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Calculations of binding energies and masses of heavy quarkonia using renormalon cancellation
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We use various methods of Borel integration to calculate the binding ground energies and mbsgsascf
tt_quarkonia. The methods take into account the leading infrared renormalon structurefdritie) soft part
of the binding energie&(s), and of the corresponding quark pole massgs where the contributions of these
singularities inM (s) = 2m,+ E(s) cancel. Beforehand, we carry out the separation of the binding energy into
its (hard+)soft and ultrasoft parts. The resummation formalisms are applied to expansiogsaodE(s) in
terms of quantities which do not involve renormalon ambiguity, suchviss massﬁq and ag(u). The
renormalization scaleg are different in calculations afy, E(s) andE(us). The mass?b is extracted, and
the binding energiek; and the peakresonanceenergiesE s for tt_production are obtained.
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[. INTRODUCTION spirit of the works of Refs[13,14. We combine some fea-
tures of these two referencds) the mass that we use in the
There has been a significant activity in calculation ofperturbation expansions is a renormalon-free mass

binding energies and masses of heavy quarkqﬁa’an recent [11,13,15-17 which we choose to be th&!S massaq

years. The calculations, based on perturbative expansion&ﬁq(,u:ﬁq); (b) Borel integrationg14] are used to per-
are primarily due to the knowledge of up to’D term  form resummations. However, before resummations we per-
(~a2) of the static quark-antiquark potenti(r) [1,2] and  form separation of the soft/potenti@ and ultrasof(us) part
partial knowledge of the ALO term there; the knowledge of of the binding energies, and apply the renormalon-based
the 1m, and 1m§ correction terms([3] and references Borel resummation only to the part. The renormalization
therein and the ultrasoft gluon contributions to a corre- scales used in the Borel resummations are~m, (hard
sponding effective theory NLO Hamiltonian[3—5]; and the  scalé for 2mg, and myas=s us<my for Eqq(s). The term
knowledge of the pole masg, up to order~ ag [7,8]. An-  corresponding tdEqq(us) is evaluated afis~ mqoé when-
other impetus in these calculations was given by the obseever perturbatively possible. Further, the Borel resummations
vation of the fact that the contributions of the leading infra-are performed in three different way&) using a slightly
red (IR) renormalon singularitiegat b=1/2) of the pole extended version of the full bilocal expansion of the type
massm, and of the static potential(r) cancel in the sum introduced and used in Ref$14,18; (b) using a new
2my+V(r) [9-11] (analogous cancellations were discovered" o-regularized” full _b|IocaI expansion introduced in the
and used in the physics of mesons with one heavy quarRresent work;(c) using the form of the Borel transform
[12)). Consequently, this cancellation effect must be presem\/here the leading IR renormalon structure is a common fac-
also in the total quarkonium madé=2m+E,;[13,14, or ftor of thg transform 19,20 (we call it R-method. The Borel
more precisely, iM (s) = 2mq+ E(s) whereE(s) is the hard  integrations for bottm, and Eq4(s) are performed by the
+ soft part of the binding energy, i.e., the part which includessame prescriptiorigeneralized principal value PM9-22)
the contributions of relative quark-antiquark momentaSO as to ensure the numerical cancellation of the renormalon
|k°|,|k|2mqas, i.e., soft/potential scale@redominantand  contributions in the sum 1B;+E(s). Furthermore, we
higher hard scaleg¢smaller contributions In addition, the —demonstrate numerically that in the latter sum the residues at
binding energy has contributioBi;q(us) from the ultrasoft the renormalons are really ConsistenF Wi_th the renormalon
momenta regimek?) ,|k|~mqa§. The ultrasoft contribution ~ ¢ancellation when a reasonable factorization scale parameter
is not related to thé=1/2 renormalon singularity, since this fOr the s-us separation is used, while they become inconsis-
singularity has to do with the behavior of the theory in thete€nt with the aforementioned cancellation when no such
region which includes the hard~(m,) and soft/potential separation is usgﬂ. The obtained numerical results a||OﬂUS to
(~mgyas) scales. extract the masmy, from the knownY (1S) mass of thebb

In this work, we numerically calculate the binding ground system and to demonstrate that the contribution is the
energiesE ;4 (separately the and theus part9 and the mass major source of uncertainty. .We: present also the numerical
(2mq+Egg) of the heaquasystem, by taking into account results for the grgund state binding energy for the scalar and
the leading IR renormalon structure of, andE (s), inthe ~ vector toponiumtt. _

In Sec. Il we recapitulate the calculation of the pole mass

mg in terms ofﬁq and ag (), and summarize the bilocal

*Electronic address: carlos.contreras@usm.cl method of Refs.[14,18, with a slight extension in the
"Electronic address: gorazd.cvetic@usm.cl renormalon-part of the Borel transform. In Sec. Il we per-
*Electronic address: patricio.gaete@usm.cl form the separation of the binding ground energy into the
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soft/potential's) and the ultrasoftus) part, and in Sec. IV we  const< A ocp [25] (cf. also[18]). This scale is proportional to
determine thes-us factorization scale parameter so that the\ha stevenson scafke [26] (cf. also[27]). The latter can be

[e”:’rmti|ciﬂ residue relproduced lflffﬂa(s) b’(aji‘?me? COS”SiS'Ivobtained in terms of the strong coupling parameter
ent with the renormalon cancellation condition. In Sec. IVa(c. co " )= ay(uicy.Ca, . .. )/m, wherec,= /8,

we further apply several methods of the Borel resummation= 5y 5re the parameters characterizing the renormalization
to calculateE,,(s) and Ei(s): the aforementioned bilocal scheme, by solving the renormalization group equation
method, the new &-regularized” bilocal method, as well as (RGE) [26]

the aforementione®-method, and always using in the ex-
pansionsm, mass. We also estimate there the ultrasoft con-

tributions to the binding energy. In Sec. V we compare theda(_’“): — Boa?(p)(1+cia(p)+cr@a(pm)+---) 3
obtained results with some of the results recently published In u?
in the literature and draw conclusions about the main nu-

merical features of our resummation procedure.

A2\ 1 raw 1
=In > :—J' dx > >
Il. POLE MASS u Bolo X2(1+CiX+ X2+ - - )
Here we redo the calculation of the pole magsin terms 1 1
of the MS renormalon-free massi;=mq(u=m,) and of x2(1+c,x)|  Boalu)
ag(u,MS), using elements of the approach of Héf3] and
the bilocal expansion method of Refd4,18. In the Borel +& N 1+cia(uw) @
integration, we choose thigeneralizegiprincipal value(PV) Bo cia(u)
prescription[19-22. The ratioS=(m,/my—1) has pertur-
bation expansion iMS scheme which is at present known to ~ 1 1+cia(u)\”
order~ a2 (Ref.[6] for ~ag; [7] for ~a?; [8] for ~a?), =A=pexp — 2B0a(p) ]| cralp)
my 4 ) 1 (aw
= D01 Za(u[1+ alu)ra(p) k() raw) xexp — o ax
Mq Bolo
+0(a%)], (1a y (CotCaX+CpX2+--+) 1 ©
ro(p)=r1+ BoLl m( 1), (1b) (14 cX)(1+CXx+CoX2+--+) '
Fo( )= Ko+ (261 Bo+ B Lm( )+ BELE (1), where v=c,/(280) = B1/(23); the coefficientsz; (j=2)
(I will be taken here inMS scheme. Expansion of expression
(5) in powers ofa(u) then gives
(413) k1 =6.2483,—3.739, (1d)
l o0
(413) k= 23.49733+ 6.2483, + 1.0198,— 29.94, A= exp(—— a(w) " "c Y1+ T.ak ,
e 1 Sfeatm) 2 Te | 1 2 T (w
(6)
where Lp,=In(u?mf), while Bo=(11-2n/3)/4 and B,
=(102—38n/3)/16 are the renormalization scheme inde-where
pendent coefficients with;=n, being the number of light
active flavors(quarks with masses lighter than,). The _ (ci—cz)
natural renormalization scale here js=u,~m, (hard =55
scale. Po
Therefore, the Borel transformg(b) is known to order
~b?, ~ 1
r2=8—B2[<c§—c2>2—2ﬁ0<c3—2c1c2+c3)], (73
0

Bs(bju)=7z| 1+ b+

b?+O(b%)|. (2

4 ro(m)  ra(u)
3

Ts [(c5—c2)3—6B(ci—Cy)(C3—2C1Co+Ca)

It has renormalon singularities &é=1/2,3/2,2...,—1, - 4883
—2,...[15,23,24. The behavior oBg near the leading IR 0 4 ) 5
renormalon singularitp=1/2 is determined by the resulting +8Bp(c1—3ciCr+Cy+2C1C3—Cq) . (7b)

renormalon ambiguity ofn, which has to have the dimen-
sions of energy and should be renormalization scal€n the other hand, for the uncertainty m, from the b
and scheme independent—the only such QCD scale being1/2 renormalon singularity to be proportional to the quan-
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TABLE I. The MS RGE coefﬂuents:k B! Bo (k=1,2,3,4) and renormalon coefficientsand c ¢ (]

=1,2,3) for thebb (n;=4) andtt (n{=5) system.

