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Calculations of binding energies and masses of heavy quarkonia using renormalon cancellation

Carlos Contreras,* Gorazd Cveticˇ,† and Patricio Gaete‡

Department of Physics, Universidad Te´cnica Federico Santa Marı´a, Valparaı́so, Chile
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We use various methods of Borel integration to calculate the binding ground energies and masses ofbb̄ and

t t̄ quarkonia. The methods take into account the leading infrared renormalon structure of the~hard1)soft part
of the binding energiesE(s), and of the corresponding quark pole massesmq , where the contributions of these
singularities inM (s)52mq1E(s) cancel. Beforehand, we carry out the separation of the binding energy into
its ~hard1)soft and ultrasoft parts. The resummation formalisms are applied to expansions ofmq andE(s) in

terms of quantities which do not involve renormalon ambiguity, such asMS massm̄q and as(m). The

renormalization scalesm are different in calculations ofmq , E(s) andE(us). The massm̄b is extracted, and

the binding energiesEt t̄ and the peak~resonance! energiesEres. for t t̄ production are obtained.
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I. INTRODUCTION

There has been a significant activity in calculation

binding energies and masses of heavy quarkoniaqq̄ in recent
years. The calculations, based on perturbative expans
are primarily due to the knowledge of up to N2LO term
(;as

3) of the static quark-antiquark potentialV(r ) @1,2# and
partial knowledge of the N3LO term there; the knowledge o
the 1/mq and 1/mq

2 correction terms~@3# and references
therein! and the ultrasoft gluon contributions to a corr
sponding effective theory N3LO Hamiltonian@3–5#; and the
knowledge of the pole massmq up to order;as

3 @7,8#. An-
other impetus in these calculations was given by the ob
vation of the fact that the contributions of the leading infr
red ~IR! renormalon singularities~at b51/2) of the pole
massmq and of the static potentialV(r ) cancel in the sum
2mq1V(r ) @9–11# ~analogous cancellations were discover
and used in the physics of mesons with one heavy qu
@12#!. Consequently, this cancellation effect must be pres
also in the total quarkonium massM52mq1Eqq̄ @13,14#, or
more precisely, inM (s)52mq1E(s) whereE(s) is the hard
1soft part of the binding energy, i.e., the part which includ
the contributions of relative quark-antiquark momen
uk0u,uku*mqas , i.e., soft/potential scales~predominant! and
higher hard scales~smaller contributions!. In addition, the
binding energy has contributionEqq̄(us) from the ultrasoft
momenta regimeuk0u,uku;mqas

2 . The ultrasoft contribution
is not related to theb51/2 renormalon singularity, since thi
singularity has to do with the behavior of the theory in t
region which includes the hard (;mq) and soft/potential
(;mqas) scales.

In this work, we numerically calculate the binding groun
energiesEqq̄ ~separately thes and theusparts! and the mass
(2mq1Eqq̄) of the heavyqq̄ system, by taking into accoun
the leading IR renormalon structure ofmq andEqq̄(s), in the
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spirit of the works of Refs.@13,14#. We combine some fea
tures of these two references:~a! the mass that we use in th
perturbation expansions is a renormalon-free m

@11,13,15–17# which we choose to be theMS massm̄q

[m̄q(m5m̄q); ~b! Borel integrations@14# are used to per-
form resummations. However, before resummations we p
form separation of the soft/potential~s! and ultrasoft~us! part
of the binding energies, and apply the renormalon-ba
Borel resummation only to thes part. The renormalization
scales used in the Borel resummations aremh;mq ~hard
scale! for 2mq , and mqas&ms,mq for Eqq̄(s). The term
corresponding toEqq̄(us) is evaluated atmus;mqas

2 when-
ever perturbatively possible. Further, the Borel resummati
are performed in three different ways:~a! using a slightly
extended version of the full bilocal expansion of the ty
introduced and used in Refs.@14,18#; ~b! using a new
‘‘ s-regularized’’ full bilocal expansion introduced in th
present work;~c! using the form of the Borel transform
where the leading IR renormalon structure is a common f
tor of the transform@19,20# ~we call it R-method!. The Borel
integrations for bothmq and Eqq̄(s) are performed by the
same prescription~generalized principal value PV@19–22#!
so as to ensure the numerical cancellation of the renorm
contributions in the sum 2mq1Eqq̄(s). Furthermore, we
demonstrate numerically that in the latter sum the residue
the renormalons are really consistent with the renorma
cancellation when a reasonable factorization scale param
for the s-us separation is used, while they become incons
tent with the aforementioned cancellation when no su
separation is used. The obtained numerical results allow u
extract the massm̄b from the knownY(1S) mass of thebb̄
system and to demonstrate that theus contribution is the
major source of uncertainty. We present also the numer
results for the ground state binding energy for the scalar
vector toponiumt t̄ .

In Sec. II we recapitulate the calculation of the pole ma
mq in terms ofm̄q and as(mh), and summarize the biloca
method of Refs.@14,18#, with a slight extension in the
renormalon-part of the Borel transform. In Sec. III we pe
form the separation of the binding ground energy into
©2004 The American Physical Society08-1
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soft/potential~s! and the ultrasoft~us! part, and in Sec. IV we
determine thes-us factorization scale parameter so that t
renormalon residue reproduced fromEqq̄(s) becomes consis
tent with the renormalon cancellation condition. In Sec.
we further apply several methods of the Borel resumma
to calculateEbb̄(s) and Et t̄(s): the aforementioned biloca
method, the new ‘‘s-regularized’’ bilocal method, as well a
the aforementionedR-method, and always using in the e
pansionsm̄q mass. We also estimate there the ultrasoft c
tributions to the binding energy. In Sec. V we compare
obtained results with some of the results recently publis
in the literature and draw conclusions about the main
merical features of our resummation procedure.

II. POLE MASS

Here we redo the calculation of the pole massmq in terms
of the MS renormalon-free massm̄q[m̄q(m5m̄q) and of
as(m,MS), using elements of the approach of Ref.@13# and
the bilocal expansion method of Refs.@14,18#. In the Borel
integration, we choose the~generalized! principal value~PV!

prescription@19–22#. The ratioS5(mq /m̄q21) has pertur-
bation expansion inMS scheme which is at present known
order;as

3 ~Ref. @6# for ;as ; @7# for ;as
2 ; @8# for ;as

3),

S[
mq

m̄q

215
4

3
a~m!@11a~m!r 1~m!1a2~m!r 2~m!

1O~a3!#, ~1a!

r 1~m!5k11b0Lm~m!, ~1b!

r 2~m!5k21~2k1b01b1!Lm~m!1b0
2Lm

2 ~m!,
~1c!

~4/3!k156.248b023.739, ~1d!

~4/3!k2523.497b0
216.248b111.019b0229.94,

~1e!

where Lm5 ln(m2/m̄q
2), while b05(1122nf /3)/4 and b1

5(102238nf /3)/16 are the renormalization scheme ind
pendent coefficients withnf5n, being the number of light
active flavors~quarks with masses lighter thanmq). The
natural renormalization scale here ism5mh;mq ~hard
scale!.

Therefore, the Borel transformBS(b) is known to order
;b2,

BS~b;m!5
4

3 F11
r 1~m!

1!b0
b1

r 2~m!

2!b0
2

b21O~b3!G . ~2!

It has renormalon singularities atb51/2,3/2,2, . . . ,21,
22, . . . @15,23,24#. The behavior ofBS near the leading IR
renormalon singularityb51/2 is determined by the resultin
renormalon ambiguity ofmq which has to have the dimen
sions of energy and should be renormalization sc
and scheme independent–the only such QCD scale b
03400
n

-
e
d
-

-
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const3LQCD @25# ~cf. also@18#!. This scale is proportional to
the Stevenson scaleL̃ @26# ~cf. also@27#!. The latter can be
obtained in terms of the strong coupling parame
a(m;c2 ,c3 , . . . )5as(m;c2 ,c3 , . . . )/p, where cj5b j /b0
( j >2) are the parameters characterizing the renormaliza
scheme, by solving the renormalization group equat
~RGE! @26#

da~m!

d ln m2
52b0a2~m!~11c1a~m!1c2a2~m!1••• ! ~3!

⇒ lnS L̃2

m2D 5
1

b0
E

0

a(m)

dxF 1

x2~11c1x1c2x21••• !

2
1

x2~11c1x!
G2

1

b0a~m!

1
c1

b0
lnS 11c1a~m!

c1a~m! D ~4!

⇒L̃5m expS 2
1

2b0a~m! D S 11c1a~m!

c1a~m! D n

3expF2
1

2b0
E

0

a(m)

dx

3
~c21c3x1c4x21••• !

~11c1x!~11c1x1c2x21••• !
G , ~5!

wheren5c1 /(2b0)5b1 /(2b0
2); the coefficientscj ( j >2)

will be taken here inMS scheme. Expansion of expressio
~5! in powers ofa(m) then gives

L̃5m expS 2
1

2b0a~m! Da~m!2nc1
2nF11 (

k51

`

r̃ ka
k~m!G ,

~6!

where

r̃ 15
~c1

22c2!

2b0
,

r̃ 25
1

8b0
2 @~c1

22c2!222b0~c1
322c1c21c3!#, ~7a!

r̃ 35
1

48b0
3 @~c1

22c2!326b0~c1
22c2!~c1

322c1c21c3!

18b0
2~c1

423c1
2c21c2

212c1c32c4!#. ~7b!

On the other hand, for the uncertainty inmq from the b
51/2 renormalon singularity to be proportional to the qua
8-2
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TABLE I. The MS RGE coefficientsck5bk /b0 (k51,2,3,4) and renormalon coefficientsn and c̃ j ( j

51,2,3) for thebb̄ (nf54) andt t̄ (nf55) system.

nf c1 c2 c3 c4 n c̃1 c̃2 c̃3

4 1.5400 3.0476 15.0660 (40660) 0.3696 20.1054 0.2736 (0.0170.17)
5 1.2609 1.4748 9.8349 (70620) 0.3289 0.0238 0.3265 (20.2070.08)
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tity ~6!, this implies that the singular part of the Borel tran
form BS(b) aroundb51/2 must have the form1

BS~b;m!5Nmp
m

m̄q

1

~122b!11n F11 (
k51

`

c̃k~122b!kG
1BS

(an.)~b;m!, ~8a!

c̃15
r̃ 1

~2b0!n
, c̃25

r̃ 2

~2b0!2n~n21!
,

c̃35
r̃ 3

~2b0!3n~n21!~n22!
, ~8b!

andBS
(an.)(b;m) is analytic on the diskubu,1. TheMS co-

efficientsc2 andc3 are already known@28,29#, but forc4 we
have only estimates@30,31# obtained by Pade´-related meth-
ods. Reference@30# gives c4'97(nf54);86(nf55), and
Ref. @31# givesc4'40(nf54);70(nf55). However, the es-
timate of @30# is obtained from a polynomial innf with es-
timated coefficients, where large cancellations occur betw
various terms. Therefore, we will take as the central val
the estimates of@31#, with the edges of the (6) uncertainties
covering the values of@30#

c4540660 ~nf54!, ~9a!

c4570620 ~nf55!. ~9b!

