'b'Qz): n+1rrSCFrO 1+k21 C'/‘nik
Fn(Qb)g’ 2112 . (77) B
0 4Nclog% X[1+2Ceb?r /n?+O(1in%)]. (8.4

Next, we use the formula for the inverse Mellin transform,
From this form, using methods as for the nonsinglet case

above, we infer that the dependencelpris asymptotically, 1
qoA r A,—Wlog;
-n___ _/_ —Ay W R S
fo(x,b,Q) ~ b8 0% 9%), fcdnx nrw W TG
— b 8Nero(Q3,Q?) 1\A
fG(X!b!Q) b ¢ 0\x0 . (78) XW | _)
0g
X 8
Thus the singlet quarks fall off at the same rate as the non- - AI'(A) @9

singlet quarks of Eqs(7.5), (7.6), while the gluons drop
significantly faster, a&;=4/3 andN.= 3. This behavior is which after a straightforward algebra leads to the equation
clearly seen in Fig. 3. We note that due to the complications
of Eg. (3.7) a more detailed analysis yielding prefactors, fﬁl"sf"(x,b,Qz) 2Ceb?r (1—x)2 O
such as the one for the nonsinglet case presented above, j =1= —X)7).
more difficult in the present case, and hence we do not pur}E?I(X’O’QZ) (1+8Crro)(2+8Cero)
sue it further here. (8.6
We end this section with a couple of remarks concernin
the observed long-range nature of the tailsirOur initial
nonperturbative profilesFNP(b) drop exponentially and
therefore suppress the tails generated by the evolution. Th
means that the largle-or low-k, behavior is controlled by
nonperturbative effects. The larger negative powelf dn
Eq. (7.9), explains the faster shrinkage of gluon distributions
in b space or faster spreading kn space.

Yhe terms with coefficients; do not enter at the leading
order in (1-x). The behavior of Eq(8.6) agrees with the
Eehavior of Fig. 2, where close to=1 the departure of the
curves with finiteb from the curve withb=0 becomes very
slow, as it is suppressed by €)?.

We also obtain that at— 1 the integrated nonsinglet dis-
tribution behaves as

, e2Cr(3-49)1g o
VIIl. BEHAVIOR OF F g AT Xx—1 fns(x,0Q )HF(J.TCFFO)(]-_X) Flo. (8.7

According to standard properties of the Mellin transform,
the limit x—1 is obtained form the large-behavior of the
anomalous dimensions. Using the asymptotic fd(m,m)
—T'(m)/n™ in Eqg. (C4) or the explicit form of the anoma-
lous dimensiongB6), (B7), one obtains that

This agrees with the fact that a function which originally
behaves at—1 asfyg(X,0,Qq) — (1—Xx)P evolves intg 61]

fNS(X,O,QZ)H(l— X )P~ (4Cr /Bo)log[a(Q)/«(Qo)] | (8.g)

In our approach the integrated function @=Q, has p

b2 2 =0 N icall fi h
’yn’NS(Qb)— ’yEW(,)l)\ISZ 2CF ? +O(1/n3). (81) 0 umerically, we ind that
n

fus(X,0(2 GeV)?)—1.151—x)+13

We also need the large-expansion ofy,ys, which is Frs000(4 GeV)D)—1.081—x)120 8.9

Yihs=8C[logn+y—3/4+R(n)], (8.2 Note that although with the DGLAP evolution the Brodsky-
Lepage counting rules for the behaviorxat-1 are clearly
whereR(n)=3y_,c,n ¥ Thus, according to Eq3.5, we  disobeyed, our numerical predictions agree within experi-

have the asymptotic form mental uncertainties with the experimental data, including
the region very close tg= 1. Figure 5 confronts our results
fevoln b, Q2) i evolved to the scale c_ID=4 GeV to the E615_experim.ental
NS e T - 8CEro(Q%Qp) g~ 8CkTol Y~ 314+ R(M)] Drell-Yan data[60] which cover the large-region. In view
fRe(n,b,Q) of the simplicity of the present model, the quality of this

comparison is impressive.

