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From QFT to a disoriented chiral condensate
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A quantum field theoretical model for the dynamics of the disoriented chiral condensate is presented. A
unified approach to relate the quantum field theory directly to the formation, decay, and signals of the DCC and
its evolution is taken. We use a background field analysis of theO(4) sigma model, keeping one-loop quantum
corrections~quadratic order in the fluctuations!. An evolution of the quantum fluctuations in an external,
expanding metric which simulates the expansion of the plasma is carried out. We examine, in detail, the
amplification of the low-momentum pion modes with two competing effects: the expansion rate of the plasma
and the transition rate of the vacuum configuration from a metastable state into a stable state. We show the
effect of DCC formation on the multiplicity distributions and the Bose-Einstein correlations.
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I. INTRODUCTION

The mechanism of spontaneous symmetry breaking@1#
occupies an important role in particle physics, cosmolo
@2#, and condensed matter physics@3#. The understanding o
this phenomenon has lead to cross fertilization between th
fields and many new ideas have emerged@4#. When a sym-
metry is spontaneously broken by a vacuum state, it is w
known that thermal effects at equilibrium can restore
broken symmetry@5#. Typically, there exists a critical tem
peratureTc at which the effective potential as a function
some order parameterf develops an absolute minimum
f50 and the system undergoes a phase transition and
laxes to this minimum at higher temperature. A manifestat
of this, in a second-order phase transition is that atT5Tc the
order parameter fluctuates at all scales and long-wavele
oscillations occur@6,7#. For nonequilibrium situations, th
dynamics of the transition of a system from a symmetric t
broken symmetry state leads to the formation of new str
tures and the generation of entropy in the form of parti
production @3,8,9#. In high-energy physics, there are tw
well-known examples of symmetry breaking: electrowe
symmetry breaking and chiral symmetry breaking in stro
interactions. One of the main features of QCD, the unde
ing theory of strong interactions, is the spontaneous brea
of its approximateSU(2)L3SU(2)R chiral symmetry. Spon-
taneous breaking of this approximate symmetry explains
very small pion masses. If the symmetry breaking were
act, pions would be massless Nambu-Goldstone bosons.
other consequence of this symmetry breaking is the pres
of a nonvanishing quark condensate in the vacuum. It is
lieved that at very high temperature a quark-gluon plasm
formed in which chiral symmetry is restored, and much
fort is being made to explore such a phase transition
means of high-energy hadron or heavy-ion collisions@10#.
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The question is, how do we test the spontaneous symm
breaking mechanism in a nonequilibrium process direct
Can we create a suitable condition so that the vacuum sta
disturbed for a small region of space-time and observe
ferent excitations and domain structures in the vacuum?
cently it has been conjectured that this may be possible
the chiral symmetry breaking in strong interactions given
present high-energy physics facilities@11–17,52–54,57#.

To describe aspects of QCD related to this symmetry, i
convenient to introduce an effective theory, to use a lo
energy effective sigma model as a model for the QCD ph
transition because it respects theSU(2)3SU(2) chiral sym-
metry of QCD with two light flavors of quarks and it con
tains a scalar field (S) that has the same chiral properties
the quark condensate. TheS field can thus be used to repre
sent the order parameter of the chiral phase transition.
chiral four vector of fields is (S,p), whereS represents the
quark condensate andp the three vector of the pion field. In
the physical vacuum, (S,p) points in theS direction. If the
chiral symmetry were exact, then there would be a ‘‘chi
circle’’ of states degenerate with this vacuum state. In pr
tice, the symmetry is explicitly broken by the current qua
masses and so there is a unique vacuum.

Because of this circle of nearly degenerate field confi
rations, as the chirally restored plasma cools and return
the normal phase, the system could form regions in wh
the chiral fields are misaligned—that is, chirally rotated fro
their usual orientation along theS direction. There has bee
much recent interest in this phenomenon, which is known
a disoriented chiral condensate~DCC!. If such a state were
formed, it would lead to anomalously large event-by-eve
fluctuations in the ratio of charged to neutral pions.

A region of DCC can be thought of asa cluster of pions of
near-identical momentum around zero (coherently produc
with an anomalously large amount of fluctuation of the ne
tral fraction. In order to produce such a state in a qua
gluon plasma, the hot plasma must evolve far from equi
rium and in particular it must reach an unstable configurat
such that the long-wavelength pion modes are amplified
©2004 The American Physical Society01-1
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ponentially when the system relaxes to the stable vacu
state. Thus questions of whether a DCC forms and how
evolves cannot be addressed in the framework of equilibr
thermodynamics. Techniques for applying QCD directly
such situations do not exist at present. To explain these n
equilibrium phenomena, we need to restructure the theor
phase transitions to incorporate the microstructures~or
states! instead of macrostructures. For this we need to se
a theory at the quantum level.

In his talk at Trento@18#, Bjorken pointed out some of th
unresolved issues concerning the DCC called theDCC
trouble list. They were the following:

~a! Are coherent states the right quantum DCC desc
tion, or should one go beyond to squeezed states, etc.

~b! How does one link DCC thinking to quantum effec
in the data, especially the Bose-Einstein correlations. Is D
just another way of talking about the same thing?

~c! How does one enforce quantum number conservat
especially charge@19#?

~d! DCC production may imply anomalous bremsstra
lung, due to the large quantum fluctuations in charge. C
this be calculated from first principles?

~e! Can one really set up the problem at the quantum fi
theory level?

Some attempts have been made to answer these ques
especially question~e! @17,20–23#, but to our knowledge
these are incomplete as they do not incorporate the
orientation of the condensate and the evolution of the pla
in one unified picture. In particular, Ref.@17# has developed
a quantum field theoretic treatment of the DCC in nonu
form environments by using a space- and time-depend
effective mass function to illustrate the importance of inclu
ing quantum effects in the dynamical treatment. Although
new aspect of inhomogeneity of the plasma is dealt w
~which we will not consider in the present paper, but w
deal with in a later communication!, an arbitrary disorienta-
tion of the condensate in isospin space and treatmen
charged and neutral pion distributions and correlations
not included in this quantum treatment.

In this paper we give a unified quantum field theore
picture of the DCC with and without orientation and give o
answers to the questions posed by Bjorken. We also pro
additional support to the claim made in Ref.@17#, that incor-
poration of quantum effects has very strong quantitative
qualitative effects on the signals of the DCC.

II. MODEL

In most treatments of DCC formation, the classic Ge
Mann–Levy Lagrangian@24# is used. Our starting point is
theO(4) linear sigma model with symmetry breaking, whic
has become the standard model used for the study of pi
physics, especially in the context of DCC formation@17,25–
27#. We study it in the expanding Friedmann-Robertso
Walker metric

ds25dt22a~ t !2dxW2, ~1!

wherea(t) is the expansion parameter. TheO(4)-symmetric
sigma model with Lagrangian density
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L5S 1

2
Ḟ i

22
1

2a2
~¹F i !

22
1

2
m2F i

22
l

4
~F i

2!2D , ~2!

F i5S F1

F2

F3

F4

D . ~3!

Depending upon the sign ofm2 the Lagrangian admits a
restored symmetry statêF i&50 and broken symmetrie
^F i&5dV/dF56v are two degenerate vacuua.

We note here that the potential we use is not the o
traditionally used by the early practitioners of DCC analys
Thus, for later comparison with the dynamical equations
the pions used as starting points for analyzing the DCC,
will later relate the potential that we have chosen to the
ditional potential in the Gell-Mann–Levy model@28#. The
Lagrangian density in the Gell-Mann–Levy model is giv
by

L5
1

2
~]mpW ]mpW 1]mS]mS!2

l

4
~pW 21S22v2!21HS.