Thus, c̃3 can be obtained via Eqs.~7b!, ~8b!: c̃350.01
60.17 (nf54); 20.2060.08 (nf55). The values ofck’s
and c̃k’s are given in Table I. Now, the~full ! bilocal method
@18# consists of taking in the expansion~8a! for the analytic
partBS

(an.) a polynomial in powers ofb, so that the expansion
of BS aroundb50 agrees with expansion~2!. For that, the
residue parameterNm in Eq. ~8a! has to be determined. Us
ing the idea of Ref.@32# it was estimated with a high prec
sion in Refs.@13,14,33#:

Nm5
m̄q

m

1

p
RS~b51/2!, ~10!

where, according to~8a!

RS~b;m![~122b!11nBS~b;m!. ~11!

1See, for example, Ref.@22# for some algebraic details of obtain
ing the typical renormalon ambiguity ImS(z52b0a(m)6 i«).
03400
-
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In this work, in applications of the bilocal and related met
ods, we will use the value ofNm as estimated in Ref.@33#,
which used forRS(b) truncated perturbation series~TPS!
and Pade´ approximation@1/1#:

Nm~nf54!50.55560.020, ~12a!

Nm~nf55!50.53360.020. ~12b!

The bilocal expansion~8a! has then for the analytic part th
polynomial

BS
(an.)~b;m!5h0

(m)1
h1

(m)

1!b0
b1

h2
(m)

2!b0
2

b2, ~13a!

hk
(m)5

4

3
r k2pNm

m

m̄q

~2b0!k(
n50

3

c̃n

G~n1k112n!

G~n112n!
,

~13b!

where, by convention,r 05 c̃051. We can then take forBS
the bilocal formula, i.e., Eqs.~8a! and ~13! with the expan-
sion aroundb51/2 in the singular renormalon part truncate
with the termc̃3(122b)3,

BS~b;m!(biloc.)5Nmp
m

m̄q

1

~122b!11n F11 (
k51

3

c̃k~122b!kG
1 (

k50

2 hk
(m)

k!b0
k

bk. ~14!

Applying the~generalized! principal value~PV! prescription
for the Borel integration

S5
1

b0
ReE

6 i«

`6 i«

db expS 2
b

b0a~m! DBS~b;m!, ~15!

we obtain the pole massmq in terms of the massm̄q . The
numerical integration is performed, using the Cauchy th
rem, along a ray with a nonzero finite angle with respect
the b.0 axis, in order to avoid the vicinity of the pole~as
explained, for example, in Ref.@20#!.

In Figs. 1~a!, ~b!, we present the resulting~PV! pole
masses of theb andt quarks, as function of the renormaliza
tion scalem. The spuriousm-dependence is very weak. I
addition, results of another method~‘‘R’’-method! are pre-
sented in Figs. 1~a!, ~b!, with the m-dependence stronger i
8-3
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FIG. 1. The~PV! pole mass of the~a! bottom and~b! top quark, as function of the renormalization scalem. The input parameters use

were m̄b54.23 GeV, m̄t5164.00 GeV, respectively; the residue parameter values~12! were used for the bilocal method. The referen
value foras ~in MS) was taken to beas(mt)50.3254~ @34#! corresponding toas(MZ)50.1192.
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the low-m region (m/m̄q,1). The R-method~applied in
other contexts in Refs.@19,20#! consists in the Borel integra
tion of the function~11!

S5
1

b0
ReE

6 i«

`6 i«

db expS 2
b

b0a~m! D RS~b;m!

~122b!11n
,

~16!

where for RS(b) the corresponding~NNLO! TPS is used.
When we takem̄b54.23 GeV andm̄t5164.00 GeV and we
vary the values of the residue parameterNm according to Eq.
~12!, the bilocal method gives, atm/m̄q51, variationdmb
573 MeV anddmt5620 MeV. When the central value
of Nm ~12! are used, the variation of the obtained values
mq with m, when m/m̄q grows from 1.0 to 1.5, is about 5
MeV and 6 MeV formb andmt , respectively~for R-method:
4 MeV and 6 MeV!. Whenc4 is varied according to~9!, the
variation is about72 and 71 MeV for mb , mt , respec-
tively. The as(mt)50.325460.0125@34#, corresponding to
as(MZ)50.119260.0015. This uncertainty is by far the ma
jor source in the variation of the pole masses: (dmb)as

52148
1135 MeV for bilocal method (2150

1137 MeV for R-method!,
and (dmt)as

52171
1161 MeV for bilocal method~2170

1161 MeV for
R-method!.

The natural renormalization scalem here is a hard scale
m;m̄q , and will be denoted later in this work asmm in order
to distinguish it from the ‘‘soft’’ renormalization scalem
used in the analogous renormalon-based resummations o
~hard1)soft binding energyEqq̄(s) (m̄q.m*m̄qas) in Sec.
IV. The fact that the two renormalization scales are differ
does not affect the mechanism of the (b51/2) renormalon
cancellation in the bilocal calculations of the meson m
(2mq1Eqq̄(s)), because the renormalon ambiguity in ea
of the two terms is renormalization scale independent;L̃,
as seen by Eqs.~6!–~8!. On the other hand, ifR-type meth-
ods~16! @cf. also Eq.~10!# are applied for the resummation
of 2mq and Eqq̄(s), the renormalon ambiguities are reno
03400
f

the

t

s

malization scale independent in the approximation of
one-loop RGE running, and the renormalon cancellation
true at this one-loop level.

III. SEPARATION OF THE SOFT AND ULTRASOFT
CONTRIBUTIONS

The perturbation expansion of the~hard 1 soft 1 ultra-
soft! binding energyEqq̄ of theqq̄ heavy quarkonium vecto
(S51) or scalar (S50) ground state (n51,,50) up to the
N3LO O(mqas

5) was given in@35#, where previous results o
Ref. @3# were used. The latter reference used in part the
sults of Refs.@2,36–38# ~static potential! and of Refs.@39–
43# ~binding energy!. Reference@35# ~and@3#! employed the
method of threshold expansion where the integrations w
performed in (322«) dimensions. The reference mass sc
used was the pole massmq . The ground state energy expa
sion has the form

Eqq̄52
4

9
mqp2a2~m!$11a~m!@k1,01k1,1Lp~m!#1a2~m!

3@k2,01k2,1Lp~m!1k2,2Lp
2~m!#1a3~m!@k3,0

1k3,1Lp~m!1k3,2Lp
2~m!1k3,3Lp

3~m!#1O~a4!%, ~17!

where

Lp~m!5 lnS m

4

3
mqpa~m!D . ~18!

The expressions for the coefficientski , j of perturbation ex-
pansion ~17! for the ground state binding energy of th
quarkonium (n51; ,50; S51 or 0! are given below. The
NLO and NNLO terms were obtained in Refs.@40–43#. The
N3LO terms were obtained in Ref.@35#–their Eqs.~6! and
~12!, but now written in numerically more explicit form~and
with Nc53),
8-4
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k1,154b0 , k1,05S 97

6
2

11

9
nf D , ~19a!

k2,2512b0
2 , k2,15

927

4
2

193

6
nf1nf

2 , ~19b!

k2,05361.342240.9649nf11.16286nf
2211.6973S~S11!,

~19c!

k3,3532b0
3 , k3,25

4521

2
2

10955

24
nf1

1027

36
nf

22
5

9
nf

3 ,

~19d!

k3,157242.321243.95nf169.1066nf
221.21714nf

3

1
p2

2592
~26758414096nf !S~S11!, ~19e!

k3,05F ~7839.8221223.68nf169.4508nf
221.21475nf

3!

1~2109.0514.06858nf !S~S11!2
p2

18
~21089

1112S~S11!!ln~a~m!!12
a3

43G . ~19f!

Here,a3 is the hitherto unknown three-loop contribution c
efficient to the QCD static potentialVqq̄(r ), whose values
have been estimated by various methods in R
@44,13,14,33#. We will use in this work the estimates of Re
@33#, obtained from the condition of renormalon cancellati
in the sum (2mq1Vqq̄(r ))

1

43
a3~nf54!'86623, ~20a!

1

43
a3~nf55!562.5620. ~20b!

The coefficients~19! in the expansion~17! originate from
quantum effects from various scale regimes of the particip
ing particles:~a! the hard scales (;mq); ~b! the soft and
potential scales where the three momenta areuqu;mqas

(uq0u;mqas in the soft anduq0u;mqas
2 in the potential re-

gime!; ~c! ultrasoft scales whereuq0u and uqu are both
;mqas

2 . The coefficients are dominated by the soft scal
the hard scales start contributing at the NNLO@3# and are
numerically smaller. For this reason, in this work we w
usually refer to the combined soft and hard regime contri
tions to the binding energy as simply soft~s! contribution
Eqq̄(s). Strictly speaking, it is only the pure soft regime th
contributes to theb51/2 renormalon. However, for simplic
ity, in our renormalon-based resummations we will resum
hard1soft contributionsEqq̄(s) together, not separately. Th
will pose no problem, since the hard regime, being clea
perturbative, is not expected to deteriorate the converge
03400
s.

t-
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-

e
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properties of the series forEqq̄(s). The natural renormaliza
tion scalem in the resummations ofEqq̄(s) is expected to be
closer to the soft scale (mqas&m,mq).