On the other hand, it is believed thatxat-1 it is neces-
sary to resum the soft gluon processes, which leads to sum-
Using the initial moment¢4.16) and expanding the exponen- ming up powers of log(xx). Clearly, such effects are not
tials in Eq.(8.3) we obtain included in the considered evolution.

% eZCFb2r1/n2+ 0(1/n3). (8.3

034012-9
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B % %%%—%M (fsmb,Q))_ JQZdQ'Za(Q'2>Jo(Q'b)
Q o3 O ﬁ’%}i fo(n,b,Q) Q@ Q2
S 0.25 // W
Q 0.2 %% 0 0
: fs(n,b,Qp)
X045/ R | ce N ||| SmE ) 9.4
2010 % =F 2] | fa(n.b,Qo)
0.1 / %@@ n
0.05 i \%
‘ ‘ ‘ ‘ %@Q where we have used E@=6) and could drop thé® symbol
0.2 0.4 0.6 0.8 X 1 since in the present approximation the matrix in the exponent

does not depend o®'. After some straightforward algebra

FIG. 5. Model prediction for théntegratedvalence quark dis- we obtain

tribution of the pion, evolved to from the initial conditiqs.16) to
the scale ofQ=4 GeV, confronted with the E615 Drell-Yan data

fs(n,b,Q)=fs(n,b,Qo),
[60]. The behavior ak—1 is (1—x)1%. ° ° °

IX. BEHAVIOR AT x—0 fo(n,b,Q)= fs(n'b’Qo)%(eZNcA/n_ 1)
C

The results atx—0 are of formal rather than physical
significance, since the considered evolution, being a gener-
alization of LO DGLAP equations for UPDs, does not de-
scribe properly the physics at very small valuesxoffhe  The equation forfs shows the inadequacy of retaining for
low-x behavior of the inverse Mellin transform is encoded inthjs case the singularity at=0 only, as in the considered

the closest singularities to the integration line. We start withjjmit of x—0 the singlet quarks are controlled by the singu-
the nonsinglet case of E¢3.4). Using the pole-residue ex- |arity at n=—1. For the case of gluons we use the initial

+(n,b,Qo)eNA™

9.9

pansion of Appendix E we find that the closest singularity iscondition (4.16). We need the inverse Mellin transform

atn=—1, with residue—4CJy,(Qb). With the help of the
expression for the inverse Mellin transform,

| (2\/ og=|, a=0
. _ X 0 a Og_ f =Y,
J'“‘ an X% e X
=27 nt1 1
xJpl 2 alog;, a<o,
(9.1
we find that
1
xIO(Z\/CFAIog;>, A=0,
f82l(x,b,Q2) — 1
xJo<2\/CFAIog;), A<Q,
(9.2
where
A fQZ 99" (Q)3(Qb) 9.3
= (64 . .
Q% 27Q2 0

For the singlet case we retain the closest singularity at
=0 and rewrite Eq(3.7) in the form

fd 1 a
c nx n+1ex n
1 k/2
—w 1)K log; I 2 | !
_k=0( ) a K \/aogx
exp 2\/alog—
gx
I 1 X
4 —
‘\/ T aogx a

where in the last line we have used the asymptotic form of
the Bessel functions. With this result we find that the unin-
tegrated gluon distribution at—0 behaves as

fG(n,b,Q)~ex;< 2/ 2NA Iog;), A>0, (9.7

with A provided in Eq(9.3). If a<0 in Eq.(9.6), then thel
functions above are replaced with thg functions, and the
asymptotics changes the character from exponential to oscil-
latory:

(9.6

034012-10
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1 _dff(b,x,Q)