~4!

The action is

S5E d4xF1

2 S ]mfa]mfa2
l

4
~fafa2v2!21HSG . ~5!

The basic object of study is then the chiral field

fW ~r ,t !5S~r ,t !1 i t•pW ~r ,t !, ~6!

where S(r ,t) and pW (r ,t) are the scalar and vector field
respectively, of theO(4) vector fW 5(S,pW ) and t are the
Pauli matrices.

The physical constantsl, v, and H are related to the
physical quantitiesf p ~pion form factor! andmp by the re-
lations

mp
2 5

H

f p
5l~ f p

2 2v2!, ~7!

mS
2 53l f p

2 2lv2'2l f p
2 5600 MeV/c2,

l5
mS

2 c22mp
2 c2

2 f p
2 520.14,

^v&5FmS
2 23mp

2

mS
2 2mp

2 f p
2 G1/2

586.71 MeV,

H5mp
2 c2f p5~120.55 MeV!3. ~8!

Note that the fermionic part is neglected here, since
focus is on the condensate formed in the symmetry-bro
phase where quark degrees of freedom are already confi
With the transformationS→S2v, the minimum of poten-
1-2
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FROM QFT TO A DISORIENTED CHIRAL CONDENSATE PHYSICAL REVIEW D70, 034001 ~2004!
tial is at ^f2&5^S21p2&5^v&25 f p
2 and the usual equilib-

rium vacuum state is an ordered state^S&5^v&5 f p and
^p&50.

Now consider the dynamic evolution of the system in
hot quark gluon plasma. When the temperatureT>Tc the
system reaches a state of restored symmetry^f2&50. If the
subsequent expansion of the plasma is adiabatic, the^f&
field gradually relaxes to the equilibrium state as the sys
cools to belowTc . This is called the ‘‘annealing’’ or adia
batic scenario. It was first pointed out in Ref.@13# that if the
cooling process is very rapid and the system is out
equilibrium—i.e., in the event of a sudden quench from
state of restored symmetry to a state of broken symm
such as that occurring in a rapidly cooling expandi
plasma—the configuration of thef field will lag behind the
expansion of the plasma and there is a mismatch of the
figurations and their evolution. After a quench, the hig
temperature configuration does not have time to react to
sudden change of the environment; thus, the vacuum ex
tation value^f& would stay what it was at high temperatu
for a while and then relax to its equilibrium value. This r
sults in the formation of DCC domains and is known as
baked Alaska@29# scenario.

Another nonequilibrium situation that can arise is o
where the system can go through a metastable-disord

vacuum ^S&5 f pcos(u) ^p&5fpn̄sin(u) and then relax by
quantum fluctuations to an equilibrium configuration. Hereu
measures the degree of disorientation of the condensa
isospin space.

In both these nonequilibrium situations, the canonical
proach to the full quantum evolution of the fields is e
tremely difficult to carry out explicitly. However, we ma
study the quantum evolution of the mean field and inclu
fluctuations. In calculating the effective Hamiltonian we u
the O(4)-symmetric linear sigma model, whose Lagrang
density is given by Eq.~2!. It is easy to see that with th
identificationF25(S21p22 f p

2 ) andS→S2v, the effec-
tive potential in theO(4) linear sigma model is the same
the Gell-Mann–Levy model. We will use this identificatio
when considering the evolution of the pion field.

The choice of metric is dictated by the simple spheri
geometry of the problem. Assuming a homogeneous exp
sion of the plasma, a Robertson-Walker type of metric
chosen with an expansion ratea(t). This will allow us to
examine the competing rates leading to ‘‘rolling down rat
of the vacuum and the expansion ratea(t). The line element
describing the expansion of the plasma bubble is chose
be

ds25dt22a~ t !2dxW2, ~9!

wherea(t) is the expansion parameter.
The action of theO(4) sigma model in this metric be

comes
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S5E d3xdta~ t !3S 1

2
Ḟ i

22
1

2a2
~¹F i !

2

2
1

2
m2F i

22
l

4
~F i

2!2D , ~10!

with

F i5S F1

F2

F3

F4

D , ~11!

whereF i , i 51, . . . ,4 arereal scalar fields.
We now use a background field analysis to study

quantum effects. AssumeF i has a background classica
componentf i which satisfies the classical equations of m
tion

dS

dF i
U

F i5f i

50. ~12!

Treat the quantum fieldf î as a fluctuation around a classic
solution,

F i→f i1f î , ~13!

sincef i satisfies the classical equations of motion:

S5S@f i #1
1

2
f î

d2S

dF idF j
U

F5f

f ĵ1•••. ~14!

We shall restrict our analysis to quadratic fluctuations on
In addition, we shall also drop the termS@f i # as it is just a
constant additive term to the quadratic action. Therefore
shall deal with a quadratic fluctuation action given simply

S25
1

2
f î

d2S

dF idF j
U

F5f

f ĵ . ~15!

For the particular scalar field action given above, assum
all fields vanish at infinity,

dS

dF j
52]m~a3gmn]nF j !2a3m2F j2a3

dV

dF j
. ~16!

Imposing the classical equations of motion, we find that

]m~a3gmn]nf i !1a3m2f i1a3
]V

]f i
50, ~17!

where]V/]f i[]V/]F i uf i
.

The equations of motion in this metric are

3
ȧ

a
f i̇1f i̇

22
1

a2
¹2f i1m2f i1

]V

]f i
50. ~18!

Since we are interested in the dynamics of the fluctuat
field, we shall treat the fluctuation field inS2 as a classical
field andS2 itself as the classical action for its dynamics. T
quadratic part in the fluctuations is reduced to
1-3
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S25E d3xdt
a3

2 S f î
2̇2

1

a2
~¹f î !

2

2m2f î
22f î

d2V

dF îdF ĵ
U

f

f ĵ D . ~19!

We can define a Lagrangian density for studying the dyna
ics of the fluctuations,L, as follows:

L5
a3

2 S f î
22

1

a2
~¹f î !

22m2f î
22f î

]2V

]F i]F j
U

f

f ĵ D .

~20!

Carrying out a Legendre transformation, it is easy to wr
down the Hamiltonian density

H5
1

2a3
pî

21
a

2
~¹f î !

21
a3m2

2
f î

21
a3

2 S f î

]2V

]F i]F j
U

f

f ĵ D ,

~21!

where

pî5
dL

df î
˙

5a3f î
˙ . ~22!

We also have

]2V

]F i]F j
U

f

52lf if j1lfk
2d i j . ~23!
03400
-

e

Assume that the fluctuation fieldF i decomposes into its con
stituents as

f̂5^F&2f5S p1

p2

p0

S

D . ~24!

We have started with anO(4) quartet of scalar fields in orde
that we can construct the dynamics of quenched pions in
formation of a disoriented chiral condensate. The phys
fields are defined so that

p15
1

A2
~p11 ip2!, p25

1

A2
~p12 ip2!. ~25!

Analogously, we define the classical background fields a

v15
1

A2
~v11 iv2!, v25

1

A2
~v12 iv2!, ~26!

following the identification

f5S v1

v2

v35v

s

D [^F&. ~27!

It is easy to see that the action takes the form
S5E d3xWdta3H ṗ1ṗ22
1

a2
~¹p1!~¹p2!2@m21~4l!v1v21lv3

21ls2#p1p21
1

2
ṗ0

22
1

2a2
~¹p0!2

2
1

2
@m21~2l!v1v213lv3

21ls2#p0
21

1

2
Ṡ22

1

2a2
~¹S!22

1

2
@m21~2l!v1v213ls21lv3

2#S2

2l~v2
2 p1

2 1v1
2 p2

2 12sv3p0S12v2v3p0p112v1v3p0p212v2sp1S12v1sp2S!J . ~28!