On the other hand, the N3LO coefficientk3,0 obtains ad-
ditional contributions from the ultrasoft~us! regime. The
leading ultrasoft contribution comes from the exchange of
ultrasoft gluon in the heavy quarkonium@5,10#. It consists of
two parts:

~1! The retarded part, which cannot be interpreted in ter
of an instantaneous interaction

1

p3
k3,0~us,ret.!52

2

3p S 4

3D 2

L1
E'141.014, ~21!

whereL1
E'281.538 is the QCD Bethe logarithm—se

Refs.@3,5#.
~2! The non-retarded part can be calculated as expecta

value of theus effective HamiltonianH us in the Cou-
lomb ~i.e., leading order! ground stateu1&, whereH us

~in momentum space! was derived in Refs.@3,5#. Direct
calculation of the expectation value, here in coordin
space, then gives:

1

p3
k3,0~us,nonret.!52

9

4p5

1

mqa5~m!
^1uH usu1&

5
2

p5mqa4~m!
F1

2
ln

mf
2

~E1
C!2

1
5

6
2ln 2G

3H2
27p3

8
a3~m!^1u

1

r
u1&

217p2
a2~m!

mq
^1u

1

r 2
u1&

1
4p2

3

a~m!

mq
2 ^1ud~r !u1&

13p
a~m!

mq
2 ^1u H D r ,

1

r J u1&J ~22a!

5214.196F lnS mf

mqas
2~m!

D10.9511G .

~22b!
Here, E1

C52(4/9)mqas
2(m) is the Coulomb energy o

the stateu1&, andm f is the factorization energy betwee
the soft (;mqas) and ultrasoft (;mqas

2) scale.

In Ref. @3#, the authors included in the ultrasoft part of th
Hamiltonian additional termsdH us which contained contri-
butions from the soft regime. These terms arose becaus
their use of a method called threshold expansion@45# where
the integrations over potential momenta are not performe
three dimensions but in (d21)5(322«) dimensions. How-
ever, their method gave in the soft regime also the sa
additional terms, but with negative sign~including logarith-
mic terms not associated with IR-divergent integral
unphysical!. Since they were interested in the total sum
8-5
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contributions from various regimes, the method gave the
rect result, as emphasized by the authors there.

Thes–us factorization scalem f can be estimated as bein
roughly in the middle between thes andus energies on the
logarithmic scale@33#

m f@'~ESEUS!1/2#5kmqas~ms!
3/2, ~23!

wherek;1 andms'ES (&m). Therefore, the ultrasoft par
of the N3LO coefficientk3,0 can be rewritten, by Eqs.~21!,
~22! and ~23!, in terms of thes–us parameterk as

1

p3
k3,0~us!527.51217.098 ln~as~ms!!214.196 ln~k!.

~24!

The soft scalems appearing here will be fixed by the cond
tion ms5(4/3)m̄qas(ms).

The formal perturbation expansions for the separate
and ultrasoft parts of the ground state binding energy~17! are
then

Eqq̄~s!52
4

9
mqp2a2~m!H 11(

i 51

2

ai~m!(
j 50

i

ki , jLp~m! j

1a3~m!(
j 51

3

k3,j1a3~m!@k3,02k3,0~us!#

1O~a4!J , ~25a!

Eqq̄~us!52
4

9
mqp2a2~m!$a3~m!k3,0~us!1O~a4!%.

~25b!

The energyEqq̄(s) ~25a! contains the leading IR renormalo
effects, andEqq̄(us) ~25b! does not. In these expressions, t
common factor is the soft scalemp(m)5(4/3)mqas(m)
which is also present as the reference scale in the logarit
Lp(m)5 ln(m/mp(m)) appearing with the coefficientski , j
~when j >1) in Eqs. ~17!, ~18!. This soft scale is equal to
2/aB(m) whereaB is the~Bohr! radius of the heavy quarko
nium. The renormalization scalem in Eq. ~25a! is of the
order of the soft scale or above. We will re-expressmq ev-
erywhere inEqq̄ with the renormalon-free massm̄q ~1!, and
will consider the dimensionless soft-energy quant
Eqq̄(s)/m̄q .

The expansion ofEqq̄(s)/m̄q5(0
` r̃ n(m)an12(m) has at

large orders the seemingly peculiar feature of the so-ca
‘‘power mismatch’’ @16# ~see also@46#!: when this sum is
added to the expansion ~1! 2mq /m̄q5@2
1(8/3)(0

`r n(m)an11(m)#, the coefficientr̃ n(m) at powers

an12(m) of Eqq̄(s)/m̄q must be combined with the coeffi
cient (8/3)r n(m) at powersan11(m) of 2mq /m̄q to ensure
the cancellation of theb51/2 renormalon contributions. Thi
is so because the coefficientr̃ n(m) contains a polynomial of
03400
r-

ft

s

d

nth grade in ln@m/(m̄qa(m))# @cf. Eqs. ~17!, ~18!, ~25a!#
which, at large ordern and in the large-b0 approximation,
sums up approximately to a term

;(b0/2)nn!exp ln@m/(m̄qa(m))#5(b0/2)nn!(m/m̄q)1/a(m)

@16#, effectively reducing the power ofa(m) in Eqq̄(s)/m̄q

by one. Further, the factors (b0/2)n, n! andm in the approxi-

mate sum of the logarithmic terms inr̃ n(m) reflect the effect

of the leading (b51/2) IR renormalon inEqq̄(s)/m̄q .
For the Borel-related resummations ofEqq̄(s), which

would account for the leading IR renormalon structure,
have on the basis of these facts in principle at least
possible directions to proceed. The first direction would be

use the Borel transform of the expansion ofEqq̄(s)/m̄q

5(0
` r̃ n(m)an12(m) where the transformationa(m)°b is

performed literally with respect to alla(m)-dependence, in-

cluding the one appearing in the coefficientsr̃ n . This would
result in a Borel transform whose power expansion arou
the origin would include termsbkln,b with ,50,1,2, . . . .

The second direction would be to divide the conside

quantity by a(m̃) (⇒Eqq̄(s)/@m̄qa(m̃)#), where m̃ is any
fixed soft scale, and then consider the coefficients in
expansion of this quantity in powers ofa(m) as independen
of a(m), e.g., by expressing them in terms ofa(m̃). In the
obtained expansion, the coefficients now contain powers
logarithms ln@a(m̃)# which are considered as constant~non-
variable! under the Borel transformationa(m)°b.2 It is
possible to see that, at largen and in the large-b0 approxi-
mation, this is equivalent to the first approach, because
powers ofa(m) have been decreased by one, and the co
ficients are now proportional to (b0/2)nn!m/a(m̃) where the
factor 1/a(m̃) is now formally constant and does not affe
the Borel transform~except as an overall constant facto!.
The equivalence is assumed to persist when we go bey
the large-b0 approximation, in the same spirit as the autho
of Ref. @16# assume their conclusions to be valid beyo
large-b0.

We stress that in both approaches the original expan
of Eqq̄(s) in powers ofa(m) is recovered by applying the
Borel integration according to the standard formula~15!
term-by-term to the expansion of the Borel transform arou
b50.

In this work, we decide to follow the second directio
The main reason for this is of practical nature: The first a
proach would generate in the expansion of the Borel tra
form aroundb50 the terms containing lnb,ln2b, . . . , which
introduce, at any finite order at least, a cut-singularity alo
the entire negative axis in theb plane. We are working a
finite orders. This cut would seriously hamper our r
summations. For example, the quantity analogous toRS(b)
Eq. ~11! of the previous section, but this time forEqq̄(s)/m̄q

2This is in close analogy with the behavior of the static poten
Vqq̄(r ) and its dimensionless versionrVqq̄(r ) where r;aB

;1/@m̄qa(m̃)# ~see, for example, Refs.@9–11,13,14,33#!.
8-6
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CALCULATIONS OF BINDING ENERGIES AND . . . PHYSICAL REVIEW D70, 034008 ~2004!
with the first approach, has a cut alongb<0, i.e., starting
already at the origin, and the resummation atb51/2 would
be difficult. On the other hand, the analogous quantityR(b)
for Eqq̄(s)/@m̄qa(m̃)# in the second approach has no sing
larities atubu,1/2, and for 1/2<ubu,1 has only a cut with-
out infinity along the positive axis. Such a quantity can
much more easily resummed on the basis of its expan
aroundb50. Nonetheless, the first approach presents an
teresting alternative for which resummation techniques o
than those presented here would have to be developed a
applied.

Thus, we will divide the soft binding energy with th
quantity m̄(m̃)5(4/3)m̄qas(m̃), where m̃ can be any soft
scale. We will fix this scale by the conditionm̃
5(4/3)m̄qas(m̃) (⇒m̃5ms). Further, in the logarithms
Lp(m) we express the pole massmq in terms of m̄q and
powers ofa(m) ~cf. Sec. II!, and the powers of logarithm
lnk@a(m)# we re-express in terms of lnk@a(m̃)#. This then re-
sults in the following soft binding energy quantityF(s) to be
resummed:

F~s![2
9

4p2

Eqq̄~s!

m̄qa~m̃ !
5a~m!@11a~m! f 11a2~m! f 2

1a3~m! f 31O~a4!#, ~26!

where the coefficientsf j depend on lna(m̃) and on three
scales: the renormalization scalem (*mqas), the ~fixed!

soft scalem̃, and m̄q . The coefficientf 3 depends, in addi-
tion, on the parametersk ~23!–~24!, ms , anda3 ~20!. The
coefficientsf j are written explicitly in the Appendix. Theb
51/2 renormalon in the quantityF(s) is then of the type of
the renormalon of the pole massmq discussed in the previou
Sec. II.

However, if we divided in Eq.~26! by mq instead ofm̄q
and at the same time used in the resultingf j -coefficients
ln mq , the numerical resummations ofF(s) by methods of
Sec. IV would give us values forEqq̄(s) different usually by
not more thanO(101 MeV) ~we checked this numerically!.
We will briefly refer to these approaches later in this sect
as ‘‘pole mass’’ approaches. A version of such pole m
bilocal approach was applied in Ref.@14# for resummation of
the unseparatedEqq̄(s1us).

The ultrasoft part~25b!, on the other hand, has nob
51/2 renormalon. The mass scale used there should als
renormalon free (m̄q). The renormalization scalem there
should be adjusted downward to the typicalus scale of the
associated processm°mus (;mqas

2) in order to come
closer to a realistic estimate3

3The authors of Ref.@47# employed a somewhat similar idea o
using different evaluation methods for contributions to the spe
of heavy quarkonia from different regimes~short, intermediate and
long-distance!. A similar reasoning was employed, in the context
high-T QCD, in Ref.@48#.
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Eqq̄~us!'2
4

9
m̄qp2k3,0~us!a5~mus!. ~27!

