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Pion form factor in QCD: From nonlocal condensates
to next-to-leading-order analytic perturbation theory
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We present an investigation of the pion’s electromagnetic form factorFp(Q2) in the spacelike region
utilizing two new ingredients:~i! a double-humped, end-point-suppressed pion distribution amplitude derived
before via QCD sum rules with nonlocal condensates—found to comply at the 1s level with the CLEO data
on the pg transition—and~ii ! analytic perturbation theory at the level of parton amplitudes for hadronic
reactions. The computation ofFp(Q2) within this approach is performed at the next to leading order~NLO! of
QCD perturbation theory~standard and analytic!, including the evolution of the pion distribution amplitude at
the same order. We consider the NLO corrections to the form factor in theMS scheme with various renor-
malization scale settings and also in theaV scheme. We find that using standard perturbation theory, the size
of the NLO corrections is quite sensitive to the adopted renormalization scheme and scale setting. The main
results of our analysis are the following:~i! Replacing the QCD coupling and its powers by their analytic
images, both dependencies are diminished and the predictions for the pion form factor are quasi-scheme- and
scale-setting independent.~ii ! The magnitude of the factorized pion form factor, calculated with the aforemen-
tioned pion distribution amplitude, is only slightly larger than the result obtained with the asymptotic one in all
considered schemes.~iii ! Including the soft pion form factor via local duality and ensuring the Ward identity at
Q250, we present predictions that are in remarkably good agreement with the existing experimental data both
in trend and magnitude.
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I. INTRODUCTION

It is the purpose of this paper to review and discuss qu
tions relating to the calculation of the electromagnetic p
form factor with an improved pion distribution amplitud
~DA!, derived from QCD sum rules with nonlocal conde
sates@1#, and to use QCD analytic perturbation theory~APT!
@2–6# beyond the leading order~LO!. Before going into the
details of this framework, let us expose, in general term
what these two ingredients mean for the analysis and
make some introductory remarks.

Hadronic form factors are typical examples of har
scattering processes within QCD@7–12# and clearly the first
level of knowledge necessary to understand the structur
intact hadrons in terms of quarks and gluons. Such proce
have been much explored both because of their physical
evance, as being accessible to experiments, and because

*Electronic address: bakulev@thsun1.jinr.ru
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§Electronic address: stefanis@tp2.ruhr-uni-bochum.de
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allow to assess nonperturbative features of QCD~for re-
views, see, for instance, Refs.@13–17#!. In the following, the
discussion is centered around the pion’s electromagn
form factor. At a more theoretical level, ‘‘hard’’ means that
least some part of the process amplitude, recast in term
quarks collinear to hadrons~in an appropriate Lorentz
frame!, should become amenable to perturbation theory
factorization theorems on account of the hard-moment
scale of the process, say,Q2, that should suppress factorize
infrared ~IR! subprocesses, thus ensuring short-dista
dominance. Under these circumstances one can safely e
ate logarithmic scaling violations by means of perturbat
QCD ~PQCD! and the renormalization-group equatio
When no hard momenta flow on the side of the initial~in-
coming! or the final ~outgoing! hadron, factorization fails
and a renormalization-group analysis cannot be made, so
in order to calculate the nonfactorizable part of the pion fo
factor, one has to resort to phenomenological models~prime
examples of which are Refs.@18–21#!, or employ theoretical
concepts like the~local! quark-hadron duality@22# and their
descendants@23–25#.

Despite dedicated efforts in the last two decades, ex
sive processes have failed to deliver a complete quantita
©2004 The American Physical Society14-1
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understanding within QCD for a variety of reasons, amo
others:

~1! Limited knowledge of higher-order perturbative an
power-law-behaved~e.g., higher-twist! corrections to the am
plitudes.

~2! Presence of singularities~of end-point, mass, soft
collinear, or pinch origin! that may spoil factorization in
some kinematic regions.

~3! Insignificant knowledge of hadron distribution amp
tudes owing to the lack of a reliable nonperturbative a
proach.

~4! Nonfactorizing contributions that are not calculab
within PQCD and hence introduce a strong model dep
dence.

While it may still be not possible to clarify all these th
oretical issues conclusively, we believe that significa
progress has quite recently been achieved in understan
the pion structure both from the theoretical side
perturbatively@26–30# and nonperturbatively@1,31–34#—as
well as from the experimental side@35–37# and associated
data-processing techniques@38–40#, progress that could
bring a cleaner comparison between data and various t
retical QCD predictions@31,39–49#.1 Moreover, a program
to compute the electromagnetic and transition form factor
mesons on the lattice has been launched by two collab
tions, in Refs.@51,52# and in Ref.@53#, that may provide
valuable insights when it is completed. This situati
prompts an in-depth review and update of these issues, i
effort to consolidate previous calculations of the pion’s el
tromagnetic form factor and narrow down theoretical unc
tainties.

We will focus our present discussion on two main issu

~i! How QCD perturbation theory can be safely used
make predictions in the low-momentum regime whe
conventional power series expansions in the Q
coupling break down and nonperturbative effe
dominate. Such an extension is based on recent w
on ‘‘analytization’’ of the running strong coupling
as(Q

2) @2,3,6,54–58# ~see also Ref.@59# for a slightly
different approach! and their generalization to the pa
tonic level of hadron amplitudes, like the electroma
netic and the pion-photon transition form factor, or t
Drell-Yan process, beyond the level of a sing
scheme scale@28,29,60,61#. In contradiction to the
usual assumption of singular growth ofas(Q

2) in the
IR domain, the QCD coupling in this scheme has
IR fixed point, with the unphysical Landau pole bein
completely absent. In conventional perturbative a
proaches, a choice of the renormalization scale in
region of a fewLQCD, as required, for instance, by th
Brodsky-Lepage-Mackenzie~BLM ! scale-fixing pro-
cedure@62#, would induce singularities, thus prohibi
ing the perturbative calculation of hadronic obse
ables. Using APT, these singularities are avoided

1For theoretical predictions onFp(Q2) in the timelike region, see
for instance Refs.@25,50#.
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construction, i.e., without introducing ad hoc IR reg
lators, e.g., an effective gluon mass@14,63#, and there-
fore the validity of the perturbative expansion~in
mass-independent renormalization schemes! is not
jeopardized by IR-renormalon power-law ambiguitie
In addition, APT provides better stability again
higher-loop corrections and a weaker renormalizatio
scheme dependence than the standard QCD pertu
tive expansion—see Ref.@29# and Sec. VII D.

~ii ! How to improve the nonperturbative input by em
ploying a pion DA that incorporates the nonperturb
tive features of the QCD vacuum in terms of a no
local quark condensate@64–68#. This accounts for
the possibility that vacuum quarks can flow with
nonzero average virtualitylq

2 , in an attempt to con-
nect dynamic properties of the pion, like its electr
magnetic form factor, directly with the QCD vacuum
structure~we refer to Ref.@34# for further details!.
Within this scheme, the pion DA@termed Bakulev,
Mikhailov, and Stefanis~BMS! @1# in the following#
turns out to be double-humped with strongly su
pressed end points (x50,1), the latter feature being
related to the nonlocality parameterlq

2 . It has been
advocated, for example, in Refs.@28,29# ~see also
Refs.@16,69#!, that a suppression of the end-point r
gion ~which is essentially nonperturbative! as strong
as possible is a prerequisite for the self-consistent
plication of QCD perturbation theory within a facto
ization scheme.

In a recent series of papers@1,39,40#, two of us together
with S. V. Mikhailov have conducted an analysis of th
CLEO data @35# on the pion-photon transition using a
tributes from QCD light-cone sum rules@31,38#, NLO
Efremov-Radyushkin-Brodsky-Lepage~ERBL! @9–12# evo-
lution @70,71#, and detailed estimates of uncertainties owi
to higher-twist contributions and next-to-next-to-leadin
order ~NNLO! perturbative corrections@30#. These works
confirmed the gross features of the previous Schmedd
Yakovlev ~SY! analysis@38#; notably, both the Chernyak
Zhitnitsky ~CZ! @13# pion DA as well as the asymptotic on
are incompatible with the CLEO data@35# at the 4s and 3s
level, respectively, whereas the aforementioned BMS p
DA, which incorporates the vacuum nonlocality, is within th
1s error ellipse. Moreover, this approach revealed the p
sibility of using the CLEO experimental data to estimate t
value of the QCD vacuum correlation lengthlq

21 . Indeed, it
turns out that the extracted valuelq

2.0.4 GeV2 is consistent
with those obtained before using QCD sum rules@72–74#
and also with numerical simulations on the lattice@75,76#. In
addition, it was shown@40# that the value of the inverse
moment ^x21&p(m2)5*0

1wp(x;m2)x21dx of the pion DA,
calculated by means of anindependentQCD sum rule, is
compatible with that extracted from the CLEO data. The
findings give us confidence to use the BMS pion DA~includ-
ing also the range of its intrinsic theoretical uncertainties! in
order to derive predictions for the electromagnetic pion fo
factor within the factorization scheme of QCD at NLO, pr
4-2
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FIG. 1. Illustration of the structure of the factorized pion form factor within PQCD at NLO of the hard-scattering amplitude a
evolution effect of the pion DA. Hard gluons are indicated by broken lines, whereas the external off-shell photon is denoted by a
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senting also results that include the nonfactorizing soft c
tribution @23,25# to compare with available experiment
data.

The structure of the paper is as follows. In Sec. II we sh
recall the QCD factorization of the pion’s electromagne
form factor. Section III deals with the basics of the pio
distribution amplitude and its derivation from QCD su
rules with nonlocal condensates. The perturbative results
the pion form factor at NLO order, on the basis of the resu
given in Ref.@26#, are summarized in Sec. IV, whereas issu
related to the setting of the renormalization scheme and s
are discussed in Sec. V. The important topic of the n
power-series expansion of the pion form factor in the cont
of analytic perturbation theory is considered in Sec. VI. O
numerical analysis and the comparison of our results w
available experimental data are presented in Sec. VII.
nally, in Sec. VIII we give a summary of the results and dr
our conclusions. Important technical details of the analy
are supplied in five Appendixes.

II. QCD FACTORIZATION APPLIED
TO THE PION FORM FACTOR

The outstanding virtue of factorization is that a hadro
process can be dissected in such a way as to isolate a
tonic part accessible to PQCD. Provided that the parto
subprocesses are free of IR singularities, then at large
mentum transferFp(Q2)/ f p

2 ;1/Q2, modulo logarithmic
corrections due to renormalization. Hence, the amplitude
the electromagnetic pion form factor is short-distance do
nated and can be expressed in terms of its constituent qu
collinear to the pion with the errors of this replacement be
suppressed by powers of 1/Q. Even more, one can rigorousl
dissect the QCD amplitude into a coefficient function th
contains the hard quark-gluon interactions, and two ma
elements corresponding to the initial and final pion states
the leading-twist operator with the quantum numbers of
pion according to the operator product expansion~OPE!. In
this way, one establishes that the coefficient function w
scale asymptotically according to its dimensionality mod
anomalous dimensions controlled by the renormalizat
group equation.

The pion’s electromagnetic form factor is defined by t
matrix element

^p1~P8!uJm~0!up1~P!&5~P1P8!mFp~Q2!, ~2.1!

whereJm is the electromagnetic current expressed in ter
of quark fields, (P82P)25q2[2Q2 is the photon virtual-
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ity, i.e., the large momentum transfer injected into the pio
andFp is normalized toFp(0)51. Based on the above con
siderations, the pion form factor can be generically written
the form @9–12#

Fp~Q2!5Fp
fact~Q2!1Fp

nonfact~Q2!, ~2.2!

where Fp
fact(Q2) is the factorized part within PQCD an

Fp
nonfact(Q2) is the nonfactorizable part—usually being r

ferred to as the ‘‘soft contribution’’@23#—that contains sub-
leading power-behaved~e.g., twist-4 and higher-twist! con-
tributions originating from nonperturbative effects. It
important to understand that Eq.~2.2! becomes increasingly
unreliable asQ2→0, owing to the breakdown of perturba
tion theory at such low momentum scales. Hence, we exp
the real form factor to be different from the right-hand si
~RHS! of this equation at lowQ2. We shall show in Sec
VII D how to remedy this problem. The leading-twist facto
izable contribution can be expressed as a convolution in
form

Fp
fact~Q2;mR

2 !5Fp* ~x,mF
2! ^

x
TH~x,y,Q2;mF

2,mR
2 !

^
y

Fp~y,mF
2!, ~2.3!

where ^ denotes the usual convolution symbol@A(z)
^
z

B(z)[*0
1dzA(z)B(z)# over the longitudinal momentum

fraction variablex ~y! and mF represents the factorizatio
scale at which the separation between the long-~small trans-
verse momentum! and short-distance~large transverse mo
mentum! dynamics takes place, withmR standing for the
renormalization~coupling constant! scale. A graphic illustra-
tion of the factorized pion form factor in terms of Feynma
diagrams is given in Fig. 1.