_ (1) =_1 s
Iogx 1 fJ (x,Q) 902 . (10.2
fe(n,b,Q)~ 1+ ——/ cog 2 —AIog—X

In Mellin space, the equations obtained by expanding Eq.
1 (3.4) up to first order inb? aroundb=0 read

log—
| o 2/ o’
+\1= V— (2 ‘A"’g;) 0fEN.Q) _ ad(Q?

o
I
o

)
[YRsfR(n,Q)

1 dQ? 8mQ?
X L
oo +Q%ysfrns(n.0Q)] (10.3
O —
1 gx
7\ —Alog—\| 1- —— and
X A
A<O. 98  dffinQ)  agQ?)
T {70 fLN,Q) + ¥ RefE(n.Q)
For b=0 the result(9.7) is consistent with the DLLA for m
tsr:ZmDaGLAP equation[52], where one obtains, with con- +Q2[,y§]1c)1qfs(n,0,Q)+,),E]l(;Gf (N0,
' (10.4
Q-] 24/ S alogZiogt|. (09
Xg(x,Q)~ex —alog—log—|. .
? 7 092 9x dQ)_ asQd, ) ) ©
407 =- 8 Qz{ n,G fs’(n,Q)+ vnsafs’(n,Q)
See, e.g., the review in Reff62]. Our formulas(9.2) and
(9.7) are generalizations of this behavior for the unintegrated + QY5 84fs(n,0Q) + ¥ 6fa(n0Q)]},
distributions evolved with Eq(2.4). = '
The pole-residue expansion of Appendix E is good for (10.5

not-too-largeQb. This limitation, at any fixe, carries over

to Eq. (9.2 Numerically, we find that, ax=0.1, Eq.(9.2 is  which form a set of ordinary inhomogeneous differential

valid for Qb=5. For higher values corrections from further equations. Since at the sca&Qg all the width is by construc-

residues should be included. tion generated by the initial profilE, the initial conditions
for Egs.(10.3, (10.6) are

X. EVOLUTION OF (k )

The average transverse momentum squared is a conve- fJ(l)(”'QO)ZO' (10.6

nient measure of the width of the UPDs. As a result of the

factorization of the initial profile, Eq2.6), (k Y decomposes For the nonsinglet case we have the solution

into two terms: the contribution from the initial profieN?

gives the width at the initial scal®=Q, and the piece 1 1 2

(k2)evol, entirely to the evolution and independent of the fd(n.Q)= —yﬁ Asfrs(n0Q)ra(Q5.Q%-  (10.7

profile FNP
In the singlet channel we carry the analysis humerically.

(k%Y= (k?)npt (K evors Next, we pass ta space via the numerical inverse Mellin

transform. The results for the dynamically generated root-

dENP(b)/d b2 mean-squared radius of the pion are shown in Fig. 6 for
2 (b) . = P
(K2 Ynp=— —— ; various values of. In confirmation of the results of Ref.
Fo) [, [16], we note that thek, width increases withQ for all
parton species. The width for the gluagsslid lines is larger
dfe*lb,x,Q)/db? than the width of the nonsinglévalence quarks(dashed
(k) evor= — : - (10.1)  lines and the singlet quark&lotted line. With the log-log
(b, x,Q) |, _, scales of Fig. 6 the slopes of the plotted lines become to a

good approximation equal to one another at la@fe
The contribution(k3)ye has already been discussed in Sec. With the help of previously derived expressions for the
IV; hence, here, we analyze the term generated by the evdehavior offys nearx=0 andx=1 we may obtain the fol-
lution. lowing expressiongk?)&' near the end points. From Eq.
Let us denote (8.8) we have, ak—0,

034012-11
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0.05
0

100 1000 10000

Q? [GeV?

2

FIG. 6. The rms transverse momenta of UPDs of the pion for* 0, (K7)
x=0.01, 0.1, and 0.5, plotted as functions of the renormalization
-to have a simple formula characterizing the discussed behav-

scaleQ?. Solid lines: gluons. Dashed lines: nonsinglet quarks. Dot
ted lines: singlet quarks.

