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A quantum field theoretical model for the dynamics of the disoriented chiral condensate is presented. A
unified approach to relate the quantum field theory directly to the formation, decay, and signals of the DCC and
its evolution is taken. We use a background field analysis oO%¥) sigma model, keeping one-loop quantum
corrections(quadratic order in the fluctuationsAn evolution of the quantum fluctuations in an external,
expanding metric which simulates the expansion of the plasma is carried out. We examine, in detail, the
amplification of the low-momentum pion modes with two competing effects: the expansion rate of the plasma
and the transition rate of the vacuum configuration from a metastable state into a stable state. We show the
effect of DCC formation on the multiplicity distributions and the Bose-Einstein correlations.
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I. INTRODUCTION The question is, how do we test the spontaneous symmetry
breaking mechanism in a nonequilibrium process directly?
The mechanism of spontaneous symmetry breakiijy Can we create a suitable condition so that the vacuum state is
occupies an important role in particle physics, cosmologydisturbed for a small region of space-time and observe dif-
[2], and condensed matter phys[&. The understanding of ferent excitations and domain structures in the vacuum? Re-
this phenomenon has lead to cross fertilization between thesently it has been conjectured that this may be possible for
fields and many new ideas have emer§éll When a sym-  the chiral symmetry breaking in strong interactions given the
metry is spontaneously broken by a vacuum state, it is welpresent high-energy physics facilitigkl—17,52—54,5[f
known that thermal effects at equilibrium can restore the To describe aspects of QCD related to this symmetry, it is
broken symmetry5]. Typically, there exists a critical tem- convenient to introduce an effective theory, to use a low-
peratureT. at which the effective potential as a function of energy effective sigma model as a model for the QCD phase
some order parametes develops an absolute minimum at transition because it respects B8)(2) X SU(2) chiral sym-
¢=0 and the system undergoes a phase transition and resetry of QCD with two light flavors of quarks and it con-
laxes to this minimum at higher temperature. A manifestatiortains a scalar fieldY) that has the same chiral properties as
of this, in a second-order phase transition is thatafl. the  the quark condensate. TRefield can thus be used to repre-
order parameter fluctuates at all scales and long-wavelengtent the order parameter of the chiral phase transition. The
oscillations occui[6,7]. For nonequilibrium situations, the chiral four vector of fields is¥, ), whereX represents the
dynamics of the transition of a system from a symmetric to eguark condensate and the three vector of the pion field. In
broken symmetry state leads to the formation of new structhe physical vacuum X, ) points in theX, direction. If the
tures and the generation of entropy in the form of particlechiral symmetry were exact, then there would be a “chiral
production[3,8,9. In high-energy physics, there are two circle” of states degenerate with this vacuum state. In prac-
well-known examples of symmetry breaking: electroweaktice, the symmetry is explicitly broken by the current quark
symmetry breaking and chiral symmetry breaking in strongmasses and so there is a unique vacuum.
interactions. One of the main features of QCD, the underly- Because of this circle of nearly degenerate field configu-
ing theory of strong interactions, is the spontaneous breakingations, as the chirally restored plasma cools and returns to
of its approximates U(2), X SU(2)g chiral symmetry. Spon- the normal phase, the system could form regions in which
taneous breaking of this approximate symmetry explains théhe chiral fields are misaligned—that is, chirally rotated from
very small pion masses. If the symmetry breaking were extheir usual orientation along thg direction. There has been
act, pions would be massless Nambu-Goldstone bosons. Amuch recent interest in this phenomenon, which is known as
other consequence of this symmetry breaking is the presen@edisoriented chiral condensa@CC). If such a state were
of a nonvanishing quark condensate in the vacuum. It is beformed, it would lead to anomalously large event-by-event
lieved that at very high temperature a quark-gluon plasma ifluctuations in the ratio of charged to neutral pions.
formed in which chiral symmetry is restored, and much ef- Aregion of DCC can be thought of ascluster of pions of
fort is being made to explore such a phase transition byear-identical momentum around zero (coherently produced)
means of high-energy hadron or heavy-ion collisih6].  with an anomalously large amount of fluctuation of the neu-
tral fraction. In order to produce such a state in a quark
gluon plasma, the hot plasma must evolve far from equilib-
*Email address: bbsp@uohyd.ernet.in rium and in particular it must reach an unstable configuration
"Email address: ¢c_mukku@yahoo.com such that the long-wavelength pion modes are amplified ex-
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ponentially when the system relaxes to the stable vacuum
state. Thus questions of whether a DCC forms and how it L
evolves cannot be addressed in the framework of equilibrium
thermodynamics. Techniques for applying QCD directly to

1. 1 1 A
2_ N2 T 22 32)2
Eq)‘ 2az(VCI),) 2m OF 4((I>i) , (2

such situations do not exist at present. To explain these non- @y
equilibrium phenomena, we need to restructure the theory of d,
phase transitions to incorporate the microstructufes d;= ol (€)
state$ instead of macrostructures. For this we need to set up 8
a theory at the quantum level. D,

In his talk at Trentd 18], Bjorken pointed out some of the . ) ) ) .
unresolved issues concerning the DCC called bec ~ Depending upon the sign ah” the Lagrangian admits a

trouble list They were the following: restored symmetry statéd;)=0 and broken symmetries
(a) Are coherent states the right quantum DCC descrip{®i)=V/d®=*v are two degenerate vacuua.
tion, or should one go beyond to squeezed states, etc. We note here that the potential we use is not the one

(b) How does one link DCC thinking to quantum effects traditionally used by the early practitioners of DCC analyses.
in the data, especially the Bose-Einstein correlations. Is DCG Nus, for later comparison with the dynamical equations for

just another way of talking about the same thing? the pions used as starting points for analyzing the DCC, we
(c) How does one enforce quantum number conservatiori’,"”' later relate the potential that we have chosen to the tra-
especially chargg19]? ditional potential in the Gell-Mann—Levy modg28]. The

(d) DCC production may imply anomalous bremsstrah-Lagrangian density in the Gell-Mann—-Levy model is given
lung, due to the large quantum fluctuations in charge. caRY
this be calculated from first principles? 1 N

(e) Can one really set up the problem at the quantum field | =2 (9 #o#7+ 9,3 0"3)— — (72 +32—p2)2+H3.
theory level? 2 # 4

Some attempts have been made to answer these questions, (4)
especially questior(e) [17,20—23, but to our knowledge The action is
these are incomplete as they do not incorporate the dis-
orientation of the condensate and the evolution of the plasma
in one unified picture. In particular, RdfL7] has developed S=f d*x
a quantum field theoretic treatment of the DCC in nonuni-
form environments by using a space- and time-dependenthe pasic object of study is then the chiral field
effective mass function to illustrate the importance of includ-
ing quantum effects in the dynamical treatment. Although the %(r,t):E(r,t) +ig %(r,t), (6)
new aspect of inhomogeneity of the plasma is dealt with

(which we will not consider in the present paper, but will where 3(r,t) and fr(r,t) are the scalar and vector fields,

deal with in a later communicatipnan arbitrary disorienta- . - -
tion of the condensate in isospin space and treatment ;&?%‘;S:Z’egf theO(4) vector ¢=(X,m) and 7 are the

s e s, 1 &% g gyl constar, . anaH ae related 0 e
In this paper we give a unified quantum field theoreticph.ySICaI quantitied ,, (pion form factoj andm,, by the re-

picture of the DCC with and without orientation and give our lations

answers to the questions posed by Bjorken. We also provide H

additional support to the claim made in REE7], that incor- m2=_—=\(f2—v?), 7)

poration of quantum effects has very strong quantitative and f

gualitative effects on the signals of the DCC.