N Cq Co C3 Cy v Cy Cy C3
4 15400 3.0476 150660 (4(60) 0.3696 —0.1054 02736  (0.010.17)
5 1.2609 1.4748 9.8349 (#20) 0.3289 0.0238 0.3265 —0.20+0.08)

tity (6), this implies that the singular part of the Borel trans- In this work, in applications of the bilocal and related meth-

form Bg(b) aroundb=1/2 must have the forin

i
b; N D E———
Bs(b;u)=Npm= q(l 2b)1+V

1+ > Ek(1—2b)k}
k=1

+BE™(b; ), (8a)
-~ N ~ T,
T 2B 2T 28 (r—1)
o= & (8b)

(2B0)%v(v—1)(v—2)’

and B&")(b; ) is analytic on the diskb|<1. TheMS co-
efficientsc, andc; are already knowh28,29, but forc, we
have only estimatef30,31] obtained by Padeelated meth-
ods. Referencd30] gives ¢,~97(n;=4);86(n;=5), and
Ref.[31] givesc,~40(n;=4);70(n;=5). However, the es-
timate of[30] is obtained from a polynomial in; with es-

ods, we will use the value dfl,, as estimated in Ref33],
which used forRg(b) truncated perturbation serig3PS
and Padepproximation 1/1]:

N,,(n¢=4)=0.555+0.020, (123

N,.(n;=5)=0.533+0.020. (12b)

The bilocal expansiofi8a) has then for the analytic part the
polynomial

(an) m, " e
BE™(b; ) =hg™ + b+ b?, 13
4 I'(v+k+1-n)
(m_ = )k - 7
N =3 ”Nm—q(zﬁo ZO “Tri-n)
(13D

timated coefficients, where large cancellations occur betweewhere, by convention,,=co=1. We can then take foBg
various terms. Therefore, we will take as the central valueéhe bilocal formula, i.e., Eqg8a) and (13) with the expan-

the estimates df31], with the edges of thex{) uncertainties
covering the values di30]

—40+60 (n;=4), (9a)

c,=70+20 (n;=5). (9b)
Thus, ¢; can be obtained via Eqg7b), (8b): ¢3=0.01
+0.17 (ny=4); —0.20£0.08 (n;=5). The values oft,’s
andc,’s are given in Table I. Now, théull) bilocal method
[18] consists of taking in the expansi®da) for the analytic
partB&™ a polynomial in powers o, so that the expansion
of Bg aroundb=0 agrees with expansiof2). For that, the
residue parameteM,, in Eq. (8a has to be determined. Us-
ing the idea of Ref[32] it was estimated with a high preci-
sion in Refs[13,14,33:

mg 1
Nm:? ;Rs(bz 1/2), (10)
where, according t¢8a)
Rs(b;u)=(1-2b)"""Bg(b; ). (11)

1See, for example, Ref22] for some algebraic details of obtain-
ing the typical renormalon ambiguity I18(z=28qa(u) *ie).

sion aroundo=1/2 in the singular renormalon part truncated
with the termc,(1—2b)3,

3
M ~
B(b: (biloc.) — W_—{l—l— c.(1—2b k}
S( Iu’) (1 2b)1+v k§=:l k( )
2
h(m
N k . k (14
k=0 k!Bp

Applying the (generalized principal value(PV) prescription
for the Borel integration

iRefmﬂgdbexp< - L
IBO +ie IBOa(lu)

we obtain the pole mass, in terms of the mass,. The
numerical integration is performed, using the Cauchy theo-
rem, along a ray with a nonzero finite angle with respect to
the b>0 axis, in order to avoid the vicinity of the polas
explained, for example, in Ref20]).

In Figs. 1a), (b), we present the resultingPV) pole
masses of the andt quarks, as function of the renormaliza-
tion scaleu. The spuriousu-dependence is very weak. In
addition, results of another meth@tR”-method) are pre-
sented in Figs. @), (b), with the u-dependence stronger in

S=

Bs(b;u), (19
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. : : 174.33 . . . . —
498 1 biloc (N;=0535) —— | o[~ T T
biloc.(N"=0.555) — I I
biloc.(Nm=0.575) ————— 174.32
497 - (a) R-meth. - 1 e -
174.31 p---
ass |\ M, = 4.23 GeV 1 1743 |
2 a,(Mz)=0.1192 % 17429 |
O, 495} 19}
e = 17428 1
174.27 1 7 Tiy=164.00 GeV
17426 L 0,(M)=0.1192 |
biloc.(Npy=0.553) ~—----
|/ biloc.(N7=0533) — |
- 174.25 (b) biloc.(N=0.513) e
R-meth. --------
492 - - : : : 174.24 . : : : :
06 0.8 1 1.2 1.4 06 0.8 1 1.2 1.4
/iy, wim;

FICi 1. The(PV) pgle mass of th€a) bottom and(b) top quark, as function of the renormalization scaleThe input parameters used
were mp=4.23 GeV, m;=164.00 GeV, respectively; the residue parameter valiBswere used for the bilocal method. The reference
value forag (in MS) was taken to bexg(m,)=0.3254( [34]) corresponding tary(M ;) =0.1192.

the low-u region (M/Eq<1)- The R-method(applied in malization scale independent in the approximation of the
other contexts in Ref§19,20) consists in the Borel integra- One-loop RGE running, and the renormalon cancellation is

tion of the function(11) true at this one-loop level.
1 wxig b Rs(b;u) Ill. SEPARATION OF THE SOFT AND ULTRASOFT
s :8_0R6f+is dbexp — Boa(w) (1_2b)1+v’ CONTRIBUTIONS

(16) The perturbation expansion of tifeard + soft + ultra-

) ) soft) binding energyE ;4 of the qaheavy guarkonium vector
where for RS(Q the correspondﬂgNNLO) TPS is used. (S=1) or scalar 6=0) ground stater{=1,{ =0) up to the

When we takem,=4.23 GeV andn,=164.00 GeV and we  N3LO O(m,a?) was given in35], where previous results of
vary the values of the residue paramétgraccording to Eq.  Ref. [3] were used. The latter reference used in part the re-
(12), the bilocal method gives, ai/my=1, variation mj, sults of Refs[2,36—3§ (static potentigl and of Refs[39—
=3 MeV and Sm;= +20 MeV. When the central values 43] (binding energy. Referencg35] (and[3]) employed the

of N, (12) are used, the variation of the obtained values ofmethod of threshold expansion where the integrations were
mg with 4, when wu/mg, grows from 1.0 to 1.5, is about 5 Performed in (3-2¢) dimensions. The reference mass scale
MeV and 6 MeV form, andm,, respectivelyfor R-method: ~ Used was the pole masg,. The ground state energy expan-
4 MeV and 6 MeV). Whenc, is varied according t¢9), the  Sion has the form

variation is about+2 and 1 MeV for m,, m;, respec-

tively. The ag(m,)=0.3254+0.0125[34], corresponding to -~ 2.2 2
ag(M5)=0.1192+0.0015. This uncertainty is by far the ma- 99~ g™ & ({1 ra(mlkeotkydp(p)]+ai(u)

jor source in the variation of the pole massesmf), 5 3
° X[ka ot Kol p(p) + Kool p()]+a(w)[Kkso

=113 MeV for bilocal method {137 MeV for R-method,
and (5my),.= 191 MeV for bilocal method(*13; MeV for +Kaalp(p) +Ka sl 2(p) + ksl 3(w) 1+ 0%}, (17)
R-method.

The natural renormalization scale here is a hard scale where
u~mg, and will be denoted later in this work as, in order

to distinguish it from the “soft” renormalization scalg Lo()=In M (18
used in the analogous renormalon-based resummations of the LK
(hard+)soft binding energyE,q(s) (my>u=mgyas) in Sec. 3Mgma(s)

IV. The fact that the two renormalization scales are different

does not affect the mechanism of the=(1/2) renormalon  The expressions for the coefficierits; of perturbation ex-
cancellation in the bilocal calculations of the meson masgansion (17) for the ground state binding energy of the
(2mq+Eqq(s)), because the renormalon ambiguity in eachquarkonium o=1; ¢=0; S=1 or 0 are given below. The
of the two terms is renormalization scale independerth, NLO and NNLO terms were obtained in Refd0-43. The
as seen by Eqg$6)—(8). On the other hand, iR-type meth-  N3LO terms were obtained in Ref35]—-their Egs.(6) and
ods(16) [cf. also Eq.(10)] are applied for the resummations (12), but now written in numerically more explicit forfand

of 2my and Eq4(s), the renormalon ambiguities are renor- with N.=3),
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97 11 properties of the series fd,q(s). The natural renormaliza-
ki1=4Bo, Kio= (E - gnf), (198 tion scalex in the resummations @& q(s) is expected to be
closer to the soft scalenf;as=u<my).
927 193 On the other hand, the 3O coefficientks , obtains ad-
Ko o= 12833, k2,1=———nf+nf2, (19p  ditional contributions from the ultrasofus) regime. The

4 6 leading ultrasoft contribution comes from the exchange of an
K, o= 361.342- 40,9649, + 1.162861°— 11.6978(S+ 1) ultrasoft gluon in the heavy quarkoniurs,10]. It consists of
2.0 ' ' = f ' (1§c) two parts:
5 09 02 (1) The retarded part, which cannot be interpreted in terms
4521 10955 1027 , 5 i - i
—anp3 _ B 2 2 3 of an instantaneous interaction
ks3=32B0. Kso=— 52 Mt 3g NiTghts L AT
19 - =—_—|_] LE~
(190 nggyo(us,ret.) 377(3) LT~+41.014, (21
ks = 7242.3- 1243.951+69.106617 — 1.217147 whereL 5~ —81.538 is the QCD Bethe logarithm—see
9 Refs.[3,5].
+ (— 67584+ 40960)S(S+1), (19e¢  (2) The non-retarded part can be calculated as expectation
2592 value of theus effective Hamiltonian* “s in the Cou-
lomb (i.e., leading orderground statg1), whereH "s
Ky o= | (7839.82-1223.68, +69.45087— 1.21475°) (in momentum spagevas derived in Refq.3,5]. Direct
30 ' o ' [ f calculation of the expectation value, here in coordinate
5 space, then gives:
T
+(—109.05+ 4, +1)— (- 1 9 1
(—109.05+4.0685%;)S(S+1 18( 1089 ks fus nonret) = — —— (1/151)
m 410 mqa5(,u)
a
+1125(S+1))In(a(p)) + 2= |. (19f) 2 1 # 5
4 = sin—=+=-In2
mmga’(u) |2 (ED? 6
Here,az is the hitherto unknown three-loop contribution co- 5
efficient to the QCD static potentidf,(r), whose values !l 3 1] E|1
have been estimated by various methods in Refs. 8 () r )
[44,13,14,33 We will use in this work the estimates of Ref.
[33], obtained from the condition of renormalon cancellation a%(p) 1
- 2 M
in the sum (2g+Vaq(r)) pRa S
ia (nj=4)~86+23 (20a 47 a(p)
43730 o 5~ (1an[1)
My
! + a(p) 1
Ea3(nf=5)=62.5_20. (20b) +37 o (1]{ A, - 1)t (223
q
The coefficients(19) in the expansion(17) originate from B Mt
guantum effects from various scale regimes of the participat- =-14.196In mqa2 ) +0.9511.
ing particles:(a) the hard scales~m;); (b) the soft and s (22b)

potential scales where the three momenta [afle- mga
(19°|~ mgas in the soft andq°|~mgya? in the potential re-
gime); (c) ultrasoft scales whergq®| and |q| are both
~mqa§. The coefficients are dominated by the soft scales;
the hard scales start contributing at the NNL& and are In Ref.[3], the authors included in the ultrasoft part of the
numerically smaller. For this reason, in this work we will Hamiltonian additional term#7 S which contained contri-
usually refer to the combined soft and hard regime contribubutions from the soft regime. These terms arose because of
tions to the binding energy as simply s@f) contribution  their use of a method called threshold expan$#f where
Eqq(s). Strictly speaking, it is only the pure soft regime that the integrations over potential momenta are not performed in
contributes to thé=1/2 renormalon. However, for simplic- three dimensions but ird—1)=(3—2¢) dimensions. How-

ity, in our renormalon-based resummations we will resum theever, their method gave in the soft regime also the same
hard+ soft contributionsE ;4(s) together, not separately. This additional terms, but with negative sigimcluding logarith-

will pose no problem, since the hard regime, being clearlymic terms not associated with IR-divergent integrals—
perturbative, is not expected to deteriorate the convergenagnphysical. Since they were interested in the total sum of