Here, TH(x,y,Q2;mF
2 ,mR

2) is the hard-scattering ampli
tude, describing short-distance interactions at the pa
level, i.e., it is the amplitude for a collinear valence qua
antiquark pair with total momentumP struck by a virtual
photon with momentumq to end up again in a configuratio
of a parallel valence quark-antiquark pair with momentu
P85P1q and can be calculated perturbatively in the for
of an expansion in the QCD coupling, the latter to be eva
ated at the reference scale of renormalizationmR

2 :

TH~x,y,Q2;mF
2 ,mR

2 !5as~mR
2 !TH

(0)~x,y,Q2!

1
as

2~mR
2 !

4p
TH

(1)~x,y,Q2;mF
2,mR

2 !1•••.

~2.4!
4-3



O
s-
ul
rto
A

d

th
a

of

e
t
e

n
th

rd
ite
e

le

on
is
he
tu
n
h
ry

th
in
-

-

r
tio

n

r
f-

ng
e
en
to
ol
in

le
fi-
n

ee

this
be-
r

t,
.
h

out
our
ble
in-

As

MS

-

e

the

li-
d

a

or

-

ered
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The explicit results for the hard-scattering amplitude in L
and NLO accuracy are supplied in Appendix A. All tran
verse momenta below the factorization scale that wo
cause divergences associated with the propagation of pa
over long distances have been absorbed into the pion D
which have the correct long-distance behavior, as dictate
nonperturbative QCD.

Because the QCD perturbation series expansion in
strong coupling is only asymptotic, this calculation bears
intrinsic error owing to its truncation that is of the order
the first neglected term;C/Qp, with C and p being, in
general, dependent on the particular observable
question—here the pion form factor. Lacking all-order r
sults for the perturbative coefficients, one has to resor
fixed-order, renormalization-, and factorization-schem
dependent contributions toFp

fact(Q2,mR
2) that do not exceed

beyond the NLO@26#. The truncation of this series expansio
at any finite order introduces a residual dependence of
corresponding fixed-order or partly resummed ha
scattering amplitude and, consequently, also of the fin
order prediction forFp

fact, on the renormalization schem
adopted and on the renormalization scalemR chosen. In order
that the perturbative prediction comes as close as possib
the physical form factor, measured in experiments—which
exactly independent of the renormalization~or any other un-
physical scheme! scale—the best perturbative expansi
would be the one that minimizes the error owing to the d
regarded higher-order corrections. This can be accomplis
for instance, by trading the conventional power-series per
bative expansion in favor of a nonpower series expansio
terms of an analytic strong running coupling, performing t
calculations in the framework of analytic perturbation theo
to be discussed in Sec. VI. Here it suffices to state that in
framework the QCD running coupling has an IR fixed po
and hence avoidseo ipsoIR-renormalon ambiguities allow
ing to adopt a BLM scale setting procedure.

By convoluting the finite-order result for the hard
scattering amplitude, expressed in the form of Eq.~2.4!, with
the distribution amplitude~3.5! truncated at the same orde
in as , an additional residual dependence on the factoriza
scheme and the factorization scalemF appears. We show in
Appendix B how to get rid of the factorization scale depe
dence at fixed order of perturbation theory~NLO! by proving
that noncanceling terms inFp

fact(Q2;mR
2) are of orderas

3 . For
an alternative way of handling themF

2 dependence, we refe
the reader to Refs.@27,77#. For practical purposes, the pre
erable form of the convolution equation forFp

fact(Q2) is
given by adopting the so-called ‘‘default’’ choice, i.e., setti
in Eqs. ~2.3!,~2.4! mF

25Q2. Note, however, that the sam
choice of scale in different schemes yields also to differ
results for finite-order approximants for the pion form fac
@78#. Problems connected with heavy-quark mass thresh
in theb function are given below particular attention both
the hard-scattering part and in the evolution part.

Another crucial question is whether the factorizab
PQCD contribution to the pion form factor is actually suf
cient to describe the available experimental data, or if o
has to take into account the soft part as well. It has b
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advocated in Refs. @18,20,21,23,25,42,67,79# that at
momentum-transfer values probed experimentally so far,
latter contribution, though power suppressed because it
haves like 1/Q4 for large Q2, dominates and mimics rathe
well the observed 1/Q2 behavior. To account for this effec
we will include the soft contribution@25# ~discussed in Sec
VII C ! into our form-factor prediction when comparing wit
the data, albeit the poor quality of the latter at higherQ2

makes it impossible to draw any definite conclusions ab
the transition from one regime to the other. Therefore,
main purpose in this paper is to calculate the factoriza
contribution as accurately as possible. The calculational
gredients will be to

~a! use as a nonperturbative input a set of pion D
wp(x,m0

2), derived in Ref.@1# from QCD sum rules with
nonlocal condensates, with the optimum one, termed B
model, standing out;

~b! evolve wp(x,m0
2) by employing a kernel and corre

sponding anomalous dimensions up to NLO@70,71,80# both
within the standard and the analytic perturbation theory;

~c! employ a hard-scattering amplitud
TH(x,y,Q2;mF

2 ,mR
2) up to NLO order@26,80–85#, using both

standard power and also non-power-series expansions;
~d! take into account the soft~nonfactorizable! contribu-

tion, Fp
nonfact(Q2), on the basis of the local duality~LD! ap-

proach when comparing the theoretical predictions with
experimental data.

III. PION DISTRIBUTION AMPLITUDE

A. Nonperturbative input

Turning our attention now to the pion distribution amp
tude, we note thatFp(x,mF

2) specifies in a process- an
frame-independent way2 the longitudinal-momentumxP dis-
tribution of the valence quark~and antiquark which carries
fraction x̄512x) in the pion with momentumP. At the
twist-2 level it is defined by the following universal operat
matrix element~see, e.g., Ref.@13# for a review!

^0ud̄~z!gmg5C~z,0!u~0!up~P!&uz250

5 iPmE
0

1

dxeix(zP)Fp~x,m0
2;z22!, ~3.1!

E
0

1

Fp~x,m0
2!dx5 f p , ~3.2!

with f p5130.760.4 MeV @86# being the pion decay con
stant defined by

^0ud̄~0!gmg5u~0!up1~P!&5 ipm f p ~3.3!

and where

2Provided the same factorization scheme is used for all consid
processes@16,69#.
4-4
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C~0,z!5P expF2 igsE
0

z

taAm
a ~y!dymG ~3.4!

is the Fock–Schwinger phase factor~coined the color ‘‘con-
nector’’ in Ref. @87#!, path-ordered along the straight lin
connecting the points 0 andz, to preserve gauge invarianc
The scalem0

2, called the normalization scale of the pion DA
is related to the ultraviolet~UV! regularization of the quark
field operators on the light cone whose product becomes
gular for z250.

Although the distribution amplitude is intrinsically a non
perturbative quantity, its evolution is governed by PQCD~a
detailed discussion is relegated to Appendix C! and can be
expressed in the form

Fp~x,mF
2!5U~x,s;mF

2,m0
2! ^

s
Fp~s,m0

2!, ~3.5!

where Fp(s,m0
2) is a nonperturbative input determined

some low-energy normalization pointm0
2 @where the local

operators in Eq.~3.1! are renormalized#—which is of the
order of 1 GeV2—while U(x,s;mF

2 ,m0
2) is the operator to

evolve that DA from the scalem0
2 to the scalemF

2 and is
calculable in QCD perturbation theory. In the asympto
limit, the shape of the pion DA is completely fixed by PQC
with the nonperturbative input being solely contained inf p .

Neglecting thek' dependence of the hard-scattering a
plitude at largeQ2,3 it is convenient to introduce a dimen
sionless pion DA,wp(x), normalized to 1,

Fp~x,m0
2!5 f pwp~x,m0

2!, ~3.6!

that can be defined as the probability amplitude for find
two partons with longitudinal momentum fractionsx and x̄
‘‘smeared’’ over transverse momentak'

2 <m2, i.e.,

wp~x,m2!5E
0

k'
2 <m2

@d2k'#c~x,k'!, ~3.7!
n

its
e

ed

rk

03301
n-

-

g

where @d2k'# is an appropriate integration measure ov
transverse momenta@12#, helicity labels have been sup
pressed, and a logarithmic prefactor due to quark self-ene
and photon-vertex corrections has been absorbed for the
of simplicity into the definition of the pion wave function.

The nonperturbative input, alias the pion DA at the init
normalization scalem0

2, wp(x,m0
2), will be expressed as an

expansion over Gegenbauer polynomials that form an eig
function decomposition, having recourse to a convenient r
resentation that separates thex and m2 dependence~a de-
tailed exposition can be found in Ref.@16#!. Then, the pion
DA at the initial scalem0

2 reads

wp~x,m0
2!56x~12x!@11a2~m0

2!C2
3/2~2x21!

1a4~m0
2!C4

3/2~2x21!1•••#, ~3.8!

with all nonperturbative information being encapsulated
the coefficientsan . These coefficients will be taken from
QCD sum-rule calculation employing nonlocal condensa
@1,34#, and we refer the reader to these works for more
tails. Here we only use the results obtained there. We fo
at m0

251.35 GeV2 and for a quark virtuality of lq
2

50.4 GeV2:

a051, a250.19, a4520.13,

a65531023, a85431023, a105431023.

~3.9!

One appreciates that all Gegenbauer coefficients withn.4
are close to zero and can therefore be neglected. Henc
model the pion DA, it is sufficient to keep only the first tw
coefficients, which we display below in comparison wi
those for the asymptotic DA and the CZ@13# model after
two-loop evolution to the reference scalem0

251 GeV2, i.e.,
was: an50, n>2 m0
25mF

2 ,

wBMS: an50, n.4 a250.20, a4520.14 m0
251 GeV2,

wCZ: an50, n.2 a250.56 m0
251 GeV2. ~3.10!
be
ion,
n-

t
of

the
The shapes of these DAs are displayed in Fig. 2.
At this point some important remarks and observatio

are in order.
~1! The BMS pion DA, though doubly peaked, has

end pointsx→0 and x→1 strongly suppressed due to th
nonlocality parameterlq

2 . Hence, fears frequently express

3This actually means that for all initialk' i
2 !Q2 and analogously

for all final l' i
2 !Q2, radiative corrections sense only single qua

and gluon lines.
s
in the literature that double-humped pion DAs should
avoided because they may emphasize the end-point reg
where the use of perturbation theory is unjustified, is u
founded.

~2! The BMS pion DA approaches asymptoticallywas in
the endpoints frombelow, whereaswCZ approaches the
asymptotic limit fromabove, which means that the endpoin
behavior of the latter is dangerous until very large values
Q2. It is well known @15,16,28# that in the endpoint region
x→1 the spectator quark in the hard process, carrying
small longitudinal momentum fractionx̄, can ‘‘wait’’ for a
4-5
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long time until it exchanges a soft gluon with the stru
quark to fit again into the final pion wave function. As
result, a strong Sudakov suppression@88# is needed in that
case in order to justify the use of perturbation theory.
contrast, the end-point behavior of the BMS DA is not co
troversial because, though doubly peaked, it does not em
size the end-point regions. Even more, as Fig. 3 shows
plotting the first inverse moment̂x21&p , calculated as
*x

x10.02wp(x)x21dx and normalized to 100% (y axis!, the
BMS DA receives in this region even less contributions th
the asymptotic DA, as we explained above.

~3! By the same token, the Sudakov suppression of
end-point region of the BMS DA is less crucial compared
end-point-concentrated DAs. The implementation of Su
kov corrections using the analytic factorization scheme w
considered in technical detail in Ref.@28# for the case of the
asymptotic pion DA. Such an analysis for the BMS DA
more involved and will be conducted in a future publicatio

~4! The deep reason for the failure of the CZ DA w
provided in Refs.@65,66,89#. The condensate terms in the C
sum rules are strongly peaked at the end pointsx→0 andx
→1, the reason being that the vacuum quark distribution

FIG. 2. Comparison of selected pion DAs denoted by obvio
acronyms:was ~dotted line!, wCZ ~dashed line! @13#, andwBMS ~solid
line! @1#, defined by Eq.~3.8! in conjunction with~3.10!. All DAs
are normalized at the same scalem0

2'1 GeV2.
03301
-
a-
y

n

e

-
s

.

n

the longitudinal momentum fractions is approximated by
d-functiond(x) and its derivatives. For that reason, the co
densate terms, i.e., the nonperturbative contributions to
sum rule, force the pion DA to be end-point-concentrat
with the perturbative loop contribution proportional tox(1
2x) being insufficient to compensate these two sharp pe
at x50 andx51. Allowing for a smooth distribution in the
longitudinal momentum for the vacuum quarks, i.e., us
nonlocal condensates in the QCD sum rules~as done in the
derivation of the BMS pion DA!, the end-point regions of the
extracted DA are suppressed, despite the fact that its sha
doubly peaked.