1 a A a 2\2
2 ﬂﬂ(ﬁ a#¢a_2(¢ pa—v)+HZ|. (5

o

mi=3Af2—\v2~2)\f2=600 MeV/c?,
Il. MODEL
© m3c2—m?2c?

In most treatments of DCC formation, the classic Gell- AN=——p—=2014,
Mann-Levy Lagrangiaf24] is used. Our starting point is i

theO(4) linear sigma model with symmetry breaking, which m2—3m2 ]2

has become the standard model used for the study of pionic (@:{%fﬂ =86.71 MeV,

physics, especially in the context of DCC formatidry,25— my —mz

27]. We study it in the expanding Friedmann-Robertson- 2 5 3

Walker metric H=mZcf ,=(120.55 MeV}". (8)
d?=dt?—a(t)2dx?, (1) Note that the fermionic part is neglected here, since the

focus is on the condensate formed in the symmetry-broken
wherea(t) is the expansion parameter. T&¢4)-symmetric  phase where quark degrees of freedom are already confined.
sigma model with Lagrangian density With the transformatior® — 2, —v, the minimum of poten-
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tial is at(¢?)=(32+ 7?)=(v)?=12 and the usual equilib-

rium vacuum state is an ordered stdtg)=(v)=f_ and S=j d*xdta(t)® %q)iz_ %(V‘Di)2
(m)=0.
Now consider the dynamic evolution of the system in a 1 N
hot quark gluon plasma. When the temperatliee T, the - Emzdbiz— Z((I)iz)z), (10
system reaches a state of restored symmgtiy=0. If the
subsequent expansion of the plasma is adiabatic{#)¥ \ith
field gradually relaxes to the equilibrium state as the system
cools to belowT.. This is called the “annealing” or adia- @,
batic scenario. It was first pointed out in REE3] that if the D,
cooling process is very rapid and the system is out of ®;= .| (11)
equilibrium—i.e., in the event of a sudden quench from a 3
state of restored symmetry to a state of broken symmetry o,
such as that occurring in a rapidly cooling expandingwhereq)i’ i=1,....4 arereal scalar fields.
plasma—the configuration of thg field will lag behind the We now use a background field analysis to study the

expansion of the plasma and there is a mismatch of the couantum effects. Assumé; has a background classical
figurations and their evolution. After a quench, the high-componentg; which satisfies the classical equations of mo-
temperature configuration does not have time to react to thiéon
sudden change of the environment; thus, the vacuum expec-

tation value(¢) would stay what it was at high temperature S =0 (12)

for a while and then relax to its equilibrium value. This re- O b=,

sults in the formation of DCC domains and is known as the .

baked Alaskd29] scenario. Treat the quantum fieleb; as a fluctuation around a classical
Another nonequilibrium situation that can arise is oneSolution,

where the system can go through a metastable-disordered Db+ B, (13)

vacuum (3)=f_cos() (m=f,nsin(6) and then relax by o _ _ _
quantum fluctuations to an equilibrium configuration. Here Since ¢; satisfies the classical equations of motion:

measures the degree of disorientation of the condensate in 1. 825 N
isospin space. S=9 ¢+ E(ﬁim djt . (14
In both these nonequilibrium situations, the canonical ap- rle=¢

proach to the full quantum evolution of the fields is ex-\e shall restrict our analysis to quadratic fluctuations only.
tremely difficult to carry out explicitly. However, we may |n addition, we shall also drop the terSi¢;] as it is just a
study the quantum evolution of the mean field and includeconstant additive term to the quadratic action. Therefore we
fluctuations. In calculating the effective Hamiltonian we useshall deal with a quadratic fluctuation action given simply by
the O(4)-symmetric linear sigma model, whose Lagrangian 1 52S
density is given by Eq(2). It is easy to see that with the Sy= =i
identification®2= (32+ 72— f2) andS 3 —v, the effec- 276050,
tive potential in theO(4) linear sigma model is the same as gy the particular scalar field action given above, assuming
the Gell-Mann—Levy model. We will use this identification g fields vanish at infinity,
when considering the evolution of the pion field.

The choice of metric is dictated by the simple spherical 5_32 —a,(alg*"a <D»)—a3m2¢-—a3ﬂ (16)
geometry of the problem. Assuming a homogeneous expan- o, W &G0, J oP; -
sion of the plasma, a Robertson-Walker type of metric i
chosen with an expansion rat€t). This will allow us to
examine the competing rates leading to “rolling down rate”
of the vacuum and the expansion raig). The line element

describing the expansion of the plasma bubble is chosen to
be wheredV/dg;= VI id;l .

The equations of motion in this metric are

P;. (15

C=¢

SImposing the classical equations of motion, we find that

Vv
0M(a3g“”av¢i)+a3m2¢i+a3—07¢' =0, (17)
I

ds?=dt?—a(t)%dx?, (9 BE%%F— iV2¢i+m2¢i+ﬂ=0. (18
a az— ‘9¢i
) ] Since we are interested in the dynamics of the fluctuation
wherea(t) is the expansion parameter. . field, we shall treat the fluctuation field 8, as a classical
The action of theO(4) sigma model in this metric be- fig|q ands, itself as the classical action for its dynamics. The
comes quadratic part in the fluctuations is reduced to
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ad( = 1 Assume that the fluctuation fieftl; decomposes into its con-
SzzJ' d3xdt—( bi2— —= (V)2 stituents as

-2 a2 —

T
o~ V|

—m2p2— p—— o 19 ~ 2

TN o, "") 49 b=(@)-g=| °|. (29
¢ To
We can define a Lagrangian density for studying the dynam- D

ics of the fluctuationsg, as follows: We have started with a@(4) quartet of scalar fields in order

ad 1 52V that we can construct the dynamics of quenched pions in the
L= _(aiz_ —2(V$i)2—m2$i2_ai— gj) formation of a disoriented chiral condensate. The physical
2 a? — IPioP; |, fields are defined so that
. o . 1 1
Carrying out a Legendre transformation, it is easy to write mo=——(mtim,), w_=—(m—im). (25
down the Hamiltonian density V2 V2
1., a__—, a3m2A2 a3/ __ 9V | _ Analogously, we define the classical background fields as

H=2—a3|0i t5 (Vo)™ ——di"+ = ¢im , j). . .

