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Independent pair parton interactions model of hadron interactions
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A model of independent pair parton interactions is proposed, according to which hadron interactions are
represented by a set of independent binary parton collisions. The final multiplicity distribution is described by
a convolution of the negative binomial distributions in each of the partonic collisions. As a result, it is given by
a weighted sum of negative binomial distributions with parameters multiplied by the number of active pairs. Its
shape and moments are considered. Experimental data on multiplicity distributions in high pﬁepgg—
cesses are well fitted by these distributions. Predictions for the CERN Large Hadron Collider and higher
energies are presented. The difference betveeet and pB processes is discussed.
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I. INTRODUCTION involved in each parton-parton collision can be comparable.

Therefore, we hope that this simplification is valid at very

Hadron interactions used to be considered as proceedirftjigh energies for such global characteristics as multiplicity

via collisions of their constituent partons. In preparton timesdistributions which result from an average over the whole
their role was played by pions, and the one-meson exchandg#ase space. If necessary, this supposition can be relaxed by

model[1] dominated. Pions were treated as hadron constituntroducing the parton distribution functions. The inclusive

ents. Their high energy interaction produced a ladder of onedistributions would call for a more detailed description. The

pion t-channel exchanges with blobs of low energy pion-pion!PP! model does not imply that there are no correlations

interactions. This is the content of the multiperipheral modelP€tween particles. They are intrinsic in each binary collision

These blobs were first interpreted @snesong 2] and later and in their convolution. Surely, further correlations between
called fireballs[3], clusters[4], or clans[5] when higher these interacting pairs of partons, of both dynamical and ki-

mass objects were considered. Multiperipheral dynamicgemm'caII orgm, can be introduced. Nevert_heless, the sim-
lest model with minimum parameters and its most general

fcells us that the number of these blobs is d'St_”bUted alCCf)mfi)haracteristics such as multiplicity distributions should be
ing to the Poisson law. It was argued that its convolutio

treated first.
with the distribution of the number of pions produced in each reated irs

center can lead to a negative binomial distributitf8D) of
created particles first introduced [i]. This supposition fits
experimental data on multiplicity distributions @i reac- For multiplicity distributions, we suppose that a parton-
tions at tens of GeV quite well. However, at higher energiesparton collision gives rise to a negative binomial distribution
this fit by a single NBD becomes unsatisfactory. A shoulderof its products with parameters independent of the colliding
appears at high multiplicities. It is quite natural to ascribe itpartons because the energy is equally shared between them.
to multiple parton-parton collision§7—10], which could Therefore, the resulting distribution of independent pair par-
lead, e.g., to two-, three-, and so on, ladder formafith-  ton interactions is given by a sum of convolutions of pro-
13], and/or to different(soft, hard types of interactions cesses with different number of participating pairs of partons
[14,15. They become increasingly important as the collisionweighted according to their probabilities. Thus one can write
energy is increased. Better fits are achieved at the expense of

II. IPPI MODEL AND MULTIPLICITY DISTRIBUTIONS

a larger number of adjustable parameters. Imax
This shortcoming can be minimized if one assumes that P(nimk)= 2’1 w;P;(n;m,k)
each of the high energy binary parton collisions is indepen- .
dent of others proceeding simultaneously. With this supposi- Imax i
tion, the whole process is described as a set of independent =2 w; > [ Pueo(npimk). (1)
pair parton interactionghe IPPI model In fact, we assume =1 np p=1

democracy in sharing the initial energy of colliding hadrons
among their constituents. The effective multiplicity of par-
ticles produced by a pair of initial partons does not depen
on how many other pairs interact or on what these interactin
partons arglquarks or gluons While parton energies vary

widely at a given hadron energy, the mean amount of energzr

Here, P(n;m,k) is the probability of creatingh particles,
(yvhich depends on the parameters of the NBD distribution
ndk, n, is the number of particles produced by bt pair,
j is the probability for thgth pair to be active, angl, . is
number of active pairs. Therefore, the following equations
e valid:

*Electronic address: dremin@Ipi.ru n.-=n wo=1 )
TElectronic address: nechit@Ipi.ru ,Z’l P 12’1 ]

1550-7998/2004/13)/03400%10)/$22.50 70 034005-1 ©2004 The American Physical Society