~5! The end-point behavior of the pion DA is the ro
cause why the pion-photon transition form factor—which
LO is purely electromagnetic—calculated with the CZ pi
DA was found@43# to overshoot the CLEO data. More re
cently, the analysis of the CLEO data using light-cone s
rules @31,38–40# has excluded the CZ pion DA at the 4s
confidence level, while the BMS DA was found to be insi
the 1s error ellipse~for lq

254 GeV2), whereas even the
asymptotic DA was also excluded by the CLEO data at
3s level. These quoted findings are reflected in the beha
of the predictions for the pion-photon transition form fact
displayed in Fig. 4, which is based on the corrected vers
of Ref. @1# ~the displayed strip is therefore slightly differen
from that in Ref.@47#!.

To make these statements more transparent, let us d
the DA profile deviation factor

Dw[
^x21&p

w

^x21&p
As

511a21a41•••, ~3.11!

which quantifies the deviation of a model DA from th
asymptotic one and supply its value in Table I for seve
pion DAs suggested in the literature in comparison with
constraints from the experimental data and theoretical ca
lations. Reading this table in conjunction with Fig. 4, o
comes to the conclusion that the BMS ‘‘bunch’’ provides t
best agreement with the CLEO and CELLO experimen
constraints, being also in compliance with various theoret
constraints and lattice calculations.

s

FIG. 3. Percentage distribution~see text! of the first inverse moment inx of the BMS model DA@1# in comparison with the CZ one@13#
~a! and the asymptotic DA~b!.
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FIG. 4. Light-cone sum-rule predictions forQ2Fg* g→p(Q2) in comparison with the CELLO~diamonds,@90#! and the CLEO~triangles,
@35#! experimental data evaluated with the twist-4 parameter valuedTw-4

2 50.19 GeV2 @39,40#. The predictions shown correspond to th
following pion DA models:wCZ ~upper dashed line! @13#, BMS-‘‘bunch’’ ~shaded strip! @1#, two instanton-based models, viz.,@91# ~dotted
line! and @92# ~dash-dotted line!, and the asymptotic pion DAwas ~lower dashed line! @9,11#. A recent transverse lattice result@93# is very
close to the dash-dotted line, but starts to be closer to the center of the BMS strip forQ2>6 GeV2.
O
b
h
d
e-

-
lu-
B. Perturbative NLO evolution

Let us now discuss how the pion DA evolves at NL
using first standard perturbation theory to be followed
analogous considerations within APT. The evolution of t
distribution amplitude~3.8! proceeds along the lines outline
in Appendix C. Taking into account only the first two G
genbauer coefficients and LO evolution, one obtains
03301
y
e

wp
LO~x,mF

2!56x~12x!@11a2
D,LO~mF

2!C2
3/2~2x21!

1a4
D,LO~mF

2!C4
3/2~2x21!#, ~3.12!

wherea2
D,LO(mF

2) and a4
D,LO(mF

2) are given by~C18! taking
recourse to~C14!, and D denotes ‘‘diagonal,’’ while ND be
low stands for ‘‘nondiagonal.’’ On the other hand, the so
tion of the NLO evolution equation takes the form
,

ding

scale

ses
TABLE I. Estimates for the Gegenbauer coefficients and the DA profile deviation factorDw up to polynomial order 4 for the asymptotic
the BMS, and the CZ DAs compared with constraints derived from light-cone sum rules~LCSRs!, QCD sum rules~SRs! with nonlocal
condensates~NL QCD SR! for the DA and the inverse moment^x21&,a and by analyzing the CLEO data. Also shown are the correspon
entries for instanton-based models@ADT, Petrov, Polyakov, Rushkov, Weiss, and Goeke~PPRWG!, Praszalowicz and Rostworowski~PR!#
and those associated with a transverse-lattice calculation—labeled Lattice. All values displayed are normalized at them2

51.35 GeV2, corresponding to the scale of NL QCD SRs.

DA models/methods a2 a4 a21a4 a22a4 Dw

Asymptotic 0 0 0 0 1
BMS 0.19 20.13 0.06 0.32 1.06
CZ 0.52 0 0.52 0.52 1.52
PPRWG@91# 0.042 0.006 0.05 0.04 1.05
PR @134# 0.09 20.02 0.07 0.10 1.07
ADT @94# 0.05 20.04 0.01 0.09 1.01
Lattice @93# 0.08 0.02 0.10 0.06 1.10
LCSRs@33# @0.07,0.37# — — — 1.2260.15
NL QCD SRs for DA@1# @0.13,0.25# a @20.04,20.21# a @10.02,10.09# @10.18,10.46# 1.0660.04
NL QCD SRs for^x21& @1# — — @10.00,10.20# — 1.1060.10
CLEO 1s limits @40# @0.15,0.43# a @20.60,20.04# a @20.21,10.15# @10.21,11.00# 0.9760.18
CLEO 2s limits @40# @0.11,0.47# a @20.71,10.07# a @20.31,10.25# @10.07,11.14# 0.9760.28
CLEO 3s limits @40# @0.07,0.51# a @20.82,10.19# a @20.41,10.35# @20.07,11.28# 0.9760.38

aNote that the uncertainties on the Gegenbauer coefficientsa2 and a4 are correlated. Here, the rectangular limits of the fiducial ellip
extracted from the NL QCD SRs@1# and from the CLEO data in Refs.@39,40# are shown.
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FIG. 5. The left panel shows the effect of the LO diagonal part of the evolution equation, Eq.~3.12!, on the BMS DA. The convex solid
line denotes the asymptotic profile of the pion DA, the other solid one stands forwBMS

LO (x) at 1 GeV2, while the broken lines represen
wBMS

LO (x) at 4, 20, and 100 GeV2 ~with the larger scale corresponding also to the larger value of the DA at the middle point!. Right panel:
Comparison ofwBMS

LO @Eq. ~3.12!—solid line# andwBMS
NLO @Eq. ~3.13!—dashed line# at 20 GeV2 to illustrate the effect of NLO evolution.
a
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e
W
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the
on
he
wp
NLO~x,mF

2!5wp
D,NLO~x,mF

2!1
as~mF

2!

4p
wp

ND,NLO~x,mF
2!,

~3.13a!

where

wp
D,NLO~x,mF

2!

56x~12x!F11 (
n52,4

an
D,NLO~mF

2!Cn
3/2~2x21!G

~3.13b!

and

wp
ND,NLO~x,mF

2!56x~12x! ( 8
n>2

an
ND,NLO~mF

2!Cn
3/2~2x21!.

~3.13c!

The coefficientsan
D,NLO(mF

2) and an
ND,NLO(mF

2) are given in
~C19b! and~C19c!, respectively, by employing~C15!, while
(8 denotes the sum over even indices only. Note that,
though the input DA,wp(x,m0

2), was parametrized by only
two Gegenbauer coefficientsa2 and a4, higher harmonics
also appear due to the nondiagonal nature of the N
evolution.4 The effect of the inclusion of the LO diagona
part of the evolution kernel is important, as one sees from
left part of Fig. 5, which shows this effect for the BMS pio
DA.

On the other hand, from the right part of Fig. 5, we d
duce that the NLO nondiagonal evolution is rather small.
note that in the above computation the exact two-loop
pression for as @95# in the MS scheme (LQCD
5410 MeV,Nf53) was employed, cf.~6.15!, in which
matching at the heavy-flavor thresholdsM451.3 GeV and

4Sincean
ND,NLO(mF

2) decreases withn, for the purpose of numeri-
cal calculations, we use an approximate form ofwND

NLO(x,mF
2) in

which we neglectan
ND,NLO(mF

2) for n.100.
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M554.3 GeV~with M15M25M350) has been employed
@96#. A discussion of the relation of this exact solution to t
usual approximation, promoted by the Particle Data Gro
@86#, has recently been given in Ref.@40# ~see also Appendix
C!.

IV. PION FORM FACTOR AT NLO: ANALYTIC RESULTS

The NLO results for the hard-scattering amplitudeTH are
summarized in Appendix A. Setting in~2.4! mF

25Q2 and
taking into account the NLO evolution of the pion DAw via
~3.13!, we obtain from~2.3!

Fp
fact~Q2;mR

2 !5Fp
LO~Q2;mR

2 !1Fp
NLO~Q2;mR

2 !, ~4.1!

where the LO term is given by

Fp
LO~Q2;mR

2 !5as~mR
2 !F p

LO~Q2!, ~4.2!

Q2F p
LO~Q2![8p f p

2 @11a2
D,NLO~Q2!

1a4
D,NLO~Q2!#2, ~4.3!

and the calligraphic letters denote quantities with theiras
dependence pulled out. In order to make a distinction
tween the contributions stemming from the diagonal and
nondiagonal parts of the NLO evolution equation of the pi
DA, we express the NLO correction to the form factor in t
form

Fp
NLO~Q2;mR

2 !5
as

2~mR
2 !

p
@F p

D,NLO~Q2;mR
2 !

1F p
ND,NLO~Q2;NMax5`!# ~4.4!

and write the diagonal contribution

F p
D,NLO~Q2;mR

2 ![b0F p
(1,b)~Q2;mR

2 !1CFF p
(1,F)~Q2!

1CGF p
(1,G)~Q2! ~4.5!

as a color decomposition@in correspondence with~A3!# in
terms of
4-8



Q2F p
(1,b)~Q2;mR

2 !52p f p
2 F5

1
31~43/6!a2

D,NLO~Q2!1~136/15!a4
D,NLO~Q2!

2 ln
Q2G @11a2

D,NLO~Q2!1a4
D,NLO~Q2!#2,

PION FORM FACTOR IN QCD: FROM NONLOCAL . . . PHYSICAL REVIEW D 70, 033014 ~2004!
3 11a2
D,NLO~Q2!1a4

D,NLO~Q2! mR
2

~4.6a!

Q2F p
(1,F)~Q2!52p f p

2 H 2
71

6
2a2

D,NLO~Q2!F497

36
2

161

24
a2

D,NLO~Q2!G2a4
D,NLO~Q2!F1123

450
2

9793

300
a2

D,NLO~Q2!

2
1387

50
a4

D,NLO~Q2!G J , ~4.6b!
of
e

ar-
ired

ce
b-
ith

ia
fol-

bu-
and

Q2F p
(1,G)~Q2!52p f p

2 $20.671a2
D,NLO~Q2!@18.70

116.35a2
D,NLO~Q2!#1a4

D,NLO~Q2!@24.23

136.76a2
D,NLO~Q2!120.26a4

D,NLO~Q2!#%,

~4.6c!

where the superscripts F and G refer to the color factorsCF
andCG5CF2CA/2, respectively. Note that for the matter
calculational convenience, we also display the sum of th
two terms@cf. Eq. ~A7!#:

Q2F p
(1,FG)~Q2!52p f p

2 $215.672a2
D,NLO~Q2!@21.52

26.22a2
D,NLO~Q2!#2a4

D,NLO~Q2!@7.37

237.40a2
D,NLO~Q2!233.61a4

D,NLO~Q2!#%.

~4.7!

On the other hand, the nondiagonal term reads

Q2F p
ND,NLO~Q2;NMax!54p f p

2 @11a2
D,NLO~Q2!

1a4
D,NLO~Q2!# ( 8

k52

NMax

ak
ND,NLO~Q2!,

~4.8!
03301
se

whereNMax denotes the maximal number of Gegenbauer h
monics taken into account in order to achieve the des
accuracy.

As it was shown in Ref.@26#, the effects of the LO DA
evolution are crucial. In order to investigate the importan
of the NLO DA evolution, we compare the predictions o
tained using the complete NLO results, given above, w
those derived by employing only the LO DA evolution v
~3.12!. The corresponding expressions in this latter case
low from those above by performing the replacements

an
D,NLO→an

D,LO and an
ND,NLO→0, ~4.9!

so that the contributionF p
ND,NLO(Q2;mR

2) is absent. Introduc-
ing the notation

F̃p
i [F p

i uLO DA evolution, ~4.10!

we analyze the relative importance of the various contri
tions @LO, NLO, and local duality~LD! part—see Sec.
VII C # by defining the following ratios:

R~Q2,NMax!5
F p

LO~Q2!1~as /p!F p
ND,NLO~Q2;NMax!

F p
LO~Q2!1~as /p!F p

ND,NLO~Q2;NMax'`!
,

~4.11!
R̂~Q2,NMax!5
Fp

LD~Q2!1asF p
LO~Q2!1~as

2/p!F p
ND,NLO~Q2;NMax!

Fp
LD~Q2!1asF p

LO~Q2!1~as
2/p!F p

ND,NLO~Q2;NMax'`!
, ~4.12!

Rmod~Q2!5
F̃p

LO~Q2!

F p
LO~Q2!1~as /p!F p

ND,NLO~Q2;NMax'`!
, ~4.13!

R̂mod~Q2!5
Fp

LD~Q2!1asF̃p
LO~Q2!