IV. EVALUATION OF THE BINDING ENERGY

In this section we will evaluate the soft part of the grou
state energy for the vectorbb̄ @Y(1S)# and for the vector
and scalart t̄ quarkonium. In addition, we will estimate th
ultrasoft part of the energy, and will extract the value of t
massm̄b from the known mass ofY(1S).

A. Methods of resummation for the soft energy

At first we will apply the same methods as those used
Sec. II. However, the expansion we will use for the s
energy quantityF(s) ~26! is higher by one order ina(m)
than in quantitySEq. ~1! of Sec. II. In the N3LO coefficient
f 3 we have dependence on the approximately known coe
cient a3 ~20!, and on thes-us factorization scale paramete
k;1 Eq. ~23!—see the Appendix, Eqs.~A4!. It turns out
that, in f 3 ( f 3

(0)), the coefficient at lnk is larger than the
coefficient ata3 /(100343). On the other hand, the coeffi
cient at lnk in the ground state expectation value of the sta
potential is about one tenth of the corresponding coeffici
in the ~soft! ground binding energy

Eqq̄~s; ln k2part!'21.933103~m̄qa4~m!!ln k,
~28a!

^1uVqq̄~r !u1&~ ln k2part!'21.953102~m̄qa4~m!!ln k,
~28b!

Eqq̄~s;a32part!5^1uVqq̄~r !u1&~a32part!

'28.773102~m̄qa4~m!!

3
a3

100343
. ~28c!

Since a3 /(100343) is roughly between zero and one@cf.
Eq. ~20!#, as is also lnk, Eq. ~28! shows that the static po
tential is more influenced by the values ofa3 than by lnk,
while the situation with the~soft! binding energy is just re-
versed. More specifically:~a! the static potential is more ap
propriate to obtain approximate values ofa3, as was done,
e.g., in Ref.@33# and given in Eq.~20!; ~b! the soft part of the
binding energyEqq̄(s) is more appropriate to obtain approx
mate values of thes-us factorization scale parameterk. We
recall that in@33#, the values ofa3 ~20! were obtained by
requiring that the known values of the renormalon resid
parameterNm ~12! be reproduced from the Borel transfor
of the static potential functionrVqq̄(r ). Here we will pro-
ceed analogously, and will obtain approximate values ok
~23! by requiring that the residue parameter values~12! be
reproduced from the Borel transform of the soft binding e
ergy quantityF(s) of Eq. ~26!.

As already mentioned, in contrast to the situation in S
II, the coefficientsf j of the perturbation series~26! have

a

8-7
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FIG. 2. The residue parameter valueNm as calculated from the soft part of the binding energy of the bottonium according to Eq.~31!,
~a! as a function of thes-us factorization scale parameterk ~23!, at m53 GeV; ~b! as a function of the renormalization scalem, at k
50.59. Further explanations given in the text. In~a!, the known values~12a! of Nm are denoted as dotted horizontal lines.
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some terms proportional to lnk(a(m* ))(k51,2, . . . ) where
m* generically denotes fixed chosen scalesm̃, or ms—cf. the
Appendix. Here we will argue that these scales should
between hard and ultrasoft. These terms are considered
stant, independent ofa(m), although they can be formally
re-expressed in terms of lnka(m). The terms of the type lna in
the problem at hand are the leading terms of logarithms
ratios of various scales appearing in the problem~cf. Ref.
@3#!, among them ln(ES/EH) and ln(EUS/ES). The typical
hard, soft, and ultrasoft scales of the problem are, e.g.,EH
5mq , ES5^1/r &, EUS5Eqq̄ , i.e., quantities independent o
the renormalization scale (m).4 The m-independent ratios o
the type ES/EH and EUS/ES have expansionsEX /EY
5a(m)@11O(a)#. The typical resummed value of thi
quantity can be written asa(m* ) where m* is the typical
scale of the quasiobservableEX /EY . This suggests that th
ln a(m* )-terms in the coefficients of the perturbation ser
should really be somewhere between hard (EH;mq) and
ultrasoft (EUS;mqas

2) scales.
Similarly as in Eq.~8a!, we have

BF(s)~b;m!5Nm

9

2p

m

m̄qa~m̃ !

1

~122b!11n

3F11 (
k51

`

c̃k~122b!kG1BF(s)
(an.)~b;m!,

~29!

where the factor in front of the singular part was determin
by the condition of renormalon cancellation of the su
2mq1Eqq̄(s). We now define in analogy with Eq.~11!

RF(s)~b;m;m f !5~122b!11nBF(s)~b;m;m f !. ~30!

4A very similar phenomenon occurs in the perturbation expans
of the free energy of the high-temperature quark-gluon plas
where the hard scale is the Matsubara frequency 2pT, and the soft
scale is the Debye screening massmE (;gsT) @48,49#.
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Here we denoted, for clarity, explicitly the dependence
the factorization scalem f . Expressions~29! and ~30! imply

Nm5
2p

9

m̄qa~m̃ !

m
RF(s)~b;m;m f !ub51/2. ~31!

The expansion ofRF(s) is exactly known up to;b2, and
approximately up to;b3 (N3LO TPS!, where the latter co-
efficient is dependent onk ~and, more weakly, ona3). All
coefficients are dependent also on the renormalization s
m (*mqas). It turns out that the expansion~31! is signifi-
cantly less convergent than the series~11! ~at b51/2). How-
ever, it is not clearly divergent, unless we take unreasona
values ofk or m. Theoretically,RF(s)(b) should be a func-
tion with only a weak singularity~cut! at b51/2, and the
nearest pole atb53/2 ~i.e., the next renormalon pole o
Vqq̄(r ) @50#!. Thus, resummations such as Pade´ approxima-
tions ~PA’s! are expected to work better onRF(s)(b) than on
BF(s)(b). The Pade´ approximation with the simplest pol
structure for the N3LO TPS is@2/1#, i.e., ratio of a quadratic
with a linear polynomial inb. It turns out thatRF(s)@2/1#
3(b) has physically acceptable pole structureubpoleu>1 for
most of the values ofm*mqas andk;1. Using this Pade´ to
evaluate expression~31! gives us predictions for the residu
parameterNm reasonably stable under the variation ofm. On
the other hand, the predicted value ofNm depends signifi-
cantly on thes-us factorization scale parameterk ~23!.

In Fig. 2~a! we show the dependence ofNm on k, at a
typical ~‘‘central’’ ! m value m53 GeV, for thebb̄ system.
The known central value~12a! of Nm is obtained by the
RF(s)@2/1#(b51/2) expression atk'0.59. In Fig. 2~b! we
present, fork50.59, the dependence of calculatedNm on the
renormalization scalem. There, we include also the
(@2/1#-resummed! curve for the case when no separation
thes andusparts of the energy is performed. In that case,
obtained values ofNm are unacceptable. If the ‘‘pole mass
version is applied@mentioned in the second paragraph af
Eq. ~26!#, with no separation of thes and us parts, the ob-
tained values of the (@2/1#-resummed! curve remain above

n
a,
8-8
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FIG. 3. Same as in Fig. 2, but for the (S51) toponium. In~a!, m555 GeV and the known values~12b! of Nm are given as dotted
horizontal lines.
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0.70 as well, thus unacceptable. The other values of the in
parameters are chosen to have thebb̄ ‘‘central’’ values:
a3/43586 ~20a!; m̄b54.23 GeV;m̃51.825 GeV ('ms) and
as(m̃;nf54)50.3263('as(ms ;nf54)50.326) @from:
as(mt ;nf53)50.3254, i.e.,as(MZ)50.1192@34##. For the
RGE running, we always use four-loopMS b-function~TPS!
and three-loop quark threshold matching relations@51#, with
m thresh.52m̄c , 2m̄b .

In Figs. 3 and 4 we present analogous results for thet t̄
vector (S51) and scalar (S50) bound state. The typica
~‘‘central’’ ! values of the renormalization scale were chos
to bem555 GeV and 65 GeV, respectively. Thes-us factor-
ization parameterk values obtained werek51.16 (S51)
and k51.10 (S50), so thatRF(s)@2/1#(b51/2) would re-
produce the known central value~12b! of the residue param
eter Nm . The other input parameters have thet t̄ ‘‘central’’
values: a3/43562.5 ~20b!; m̄t5164.0 GeV; m̃531. GeV
('ms) and as(m̃;nf55)50.1430 @'as(ms ;nf55)
50.14#. The values ofNm extracted when no separation ofs
andus is performed, are unacceptably highNm>0.6 ~also in
the ‘‘pole mass’’ version:Nm>0.6).

Variation Nm50.55560.020 @bb̄, Eq. ~12a!# implies k
03400
ut

n

50.5960.19; variationNm50.53360.020 @ t t̄ , Eq. ~12b!#
impliesk51.1620.29

10.31 (S51) andk51.1020.33
10.39 (S50). If, on

the other hand,a3 parameter is varied, according to Eq.~20!,
then forbb̄ k50.5970.06, and fort t̄ k51.1610.11

20.10 (S51)
andk51.1010.11

20.09 (S50). Thus, the value ofs-us factoriza-
tion scale parameterk is influenced largely by the allowed
values~12! of the renormalon residue parameter, and sign
cantly less by the allowed valuesa3 ~20! of the N3LO coef-
ficient of the staticqq̄ potential. Therefore, we will conside
the variations ofNm ~12! and ofk to be related by a one-to
one relation, while the variations ofa3 ~20! will be consid-
ered as independent.

In this way, we have the following values for thes-us
factorization scale parameter:k ~23!

Nm50.55560.020⇒k50.5960.19 ~nf54,S51!,
~32a!

Nm50.53360.020⇒k51.1620.29
10.31 ~nf55,S51!

~32b!

⇒k51.1020.33
10.39 ~nf55,S50!,

~32c!
FIG. 4. Same as in Fig. 3, but for the scalar (S50) toponium. In~a!, m565 GeV is taken.
8-9
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CONTRERAS, CVETIČ, AND GAETE PHYSICAL REVIEW D70, 034008 ~2004!
and thus we obtain the N3LO TPS~26! for the soft part of the
ground binding energy.