I. M. DREMIN AND V. A. NECHITAILO

The symbolical notationE(np) means the convolution of

NBD expressions subject to the first equatior(2j i.e., the
sum must be taken only over those parton collisions whos
multiplicities n, sum up to the total number of produced
particlesn. The NBD shape
np —np—k
SIS

()
is characterized by two parametensandk, corresponding to

m
k

m
k

_ T(np+k)

PNBD(np;myk)_m
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the mean multiplicity and the dispersi@y, of the distribu-
tion for a single interaction,

e k™'=(D2—m)/m?. (4)
It is our supposition that, weighted by the parton distribution
functions, such an interaction at a fixed parton-parton energy
leads to a NBD. This is based on the success of low energy
fits. In multiperipheral-type models with a Poisson distribu-
tion of created blobs, this would imply a gamma distribution
of the decay products of these blobs.

For example, the formul@l) explicitly written for three
active parton pairs is as follows:

o) 1 ( Fn+k) 1 C(n,+K)T(n—n;+k)
=m0 | T D) "2 (1 i rio T(ng+ DE(n—ny 1)
1 " T(n+k) "t T(n,+K)T(n—n;—ny+k)

®)

W
*I2(k)(1+m/k) 2 o T(ny+1)

o T+ Dl (n—n,—n,+1)

Each of the three terms in this sum represents a negativibat at asymptotically high energies the probability jfpairs

binomial distribution because

I(ng+k)C(n—n;+1k) T (n+(1+1)k)
nZo (i + )T (n—n;+1)  T((I+1)K(n+1)
(6)

This is a general remarkable property of negative binomial

distributions: their convolutions result again in NBD func-
tions with parameters multiplied by the number of convolu-
tions. Thus Eq(1) can be rewritten as follows:

Jmax

P(nim.k)= 2, w;Pyao(ijm.jk). Y

This is the main equation of the IPPI model. One gets a suf?

of negative binomial distributions with shifted maxima and
larger widths for a larger number of collisions. No new ad-
justable parameters appear in the distributionjfpairs of

colliding partons. All parameters are expressed in terms of

of independent interactions; is the product of probabili-
tiesw, for one pair,

Wj=wjl. (8
From the normalization condition
jmax jmax X
2 wi=2 wi=1, )
=1 =1

one can findw, if j,hax, Which is determined by the maxi-
mum number of parton interactions at a given energy, is
known. In fact, the value ofv, ranges between 1 at low
energies(for j,ax=1) and 0.5 at asymptotics whejg,,
tends to infinity. With energy increase, it approaches the sec-
nd value from above, passing through some thresholds, and
Is already quite close to it at the present highest energies.

Thus we are left with only two parameters of the model,
m andk, which can be found from fits of experimental data.
he dependence on the number of collisippg, and on the

the products of parameters for a single collision and thdrobabilitiesw; is determined by the behavior of the mo-

number of collisions. Both the mean multiplicity and disper-
sion Dj2 for the process witl active parton pairs are propor-
tional toj. In the total multiplicity distribution, the distribu-
tions for collisions ofj pairs of partonsPygp, are just
weighted with their probabilitiesv;, which are determined

ments of probabilities

Jmax

Mr:jzl Wjjr, (10

by collision dynamics and, in principle, can be evaluated ifas explicitly shown in the Appendix for ranks<5. In par-

some model is adopte@.g., sed11-13).

ticular, the average multiplicity is given by

An increase in the number of interacting pairs of partons

in the IPPI model with energy gives rise to more probabili-
ties w; different from zero. Certainly, all the parameters

(ny=mM;. (12)

w;j,m,k depend on energy. This dependence is implied butf one assumes some extrapolatiorXoj to higher energies,
not shown explicitly in the above formulas. One can hopeit can be used for prediction of the distributions. Let us em-
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TABLE I. The values ofw; according to Eq(8) (left-hand sid¢ and Eq.(13) (right-hand sidg