<k evol I1(\/—4Cerologx) \/_ C|:|Ong
L)NS ry

[ o(/—4Cgrglogx) ro

Celogx
- \/—ﬁrl- (10.9
Io
At large Q2 the leading behavior is
1
2 evol X a’(QZ) 2
(kDN o Q% (109

i.e., up to the loglo@Y corrections the spreading proceeds
with «(Q?)Q?. At x—1 we find from Eq.(8.6) that

2Ce(1—x)?r,

2 evoI
(KNS~ T 8Crg2+8Cag (1010
At large Q? the leading behavior is
(4)2 1—Xx 2
(k?)ewol, 1= ?((3) )ZQ . (1019
647 Ce| log M‘;
(Q%)

Again, the growth is, up to the logla@’ corrections, pro-
portional toa(Q?) Q2.

For the gluons the same asymptotic behaviok iff) &'
follows from Eg. (9.6). Thus, to summarize, all UPDs
grow at largeQ asQ?a(Q?), in accordance to the behavior
in Fig. 6.

PHYSICAL REVIEW D70, 034012 (2004

Interestingly, it can be noticed from Fig. 6 that &
—Q, thek, width for the gluons does not vanish. In this
limit both °(x,0,Q) and f&)(x,Q) vanish, as is obvious
from Egs.(4.2), (10.6. Thus one has a 0/0 limit. From Egs.
(2.4), (10.3 with the initial condition(4.3), (10.6 one can
easily obtain that

(1-2)?

1
dz Psq(2)

lim <k evol__ Q

0 1
Q=Q0 f dzPs4(2) <
X z

o x*—6x3+21x?>— 18x logx— 10x— 6
0 3(x2—2xlogx+x—2) '

(10.12

which is positive forxe[0,1) and equal to O fok=1. On

the other hand, since for the quarkﬁﬁ,"g's(x,o,Q)
evol vanish atQ,.

NSS
In phenomenological applications it is sometimes useful

ior. In the range 2 Ge¥<Q?<10000 GeV and 0.005 x
<0.8 the following simpleminded interpolating formula
works to within a few percent:

2

2

2,42
) 0.35+0.004 109Q?/ A ycp)
QCD

((KE )P o= Ai( |og§) (
(10.13

wherei=NS, S, or G, and

Ans(Y)=—0.01%%2+0.113/— 0.05%°?+ 0.010/2,
Ag(y)=—0.02%y*?+0.120/— 0.059°?+ 0.009/2,

Ag(y)=—0.016/Y2+0.150/— 0.075/°?+0.01%>.
(10.14

The power ofQ? of 0.35 in Eq.(10.13, rather than 1/2
corresponding ta(k? )¢~ Q2% (Q?), compensates, in the
chosen range fo®, for the logarithmic corrections. We note
that Eq.(10.13 holds for the pion with the initial conditions
(4.16 provided by the chiral quark models.

Xl. FORMAL LIMITS FOR OTHER INITIAL CONDITIONS

Certain formal results listed in this paper, such as the
formulas for the nonsinglet quarks, Ed3.5), (7.6), (8.7),
(8.9, (9.2, (10.8, (10.9, are specific to the evolution with
the initial condition following from the chiral quark models,
Egs.(4.4), (4.16. However, these results can be easily gen-
eralized. Note that most of the popular parametrizations of
initial conditions, such as those of Ref&3,54, involve
linear combinations ok%(1—x)”. It is understood that the
factorization in the initial condition betweenandb variable
holds, as assumed in R¢f.6].