Fp
LD~Q2!1asF p

LO~Q2!1~as
2/p!F p

ND,NLO~Q2;NMax'`!
. ~4.14!
4-9



s
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FIG. 6. ~Color online! Left: The ratioR(Q2,NMax), defined in Eq.~4.11!, for three different values ofQ2 as a function ofNMax . The blue
dotted curve corresponds toQ252 GeV2, the green solid curve toQ2510 GeV2, and the red dashed one toQ2550 GeV2. Crosses of the
same color represent the values ofR(Q2,NMax54), whereas triangles refer toRmod(Q

2), Eq. ~4.13!. Right: The same designations hold a

for the left side, but now for the ratioR̂(Q2,NMax) given by Eq.~4.12! and correspondingly forR̂mod—Eq. ~4.14!.
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These ratios are displayed graphically in Fig. 6 for the BM
DA @a2(m0

2)50.2, a4(m0
2)520.14# in the regionNMax54

2100. We infer from this figure that, adopting in our calc
lations an accuracy on the order of 99.5%, we can sa
neglect the nondiagonal part of the NLO evolution equat
and use for the pion form-factor computations to follow t
approximate expression~omitting the superscript approx!

Fp
fact-approx~Q2;mR

2 ![as~mR
2 !F̃p

LO~Q2;mR
2 !

1
as

2~mR
2 !

p
F p

D,NLO~Q2;mR
2 !. ~4.15!

Actually, the difference betweenF p
D,NLO(Q2;mR

2) and

F̃p
D,NLO(Q2;mR

2) is of the order ofas(Q
2), so that it is safe to

use everywhere only the LO evolution. We have verified
our numerical calculations that the difference is indeed l
than 1%.

V. SETTING THE RENORMALIZATION SCHEME
AND SCALE

The choice of the expansion parameter represents the
jor ambiguity in the interpretation of the PQCD predictio
because finite-order perturbative predictions depend
03301
ly
n

s

a-

n-

avoidably on the renormalization scale and scheme choi5

If one could optimize the choice of the renormalization sc
and scheme according to some sensible criteria, the siz
the higher-order corrections, as well as the size of the exp
sion parameter, i.e., the QCD running coupling, could se
as sensible indicators for the convergence of the perturba
expansion. In what follows, we shall consider several sche
and scale-setting options.

A. MS scheme

The results we have presented in the previous subsec
were obtained in theMS renormalization~and factorization!
scheme. Let us discuss the choice of the renormaliza
scalemR in some more detail. We see that in our NLO r
sults, Eq.~4.4!, this dependence is contained in the coupli
constantas(mR

2) as well as in the NLO correctionF p
(1,b) .

The latter correction is proportional to theb0 coefficient of
the b function and isNf dependent. Hence, a natural que
tion arises: How can we determine the right value ofNf in
the form-factor expression?

We propose here to apply the following procedures.
~i! The first one concerns the standard choicemR

25Q2 and
suggests to shiftmR

2 at the heavy-quark threshold in order
ensure the continuity of the form factor according to
ation scale,
Fp
fact~Q2!5H Fp

fact~Q2;mR
25Q2!uNf53 for Q2<M4

2 ;

Fp
fact~Q2;mR

25Q21dm4
2!uNf54 for $M4

2<Q2, Q21dm4
2<M5

2

Fp
fact~Q2;mR

25Q21dm4
21dm5

2!uNf55 for M5
2<Q21dm4

2 .

~5.1a!

5Actually, to the order we are calculating these dependencies, they can be represented by a single parameter, say, the renormaliz
becauseb0 andb1 are renormalization-scheme invariant.
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TABLE II. ScalesmPMS, mFAC , mBLM , andmV for the asymptotic, the BMS, and the CZ DAs.

DA Q2/mFAC
2 Q2/mPMS

2 Q2/mBLM
2 Q2/mV

2 Q2

As 18 27 106 20 any
BMS 16–20 24–29 105–117 20–22 1–50 GeV2

CZ 146–62 217–92 475–278 90–52 1–50 GeV2
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As a result, we have to fulfill the following matching cond
tions:

Fp
fact~M4

2 ;M4
2!uNf53

5Fp
fact~M4

2 ;M4
21dm4

2!uNf54 , ~5.1b!

Fp
fact~M5

22dm4
2 ;M5

2!uNf54

5Fp
fact~M5

22dm4
2 ;M5

21dm5
2!uNf55 .

~5.1c!

~ii ! The second procedure addresses specifically the B
scale settingmR

25mBLM
2 . In this case, the only problem is th

small value of the BLM scale~see Table II! due to the fact
that the b0 term is completely absent andNf-dependent
terms do not arise. Therefore, we propose to implement
BLM scale setting only above some minimal scale:mmin .
Below this scale, which is in the range of the typical mes
scales and hence only the light-quark sector (Nf53) contrib-
utes, we fix mR

25mmin
2 and set Nf53 using the

F p
(1,b)(Q2;mmin

2 ) term in the form provided by~5.13!—more
explanations will be given shortly.

The truncation of the perturbative series to a finite or
introduces a residual dependence of the results on the s
mR, while the inclusion of higher-order corrections d
creases this dependence. Nonetheless, we are still left
an intrinsic theoretical ambiguity of the perturbative resu
One can try to estimate the uncertainty entailed by this a
biguity ~see, for example, Ref.@26#! or choose the renormal
ization scalemR on the basis of some physical arguments

The simplest and widely used choice formR is to identify
it with the large external scale, i.e., to set

mR
25Q2, ~5.2!

the justification for adopting this choice being mainly a pra
matic one. However, physical arguments suggest that a m
appropriate scale should be lower. Namely, since each e
nal momentum entering an exclusive reaction is partition
among many propagators of the underlying hard-scatte
amplitude in the associated Feynman diagrams, the phy
scales that control these processes are related to the av
momentum flowing through the internal quark and glu
lines and are therefore inevitably softer than the overall m
mentum transfer. To treat this problem, several suggest
have been made in the literature. According to the so-ca
fastest apparent convergence~FAC! procedure@97,98#, the
scale mR is determined by the requirement that the NL
03301
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coefficient in the perturbative expansion of the physi
quantity in question vanishes, which here means

Fp
NLO~Q2;mR

25mFAC
2 !50. ~5.3!

On the other hand, following the principle of minimum se
sitivity ~PMS! @99–102#, one mimics locally the global inde
pendence of the all-order expansion by choosing the re
malization scalemR to coincide with the stationary point o
the truncated perturbative series. In our case, this reads

d

dmR
2 @Fp

LO~Q2;mR
2 !1Fp

NLO~Q2;mR
2 !#um

R
25m

PMS
2 50.

~5.4!

In the Brodsky-Lepage-Mackenzie~BLM ! procedure
@62#, all vacuum-polarization effects from the QCDb func-
tion ~i.e., the effects of quark loops! are absorbed into the
renormalized running coupling by resumming the lar
(b0aS)n terms, giving rise to infrared renormalons. Accor
ing to the BLM procedure, the renormalization scale b
suited to a particular process at a given order of expans
can be, in practice, determined by demanding that the te
proportional to theb-function should vanish. This naturall
connects to conformal field theory and we refer the interes
reader to Ref.@103# for a recent review. The optimization o
the renormalization scale and scheme setting in exclu
processes by employing the BLM scale fixing was elabora
in Ref. @45# and in references cited therein. The renormaliz
tion scales in the BLM method are ‘‘physical’’ in the sen
that they reflect the mean virtuality of the gluon propagat
involved in the Feynman diagrams. According to the BL
procedure, the renormalization scale is determined by
condition

F p
(1,b)~Q2;mR

25mBLM
2 !50. ~5.5!

For calculational convenience, we expressmR
2 in terms of

Q2,

mR
25a~Q2!Q2 ~5.6!

and proceed to calculate this quantity in the abo
mentioned scale-setting schemes. Then, the FAC proce
leads to
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aFAC~Q2!5expF2
5

3

2
31~43/6!a2

D,NLO~Q2!1~136/15!a4
D,NLO~Q2!

11a2
D,NLO~Q2!1a4

D,NLO~Q2!

2
4

b0

F p
(1,FG)~Q2!1F p

ND,NLO~Q2!

F p
LO~Q2!

G , ~5.7!

which can be related to the PMS procedure via
e
at
t

hi
f f

c

e
io
u
o

k
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aPMS~Q2!5e2c1/2aFAC~Q2! ~5.8!

with c1[b1 /b0
2. This value corresponds to the stationa

point ~the maximum! of the NLO prediction forFp
fact.

On the other hand, for the BLM scale one obtains

mBLM
2 5aBLM~Q2!Q2, ~5.9a!

where
aBLM~Q2!5expF2
5

3
2

31~43/6!a2
D,NLO~Q2!1~136/15!a4

D,NLO~Q2!

11a2
D,NLO~Q2!1a4

D,NLO~Q2!
G . ~5.9b!
the

e

The values of the scalesmPMS, mFAC, andmBLM for the
asymptotic, the CZ, and the BMS DAs, defined in~3.10!, are
listed in Table II. One notices that the BLM scale is rath
low for all considered DAs. This makes its applicability
experimentally accessibleQ2 values rather questionable. Bu
r

it is possible to improve this scale-setting procedure in
following way.

First of all, let us rewrite the BLM prescription in th
more suggestive form
H Fp~Q2;mR
2 !,F p

(1,b)~Q2;mR
2 !5

1

4
F p

LO~Q2!lnF mR
2

mBLM
2 ~Q2!

G J
⇒

BLM

$Fp„Q
2;mBLM

2 ~Q2!…,F p
(1,b)

„Q2;mBLM
2 ~Q2!…50%. ~5.10!
e
nta-

t
in

e

ier-
It becomes evident that when the BLM scale yieldsas values
close to unity, perturbation theory breaks down. To avoid t
happening, one can, of course, introduce ad hoc a cutof
as , operative, say, above 0.5–0.6, or one can ‘‘freeze’’as at
low Q2 scales to some finite value by introducing an effe
tive gluon mass@45,63#.6 Still another possibility is to use
the analytic coupling@56#, as done in Refs.@28,29# ~see next
section!.

In order to protect the BLM scale from intruding into th
forbidden nonperturbative soft region, where perturbat
theory becomes invalid, one can make use of a minim
scale,mmin , based on the grounds of QCD factorization the
rems and the OPE, as applied for instance in Refs.@104–
107# and also in Ref.@32#:

6Restricting the value ofas does not necessarily limit the quar
and gluon virtualities in the Feynman diagrams to values for wh
perturbation theory applies.
s
or

-

n
m
-

mmin
2 >m0

2 . ~5.11!

Herem0
2 stands for a typical nonperturbative~hadronic! scale

in the range 0.4–1.5 GeV2 and corresponds roughly to th
inverse distance at which the parton and hadron represe
tions have to match each other. Note that the smallermmin

2 is
chosen, the deeper the end-point regionx→1 can be ex-
plored for smaller values ofQ2. It is intuitively clear that the
typical parton virtuality in the~hard! Feynman diagrams—le
us call itmq

2—should not become less than its counterpart
the pion bound state:mp

2 . Because the latter is linked to th
scalem0

2 , the scalemmin
2 should be limited from below by

this scale. Consequently, we assume that the following h
archy of scales—partonic~i.e., perturbative! and hadronic
~i.e., nonperturbative!—holds:

lq
2,m0

2<mq
2<mR scheme

2 . ~5.12!
h
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Then, ifmBLM
2 ,m0

2 , one obtains instead of Eq.~5.10!, the IR
protected version~termed in our analysisBLM prescription!

$Fp@Q2,mBLM
2 ~Q2!#,F p

(1,b)@Q2,mBLM
2 ~Q2!#50%

⇒
BLMH Fp~Q2;mmin

2 !,F p
(1,b)~Q2;mmin

2 !5
1

4
F p

LO~Q2!ln

S mmin
2

mBLM
2 ~Q2!

D J . ~5.13!

This modification of the BLM scale setting enables us
treat the problem of theNf dependence of theb function in
the termF p

(1,b)(Q2;mR
2) without any further assumptions o

modifications. Because of the fact that the scalemR
2 is now

bounded from below by~5.11!, one is not faced with ambi
guities related to the variation of the number of active flav
Nf due to heavy-quark thresholds in theb0 coefficient enter-
ing F p

(1,b)(Q2;mR
2). According to this, we setNf53 for mR

2

5mmin
2 , whereas formR

25mBLM
2 .mmin

2 there is no ambiguity
by virtue of F p

(1,b)(Q2;mBLM
2 )50. Therefore, the bona fid

BLM scale setting reads

mBLM5max$mBLM ,mmin%, ~5.14!

wheremmin will be specified later on in connection with th
soft part of the form factor.