(21 vy=—=(v1tivy), v_=—7=(vi—ivy), 26

+ \/E( 1 2) \/5( 1 2) ( )
where
following the identification
~ oL =
pi=—F—=a¢. (22) vy
O v
2 j—
We also have ¢= V=V =(®). @7
PV o
FET =2\ i+ N LS . (23 . .
il It is easy to see that the action takes the form

_ 3041a3) — . _i 2 2 2 E z_i 2
S d°xdta*y wom_ 2(V7T+)(V7T,) [m*+(4N)vv_+NvsthNo]mm_+ 570 5 2(V71'0)
a a

1 1. 1 1
- §[m2+(2)\)v+v_+3)\v§+ No?]my+ 522— ;(VE)Z— §[m2+(2)\)v+v_+3)\0'2+ Av3]3?
a
NV T 02 7P+ 2003mpS + 20 _vamemy + 20 s vgmoT_+ 20 _om S+ 20,07 3) . (28

The Hamiltonian for this action can be written as

H:Hneutral+Hcharged'l'Hmixeda (29)

where

(Pory) | 1 1 (Q%-wd) , (P 1
: :fds)(dtas —— (V) + S (M) (mo) 2 — T2 =L (V32
neutral [ 2a6 2a2( o) 2( ,.,)( 0) 2a6 0 2a5 2a2( )

1
+5(mi)(3)%+ E(Q%—w%)@ﬂ : (30)

N -

034001-4
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Po+ po
a®

_f 3 3 1 2
Hcharged_ d°xdta +_(V7T )(V7T+)+(m Y )+a_(Q _w )(7T+7T ) (> (31

Hmixed™ f d3xaldt{\ (v2 72 + 02 72) + (2N (v 4 vaT_ Tt U _VgTy ot oVS Tt v oT_S+ov_Sa.)},

(32)
where we have also put
QZ qurt_wfr 02— w?
a6 —)\[vz+2v3] 5 —=\[v?+2v,v_], = 2=)\[v2-|—202], (33
and
2v+v_+v§+a'2=v2. (34)

This is the most general Hamiltonian for the pion sigma system in the background field formalism. The background field can
now be parametrized through three angles:

v cog p)sin(f)sin(a)
v cogp)sin( #)cog «)
b= . . . (35)
v Sin(p)sin( 9)
v cog 6)
In order to consider all the special cases that are possible in a transparent way, we shall simplify the parametrization of the

possible form for the background field to two anglésand p by letting a=7/4: then, v+ =(v/\/2)cosp)sin(), vs
=p sin(p)sin(f), ando=v cos().

I1l. QUANTIZATION

Using standard canonical quantization techniques the mode decomposition of the Hamiltonian is

d3k 1 w, [Q2
Hneutralzf { (akak+akak)+2a — —1|(afa+aal+a_ac+alaf)+ a_(dek+dkdk)

(277)32
QZ
+—2 —22— (didy+dedl+d_yde+d" dh) b, (36)
2a°\|
Wa | 7 t t Tt
Hcharged:j (2n ) { (bkbk+Cka)+2—a3( 2 _1)(bkbk+ckck+b—kck+c—kbk) , (37)

(bkb—k+ bkC|1<'+ Clbk'f' CC_k+ Clctk"‘ Ckbl"‘ bECk+ blbf_k)

- dSE Na®v2cog(p)sirt(6)
mixed f (277)3 4o

ks

. Nalv?cog p)sin(p)sir’( )

(ba_+bal+clactca_+clal  +cal+blac+blal,)

VW3 W7
Nav2sin(p)sin( 8)coq 6 Na®v?cod p)sin( #)cog 6
 ABVTSINP)SINGICOKO) 4 o o+ dal+dla +dlal )+ L20 COIPISIOICOLE) (it
VW W3, VW W3,
+efdet+ e d_ +cfdt  +cdf +bld+bld" ) ¢, (38)

where
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wi(k) @5 (k) o (K) ( , kZ)
= = — m: + ,

ab a® a®
2 2
wz(k)_ , Kk
and
Q2(k) K2
= TM2 N2+ 203), (40)
a a
0% (k) 2
- =—2+mi +N(v2+2v,0.). (42
a a =

An important point to note here is that although.(k) andw (k) are momentum-dependent quantities, for ease of notation
we will drop thek dependence for further calculations in this section and revive it when necessary for the description of the
physical processes.

It is very interesting to note that if either of. orv; is zero, then we obtain the usual expected dynamics for the pions with
back-to-back correlations. But if we allow for either or v to be nonzero as may be envisaged in the highly nonequilibrium
dynamics involving the formation of a metastable DCC, then we have terms which involve mixed interactions of the pions and
sigma.

Clearly, there are two interesting cases to be considered hiere0 andv ;=0 (equivalently,§=0) and the second case
occurs with the formation of a metastable, misaligned vacuum vphremn/2.

A. Case 1
For this case we use. =0 andv;=0 (or, equivalently,#=0) showing thaH reduces to

&k | o w, (02 ws ws [ Q3
H=f = T(alataa)t —| ——1|(alayta@l+a_a+rala))+ — (did +dd)+ —| — -1
(277)3[2a3( ke T akay) Pl (aaxtagay,+a_axta-ay) 2a3( ki + didy) prcii;
w w 2
X (didy+dyd] +d_de+ dikdl)] +{a—;(bl‘:bk+ ceh) + 2—7; w—;—l) (blby+cyel+b_yc+ ctkbl)] : (42)

This Hamiltonian has asu(1,1) symmetry and can be diagonalized by a series of Bogol(#meezinygtransformations
simply given as follows: in the neutral sector, writing

At ) =pu(r,tyac+v(r,t)a  =U"(r,t)au(r,t),
Al(t,n)=w(r,t)a_,+pu(r,t)al=U"%(r,HHafu(r,t). (43)

A similar expansion for diagonalization is done for the sigma field, with operddQ(s,r') and Dl(t,r’) similar to the
definition of A.(t,r) andAE(t,r) with the d’s replacing thea’s. For the charged sector,

Cu(t,r)=uc+vbl =U~Y(r,t)cU(r,t), Clt,r)=pucl+vb_ =U"%rt)ct U(r,1), (44)
By(t,r)=uC_+vb=U"r,t)bU(r,t), BL(t,r)=uch +vb=U"Y(r t)bu(r,1), (45)
where
1[(Q, o, _ 11/Q, o
p=coshr)= \/E w_ﬂ+Q_ﬁ +1|, w=sinhr)= \/§[<w_,,+ﬂ_ﬁ)_1 , (46)

andr is the squeezing parameter, it is easily seen to give the usual resultthat®=1 for a squeezing transformation. The
complete unitary matrix accomplishing the squeezing transformation may be written down as

034001-6



FROM QFT TO A DISORIENTED CHIRAL CONDENSATE PHYSICAL REVIEW D0, 034001 (2004

d3k
U(r,t)zexp(f (ZW—)Sr(k,t){(aﬁa*k—akak)+(d1di—dkdk)+(ckbk+bkck)—(c§b*k+b§ch)}>. (47)

It should be noted here that putting together all our results for the neutral and charged sectors, the total diagonalized
Hamiltonian is written in terms of various creation and annihilation operators as

H f % 1 |Q [(A*A !
frg — —_— +_
(2m)32a3| T\ 2

Since the, field decouples, we drop all terms associated with it whenever it is not essential to our arguments, allowing us to
write the total dynamical Hamiltonian for the pion fields in terms of the observed pion creation and annihilation operators
(a, a', c, c’, b, andb’):

1
DD+ =

+(ClC+B|B,+1) 5

+ QE . (48)

’ QW 2 AYZSE T Tt Tt QT’ 2 2 t
a

+vu(al al+a@ ] (49)

This completes the analysis for the case wifer0.