We wish to add a comment onk-dependence ofNm in
Figs. 2–4. Theoretically, the parameterNm should be inde-
pendent of thes-us factorization scalem f and thus indepen
dent of the related parameterk ~23!. However, among the
m f-dependent terms inRF(s)(b;m;m f) of Eq. ~30!, only the
leading term is available. Due to this restrictive practic
situation, the value of the residue parameterNm obtained by
Eq. ~31! automatically possesses significantm f-dependence
~or k-dependence!, and the value ofm f ~or k) is fixed by
requiring that this leading order expression inm f reproduces
the known value ofNm . The value ofm f obtained in this
way must be physically acceptable (⇔k;1) if the proce-
dure is consistent. This is analogous to the situation whe
QCD observableS(Q) is known to the leading order;a(m)
only. Equating such leading order expressionS[1] (Q;m) with
the known value ofS(Q), a specific value of the renorma
ization scalem5mECH is obtained such thatS[1] (Q;mECH)
5S(Q). This is the main idea of the effective charge~ECH!
method @52#. If the procedure is consistent, the obtain
renormalization scalem valuemECH should be of the order o
the physical scaleQ of the process associated with the o
servable:mECH/Q;1. The analogy with our case consists
the correspondence m f↔m, EUS(;Eqq̄)↔Q, and
m f(obtained)↔mECH.

Now that the value ofk has been obtained, and cons
quently the N3LO TPS ~26!, we can perform the resumma
tion of the soft part of the ground binding energy. The f
bilocal method@14,18# can be performed as in Sec. II, Eq
~14! and ~15!. However, now we have one term more in t
TPS. Therefore

BF(s)
(biloc.)~b;m!5Nm

9

2p

m

m̄qa~m̃ !

1

~122b!11n

3 (
k50

3

c̃k~122b!k1 (
k50

3
hk

k!b0
k

bk, ~33!

where the coefficientsc̃k are given by Eqs.~8b! and ~7!

( c̃051), and the coefficientshk in the expansion of the ana
lytic part are now known up to orderk53,

hk5 f k2Nm

9

2p

m

m̄qa~m̃ !
~2b0!k(

n50

3

c̃n

G~n1k112n!

G~n112n!

~k50,1,2,3!. ~34!

Here, by convention,f 0515 c̃0. Then the resummed quan
tity is obtained by taking the PV of the Borel integration
BF(s)(b) of Eq. ~33!, as in Sec. II forBS(b) @Eq. ~15!, inte-
gration along a ray#. The result would have some spuriou
m-dependence. However, for the typicalm-scalesmq*m
*mqas , the analytic partBF(s)

(an.)(b) of the Borel transforma-
tion in Eq. ~33! turns out to have a problematic behavior
the following sense. When it is Pade´-resummed as
BF(s)

(an.)@2/1#(b), the obtained pole is almost always~for most
03400
l

a

-

l

m ’s! unacceptably small in size:ubpoleu<1/2. Theoretically,
BF(s)

(an.)(b) should have the nearest pole atb53/2 @50#. Thus,
BF(s)

(an.) appears to be too singular in the above bilocal a
proach, and the TPS and Pade´ evaluations of it would result
in widely differing resummed values for the energyEqq̄(s).
The reason for this problem appears to lie in the spec
truncated form of the singular part taken in the biloc
method~33!. While the latter part describes well the behavi
of the transform nearb51/2, it influences apparently
strongly the coefficientshk and thus the analytic part, so tha
no reliable resummation of that part~apart from TPS! can be
done. In this context, we note that the series of ter
(kc̃k(122b)k has no indication of convergence atb50, as
seen from the values ofc̃ j in Table I of Sec. II. This problem
can be alleviated by introducing in the renormalon par
‘‘form’’ factor which suppresses that part away fromb
'1/2, but keeps it unchanged atb'1/2. If we choose for
this factor a Gaussian type of function, we are led to
following set of ‘‘s-regularized’’ bilocal expressions for th
Borel transform:

BF(s)
(s) ~b;m!5Nm

9

2p

m

m̄qa~m̃ !

1

~122b!11n F11 c̃1~122b!

1S c̃21
1

8s2D ~122b!21S c̃31
c̃1

8s2D ~1

22b!3GexpF2
1

8s2
~122b!2G

1 (
k50

3
1

k!b0
k

hk
(s)bk. ~35!

The corrective terms 1/(8s2) and c̃1 /(8s2) in the coeffi-
cients of the renormalon part of Eq.~35! appear to ensure th
correct known behavior of the renormalon part up to ord
;(122b)2n12. The coefficientshk

(s) in Eq. ~35! differ from
hk’s of the bilocal case~34!, and are determined by the re
quirement that the power expansion of expression~35! repro-
duces the known N3LO TPS of the Borel transform ofFs
~26!. If s parameter increases~i.e., s*1), formula ~35! is
expected to gradually reduce to the bilocal formula~33!. If
s→0, then the expansion of the Gaussian form function
~35! would imply very large coefficients (*s24) at the
renormalon terms;(122b)212n1k (k54,5, . . . ). This is
not expected to reflect the reality, because the results in T
I suggest thatuc̃ku&1 for k54,5, . . . .Therefore, we expec
that the optimal choice ofs would be somewhere betwee
zero and one. Numerical analysis confirms this expectat
Namely, when s decreases froms5` to about s
'0.3–0.4, the value of the pole of the@2/1# Padé-resummed
analytic partBF(s)

(an.s)(b) of Eq. ~35! gradually turns acceptabl
(ubpoleu.1) and rather stable when the renormalization sc
m varies in the interval@mqas ,mq# ~except close tom
'mqas). Further, the Borel resummation with the TP
evaluated and with Pade´-evaluated analytic parts give fo
8-10
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FIG. 5. ~a! Soft part of the ground state binding energy ofbb̄, evaluated with the~PV! Borel-resummed expression~35!, as a function
of the method parameters. ~b! Same as in~a!, but for the toponiumS51 system. Details are given in the text.
-
av
t
um
nd
e

ve
l

f

th

are

a
ated

.

s

za-
suchs ’s similar values ofEqq̄(s), indicating that the ana
lytic part now manifests more clearly its non-singular beh
ior. When the value ofs falls below 0.3, the analytic par
starts showing erratic behavior again and the Borel res
mation gives significantly differing results with the TPS- a
the Pade´-evaluated analytic parts. Further, th
s –dependence of the obtained soft energy becomes
strong fors,0.3. On these grounds, the obtained optimas
turn out to be

s50.3660.03 ~nf54,S51!, ~36a!

s50.3360.03 ~nf55,S50,1!. ~36b!

In Fig. 5~a! we present the~PV! Borel-resummed soft part o
ground state energy for the bottonium (S51), as a function
of the s parameter of method~35!. The results are given
when the analytic part of Borel transform~35! is either
evaluated as N3LO TPS or as@2/1# Padé~PA!. In addition,
the two corresponding results~TPS, and PA! are given as
horizontal lines when the bilocal method~33! is applied (s
5`). The values of the other input parameters have
03400
-

-

ry

e

same ‘‘central’’ values as in Fig. 2, andNm50.555 andc4

540. in accordance with Eqs.~12a! and~9a!. In Fig. 5~b! we
present analogous results for the toponium vector (S51)
soft binding energy. The values of the input parameters
the same as in Figs. 3 and 4, and in additionNm50.533 and
c4570 in accordance with Eqs.~12b! and ~9b!. The corre-
sponding curves for the toponium scalar (S50) case are
very similar to those of theS51 case.

In addition to the methods~33! and ~35! employed up to
now, which are mutually related, we want to employ as
cross check of our numerical results also a method unrel
to the ~full ! bilocal method. This will be theR-method
@19,20#, where we resum the functionRF(s)(b;m) ~30! and
then employ the~PV! Borel resummation as written in Eq
~16! ~with RF(s) instead ofRS there!. Since we know the
N3LO TPS of RF(s)(b), we can evaluate this function a
TPS, or as Pade´ @2/1# ~the Pade´ @1/2# is disfavored due to a
more complicated and unstable pole structure!.

The results for the soft binding energyEbb̄(s) of the
ground state of bottonium, as functions of the renormali
tion scalem, are presented in Fig. 6~a!. The values of input
FIG. 6. ~a! Soft partEbb̄(s) of the ground state binding energy ofbb̄, evaluated with four different methods involving~PV! Borel
resummation, as functions of the renormalization scalem. Details are given in the text. In~b! the simple TPS results forEbb̄(s) are included
@Eq. ~37!#, as well as the ‘‘perturbative’’ ultrasoft partEbb̄

(p)(us;m) @Eq. ~38!#.
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FIG. 7. Same as in Fig. 6~a!, but for the toponium system–~a! vector (S51), ~b! scalar (S50). Details are given in the text.
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parameters are taken as in Figs. 2 and 5~a!, and for the ‘‘
s-regularized’’ method we takes50.36 according to Eq
~36a! ~note that theR-method does not needNm , c4, ands
as input!. For each of the three methods, we present t
curves: when the analytic part is evaluated as TPS, o
Padé@2/1# ~PA!, where the role of the analytic part in th
R-method is taken over by the functionRF(s)(b) itself. We
observe from the figure that the bilocal method~33! (s
5`) gives the TPS and PA results which significantly diff
from each other. On the other hand, the ‘‘s-regularized’’
method~35! (s50.36) gives the TPS and PA results clos
to each other. The methodss-TPS, s-PA, and R-PA give
similar results in the entire presentedm-interval. R-TPS ap-
pears to fail at lowm ('mbas'1 –2 GeV). In Fig. 6~b! we
include, for comparison, the simple TPS evaluation
Ebb̄(s), according to formula@cf. Eq. ~26!#

F~s!(TPS)[2
9

4p

1

m̄bas~m̃ !
Eqq̄~s!5a~m!@11a~m! f 1

1a2~m! f 21a3~m! f 3#, ~37!

where for N2LO TPS case we takef 350. In Fig. 6~b! the
same input parameters are used as in Fig. 6~a!. We see that
03400
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r

f

the perturbation series shows strongly divergent behavior
ready at N3LO. In this figure, we also included the ‘‘pertur
bative’’ ultrasoft partEbb̄

(p)(us;m) calculated according to@see
Eqs.~24! and ~25b!#.

F (p)~us![2
9

4p

1

m̄bas~m̃ !
Eqq̄

(p)
~us;m!5k3,0a

4~m!.

~38!

This quantity is highlym-dependent. We return to the discu
sion of theus energy part in Sec. IV B.

In Figs. 7~a!, ~b!, we present, in analogy with Fig. 6~a!,
the results for the vector and scalar toponium soft bind
energy, respectively. The values of the input parameters
the same as in Figs. 3, 4, and in additions50.33 according
to Eq. ~36b!. The comparative qualitative behavior of th
results of various methods is similar as in the bottoniu
case, except that nowR-PA method appears to fail at low
renormalization scalesm'mtas'30 GeV while R-TPS
maintains morem-stability there.