i max 3 4 5 6 3 4 5 6
Wy 0.544 0.519 0.509 0.504 0.562 0.501 0.450 0.410
Wsp 0.295 0.269 0.259 0.254 0.278 0.255 0.236 0.219
W3 0.161 0.140 0.131 0.128 0.160 0.153 0.152 0.147
Wy 0 0.072 0.067 0.065 0 0.091 0.100 0.104
Ws 0 0 0.034 0.033 0 0 0.062 0.073
Wg 0 0 0 0.016 0 0 0 0.047
phasize that the asymptotic behaviorrofis directly related We show the valuew; for 3—6 pairs calculated according
to that of the mean multiplicity, to Eqg. (8) in the left-hand side of Table | and according to
Eqg. (13) in its right-hand side. These valugg,, are chosen
o Wi because they will be used in the comparison with experi-
(nas>:maszl JW'1:mas(1_—2:2mas- (12 ment. In particular, we shall choogg =3 at 300 and 546
= W) GeV, 4 at 1000 and 1800 GeV, 5 at 14 TeV, and 6 at 100 TeV

(see below.
One can clearly see the difference between the two ap-
proaches. The value af; is always larger than 0.5 in the

The value ofm is usually quite close to the position of the
maximum of the distribution. Thus the relatioh2) tells us
that in the IPPI model the asymptotic mean multiplicity is S .
about twice larger than the location of its maximum deter-'PP! model while ,'t can bepome less than 0.5 in the ladder
mined mainly by a single parton-parton interaction. One cad°del[11,12 at high energies. In the ladder mode, de-
expect that the asymptotic relation for the probabiliigs ~ PeNd explicitly on energynot only on thej ,a, cutoff). We
becomes valid only at energies where four or more pairs arénoW their values at 546 and 1800 GeV in the right-hand side
already active. This series becomes a polynomial at finit&©UmnSs ofjma,=3 and 4. Those at 300 and 1000 GeV are
energies. In practice, the threshold effects should also birger forw, by about 1% and smaller favs by about 3%.
taken into account at finite energy. They would somewha}Vhen the energy increases, the processes with a larger num-
suppressy; at the largest and, correspondingly, enlarge the ber of active pairs play a more important role_ in the ladder
role of one- and two-pair interactions. gpproach compared_ to the IPPI model. Thus,jthg, cutoff

In [13], the energy dependence of the probabilitigsvas 'S also more essential there. ,
estimated according to the multiladder exchange mpt&| In principle, one can immediately try a two-parameter fit

but Poisson distributions were used for each of the ladder®f €xperimental multiplicity distributions using E() if w
The probabilities are given by the following normalized ex- € known. However, the use of their moments is preferred
pressions: as shown below.

Pj 1 s Zi]- I1l. MOMENTS OF MULTIPLICITY DISTRIBUTIONS
Wl(gl): = Jmax 1-e JZ ir

Jmax
> P > P
j=1 j=1

The shapes of the multiplicity distributior3(n) usually
look quite complicated. Often, they are better represented by
(13 their moments, which also contain complete information.
The easiest way to define them is to introduce the generating
where function

2C s |\° -
§j=ln(s/soj2), Zj:RZ—{——ij-(@) (14 G(Z):nZO P(n)(1+2)". (15
PS) B

with numerical parameters obtained from fits of the experi-In what follows, we will use the so-called unnormalized fac-
mental data on total and elastic scattering cross sectipns: torial Fq and cumulant’, moments defined according to the
=3.64 GeV?, R?=356GeV? C=15 A=ap—1 formulas

=0.08, ap=0.25 GeV ?, sp=1 Ge\~.

Below, we will use both possibilitie8) and (13) in our diG(z)
attempts to describe the experimental data. The probabilities J—'q=2 P(m)n(n—=1)---(n—q+1)=
w; are different for eacksee Table)l In the IPPI model they . dz*
decrease exponentially with increasing number of active par- (16)
tons, while in the ladder model they are inversely propor-
tional to this number with additional suppression at lafrge d9n G(2)
due to the term in parentheses in E§§3). This is the result /Cq:—zq
of the modified eikonal approximation. d
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They correspondingly determine the total and genuine corre- imax T(jk+q)

lations among the particles producédr more details, see fq(k)= E Wi T

[16]). Forg=1, they define the mean multiplicity; the sec- i=1 (1K)

ond moment is related to the width of the distribution, etc. i max

The factorial moments are evaluated from experimental data =k, w;j(jk+1)---(jk+q-1). (20)
j=1

according to their definitior(16). Both 7, and KC; grow,
however, extremely fast with their ranks. Therefore, it is
more convenient to usgl7] their ratioH =K,/ F,, where
these dependencies partly cancel. This ratio is easy to find