B. aV scheme

The self-consistency of perturbation theory implies th
the difference in the calculation to ordern of the same physi-
cal quantity in two different schemes must be of ordern
11. This means that relations among different physical
servables must be independent of the renormalization s
and scheme conventions to any fixed order of perturba
theory. In Ref.@108# it was argued that by applying the BLM
scale-fixing procedure to perturbative predictions of two o
servables in, for example, theMS scheme, and then algebr
ically eliminatingaMS, one can link to each other any pe
turbatively calculable observables without scale and sch
ambiguity. Within this approach, the choice of the BL
scale ensures that the resulting ‘‘commensurate scale
tion’’ is independent of the choice of the intermediate ren
malization scheme employed. On these grounds, Brod
et al. @45# have analyzed several exclusive hadronic am
tudes in theaV scheme, in which the effective couplin
aV(m2) is defined by utilizing the heavy-quark potenti
V(m2). TheaV scheme is a ‘‘natural,’’ physically motivate
scheme, which by definition, automatically incorpora
vacuum polarization effects due to the fermion-antiferm
pairs into the coupling. ThemV

2 scale which then appears i
the argument of theaV coupling reflects the mean virtualit
of the exchanged gluons. Furthermore, sinceaV is an effec-
tive running coupling defined by virtue of a physical qua
tity, it must be finite at low momenta, and, therefore, a
appropriate parametrization of the low-energy region sho
in principle, be included.
03301
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e
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d,

The scale-fixed relation between the couplingsaMS and
aV is given by@45#

as~mBLM
2 !5aV~mV

2 !F11
aV~mV

2 !

4p

8CA

3
1•••G , ~5.15a!

where

mV
25e5/3mBLM

2 . ~5.15b!

The scalesmV associated with selected pion DAs are i
cluded in Table II.

Taking into account Eqs.~5.15!, the NLO prediction for
the pion form factor, given by Eqs.~4.1!–~4.8!, gets modified
as follows:

as~mR
2 !→aV~mV

2 !,

F p
D,NLO~Q2!→F p

D,NLO~Q2!5F p
(1,FG)~Q2!12F p

LO~Q2!.
~5.16!

We are not going to present predictions in this scheme us
the standard QCD coupling, as this would require the int
duction of exogenous parameters, like an effective glu
mass, that cannot be fixed within the same approach but h
to be taken from elsewhere. For such an application, we r
the interested reader to the analysis of Ref.@45#. The con-
nection of Ref.@45# to the analytic approach, which we wi
use below, was discussed in detail in Ref.@29#. Predictions
for the pion form factor within theaV scheme will be pre-
sented below in the context of analytic perturbation theo

VI. STRONG RUNNING COUPLING
AND NON-POWER-SERIES EXPANSIONS

A. One-loop case

In the one-loop approximation we have a rather sim
renormalization-group~RG! equation for the running cou
pling constant:

das~m2!

d ln m2
5b~m2!, ~6.1!

b1-loop~m2!52b0S as
2~m2!

4p D , ~6.2!

with b0 given in Appendix A. The solution of this equatio
has the form

as
(1)~Q2!5

4p

b0ln~Q2/L2!
, ~6.3!

whereL[LQCD is the QCD scale parameter. A well-know
problem here is the appearance of an IR pole atQ25L2,
which spoils the analyticity of the QCD running coupling.

In a series of papers@2,56,109,110# Shirkov and So-
lovtsov introduced an analytic running coupling that avo
by construction the Landau singularity, thus generalizing e
lier attempts by Radyushkin@111# and Krasnikov and Pivo-
4-13
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TABLE III. Parameters entering Eq.~6.22! for different values of the QCD scale parameterLQCD
Nf53 .

Parameters LQCD
Nf53

5350 MeV LQCD
Nf53

5400 MeV LQCD
Nf53

5450 MeV

c21
fit 21.012 21.015 21.091

L21 57 MeV 67 MeV 69 MeV
ln(L21

2 /1 GeV2) 25.738 25.412 25.349
ta

t

si

ion

ha
n

e

c
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do

dler

d.

.
-

be
varov @112#. To this end, they used the spectral represen
tion for the QCD running couplingās(Q

2) ~the bar overas
means that the analyticity property is valid! and expressed i
in the form

ās~Q2!5
1

pE0

`

ds
r~s!

s1Q22 i e
~6.4!

without subtractions due to the fact that the spectral den
r(s) decreases as 1/ln2s for large s. The corresponding
one-loop spectral density reads

r (1)~s!5S 4p

b0
D p

ln2~s/L2!1p2
~6.5!

and provides the one-loop singularity-free coupling funct

ās
(1)~Q2/L2!5

4p

b0
F 1

ln~Q2/L2!
1

L2

L22Q2G . ~6.6!

The first term on the RHS expresses the standard UV be
ior of the invariant coupling, while the second one compe
sates the ghost pole atQ25L2 and has a nonperturbativ
origin, being suppressed atQ2→`.

Let us now consider powers of the analytic coupling fun
tion. By performing an analytic continuation of thekth
power of the function~6.3! in the complexQ2-plane, one
determines the corresponding spectral functionsrk

(1)(s), (k
51,2, . . . ):

rk
(1)~s!5S 4p

b0
D k

ImS 1

ln~2s/L2!
D k

, ~6.7!

which in turn determines the analytic imageA k
(1)(Q2) of

@as
(1)(Q2)#k, i.e.,

A k
(1)~Q2!5

1

pE0

`

ds
rk

(1)~s!

s1Q22 i e
. ~6.8!

For k51,2, . . . , wehave

Ak11
(1) ~Q2!52S 4p

kb0
D ]A k

(1)~Q2!

] ln Q2
,

A 1
(1)~Q2![ās

(1)~Q2/L2!, ~6.9!

which for k51 reduces to
03301
-

ty

v-
-

-

A 2
(1)~Q2!5S 4p

b0
D 2F 1

ln2~Q2/L2!
1

Q2L2

~L22Q2!2G . ~6.10!

Notice at this point some key properties of these function
~a! eachA k

(1)(Q2) with k>2 tends to zero forQ2→0;
~b! each A k

(1)(Q2) has exactly k21 zeros for Q2

P@0,̀ );
~c! whenQ2→`, eachA k

(1)(Q2)uQ2→`;1/lnk@Q2# tends
to 0.

These properties are universal in the sense that they
not depend on the loop order. The functionsAk(Q

2) are used
in the so-called analytic perturbation theory@2,3,6,56–58#,
where standard perturbative series, for example, for the A
function

DPT~Q2!5Nc(
f

ef
2H 11

as~Q2!

p
1d1Fas~Q2!

p G2

1•••J
~6.11!

is recast into a non-power-series expansion to obtain

DAPT~Q2!5Nc(
f

ef
2F11

A1~Q2!

p
1d1

A2~Q2!

p2
1 . . . G .

~6.12!

The one-loop expressions forA1 andA2 are given in~6.9!
and ~6.10!, respectively.

B. Two-loop case

In the two-loop case the situation is more complicate
The correspondingb function reads

b2-loop~a!5
2b0a2

4p S 11
b1a

b04p D ~6.13!

with the first two beta coefficients given in Appendix A
Integrating the RG equation~6.1!, we obtain the transcen
dental equation

LQ5
4p

a~LQ!b0
2c1lnS c11

4p

a~LQ!b0
D , c15

b1

b0
2

,

LQ[ ln~Q2/L2!. ~6.14!

As has been shown in Ref.@95#, the two-loop running cou-
pling in QCD, being the solution of this equation, can
written via the LambertW21 function
4-14
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as
(2)~Q2!52

4p

b0c1
F11W21S 2

1

c1e S L2

Q2D 1/c1D G21

.

~6.15!

For some more explanations we refer the interested read
Ref. @39#, Appendix C, Eqs.~C15! and~C20! in conjunction
with Fig. 5. By performing the analytic continuation of fun
tion ~6.15! in the complexQ2 plane, the spectral function
r (2)(s) can be determined@113#:

r (2)~s!5
4p

b0c1
ImS 2

1

11W1@z~s!# D , ~6.16!

where

z~s!5
1

c1e
exp@2s/c11 i ~1/c121!p#. ~6.17!

Then, the analytic couplingās
(2)(Q2) in the two-loop ap-

proximation becomes

ās
(2)~Q2!5

1

pE0

`

ds
r (2)~s!

s1Q22 i e
. ~6.18!

However, this expression is too complex to be treated
actly. For that reason, Shirkov and Solovtsov suggeste
Ref. @2# to use instead the approximate expression

ās
(2,approx)~Q2!5

4p

b0
ās@,~LQ ,c1!#, ~6.19!

ās~, ![
1

,
1

1

12exp~, !
, ,~LQ ,c![LQ1c lnALQ

2 14p2,

~6.20!

with the sameLQ as in ~6.14!. This expression reproduce
both the UV two-loop asymptotic behavior as well as t
value at the infrared fixed pointQ250 rather well. More
specifically, above aboutQ2>1 GeV2, it resembles the ex
act result with an accuracy in the range of 99% and can
used for all higherQ2 values. Note in this context that th
one-loop expressionās

(1)(Q2), Eq. ~6.3!, can be represente
by

ās
(1)~Q2!5

4p

b0
ās~LQ!. ~6.21!

The only feature not yet taken into account in the abo
approximation is the matching at the quark-flavor thresho
M451.3 GeV, M554.3 GeV, and M65170 GeV ~with
M15M25M350). However, taking into account thi
matching, the approximate formula~6.19! starts to become
inaccurate. As a result of the interpolation procedure,
obtain then in this~so-called ‘‘global’’ fit in the Shirkov-
03301
to

x-
in

e

e
s:

e

Solovtsov terminology @4#—abbreviated by the self
explaining label ‘‘fit’’! case another approximation:7

ās
(2,fit)~Q2!5

4p

b0~Nf53!
āsF ,S ln

Q2

L21
2

,c21
fit D G , ~6.22!

with the parametersc21
fit andL21 listed in Table III. The qual-

ity of this approximation ensures a deviation less than 1%
the wholeQ2 interval and is illustrated in Fig. 7.

To fix the parameterLQCD
Nf53 , we use@86#

ās
(2)~mZ

2!50.120, ~6.23!

which gives us

LQCD
Nf53

5400 MeV. ~6.24!

Let us now focus our attention to powers of the analy
coupling function. By performing the analytic continuatio
of thekth power of function~6.15! in the complexQ2 plane,
one determines the corresponding spectral functionsrk

(2)(s),
k51,2, . . . :

rk
(2)~ t !5S 4p

b0c1
D k

ImS 2
1

11W1@z~ t !# D
k

, ~6.25!

which in turn provide the analytic imagesA k
(2)(Q2) of

@as
(2)(Q2)#k; viz.,

A k
(2)~Q2!5

1

pE0

`

ds
rk

(2)~s!

s1Q22 i e
. ~6.26!

7This interpolation is based upon data contained in Re
@113,114# and also on unpublished data provided to us by B.
Magradze.

FIG. 7. The solid line shows the approximate expression, gi

by ās
(2,fit)(Q2), Eq. ~6.22!, whereas the bullets represent the exa

values of ās
(2)(Q2) taking into account heavy-quark thresho

matching.
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TABLE IV. Parameters entering Eq.~6.28! for different values of the QCD scale parameterLQCD
Nf53 .

Parameters LQCD
Nf53

5350 MeV LQCD
Nf53

5400 MeV LQCD
Nf53

5450 MeV

c22
fit 21.549 21.544 21.534

L22 29 MeV 34.5 MeV 41 MeV
ln(L22

2 /1 GeV2) 27.088 26.734 26.399
ti

th

e-

is
-

ith

at
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ers
the

f

n

These functions obey a more complicated recurrence rela
(k51,2, . . . ):

]A k
(2)~Q2!

] ln Q2
52k

b0

4p FAk11
(2) ~Q2!1

b1

4pb0
Ak12

(2) ~Q2!G ,

A 1
(2)~Q2![ās

(2)~Q2/L2!. ~6.27!

As a result of the interpolation procedure, we obtain in
‘‘global’’ case the following approximation fork52,

A 2
(2,fit)~Q2!5F 4p

b0~Nf53!G
2H 1

L2

2
exp~L !

@12exp~L !#2J
L5,[ ln(Q2/L

22
2 ),c

22
fit ]

,

~6.28!

with the parametersc22
fit andL22 being listed in Table IV. The

quality of the approximation is high with the deviation r
stricted to about 1% ~10%! for Q2>1 GeV2 (Q2

<0.1 GeV2), as illustrated in Fig. 8. One sees from th
figure that forQ2>10 GeV2 the difference between the ex
03301
on

e

act and approximate expression starts to be negligible w
the sizable deviation being confined in the regionQ2

<1 GeV2.

C. Factorization of the pion form factor
at NLO under analytization

The analytization procedure of the pion form factor
NLO leads to ambiguities, first discussed in Ref.@29#. The
key question is: according to what analytization prescript
are we replacing the running strong coupling and its pow
by their analytic images? In fact, it is possible to impose
analytization of the NLO term ofFp

fact following two differ-
ent main options:

~1! In keeping with our philosophy of the analytization o
observables as a whole@60,61#, we may adopt amaximally
analytic prescription and use in the NLO term of the pio
form factor also the analytic image ofas

2 . This amounts to

@Fp
fact~Q2;mR

2 !#MaxAn5ās
(2)~mR

2 !F p
LO~Q2!