B. Case 2
The second case of interest is whe#n 7/2. The Hamiltonian for this case reduces to the following:

&k 1o, b, @0 , t t tot o, O3t t
HneutraI:f 33| (At ad)t 5 —[1+2 sirf(0)](agat aag+a- @+ alag) + — (didi+didy)
(27) a (OF a
3,2)
Gy [1+2 co(6)](did+ddf+d_de+dT i) ¢, (50)
I f P o oot 22 221 )bl oct+b T by (51)
= —1—= +oeh+ —= — +c e +b e +ch :
charged™ | 503 a3( kPt CkCy) 2%\ W2 (byby+cCy+b_yey+cby)
d3k [ rav? Zsir’(e)cos(ﬁ))
ed= = da_+dal+dla+dfal ), 52
mixed f (277)3{ 2 m ( kA —k kSk k Ak k k) ( )

where(for p= 7/2)

0% K2

T 2 2

ae—a2+mw+)\v ,
0 2

===+ M, +\v?[1+sirP(6)]. (53
a a -

Unlike the case considered above, we now have a nonzero mixing term coming frerg-theector. Since both of these are
neutral sectors, we can combine thgg ;2 aNdH ixeqt€rms to form a single neutral sector Hamiltonian which we will again
call Hpeyiral While Hepargeq femains unchanged:
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a2+ 02| \v%a® n(26) ay
J d3k ( al df ) 41 ad 4 Vo,
H = =
neutral (277_)3 w, /(1)2 )\Uzas . a3 Q%‘i" 0)% dk
sin(26) T 5
a Vs
a[ Q2+02) Nv%a® in(20) aj
— Si L
n Ay dk ) 4 a.6 4 Jwﬂ_
Vo, Vos/| av?a® n(20) as Q%-i—w% dl
Si — —
4 4 a6 \/(.02
N asie] MR sin2e %
Si Si —
[ dk) 2 L (0)] 2 Sin(26) N
N N avlald Av?ad d
@m NOz sin(20) [1+2co2(9)]] | —==
4 /w2
2,3 2,3
vea \v‘a 1
[1+2 sir(6)] sin(26) | [ 2
a', d 4 4 Jo
+ -k —k+ Tﬂ' (54)
Vo, Nos /| av?a® 238 2 dy
7 sin(26) 7 [1+2cos(6)] \/w—2

These terms clearly show the mixings between the forward and backward pions as well as the mixing betwgemthe
3, fields. The misalignment of the vacuum through an amgleduces a mixing of the two fields. The mixed fields are

(Aﬁ(k))_( cogh) sin(6) (ak 55
D ok —sin(@) cog6)/\d,/’
ThenHcutral CAN be expressed as
mq 0 Ag(k) m; 0 Ag(k)
H =(Al,, D! )( )( +(A D)
neutral o(k) o(k) 0 m, Dﬁ(k) 6(K) o(k) 0 m, DJ(g(k)
ng O Ao ng, O A];(k)
+(Ay_pk Dy k)( )( +(Al o DL . (56)
0(—k) w0 o n, Do (k) 1o n, D;(k)
Here
o= vQ . Qs Q.1 Q. 14 1 o, . ®, 1 1l o, N vQ Qs
T e Qslw, 17 2 Vo) 0,17 2 Vg 4a°
QE QE 1 ws (1)2 1 (1)2
X{ mg(”a o T 2N 7
P vQ Qs Q.1Q., 1 1l o, N ®, 14 1l o, N vQ . Qy
T e Qslw, 17 2 Vo) 0,17 2 Voy 433
Qz QE 1 Wy ws 1 ws
| n—ww—z(l‘z o, PO\ PN %9
while
> _\/QWQE Qﬂ. qu . 14 1 . n Qz QE Wy 14 1 Wy 59
T  Vadle, o1 2V T Vel T a1 2 VG, 59
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and
) _NQO5 Q. (0, o, 1 1l o,
M e | Vosle, 0172V ey

and

%(%_2)(1_L /2) 60
Qw wy, ‘Q’E 2
The diagonalization procedure for this case along with theThen,
dynamical consequences of this Hamiltonian will be dis-
cussed i 30].

We finally get

and
Hieutrai= Ma(Abi Ao + AsioAnio) + M(AgioAs -k

t At t t
+AgaoAs—k) T M2(D 40D gy T Do D gy

+15(D iy D -ty + D g D 1) - (61)  formations as
|
w2 2=1
and
p2—g?=1

The squeezing parametesisv,p,o are given by

02 0_[0. 1 o, L 9n 1+1 or| |, O] Qs .
PN\ T 2 Vo) T T 2 V ey /[T Va ey
0,2 Q.1Q, 1 1l |o, N W, 1+1 W, N QE- [
TN, T 2V ey 0T 2 Ve O oy
0y Q; . 1+1 [, N ®, 1 1l o, N QEVQE 1
p= Qz_wﬂ. 2 Wy Qﬂ. 2 Wy Qﬂ', Wy
92 0.0, 1+1 [, +wﬁ 1 1 o, N QE-QE 1
TN e, T 2 Ves )0 T 2 Ve O oy

With these definitions the neutral sector Hamiltonian is simply

VQ Q5

Hheutra™
4a3

2

Combining with the charged sector

Qa, + +
Hcharged:?{ckck'*_ BBy + 1},

the total Hamiltonian for the case= 7/2 is

034001-9
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Fe= 1A g+ vAY i »

[F.Fi1=1

[Gy,Gi]=1

We now apply two squeezing transformations

Gk=PD9(k)+UD£(—k) 7 GlzpDL(kﬁUDe(—k) :

+1,

+1,

Fi=uAlg+ A0k (62

(63

(64)

(65

imply that the transformations are indeed Bogolyubov trans-

(66)

(67)

(68)

(69

(70

(71)

(72

(73
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d*k | Qs NV 1 1
= = {_=ct T TR et - T -
HW,Z—I | & (CICHBIBr 1)+ — = (Fka+2 +| GGt 5|1 (74)
with
2 2

0% K2 Q. K
— = tmitN? — = +mi [ 1+siP(6)]. (75)
a a a a -

This completes our analysis of the quantization of the Hamiltonian for the two cases mentioned above. We have taken an
0O(4) sigma model and succeeded in quantizing the quadratic fluctuations to arrive at two Hamiltonians which provide all the
required ingredients for analyzing the formation, evolution, and eventual decay of the DCC. Indeed, in case 2, the Hamiltonian
shows explicit mixing with an angled], providing a mixing parameter and therefore a misalignment parameter in isospin
space.