The cumulant moments are written as

: ; ) m\ 4
from iterative formulas: Kq= Kq(k)(?) ) (22)
q-1
Hq=1— > G Hqipfp]:q_p, (18)  The explicitk dependence of (k) and x4(k) for <5 is
p=1 I'(p+DI'(q—p) Fq shown in the Appendix. Far, moments one gets
once the factorial moments have been evaluated. Thus, both q-1 r'(q) ff
JFq andH, are determined by experimental data according to Hy=1 PP (22

Egs.(16) and(18). pm1 D(p+DI(q—p) P 1y

Recall that these ratios appear quite naturally in QCD a
the solutions of the equations for the generating functions Ol meterk only and do not depend om in the IPPI model,

multiplicity distributions[17]. Therefore, their use is espe- because then dependence of factorial and cumulant mo-
cially informative because one can compare experimental re ents is the sam?e This remarkable proberty ofhemo-
sults and model calculations with analytical QCD predictions ' property ofhy

for jets ine* e~ annihilation as reviewed i8] QCD pre- ments provides an opportunity to fit tr,1e same results with a

: o . smaller number of parameters. If thg's are given by Eq.
dicts a very specific behavior of titd, moments as func- (9), the only adjustable parameter leftksThese moments
tions of ranksg and energy. It has been showti7,19 that ' y adj b

H, for jets at the present energi€SLC, LEP should oscil- decrease with increase kfandd.

late, and this prediction has been confirmed by experimentaslibzn,?oe tr:; gﬁ:ﬂg ertégfafr?]ue?; gor?e%;[/fit(i)riH qé I (?95)0;5'
results[20—22. The first minimum is located near=5 at 9 P y 9 =a.

Z° energy. At higher energies, this minimum moves to Iargerfonows;

ote that according to Eq22) H, are functions of the pa-

values ofq; the oscillations become less pronounced and £\
disappear in the asymptotics wherhq:l/qz. Moreover, m=k ; qk ) . (23
these oscillations have been foufitB,20 even for experi- q(K)

mentally studiecpp and A collisions. In these cases, they This formula is a sensitive test for the whole approach be-

can be ascribed to the multicomponent structure of the pro- . - . .

cesses. Such a structure is incorporated in the IPPlI mod oFlLtlﬁi It it/?/l(taersjg] %gzgn?:f'n'zﬁézt'emnle d‘:r‘])teir;d;rg f#]g(atgﬁz

according to Eq(1). We will see if it is enough to describe P Omesq P :

experimental data correct. Moreover, this statement should be valid only for
y those values dk that are determined froid , fits. Therefore,

Let us emphasize thal, moments are very sensitive to it can be considered as a criterion for a proper choic& of
minute details of the multiplicity distributions and can be e Prop
and for the model validity, in general.

used to distinguish between different models and experimen- . h .
g P One substitutes the experimentally determined values of

tal data. However, one should be warned that the amp“tUdef?:\ctorial moments, divides them by the theoretical functions

of the oscillations strongly depend on the multiplicity distri- : . . .
bution cutoff due to limited experimental statisti¢sr by fq given bY E_q.(20), and examines whether this rat|9 o the
power 16 is independent of at k values found previously

other reasoningif the experiment is done at rather low mul- f H_ fits. If th . itive. th ari
tiplicities. There are no cutoffs in analytical expressions for rom Hq Tits. 1t the answer 1S positive, Ihé parametaris
known according to Eq(23). If not, the model should be

H,. One can control the influence of cutoffs by shifting e ; .
q
them appropriately. The qualitative features persist neverthe; odified. With parametel’s andm found, one can 'try t_o f'.t
he shapes of experimentally measured multiplicity distribu-

less. In what follows, we consider very high energy pro-,. . N )
cesses where the cutoff due to experimental statistics is prag%();?p%:er%t%e-[hls is another test of the self-consistency of

tically insignificant. . . .
The IPPI model predicts new special features of the mo- At the same time, th'e .V"?"“e.“"" Qetgrm|nes the 'posmon
mentsF, andH,. The factorial moments of the distribution .Of the peak of the multiplicity d!strlbutlon. Fo_r_ a given),
(7) are a q it can be used to check the choice of probabilitigsaccord-
ing to Eq.(12).
q m\a Recall that both parametemsandk depend on the energy
) —f (k)(—) (19 of the colliding hadronss. This dependence can be deter-
d k mined from fits of experimentally found valuesldf, and 7,
as explained above. To extrapolate it to higher energies, one