The Hamiltonian for this action can be written as

H5Hneutral1Hcharged1Hmixed, ~29!

where

Hneutral5E d3xdta3H ~p0p0

2 !

2a6
1

1

2a2
~¹p0

2!1
1

2
~mp

2 !~p0!21
~Vp

2 2vp
2 !

2a6
p0

21
~p0S

2 !

2a6
1

1

2a2
~¹S2!

1
1

2
~mS

2 !~S!21
1

2a6
~VS

2 2vS
2 !~S!2J , ~30!
1-4
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Hcharged5E d3xdta3 H p01p02

a6 1
1

a2
~¹p2!~¹p1!1~mp

2 !~p1p2!1
1

a6
~Vp6

2 2vp6

2 !~p1p2!J , ~31!

Hmixed5E d3xa3dt$l~v1
2 p2

2 1v2
2 p1

2 !1~2l!~v1v3p2p01v2v3p1p01sv3Sp01v1sp2S1sv2Sp1!%,

~32!

where we have also put

Vp0

2 2vp0

2

a6
5l@v212v3

2#,
Vp6

2 2vp6

2

a6
5l@v212v1v2#,

VS
2 2vS

2

a6
5l@v212s2#, ~33!

and

2v1v21v3
21s25v2. ~34!

This is the most general Hamiltonian for the pion sigma system in the background field formalism. The background fi
now be parametrized through three angles:

f i5S v cos~r!sin~u!sin~a!

v cos~r!sin~u!cos~a!

v sin~r!sin~u!

v cos~u!

D . ~35!

In order to consider all the special cases that are possible in a transparent way, we shall simplify the parametrizatio
possible form for the background field to two anglesu and r by letting a5p/4: then, v65(v/A2)cos(r)sin(u), v3
5v sin(r)sin(u), ands5v cos(u).

III. QUANTIZATION

Using standard canonical quantization techniques the mode decomposition of the Hamiltonian is

Hneutral5E d3k

~2p!3

1

2 H vp

a3
~ak

†ak1akak
†!1

vp

2a3 S Vp
2

vp
2

21D ~ak
†ak1akak

†1a2kak1a2k
† ak

†!1
vS

a3
~dk

†dk1dkdk
†!

1
vS

2a3 S VS
2

vS
2

21D ~dk
†dk1dkdk

†1d2kdk1d2k
† dk

†!J , ~36!

Hcharged5E d3k

~2p!3 H vp

a3
~bk

†bk1ckck
†!1

vp

2a3 S Vp6

2

vp
2

21D ~bk
†bk1ckck

†1b2kck1c2k
† bk

†!J , ~37!

Hmixed5E d3k

~2p!3 H la3v2cos2~r!sin2~u!

4vp
~bkb2k1bkck

†1ck
†bk1ckc2k1ck

†c2k
† 1ckbk

†1bk
†ck1bk

†b2k
† !

1
la3v2cos~r!sin~r!sin2~u!

AvSvp

~bka2k1bkak
†1ck

†ak1cka2k1ck
†a2k

† 1ckak
†1bk

†ak1bk
†a2k

† !

1
la3v2sin~r!sin~u!cos~u!

AvpvS

~dka2k1dkak
†1dk

†ak1dk
†a2k

† !1
la3v2cos~r!sin~u!cos~u!

AvpvS

~bkd2k1bkdk
†

1ck
†dk1ckd2k1ck

†d2k
† 1ckdk

†1bk
†dk1bk

†d2k
† !J , ~38!

where
034001-5
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vp
2 ~k!

a6
[

vp0

2 ~k!

a6
5

vp6

2 ~k!

a6
5S mp

2 1
k2

a2D ,

vS
2 ~k!

a6
5S mS

2 1
k2

a2D ~39!

and

Vp
2 ~k!

a6
5

k2

a2
1mp

2 1l~v212v3
2!, ~40!

Vp6

2 ~k!

a6
5

k2

a2
1mp6

2 1l~v212v1v2!. ~41!

An important point to note here is that althoughVp(k) andvp(k) are momentum-dependent quantities, for ease of nota
we will drop thek dependence for further calculations in this section and revive it when necessary for the description
physical processes.

It is very interesting to note that if either ofv6 or v3 is zero, then we obtain the usual expected dynamics for the pions
back-to-back correlations. But if we allow for eitherv6 or v3 to be nonzero as may be envisaged in the highly nonequilibr
dynamics involving the formation of a metastable DCC, then we have terms which involve mixed interactions of the pio
sigma.

Clearly, there are two interesting cases to be considered here:v650 andv350 ~equivalently,u50) and the second cas
occurs with the formation of a metastable, misaligned vacuum whenr5p/2.

A. Case 1

For this case we usev650 andv350 ~or, equivalently,u50) showing thatH reduces to

H5E d3k

~2p!3 H vp

2a3
~ak

†ak1akak
†!1

vp

4a3 S Vp
2

vp
2

21D ~ak
†ak1akak

†1a2kak1a2k
† ak

†!1
vS

2a3
~dk

†dk1dkdk
†!1

vS

4a3 S VS
2

vS
2

21D
3~dk

†dk1dkdk
†1d2kdk1d2k

† dk
†!J 1H vp

a3
~bk

†bk1ckck
†!1

vp

2a3 S Vp
2

vp
2

21D ~bk
†bk1ckck

†1b2kck1c2k
† bk

†!J . ~42!

This Hamiltonian has ansu(1,1) symmetry and can be diagonalized by a series of Bogolubov~squeezing! transformations
simply given as follows: in the neutral sector, writing

Ak~ t,r !5m~r ,t !ak1n~r ,t !a2k
† 5U21~r ,t !akU~r ,t !,

Ak
†~ t,r !5n~r ,t !a2k1m~r ,t !ak

†5U21~r ,t !ak
†U~r ,t !. ~43!

A similar expansion for diagonalization is done for the sigma field, with operatorsDk(t,r 8) and Dk
†(t,r 8) similar to the

definition of Ak(t,r ) andAk
†(t,r ) with the d’s replacing thea’s. For the charged sector,

Ck~ t,r !5mck1nb2k
† 5U21~r ,t !ckU~r ,t !, Ck

†~ t,r !5mck
†1nb2k5U21~r ,t !c2k

† U~r ,t !, ~44!

Bk~ t,r !5mc2k1nbk
†5U21~r ,t !bkU~r ,t !, Bk

†~ t,r !5mc2k
† 1nbk5U21~r ,t !bk

†U~r ,t !, ~45!

where

m5cosh~r !5A1

2 F S Vp

vp
1

vp

Vp
D11G , n5sinh~r !5A1

2 F S Vp

vp
1

vp

Vp
D21G , ~46!

andr is the squeezing parameter, it is easily seen to give the usual result thatm22n251 for a squeezing transformation. Th
complete unitary matrix accomplishing the squeezing transformation may be written down as
034001-6
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U~r ,t !5expS E d3k

~2p!3
r ~k,t !$~ak

†a2k
† 2aka2k!1~dk

†d2k
† 2dkd2k!1~ckb2k1bkc2k!2~ck

†b2k
† 1bk

†c2k
† !% D . ~47!

It should be noted here that putting together all our results for the neutral and charged sectors, the total diag
Hamiltonian is written in terms of various creation and annihilation operators as

H5E d3k

~2p!3

1

2a3 H VpF S Ak
†Ak1

1

2D1~Ck
†Ck1Bk

†Bk11!G1VSS Dk
†Dk1

1

2D J . ~48!