IV. EVOLUTION OF THE FLUCTUATIONS 1
AND PARAMETRIC AMPLIFICATIONS N= E{alak'F a' . a_+blb+b’ b, +cley

In the last section we have constructed the quantum 0. .,0 L0
Hamiltonians for two casesfE0 andp= w/2) of theO(4) +cl K-kt 3 =K+ Ko+ Ks, 77
sigma model. We have also shown the diagonalization of th o :

Hamiltonians so that they can be written in terms of thegmd itis easy to see that they satisfysu{1,1) algebra
appropriate quantum fluctuation fields as purely quadratic [N p]=—-p, [N,DT]=D', [D',D]=—2N. (79
Hamiltonians. In this section we shall explicitly consider the

case wherd=0 (the dynamics of the case= /2 will be  The su(1,1)-invariant Hamiltonian for the pion fields as-
given in a subsequent pape&0]). We notice thaH has the  sumes the form

form of a decoupled Hamiltonian. This is easy to understand

from theSO(4) parent. ThesO(4) vector has been decom- d’k 1 .

posed into four fieldsr.. , o, and> being, respectively, the H=f 5 — 320K ) (u+r)N

charged pions, the neutral pion, and the sigma fields. (2m)"a

It is the sigma field which decouples in this particular +20 (kt)uv(D+DT. (79
Hamiltonian and therefore it can be analyzed independently N
of the pion fields. As our interest s in the pion fields, we can  The time-dependent evolution equation for the eigenstates
write the total dynamical Hamiltonian for the pion fields in of H is given by
terms of the observed pion creation and annihilation opera-

tors a, a', ¢, c¢’, b, andb™) in terms of the squeezing pa- d
rameters as HO[9(0)) =1 4 e (). (80)
P The particulaisu(1,1) structure elucidated above provides us
Q. i
H=j = 73 2(u?+ v?){cle +blb+ 1} the solution
(2m)® a® &K
+,LLV{(Ckb_k+bkC_k)‘f'(Clbtk'f'bICT_k)} |lll(t)>:eX[<f mrk(pl_pk))h//(o) (81)
Q. . S .
+—3{(M2+ v){ajat+ 1+ (vu){al al +a@a . for the gvolutlon of the wave function immediate[31]. _
a Herer, is the squeezing parameter related to the physical

variables() .(k,t) and w (k) through

(76)
(SL,(k,t))2 1
) . o
We now define the bilinear operators tank2r ) = ’ 82)
(Qw(k,t))2
+1
D=a,a_,+bc_+cb_ =K +K, +K3, @
where Q) _(k,t—»)=w (k). Thus, in the evolution of the
condensate, it is the frequency changes which bring about
D=al af+cl bpt bl cl=KI +K; +K3, squeezing32]. | ’ ’ ’

034001-10
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The diagonalized HamiltoniaH can be converted into a while
Hamiltonian in terms of quantum fields corresponding to the

operatorsA,B,C and their adjoints to obtain a purely qua- 1 P (1)
dratic Hamiltonian(the starting point of many early works Hyithi(t) = —— Q2 TI2(k,t)— k"2 . (9)
on the subject of the DC33,34. 2a ' o1l

We can, for example, write
Combining the above we find thay;(t) and ¢, ;(t) evolve

Qﬂ' 1 Q‘IT as
g(AEAw 3)= 5 (AACHAAY
-
Q,\° , Wit = a2 (92)
=| — | HAO+P{ (k). (83 (1)
a
Similarly, for B andC, we write - a. oz
iU+ 31 k(D) — ¥¢i,k(t)=0- (93

Qnf ot 1 _Qr oy T
_3 BkBk+ z = _3(BkBk+ BkBk)
a a The equation satisfied by the wave functions for each mode

are then given by

Q 2
=(—) 2(k,t)+P3 (k,t), (84
3 B 1 HB 1 ’
a

-

m

2
_3) (kvt) lsz(kat) = O,

. 3a.
Ua(k,t)+ a Yat
a

T
3

a

o1
CiCit 3

Qr 4 t
= g(ckcﬁ CkCy)

Q 2
_-:) (k,t) lﬁB(k!t) :01

a

3a.
ek, t)+ §¢B+

Q 2
=(—”) HZ(k,t)+P% (kt). (85
3 ci™ I ™

a

) 2

The HamiltonianH, can then be written as

d3k 1
Ho(t)= J PEE i:AZB,C 5

. 3a.
ek, t)+ E‘lfc"‘

2
<&> 7 (k,t)+ Pf (K, t)

a® where
(86)
The Schrdinger equation for each momentum mode is Q. 2 52 ’ )
simply s (k,t)= 2 +ms+Av?, (95
.d
Ho(k, gk, t) =i 2 (k. b). (87)  where it may be recalled tha,(t), B,(t), and Cy(t) are

related toa,, by, andcy (the physical pion operatorby the
If we use thell representatioifcoordinate space representa- squeezing transformation given by
tion) for ¢(k,t), then, thesu(1,1) symmetry of the Hamil-
tonian tells us that the solution f@r(k,t) is just a Gaussian. Alt,n)=U"r tau(r,t), (963
For simplicity we work with a Gaussian of the form

Bi(t,r)=U"(r,t)bU(r,t), (96b)
(mo.me )= Liyel WO (8g)
k,i
Ci(t,r)=U"Xr,t)cU(r,b), (960
while the complete wave function is
d3k - \/1 Q,n.+ W, 41
w<t>=f Sw(kb). (89) costin=\3|| o "o, "t
(2m)
Then for each modeé\,B,C,D the wave functiony ;(t) ) 11/{Q, o,
evolves as v=sini(r)=1/5|| —+5 |71
. 97)
ial/lk’i(t)=(i5—iH-2(k)\N-(kt)>zp (D, (90
at Li ' DAL andr is the squeezing parameter:

034001-11
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d3k d?
U(r,t):exp(f (277—)3r(k,t)[(alaik—aka,k)+(dldik vb(n):ald—;+m§(1—a2), (106

and in the symmetry-restored stagk?)=0,
—dd_ )+ (cb_+bec_) —(cib!  +blct )1 . aGe”)

d?a
(98 Vr(n):a’lp+mf,(1—a2)+)\a2ffr. (107
i
The expectation values of the number operator for the
neutral pions for each momentukrare given by These equations have a dual nature: on the one hand, they
i sinfA(r) = N are Schrdinger-like equations with; corresponding to the
(D) agay] (1)) =sinkf(r) = (] Ag(DAD] ) “spatial’-like variable andE=w?2. Therefore, they allow

calculation of the reflection and transmission coefficients

A similar expression may be obtained for the charged pionsover the “potential barrier” provided by th&(7) term. On
Robertson-Walker-type metricis?=dt?—a(t)2dx?, it is frequencies given bf22 andw? . These two pictures enable

possible to scale the time so as to provide a conformally flays to calculate the squeezing-parameter-dependent number
metric: we let operatorN(k) =sintf[r (k)] involved in the evolution of the

plasma as can be seen in the Appendix.
dn=a(t)"*dt, (100 We also note that the expansion coefficia(i;) provides
us with a control parameter on the expansion rate of the
plasma while the system provides us with another parameter,
d<2=a( m2(dn—dx3). 10 which we call 7 for the “rolling down” of the fields in the
(m)(dn x) (109 potential. According to the pioneering work of papers
The equations of motion given above can be transformedi29,13, when the expansion rate is greater than the relax-
into ones that resemble a harmonic oscillator with time-ation rate, the DCC forms. _ _
dependent frequencies. We shall write only the generic form We'now consider two cases, t_he first being a toy m_odel
of the above equations: In terms of the scaled timewe  [28] without the effects of expansion and the second being a

so that

have more realistic “baked Alaska situation.”
In the first case, let us suppose tladty) =1 so that
2a’ .
moyo— g 2 2 2\ _ §2 2.
(/l + a l/l +k +[mﬂ_+)\(<¢) > f,n,)]a I,Z/ 0, V(ﬂ):_)\(<q)2>_fi) (108)
(102