with should use some guesses. Simedas the meaning of the

j .
2ax T'(jk+q)(m
Fa= 2 TG0 |k
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average multiplicity of a binary parton collision, it should 0.3
behave similarly to the mean multiplicity of the whole pro-
cess. The latter is usually fitted by a logarithmic dependenceiq
with some log-squared terms added. No experience has bee
gained yet for the paramet&r 0.25 M
The Poisson distribution possesses the same property ¢ !
convolutions which made it possible to get K@) for NBD
distributions. Therefore, all the above relations are valid for a
model with convoluted Poisson distributions. Actually, they 0.2
can be obtained in the limk— . For example, the factorial
moments areF | °'*%°" =miM,,.

IV. COMPARISON WITH EXPERIMENT 0.15

We have compared IPPI model conclusions with experi-
mental multiplicity distributions of the E735 Collaboration

[23] for pp collisions at energies 300, 546, 1000, and 1800 ¢4
GeV extrapolated10,24] to the full phase space. The multi-

plicity of charged particles was divided by 2 to get the mul-
tiplicity of particles with the same charge. Then the above
formulas for the moments were used. Correspondingly, the 45
parametersn andk refer to these distributions.

An analysis of experimental data done[l0] has shown
that two parton pairs are already active at energies above 12
GeV. The thresholds for triple or more parton-parton colli-
sions are less definite. They depend on the form of the mul-
tiplicity distribution adopted for a single collision. We as-
sume that three parton pairs are active at 300 and 546 Ge\
and four at 1000 and 1800 GeV with NBDs for a single 0.05 , . , . , .
collision. We use these values in our calculations. e 4 6 8 10 12 14 16

Factorial andH, moments were obtained from experi- q
mental data of?(n) according to Eqs(16) and(18). Experi-
mentalH, moments were fitted by E¢22) to get the param-
etersk(E) of the IPPI model. We show in Fig. 1 how perfect
are these fits at 1.8 TeV férequal to 3.7solid line) and 4.4
(dash-dotted ling At this energy, we consider four active
parton pairs withw; given by Eq.(9) (the second column in
Table ). It is surprising that the oscillations &f, moments
are so well reproduced with one adjustable paranietéhe
general tendency of this quite complicated oscillatory depe
dence is clearly seen.

With these values of the parameterwe have checked
whetherm is constant as a function @f Experimental fac-
torial moments and IPPI values fég were inserted in Eq.
(23). Them(q) dependence is shown in Fig. 2 for the same
values ofk=4.4 (squaresand 3.7(circles and for a much
larger value 7.5triangles. The constancy ofn is satisfied
with an accuracy better than 1.5% foe=4.4 up toq=16. 2Nmax/ (M) <Amax=CNmax/(N)- (24)
The upper and lower lines in Fig. 2 demonstrate clearly that
this condition substantially bounds the admissible variationghe rationy,,./(n) measured by the E735 Collaboration at
of k. 1.8 TeV is about 5. Thusg,,ax should be in the interval

It is well known that experimental cutoffs of multiplicity between 10 and 13. The approximate constancynand
distributions due to the limited statistics of an experimentproper fits ofH, demonstrated above persist to even higher
can influence the behavior ¢, moments. Consequently, ranks.
they impose some limits on thggvalues that can be consid- ~ The same-charge multiplicity distribution at 1.8 TeV has
ered when a comparison is done. Higher rank moments capeen fitted with the parameters=12.94 andk=4.4 as
be evaluated if larger multiplicities have been measured. Téhown in Fig. 3(solid line). To estimate the accuracy of the
estimate the admissible range qf we use the results ob- fit, we calculated> %[ P,(n) — P.(n)]% A2 over all 125 ex-
tained in QCD. Characteristic multiplicities that determine perimental points. HereR,,P. are the theoretical and ex-

FIG. 1. A comparison oH, moments derived from experimen-
tal data at 1.8 TeMsquareys with their values calculated with pa-
rameterk= 4.4 (dash-dotted lineand 3.7(solid line).