Here, ES = — (4/9)mya’(x) is the Coulomb energy of
the statg1), andu; is the factorization energy between
the soft (~myas) and ultrasoft (~mqa§) scale.
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contributions from various regimes, the method gave the corah, grade in |'ﬁM/(Fha(M))] [cf. Egs. (17), (18), (258]

rect result, as emphasized by the authors there. . . L
o . . which, at large orden and in the large8, approximation,
The s—usfactorization scalg:; can be estimated as being .
sums up approximately to a term

roughly in the middle between theand us energies on the = —

logarithmic scald33] ~(Bol2)"nlexp I u/(mga(w)1=(Bd/2)" n! (u/mg) La(u)
[16], effectively reducing the power ai(u) in Eqq(s)/m,

: (23)  py one. Further, the factors/2)", n! and « in the approxi-

wherex~1 andu ~Es (< ). Therefore, the ultrasoft part mate sum of the logarithmic terms () reflect the effect

of the N*LO coefficientks o can be rewritten, by Eqg21), ~ Of the leading b=1/2) IR renormalon irEqq(s)/mg.
(22) and(23), in terms of thes—us parametelk as For the Borel-related resummations &f,(s), which
would account for the leading IR renormalon structure, we

1 have on the basis of these facts in principle at least two
—3k3’0(u5) =27.512+7.098 IMag(s)) —14.196 I k). possible directions to proceed. The first direction would be to
o

(24) use the Borel transform of the expansion Egg(s)/ﬁq

=35Tn(m)a" ?(u) where the transformation(u)—>b is
The soft scaleus appearing here will be fixed by the condi- performed literally with respect to a#l(u)-dependence, in-
tion ue=(4/3)Mqas(is). _ cluding the one appearing in the coefficients This would
The formal perturbation expansions for the separate sofiesult in a Borel transform whose power expansion around
and ultrasoft parts of the ground state binding en¢igyare  the origin would include termb*in‘b with €=0,1,2 . . . .

mil~( ESEUS):L/Z] = Kmqas(/"’s)slz

then The second direction would be to divide the considered
4 2 i quantity by a(x) (=Eqq(s)/[mga(x)]), whereu is any
Eqa(s)=—§mq772a2(,u,) 1+2 a'(M)E ki jLp(p)] fixed soft scale, and then consider the coefficients in the
i=1 j=0 expansion of this quantity in powers afu) as independent
3 of a(u), e.g., by expressing them in terms af). In the
+a3(mj21 kg, +a3(u)[kso—kadus)] obtained expansion, the coefficients now contain powers of

logarithms Ifa(x)] which are considered as constanon-
variable under the Borel transformation(u)—b.? It is
+O(a4)}, (259 possible to see that, at largeand in the large3, approxi-
mation, this is equivalent to the first approach, because the
powers ofa(u) have been decreased by one, and the coef-

Eqq(us)=— gmqwzaz(m{a3(u)k3,o(us)+(’)(a“)}. ficients are;nqw proportional tg3,/2)"n! w/a(u) where the
factor 1A(w) is now formally constant and does not affect
(25b) the Borel transformexcept as an overall constant fagtor
The equivalence is assumed to persist when we go beyond
the largepg, approximation, in the same spirit as the authors
of Ref. [16] assume their conclusions to be valid beyond
rgeBy.
We stress that in both approaches the original expansion
. . ) ) of Eq4(S) in powers ofa(u) is recovered by applying the
(whenj=1) in Egs.(17), (18). This soft scale is equal to Bore(iqintegration according to the standard formul)
2lag(p) whereag is the (Bohn radius of the heavy quarko- ey term to the expansion of the Borel transform around
nium. The renormalization scale in Eq. (253 is of the p_4
order of the soft scale or above. We will re-expresgev- In this work, we decide to follow the second direction.
erywhere inEqq with the renormalon-free mass, (1), and  The main reason for this is of practical nature: The first ap-
will consider the dimensionless soft-energy quantityproach would generate in the expansion of the Borel trans-
Eqq(s)/my. form aroundb=0 the terms containing InIn’b, . . ., which
The expansion OEqE(S)/mq=2§Fn(M)a”+2(M) has at introduce, at any finite order at least, a cut-singularity along
large orders the seemingly peculiar feature of the so-callefl’® entire negative axis in thie plane. We are working at
“power mismatch”[16] (see also[46]): when this sum is finite orders. This cut would seriously hamper our re-
added to the expansion (1) 2m, /m,=[2 summations. For example, the quantity analogouRd4(®)

+ (8351 ()a" Y(w)], the coefficient (1) at powers Eq. (11) of the previous section, but this time f&gq(s)/m,
a""2(u) of Eqq(8)/my must be combined with the coeffi-

cient (8/3),(u) at powersa"*(u) of 2mg/mq to ensure 2This is in close analogy with the behavior of the static potential
the cancellation of thb=1/2 renormalon contributions. This Vgq(r) and its dimensionless versionVqq(r) where r~ag

is so because the coefficieTm(,u) contains a polynomial of ~1/[Eqa(ﬁ)] (see, for example, Ref§9—-11,13,14,33B.

The energyEqq(s) (253 contains the leading IR renormalon

effects, andEq(us) (25b) does not. In these expressions, the
common factor is the soft scalg(u)=(4/3)mqas(u) la
which is also present as the reference scale in the logarithms
Lo(u) =In(uw/up(n)) appearing with the coefficients; ;
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with the first approach, has a cut alohg0, i.e., starting 4— 5
already at the origin, and the resummatiorbat1/2 would Eqq(us)~ — gMam kg (US)a>(sys)- 27
be difficult. On the other hand, the analogous quarRifi)

for quis)/[ﬁqa(ﬁ)] in the second approach has no singu-
larities at|b|<1/2, and for 1/2|b|<1 has only a cut with-

out infinity along the positive axis. Such a quantity can be |n this section we will evaluate the soft part of the ground

much more easily resummed on the basis of its expansiogtate energy for the vectd&rE[Y(lS)] and for the vector
aroundb=0. Nonetheless, the first approach presents an in- d latt Koni In additi il estimate th
teresting alternative for which resummation techniques othef!C scalatt quarkonium. in addition, we witt estimate the

than those presented here would have to be developed andHJFraSgﬁ part of the energy, and will extract the value of the

IV. EVALUATION OF THE BINDING ENERGY

applied. massm, from the known mass oY (1S).
Thus, we will divide the soft binding energy with the
quantity ;(ﬁ):(4/3)ﬁqas(ﬁ), where  can be any soft A. Methods of resummation for the soft energy
scale. We will fix this scale by the conditionu At first we will apply the same methods as those used in

:(4/3)5(]“5(;7) (=un=pg). Further, in the logarithms Sec. Il Howc_ever, the ex_pan_sion we will use fo_r the soft
L,() we express the pole mass, in terms ofmy and ~ ENErgy quantity(s) (26) is higher by one order i(u)

powers ofa(x) (cf. Sec. 1), and the powers of logarithms than in quantityS Eq. (1) of Sec. Il. In the_ NLO coefficient _
In{a(z)] we re-express in terms of fa(z)]. This then re- f3 we have dependence on the approximately known coeffi-

i : e cientas (20), and on thes-us factorization scale parameter
sults in the following soft binding energy quantig(s) to be k~1 Eq. (29—see the Appendix, EqEA4). It turns out

resummed: that, in f5 (f{)), the coefficient at I is larger than the
coefficient ataz/(100x 4%). On the other hand, the coeffi-
9 Eg9) ) cient at Ink in the ground state expectation value of the static
F(s)=—— =—=—=a(ull+a(pfi+as(uwf; potential is about one tenth of the corresponding coefficient
47° mga(u) ! o
q in the (soft) ground binding energy
+a¥(w)fa+ 0], (26)

Eqq(S;In k—parh~—1.93x 103 (mga’(u))In «,

~ (283
where the coefficientd; depend on Ia(u) and on three
scales: the renormalization scale (=myas), the (fixed) (1|Vgq(r)|1)(In k—part ~ —1.95x 102(ﬁqa4(,u,))ln K,

soft scaleu, and mg. The coefficientf; depends, in addi- (28b)
tion, on the parameters (23)—(24), us, andas (20). The
coefficientsf; are written explicitly in the Appendix. The Eqa(s;ag—part)=<1|an(r)|1>(a3—part)
=1/2 renormalon in the quantitiy(s) is then of the type of .
the renormalon of the pole masg, discussed in the previous ~—8.77X 102(mqa4(,u))
Sec. Il.
However, if we divided in Eq(26) by m, instead ofm, > a3 _ (280
and at the same time used in the resultinecoefficients 100x 43