In Fig. 8~a! we present the results analogous to Fig. 7~a!
(S51 case!, where we now include the results of the simp
TPS evaluation~37! for t t̄ . In Fig. 8~b!, we present the resul
7

FIG. 8. ~a! Same as in Fig. 7~a!, but now the results of the simple TPS evaluation~37! are included.~b! The ultrasoft energy parts by

different evaluations:Et t̄
(p)(us;m) by Eq.~38!; Et t̄(us) values of Eq.~48a! as straight lines. The input parameters are the same as in Fig.~a!.
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TABLE II. The separate uncertaintiesdm̄b ~in MeV! for the extracted value ofm̄b from various sources: 1! us @Ebb̄(us)(p1np)

521006106 MeV#; 2! m5361 GeV; ~3! mm5m̄b(160.5); 4! as(mt)50.325460.0125 @as(MZ)50.119260.0015#; 5! Nm50.555
60.020@k50.5960.19#; 6! a3/43586623; 7! c4540660; 8! s50.3660.03; 9! mc5” 0 (dMY(mc5” 0)5610 MeV).

us m mm as Nm a3 c4 s mc

s-TPS 249 19 24 213 23 12 28 14 25
149 213 12 114 12 22 18 29 15

s-PA 249 113 24 215 23 11 25 15 25
149 220 12 115 12 21 12 29 15

R-TPS 250 24 14 28 29 23 0 0 25
150 145 240 110 111 13 0 0 15

R-PA 249 13 14 211 24 22 0 0 25
149 220 240 112 14 12 0 0 15
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for the ‘‘perturbative’’ ultrasoft partEt t̄
(p)(us;m) calculated

according to Eq.~38! for the t t̄ system~dashedm-dependent
line!. We further include there the more realistic estima
obtained later in Sec. IV C@Eq. ~48a!#.

B. Extraction of bottom mass

We need to address now also the problem of evalua
the ultrasoft partEqq̄(us) of the ground state binding energ
The estimate of the perturbative part is given in Eq.~27!,
where it was essential to take for the renormalization sca
us scalem;mus;mqas

2 .
For the bottonium case, this scale is below 1 GeV,

energy at which we cannot determine perturbativelyas(m).
This indicates that in the bottonium theuspart of the binding
energy has an appreciable nonperturbative part. The low
energy at which we can still determine perturbativelyas is
m'1.5–2.0 GeV, givingas(m)'0.3020.35. Although this
is a soft scale forbb̄, we will use this also as an ultraso
scale. Then by Eq.~27!

Ebb̄~us!(p)'2
4

9
m̄qp2k3,0~us!a5~mus!

'~21506100! MeV. ~39!

The nonperturbative contribution coming from the gluon
condensate is given by@53#

Ebb̄~us!(np)'m̄bp2
624

425S 4

3
m̄bas~mus! D 24

^a~mus!GmnGmn&

'~50635! MeV, ~40!

where we usedm̄b54.2 GeV, and the value of the gluo
condensatê (as /p)G2&50.00960.007 GeV4 @54#. Equa-
tions ~39! and ~40! give

Ebb̄~us!(p1np)'~21006106! MeV, ~41!

where the two uncertainties were added in quadrature
addition, there are finite charm mass contributions wh
have been calculated in Ref.@55# ~based on the results o
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Refs. @7,56,57#!. These contributions modify the values o
mb and Ebb̄ , resulting in the contribution to the mas
MY(1S)5(2mb1Ebb̄),

dMY~1S,mc5” 0!'25610 MeV. ~42!

The estimates~41!, and ~42! then give a rough estimate o
the us and mc5” 0 contributions to the bottonium mas
dMY(1S;us1mc)'(2756106) MeV. The mass of the
Y(1S) vector bottonium ground state is well measur
MY(1S)59460 MeV with virtually no uncertainty@58#.
Therefore, the pure perturbative ‘‘soft’’ mass is

MY~1S;s!52mb1Ebb̄~s!595357106 MeV, ~43!

where the uncertainty6106 MeV is the rough estimate
dominated by the uncertainty of theus regime contribution.
Our numerical results forEbb̄(s) in this section and formb
presented in Sec. II allow us, by varying the input value
m̄b , to adjust the sum 2mb1Ebb̄(s) to the value given in Eq.
~43!. For the soft binding energy we apply thes-regularized
bilocal methodss-TPS ands-PA, and R-TPS andR-PA,
with the aforementioned ‘‘central’’ input parameter
as(MZ)50.1192; m̃51.825 GeV ('ms), thus as(m̃,nf
54)50.3263 @as(ms)50.326#; Nm50.555; k50.59; s
50.36; a3/43586; c4(MS)540. For 2mb we apply the
bilocal-TPS andR-TPS method, with renormalization sca
mm /m̄b51, both methods giving us very similar results@cf.
Fig. 1 ~a!#. The bilocal-TPS method is applied for 2mb when
s-TPS ands-PA are applied forEbb̄(s); the R-TPS is ap-
plied for 2mb whenR-TPS andR-PA are applied forEbb̄(s)
~the same combinations of methods will be applied in
Sec. IV C to the study of toponium!. The extracted values o
m̄b[m̄b(m5m̄b) are then

m̄b54.22560.054 GeV ~s-TPS! ~44a!

54.22060.056 GeV ~s-PA! ~44b!

54.24360.080 GeV ~R-TPS! ~44c!

54.23560.068 GeV ~R-PA!. ~44d!
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TABLE III. The uncertaintydEt t̄(us) and the separate uncertainties indEt t̄(s) ~in MeV! for the topo-
nium S51 binding energy from various sources: 1! dEt t̄(us) @cf. Eqs. ~48!#; 2! m555620 GeV; 3!
as(MZ)50.119260.0015; 4! Nm50.53360.020 @k51.1620.29

10.31#; 5! a3/43562.5620; 6! c4570620; 7!
s50.3360.03. The pole massmt is kept fixed at the valuemt5174.30 GeV.

dE(s)

dE(us) m as Nm a3 c4 s

s-TPS 2100 27 2105 221 24 15 217
1100 18 1109 123 14 25 129

s-PA 2100 210 2105 221 23 13 216
1100 18 1109 122 13 22 126

R-TPS 2100 13 2104 221 28 0 0
1100 18 1109 126 18 0 0

R-PA 2100 17 2105 218 26 0 0
1100 228 1110 120 17 0 0
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The uncertainties are the combination, in quadrature, of
certainties from various sources, shown in Table II for ea
of the four methods. In the case of asymmetric uncertaint
the larger is taken. The largest uncertainty (60.049 GeV)
comes from theus sector uncertainty60.106 GeV of Eq.
~41!. In the case ofR-TPS method, the variation of the so
binding energy with the variation of the renormalizatio
scale is a competing source of uncertainty form̄b
(60.045 GeV), and in the case ofR-TPS andR-PA methods
~wheremt is resummed byR-TPS! the uncertainty from the
variation of the renormalization scalemm in the
2mt-resummation is competing as well~0.040 GeV!. The
arithmetic average of the central values of Eq.~44! gives us

m̄b54.23160.068 GeV ~our average!, ~45!

where we emphasize that the central value for the str
coupling parameter was chosen to beas(MZ)50.1192. In
Eq. ~45!, the uncertainty was chosen to be the second lar
uncertainty in Eq.~44!. The largest uncertainty,60.080 GeV
of the R-TPS method, was discarded becauseR-TPS is the
only one of the four methods which fails simultaneously
the low mm (,m̄b) and low m (,3 GeV) renormalization
scales.

C. Numerical results for the toponium

For the binding energy of the toponium, the numeric
results are obtained in the following way. First the value
the ~PV! pole massmt is fixed to the central experimenta
value mt5174.3 GeV@58#. For calculation of the binding
energy, m̄t is an input parameter~but not mt). When as
varies@as(MZ)50.119260.0015#, the two methods of Sec
II @cf. Fig. 1~b!#, with the renormalization scalemm5m̄t ,
give m̄t5164.00010.163

20.153 GeV ~bilocal method! and m̄t

5164.01110.162
20.153 GeV (R-method!, when mt5174.3 GeV

~PV value!. The values ofm̄t change by 0.020 GeV or les
when the other parameters are varied~renormalization scale
mm ; Nm and c4 for bilocal method; see Sec. II!, and such
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small variation inm̄t influences the toponium binding energ
insignificantly5–by less than 0.001 GeV.

We use as the centralm̄t input valuem̄t5164.000 GeV to
calculateEt t̄(s) with the four aforementioned Borel meth
ods, using for other input parameters their ‘‘central’’ valu
used in Figs. 5~b!, 7: as(MZ)50.1192; m̃531 GeV
('ms), thus as(m̃,nf55)50.143 @as(ms)50.14#; Nm
50.533; k51.16 (S51),1.10 (S50); m555 GeV (S
51), 65 GeV (S50); s50.33; a3/43562.5; c4(MS)
570. Then the resulting toponium soft energy is

Et t̄~s!523.16360.116 GeV~23.216

60.120 GeV! ~s-TPS! ~46a!

523.15860.115 GeV ~23.212

60.118 GeV! ~s-PA! ~46b!

523.15460.113 GeV ~23.200

60.116 GeV! ~R-TPS! ~46c!

523.15960.115 GeV ~23.209

60.118 GeV! ~R-PA!, ~46d!

where the results are given for the vector (S51) case and in
parentheses for the scalar (S50) toponium case. The unce
tainties are combinations, in quadrature, of uncertain
coming from various input sources:das , dm, da3 , dc4 ,
dNm , andds. Whendas is varied, the valuem̄t is varied as
well, as described above, but otherwise it is kept fixed~at
164.000 GeV!. All the corresponding separate uncertainti
dEt t̄(s) are given in Tables III forS51 and IV for S50.
The ultrasoft partEt t̄(us) is principally perturbative and can
be estimated by formula~27! where theus coefficient is

5A variation dm̄t610.0 MeV results indEt t̄(s)570.11 MeV,
when all other input parameters are kept fixed.
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TABLE IV. As Table III, but for S50. The input parameters are the same, except form (565
620 GeV) andk (51.1020.33

10.39, corresponding toNm50.53360.020).

dE(s)

dE(us) m as Nm a3 c4 s

s-TPS 2110 26 2107 223 23 15 217
1110 18 1112 126 14 25 131

s-PA 2110 28 2107 223 22 14 216
1110 18 1112 125 13 22 128

R-TPS 2110 0 2106 225 27 0 0
1110 113 1111 130 18 0 0

R-PA 2110 19 2107 220 26 0 0
1110 227 1112 123 16 0 0
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given by ~24!. This part is more manageable than in t
bottonium case, because the typicalus energy now is still in
the perturbative regime:mus;101 GeV. We determine this
energy by the condition

mus5k8m̄tas
2~mus!, ~47!

where k8;1. The value k851 corresponds tomus
'7 GeV. Equations~27! and ~24! then give for the value
Et t̄(us)520.255 GeV (S51) and 20.272 GeV (S50).
When we change tok852 (mus510.5 GeV), the values o
Et t̄(us) go up by 0.100 and 0.110 for theS51,2, respec-
tively. This we adopt as the uncertainty in theus sector.
Therefore, we have by Eq.~27!