the moment of the rank] can be found. By inverting this
relation, one can write the asymptotic expression for the
characteristic range of] [25]. This provides the bound
ng1ma)(~Cnr,m/<n> whereC~2.5527. However, it underesti-
mates the factorial moments. Moreover, the first moment is
not properly normalizedit becomes equal to €/instead of

1). The strongly overestimated valudsowever, with a cor-
rect normalization of the first momenare obtained ifC is
replaced by 2. Hence, one can say that the limiting values of
g are given by the inequalities
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145 T T T T T T T 006 T T T T T T T T T
m
14 .
135 | i
13, -
il
125 | . 1
10 20 30 40 50 60 70 80 90 100
12 1 1 1 1 1 1 1 n+
2 4 6 8 10 12 14 16
a FIG. 3. The multiplicity distribution at 1.8 TeV and its fit at

=12.94, k=4.4 (solid line). The dash-dotted line demonstrates

_FIG. 2. The q dependence ofn for k=4.4 (squares 3.7  \hat would happen if the NBD were replaced by Poisson distribu-
(circles, and 7.5(triangles. tion.

perimental distributions andl is the total experimental error. ) ) )
It includes both statistical and systematical errors. Note that We tried to ascribe the latter to the fact that the effective
the latter are large at low multiplicities in the E735 data. Thisvalues ofk, which we actually find from these fits, depend on
sum is equal to 50 for 125 degrees of freedom. No minimi-the effective number of parton interactions, i.e., on e
zation of it was attempted. This is twice better than the threevariation at a threshold. The threshold effects can be impor-
parameter fit by a generalized NBD considered26]. A tant in this energy region. Then the simple relati@ is
Poisson distribution of particles in binary collisions is com-invalid. This influences the function,(k) [Eq. (20)] and,
pletely excluded. This is shown in Fig. 3 by the dash-dottecconsequentlyH,, calculated from Eq(22). One can reduce
line. the effective number of active pairs to about 2.5 at 300 GeV
We show in Fig. 4 the decomposition of the fit in Fig. 3 to and 3.5 at 1000 GeV if one chooses the following values of
processes with different numberof parton pairs involved y;: 0.59, 0.34, and 0.07 at 300 GeV and 0.54, 0.29, 0.14,
in collision. It is seen that the locations of their maxima areang 0.03 at 1000 TeV instead of those calculated according
approximately proportional th _ to Eq. (8) and shown in Table I. This gives rise to values of
The same procedure has been applied to data at energiggyhich are not drastically different from the previous ones.
300, 546, and 1000 GeV. As stated above, we have assum?-ﬂ)wever, the quality of the fits becomes worse. Fits with two

that three binary parton collisions are active at 300 and 54@l - ; ; :
N t t 300 GeV and th t 1000 GeV fail
GeV and four at 1000 GeV. We plot in Figs. 5 and 6 thecgr:pele‘t)gl;s a ev an ree pairs a evia

energy dependence of the parameteendk. The parameter Hence, we have to conclude that this effect results from

m increases logarithmically with energy. This is expected : . : .

. : : some dynamics of the hadron interactions that is not under-
see Eq(11)] because increase bf; due to increasing num- . :
[ qi1D] use ! 1Y ! 'ng nu od yet and should be incorporated in the model. The pre-

bers of active pairs at these energies leads to a somewhI ) | ) ¢ this eff d be th he thresh
faster than logarithmic increase of the average multiplicity in''Mminary explanation of this effect could be that at the thresh-

accordance with experimental observations. The energy d@!d of new pair formation the previous active pairs produce
pendence ok (crossesis more complicated and rather ir- More squeezed multiplicity distributions due to the smaller
regular. phase-space room available for them because of the new-
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comer. Therefore, the single pair dispersion decreases and
the k values increase. This would imply that thresholds are
marked not only by the change of; shown in Table | but
also by the variation of the parameter

The threshold effects become less important at higher en-
ergies. We assume that there are five active pairs at 14 TeV
and six at 100 TeV. Then we extrapolate to these energies.
The parametem becomes equal to 19.2 at 14 TeV and 25.2
at 100 TeV if logarithmic dependence is adopted as shown in
Fig. 5 by the straight line. The predicted multiplicity distri-
butions are plotted in Fig. 7. We choose two valueskof
equal to 4.4(solid line) and 8(dash-dotted linefor 14 TeV.
Low multiplicities are suppressed at largerand the maxi-
mum is slightly shifted to higher multiplicities. The shape of
the tail is practically unchanged. For 100 TeV, we show only
the prediction fokk=4.4 (dashed lingbecause increase &f
leads to the same qualitative effect as for 14 TeV. The oscil-
lations of H still persist at these energi¢see Fig. 8 The
minima are, however, shifted tp=6 at 14 TeV and 7 at 100
TeV as expected.