Inm,, the numerical resummations &f(s) by methods of
Sec. IV would give us values fdq(s) different usually by ~ Since a;/(100x43) is roughly between zero and offef.
not more thanO(10" MeV) (we checked this numerically — Eq. (20)], as is also Ik, Eq. (28) shows that the static po-
We will briefly refer to these approaches later in this sectiontential is more influenced by the values @f than by Ink,
as “pole mass” approaches. A version of such pole massvhile the situation with thésoft) binding energy is just re-
bilocal approach was applied in RgL4] for resummation of  versed. More specificallya) the static potential is more ap-
the unseparateB,(s+us). propriate to obtain approximate values &f, as was done,
The ultrasoft part(25b), on the other hand, has Mo  e.g., in Ref[33] and given in Eq(20); (b) the soft part of the
=1/2 renormalon. The mass scale used there should also Inding energyE4(s) is more appropriate to obtain approxi-
renormalon free 1f). The renormalization scalg there mate values of the-us factorization scale parameter We

should be adjusted downward to the typicalscale of the recall that in[33], the values ofa; (20) were obtained by
associated procesg— us (quag) in order to come requiring that the known values of the renormalon residue

closer to a realistic estimate parameteiN,, (12) be reproduced from the Borel transform
of the static potential functiomV ,(r). Here we will pro-
ceed analogously, and will obtain approximate valuesc of

3The authors of Ref[47] employed a somewhat similar idea of (23) by requiring that the residue parameter val(&3) be

using different evaluation methods for contributions to the spectrdeproduced from the Borel transform of the soft binding en-

of heavy quarkonia from different regiméshort, intermediate and  €rgy quantityF(s) of Eq. (26).

long-distancg A similar reasoning was employed, in the context of ~ As already mentioned, in contrast to the situation in Sec.

high-T QCD, in Ref.[48]. Il, the coefficientsf; of the perturbation serie€6) have
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FIG. 2. The residue parameter valdg, as calculated from the soft part of the binding energy of the bottonium according {8Hg.
(a) as a function of thes-us factorization scale parameter (23), at u=3 GeV; (b) as a function of the renormalization scale at
=0.59. Further explanations given in the text.(&, the known value$123 of N,, are denoted as dotted horizontal lines.

some terms proportional to Y@(u,))(k=1,2,...) where Here we denoted, for clarity, explicitly the dependence on
w, generically denotes fixed chosen scalesor uc—cf. the the factorization scalgs . Expressiong29) and (30) imply

Appendix. Here we will argue that these scales should be _

between hard and ultrasoft. These terms are considered con- 2w mga(u) o

stant, independent ai(w), although they can be formally mTT T, Re (9 (03 143 1) [b=12-
re-expressed in terms of(w). The terms of the type lain

the problem at hand are the leading terms of logarithms ofhe expansion oRg(s is exactly known up to~ b2, and
ratios of various scales appearing in the probl@h Ref.  approximately up to~b® (N3LO TPS, where the latter co-
[3]), among them Irs/Ey) and InEys/Es). The typical  efficient is dependent or (and, more weakly, omy). All

hard, soft, and ultrasoft scales of the problem are, &g., coefficients are dependent also on the renormalization scale
=mq, Es=(1/r), Eys=Eqq, i-€., quantities independent of , (=myas). It turns out that the expansid8l) is signifi-

the renormalization scaleu().* The u-independent ratios of cantly less convergent than the seri&$) (atb=1/2). How-

the type Es/Ey and Eys/Es have expansionsEx/Ey  ever, it is not clearly divergent, unless we take unreasonable
=a(u)[1+0(a)]. The typical resummed value of this values ofx or u. Theoretically,Re s (b) should be a func-
quantity can be written aa(u,) where u, is the typical  tion with only a weak singularitfcut) at b=1/2, and the
scale of the quasiobservaldig /Ey . This suggests that the nearest pole ab=23/2 (i.e., the next renormalon pole of
Ina(w, )-terms in the coefficients of the perturbation seriequa(r) [50]). Thus, resummations such as Paqgroxima-
should really be somewhere between hak,{ m;) and tions (PASs) are expected to work better &k (b) than on

(31)

ultrasoft Eys~mga?d) scales. Br(s(b). The Padeapproximation with the simplest pole
Similarly as in Eq.(8a), we have structure for the RLO TPS is[2/1], i.e., ratio of a quadratic
with a linear polynomial inb. It turns out thatRg [ 2/1]
Broo(bi i) = Np o o 1 X (b) has physically acceptable pole structiiog,d =1 for
Fo)(P3) =Nmz mea() (1—2b)*" most of the values of.=myas andx~1. Using this Padéo

evaluate expressiof81) gives us predictions for the residue
parametelN,, reasonably stable under the variatiorpafOn
+BEEb; ), the other hand, the predicted value Mf, depends signifi-
cantly on thes-us factorization scale parameter(23).
(29 In Fig. 2@ we show the dependence b, on «, at a

where the factor in front of the singular part was determinedYPica! (‘central”) n value n=3 GeV, for thebb system.
by the condition of renormalon cancellation of the sum € known central valu¢l2a of Ny is obtained by the

2my+ Egq(s). We now define in analogy with Eq11) Re(s[2/1](b=1/2) expression ak~0.59. In Fig. 2b) we
4’ present, forx=0.59, the dependence of calculatég on the
Re(o(b;m;me)=(1-2b)1 "Be(g(b;uipg).  (30)  renormalization scalew. There, we include also the
([2/1]-resummed curve for the case when no separation of
thesandusparts of the energy is performed. In that case, the
“A very similar phenomenon occurs in the perturbation expansiorPbtained values o, are unacceptable. If the “pole mass”
of the free energy of the high-temperature quark-gluon plasmaversion is appliedmentioned in the second paragraph after
where the hard scale is the Matsubara frequene¥ 2and the soft  EQ. (26)], with no separation of the and us parts, the ob-
scale is the Debye screening mass (~g.T) [48,49. tained values of the[@/1]-resummed curve remain above

©

X[ 1+ > C(1—2b)k
k=1
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FIG. 3. Same as in Fig. 2, but for th&<£ 1) toponium. In(a), »=55 GeV and the known valugd2b of N,, are given as dotted

horizontal lines.

0.70 as well, thus unacceptable. The other values of the input 0 59+ 0.19; variationN,,,=0.533+0.020 [tt, Eq. (12b)]

parameters are chosen to have thle “central” values:
a3/4%=86 (20a; m,=4.23 GeV;n=1.825 GeV & u) and
ag(m;n;=4)=0.3263F ay(us;n;=4)=0.326)  [from:
ag(m,;n;=3)=0.3254, i.e.as(Mz)=0.1192[34]]. For the
RGE running, we always use four-lodgS g-function(TPS
and three-loop quark threshold matching relatiffsts, with

Mthresh=2M¢, 2My, . .
In Figs. 3 and 4 we present analogous results fortthe

implies k=1.16" 335 (S=1) andxk=1.10" 333 (S=0). If, on

the other handaz parameter is varied, according to ER0),
then forbb x=0.59+0.06, and fortt x=1.16,510 (S=1)
and k=1.10; 5% (S=0). Thus, the value o$-us factoriza-
tion scale parametet is influenced largely by the allowed
values(12) of the renormalon residue parameter, and signifi-
cantly less by the allowed values (20) of the N°LO coef-
ficient of the statiayq potential. Therefore, we will consider

vector (S=1) and scalar $=0) bound state. The typical the variations oNy, (12) and of« to be related by a one-to-
(“central”) values of the renormalization scale were choserPn€ relation, while the variations af; (20) will be consid-

to beu=55 GeV and 65 GeV, respectively. Tkais factor-
ization parametek values obtained werg=1.16 (S=1)
and k=1.10 (S=0), so thatRg)[2/1](b=1/2) would re-
produce the known central val(&2b) of the residue param-
eter N,,. The other input parameters have ttte“central”
values: a3/4*=62.5 (20b); m,=164.0 GeV; u=31. GeV
(~us) and  ag(u;n=5)=0.1430 [~ag(us;ni=5)
=0.14]. The values oN,, extracted when no separation®f
andusis performed, are unacceptably hityh,=0.6 (also in
the “pole mass” versionN,,=0.6).

Variation N,,=0.555+ 0.020[bE, Eq. (123] implies «

0.62 .
N?LO TPS
06 1 S=0 p=65GeV
0.58 | (a) Ng=5 M=1640GeV |
0,(M5)=0.1192
0.56 | ]
Z os4l PA[2/1
052 | -
05 )
oasl - N°LO TPS
0.8 1 1.2 14 1.6

K

ered as independent.
In this way, we have the following values for ttseus
factorization scale parametet: (23

N,,=0.555+0.020=k=0.59+0.19 (n;=4,S=1),

(329
Np=0.533+0.020=x=1.16"03 (n;=5S=1)
(32b
=k=1.1033 (n;=55=0),
(329
0.66
0.64 (b) ‘
062 \
PA2/1](s+us) "8 =0
06|
. nf =5
ZE 0.58 NZLO TPS k=1.10
M= 164.0 GeV
056 N 0e(M)=0.1192
0.54
0s2 | N*Lo RS
05 : : . W :

20 30 40 50 60 70 80 90 100
u[GeV]

FIG. 4. Same as in Fig. 3, but for the scal&=0) toponium. In(a), =65 GeV is taken.
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and thus _vve.obtain the3NO TPS(26) for the soft part of the w’s) unacceptably small in sizéb,,d=<1/2. Theoretically,
ground binding energy. _ BE4(b) should have the nearest poleat 3/2 [50]. Thus,
We wish to add a comment ok-dependence oN,, in glan)

Figs. 2—4. Theoretically, the parametds, should be inde- -9 2PPear® fo be too singular in the above bilocal ap-
y ' U . proach, and the TPS and Paelaluations of it would result
pendent of thes-us factorization scaleu; and thus indepen-

in widely differing resummed values for the energy;(s).
dent of the related parameter (23). However, among the o reason for this problem appears to lie in the specific
ue-dependent terms iRg g (b; u; us) of Eq. (30), only the

. . . . S0 . truncated form of the singular part taken in the bilocal
leading term is available. Due to this restrictive practicalyethog(33). While the latter part describes well the behavior
situation, the value of the residue parameter obtained by