1
1

p
A 2

(2)~mR
2 !F p

NLO~Q2;mR
2 !,

~6.29a!

which will be evaluated with the aid of Eq.~6.28!.
ct
FIG. 8. ~Left! The solid line represents the approximate expressionA 2
(2,fit)(Q2) given by Eq.~6.28!, whereas the bullets denote the exa

values ofA 2
(2)(Q2) taking into account the heavy-quark threshold matching.~Right! Comparison ofA 2

(2,fit)(Q2) ~dashed curve! with

@ās
(2,fit)(Q2)#2 ~solid curve!. Note the modified scale of the abscissa.
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FIG. 9. The ratioRNLO(Q2), ~a!, and the NLO results forQ2Fp
fact , ~b!, in theMS scheme with various renormalization scale settings. T

dashed line corresponds tomR
25Q2, the solid line to theBLM scale setting withmmin

2 5m0
251 GeV2, while the dash-dotted one denotes t

result obtained with the BLM~a! and FAC~b! scale settings. The analogous result for the PMS scale setting is shown as a dotted lin
that in both panels the BMS DA has been employed and that for the FAC and PMS scale settingsNf has been fixed to 3.
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~2! Another procedure, we callnaive analytic, replaces
the strong coupling and its powers by the analytic coupl
ās and its powersās

2 everywhere in the NLO term ofFp
fact.

This is actually the analytization procedure proposed in R
@29# and amounts to the following requirement:

@Fp
fact~Q2;mR

2 !#NaivAn5ās
(2)~mR

2 !F p
LO~Q2!

1
1

p
@ās

(2)~mR
2 !#2F p

NLO~Q2;mR
2 !.

~6.29b!

Note that the naive analytization does not respect nonlin
relations of the coupling owing to different dispersive im
ages.

Anticipating our detailed numerical analysis of the pi
form factor using APT, we define

DFp
an~Q2![@Fp

fact~Q2!#MaxAn2@Fp
fact~Q2!#NaivAn ,

~6.30!

which provides a quantitative measure for the analytizat
ambiguity.

VII. PION FORM FACTOR AT NLO:
NUMERICAL ANALYSIS AND COMPARISON

WITH EXPERIMENTAL DATA

In this section we would like to present our predictions
the pion form factor utilizing the BMS pion DA and PQC
at the level of NLO accuracy. First, we consider the stand
perturbative approach with different scale settings within
MS scheme and continue then with a detailed discussio
the pion form factor as a non-power-series expansion of
QCD analytic coupling. To this end, we employ the analy
zation procedures discussed before to obtainQ2Fp

fact in the
MS scheme, with different scale settings, and also in theaV
scheme. To confront our theoretical predictions with the
perimental data in the last subsection, we will include
03301
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soft nonfactorizable contribution, modeled on the basis
local duality. To join properly the hard and soft contribution
local duality, and the Ward identity atQ250 will be em-
ployed in order to ensure that each of these contribution
evaluated in its own region of validity, according to the fa
torization of the parton and hadron representations. A co
parison of these predictions with the corresponding ones
tained with the asymptotic pion DA will be included.

A. Standard perturbative approach

As outlined in Sec. V, the NLO prediction for the pio
form factor, as any other finite-order prediction, contains
theoretical uncertainty stemming from its dependence on
renormalization scalemR and the scheme used. This depe
dence is, however, reduced in comparison with the LO p
diction due to the inclusion of the NLO correction. To qua
tify these statements, we plot in Fig. 9~a! the ratio
RNLO(Q2)5Fp

NLO(Q2)/Fp
LO(Q2) and in Fig. 9~b! the result

for the factorized form factor at NLO, using the BMS DA i
the MS scheme with different scale settings. The main o
servation from these figures is the strong sensitivity
RNLO(Q2) and the moderate dependence ofFp

fact(Q2) on the
scale-setting procedure adopted—especially atQ2 values ac-
cessible to present experiments.

Let us discuss these figures in a systematic way.
~a! For mR

25Q2, the ratioRNLO(Q2) is positive, large~on
the order of about 50%! and decreases very slowly, whileas
is small (;0.3). As a result, the LO contribution is abou
twice as the NLO one and the form factor is small.

~b! Using the FAC scale setting, the whole NLO cont
bution vanishes, so that also the ratio is zero. In this case
form factor is rather moderate down to momenta of the or
of 10 GeV2, where the QCD effective coupling becomes
order unity.

~c! Applying the PMS scale setting, the NLO contribu
tion is negative withRNLO(Q2) being small and also nega
tive down to a critical value ofQ2.6 GeV2 ~see Table II!,
where the absolute value of the NLO contribution becom
4-17
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FIG. 10. The NLO analytization ambiguityQ2DFp
an(Q2) ~left! and the ratioDFp

an/@Fp
fact#MaxAn of the NLO analytization ambiguity

relative to the factorized pion form factor, computed with the ‘‘maximally analytic’’ procedure,~right! within the MS scheme with various
scale settings:mR

25Q2 ~dashed line!, BLM ~dotted line!, BLM ~solid line!, and theaV scheme~dash-dotted line!. The curves shown
correspond to the BMS DA.
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equal to the LO one and the form factor becomes zero.
this scale setting, already atQ2.6 GeV2, the QCD effective
coupling starts ‘‘feeling’’ the Landau singularity and b
comes excessively large, while above 10 GeV2 the form fac-
tor is rather moderate.

~d! Adopting the BLM procedure, the results are qu
similar to those obtained with the PMS scale setting w
respect to the ratioRNLO(Q2), whereas the form factor now
is negative and very large below 50 GeV2 @lying outside the
range of Fig. 9~b!# because the corresponding NLO corre
tion is again negative and even larger. The reason for
behavior is that in this scheme the typical parton virtualit
in the Feynman diagrams are much lower than the exte
scaleQ2 ~see Table II! giving rise to a large value of the
QCD effective coupling.

~e! TheBLM scale setting has two distinct regimes, cha
acterized by the fact that the ratioRNLO(Q2) changes its sign
around 20 GeV2: in the regime below this momentum valu
the result for the form factor resembles that found with
mR

25Q2 scale setting, though its fall-off withQ2 is not that
steep. On the other hand, above 20 GeV2, the form factor
almost coincides with the one calculated with the PMS sc
setting.

A further complication: it is not clear how to implemen
quark-mass thresholds when using the FAC and PMS s
settings. Therefore, the predictions shown have been
tained by fixingNf53. This is because both scales depe
on b0 and this induces discontinuities in the form factor
the quark-mass thresholds. For that reason, we refrain f
using the FAC and PMS schemes in our further consid
ations. To summarize, all scale settings can be safely u
above about 20 GeV2, while at smallerQ2 values, the PMS
and FAC settings become unphysical, whereas theBLM and
mR

25Q2 scale-setting procedures can further be used at
ues ofQ2 exhausting the validity domain of PQCD. On th
other hand, the BLM scale setting remains inapplicable up
scales of the order of 50 GeV2 @see Fig. 9~a!#. As already
explained before, no predictions in theaV scheme have bee
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shown because this would require the introduction of ex
enous IR regulators.

B. Use of non-power-series expansions

We turn now to the results obtained in APT. To exploit t
effect of the analytization ambiguity on the factorized pi
form factor, according to~6.30!, we plot in Fig. 10 ~left
panel!

DFp
an~Q2!5

A 2
(2)~mR

2 !2@ās
(2)~mR

2 !#2

p
F p

NLO~Q2;mR
2 !

~7.1!

and the ratioDFp
an/@Fp

fact#MaxAn ~right panel!, employing the
BMS DA and theMS scheme with different scale setting
Analogous results for theaV scheme are also included; usin
APT there is no need to introduce external IR regulators

Summarizing the results in Fig. 10, the main observatio
are as follows:

~i! The NLO analytization ambiguity,DFp
an(Q2), ~left

panel! and the ratio,DFp
an/Fp

fact, ~right panel!, the latter be-
ing computed with the ‘‘maximally analytic’’ procedur
within the MS scheme with themR

25Q2 ~dashed line! and
BLM ~solid line! scale settings, is small and almost scali
with Q2 above about 10 GeV2, albeit in the second cas
there is a sign change around 18 GeV2. This is because be
low this momentum, the termFp

(1,FG), which is negative,
prevails, while above that scale the termFp

(1,b) becomes
dominant due to2 ln(Q2/mR

2)—in contrast to the former cas
in which the interplay between these two terms is fixed o
ing to the absence of the log term. For that reason,
‘‘maximally analytic’’ procedure with theBLM scale setting
enhances the form factor at higherQ2 relative to the ‘‘naive’’
one.

~ii ! The results with the BLM scale setting~dotted line!
resemble those computed with theaV scheme~dash-dotted
line!. In both cases,A 2

(2)(mR
2)2@ās

(2)(mR
2)#2 is large and
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FIG. 11. ~Color online! NLO predictions forQ2Fp
fact vs Q2, using the ‘‘naive analytic’’~a! and ‘‘maximally analytic’’~b! procedures and

employing the BMS DA. The dashed line corresponds tomR
25Q2, the dotted one denotes the result obtained with the standard BLM s

setting, whereas the solid line shows the result calculated with the modifiedBLM scale setting and the cutoff scalem0
251 GeV2. The results

obtained with theaV scheme are displayed as a dash-dotted line in both panels.
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negative~cf. Fig. 8—right panel!, while F p
(1,FG) is also nega-

tive. Hence, the overall sign ofDFp
an(Q2) is plus because the

Fp
(1,b) is absent. However, in theaV scheme the shift toward

smaller values of theas argument is much less pronounce
and consequently the enhancement provided by the us
A 2

(2)(mR
2) instead of@ās

(2)(mR
2)#2 is rather weak@see also Eq.

~5.16!#.
Next, we present the results for the factorized pion fo

factor derived with APT at the NLO level and adopting eith
the ‘‘naive analytic’’ or the ‘‘maximally analytic’’ procedure
From Fig. 11, we see that for both analytization procedu
the results for themR

25Q2 ~dashed line! and BLM ~solid
line! scale settings are very close to each other. Note tha
aV scheme yields a similar result~dash-dotted line!, but with
a much smaller steepness of the curve at lowQ2. On the
other hand, the standard BLM scale setting~dotted line! pro-
duces even an exact cancellation of the NLO and LO te
at the momentum valueQ2'2 GeV2 @so too behaves the
ratio RNLO(Q2)5Fp

NLO(Q2)/Fp
LO(Q2)—see Fig. 12~a!#. The

origin of this cancellation is, however, purely accidental a
unphysical: the BLM scale at this point ismBLM

2
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'0.02 GeV2 with as'0.75, rendering the PQCD expansio
unreliable. This deficiency is lifted when applying th
‘‘maximally analytic’’ procedure—see Fig. 11~b!. Indeed,
such is the impact of the ‘‘maximally analytic’’ condition tha
all renormalization-scheme and scale-setting ambiguities
diminished, with all results for the form factor almost coi
ciding, as it is obvious from Fig. 11~b!. Moreover, from Fig.
11~b!, we can estimate the effect of varyingmmin

2 5m0
2 in the

BLM scale-setting procedure by comparing theBLM ~black
solid! and the BLM ~red dotted! curves. Indeed,mBLM

2 just
varies from 0.5 GeV2 ~at Q2550 GeV2) to 0.02 GeV2 ~at
Q252 GeV2), while the difference between these tw
curves is no more than 10%~using the ‘‘maximally analytic’’
condition!. Actually, for mmin

2 varying in the range
@1,0.5# GeV2, this difference does not even exceed the le
of 5%.

Let us close this discussion with some brief comments
the behavior of the ratioRNLO(Q2). The message from Fig
12 is that, except for the BLM scale setting~already dis-
cussed!, all other scale settings are not sensitive to the a
lytization procedure adopted. The induced differences are
FIG. 12. Results obtained for the ratioRNLO(Q2) using the ‘‘naive analytic’’~a! and ‘‘maximally analytic’’~b! procedures and employing
the BMS DA. Notations are the same as in Fig. 11.
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BAKULEV, PASSEK-KUMERIČKI, SCHROERS, AND STEFANIS PHYSICAL REVIEW D70, 033014 ~2004!
deed marginal, withRNLO(Q2) being positive, large, and
practically scaling withQ2 for the mR

25Q2 scale setting
~dashed line!, while this quantity in theaV scheme~dash-
dotted line! exhibits the same behavior but with the rever
sign and having approximately half of its magnitude. T
situation for theBLM scale setting is somewhat transie
between these two options, providing with both analytizat
procedures enhancement at the low end ofQ2 and reducing
the form factor atQ2 values higher thanQ2.20 GeV2. This
effect is due to the~negative! term Fp

(1,FG) gaining ground
againstFp

(1,b) that becomes smaller because ln(Q2/mR
2) is

growing.