Since theS field decouples, we drop all terms associated with it whenever it is not essential to our arguments, allowin
write the total dynamical Hamiltonian for the pion fields in terms of the observed pion creation and annihilation op
(a, a†, c, c†, b, andb†):

H05E d3k

~2p!3

Vp

a3
$2~m21n2!~ck

†ck1bk
†bk11!1mn@~ckb2k1bkc2k!1~ck

†b2k
† 1bk

†c2k
† !#%1

Vp

a3
@~m21n2!~ak

†ak11!

1nm~a2k
† ak

†1aka2k!#. ~49!

This completes the analysis for the case whenu50.

B. Case 2

The second case of interest is whenr5p/2. The Hamiltonian for this case reduces to the following:

Hneutral5E d3k

~2p!3

1

2 H vp

a3
~ak

†ak1akak
†!1

a3v2l

2vp
@112 sin2~u!#~ak

†ak1akak
†1a2kak1a2k

† ak
†!1

vS

a3
~dk

†dk1dkdk
†!

1
a3v2l

2vS
@112 cos2~u!#~dk

†dk1dkdk
†1d2kdk1d2k

† dk
†!J , ~50!

Hcharged5E d3k

~2p!3 H vp

a3
~bk

†bk1ckck
†!1

vp

2a3 S Vp6

2

vp
2

21D ~bk
†bk1ckck

†1b2kck1c2k
† bk

†!J , ~51!

Hmixed5E d3k

~2p!3 H la3v2

2 S 2 sin~u!cos~u!

AvpvS
D ~dka2k1dkak

†1dk
†ak1dk

†a2k
† !J , ~52!

where~for r5p/2)

Vp
2

a6
5

k2

a2
1mp

2 1lv2,

Vp6

2

a6
5

k2

a2
1mp6

2 1lv2@11sin2~u!#. ~53!

Unlike the case considered above, we now have a nonzero mixing term coming from thep0-S sector. Since both of these ar
neutral sectors, we can combine theHneutral andHmixed terms to form a single neutral sector Hamiltonian which we will ag
call Hneutral while Hcharged remains unchanged:
034001-7
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Hneutral5E d3k

~2p!3 5 S ak
†

Avp

dk
†

AvS
D S a3

4 S Vp
2 1vp

2

a6 D lv2a3

4
sin~2u)

lv2a3

4
sin~2u)

a3

4 S VS
2 1vS

2

a6 D D S ak

Avp

dk

AvS

D
1S ak

Avp

dk

AvS
D S a3

4 S Vp
2 1vp

2

a6 D lv2a3

4
sin~2u!

lv2a3

4
sin~2u!

a3

4 S VS
2 1vS

2

a6 D D S ak
†

Avp

dk
†

AvS

D
1S a2k

Avp

d2k

AvS
D S lv2a3

4
@112 sin2~u!#

lv2a3

4
sin~2u!

lv2a3

4
sin~2u!

lv2a3

4
@112 cos2~u!#

D S ak

Avp

dk

AvS

D
1S a2k

†

Avp

d2k

AvS

†D S lv2a3

4
@112 sin2~u!#

lv2a3

4
sin~2u!

lv2a3

4
sin~2u!

lv2a3

4
@112 cos2~u!#

D S ak
†

Avp

dk
†

AvS

D 6 . ~54!

These terms clearly show the mixings between the forward and backward pions as well as the mixing between thep0 and
S fields. The misalignment of the vacuum through an angleu induces a mixing of the two fields. The mixed fields are

S Au(k)

Du(k)
D 5S cos~u! sin~u!

2sin~u! cos~u!
D S ak

dk
D . ~55!

ThenHneutral can be expressed as

Hneutral5~Au(k)
† Du(k)

† !S m1 0

0 m2
D S Au(k)

Du(k)
D 1~Au(k) Du(k)!S m1 0

0 m2
D S Au(k)

†

Du(k)
† D

1~Au(2k)k Du(2k)k!S n1 0

0 n2
D S Au(k)

Du(k)
D 1~Au(2k)

† Du(2k)
† !S n1 0

0 n2
D S Au(k)

†

Du(k)
† D . ~56!

Here

2m25
AVpVS

4a3 HAVp

VS
FVp

vp
S 11

1

2
Avp

vS
D 1

vp

Vp
S 12

1

2
Avp

vS
D G J 1

AVpVS

4a3

3HAVS

Vp
FVS

vS
S 11

1

2
AvS

vp
D 1

vS

VS
S 12

1

2
AvS

vp
D G J , ~57!

2m15
AVpVS

4a3 HAVp

VS
FVp

vp
S 12

1

2
Avp

vS
D 1

vp

Vp
S 11

1

2
Avp

vS
D G J 1

AVpVS

4a3

3HAVS

Vp
FVS

vS
S 12

1

2
AvS

vp
D 1

vS

VS
S 11

1

2
AvS

vp
D G J , ~58!

while

2n25
AVpVS

4a3 FAVp

VS
S Vp

vp
2

vp

Vp
D S 11

1

2
Avp

vS
D 1AVS

Vp
S VS

vS
2

vS

VS
D S 11

1

2
AvS

vp
D G ~59!
034001-8
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and

2n15
AVpVS

4a3 FAVp

VS
S Vp

vp
2

vp

Vp
D S 12

1

2
Avp

vS
D

1AVS

Vp
S VS

vS
2

vS

VS
D S 12

1

2
AvS

vp
D G . ~60!

The diagonalization procedure for this case along with
dynamical consequences of this Hamiltonian will be d
cussed in@30#.

We finally get

Hneutral5m1~Au(k)
† Au(k)1Au(k)Au(k)

† !1n1~Au(k)Au(2k)

1Au(k)
† Au(2k)

† !1m2~Du(k)
† Du(k)1Du(k)Du(k)

† !

1n2~Du(k)Du(2k)1Du(k)
† Du(2k)

† !. ~61!
03400
e
-

We now apply two squeezing transformations

Fk5mAu(k)1nAu(2k)
† , Fk

†5mAu(k)
† 1nAu(2k)k ~62!

and

Gk5rDu(k)1sDu(2k)
† , Gk

†5rDu(k)
† 1sDu(2k) .

~63!

Then,

@Fk ,Fk
†#51 ~64!

and

@Gk ,Gk
†#51 ~65!

imply that the transformations are indeed Bogolyubov tra
formations as
m22n251 ~66!

and

r22s251. ~67!

The squeezing parametersm,n,r,s are given by

2m25AVp

VS
FVp

vp
S 12

1

2
Avp

vS
D 1

vp

Vp
S 11

1

2
Avp

vS
D G1AVS

Vp
FVS

vS
S 12

1

2
AvS

vp
D 1

vS

VS
S 11

1

2
AvS

vp
D G11, ~68!

2n25AVp

VS
FVp

vp
S 12

1

2
Avp

vS
D 1

vp

Vp
S 11

1

2
Avp

vS
D G1AVS

Vp
FVS

vS
S 12

1

2
AvS

vp
D 1

vS

VS
S 11

1

2
AvS

vp
D G21,

~69!

2r25AVp

VS
FVp

vp
S 11

1

2
Avp

vS
D 1

vp

Vp
S 12

1

2
Avp

vS
D G1AVS

Vp
FVS

vS
S 11

1

2
AvS

vp
D 1

vS

VS
S 12

1

2
AvS

vp
D G11,

~70!

2s25AVp

VS
FVp

vp
S 11

1

2
Avp

vS
D 1

vp

Vp
S 12

1

2
Avp

vS
D G1AVS

Vp
FVS

vS
S 11

1

2
AvS

vp
D 1

vS

VS
S 12

1

2
AvS

vp
D G21.

~71!