X A of the transform nearb=1/2, it influences apparently
Eq. (31) automatically possesses significant-dependence  qnq)y the coefficienth, and thus the analytic part, so that
(or fc_-erendeng)e and. the value Ofy (9f K? is fixed by g reliable resummation of that pdepart from TP$can be
requiring that this leading order expressionun reproduces

the known value olN-. The value ofw. obtained in this done. In this context, we note that the series of terms
m- i = k indicati

way must be physically acceptable>~1) if the proce- 2kC(1~2b)" has no Td'lcatlon of convergencglmto, as
dure is consistent. This is analogous to the situation when §€€n from the values af in Table | of Sec. II. This problem
QCD observablé&(Q) is known to the leading order a() i:an b"e aIIewated_ by introducing in the renormalon part a
only. Equating such leading order express8(Q; ») with form” factor whlg:h suppresses that part away froim
the known value o5(Q), a specific value of the renormal- ~1/2, but keeps it unchanged bt=1/2. If we choose for
ization scaleu= uecy is obtained such tha)(Q; 1ec) this fgctor a Gaussian type of fgncnon, we are led to the
—3(Q). This is the main idea of the effective char@&CH) following set of “o-regularized” bilocal expressions for the
method [52]. If the procedure is consistent, the obtainedBorel transform:
renormalization scalg value ugc should be of the order of
the physical scal® of the process associated with the ob-
servable;ugcy/Q~1. The analogy with our case consists in
the correspondence us—u, Eyg(~Eq9)<—Q, and
mi(obtained)— uecy-

Now that the value ofk has been obtained, and conse- +
quently the NLO TPS(26), we can perform the resumma-
tion of the soft part of the ground binding energy. The full
bilocal method 14,18 can be performed as in Sec. Il, Egs. —2b)3
(14) and(15). However, now we have one term more in the
TPS. Therefore

M
27 mea(p) (1-2b)1""

BERy (biu) =N {1+El<1—2b>

Tt — (1= 2b)%+ | Tt —~ | (1
Cot —|(1— Cyt+ —
2 8c? 3 8a?

! (1—2b)?
exg — —(1—
8a?

1
—— _plopk
” . +|Z,O k!ﬂgh" bX. (39

=N 7— ==
"2 mea(p) (1-2b)1""

Bf(9 " (bi )

The corrective terms 1/(@) andc,/(8¢?) in the coeffi-
- K S he cients of the renormalon part of E(R5) appear to ensure the
ngo C(1-2b) +,Z40 k,_lgkb » (33 correct known behavior of the renormalon part up to order
0 ~(1—2b)~"*2. The coefficienth(”) in Eq. (35) differ from
h's of the bilocal cas€34), and are determined by the re-
quirement that the power expansion of expres$gi repro-
duces the known RLO TPS of the Borel transform of
(26). If o parameter increasdge., c=1), formula(35) is
expected to gradually reduce to the bilocal form(88). If

where the coefficients, are given by Eqgs(8b) and (7)

(co=1), and the coefficients, in the expansion of the ana-
lytic part are now known up to ordde=3,

3
hk:fk_Nmi LTRSS EnI‘(v+k+1—n) o—0, then the expansion of the Gaussian form function in
27 ma(uw) ni=o = [(v+1-n) (35 would imply very large coefficients=o %) at the
renormalon terms-(1—2b) " 1~*k (k=45,...).This is
(k=0,1,2,3. (34)  not expected to reflect the reality, because the results in Table

_ | suggest thaE:k|sl fork=4,5, ... .Therefore, we expect
Here, by conventionf,=1=c,. Then the resummed quan- that the optimal choice ofr would be somewhere between
tity is obtained by taking the PV of the Borel integration of zero and one. Numerical analysis confirms this expectation.
Br(s)(b) of Eq. (33, as in Sec. Il forBg(b) [Eq. (15), inte-  Namely, when o decreases fromo=« to about o
gration along a raly The result would have some spurious ~0.3—0.4, the value of the pole of th2/1] Paderesummed
wn-dependence. However, for the typicatscalesmq=u  analytic parlB(FE}g;’)(b) of Eq. (35) gradually turns acceptable
=myas, the analytic parB(F"’z';'))(b) of the Borel transforma-  (|by,d>1) and rather stable when the renormalization scale
tion in Eq. (33) turns out to have a problematic behavior in . varies in the intervallmyas,mq] (except close tou
the following sense. When it is Padesummed as ~mqas). Further, the Borel resummation with the TPS-
B(FE}'g))[le](b), the obtained pole is almost alwagfer most ~ evaluated and with Paeevaluated analytic parts give for
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FIG. 5. (a) Soft part of the ground state binding energybdf, evaluated with théPV) Borel-resummed expressid85), as a function
of the method parameter. (b) Same as if(a), but for the toponiunS=1 system. Details are given in the text.

sucho’s similar values ofEyq(s), indicating that the ana- same “central” values as in Fig. 2, ard,,=0.555 andc,

lytic part now manifests more clearly its non-singular behav-=40. in accordance with Eq&l2g and(9a). In Fig. 5b) we

ior. When the value_ofr falls_below _0.3, the analytic part present analogous results for the toponium vec®: ()
starts showing erratic behavior again and the Borel resumsoft binding energy. The values of the input parameters are
mation gives significantly differing results with the TPS- andthe same as in Figs. 3 and 4, and in addifip=0.533 and

the  Padesvaluated anal_yt|c parts.  Further, the c,=70 in accordance with Eq$12b and (9b). The corre-
o—dependence of the obtained soft energy becomes Veghonding curves for the toponium scalé8=0) case are
strong foro<0.3. On these grounds, the obtained optimal very similar to those of th&=1 case.

turn out to be In addition to the method&33) and(35) employed up to

0=0.36+0.03 (n;=45=1) (363 now, which are mutually related, we want to employ as a
e ’ cross check of our numerical results also a method unrelated
0=0.33+0.03 (n;=5,5=0,1). (36b) to the (full) bilocal method. This will be theR-method

In Fig. 5(a) we present théPV) Borel-resummed soft part of
ground state energy for the bottoniui®=<1), as a function
of the o parameter of method35). The results are given
when the analytic part of Borel transfori85) is either
evaluated as RLO TPS or ag 2/1] Pade(PA). In addition,
the two corresponding resul@PS, and PA are given as
horizontal lines when the bilocal meth@83) is applied ¢

[19,20, where we resum the functioRg s (b;«) (30) and
then employ thgPV) Borel resummation as written in Eq.
(16) (with Rg( instead ofRg therg. Since we know the
N3LO TPS of Re((b), we can evaluate this function as
TPS, or as Padg2/1] (the Padd 1/2] is disfavored due to a
more complicated and unstable pole struckure

The results for the soft binding enerdy,y(s) of the
ground state of bottonium, as functions of the renormaliza-

=w). The values of the other input parameters have theion scaleu, are presented in Fig.(#. The values of input

0.2 . .
oTPS ——
A S=1 k=059 SPA
. o=eoTPS M,=423Gev  NTE2
0251 o (M)=0.1192 . Tpg
o=PA
% 03f.
o,
)
2 035
L
04
(a)
-0.45 . . . .
15 3 35 4 45 5

uGeV]

0

Egb(us) =059
02} .-
e oTPS
% oal T RePA ™ T
O
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% o6l o
ul e
_NfLo TPS
08 | N%o TPs.—
) e oTPS —
R A . g X R-PA -
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FIG. 6. (a) Soft partE,(s) of the ground state binding energy bb, evaluated with four different methods involvin@V) Borel
resummation, as functions of the renormalization sgal®etails are given in the text. Iflb) the simple TPS results fd#,(s) are included
[Eg. (37)], as well as the “perturbative” ultrasoft paEtf,%)(us; ©) [Eq. (39)].
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FIG. 7. Same as in Fig.(8), but for the toponium systenta) vector (S=1), (b) scalar §=0). Details are given in the text.

parameters are taken as in Figs. 2 aitd),5and for the “  the perturbation series shows strongly divergent behavior al-
o-regularized” method we taker=0.36 according to Eq. ready at NLO. In this figure, we also included the “pertur-
(363 (note that theR-method does not need,,, ¢4, ando  bative” ultrasoft partE(p)(us w) calculated according fsee

as inpul. For each of the three methods, we present tWCEqs (24) and (25b)].

curves: when the analytic part is evaluated as TPS, or a

Pade[2/1] (PA), where the role of the analytic part in the

R-method is taken over by the functid®y (s (b) itself. We FP(us)=— 9 ;E(p)(us ) =k @*( ).
observe from the figure that the bilocal meth@B) (o AT mpag(p) 99
=o0) gives the TPS and PA results which significantly differ (39

from each other. On the other hand, the-fegularized”
method(35) (o=0.36) gives the TPS and PA results closer This quantity is highlyu-dependent. We return to the discus-
to each other. The methods-TPS, o-PA, andR-PA give  sion of theus energy part in Sec. IV B.
similar results in the entire presentgdinterval. R-TPS ap- In Figs. 7a), (b), we present, in analogy with Fig.(&,
pears to fail at lowu (~mpas~1-2 GeV). In Fig. 6b) we  the results for the vector and scalar toponium soft binding
include, for comparison, the simple TPS evaluation ofenergy, respectively. The values of the input parameters are
Epp(S), according to formuldcf. Eq. (26)] the same as in Figs. 3, 4, and in addities 0.33 according
to Eq. (36b). The comparative qualitative behavior of the
results of various methods is similar as in the bottonium

9 1
F(s)(TPS)=— 17 =~ Eqs)=a(wl+a(pw)t, case, except that noR-PA method appears to fail at low
Mpats( 1) renormalization scalesu~m,as~30 GeV while R-TPS
+a%(w)f+ad(u)fsl, (377 ~ Maintains moreu-stability there.