_ _ ) _ Then the equation fof is
where a prime denotes a differential with respecytaHere

we have a few remarks: First, we note that to make contact g”+(k2+m2 +)\(<®>2— f2))§: 0. (109
with the dynamical equations for the pions used as starting ” ”

tphomts tfort."’“r?h’ ztlng tT‘e DCCh, we return tcftr:het pgl_?t ablout If 7is the time the state spends in the symmetry-restored
e potential that we have chosen versus the traditional pg; o0~ 4 quench can be modeled by assuming

tential chosen in such studies. The traditional potential i hat for —r/2<p=1/2 the vacuum expectation value

(PF—17)? while we have taken a potentialb() . There- 4,2y 32)(®2)=0 and fory> /2 the vacuum relaxes to its
fore, the relationship between our work and early studies '%/alue<®2>=<v2>~f2 (since the potential is translationally

H 2 _f2
accomplished through a replagemeﬁt—{(cb )M =F2) invariant, this could easily be mapped to the intedl@&l},
This explains the equation written above and the furtherbut our choice makes the potential symmatror this sud-

analysis of this paper. Last, let us scale den quench the problem reduces to that of transmission

E=ay (103 through a symmetric rectangular potential barrier of height
' (Af2)=mé/2 and widthr.
so that the equation becomes The transmission coefficient for such a barrier is easily
) calculablg 35,36 and in terms of physically known values is
—&+V(n)é=(KP+m2)E, (104
where T= ! .
(m3/2)? _ ms L\
d2a , , + (Z)(ZTZ) sint? T—wk T
V(p)=a t—+mi(1-a?)—-\(®?—f2). (10 W) (My/2= oy
(1) an? = )= N(®%)—f7). (109 (110
Thus in the symmetry-broken stag®?)=1f2, From the Appendix we get
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N(k) VAT)

FIG. 1. Variation of N(k) and k (in units of m_) with 7
=0.8,0.9,1.0 in units ofn;l for the quenched limit.

N(k)=

1-T  (mif2)? - m L\
T =3 2/2_ 2 n 5 T Wy T
i (Ms/2— wj)

2 FIG. 3. Variation of the Woods-Saxon potential barrier of width

(111 =4 with b. Large br gives the rectangular potential barrier
(quenched limix

The dependence dfi(k) on k for different values ofr is .
shown in Fig. 1, clearly exhibiting the amplification of the Here 1b measures the rate of the expansion and we choose

low-momentum modes. to be in units ofm,.. Whenb7>1 we have the quenched

Figure 1 also shows us that the longer the system stays #Mnit (fast expansionand enhancement of low-momentum
the state of broken symmetry, the larger the DCC domaingnodes should occuDCC formation. Whenbr<1 we have
The dependence dfi(k) on = for different values ofk is the adiabatic limit and no enhance_\ment of low-momentum
shown in Fig. 2. Recall that, by definition, the amplification modes should occuno DCC formation. o
of the zero modes constitutes DCC formation. Since we have When viewed as a time-dependent oscillator equation in
a “Schradinger” wave equation that is exactly solvable, we @n expanding metric we may write the equation §an the
can also calculate the size of the DCC domains. We shaffymmetry-restored phase as an oscillator equation
leave that for a subsequent pajpa0].

This case is similar to that considered by R&B]. _ £+ w2E—V,(9)E=0 (113

For a more realistic scenario, the expansion must be in-
cluded to show that the enhancement of the low-energy
modes and the squeezing parameter are dependent on the r@fl in the symmetry-broken stage as
of the expansion mechanism by which symmetry is restored.

To produce substantial squeezing, we require a quenched &'+ w2E—Vy(n)€=0, (114
scenario. To show this we have to compare the situation of a

sudden quench with a slow adiabatic relaxation of the system

from the symmetry-restored stage to the symmetry-brokeMhereVy(»n)andV,(») are given by Egs(107) and (106
stage. The transition between quenching and adiabaticity ca#ith the particular choice of the expansion parametn)

be modeled in two ways in view of the dual nature of Eq.9iven by Eq.(112). Thus the change in frequency from the

(105). restored to the broken stage is given by
We consider the expansion coefficiea(ts) to be of the
form mZ
_ > 2
V() = V() =+ —-a(n)”. (115

b T
2
a(n)=®(—n)tanf{——(n+— . - :
2 2 Given that we have to calculate the transmission coeffi-
cients we need to look at the wave functiahisn the limit
}, (112 n— *oo, This is possible by solving the oscillator equation

with a variable frequency:

b T
+®(7])tam‘{§( n— 5

N(k)

8000 ;o k=0 2

m
s000 g 4o+ 5 [1-a%(n)]E=0, (116

4000

We see that Eq(116) satisfies the required limité)( )2

= w2 asy— += and between these limits it gradually goes

to a maximum atQ(7)=Q2. Equation(116) can be con-
FIG. 2. Variation ofN(k) with 7 (units of m_1) for k=0, 1,  Verted into a Schidinger wave equation for a Woods-Saxon

and 2(units of m,;) for the quenched limit. potential barrier given by

2000
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1 whereV,= m§/2. The comparison of the rectangular poten-
V(n)=Vo O(—n)| —————= tial barrier with this barrier is shown in Fig. 3, which reveals
—b(n+1/2) . . . . . T
1+e it to be a good approximation in the adiabatic limit.
We take the values of the variabl&s= (k?+ w?)*? and
+0(n) —— o | (117) k_’2= E—V,. The transmission coefficient for this barrier is
1+e77 given by

- sinf?( m2k/b)sink( w2k’ /b)
~ sintf m(k—k')/b]{4|C|sire(k'b)+(|C|2— 1)}

=V, (118

TWS

and the same witk’ —ik’ for E<V, where

_ sintP[ 72(k+k’)/b]
 sink[w2(k—k')/b]’

Note that forb large this reduces exactly to the rectangular potential bagiggnched limit transmission coefficient and for
b very small this goes over to the Poschl-TellEckar) barrier transmission coefficient.
The number of particles of modeequals

1—(sintf[ m(k—k’)/b]{4|C|sir?(k’b)+ (|C|>*—1)})

119
sint?( w2k/b)sint?( 72k’ /b) 9

N(k) =

Here b measures the duration of the quendi(k) vs kis  formed a DCC; if not, then there is no DCC. This will now
plotted in Fig. 4. We see that in the adiabatic limit of smallenable us to give signatures of DCC formation which are
b7, N(k) is exponentially suppressed so that there is no enrelated to the formation process of the DCC.
hancement of low-momentum modes.