For the case of largb-asymptotics, the relevant formula
is Eq.(7.4). With the initial conditionx®*(1—x)” it becomes
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dn

eYotyin
n

027Ti

1
:x“eyo‘“ylG)(ler Iog;) :
(11.1

and expression&’.5), (7.6) are modified accordingly, withk
replaced byx® andy; in the exponent multiplied bw. The
formulas(7.8) remain valid. Therefore the power-law behav-
ior at largeb is independent of the initial condition and is
b~8SF0(Q%.9% for the quarks anth— Ve 0(Q5.99) for the glu-
ons.

In the limit of x— 1 the only difference is the appearance
of the extra power of3 in the in Eq.(8.7). Thus, the UPDs
for finite b approach thé=0 case of the integrated distri-
butions as (* x)Z.

In the limit of x— 0 we need generalizations of the Melli
transforms of Eqs(9.1), (9.6) for a«# 1. These are

f dnx " ex;{
C

=x2 (—Da-1)*
k=0

n+a

n

a

n+1

1
n+a«a

Iog;

a

1

xexp 2\/alog—

X
1

(a—1)\/ 47 \/alog—
X

a#1l, a>0,

~__

(11.2

expl 2\/alog—
X
11
1 Iog;
a’\/ 4m\/alog— —
X a
(11.3

The analogue of Egs(9.2), (9.7), (10.8, (10.9 follow
straightforwardly. In particular, th®?a(Q?) large-Q behav-
ior for all parton distributions is preserved.

a#0, a>0.

PHYSICAL REVIEW D70, 034012 (2004

XIl. CONCLUSIONS

We have presented a new method of solving the Kwiecin
ski equations for the leading-order QCD evolution of unin-
tegrated parton distributions. The method is based on the
Mellin transform and parallels the standard analysis of the
DGLAP equations. Our main results are as follows.

(1) We have found analytic forms of thé-dependent
anomalous dimensions, expressed through hypergeomet-
ric functions, which allowed us to study formal aspects
of the equations and their solutions—e.g., the asymptotic
forms of the evolution-generated UPDs at lalger at
x—0 andx— 1. We have also demonstrated that the pro-
posed numerical method is fast and stable.

(2) The numerical work can be simplified if loty-or large-

b expansions are used.

(3) At large b the evolution-generated-dependent UPDs

exhibit a power-law falloff, with the magnitude of the

exponents growing with the probing scalg cf. Egs.

(7.5, (7.9). The falloff is steeper for the gluons than for

the quarks.

At x—0 we have found generalizations of the DLLA

behavior; cf. Eqs(9.2), (9.7). We have also shown that

for large b the solution for the valence UPD of the pion
grows linearly withx for not too largex, and the slope
decreases with as a power law.

At x—1 the evolution-generatdatdependent UPDs ap-

proach the integrated distributions as—{(%)?2.

Our numerical results fully confirm the finding of Ref.

[16], where a different numerical method was used. We

find the spreading of thk, distributions with the prob-

ing scaleQ, with the effect strongest for gluons and in-
creasing with decreasing We have also shown that the
widths (k?)¢"in all channels increase at larg€? as

Q?a(Q?).

For practical purposes in possible phenomenological ap-

plications, we have parametrizéd? )" with a simple

formula which works with accuracy of a few percent.

(4)

©)
(6)

@)

Although the specific study of this paper was devoted to
the pion with the initial condition following from the chiral
models, and several of the more detailed analytic formulas
were specific to this case, the developed method is general
and can be applied to any initial form of the data. In particu-
lar, it can be used with the GR$3] or GRV [54] param-
etrization supplied by a profile ih, such as already studied
in Ref.[16]. The formal results of Sec. XI are general for a
wide class of initial conditions, suitable for both the pion and
nucleon.