With these definitions the neutral sector Hamiltonian is simply

Hneutral5
AVpVS

4a3 F S Fk
†Fk1

1

2D1S Gk
†Gk1

1

2D G . ~72!

Combining with the charged sector

Hcharged5
Vp6

a3
$Ck

†Ck1Bk
†Bk11%, ~73!

the total Hamiltonian for the caser5p/2 is
1-9
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Hp/25E d3k

~2p!3 H Vp6

a3
~Ck

†Ck1Bk
†Bk11!1

AVpVS

4a3 F S Fk
†Fk1

1

2D1S Gk
†Gk1

1

2D G J , ~74!

with

Vp
2

a6
5

k2

a2
1mp

2 1lv2,
Vp6

2

a6
5

k2

a2
1mp6

2 1lv2@11sin2~u!#. ~75!

This completes our analysis of the quantization of the Hamiltonian for the two cases mentioned above. We have
O(4) sigma model and succeeded in quantizing the quadratic fluctuations to arrive at two Hamiltonians which provid
required ingredients for analyzing the formation, evolution, and eventual decay of the DCC. Indeed, in case 2, the Ham
shows explicit mixing with an angle (u), providing a mixing parameter and therefore a misalignment parameter in iso
space.
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IV. EVOLUTION OF THE FLUCTUATIONS
AND PARAMETRIC AMPLIFICATIONS

In the last section we have constructed the quan
Hamiltonians for two cases (u50 andr5p/2) of theO(4)
sigma model. We have also shown the diagonalization of
Hamiltonians so that they can be written in terms of t
appropriate quantum fluctuation fields as purely quadr
Hamiltonians. In this section we shall explicitly consider t
case whenu50 ~the dynamics of the caser5p/2 will be
given in a subsequent paper@30#!. We notice thatH has the
form of a decoupled Hamiltonian. This is easy to understa
from theSO(4) parent. TheSO(4) vector has been decom
posed into four fieldsp6 , p0, andS being, respectively, the
charged pions, the neutral pion, and the sigma fields.

It is the sigma field which decouples in this particul
Hamiltonian and therefore it can be analyzed independe
of the pion fields. As our interest is in the pion fields, we c
write the total dynamical Hamiltonian for the pion fields
terms of the observed pion creation and annihilation ope
tors (a, a†, c, c†, b, andb†) in terms of the squeezing pa
rameters as

H5E d3k

~2p!3

Vp

a3 H 2~m21n2!$ck
†ck1bk

†bk11%

1mn$~ckb2k1bkc2k!1~ck
†b2k

† 1bk
†c2k

† !%

1
Vp

a3
$~m21n2!$ak

†ak11%1~nm!$a2k
† ak

†1aka2k%%J .

~76!

We now define the bilinear operators

D5aka2k1bkc2k1ckb2k5K1
21K2

21K3
2 ,

D †5a2k
† ak

†1c2k
† bk

†1b2k
† ck

†5K1
11K2

11K3
1 ,
03400
m

e

ic

d

ly

a-

N5
1

2
$ak

†ak1a2k
† a2k1bk

†bk1b2k
† b2k1ck

†ck

1c2k
† c2k13%5K1

01K2
01K3

0 , ~77!

and it is easy to see that they satisfy ansu(1,1) algebra

@N,D#52D, @N,D †#5D †, @D †,D#522N. ~78!

The su(1,1)-invariant Hamiltonian for the pion fields as
sumes the form

H5E d3k

~2p!3

1

a3
2Vp~k,t !~m21n2!N

12V
p
~k,t !mn~D1D †!. ~79!

The time-dependent evolution equation for the eigensta
of H is given by

H~ t !uc~ t !&5 i
d

dt
uc~ t !&. ~80!

The particularsu(1,1) structure elucidated above provides
the solution

uc~ t !&5expS E d3k

~2p!3
r k~D k

†2Dk!D uc~0& ~81!

for the evolution of the wave function immediately@31#.
Here r k is the squeezing parameter related to the phys
variablesVp(k,t) andvp(k) through

tanh~2r k!5

S Vp~k,t !

vp
D 2

21

S Vp~k,t !

vp
D 2

11

, ~82!

where Vp(k,t→`)5vp(k). Thus, in the evolution of the
condensate, it is the frequency changes which bring ab
squeezing@32#.
1-10
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The diagonalized HamiltonianH0 can be converted into a
Hamiltonian in terms of quantum fields corresponding to
operatorsA,B,C and their adjoints to obtain a purely qu
dratic Hamiltonian~the starting point of many early work
on the subject of the DCC! @33,34#.

We can, for example, write

Vp

a3 S Ak
†Ak1

1

2D5
Vp

a3
~Ak

†Ak1AkAk
†!

5S Vp

a3 D 2

PA
2~k,t !1PPA

2 ~k,t !. ~83!

Similarly, for B andC, we write

Vp

a3 S Bk
†Bk1

1

2D5
Vp

a3
~Bk

†Bk1BkBk
†!

5S Vp

a3 D 2

PB
2~k,t !1PPB

2 ~k,t !, ~84!

Vp

a3 S Ck
†Ck1

1

2D5
Vp

a3
~Ck

†Ck1CkCk
†!

5S Vp

a3 D 2

PC
2 ~k,t !1PPC

2 ~k,t !. ~85!

The HamiltonianH0 can then be written as

H0~ t !5E d3k

~2p!3 (
i 5A,B,C

1

2 F S Vp

a3 D 2

P i
2~k,t !1PP i

2 ~k,t !G .

~86!

The Schro¨dinger equation for each momentum mode
simply

H0~k,t !c~k,t !5 i
d

dt
c~k,t !. ~87!

If we use theP representation~coordinate space represent
tion! for c(k,t), then, thesu(1,1) symmetry of the Hamil-
tonian tells us that the solution forc(k,t) is just a Gaussian
For simplicity we work with a Gaussian of the form

^p0 ,p1 ,p2uc&~ t !5)
k,i

L i~ t !e[ 2Wi (t)P i
2] , ~88!

while the complete wave function is

c~ t !5E d3k

~2p!3
c~k,t !. ~89!

Then for each modeA,B,C,D the wave functionck,i(t)
evolves as

i
]ck,i~ t !

]t
5S i

L̇ i

Li
2 iP i

2~k!Ẇi~k,t ! Dck,i~ t !, ~90!
03400
e
while

Hk,ick,i~ t !5
1

2a3 H Vp i

2 P i
2~k,t !2

]2ck,i~ t !

]P i
2 J . ~91!

Combining the above we find thatWi(t) andck,i(t) evolve
as

Wi~ t !52 ia3/2
ċk,i~ t !

ck,i~ t !
, ~92!

c i ,k̈~ t !13
ȧ

a
c i ,k̇~ t !2

Vp i

2

a3
c i ,k~ t !50. ~93!

The equation satisfied by the wave functions for each m
are then given by

c̈A~k,t !1
3ȧ

a
ċA1S Vp

a3 D 2

~k,t !cA~k,t !50,

c̈B~k,t !1
3ȧ

a
ċB1S Vp

a3 D 2

~k,t !cB~k,t !50,

c̈C~k,t !1
3ȧ

a
ċC1S Vp

a3 D 2

~k,t !cC~k,t !50, ~94!

where

S Vp

a3 D 2

~k,t !5S k2

a2D 1mp
2 1lv2, ~95!

where it may be recalled thatAk(t), Bk(t), and Ck(t) are
related toak , bk , andck ~the physical pion operators! by the
squeezing transformation given by

Ak~ t,r !5U21~r ,t !akU~r ,t !, ~96a!

Bk~ t,r !5U21~r ,t !bkU~r ,t !, ~96b!