Figure 5 shows the variation dfi(k) with k for large
values ofb, showing the enhancement of low-momentum V. PION RADIATION FROM DCC'S

modes in the quenched limit. ) . .
From the above we conclude that if the expansion time Having shown that the dynamics of the evolution of the

(1/b) is faster than the rolling timer), we get the quenched DCC suggests a squeezed-state treatment of emerging pion
limit, while if the expansion time is slower than the rolling Waves and that this effect is more pronounced in a quenched

time, we get the adiabatic limit. This provides an analyticscenario than an adiabatic one, we now proceed to show the
supplement of earlier numerical simulations of quenchingPossible experimental signals that would result. A complete
versus annealing with regards to DCC formati@’—41.  treatment, with the incorporation of isospin and disorienta-
We see that since in the squeezed-state descrifMigd) tion in isospin space for arbirary momenta, is giver{42]
=sintfr,, wherer,=r (k) is the squeezing parameter, in the and[30]. For the present, however, since we see an amplifi-
guenched limit the squeezing parameter is much greater tharation of the low-momentum modes, we consider only the
in the adiabatic limit. This demonstrates clearly the connecease wherk=0. In such case for pions near zero momen-
tion between the rate of expansion and squeezing and them,k—0, the staté81) factors into a squeezed state for the
formation of the DCC, as characterized by the enhancememieutral pions and a Caves-Schumaker state for the charged
of low-momentum pions. If squeezing is large, we havepions. In this limit the bilinear operators of E(7) are

N(k) _ N(k)
15PN, T bes e =125
12.50 N — — b=.25 — — b=11

10

7.5 —b=.1 —— b=10

. .
2.5k
— 3 Tk e F ok
FIG. 4. VariationN(k) with k for values ofb in the adiabatic FIG. 5. VariationN(k) with k for values ofb in the quenched
limit for the Woods-Saxon batrrier. limit for the Woods-Saxon barrier.
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D=a2+byCo+ Cobyg, Py —r 023
o+ DboCot Cobg 000 _
0.006 ~
Dt=al?+clbi+blc], 0 005 — —1_0=3.5
0.004 - ooa
N=ajay+ +bjby+clhco+3/2. b T T e
(120) 0. 00— ————— ——

. . 50 100 150 200
Thus thek=0 wave function is

FIG. 6. Variation ofP,. with n for thery,=3, 3.5, and 4.

)= y(0))
2ttt 2 tions are significantly different as the two types of states
= e"0(@ *CoPo* Pt +boCotCobo)| 1 (0)), (121)  have different properties. We now illustrate the effect of
squeezing in these two distributions. Figures 6 and 7 show
wherer, is the squeezing parameter at zero momentum—the difference in the charged and neutral pion distributions as

ie., we vary the squeezing parameter from a low value to a high
value.

tank(2r ) = (Q,/w,)*-1 We now illustrate the effect of quenching versus adiaba-

0 Qo )2+1 ticity on these two distributions. Figure 8 shows the differ-
ence in the charged and neutral pion distributions as we vary
The pion multiplicity distribution is given by the squeezing parameter from the adiabatic limit where the

difference is negligible to the quenched limit where the dif-

Prgin. n_=1(no,ny.n_[4)]? ference is significant.
fa w2 This behavior seems related to the traditional signal of the
=|(no|e"@ "0 %|0) DCC—namely, that the probabiliti(f) of the fractionf of

o bl b ) neutral pions to all pions scales as {f2whereas the
X(n, ,n_|e*o(Pa%~Po%)|0)|2, (122  charged pions do not exhibit this behavior. To see this more
clearly we examine the “KNQKoba-Nielsen-Olsonlimit”

defining S(ro) as the one-mode squeezing operator: [43] of the probability distributionsP,,, and P,,. (Fig. 9).
rof(al)?—a?] Define the variabld =n/(n). Then, since the neutral pions
S(r o) =(no|e"0l% " 40l|0) are always emitted in pairs, the number of neutral pions,
_ (ng), is equal to the number of positive and negative pions,
_Sno!o' (123 (nc). We may rewrite the distributiond26) and (127) as
S'™(r,) is then the two-mode squeezing operator ()~
. Py (n)= — (129
<n+ ,n7|e[r0(bOC07bOCO)]|O>:S'I[']n:’ni'o_ (124) (1+<nc>)
. e and
The neutral and charged pion distributions are
1 (ngy \" 2n!
Pngn.= Xsty 2, (129 = |0
ngane = (Snp. 0 (SR, 0.0 Pp,(No) 0\ TH gl (L5 (na) e (129

which is just the product of squeezed distributions for o
charged and neutral pions and only an even number of pion§hen the KNO asymptotic limit corresponds to the lafge
emerge. Writingn, =n_=n., we get the distribution of (large squeezing quenchdinit and the charged and neutral

charged particles to be pion distributions obey the scaling laws
; ~f
tanh(r )12 lim (nC)Pn =e (130
P, => Prg.n.= H(—O)]Z (126) n—® (ng)—® ¢
¢ o ¢ [coshrg)]
and
and
p(n) - 0os
no![tank(rq)]" o0y -
pnozz Pno.n,= 5 —. (127 — -z 0=3.5
ne ¢ [(no/2)!]"coshirq) 2" 0 -
0. 0 =4
The generalized squeezed eigenstate leads to products of 0. -
two types of squeezed states of pions at zero momentum, the 0.
neutral pions being in a one-mode squeezed state and the S

charged pions being in aBU(1,1) coherent or two-mode
squeezed state. Thus the neutral and charged pion distribu- FIG. 7. Variation ofP, with n for ther,=3, 3.5, and 4.