In Fig. 8@ we present the results analogous to Fi@) 7
where for NLO TPS case we také;=0. In Fig. 6b) the ~ (S=1 casg, where we now include the results of the simple
same input parameters are used as in Fig.. 8Ve see that TPS evaluatiori37) for tt. In Fig. 8b), we present the result

26 . . — . . . 0 . . . . . . .
(a) S=1 k=1.16 e
2.7 ¢ M, =164.0 GeV 005 Eg")(us;u) J
~N2LO TPS (MZ) 01192
28l 7 e 0.1 (b) ©=1.16 S=1
= so b N°LO TPS 3 015
(O O,
= w2t
uf 5025 ¢
31 o3l
oTPS
-3.2 | 4 035 k
R_TPS ___________
™S ——
33 1 ( ( ) ) |G | 04 | | L L | | N
20 3 40 50 60 70 80 90 100 20 38 40 50 60 70 8 90 100
ulGev] u[GeV]

FIG. 8. (a) Same as in Fig. (&), but now the results of the simple TPS evaluat{8i) are included(b) The ultrasoft energy parts by
different evaluatlonsE(p)(us ) by Eq.(38); Ei;(us) values of Eq(483 as straight lines. The input parameters are the same as in(Bjg. 7
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TABLE Il. The separate uncertaintie&rﬁ, (in MeV) for the extracted value oﬁb from various sources:)1lus [Egp(us) P
=—100+106 MeV]; 2) u=3=1 GeV; (3) um=mp(1%=0.5); 4 ay(m,)=0.3254-0.0125[ a¢(M ;) =0.1192+0.0015; 5 N,,=0.555
+0.020[ k=0.59+0.19]; 6) a3/4*=86+23; 7) c,=40+60; 8 ¢=0.36+0.03; 9 m#0 (My(m.#0)==10 MeV).

us M Mm Ag N az Ca a me
a-TPS —49 +9 -4 —-13 -3 +2 -8 +4 -5
+49 —13 +2 +14 +2 -2 +8 -9 +5
a-PA —49 +13 -4 —-15 -3 +1 -5 +5 -5
+49 —-20 +2 +15 +2 -1 +2 -9 +5
R-TPS —50 —4 +4 -8 -9 -3 0 0 -5
+50 +45 —40 +10 +11 +3 0 0 +5
R-PA —49 +3 +4 —-11 —4 -2 0 0 -5
+49 —20 —40 +12 +4 +2 0 0 +5

for the “perturbative” ultrasoft parIEftB)(US;,u) calculated Refs.[7,56,57). These contributions modify the values of

. — m, and E,,, resulting in the contribution to the mass
according to Eq(38) for thett system(dashedu-dependent M1(1S) = (2my+ Exp),

line). We further include there the more realistic estimates
obtained later in Sec. IV CEqg. (483)]. SMy(1S,m,#0)~25+10 MeV. (42)

B. Extraction of bottom mass The estimate$41), and (42) then give a rough estimate of
e us and m;#0 contributions to the bottonium mass
My (1S;us+m;)~(—75+106) MeV. The mass of the

Y (1S) vector bottonium ground state is well measured

My(1S)=9460 MeV with virtually no uncertainty{58].

Therefore, the pure perturbative “soft” mass is

We need to address now also the problem of evaluatin
the ultrasoft parEq(us) of the ground state binding energy.
The estimate of the perturbative part is given in E2j),
where it was essential to take for the renormalization scale
usscalep~ pys~Myas .

For the bottonium case, this scale is below 1 GeV, the
energy at which we cannot determine perturbativelfu).

This indicates that in the bottonium thie part of the binding

energy has an appreciable nonperturbative part. The Iowea
energy at which we can still determine perturbativelyis
u~1.5-2.0 GeV, givingrg(u)=~0.30-0.35. Although this

is a soft scale fobb, we will use this also as an ultrasoft
scale. Then by Eq.27)

My (1S;s) = 2m,+ Ey5(s)= 95357 106 MeV, (43)

here the uncertainty+=106 MeV is the rough estimate
minated by the uncertainty of thes regime contribution.
Our numerical results foE,(S) in this section and fom,,
presented in Sec. Il allow us, by varying the input value of
m, , to adjust the sumr,+ E,(s) to the value given in Eq.
(43). For the soft binding energy we apply theregularized
bilocal methodso-TPS ando-PA, and R-TPS andR-PA,

4__
Ebg(us)(P)%—§mqw2k3,o(us)a5(,uus) with the aforementioned “central” input parameters:
ag(M7)=0.1192; ©=1.825 GeV (ug), thus ag(m.n;
~(—150=100) MeV. (39  =4)=0.3263 [ag(us)=0.326); N,,=0.555; k=0.59; o

=0.36; a3/4>=86; c,(MS)=40. For 2n, we apply the
The nonperturbative contribution coming from the gluonichilocal-TPS andR-TPS method, with renormalization scale
condensate is given Hp3] wm/My=1, both methods giving us very similar results.
Fig. 1 (a)]. The bilocal-TPS method is applied fon® when
(a( 1y G,,G*") o-TPS ando-PA are applied forlE,(s); the R-TPS is ap-
mr plied for 2m, whenR-TPS andR-PA are applied foE(s)
(the same combinations of methods will be applied in the
Sec. IV C to the study of toponiumThe extracted values of

mMy=my(x=my) are then

-4

(P~ m, 72 244
Epp(us)"™P'~mym 425 gmba’s(/-”us)

~(50+35 MeV, (40

where we usedn,=4.2 GeV, and the value of the gluon
condensate( (a¢/7)G?)=0.009+ 0.007 GeV [54]. Equa-

Epp(us) PP~ (—100=106) MeV, (41 =4.2200.056 GeV (o-PA) (44b)
where the two uncertainties were added in quadrature. In =4.2430.080 GeV (R-TPS (440
addition, there are finite charm mass contributions which
have been calculated in Rgb5] (based on the results of =4.235-0.068 GeV (R-PA). (440
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TABLE lIl. The uncertaintySE;;(us) and the separate uncertaintiesdg(s) (in MeV) for the topo-
nium S=1 binding energy from various sources) &E;(us) [cf. Egs. (48)]; 2) u=55+=20 GeV; 3
ag(M2)=0.1192+0.0015; 4 N,,=0.533-0.020[k=1.16"533]; 5) as/4>=62.5+20; 6 c,=70+20; 7)
0=0.33+0.03. The pole massy, is kept fixed at the valuen,=174.30 GeV.

SE(S)

SE(us) )% ag N as Cy o
o-TPS —100 -7 —105 =21 -4 +5 -17

+100 +8 +109 +23 +4 -5 +29
o-PA —100 -10 —105 =21 -3 +3 —16

+100 +8 +109 +22 +3 -2 +26
R-TPS —100 +3 —104 -21 -8 0 0

+100 +8 +109 +26 +8 0 0
R-PA —100 +7 —105 —18 -6 0 0

+100 —28 +110 +20 +7 0 0

The uncertainties are the combination, in quadrature, of Unsmall variation inm, influences the toponium binding energy
certainties from various sources, shown in Table Il for eachpsignificantly—by less than 0.001 GeV.

of the four methods. In the case of asymmetric uncertainties, \yx yse as the central, input valuem, = 164.000 GeV to

the Iargfe ris tr?ken. The largest gnceréaircl)tg(éOf/g (?ee/ ) calculateE;(s) with the four aforementioned Borel meth-
?A?lr;]eli tLoemc;s?f);e'lglgOSr %liﬁgg"l%i V'a riationeof ?he g{)ﬁ ods, using for other input parameters their “central” values
, ’ used in Figs. B), 7: ay(M;)=0.1192; u=31 GeV

binding energy with the variation of the renormalization -
scale is a competing source of uncertainty fom, (=ps), thus ag(p,ni=5)=0.143 [ag(us)=0.14; Np
(+0.045 GeV), and in the case RETPS andR-PA methods ~ ~ 0-233; «=1.16 (6=1),1.10 6=0); w=55GeV_(S
(wherem, is resummed bR TPS the uncertainty from the —1). 65 GeV §=0); 0=0.33; ay/4’=62.5; c4(MS)
variation of the renormalization scalew, in the = /0. Then the resulting toponium soft energy is
2m-resummation is competing as we.040 GeV. The
aritthmetic average of the F<):entr%1I valuee{s of Bt g\i{/es us Ei(s)=—3.163-0.116 GeV(~3.216

+0.120 GeV (o-TPS (462

m,=4.231+0.068 GeV (our averagg (45
=-—3.158-0.115 GeV (—3.212

where we emphasize that the central value for the strong +0.118 GeV (o-PA) (46b)

coupling parameter was chosen to #gM;)=0.1192. In

Eq. (45), the uncertainty was chosen to be the second largest =—-3.154+0.113 GeV (—3.200

uncertainty in Eq(44). The largest uncertainty; 0.080 GeV

of the R-TPS method, was discarded becaB&s&PS is the *0.116 GeV (R-TPS (460

only one of the four methods which fails simultaneously at

the low u,, (<mp) and low u (<3 GeV) renormalization =—3.159+0.115 GeV (—3.209

scales. +0.118 Gey (R-PA), (460)
C. Numerical results for the toponium where the results are given for the vect8=1) case and in

parentheses for the scalé=0) toponium case. The uncer-

results are obtained in the following way. First the value Oftaint@es fare combinat_ions, in quagraturg, og uncgrtainties
the (PV) pole massm, is fixed to the central experimental C0MNY from various mput sourcesas, op, ods, oC,
value m,=174.3 GeV[58]. For calculation of the binding 5N|n|"|a a”g&T- \_/t\)/hsnias is Vk;i”edvhthe valuen, 'Skva”??(ag

— . inout tefbut not m). Wh well, as described above, but otherwise it is kept fixatl
Sgﬁ;%{’;zt( I\l/lsz)a:r10|'r11|31%£ glrgg]le;izg t\?vg |[nn(ta)th odsi)rll gZC_ 164.000 GeV. All the corresponding separate uncertainties

¢ Ei ith th lizati o —m SE(s) are given in Tables Ill folS=1 and IV for S=0.
Il [cf. Fig. 1(b)], with the renormalization scalgm=Mi,  The yitrasoft parEq(us) is principally perturbative and can

give m=164.000023GeV (bilocal method and m; pe estimated by formul&27) where theus coefficient is
=164.0110123GeV (R-method, when m=174.3 GeV

(PV value. The values ofm, change by 0.020 GeV or less

when the other parameters are varieghormalization scale  5A variation Sm,+10.0 MeV results inSE(s)= +0.11 MeV,
mm; Ny, andc, for bilocal method; see Sec.)Jland such  when all other input parameters are kept fixed.