Ck~ t,r !5U21~r ,t !ckU~r ,t !, ~96c!

cosh~r !5A1

2 F S Vp

vp
1

vp

Vp
D11G ,

n5sinh~r !5A1

2 F S Vp

vp
1

vp

Vp
D21G

~97!

and r is the squeezing parameter:
1-11
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U~r ,t !5expS E d3k

~2p!3
r ~k,t !@~ak

†a2k
† 2aka2k!1(dk

†d2k
†

2dkd2k!1~ckb2k1bkc2k!2~ck
†b2k

† 1bk
†c2k

† !] D .

~98!

The expectation values of the number operator for
neutral pions for each momentumk are given by

^ck~ t !uak
†akuck~ t !&5sinh2~r !5^ckuAk

†~ t !Ak~ t !uck&.
~99!

A similar expression may be obtained for the charged pio
Since we are considering the expansion of the plasma

spherically symmetric manner as emphasized by
Robertson-Walker-type metricds25dt22a(t)2dx2, it is
possible to scale the time so as to provide a conformally
metric: we let

dh5a~ t !21dt, ~100!

so that

ds25a~h!2~dh22dx2!. ~101!

The equations of motion given above can be transform
into ones that resemble a harmonic oscillator with tim
dependent frequencies. We shall write only the generic fo
of the above equations: In terms of the scaled timeh, we
have

c91
2a8

a
c81kW21@mp

2 1l~^F2&2 f p
2 !#a2c50,

~102!

where a prime denotes a differential with respect toh. Here
we have a few remarks: First, we note that to make con
with the dynamical equations for the pions used as star
points for analyzing the DCC, we return to the point abo
the potential that we have chosen versus the traditional
tential chosen in such studies. The traditional potentia
(F i

22 f p
2 )2 while we have taken a potential (F i

2)2. There-
fore, the relationship between our work and early studie
accomplished through a replacementv2→@^F2&(h)2 f p

2 #.
This explains the equation written above and the furt
analysis of this paper. Last, let us scalec:

j5ac, ~103!

so that the equation becomes

2j91V~h!j5~k21mp
2 !j, ~104!

where

V~h!5a21
d2a

dh2
1mp

2 ~12a2!2l~^F2&2 f p
2 !. ~105!

Thus in the symmetry-broken stage^F2&5 f p
2 ,
03400
e

s.
a
e
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r

Vb~h!5a21
d2a

dh2
1mp

2 ~12a2!, ~106!

and in the symmetry-restored stage^F2&50,

Vr~h!5a21
d2a

dh2
1mp

2 ~12a2!1la2f p
2 . ~107!

These equations have a dual nature: on the one hand,
are Schro¨dinger-like equations withh corresponding to the
‘‘spatial’’-like variable andE5vp

2 . Therefore, they allow
calculation of the reflection and transmission coefficie
over the ‘‘potential barrier’’ provided by theV(h) term. On
the other hand, they can also be looked upon as equation
time-dependent harmonic oscillators with time-depend
frequencies given byVp

2 andvp
2 . These two pictures enabl

us to calculate the squeezing-parameter-dependent nu
operatorN(k)5sinh2@r (k)# involved in the evolution of the
plasma as can be seen in the Appendix.

We also note that the expansion coefficienta(h) provides
us with a control parameter on the expansion rate of
plasma while the system provides us with another parame
which we callt for the ‘‘rolling down’’ of the fields in the
potential. According to the pioneering work of pape
@29,13#, when the expansion rate is greater than the rel
ation rate, the DCC forms.

We now consider two cases, the first being a toy mo
@28# without the effects of expansion and the second bein
more realistic ‘‘baked Alaska situation.’’

In the first case, let us suppose thata(h)51 so that

V~h!52l~^F2&2 f p
2 !. ~108!

Then the equation forj is

j91~k21mp
2 1l~^F&22 f p

2 !!j50. ~109!

If t is the time the state spends in the symmetry-resto
phase, a quench can be modeled by assum
that for 2t/2<h<t/2 the vacuum expectation valu
^F2&^F2&^F2&50 and forh.t/2 the vacuum relaxes to it
value ^F2&5^v2&' f p

2 ~since the potential is translationall
invariant, this could easily be mapped to the interval$0,t%,
but our choice makes the potential symmetric!. For this sud-
den quench the problem reduces to that of transmiss
through a symmetric rectangular potential barrier of hei
(l f p

2 )5mS
2 /2 and widtht.

The transmission coefficient for such a barrier is eas
calculable@35,36# and in terms of physically known values

T5
1

11S ~mS
2 /2!2

~vk
2!~mS

2 /22vk
2!
D sinh2F S mS

2

2
2vk

2D 1/2

tG .

~110!

From the Appendix we get
1-12
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N~k!5
12T

T
5

~mS
2 /2!2

vk
2~mS

2 /22vk
2!

sinh2F S mS
2

2
2vk

2D 1/2

tG .
~111!

The dependence ofN(k) on k for different values oft is
shown in Fig. 1, clearly exhibiting the amplification of th
low-momentum modes.

Figure 1 also shows us that the longer the system stay
the state of broken symmetry, the larger the DCC doma
The dependence ofN(k) on t for different values ofk is
shown in Fig. 2. Recall that, by definition, the amplificatio
of the zero modes constitutes DCC formation. Since we h
a ‘‘Schrödinger’’ wave equation that is exactly solvable, w
can also calculate the size of the DCC domains. We s
leave that for a subsequent paper@30#.

This case is similar to that considered by Ref.@28#.
For a more realistic scenario, the expansion must be

cluded to show that the enhancement of the low-ene
modes and the squeezing parameter are dependent on th
of the expansion mechanism by which symmetry is resto
To produce substantial squeezing, we require a quenc
scenario. To show this we have to compare the situation
sudden quench with a slow adiabatic relaxation of the sys
from the symmetry-restored stage to the symmetry-bro
stage. The transition between quenching and adiabaticity
be modeled in two ways in view of the dual nature of E
~105!.

We consider the expansion coefficienta(h) to be of the
form

a2~h!5Q~2h!tanhF2
b

2 S h1
t

2D G
1Q~h!tanhFb

2 S h2
t

2D G . ~112!

FIG. 1. Variation of N(k) and k ~in units of mp) with t
50.8,0.9,1.0 in units ofmp

21 for the quenched limit.

FIG. 2. Variation ofN(k) with t ~units of mp
21) for k50, 1,

and 2~units of mp) for the quenched limit.
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Here 1/b measures the rate of the expansion and we choob
to be in units ofmp . When bt@1 we have the quenche
limit ~fast expansion! and enhancement of low-momentu
modes should occur~DCC formation!. Whenbt!1 we have
the adiabatic limit and no enhancement of low-moment
modes should occur~no DCC formation!.

When viewed as a time-dependent oscillator equation
an expanding metric we may write the equation forj in the
symmetry-restored phase as an oscillator equation

j91vp
2 j2Vr~h!j50 ~113!

and in the symmetry-broken stage as

j91vp
2 j2Vb~h!j50, ~114!

whereVb(h)and Vr(h) are given by Eqs.~107! and ~106!
with the particular choice of the expansion parametera(h)
given by Eq.~112!. Thus the change in frequency from th
restored to the broken stage is given by

Vr~h!2Vb~h!51
mS

2

2
a~h!2. ~115!

Given that we have to calculate the transmission coe
cients we need to look at the wave functionsj in the limit
h→6`. This is possible by solving the oscillator equatio
with a variable frequency:

j91vp
2 1

mS
2

2
@12a2~h!#j50. ~116!