Et t̄~us!520.25560.100 GeV ~S51! ~48a!

520.27260.110 GeV ~S50!, ~48b!

corresponding tomus57.021.5
13.5 GeV. When we take for the

soft partEt t̄(s) the arithmetic average of the results of t
four methods~46!, and combining it with the ultrasoft par
~48!, we obtain

Et t̄523.41360.153 GeV ~S51! ~49a!

523.48160.163 GeV ~S50!. ~49b!

The two dominant contributions to the uncertainties in E
~49! are the uncertainty fromas in the soft sector, and the
uncertainty of the ultrasoft sector, as seen from Tables III
IV and Eq.~48!.

The results~49! are relevant for the future determination
of m̄t from t t̄ production near threshold. We recall that t
determination of the pole massmt has, due to theb51/2
renormalon singularity, an intrinsic ambiguity of ord
LQCD, i.e., several hundred MeV, and cannot be determi
from experiments with a higher accuracy. But the massm̄t
could be eventually determined with accuracy of less th
100 MeV, as pointed out in Ref.@46# where toponium mass
was investigated using large-b0 arguments. TheS51 topo-
nium state is produced ine1e2 annihilation, while theS
50 state in unpolarizedgg collisions. The produced reso
03400
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d

d

n

nance is not exactly at the ground state mass value (mt
1Et t̄) because of the large decay width of the toponiu
@59,60#

Eres.52mt1Et t̄1dGEres.. ~50!

The shift in Eq.~50! is dGEres.5100610 MeV @35,61# and it
is rather stable under the variation of all input paramete
including as and m̄t . At this point, we should evaluate th
sum (2mt1Et t̄) for a general input value ofm̄t
('164 GeV). The expected central values of (2mt1Et t̄)
can be inferred from the central values of the binding en
gies ~49! which were obtained with the choicem̄t
5164.000 GeV. We obtain the variation

d~2mt1Et t̄ !'62.09dm̄t , ~51!

when only the input parameterm̄t is varied around its centra
value 164.00 GeV, while all the other input parameters (as ,
Nm , mm , m, a3 , c4 , s) are kept fixed at their correspondin
central values.6 At m̄t5164.000 GeV, the bilocal metho
gives mt5174.300 GeV and the R-method mt
5174.288 GeV. Thus, combining the average of this w
relations~51! and ~49!, we expect the approximate centr
values (2mt1Et t̄)5345.175 GeV for S51 and 345.107
GeV forS50, whenm̄t5164.000 GeV. The uncertainties o
(2mt1Et t̄) originate from the variation of all the input pa
rameters exceptm̄t . Some of them are expected to be clo
to the uncertainties in Eq.~49! given for the binding ener-
gies. However, they are not equal to these uncertaintie
Eq. ~49! because the latter were obtained by keeping the p
mass fixed (mt5174.3 GeV). Now, however, m̄t
5164.0 GeV is kept fixed, and variations ofEt t̄ andmt be-
come correlated in the sum (2mt1Et t̄). More importantly,
the variation ofas now changesEt t̄(s) and 2mt , and, to a
lesser degree,Et t̄(us); the variation ofNm changesk which

6More precisely,dm̄t56100 MeV would correspond tod(2mt

1Et t̄)'6208.8 MeV, of whichd(2mt)56210.1 MeV, dEt t̄(s)
571.1 MeV, anddEt t̄(us)570.2 MeV.
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TABLE V. The separate uncertaintiesd@2mt1Et t̄(s1us)# ~in MeV! for the toponiumS51 mass from

various sources: 1! mus57.013.5
21.5 GeV @cf. Eq. ~48!#; 2! m555620 GeV; 3! mm5m̄b(160.5); 4! as(MZ)

50.119260.0015; 5! Nm50.53360.020 @k51.1620.29
10.31#; 6! a3/43562.5620; 7! c4570620; 8! s50.33

60.03. The input massm̄t5164.00 GeV is kept fixed.

mus m mm as Nm a3 c4 s

s-TPS 2100 27 113 1188 194 24 13 217
1100 18 29 2203 2108 14 23 130

s-PA 2100 210 113 1189 194 23 11 216
1100 18 29 2203 2108 13 21 126

R-TPS 2100 12 29 1188 154 28 0 0
1100 17 295 2203 265 18 0 0

R-PA 2100 16 29 1187 157 27 0 0
1100 229 295 2202 271 16 0 0
t
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in turn changesEt t̄(us) @Eqs.~27! and~24!# and, to a lesser
degree,Et t̄(s) and 2mt . The explicit calculations give for
S51,

~2mt1Et t̄ !5345.18160.253 GeV ~s-TPS! ~52a!

5345.18660.253 GeV ~s-PA! ~52b!

5345.16860.254 GeV ~R-TPS! ~52c!

5345.16360.256 GeV ~R-PA!, ~52d!

and forS50,

~2mt1Et t̄ !5345.11960.263 GeV ~s-TPS! ~53a!

5345.11660.263 GeV ~s-PA! ~53b!

5345.10560.261 GeV ~R-TPS! ~53c!

5345.09660.263 GeV ~R-PA!. ~53d!

Here, the resummation of the mass 2mt was performed by
the bilocal TPS method in the first two cases@Eqs. ~52a!,
~52b! and~53a!, ~53b!#, and by theR-TPS method in the las
two cases@Eqs.~52c!, ~52d! and~53c!, ~53d!#—cf. Sec. II. In
Tables V and VI we give, forS51 andS50, respectively,
separate uncertainties in the mass (2mt1Et t̄) coming from
the corresponding variations of the input parametersas ,
03400
Nm , mm , m, a3 , c4 , s andmus . Adding them in quadrature
this gave the uncertainties in Eqs.~52a!–~53d!. We take the
arithmetic average of the central values in Eqs.~52a!–~52d!
for S51, and of the central values in Eqs.~53a!–~53d! for
S50,

~2mt1Et t̄ !5345.17560.256 GeV ~S51!, ~54a!

~2mt1Et t̄ !5345.10960.263 GeV ~S50!. ~54b!

Combining this with Eq.~51! and the aforementioned shi
valuedGEres.5100610 MeV in Eq.~50!, this gives finally

Eres.5~345.2860.26! GeV12.09~m̄t2164.00 GeV!

3~S51! ~55a!

5~345.2160.26! GeV12.09~m̄t2164.00 GeV!

3~S50!, ~55b!

In Tables V and VI we see that the major source of unc
tainty is from the uncertaintydas(MZ)560.0015, followed
by the uncertainty of the ultrasoft sector scaledmus @cf. Eq.
~48!# and in thes-methods by the uncertainty in the reno
malon residue parameterdNm560.020 and inR-methods
by the uncertaintydmm in the renormalization scale for th
resummation of 2mt .
TABLE VI. As Table V, but for S50. The input parameters are the same, except form (565
620 GeV) andk (51.1020.33

10.39, corresponding toNm50.53360.020).

us m mm as Nm a3 c4 s

s-TPS 2110 27 113 1184 1112 24 13 218
1110 17 29 2199 2127 13 24 130

s-PA 2110 29 113 1184 1112 23 11 217
1110 17 29 2199 2128 12 21 127

R-TPS 2110 0 28 1184 171 27 0 0
1110 113 295 2199 283 18 0 0

R-PA 2110 19 29 1183 175 26 0 0
1110 227 295 2198 290 16 0 0
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TABLE VII. Recently obtained values of (MS) m̄b mass obtained fromY sum rules or from spectrum o
theY~1S! resonance. Wherever needed~ @14,35#!, the central mass values were adjusted to the common in
central valueas(MZ)50.118.

Reference Method Order m̄b(m̄b) ~GeV!

PP98@43# Y sum rules NNLO 4.2160.11
MY98 @42# Y sum rules NNLO 4.2060.10
BS99 @67# Y sum rules NNLO 4.2560.08
H00 @57# Y sum rules NNLO 4.1760.05
KS01 @68# Y sum rules NNLO 4.20960.050
CH02 @69# Y sum rules NNLO 4.2060.09
E02 @70# Y sum rules NNLO 4.2460.10
P01 @13# spectrum,Y~1S! NNLO 4.21060.09060.025
BSV01 @55# spectrum,Y~1S! NNLO 4.19060.02060.025
PS02@35# spectrum,Y~1S! N3LO 4.34960.070
L03 @14# spectrum,Y~1S! N3LO 4.1960.04
This work, Eq.~56! spectrum,Y~1S! N3LO 4.24160.070
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We could adopt in the ultrasoft regime a more conser
tive approach, allowing for the parameterk8 in Eq. ~47! not
just to vary from value 1 up to value 2, but also to vary dow
to value 1/2. This would correspond to the variation ofmus
from 7 GeV down to 4.27 GeV@thus increasingas(mus)
from 0.198 to 0.228, if keepingnf55]. This would increase
the uncertainties60.100 and60.110 GeV in Eq.~48! to
60.260 and60.275 GeV, respectively. This would give i
our results~55! for the t t̄ resonance the increased uncerta
ties 0.35 GeV (S51) and60.36 GeV (S50).

The present experimental uncertainty in the pole mas
dmt55.1 GeV@58#, corresponding todm̄t54.86 GeV~pro-
vided we considermt to be the principal value pole mass!.
This implies, according to results~55!, the present experi
mental uncertainty (dEres.)exp.5610.16 GeV, which is still
very much above the uncertainties60.26 GeV ~or 60.36
when conservative approach in theus regime! coming from
the uncertainties of the resummation methods and of the
put parameters~other thanm̄t).