The fit at 1.8 TeV with an approximation ef; according
to the ladder mode{13) with a NBD for a binary parton
collision is almost as successful as the fit with valuesvpf
given by the IPPI model. However, some difference at 14
TeV between these models is predictedmpare the solid
and dotted lines in Fig. 7, both obtained for=4.4). This
difference becomes more pronounced at 100 TeV. To keep
the same mean multiplicity in both models at the same en-
ergy, we have chosen different valuesés dictated by Eq.
(11) and thew; values shown in Table I; namely, their ratios

FIG. 4. The decomposition of the fit in Fig. 3 to one, two, three, are m;pp, /mM;34=0.988, 1.039, 1.123, 1.228 fjf,2=3, 4,
and four parton-parton collisions.

26

5, 6, respectively. This shows that the maximum of the dis-

22

20 |

FIG. 5. The energy depen-
dence ofm (squaresand its linear
extrapolation (circles at 14 and
100 TeV).

1000

E, GeV
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tribution moves to smaller multiplicities and its width be- mean multiplicities in all processes is similar. It was con-
comes larger in the ladder model compared to the IPPI modejluded that the dynamics of all hadronic processes is the
with energy increase. same. In addition to our general belief in QCD, we cannot
Certainly, one should not overestimate the success of thelaim that other characteristics of multiple production pro-
IPPI model in its present initial state. It has been applied justesses initiated by different partners coincide.
to multiplicity distributions. For more detailed properties, At first sight, QCD fits of multiplicity distributions in
say, rapidity distributions, one would need a model for thee*e~ collisions and IPPI model fits opp collisions are
corresponding features of the one-pair process. Moreovecompletely unrelated and cannot be compared. There is,
the screening effedoften described by the triple Pomeron however, one definite QCD prediction that allows us to ask
verteX will probably become more important at higher en- the question whether QCD and the IPPI model are compat-
ergies. All these features are implemented in some way in thible. This is the asymptotic behavior ¢, moments in
well known Monte Carlo programgYTHIA [27], HERWIG ~ QCD. They should behaVd 7] angsz 1/g°. One can also
[28], andDPM-QGsM[11,12. However, for the last one, the determine the asymptotics bf; moments in the IPPI model
multiplicity distribution for a single ladder is given by the and compare both approaches. The asymptotical values of
Poisson distribution of emission centéresonancgsconvo-  the probabilitiesw; (8) and their momentsv, (10) for r
luted with their decay properties, and the probabiligs <5 are as follows:
contain several adjustable parameters. It differs from the :
IPPI model. The present approach proposes a more economic w;=0.8, M;=2, M;=6, M3=26,
way with a smaller number of such parameters. Concerning M,=150 Mc=1082 (25)
the further development of event generator codes, it is tempt- 4 Ps '
ing to incorporate there the above approach with a negativinserting them in the expressions feg and f, given in the
binomial distribution of particles created by a single partonAppendix, one can evaluate the asymptotic behavior of the
pair, and confront the results with a wider set of experimentaH, moments in the IPPI model at any paramekerAll
data. This has not been done yet for the IPPI model, and wasymptoticH, are decreasing functions kf Their minimum
intend to work on it later to learn how it influences other values are reached lat> =, i.e., for a convolution of Poisson
characteristics. distributions. They are given by the ratio of the coefficients
It would also be interesting to see whether this model isin front of the leading® terms inkq andf, (see the Appen-
valid for AA collisions as well or whether the collective ef- dix) and are equal to
fects(saturation® prevent its application there. This work is

. 1 3 13 75
in progress now. P y@P_2 e -2
H5 3 H3 3 Hy 75" Hy 511 (26)
V. ARE e*e™ AND pp SIMILAR? These values are noticeably larger than QCD predictions of