For the binding energy of the toponium, the numerical
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TABLE IV. As Table Ill, but for S=0. The input parameters are the same, exceptufof=65
+20 GeV) andk (=1.10"932, corresponding tiN,,= 0.533+ 0.020).

SE(s)

SE(us) % ag N as Cy o
a-TPS —110 -6 —107 —-23 -3 +5 —-17

+110 +8 +112 +26 +4 -5 +31
a-PA —110 -8 —107 —-23 -2 +4 —16

+110 +8 +112 +25 +3 -2 +28
R-TPS —-110 0 —106 —-25 -7 0 0

+110 +13 +111 +30 +8 0 0
R-PA —110 +9 —107 —20 -6 0 0

+110 -27 +112 +23 +6 0 0

given by (24). This part is more manageable than in thenance is not exactly at the ground state mass valug, (2
bottonium case, because the typioalenergy now is stillin ~ +E;;) because of the large decay width of the toponium
the perturbative regimeu,s~ 10" GeV. We determine this [59,60
energy by the condition
_ Eres=2m+Eq+ 5FEres.- (50
fus= K Meag(prus), 47
The shift in Eq.(50) is 6' E,es=100+ 10 MeV[35,61] and it
where «’'~1. The value x'=1 corresponds tou,s is rather stable under the variation of all input parameters,
~7 GeV. Equationd27) and (24) then give for the value including s andm,. At this point, we should evaluate the
Eq(us)=—0.255 Ge\/ 6=1) and —0.272 GeV £6=0). g, (2n,+Eg) for a general input value ofm,
When we change ta’=2 (u,s=10.5 GeV), the values of (~164 GeV). The expected central values ofm(2 E;)
Eg(us) go up by 0.100 and 0.110 fof trt§.= 1.2, respec- can be inferred from the central values of the binding ener-
tively. This we adopt as the uncertainty in this sector. ) _ . . .=
gies (49 which were obtained with the choicen,

Therefore, we have by Eq2 . o
y E@27) =164.000 GeV. We obtain the variation
E{t(us)=—0.255-0.100 GeV (S=1) (483 _
8(2my+Ep)~+2.095m;, (51
=-0.272-0.110 GeV (S=0), (48b o
_ a5 when only the input parametaer, is varied around its central
corresponding tQu,s=7.0_1 5 GeV. When we take for the \51ye 164.00 GeV, while all the other input parameters, (
four methods(46) and combining it with the ultrasoft part central value§. At m,=164.000 GeV, the bilocal method

(48), we obtain gives m=174.300 GeV and the R-method m,

E;=-3.4130.153 GeV (S=1) (493 =174.288 GeV. Thus, combining the average of this with
" relations(51) and (49), we expect the approximate central

GeV for S=0, whenm;=164.000 GeV. The uncertainties of

The two dominant contributions to the uncertainties in Eq.(2m;+ E;) originate from the variation of all the input pa-
(49) are the uncertainty fronas in the soft sector, and the rameters except,. Some of them are expected to be close
uncertainty of the ultrasoft sector, as seen from Tables Ill ando the uncertainties in Eq49) given for the binding ener-
IV and Eq.(48). gies. However, they are not equal to these uncertainties of

The results(49) are relevant for the future determinations Eq. (49) because the latter were obtained by keeping the pole
of mt from tt production near threshold. We recall that themass fixed ,=174.3 GeV). Now, however, mt
determination of the pole mass, has, due to thd=1/2  =164.0 GeV is kept fixed, and variations Bf; andm, be-
renormalon singularity, an intrinsic ambiguity of order come correlated in the sum 2+ E;;). More importantly,
Aqcp. i.e., several hundred MeV, and cannot be deter_mineqhe variation ofag now change€(s) and 2n,, and, to a
from experiments with a higher accuracy. But the mags lesser degree;(us); the variation ofN,, changes« which
could be eventually determined with accuracy of less than
100 MeV, as pointed out in Ref46] where toponium mass
was investigated using largé; arguments. Th&=1 topo- More precisely,sm,= =100 MeV would correspond té(2m,
nium state is produced ie*e” annihilation, while theS  +E;)~+208.8 MeV, of whichs(2m,)=+210.1 MeV, 5E(s)
=0 state in unpolarized 'y collisions. The produced reso- =x1.1 MeV, andsE;(us)=+0.2 MeV.
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TABLE V. The separate uncertaintiég2m,+ E(s+us)] (in MeV) for the toponiumS=1 mass from
various sources:)lu,=7.0, 3% GeV [cf. Eq. (49)]; 2) u=55+20 GeV; 3 un=my,(1+0.5); 4 ay(M,)
=0.1192+0.0015; 5 N,,=0.533+0.020[ k=1.16"333]; 6) a3/4°=62.5+20; 7) c,=70+20; 8 0=0.33

+0.03. The input masi=164.00 GeV is kept fixed.

Mus M Mm qg N az Cy g
o-TPS —100 -7 +13 +188 +94 -4 +3 —-17
+100 +8 -9 —203 —108 +4 -3 +30
a-PA —100 —10 +13 +189 +94 -3 +1 —16
+100 +8 -9 —203 —108 +3 -1 +26
R-TPS —100 +2 -9 +188 +54 -8 0 0
+100 +7 —95 —203 —65 +8 0 0
R-PA —100 +6 -9 +187 +57 -7 0 0
+100 —29 —-95 —202 —-71 +6 0 0

in turn change€;(us) [Egs.(27) and(24)] and, to a lesser
degree,E;(s) and 2m,. The explicit calculations give for
S=1,

Nm, Mm, &, 83, C4, 0 andu,s. Adding them in quadrature,
this gave the uncertainties in Eq$29—(53d). We take the
arithmetic average of the central values in E§R3a—(520)
for S=1, and of the central values in Eq$39—(53d) for

(2m+E) =345.181-0.253 GeV (o-TPS (528 g—0,
=345.186-0.253 GeV (o-PA) (52b  (2m+E;)=345.175-0.256 GeV (S=1), (549
=345.168-0.254 GeV (R-TP§ (520 (2m+E;)=345.109-0.263 GeV (S=0). (54b)
=345.163-0.256 GeV (R-PA), (520 Combining this with Eq.(51) and the aforementioned shift

and forS=0, value 8" E .= 100+ 10 MeV in Eq.(50), this gives finally

(2m+E;) =345.119-0.263 GeV (o-TPS (538  E,s=(345.28-0.26) GeV+2.09m,—164.00 GeV
=345.116-0.263 GeV (o-PA) (53b) X(8=1) (553
=345.105-0.261 GeV (R-TPS (530 =(345.21+0.26) GeV+2.09m,—164.00 GeV
=345.096-0.263 GeV (R-PA). (530 X(S=0), (55b)

Here, the resummation of the mass\2was performed by
the bilocal TPS method in the first two caddsys. (523,
(52b) and(533), (53b)], and by theR-TPS method in the last
two case$EQgs.(520), (520 and(530), (53d]—cf. Sec. Il. In
Tables V and VI we give, foS=1 andS=0, respectively,
separate uncertainties in the massn(2 E;;) coming from
the corresponding variations of the input parameters

In Tables V and VI we see that the major source of uncer-
tainty is from the uncertaintga (M) = £0.0015, followed
by the uncertainty of the ultrasoft sector scéle,s [cf. Eq.
(48)] and in theo-methods by the uncertainty in the renor-
malon residue parameteiN,,= +0.020 and inR-methods
by the uncertaintysu,, in the renormalization scale for the
resummation of & .

TABLE VI. As Table V, but for S=0. The input parameters are the same, exceptfof=65
+20 GeV) andk (=1.10"933, corresponding tdN,,=0.533+0.020).

us M Mm As N az Ca o
o-TPS —110 -7 +13 +184 +112 —4 +3 —18
+110 +7 -9 —199 —127 +3 —4 +30
o-PA —110 -9 +13 +184 +112 -3 +1 —-17
+110 +7 -9 —199 —128 +2 -1 +27
R-TPS —110 0 -8 +184 +71 -7 0 0
+110 +13 —-95 —199 —83 +8 0 0
R-PA —110 +9 -9 +183 +75 -6 0 0
+110 —-27 —95 —198 —90 +6 0 0
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TABLE VII. Recently obtained values Of\d_S) ﬁb mass obtained froY' sum rules or from spectrum of
the Y (1S) resonance. Wherever needdd4,35), the central mass values were adjusted to the common input
central valueag(M;)=0.118.

Reference Method Order my(my) (GeV)
PP98[43] Y sum rules NNLO 4.210.11
MY98 [42] Y sum rules NNLO 4.260.10
BS99[67] Y sum rules NNLO 4.2%0.08
HO0O0 [57] Y sum rules NNLO 4.170.05
KS01[68] Y sum rules NNLO 4.2080.050
CHO02[69] Y sum rules NNLO 4.26:0.09
E02[70] Y sum rules NNLO 4.240.10
PO1[13] spectrum,Y (1S NNLO 4.210+0.090+0.025
BSV01[55] spectrum,Y (1S NNLO 4.190+0.020+0.025
PS02[35] spectrum.Y (19 N3LO 4.349+0.070
LO3 [14] spectrum,Y (1S N3LO 4,19+0.04
This work, Eq.(56) spectrum,Y (1S N3LO 4.241+0.070

We could adopt in the ultrasoft regime a more conservabe compared with those recently obtained by authors who
tive approach, allowing for the parametet in Eq. (47) not  either used pQCD expansions for fi¢l S) resonance mass,
just to vary from value 1 up to value 2, but also to vary downor Y sum rules. The only input parameter common to all
to value 1/2. This would correspond to the variationwgfs  these methods i&s. The comparison of the various methods
from 7 GeV down to 4.27 Ge\thus increasingxrs(ys)  is more reasonable if the same central input valueNdS)
from 0.198 to 0.228, if keeping;=5]. This would increase « (M) is taken. Our central value was(m,)=0.3254
the uncertainties+0.100 and+0.110 GeV in EQ.(48) to0  [=a(M;)=0.1197 since such[34], or similar [20,64),
+0.260 and=0.275 GeV, respectively. This would give in values follow from the(nonstrange semihadronicr decay
our results55) for thett resonance the increased uncertain-data which are very precisg5]. On the other hand, the
ties 0.35 GeV 6=1) and+0.36 GeV £=0). world average as of September 2002 dg(M,)=0.1183