C. Nonfactorizable contribution to the pion form factor

So far we have discussed only the factorizable part of
pion form factor@cf. ~2.2!#. But as argued originally in Refs
@18,23,115,116#, and confirmed later on in several works, f
instance, in Refs.@21,25,28,29,79#, the dominant contribu-
tion at low to moderate values of the momentum trans
Q2<10 GeV2 originates mainly from the soft contributio
that involves no hard-gluon exchanges and is attributed
the Feynman mechanism. At present there is no unique
to calculate this contribution from first principles at the pa
tonic level. One has to resort to theoretical models, base
assumptions that attempt to capture the characteristic
tures of nonperturbative QCD. In the present investigat
we use the LD approach to calculate the soft contribution
which it is assumed that the pion form factor is dual to t
free quark spectral density@23,24#, i.e.,

Fp
LD~Q2!5

1

p2f p
2 E0

s0E
0

s0
r3~s,s8,Q2!dsds8

512
116s0 /Q2

~114s0 /Q2!3/2
, ~7.2!

with the 3-point spectral densityr3(s,s8,t5Q2) given by

r3~s,s8,t !5F t2
d2

dt2
1

t3

3

d3

dt3
G 1

l~s,s8,t !
~7.3!

where

l~s,s8,t ![A~s1s81t !224ss8. ~7.4!

Here the duality intervals0 corresponds to the effectiv
threshold for the higher excited states and the ‘‘continuu
in the channels with the axial-current quantum numbers.
LD prescription for the corresponding correlator@22# implies
the relation

s054p2f p
2 . ~7.5!

A key issue of the soft contribution is the inclusion
Sudakov-type radiative corrections. In Ref.@25# only the
Sudakov corrections to the quark-photon vertex were ta
into account on the basis of Ref.@117# leading to a reduction
of the soft contribution by approximately 6% at lowQ2
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.2 GeV2 and up to 20% at higherQ2 values. Just recently
however, it was shown in Ref.@118# that taking into account
all radiative corrections to the correlator, the Sudakov lo
rithms cancel out. On the face of this finding, we use in t
work Eqs.~7.2!–~7.3!.

The soft contribution calculated here~see Fig. 13! is con-
sistent with the result obtained in Ref.@29# for the
asymptotic pion DA on the basis of the soft overlap of t
pion wave functions, modeling theirk' dependence in term
of the Brodsky-Huang-Lepage Gaussian ansatz@119# and us-
ing a constituent-like quark mass ofmq5330 MeV. Though
the crossover from the soft to the hard regime and
asymptotic behavior are strongly model dependent, with
mass factor exp(2bG

2mq
2/xx̄) ~wherebG is the width of the

Gaussian distribution, specific for each particular pion D!
playing an important role in tuning this behavior—see R
@21# for a detailed analysis—the trend at lower values ofQ2

up to about 4 GeV2 is approximately the same. Similar re
sults were also obtained in Ref.@120# using a Bethe-Salpete
equation and a constituent-type quark mass ofmq
5330 MeV. In both approaches mentioned@29,120# the
quark mass in the hard part was set equal to zero and
effective QCD coupling was assumed to saturate at lowQ2

with a transition scale from soft to hard in the rangeQ2

.12–18 GeV2.

D. Comparison with experimental data

It is time to step up one level higher and consider the to
form factor in order to compare our theoretical predictio
with the experimental data. So far we have considered
factorized hard contribution to the pion form factor only
higher values ofQ2, where PQCD is safe. However, attemp
ing to compute the total pion form factor in the fullQ2

range, according to Eq.~2.2!, we have to combine this con
tribution with the soft part. Recall that we have neglected
the hard-scattering amplitude@i.e., in the parton
propagators—cf. Eqs.~A1!, ~A6a!, and ~A7!# all parton
transverse momenta against the large scaleQ2 and integrated
out in the pion wave functions all transverse momenta up
the scalem0

2. But below some momentum scale of this ord

FIG. 13. Calculation of the soft part of the pion form factor
the local duality approach.
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PION FORM FACTOR IN QCD: FROM NONLOCAL . . . PHYSICAL REVIEW D 70, 033014 ~2004!
these contributions inTH start to be comparable~especially
in the endpoint region wherex→1) and,a fortiori, the col-
linear factorization becomes increasingly unreliable.
avoid this happening, we have to restrict the evaluation
the hard form-factor contribution to thatQ2 domain compat-
ible with the collinear approximation. In technical terms th
means that below the scales0 ~the duality threshold! we have
to switch from the parton representation to the hadron re
sentation according to local duality.8

As we have seen in Sec. V, fixing the renormalizati
scalemR

2 in all considered schemes entails problems rela
to the smallQ2 behavior of the factorizable term of the pio
form factor: the NLO term can reach the level of 50% of t
LO part, casting doubts on the validity of the perturbati
expansion per se. In addition, both terms~LO and NLO!
generate a fast growth of the form factor at smallQ2, artifi-
cially induced by large values of the strong coupling and
a 1/Q2 factor. The origin of this failure, as stated above, c
be traced to the violation of the collinear factorization a
proximation, i.e., the resurrection of small momenta inTH
that have initially been neglected and absorbed into the p
DA.9

Hence, it becomes clear that we must correct the fac
ization results in the low-Q2 region in order to ensure tha
each contribution lies in the corresponding domain of va
ity. To achieve this goal, we need a conceptual framewo

This is provided by gauge invariance that protects
value of Fp(0) by means of the Ward identity relating
three-point Feynman diagram at zero-momentum transfe
a 2-point diagram. Consider theL-loop approximation in the
LD approach. Then, using the replacementss0→s0

L loop and
r3(s,s8,Q2;mR

2)→r3
L loop(s,s8,Q2;mR

2), Eq. ~7.2! relates
Fp

LD(Q2) to the integrated 3-point spectral dens
r3

L loop(s,s8,Q2;mR
2), which is now dependent onmR

2 . Recall
that the Ward identity links the 2-point~i.e., axial-axial cur-
rent! spectral densityr2

L loop(s;mR
2) to the 3-point~vector-

axial-axial current! spectral densityr3
L loop(s,s8,0;mR

2) in the
following way:

r3
L loop~s,s8,0;mR

2 !5pd~s2s8!r2
L loop~s;mR

2 !. ~7.6!

Taking into account the LD expression for the pion dec
constant,

f p
2 5

1

pE0

s0
L loop

r2
L loop~s;mR

2 !ds, ~7.7!

one finds

8A smooth transition from the partonic to the hadronic regim
may go via an intermediate constituent-quark formation due
QCD dressing. Because there is no unambiguous way to do this
prefer to ignore this regime here~and refer for a discussion of suc
dressed quarks to Ref.@29#!.

9Their explicit inclusion would give logarithmic and powe
behaved corrections amounting to Sudakov-type exponentials
taining perturbative@88# and nonperturbative corrections@60#.
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Fp
LD~0;mR

2 !51. ~7.8!

The 2-loop approximation for the spectral densi
r2

2-loop(s;mR
2), can be obtained from thee1e2 cross section

R(s) @121#, because these quantities in massless QCD
proportional to each other, so that

r2
2-loop~s;mR

2 !5
1

4p F11
as~mR

2 !

p
1S as~mR

2 !

p D 2

3S r 22
b0

4
ln

s

mR
2 D G , ~7.9!

r 25
3

4
CFF 1

12
CA2

1

8
CF1b0S 11

8
2z~3! D G ,

~7.10!

where z(3) is the Riemann zeta function. Then, Eq.~7.7!
yields the following nonlinear relation for the 2-loop effe
tive thresholds0

2-loop:

s0
2-loopH 11

as~mR
2 !

p
1S as~mR

2 !

p D 2F r 22
b0

4 S ln
s0

2-loop

mR
2

21D G J
54p2f p

2 , ~7.11!

which replaces the standard LD relation, notably, Eq.~7.5!.
Note in this context that the effective 2-loop thresholds0

2-loop

should be used only in formulas containing the 2-loop sp
tral densityr3

2-loop(s,s8,Q2). Were we in the position to write
down the 2-loop spectral densityr3

2-loop(s,s8,Q2) for all Q2

values, then we would have obtained via Eqs.~7.2!–~7.7! an
expression for the pion form factor valid atO(as

2). Instead,
we use the leading-order LD expression,Fp

LD(Q2;mR
2), and

add perturbativeO(as) andO(as
2) corrections explicitly in

terms ofFp
fact(Q2;mR

2). Recalling Eq.~7.8!, we then have

Fp
fact~Q250;mR

2 !50. ~7.12!

The next task is to match this low-Q2 value with the large-
Q2 result of PQCD,Fp

fact(Q2;mR
2). The most straightforward

way is to adoptFp
fact(Q2;mR

2) at large Q2 and correct its
singular (;1/Q2) behavior at smallQ2 by introducing some
reasonable mass scaleM0

21 via the replacement10

Fp
fact~Q2;mR

2 ![F̃p~Q2;mR
2 !

M0
2

Q2
→F̃p~Q2;mR

2 !
M0

2

M0
21Q2

.

~7.13!o
we

n-

10One may think of this scale as corresponding to the maxim
transverse quark-antiquark separationb0;M0 still accessible to the
hard form factor via hard-gluon exchange just before the crosso
to the nonperturbative dynamics.
4-21



ar

-

on
to

th

o

-
e

e-
ee
,

n-

th
tiv
’s

re-

ches
he

lcu-
de
the

ng
lying

by
w
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However, this expression has the wrong limit atQ250, so
that one needs to correct it in order to maintain the W
identity ~WI!:

Fp
fact-WI~Q2;mR

2 !52F̃p~Q2;mR
2 !F~Q2/M0

2!

1F̃p~Q2;mR
2 !

M0
2

M0
21Q2

. ~7.14!

Here the functionF(z) is some smooth function with
F(0)51 andzF(z)→0 whenz→`, introduced to preserve
the high Q2 asymptotics ofFp

fact(Q2;mR
2). The simplest

choice forF(z) is F(z)51/(11z)2, yielding

Fp
fact-WI~Q2;mR

2 !5F̃p~Q2;mR
2 !

M0
2

M0
21Q2 S 12

M0
2

M0
21Q2D

5Fp
fact~Q2;mR

2 !S Q2

M0
21Q2D 2

. ~7.15!

The scale parameterM0
2 should be identified with the thresh

old 2s0
2-loop to readM0

252s0
2-loop becauses0

2-loop is the ‘‘natu-
ral’’ scale parameter for the 2-point correlator in the pi
case, while the scale characterizing the 3-point correla
corresponding to the form factor, is two times larger@67#.

In this way, we finally arrive at

Fp
fact-WI~Q2;mR

2 !5S Q2

2s0
2-loop1Q2D 2

Fp
fact~Q2;mR

2 !. ~7.16!

We are now in the position to supply an expression for
total pion form factor valid in the wholeQ2 range:

Fp~Q2;mR
2 !5Fp

LD~Q2!1Fp
fact-WI~Q2;mR

2 !. ~7.17!

This expression comprises the NLO prediction for the fact
ized part under the proviso of the Ward identity atQ250 and
the non-factorizable soft part.„Parenthetically, note the ex
plicit mR

2 dependence of this expression as a consequenc
the truncation of the perturbative series@see Eqs.~4.1!–
~4.8!#.…

Before continuing with the presentation of our final r
sults, let us remark that a similar type of matching has b
applied by Radyushkin@24# to describe the pion form factor
providing the result

Fp~Q2!5
Fp

LD(0)~Q2!1~as /p!@11Q2/~2s0!#21

11as /p
~7.18!

illustrated in Fig. 14~a! ~dash-dotted line!.
In this equation—which follows the Brodsky-Lepage i

terpolation formula for thepg transition form factor@124#—
the first term means the soft form factor calculated with
LD approach, while the second one includes the LO radia
corrections. It is evident from this figure that Radyushkin
result is very close to that given by Eq.~7.17!, evaluated
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with the asymptotic DA in theMS scheme with theBLM
scale setting using for the sake of comparison LO APT~solid
line!.

Employing the above considerations we now present p
dictions for the total scaled form factor vsQ2 in different
renormalization schemes and perturbation-theory approa
using the BMS pion DA. Figure 15 shows the results for t
standard perturbation theory within theMS scheme adopting
the mR

25Q2 ~dashed line! and theBLM ~solid line! scale
settings. In Fig. 16 we present analogous predictions ca
lated with the APT. In this case, it is possible to inclu
results computed with the BLM scale setting and to use
aV scheme. We observe from this figure~left panel! that the
‘‘naive analytization’’ gives results that bear a rather stro
scheme and scale-setting dependence. In contrast, app

FIG. 14. Comparison of the pion form factor calculated
Radyushkin@24# using the LD approach and interpolation from lo
to high Q2 ~dash-dotted line! with our result for the total form
factor given by Eq.~7.17!, computed with the asymptotic DA in the
MS scheme with theBLM scale setting and using LO APT~solid
line!. The experimental data are taken from@36# ~diamonds! and
@122,123# ~triangles!.