It should certainly be interesting to extend the present
analysis of the UPDs to next-to-leading order, which would
allow for a more accurate analysis. This work is in progress.
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APPENDIX A: ELEMENTS OF THE PERTURBATIVE (A4)

QCD EVOLUTION S
Above we have used the indefinite integral
We use the LO QCD evolution with three active flavors

up to the scaleu?=4 Ge\? and four active flavors above. dQ2Q2 Q%
Thereforea=g?/(4) is given by f 2"Li(—), k=1.2,...,

Q%og(Q%A2) A2 .
A5
41
*(Q)= Q' Qe here the logarithmic integral i
wnere e logarithmic integral IS
ppd & —
QcD «
Li(x)=f dt/logt. (AB)
0
«(Q¥)= WQZ QP
2
,384"09( _2) At large Q°,
4
[ Q% 1 1
Aoeo| 54" e R R
A= , Al 2o
! /'Lc( Mc ) A1) k|OgA2 klog A2
(A7)

with B{""=11-2N/3 for N.=3, whereN; andN, denote
the number of flavors and CO|0I’S I‘eSpeCtlvely A|0ng this The func“onspab(z) are the LO Sp||tt|ng functions cor-

paper we take responding to real emission—i.e.,
AQCD: 226 MeV, (AZ) 1+22
. qu(z):CF 1—7"
as was done in Ref§42,45—-47. The value of the scald 4 z
ensures matching aD2=,u§. Numerically, Bg3)=9, ﬁgA) 2 2
=25/3, andA ,=189 MeV. PqG(Z):Nf[Z +(1-2)7],
The functionsr,, defined in Eq.(6.1), have the explicit
form 1+(1-2)?
PGq(Z):Cny
1 09(Q%/A3cp)
O(QO Q )_ B(g) g( (Q Q ) z 1—7
QCD PGG(Z):ZNC _+—+Z(1_Z):|,
1-z Z
1 «(Qp 0= 2 (A8)
=—" Jog——=2 <u?,
25 7 a(Q?) ‘ with Cr=(N2—1)/(2N,) = 4/3.
log(Q%/A%) APPENDIX B: b-DEPENDENT ANOMALOUS DIMENSIONS
rO(QO Q )_rO(QO IU’C) (4) g 2 2
2B log(uc/A2) We introduce
(ui) ) Q%b?
=ro(Q5. 1d)+ . Q%> ul, u= , (B1)
’ 2/3(4) Y@ ¢ 4
(A3)
as well as the anomalous dimensions forlike0 case of the
and, fork+0, DGLAP equations, where for the nonsinglet we have
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of the unintegrated parton distributionshrspace, defined in

2 2
—3+ ity T4 n)- (B2)  Eq.(3.2. The formulas follow from the basic analytic inte-

Vaks=2Cr 2+n
gral

while for the singlet,

I'2+u+v) J‘l
dyy*“(1-y)"Je(2+uy)
%éa“mﬂgox C(1+ ) (1+7v) o
(1+,U« 24pu 2+ptv 3+ptv
1 2 2 =2F3 ) 1, , ;—u
(0) —_ _ 2 2 2 2
Mnac= ~ N T T o T e )
(BS)

0) —_4C E_LJFL and relations among the generalized hypergeometric func-
InGa” Fln 1+n " 2+n)’ tions. For the nonsinglet case we have

4C;

8 4 Yans(Qb)= 7§ Ns+m —3-2n

(0) —
YnGe™ 2N( 3 0T Trn 2¥n  3%n

+4Hn)

(B3) 1 2+n 3+n
+2(2+n) 1F2<2 T,T,_U)
The symbolH,, denotes the harmonic number
3 3+n 4+n
"1 T'(n+1) ! 45'_5_"7T”_“)
SR T Y (B4

3 3+n 4+n
+2u3F, 112 22— 5 5 iU
which is a meromorphic function in the complaexariable,

with poles located at negative integerss —1,—2,—3, ... (B6)
and residues equal te 1.
Below we list the anomalous dimensions for the momentshereas for the singlet case,

'Yn,qq(Qb) = yn,NS(Qb)u

—i(4+n)(5+n)

AN;¢ (
—4—n(3+n)