The present experimental uncertainty in the pole mass ig-0.0027[66]. Most of the authors during the last four years

sm,=5.1 GeV[58], corresponding t&m,=4.86 GeV(pro- used central valuers(Mz)~0.118. Therefore, for compari-
vided we considem, to be the principal value pole mass SONS, we convert our resul44) to this central value ofr —
This implies, according to result&5), the present experi- more specifically, fromxg(M7)=0.1192¢0.0015 to 0.1180
mental uncertainty €€ es) exp= = 10.16 GeV, which is still +0.0015. This can bg gas!ly done by Inspecting in Table I
very much above the uncertainties0.26 GeV (or +0.36  the column undews, giving in Egs.(448—(44d an increase
when conservative approach in theregime coming from N '_[he _central values of 11, 12, 8 _and 10 MeV, respectively.
the uncertainties of the resummation methods and of the inThis gives the average 10 MeV higher than in E4p)

put parameteréother thanm,). — _

In this work we did not include electroweakliggs ef- m,=4.241-0.068 GeV [average when:as(My)
fects, which are significant in the case of the top quark. In =0.1180+0.0015. (56)
Refs. [62,63 the O(a) and O(aas) corrections, respec-

tively, to the relation betweem, and m, mass were calcu- All the separate uncertainties given in Table Il remain, of
lated. The size of these corrections significantly depends ogourse, valid also in this translated result. In Table VII, we
the hitherto unknown masM,,. For low Higgs masses give comparison of this result with others in the recent lit-
M, =100-300 GeV, these corrections change the value ofrature. All these results have the central valugMy)
m,, for a given value ofn,, by several percent. Inclusion of =0.118. Wherever the central value of was different
these effects would be important for a realistic extraction of14,39, we performed the corresponding translation. There
Et from the resonance energy of thEproduction? are two important nu.mencal ef‘fects in our r?sult. The first is
the separate evaluation of the “perturbative” ultrasoft energy
part at the corresponding low renormalization energy
(=2 GeV), Egs.(27) and(39). If we had not separated the
In this section we will compare our results with some of (“perturbative”) ultrasoft from the soft part of the binding
the results recently published in the literature. energy, the use of the common renormalization energy scale

Our results for the mass, . Eqs.(44). (45), Table I, will © (=3 GeV) in the resummation then would have given us
b BGs.(44), (49 the central value oE(us) by about+100 MeV higher.

Then the extracted value afi, would have gone down by
"We thank M. Kalmykov for clarifications on this point. about 46 MeV, giving the valug,~4.195+0.068, with the

V. COMPARISONS AND CONCLUSIONS
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TABLE VIII. Comparison of some of the toponium binding en- [61,71-74 were compared who used in their calculations
ergy valuesEg recently obtained in the literature. The first two various renormalon-free masses for the top quark. Their re-
values were correspondingly rescaled to our central inputalue  suylts were taken for the central input valueg(M)
@s(M2)=0.1192, andn,=174.3 GeV, =0.1190 andm,=165.00 GeV, and are all aroune
~345.5 GeV, with variations, due to the renormalization

Reference Order Ei (GeV) scale ambiguity, being usually below 10 MeV. For these cen-
PS02[35] N®LO  —3.065+0.157 (5=1,0) tral input values ofag and m;, our results(55)) (see also
LO3[14] N3LO —3.21+0.15 (5=1) Tables V and VI get modified to 347.3#0.26 GeV
This work, Eq.(493 N3LO —3.413+0.153 S=1) =1) and 347.2%0.26 GeV §&=0), i.e., lower by about
This work, Eq.(49b) N3LO —3.481+0.163 (S=0) 200-300 MeV.

) ACKNOWLEDGMENT
central value close to that of LO3 in Table VII. On the other

hand, that latter value is quite clearly lower than the value Ve express gratitude to the following persons for helpful
PS02 in Table VII, by about 150 MeV, principally because ofcommunications: M. Beneke, V.M. Braun, M. Neubert, A.A.
the b=1/2 renormalon effect which was taken into accountPenin, A. Pineda, and Y. Sumino. This work was supported
here and in Ref[14]. Thus, the renormalon effect brings in part by FONDECYT(Chile) Grant No. 1010094G.C),
down the extracted central value Efb by about 150 MeV, project USM No. 110321 of the UTFSRC.C. and G.G, and

but the separate evaluation/estimate of the ultrasoft contrib1€cesup FSM 9991; P.G. would like to acknowledge the
tion brings it up by about 50 MeV. The renormalon effect canSUPport of I. Schmidt.

also be understood from Fig(l§, which suggests thdiat

n~3 GeV) the renormalon effect pushes upward the soft APPENDIX: COEFFICIENTS FOR THE EXPANSION OF
binding energyE, 5(s) by about 300 MeV. We note that PS02 THE SOFT BINDING ENERGY

used pole mass, in their N°LO TPS evaluation of the mass We write down here the explicit coefficienfs of the

of the Y (1) resonance before extracting the valuensf.  expansion(26) for the soft part of the ground state binding
Olzr fsséﬂts) for(tjh(e t)oponlum binding enﬁfglebsl are Q'Veg INenergy. The logarithms appearing in these expressions in-

Egs. (46), (48) and (49), in connection with Tables Il an ~ N = =

IV. The result of Ref[14] was Eq~ — 3.08+ 0.02 Gevi(for  OV& three scalebu, u,mg and u(u) = (4/3)mqas(1)],

S=1), but the central value a&g used there was(My)

=0.1172. The result of Ref35] wasE;;~—3.01 GeV, us-

ing the central valuex((M;)=0.1185. In Table VIII we L;=In
present our resul49) together with the results of these two

references, in both cases rescaled to the common central

value as(M7z)=0.1192. We see that in our case the topo-The coefficients; are

nium binding energies are significantly lower. This lowering

is a combination of the renormaldi= 1/2 effect and of the 1

ultrasoft effect. Figure @) suggests that the renormalon ef-  f, == (354221 ,— 111, — 11l ,)+ = (—11—-6L,+3L
fect, in comparison to RLO TPS, brings down the soft bind- 2 . 9 .
ing energyE;(s) by about 150 MeV ft=30 GeV) and 300 +3L,)n, (A2)
MeV (=60 GeV). Further, the ultrasoft effe@t8) brought '
down the binding energy by about 200 MeV. More specifi-
cally, when making our resummation with no separatios of
and us parts, and using the common renormalization scale ©) ) )
u=50-60 GeV, would give results for the binding energy f2’=[381.674+90.73.1+30.23. +1L,(246.417-121L ,

My

(i)

Mo , LM=In(%>. (A1)
o

, Lo=In| =—
o

fo= 0+ fMne+£{2n2, (A3a)

Et higher by about 200 MeV. The deviation of our result for _ _ Tl (-
Eq from the result of LO3 in Table VIII can be explained 6035)— 488, %L ,(~205.25-60.9.)
principally with the ultrasoft effect, and the deviation from —11.6973(S+1)], (A3b)

PS02 with combination of both the ultrasoft and the renor-
malon effect. We note that P02 used in their calculation of ¢(D—[ 42 7469- 11L§—3.6666'Li+ L,(26.6944
E the N°LO TPS with x~30 GeV and the pole mass; .

This lower binding energyE; is then reflected in the —7.33333%,) +6.805560 ,+ L 1(—33.0556
value of the peakresonanceposition E,.s—Eq. (55) and
Tables V and VI. For example, Ref35] obtains form, +14.6661 ,+7.33333 )], (A3¢)
=174.3 GeV[and central valuexs(Mz)=0.1192] the val- ) ) 5
uesE,..=345.63-0.16 GeV forS=1 and 0, while we get f27=[1.16286+ (3/9L1+(1/9L, +Lo(1—(4/9L,,

the values 345.280.26 GeV E=1) and 345.21 —(2/9L)+L (—0.814815 (2/9)L
+0.26 GeV 6=0), i.e., lower by 350 and 420 MeV than (29)La) +Lu(~0. (29L2)
[35]. In Ref.[60], NNLO results forE,.s of several groups —0.18518%,]. (A3d)
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fa=fO+ PN+ 22+ £3n3, (Ada)

f§)=[6726.11+665.9.;— 166.37% ,(40.8024

+(—10.5992+ L )L ) +L%(2381.5

—1497.38 ,—499.12% ;) — 871.429.,
—499.12%—1.8843+L )L L,
—201.4385+1,(7457.17-497.292,
+L,(—4346.38-998.23. ,+998.23 ,))
—257.3410.21119% L, -0.74_,
—0.29.,)S(S+1)—61.4109 - 6.13937
+S(S+1))In( g us) +440.172 I k)
+2a,/4%], (A4b)

f=[-1274.33-1277.92, — 471.125 2

—12113+1182.32 ,+843.661,L,,

2 2 2
+272.23%1 ,—335.8132-181.9,,L7
+30.28.5 +124.501 ,+108.361 L,
+90.79.5L,—186.708 L,

PHYSICAL REVIEW Dr0, 034008 (2004

-181.9.,L,1,+90.78.%L ,+36.7292
+(4.06858 15.5964., — 11.697% ,
—3.8991.,)S(S+1)], (Adc)

£{)=[70.8992+ 70.245% , + 28.9722.2

+7.333333-65.992% ,—51.666L,L,
2 2 2
—16.8.5L,+20.5972.2 + 111,12
—1.83333.% - 5.19388 ,— 6.57401 4L,
—5.5.2L,+10.916T ,L,+11L 4L L,
—5.5.51,-2.09722], (A4d)

f)=[-1.21475-1.21714 . — (5/9)L

—0.148148 3+ 1.16286. ,+L,L,,
+(1/3)L5L,—0.407407, — (2/9)L,L?,
+0.037031.3 +0.054285L ,
+(1/9)L Lo+ (1/9)L2L,
—0.18518% ,L,— (2/9)L4L ,L,
+(1/9)L2L,+0.03703L5]. (Ade)
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