In this work we did not include electroweak~Higgs! ef-
fects, which are significant in the case of the top quark.
Refs. @62,63# the O(a) and O(aas) corrections, respec
tively, to the relation betweenmt and m̄t mass were calcu
lated. The size of these corrections significantly depends
the hitherto unknown massMH . For low Higgs masses
MH5100–300 GeV, these corrections change the value
mt , for a given value ofm̄t , by several percent. Inclusion o
these effects would be important for a realistic extraction
m̄t from the resonance energy of thet t̄ production.7

V. COMPARISONS AND CONCLUSIONS

In this section we will compare our results with some
the results recently published in the literature.

Our results for the massm̄b , Eqs.~44!, ~45!, Table II, will

7We thank M. Kalmykov for clarifications on this point.
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be compared with those recently obtained by authors w
either used pQCD expansions for theY~1 S! resonance mass
or Y sum rules. The only input parameter common to
these methods isas . The comparison of the various method
is more reasonable if the same central input value of (MS)
as(MZ) is taken. Our central value wasas(mt)50.3254
@⇒as(MZ)50.1192# since such@34#, or similar @20,64#,
values follow from the~nonstrange! semihadronict decay
data which are very precise@65#. On the other hand, the
world average as of September 2002 isas(MZ)50.1183
60.0027@66#. Most of the authors during the last four yea
used central valueas(MZ)'0.118. Therefore, for compari
sons, we convert our results~44! to this central value ofas–
more specifically, fromas(MZ)50.119260.0015 to 0.1180
60.0015. This can be easily done by inspecting in Table
the column underas , giving in Eqs.~44a!–~44d! an increase
in the central values of 11, 12, 8 and 10 MeV, respective
This gives the average 10 MeV higher than in Eq.~45!

m̄b54.24160.068 GeV @average when:as~MZ!

50.118060.0015#. ~56!

All the separate uncertainties given in Table II remain,
course, valid also in this translated result. In Table VII, w
give comparison of this result with others in the recent
erature. All these results have the central valueas(MZ)
50.118. Wherever the central value ofas was different
@14,35#, we performed the corresponding translation. Th
are two important numerical effects in our result. The first
the separate evaluation of the ‘‘perturbative’’ ultrasoft ener
part at the corresponding low renormalization ener
(&2 GeV), Eqs.~27! and ~39!. If we had not separated th
~‘‘perturbative’’! ultrasoft from the soft part of the binding
energy, the use of the common renormalization energy s
m ('3 GeV) in the resummation then would have given
the central value ofEt t̄(us) by about1100 MeV higher.
Then the extracted value ofm̄b would have gone down by
about 46 MeV, giving the valuem̄b'4.19560.068, with the
8-17
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central value close to that of L03 in Table VII. On the oth
hand, that latter value is quite clearly lower than the va
PS02 in Table VII, by about 150 MeV, principally because
the b51/2 renormalon effect which was taken into accou
here and in Ref.@14#. Thus, the renormalon effect bring
down the extracted central value ofm̄b by about 150 MeV,
but the separate evaluation/estimate of the ultrasoft contr
tion brings it up by about 50 MeV. The renormalon effect c
also be understood from Fig. 6~b!, which suggests that~at
m'3 GeV) the renormalon effect pushes upward the s
binding energyEbb̄(s) by about 300 MeV. We note that PS0
used pole massmb in their N3LO TPS evaluation of the mas
of the Y(1S) resonance before extracting the value ofm̄b .

Our results for the toponium binding energies are given
Eqs. ~46!, ~48! and ~49!, in connection with Tables III and
IV. The result of Ref.@14# wasEt t̄'23.0860.02 GeV~for
S51), but the central value ofas used there wasas(MZ)
50.1172. The result of Ref.@35# wasEt t̄'23.01 GeV, us-
ing the central valueas(MZ)50.1185. In Table VIII we
present our result~49! together with the results of these tw
references, in both cases rescaled to the common centras
value as(MZ)50.1192. We see that in our case the top
nium binding energies are significantly lower. This loweri
is a combination of the renormalonb51/2 effect and of the
ultrasoft effect. Figure 8~a! suggests that the renormalon e
fect, in comparison to N3LO TPS, brings down the soft bind
ing energyEt t̄(s) by about 150 MeV (m530 GeV) and 300
MeV (m560 GeV). Further, the ultrasoft effect~48! brought
down the binding energy by about 200 MeV. More spec
cally, when making our resummation with no separation os
and us parts, and using the common renormalization sc
m550–60 GeV, would give results for the binding ener
Et t̄ higher by about 200 MeV. The deviation of our result f
Et t̄ from the result of L03 in Table VIII can be explaine
principally with the ultrasoft effect, and the deviation fro
PS02 with combination of both the ultrasoft and the ren
malon effect. We note that P02 used in their calculation
Et t̄ the N3LO TPS withm'30 GeV and the pole massmt .

This lower binding energyEt t̄ is then reflected in the
value of the peak~resonance! position Eres.—Eq. ~55! and
Tables V and VI. For example, Ref.@35# obtains for mt
5174.3 GeV@and central valueas(MZ)50.1192] the val-
uesEres.5345.6360.16 GeV forS51 and 0, while we get
the values 345.2860.26 GeV (S51) and 345.21
60.26 GeV (S50), i.e., lower by 350 and 420 MeV tha
@35#. In Ref. @60#, NNLO results forEres. of several groups

TABLE VIII. Comparison of some of the toponium binding en
ergy valuesEt t̄ recently obtained in the literature. The first tw
values were correspondingly rescaled to our central inputas-value
as(MZ)50.1192, andmt5174.3 GeV.

Reference Order Et t̄ ~GeV!

PS02@35# N3LO 23.06560.157 (S51,0)
L03 @14# N3LO 23.2160.15 (S51)
This work, Eq.~49a! N3LO 23.41360.153 (S51)
This work, Eq.~49b! N3LO 23.48160.163 (S50)
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@61,71–74# were compared who used in their calculatio
various renormalon-free masses for the top quark. Their
sults were taken for the central input valuesas(MZ)
50.1190 andm̄t5165.00 GeV, and are all aroundEres.
'345.5 GeV, with variations, due to the renormalizati
scale ambiguity, being usually below 10 MeV. For these c
tral input values ofas and m̄t , our results~55!! ~see also
Tables V and VI! get modified to 347.3460.26 GeV (S
51) and 347.2760.26 GeV (S50), i.e., lower by about
200–300 MeV.
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APPENDIX: COEFFICIENTS FOR THE EXPANSION OF
THE SOFT BINDING ENERGY

We write down here the explicit coefficientsf j of the
expansion~26! for the soft part of the ground state bindin
energy. The logarithms appearing in these expressions
volve three scales@m,m̃,m̄q and m̄(m̃)5(4/3)m̄qas(m̃)],

L15 lnS m̄q

m̄~m̃ !
D , L25 lnS m̄q

m̃
D , Lm5 lnS m̄q

m
D . ~A1!

The coefficientsf j are

f 15
1

2
~35122L1211Lm211L2!1

1

9
~21126L113Lm

13L2!nf , ~A2!

f 25 f 2
(0)1 f 2

(1)nf1 f 2
(2)nf

2 , ~A3a!

f 2
(0)5@381.674190.75L1

2130.25Lm
2 1L1~246.4172121Lm

260.5L2!248.5L21Lm~2205.25160.5L2!

211.6973S~S11!#, ~A3b!

f 2
(1)5@242.7469211L1

223.66667Lm
2 1Lm~26.6944

27.33333L2!16.80556L21L1~233.0556

114.6667Lm17.33333L2!#, ~A3c!

f 2
(2)5@1.162861~3/9!L1

21~1/9!Lm
2 1L1~12~4/9!Lm

2~2/9!L2!1Lm~20.8148151~2/9!L2!

20.185185L2#. ~A3d!
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f 35 f 3
(0)1 f 3

(1)nf1 f 3
(2)nf

21 f 3
(3)nf

3 , ~A4a!

f 3
(0)5@6726.111665.5L1

32166.375Lm~40.8024

1~210.59921Lm!Lm!1L1
2~2381.5

21497.38Lm2499.125L2!2871.429L2

2499.125~21.88431Lm!LmL2

2201.438L2
21L1~7457.172497.292L2

1Lm~24346.381998.25Lm1998.25L2!!

2257.341~0.2111911L120.75Lm

20.25L2!S~S11!261.4109~26.13937

1S~S11!!ln~as~ms!!1440.172 ln~k!

12a3/43#, ~A4b!

f 3
(1)5@21274.3321277.92L12471.125L1

2

2121L1
311182.32Lm1843.667L1Lm

1272.25L1
2Lm2335.813Lm

2 2181.5L1Lm
2

130.25Lm
3 1124.501L21108.361L1L2

190.75L1
2L22186.708LmL2
r,

D

ys

s

s.

03400
2181.5L1LmL2190.75Lm
2 L2136.7292L2

2

1~4.06858115.5964L1211.6973Lm

23.8991L2!S~S11!#, ~A4c!

f 3
(2)5@70.8992170.2453L1128.9722L1

2

17.33333L1
3265.9925Lm251.6667L1Lm

216.5L1
2Lm120.5972Lm

2 111L1Lm
2

21.83333Lm
3 25.19388L226.57407L1L2

25.5L1
2L2110.9167LmL2111L1LmL2

25.5Lm
2 L222.09722L2

2#, ~A4d!

f 3
(3)5@21.2147521.21714L12~5/9!L1

2

20.148148L1
311.16286Lm1L1Lm

1~1/3!L1
2Lu20.407407m

2 2~2/9!L1Lm
2

10.037037Lm
3 10.0542857L2

1~1/9!L1L21~1/9!L1
2L2

20.185185LmL22~2/9!L1LmL2

1~1/9!Lm
2 L210.037037L2

2#. ~A4e!
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@62# M. Böhm, H. Spiesberger, and W. Hollik, Fortschr. Phys.34,
687 ~1986!; F. Jegerlehner, M.Y. Kalmykov, and O. Veretin
Nucl. Phys.B658, 49 ~2003!.

@63# F. Jegerlehner and M.Y. Kalmykov, hep-ph/0308216.
@64# B.V. Geshkenbein, B.L. Ioffe, and K.N. Zyablyuk, Phys. Re

D 64, 093009~2001!.
@65# ALEPH Collaboration, R. Barateet al., Eur. Phys. J. C4, 409

~1998!.
@66# S. Bethke, Nucl. Phys. B~Proc. Suppl.! 121, 74 ~2003!.
@67# M. Beneke and A. Signer, Phys. Lett. B471, 233 ~1999!.
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