034001-15



B. BAMBAH AND C. MUKKU PHYSICAL REVIEW D 70, 034001 (2004

p(r) o T
s /
— — neutral g 08 ,
06
charged 04 //
02 Y,
150 200" |
0 1 2 3 4 S
FIG. 8. Variation ofP, (solid line) andP,,. (dashed lingwith v {0}

n for the adiabaticlimit (ry=2).
FIG. 10. Difference in correlations of the charg@tshed ling
_f and neutralsolid line) pions as a function of the squeezing param-

e
lim  (no)Py = 2 (13)  eterro.
n—e (ng)— VI. CONCLUSION
From these two equations we see that in the Idrje-  To conclude, in this paper we have constructed effective

limit—i.e., very high squeezing—the probability distribu- Hamiltonians for the evolution of the disoriented chiral con-
tions of the neutral pions exhibits /2 behavior with re- densate without and with orientation in isospin space, start-
spect to the charged pions. ing from an O(4) sigma model through the inclusion of
We now calculate the correlation function by first calcu- second-order quantum fluctuations. We have shown that both
lating the generating function corresponding to the multiplic-Hamiltonians hav&sU(1,1) symmetries, leading to the pres-

ity distribution P,. It is given by Q(\)==,(1—-\)"P,,.  ence of squeezed staes in their dynamics. Unlike most earlier
The two-particle zero-momentum correlation funct®®(0)  studies, our calculations of the effective Hamiltonians are not
is given by restricted to zero momentum and take care of back-to-back

momentum correlations. The evolution of the wave function
5 ) 5 in an expanding metric, for one ca8eithout orientation in
(%) —(n _ I°QIN"|\=1 (132) isospin space has been considered in detail. The competing
(n?) (3QIN)|\—1 effects of the expansion rate and the rolling down time of the
system from a state of restored to broken symmetry have
been explicitly examined. We find that in the quenched limit
(fast expansionthe low-momentum modes are enhanced,
_ . 0 signaling DCC formation, whereas in the adiab&slow ex-
Thus ‘we see that in the adiabatic lIMGpeya  pansion limit, no such enhancement occurs. This has been
~Geharged whereas in the quenched limMiGreurai  shown to be directly related to the value of the squeezing
<Gthargear 9iving a very clear indication of the effect of parameter. The manifestation of this difference shows up di-
DCC formation on the Bose-Einstein correlations. rectly in the total neutral and charged multiplicity distribu-
To conclude this section, we have shown that the suddefions at zero momentum and the second-order correlation
qguench approximation in the evolution of the disoriented chifynctions.
ral condensate leads to a substantial amount of squeezing Fyrther work is required to incorporate the effects of isos-
which manifests itself in the dramatic difference betweenpin_ This will be done in a Subsequent pub“cat[m] Fur-
charged and neutral pion distributions. For an adiabatic exthermore, the evolution of the wave function corresponding
pansion the difference is much less, so that both the totah the Hamiltonian with orientation in isospin space is also
multiplicity distributions of charged and neutral pions andthe subject of a forthcoming communicatig0]. Within this
their second-order correlation functions are dramatic charaGramework back-to-back momentum correlations and event-
teristic Signals for the DCC and are related direCtIy to thEby-event ana|y5i5 of the experimenta| 5igna|s can also be
way in which the DCC forms. These are unambiguous; theregone. This will provide a solid unified picture of the various
fore, they must be examined thoroughly in searches for thenodels of DCC formation, evolution, and decay, together

G?*(0)=

The variation oG, i af GohargeaWith the squeezing param-
eter is given in Fig. 10.

DCC[16]. with new experimental signals. Finally, we have achieved
our goal of answering Bjorken’s troubling questions about
P DCC's posed at the Trento meetings].
0.02 (i) Question(a): Are coherent states the right quantum

0.015, — — neutral DCC description, or should one go beyond to squeezed

0.0l charged states, etc.? Answe(a): Yes, one is naturally lead to
\ squeezed states from a quantum field theoretic perspective.

0.00% o (i) Question(b): How does one link DCC thinking to
— n guantum effects in the data, especially the Bose-Einstein cor-

50 100 150 200 . . .
relations. Is the DCC just another way of talking about the

FIG. 9. Variation ofP (solid line) andP,,. (dashed lingwith ~ same thing? Answeb): DCC formation leads to a signifi-
n for the quenchedimit (r,=4). cant difference between the charged and neutral pion Bose-
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Einstein correlations corresponding to large squeezing. So imethod we describe for the relation is closely related to that

is not another way of talking about the same thing. of Ref.[51]. Let us consider the evolution of the wave func-
(iii) Question(c): How does one enforce quantum numbertion of the equation

conservation, especially charge? Answer Charge conser-

vation is automatically guaranteed by the isospin analysis

shown in Ref[42,56,58—61 A word about other quantum &\ F K=V ()& =0. (A1)

numbers such as strangeness is in place [Hele Schaffner-

Bielich and Randrugd45] have examined the inclusion of

strangeness in effective models of the DCC by considerindf We definek?—V; ()= w(7)?, then the above equation is

the SU(3) extension of the linear sigma model. They haved time-dependent harmonic oscillataf’(t) + w?(7) £(t)

made the observation that the nonequilibrium dynamics re=0. In the event of a change in frequency of the oscillator

sults in the enhancement of neutral kaons but to a lesséfom w_ to0 w., the asymptotic form of the real solution at

degree than the pions. Furthermore, they state that the kaors— * > 1S

emitted form a DCC have a flat distribution much like the

charged pions in the quenched limit that we have shown in

this paper. Thg examination of this r_esult in the context of £.(H)= l(aieiwit_'_ate—wit). (A2)

our formalism is warranted, but requires a generalization of 2 =

our model to thesU(3) sigma model and will be reported in

a later communication. In particular the difference between

the neutral kaon distributions in a quenched versus adiabatic WWe compare this with the complex solution of a 1D os-

limit would be interesting to study and give another goodcillator treated as a reflection over a bartiér-V; , with 7

signal for DCC formation. corresponding to the spatial variable of a Sclinger-type
(iv) Question(d): DCC production may imply anomalous equation:

bremsstrahlung, due to the large quantum fluctuations in

charge. Can this be calculated from first principles? Answer ot ot

(d): This can be easily incorporated in our model and will be Ec-()=e""+Re ",

shown in a later communication.
(v) Question(e): Can one really set up the problem at the .

quantum field theory level? Answée): An emphatic yes. £ ()=Te o+, (A3)

Albeit, the full quantum theoretical effective Hamiltonian

with the contribution of the quarks in this framework has yet .

to be considered. This will provide a new approach tot0 identify a_-=1+R* anda,=T.

supplement the work done in Ref§$6—50,53. Some of _ Now consider the par_tlcle c_reat|0n problem modeled by a

these studies have examined the effect of coupling of thdMe-dependent harmonic oscilla{@2]. The solution can be

quark field with the condensate and have shown that th&ePresented by

growth and decay of the condensate are governed entirely by

meson fluctuations. However, in R¢b0], a statement has

been made that in a rapidly expanding plasma pair produc- £ _=

tion of quarks may be as important as pion production. To = \/2_&).

make a quantitative judgement on this statement one would

have to extend our work to the linear sigma model with

quarks, as expansion is included in our model. This would

perhaps lead to new and improved signals of the DCC. £i()=a

e* i wft Bel (I)ft

+ .
2(1)ft \ 2(1)ft

(A4)
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APPENDIX:
RELATIONSHIP BETWEEN THE TRANSMISSION
COEFFICIENTS AND SQUEEZING PARAMETER

FOR A TIME-DEPENDENT HARMONIC OSCILLATOR

If we regardt as a spatial variable, then these represent re-

flection and transmission over a 1D barrier. In particle cre-

ation problems the potential barrier reflection and the trans-
The process of particle creation and excitation of parametmission coefficient can be related to the squeezing parameter

ric oscillators can be related to the transmission and reflegn a particle creation problem by the relation Sin&sR/T

tion of Schralinger waves over a potential barrier. The =(n)=g8* [52-61].
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