_ .0
Macl QD) =Mmact Tz GBI M@ (G0

1 2+n 3+n 3 3+n 4+n
(2 M) (B4N) oFa| 555 iU =234 0) 1Py 5 iU
3 44+n 5+n 5 6+n 7+n
+41F2 E,T,T,_u +24U1F2 E,T,T,_U y
b 4C¢ 1 5 3 4 F +n 2+n_
’)/an(Q ) 7an n(l+n)(2+n)(3+n)(4+n) ( +n)( +n)( +n)( +n)1 2 E T;Tu u
3 3+n 4+n 5+n 6+n
+(3+n)(4+n)|4+n(3+n)—2,F, 21T Ty T +12u,F,| 5; T U
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3 n3 n
u lFZ 5;1+§,§+§;_U

o P
1 Rttt
n

2 1
(0) _ B
7n.ee(QP)=Ynge™ BN 1tn 2+n 3+n 1+ n+n2
F33 n2n_ 2F3. . 12uF5-3n7 n
O A e T B I I A T 1P| 5:3% 5.5 5u
(1+n)(2+n) (1+n)(2+n)(3+n) (1+n)(2+n)(3+n)(4+n)(5+n)

2’772 2
(1+n)(2+n)

3 3
UsFal1,15:2,20 + = 2+2
+

One may verify that the analyticity properties mof the
anomalous dimension®6), (B7) are the same as for the
=0 case of Eqs(B2), (B4).

APPENDIX C: EXPANSION OF ANOMALOUS
DIMENSIONS AT LOW bQ

(B7)

o (_Q2b2)k417k
Yool QD)= e~ N Z 5

X[B(2k+1n+1)—2B(2k+1n+2)
+2B(2k+1,n+3)],

We may expand in the anomalous dimensions in powers

of Q?b?,
Y0 j(QD) =¥+ ¥()Q%%+ - - (CD
which yields
Q) _ (1) _ 2CE(n*+5n+7)
Yn,NS™ Vn, )
n, 99 (n+1)(n+2)(n+3)(n+4)
(1) 2N¢(n2+3n+14)
YA (ME 1) (n+2)(n+3)(n+4)’
Q _ 2Ce(n?+7n+24)
Yn.Ga” (Mr1)(n+2)(n+3)(n+4)’
Q 2N [n(n+5)(n?+5n+ 16)+ 120
YnGeT h(n+1)n+2)(n+3)(n+4)(n+5)°
(C2

More generally, introducing the Euler beta functiBfx,y)

=I'(xX)I'(y)/T'(x+y) and applying the series expansion of

the Bessel function,

* (_XZ)k
Jo(0=2 Sz (c3
we arrive at the expansion formulas
* _ Q2b2)k4l—k

(
0) _
Yn ,qq CFI(Zl k|2

'Yn,NS(Qb) = '}’n,qq(Qb)

X[B(2k,n+1)+B(2k,n+3)],

o0

(_ Q2b2)k417k
7n Gq_ CFE - 5

k12
X[2B(2k+1,n)—2B(2k+1n+1)

Yn Gq(Qb

+B(2k+1n+2)],

[

(_Q2 2)k 1-k
yn,GG(Qb)=7‘n‘?2;G—2ch§=:l g [B(2kn+2)

+B(2k+2,0)+B(2k+2,n+2)]. (C4)

APPENDIX D: ASYMPTOTICS OF THE ANOMALOUS
DIMENSIONS AT LARGE bQ

We may use the asymptotic forms of the generalized hy-
pergeometric functions appearing in EqB6), (B7). One
has[64]

1F2

a;;bqi,by;—

Q2b2
4)

_ T(byI(by) 4 )
[(by—ay)l'(by—as) | Q2p2

I'(by)T'(by)

\/;F(a ) [cos{Qb— mCy)
1

4\
Qbsm(Qb WCl)](szz) +..
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1 1
2/