We see that Eq.~116! satisfies the required limitsV(h)2

5vp
2 ash→6` and between these limits it gradually go

to a maximum atV(h)5Vp
2 . Equation~116! can be con-

verted into a Schro¨dinger wave equation for a Woods-Saxo
potential barrier given by

FIG. 3. Variation of the Woods-Saxon potential barrier of wid
t54 with b. Large bt gives the rectangular potential barrie
~quenched limit!.
1-13
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V~h!5V0FQ~2h!S 1

11e2b(h1t/2)D
1Q~h!S 1

11eb(h2t/2)D G , ~117!
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whereV05mS
2 /2. The comparison of the rectangular pote

tial barrier with this barrier is shown in Fig. 3, which revea
it to be a good approximation in the adiabatic limit.

We take the values of the variablesE5(k21vp
2 )1/2 and

k825E2V0. The transmission coefficient for this barrier
given by
r

Tws5
sinh2~p2k/b!sinh2~p2k8/b!

sinh4@p~k2k8!/b#$4uCusin2~k8b!1~ uCu221!%
, E>V0 , ~118!

and the same withk8→ ik8 for E,V0 where

C5
sinh2@p2~k1k8!/b#

sinh2@p2~k2k8!/b#
.

Note that forb large this reduces exactly to the rectangular potential barrier~quenched limit! transmission coefficient and fo
b very small this goes over to the Poschl-Teller~Eckart! barrier transmission coefficient.

The number of particles of modek equals

N~k!5
12„sinh4@p~k2k8!/b#$4uCusin2~k8b!1~ uCu221!%…

sinh2~p2k/b!sinh2~p2k8/b!
. ~119!
w
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Here b measures the duration of the quench.N(k) vs k is
plotted in Fig. 4. We see that in the adiabatic limit of sm
bt, N(k) is exponentially suppressed so that there is no
hancement of low-momentum modes.

Figure 5 shows the variation ofN(k) with k for large
values of b, showing the enhancement of low-momentu
modes in the quenched limit.

From the above we conclude that if the expansion ti
(1/b) is faster than the rolling time (t), we get the quenched
limit, while if the expansion time is slower than the rollin
time, we get the adiabatic limit. This provides an analy
supplement of earlier numerical simulations of quench
versus annealing with regards to DCC formation@37–41#.
We see that since in the squeezed-state descriptionN(k)
5sinh2r k , wherer k5r (k) is the squeezing parameter, in th
quenched limit the squeezing parameter is much greater
in the adiabatic limit. This demonstrates clearly the conn
tion between the rate of expansion and squeezing and
formation of the DCC, as characterized by the enhancem
of low-momentum pions. If squeezing is large, we ha

FIG. 4. VariationN(k) with k for values ofb in the adiabatic
limit for the Woods-Saxon barrier.
l
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formed a DCC; if not, then there is no DCC. This will no
enable us to give signatures of DCC formation which a
related to the formation process of the DCC.

V. PION RADIATION FROM DCC’S

Having shown that the dynamics of the evolution of t
DCC suggests a squeezed-state treatment of emerging
waves and that this effect is more pronounced in a quenc
scenario than an adiabatic one, we now proceed to show
possible experimental signals that would result. A compl
treatment, with the incorporation of isospin and disorien
tion in isospin space for arbirary momenta, is given in@42#
and@30#. For the present, however, since we see an amp
cation of the low-momentum modes, we consider only
case whenk50. In such case for pions near zero mome
tum,k→0, the state~81! factors into a squeezed state for th
neutral pions and a Caves-Schumaker state for the cha
pions. In this limit the bilinear operators of Eq.~77! are

FIG. 5. VariationN(k) with k for values ofb in the quenched
limit for the Woods-Saxon barrier.
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D5a0
21b0c01c0b0 ,

D †5a0
†21c0

†b0
†1b0

†c0
† ,

N5a0
†a011b0

†b01c0
†c013/2.

~120!

Thus thek50 wave function is

uc&5er 0(D †2D)uc0~0!&

5er 0(a0
†2

1c0
†b0

†
1b0

†c0
†
2a0

2
1b0c01c0b0)uc0~0!&, ~121!

where r 0 is the squeezing parameter at zero momentum
i.e.,

tanh~2r 0!5
~Vp /vp!221

~Vp /vp!211
.

The pion multiplicity distribution is given by

Pn0 ,n1 ,n2
5u^n0 ,n1 ,n2uc&u2

5u^n0uer 0(a0
†)22r 0* a0

2
u0&

3^n1 ,n2ue2r 0(b0
†c0

†
2b0c0)u0&u2, ~122!

definingS(r 0) as the one-mode squeezing operator:

S~r 0!5^n0uer 0[(a0
†)22a0

2] u0&

5Sn0,0 . ~123!

Stm(r 0) is then the two-mode squeezing operator

^n1 ,n2ue[ r 0(b0
†c0

†
2b0c0)] u0&5Sn1 ,n2,0

tm . ~124!

The neutral and charged pion distributions are

Pn0 ,nc
5^Sn0,0&

2^S†
n1 ,n2,0,0
m &2, ~125!

which is just the product of squeezed distributions
charged and neutral pions and only an even number of p
emerge. Writingn15n25nc , we get the distribution of
charged particles to be

Pnc
5(

n0

Pn0 ,nc
5

@ tanh~r 0!#2nc

@cosh~r 0!#2
~126!

and

Pn0
5(

nc

Pn0 ,nc
5

n0! @ tanh~r 0!#n0

@~n0/2!! #2cosh~r 0!2n0
. ~127!

The generalized squeezed eigenstate leads to produc
two types of squeezed states of pions at zero momentum
neutral pions being in a one-mode squeezed state and
charged pions being in anSU(1,1) coherent or two-mode
squeezed state. Thus the neutral and charged pion dist
03400
r
ns

of
he
the

u-

tions are significantly different as the two types of sta
have different properties. We now illustrate the effect
squeezing in these two distributions. Figures 6 and 7 sh
the difference in the charged and neutral pion distributions
we vary the squeezing parameter from a low value to a h
value.

We now illustrate the effect of quenching versus adia
ticity on these two distributions. Figure 8 shows the diffe
ence in the charged and neutral pion distributions as we v
the squeezing parameter from the adiabatic limit where
difference is negligible to the quenched limit where the d
ference is significant.

This behavior seems related to the traditional signal of
DCC—namely, that the probabilityP( f ) of the fractionf of
neutral pions to all pions scales as 1/2Af whereas the
charged pions do not exhibit this behavior. To see this m
clearly we examine the ‘‘KNO~Koba-Nielsen-Olson! limit’’
@43# of the probability distributionsPn0 and Pnc ~Fig. 9!.
Define the variablef 5n/^n&. Then, since the neutral pion
are always emitted in pairs, the number of neutral pio
^n0&, is equal to the number of positive and negative pio
^nc&. We may rewrite the distributions~126! and ~127! as

Pnc
~n!5

^n&c
n

~11^nc&!n11
~128!

and

Pn0
~n0!5

1

22n
S ^n0&
11^n0&

D n 2n!

~11^n0&!1/2~n! !2
. ~129!

Then the KNO asymptotic limit corresponds to the large^n&
~large squeezing quenched! limit and the charged and neutra
pion distributions obey the scaling laws

lim
n→`,^nc&→`

^nc&Pnc
5e2 f ~130!

and

FIG. 6. Variation ofPnc with n for the r 053, 3.5, and 4.

FIG. 7. Variation ofPnc with n for the r 053, 3.5, and 4.
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lim
n→`,^n0&→`

^n0&Pn0
5

e2 f

2Af
. ~131!

From these two equations we see that in the large-^n&
limit—i.e., very high squeezing—the probability distribu
tions of the neutral pions exhibits 1/2Af behavior with re-
spect to the charged pions.