1/92. Since they are even larger for any finite paraméter
This question was raised by a recent statement of theve have to state that QCD and the IPPI model have different
PHOBOS Collaboratior{29] that the energy behavior of asymptotics. In other words, this implies that E2), con-
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FIG. 7. The same-charge multiplicity distributions at 14 TeV q
and 100 TeV obtained by extrapolation of parametendk with ] . _
five active pairs at 14 TeV and six at 100 Téfér the IPPI model: FIG. 8. The behavior o, predicted at 14 TeVK=4.4, solid

solid line, 14 TeVk=4.4: dash-dotted line 14 TeX=8: dashed 'In€ k=8, dash-dotted line
line 100 TeV,k=4.4. For the ladder model: dotted line 14 Tdy,
=4.4). tions proceed through independent parton-parton collisions

and each of the binary collisions gives rise to a negative
sidered as an equation fég with Hq=1/q2 inserted in it,  binomial distribution of secondary particles with the same
does not have a solution with asymptotical valueMef[Eq.  parametersn and k. The resulting distribution is described
(25)] in the IPPI model. by a weighted sum of NBDs whose parameters are equal to

It is an open question whether other asymptotic relationghe single collision valuesr andk multiplied by the number
for w; different from Eq.(8) can be found which would lead of pairs. Thus no new adjustable parameters appear. Multiple
to the same behavior ¢1, moments inpp ande*e™ colli-  binary parton collisions are assumed to become more impor-
sions, i.e., if a solution of E(22) can be found for some fant as energy increases. A comparison with experimental
values ofM, different from those given by Eq25). Only ~ data at 300, 546, 1000, and 1800 GeV has shown good
then one can hope to declare an analogy between these p@reement. Predictions for the CERN Large Hadron Collider
cesses. and higher energies are presented. It is demonstrated that
Moreover, it has been found from experimental data@Symptotic QCD predictions fcg"e™ multiplicity distribu-
[18,30 that the amplitudes of oscillations &f, moments tions differ from the asymptotic results of the IPPI model for
increase for more composite colliding particles. The anomapp processes. Further work on Monte Carlo implementation
lous fractal dimensions also diff€t6], becoming smaller for of this model is in progress.
AA compared withpp and even more witrete™. Thus,
there is no direct similarity o™ e~ and pp-collisions.
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APPENDIX

The functionsf ,(k) and «4(k) areqth order polynomials
of k with coefficients determined by the momems with
r<g. Their expressions fog<5 are as follows:

fi=k;=Mik, f,=M,ok?>+Mk,
ky=(My—M3K?+ MKk,
f3=M3k®+3M,k?>+2M K,
k3=(M3—3M;M,+2M3)k3+3(M,—M3)k?+2M 1k,
f,=M 4k*+6M3k3+ 11M ,k?+ 6M 4k,
k4=(M4—4M M3+ 12M2M,—3M3—6M$)k*+6(M,
—3M;M,+2M3K3+ 11U M,— MHK?+6M 4k,
f5=Msgk®+ 10M 4k*+ 35M 3k3+ 50M ,k?+ 24M 1k,
k5=(Mg5—5M M 4+ 20M2M 53— 60M3M,+ 30M ;M3
—10M,M 3+ 24M3)k5+ 10(M ,— 3M2—4M ;M
+12M2M,— 6M$)k*+35(M3—3M M+ 2M3)k®

PHYSICAL REVIEW D 70, 034005 (2004

+50(M,—M$)k?+ 24M k. (A1)

The ratio of the coefficients in front of the leadirg
terms in«xy and f, gives Hy for the Poisson distribution.
Thus, in generalH, differs from 0 for a multicomponent
Poisson distribution.

The case of one active pair correspondbdite=1, and the
ordinary formula of NBD is restored.,=I"(k+q)/I'(k).

To demonstrate the accuracy of the values shown in
Table | for the IPPI model, we present here their more accu-
rate values and moments for four active parton pairs:

w,;=0.51879, w,=0.26914, wy=0.13963,
W,=0.07244, M, =1.76571, M,=4.01103,
M;=11.0779, M,,=34.6791, M= 117.238.

(A2)

These values ofv; are larger and those &, are smaller
than the asymptotic ones shown in ER5).
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