Cl: E b1+ bz_al_

1
Co= g(12;;15—8(&:;1+ b,+1)a,

—4(by—by)%+8(by+by)—3), (DY)
and[65]
E(113.,,0F8 Nt4, Q%b?
R e e R T
_4(n+1)(n+2) Qb 0 )
_W Qb nIogT—nzp (n)—1|+n
8I'(n+3 2n+3
+ (—)CO{ 77) (Qb)fn/27 712
N2
+.- (D2)
Then the following asymptotic expansions for

b-dependent anomalous dimensions hold:

Yns(n, QD)
= qu(n-Qb)

2p? 3 2n+2

:4CF[|OgT+27_§ W

L P(n+1)@Qb)-
42w

n—S/T

3
W—Qb)

]4_..., (Dg)

2n+
24ch05< 7

2n+3
—(12n+ 13)sin< w—Qb)

4

Yq6(N,Qb)

:4Nf[_

n
X (—1m+8Qb—11)cos(7—Qb)

1

1 Tt 1)(Qb)~"~572
Qb

8\m

+(12n+8Qb+11)sin(n77T—Qb)”+-~-, (D4)
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Yaeq(N,Qb)
- 1 T(n)(Qb) "3
—4CF|—@+—4\/; (4n+8Qb—-1)
nw (nm
><COS<7—Qb +(4n—8Qb—1)sm<7—Qb>H
+o, (D5)
AN 2p? 11 2n+2
r b —-n—1/2
4 (n)(\/(i_w) cos{zn:—lw—Qb)
+[l“(n)—20F(n+1)](Qb)’"’3’2
4\m
n ~/n
X|co Ea-r—Qb +sin Err—Qb +
(D6)

The ellipses denote terms subleading iQt/ The above

the formulas assume thatis kept fixed. In actual applications,
such as numerical programming of the generalized hypergeo-
metric functions, it is practical to switch from the general
formulas(B6), (B7) to the asymptotic expressiofi33), (D6)
whenQb=10/n|.

APPENDIX E: POLE-RESIDUE EXPANSION
OF THE ANOMALOUS DIMENSIONS

Forb+#0 the analytic structure of thedependent anoma-
lous dimensions remains the same aslfer0. This can be
seen by expanding the Bessel function in the integrand of Eq.
(3.2 as a power series arouze- 0, which yields

R |
nan(Qb)=—4 fo dz2, 17196°(Qb)
X(=Qb)*z" ~1]P(2).  (ED
Applying the trick
1= Jo<0>——42 —J“’ (Qb)(-Qb)¥,  (E2)

we find the expansion involving index-shifted anomalous di-
mensions ab=0—namely,

ynab@b)—z ——38(Qb) ynikap(0). (E3

=0
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Using the explicit expression for the anomalous dimension R‘jG(A): —4NgJo(A),

this series may be rewritten as a pole-residue expansion

©

RZ°(Qb)
7n,ab(Qb)=2 .

k=0 I"H'k (E4)

In practice this means that the Mellin contour used in the

case ofb=0 can be used in thb#0 case as well. In the
nonsinglet case the first few residues read

RYS(A)=—4CrJqo(A),
RYS(A)=—4C[Jo(A)+AJ;(A)],

RYS(A)=—2Ce[ — (A?=4)Jo(A) +3AJi(A)],
(E9)

RNS

while in the singlet channé®?9=R;"> and

RIC(A)=—4Ng[ — 2Jo(A) +AJ (A)],

RGIY(A)=—8CrIo(A),

REUA)=—8Ce[—Jo(A)+AJ,(A)],

5 %(A)=—8NJo(A),
REC(A)=—8N[ —Jo(A) +AJy(A)]. (E6)

The pole-residue expansion controls the behavior of the so-
lutions of Eqg.(2.4) at low x. Since the subsequent residues
carry powers ofA"=(Qb)", the expansion cannot be used
for Qb too large.
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