We now calculate the correlation function by first calc
lating the generating function corresponding to the multip
ity distribution Pn . It is given by Q(l)5(l(12l)nPn .
The two-particle zero-momentum correlation functionG2(0)
is given by

G2~0!5
^n2&2^n&

^n2&
5

]2Q/]l2ul51

~]Q/]l!2ul51

. ~132!

The variation ofGneutral
2 /Gcharged

2 with the squeezing param
eter is given in Fig. 10.

Thus we see that in the adiabatic limitGneutral
2

'Gcharged
2 , whereas in the quenched limitGneutral

2

,Gcharged
2 , giving a very clear indication of the effect o

DCC formation on the Bose-Einstein correlations.
To conclude this section, we have shown that the sud

quench approximation in the evolution of the disoriented c
ral condensate leads to a substantial amount of squee
which manifests itself in the dramatic difference betwe
charged and neutral pion distributions. For an adiabatic
pansion the difference is much less, so that both the t
multiplicity distributions of charged and neutral pions a
their second-order correlation functions are dramatic cha
teristic signals for the DCC and are related directly to
way in which the DCC forms. These are unambiguous; the
fore, they must be examined thoroughly in searches for
DCC @16#.

FIG. 8. Variation ofPn0 ~solid line! andPnc ~dashed line! with
n for the adiabatic limit ( r 052).

FIG. 9. Variation ofPn0 ~solid line! andPnc ~dashed line! with
n for the quenchedlimit ( r 054).
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VI. CONCLUSION

To conclude, in this paper we have constructed effect
Hamiltonians for the evolution of the disoriented chiral co
densate without and with orientation in isospin space, st
ing from an O(4) sigma model through the inclusion o
second-order quantum fluctuations. We have shown that b
Hamiltonians haveSU(1,1) symmetries, leading to the pre
ence of squeezed staes in their dynamics. Unlike most ea
studies, our calculations of the effective Hamiltonians are
restricted to zero momentum and take care of back-to-b
momentum correlations. The evolution of the wave functi
in an expanding metric, for one case~without orientation in
isospin space!, has been considered in detail. The compet
effects of the expansion rate and the rolling down time of
system from a state of restored to broken symmetry h
been explicitly examined. We find that in the quenched lim
~fast expansion! the low-momentum modes are enhance
signaling DCC formation, whereas in the adiabatic~slow ex-
pansion! limit, no such enhancement occurs. This has be
shown to be directly related to the value of the squeez
parameter. The manifestation of this difference shows up
rectly in the total neutral and charged multiplicity distrib
tions at zero momentum and the second-order correla
functions.

Further work is required to incorporate the effects of iso
pin. This will be done in a subsequent publication@42#. Fur-
thermore, the evolution of the wave function correspond
to the Hamiltonian with orientation in isospin space is a
the subject of a forthcoming communication@30#. Within this
framework back-to-back momentum correlations and eve
by-event analysis of the experimental signals can also
done. This will provide a solid unified picture of the variou
models of DCC formation, evolution, and decay, togeth
with new experimental signals. Finally, we have achiev
our goal of answering Bjorken’s troubling questions abo
DCC’s posed at the Trento meeting@18#.

~i! Question~a!: Are coherent states the right quantu
DCC description, or should one go beyond to squee
states, etc.? Answer~a!: Yes, one is naturally lead to
squeezed states from a quantum field theoretic perspect

~ii ! Question~b!: How does one link DCC thinking to
quantum effects in the data, especially the Bose-Einstein
relations. Is the DCC just another way of talking about t
same thing? Answer~b!: DCC formation leads to a signifi
cant difference between the charged and neutral pion B

FIG. 10. Difference in correlations of the charged~dashed line!
and neutral~solid line! pions as a function of the squeezing para
eter r 0.
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Einstein correlations corresponding to large squeezing. S
is not another way of talking about the same thing.

~iii ! Question~c!: How does one enforce quantum numb
conservation, especially charge? Answer~c!: Charge conser-
vation is automatically guaranteed by the isospin analy
shown in Ref.@42,56,58–61#. A word about other quantum
numbers such as strangeness is in place here@44#. Schaffner-
Bielich and Randrup@45# have examined the inclusion o
strangeness in effective models of the DCC by conside
the SU(3) extension of the linear sigma model. They ha
made the observation that the nonequilibrium dynamics
sults in the enhancement of neutral kaons but to a le
degree than the pions. Furthermore, they state that the k
emitted form a DCC have a flat distribution much like t
charged pions in the quenched limit that we have shown
this paper. The examination of this result in the context
our formalism is warranted, but requires a generalization
our model to theSU(3) sigma model and will be reported i
a later communication. In particular the difference betwe
the neutral kaon distributions in a quenched versus adiab
limit would be interesting to study and give another go
signal for DCC formation.

~iv! Question~d!: DCC production may imply anomalou
bremsstrahlung, due to the large quantum fluctuations
charge. Can this be calculated from first principles? Answ
~d!: This can be easily incorporated in our model and will
shown in a later communication.

~v! Question~e!: Can one really set up the problem at t
quantum field theory level? Answer~e!: An emphatic yes.
Albeit, the full quantum theoretical effective Hamiltonia
with the contribution of the quarks in this framework has y
to be considered. This will provide a new approach
supplement the work done in Refs.@46–50,55#. Some of
these studies have examined the effect of coupling of
quark field with the condensate and have shown that
growth and decay of the condensate are governed entirel
meson fluctuations. However, in Ref.@50#, a statement has
been made that in a rapidly expanding plasma pair prod
tion of quarks may be as important as pion production.
make a quantitative judgement on this statement one wo
have to extend our work to the linear sigma model w
quarks, as expansion is included in our model. This wo
perhaps lead to new and improved signals of the DCC.
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APPENDIX:
RELATIONSHIP BETWEEN THE TRANSMISSION
COEFFICIENTS AND SQUEEZING PARAMETER

FOR A TIME-DEPENDENT HARMONIC OSCILLATOR

The process of particle creation and excitation of param
ric oscillators can be related to the transmission and refl
tion of Schrödinger waves over a potential barrier. Th
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method we describe for the relation is closely related to t
of Ref. @51#. Let us consider the evolution of the wave fun
tion of the equation

j i ,k9 1@k22Vi ,k~h!#j i ,k50. ~A1!

If we definek22Vi ,k(h)5v(h)2, then the above equation i
a time-dependent harmonic oscillatorj9(t)1v2(h)j(t)
50. In the event of a change in frequency of the oscilla
from v2 to v1 the asymptotic form of the real solution a
h→6` is

j6~ t !5
1

2
~a6eiv6t1a6* e2v6t!. ~A2!

We compare this with the complex solution of a 1D o
cillator treated as a reflection over a barrierk22Vi ,k with h
corresponding to the spatial variable of a Schro¨dinger-type
equation:

jc2~ t !5eiv2t1Re2 iv2t,

jc1~ t !5Teiv1t, ~A3!

to identify a2511R* anda15T.
Now consider the particle creation problem modeled b

time-dependent harmonic oscillator@32#. The solution can be
represented by

j r 25
e2 iv i t

A2v i

,

j r 1~ t !5a
e2 iv f t

A2v f t
1

beiv f t

A2v f t
. ~A4!

Now the definition of the transmission coefficient is

T5
ujoutu2vout

uj inu2v in
. ~A5!

If we regardt as a spatial variable, then these represent
flection and transmission over a 1D barrier. In particle c
ation problems the potential barrier reflection and the tra
mission coefficient can be related to the squeezing param
in a particle creation problem by the relation sinh2r 5R/T
5^n&5bb* @52–61#.
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