FIG. 15. Theoretical predictions forQ2Fp(Q2) obtained with
the BMS pion DA using standard PQCD within theMS scheme and
adopting themR

25Q2 ~dashed line! andBLM ~solid line! scale set-
tings. The experimental data are taken from@36# ~diamonds! and
@122,123# ~triangles!.
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FIG. 16. ~Color online! Theoretical predictions forQ2Fp(Q2) using analytic perturbation theory and the BMS DA in conjunction w
the ‘‘naive analytic’’ ~a! and ‘‘maximally analytic’’ ~b! analytization procedures. Different scale settings within theMS scheme are used
mR

25Q2 ~dashed line!, BLM ~dotted line!, andBLM ~solid line!. The dash-dotted line represents the prediction obtained with theaV scheme.
Also included are the prediction for the soft form-factor part~solid blue line! and below this, the hard contributions in correspondence w
the predictions for the total form factor on the upper part of the figure. The experimental data are taken from Refs.@36# ~diamonds! and
@122,123# ~triangles!.
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the ‘‘maximal analytic’’ procedure, the arbitrariness in th
scheme and scale setting is minimized—Fig. 16~b! being a
graphic proof of that. Note that this figure shows also se
rately the soft part of the form factor, displayed in Fig. 1
and the hard contributions corresponding to the vari
scheme and scale settings discussed above and presen
Fig. 11~b!.

The phenomenological upshot of our analysis is summ
rized in the left panel of Fig. 17, where we show predictio
for the whole BMS ‘‘bunch’’ of pion DAs@1#. The shaded
strip incorporates the nonperturbative uncertainties relate
nonlocal QCD sum rules and also the ambiguities induced
the scheme and renormalization scale setting—in corres
dence to Fig. 16. Note that the two broken lines mark
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region of predictions associated with the asymptotic p
DA. These results can be compared with previous theoret
predictions and also with further experimental data to be
tained at Jefferson Laboratory~see right part of Fig. 17,
taken from Ref.@37#!. The data points extending toQ2 of
6 GeV2 are expectations from projected experiments at J
ferson Laboratory after the planned upgrade of CEBAF to
GeV ~we refer to Ref.@37# for further explanations and re
lated references!.

These striking findings give convincing evidence that t
end-point-suppressed structure of the BMS type pion DA
only provides best agreement with the CLEO and CELL
data ~cf. Fig. 4!, it also allows to describe the pion form
factor data with at least the same quality as with t
NLO
with the

alculated

sults of
FIG. 17. ~Color online! ~Left! Predictions for the scaled pion form factor calculated with the BMS bunch~green strip! encompassing
nonperturbative uncertainties from nonlocal QCD sum rules@1# and renormalization scheme and scale ambiguities at the level of the
accuracy, as discussed in Fig. 16. The dashed lines inside the strip indicate the corresponding area of predictions obtained
asymptotic pion DA. Note that this strip contains only perturbative scheme and scale ambiguities at the level of the NLO accuracy, c
in APT with the ‘‘maximally analytic’’ procedure. The experimental data are taken from Refs.@36# ~diamonds! and @122,123# ~triangles!.
~Right! Summary of existing and projected experimental data on the electromagnetic pion form factor in comparison with the re
various theoretical calculations; figure taken from Ref.@37# ~see there for explanations!.
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asymptotic pion DA—as it becomes evident from the LHS
Fig. 17.

VIII. SUMMARY AND CONCLUSIONS

In summary, the key concepts and merits arising from t
analysis are as follows:

~i! We worked out interpolation formulas for the analyt
coupling constant and its analytic second power that t
into account heavy-flavor thresholds and greatly facilit
calculations. This allowed us to develop a theoretical pro
dure and apply its numerical realization in order to comp
the evolution of the pion DA using NLO analytic perturb
tion theory. The hard form factor was corrected at lowQ2 as
to fulfill the Ward identity and was added to the soft for
factor, derived via local duality, without introducing doub
counting.

~ii ! On the theoretical front, we found that replacing t
QCD effective coupling and its powers by their analy
images—a procedure we termed ‘‘maximally analytic’’—n
only provides IR protection to the coupling, it also hel
diminishing the renormalization scheme and scale-setting
pendence of the form-factor predictions already at the N
level, rendering the calculation of still higher-order corre
tions virtually superfluous.

~iii ! From the phenomenological point of view, our mo
discernible result is that the BMS pion DA@1# ~out of a
‘‘bunch’’ of similar doubly peaked end-point-suppress
pion DAs! yields to predictions for the electromagnetic for
factor very close to those obtained with the asymptotic p
DA. Hence, concerns that a double-humped pion DA co
jeopardize the sound application of PQCD are unduly. C
versely, we have shown that a small deviation of the pred
tion for the pion form factor from that obtained with th
asymptotic pion DA does not necessarily imply that the u
derlying pion DA has to be close to the asymptotic profi
Much more important is the behavior of the pion DA in th
end-point regionx→0,1.

Looking further into the future is yet more exciting. Wit
the planned upgrade of the CEBAF experiment to 12 G
the pion’s electromagnetic form factor can be studied up
Q2.6 GeV2 @37#, providing crucial constraints to verify th
various theoretical predictions discussed here and elsewh
The apparently good agreement of our results with the av
able experimental data~see Fig. 17! is encouraging.
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APPENDIX A: HARD-SCATTERING AMPLITUDE
FOR THE PION’S ELECTROMAGNETIC FORM

FACTOR AT NLO

In this section we list the NLO results for the har
scattering amplitude@26,80–85#, used in our analysis. The
LO contribution toTH(x,y,Q2;mF

2), expanded as in~2.4!,
reads

TH
(0)~x,y,Q2!5

NT

Q2

1

x̄ȳ
, ~A1!

where

NT5
2pCF

CA
5

8p

9
, ~A2!

CF5(Nc
221)/2Nc54/3,CA5Nc53 are the color factors o

SU(3)c , and the notationz̄[12z has been used. The usu
color decomposition of the NLO correction—marked b
self-explainable labels—is given by

TH
(1)~Q2;mF

2,mR
2 !5CFTH

(1,F)~Q2;mF
2!1b0TH

(1,b)~Q2;mR
2 !

1CGTH
(1,G)~Q2!, ~A3!

where CG5(CF2CA/2) and the first coefficients of theb
function are

b05
11

3
CA2

4

3
TRNf , b15

34

3
CA

2 2S 4CF1
20

3
CADTRNf .

~A4!

Here, TR51/2 and Nf denotes the number of flavors
whereas the expansion of theb function in the NLO approxi-
mation is given by

b„as~m2!…52as~m2!H b0Fas~m2!

4p G1b1Fas~m2!

4p G2J .

~A5!

With reference to the application of the BLM@62# scale set-
ting in fixing the renormalization point, we single out theb0
proportional~i.e., Nf-dependent! term, given by

TH
(1,b)~x,y,Q2;mR

2 !5
NT

Q2

1

x̄ȳ
F5

3
2 ln~ x̄ȳ!2 ln

Q2

mR
2G ,

~A6a!
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and present the remainder ofTH as a color decomposition in
the form

TH
(1,F)~x,y,Q2;mF

2!5
NT

Q2

1

x̄ȳ
F2

28

3
1S 62

1

xD ln x̄

1S 62
1

yD ln ȳ1 ln2~ x̄ȳ!

12 ln
Q2

mF
2 @31 ln~ x̄ȳ!#G ~A6b!

TH
(1,G)~x,y,Q2!5

NT

Q2

1

x̄ȳ
F2

20

3
28

ln x̄

x
28

ln ȳ

y
22 ln x̄ ln ȳ

22 lnx ln y12 lnx ln ȳ12 ln x̄ ln y

22~12x2y!H~x,y!22R~x,y!G ~A6c!

for the color singlet and color non-singlet parts, respectiv
For calculational convenience, we also supply the sum
these terms@cf. Eq. ~4.7!#:

TH
(1,FG)~x,y,Q2;mF

2!5CFTH
(1,F)~x,y,Q2;mF

2!

1CGTH
(1,G)~x,y,Q2!

5
NT

Q2

1

x̄ȳ

1

3 H 234124 ln~ x̄ȳ!

14 ln2~ x̄ȳ!1 ln x ln y1 ln x̄ ln ȳ

2 ln x ln ȳ2 ln x̄ ln y

1~12x2y!H~x,y!1R~x,y!

18@31 ln~ x̄ȳ!# ln
Q2

mF
2J , ~A7!

where

H~x,y!5
1

12x2y FLi2S ȳ

x
D 1Li2S x̄

y
D 1Li2S xy

x̄ȳ
D 2Li2S x

ȳ
D

2Li2S y

x̄
D 2Li2S x̄ȳ

xy
D G ~A8a!

with Li2 being the dilogarithm function, defined by Li2(z)
52*0

z@ ln(12t)dt#/t, and
03301
y.
f

R~x,y!5
1

~x2y!2 F ~2xy2x2y!~ ln x1 ln y!1~22xy2

22y2110xy22y24x2!
ln ȳ

y
1~22yx222x2

110xy22x24y2!
ln x̄

x
2~yȳ21xx̄2!H~x,ȳ!G .

~A8b!

APPENDIX B: FACTORIZATION SCALE DEPENDENCE
IN STANDARD PQCD

Here we examine themF
2 dependence of the hard

scattering amplitude~see, for example,@9,11,27,77,125#!. We
start with the representation forTH(mF

2 ,mR
2), given by~2.4!,

to get

TH~mF
2 ,mR

2 !5as~mR
2 !FTH

(0)1
as~mR

2 !

4p
TH

(1)~mF
2 ,mR

2 !G ,
~B1!

with TH
(0)(x,y,Q2) andTH

(1)(x,y,Q2;mF
2 ,mR

2) as in ~A1! and
~A3! for the LO and NLO, respectively. These functions c
be represented as follows:

TH
(0)5NTC0~x,y,Q2!, C05

1

x̄ȳQ2
, ~B2!

TH
(1)~mF

2,mR
2 !5 lnS Q2

mF
2D @TH

(0)~x,s,Q2! ^

s
V0~s,y!

1V0~s,x! ^

s
TH

(0)~s,y,Q2!#

2b0lnS Q2

mR
2 D TH

(0)~x,y,Q2!

1NTC1~x,y,Q2!, ~B3!

whereC1(x,y,Q2) absorbs all othermF
2- andmR

2-independent
terms from~A3!. Using this structure with respect to themF

2

dependence, we can conclude that

dTH

d ln mF
2

52TH~mF
2,mR

2 ! ^ V„as~mR
2 !…2V„as~mR

2 !…

^ TH~mF
2,mR

2 !1O~as
3!, ~B4!

whereV„as(mR
2)… is the ERBL evolution kernel~C2!. Then,

the whole derivative of the form factor~2.3! is
4-25
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dFp~Q2;mR
2 !

d ln mF
2

5Fp~mF
2! ^ TH~mF

2,mR
2 ! ^ @V„as~mF

2!…

2V„as~mR
2 !…# ^ Fp~mF

2!1Fp~mF
2!

^ @V„as~mF
2!…2V„as~mR

2 !…# ^ TH~mF
2,mR

2 !

^ Fp~mF
2!1O~as

3!. ~B5!

Recalling that in the 2-loop approximation of the standa
PQCD

das~m2!

d ln m2
524pb0Fas~m2!

4p G2

@11O„as~m2!…#, ~B6!

we have

V„as~mF
2!…2V„as~mR

2 !…5Fas~mF
2!2as~mR

2 !

4p GV01O~as
2!

5O~as
2!, ~B7!

so that

dFp~Q2;mR
2 !

d ln mF
2

5O~as
3!. ~B8!

Hence, we conclude that at the level of the NLO approxim
tion of the standard PQCD, the violation of the factorizatio
scale independence is one order ofas higher.11

APPENDIX C: TWO-LOOP EVOLUTION OF THE PION
DISTRIBUTION AMPLITUDE IN STANDARD

PQCD

The pion distribution amplitudewp(x,mF
2) satisfies an

evolution equation of the form

dwp~x,mF
2!

d ln mF
2

5V„x,u,as~mF
2!…^

u
wp~u,mF

2!, ~C1!

whereV„x,u,as(mF
2)… is the perturbatively calculable NLO

evolution kernel

V~x,u,as!5
as

4p
V0~x,u!1

as
2

~4p!2
V1~x,u!. ~C2!

If the distribution amplitudewp(x,m0
2) is determined at an

initial momentum scalem0
2 ~using some nonperturbativ

methods!, then the integrodifferential evolution equatio
~C1! can be integrated using the moment method to g
wp(x,mF

2) at any momentum scalemF
2 . The one-@12# and

11Moreover, the dependence onmF
2 of the NLO prediction for the

pion form factor was investigated in Ref.@26#, where it was found
that these results vary only slightly withmF

2 rendering the
‘‘factorization-scheme ambiguity’’ to be small.
03301
d
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two-loop @126–128# corrections to the evolution kernel wer
determined in theMS scheme, but because of the comp
cated structure of the two-loop corrections, only the nume
cal evaluation of the~first few! moments of the evolution
kernel was possible@129,130#. However, making use o
conformal-symmetry constraints, the complete analyti
form of the NLO solution of the evolution equation~C1! has
been obtained@70,71#. We note that formF

2→` the solution
of Eq. ~C1! takes the asymptotic formwp(x,mF

2→`)
[was(x)56x(12x).

The pion DA can be cast in the form

wp~x,mF
2!5U~x,s;mF

2,m0
2! ^

s
wp~s,m0

2!, ~C3!

where the operatorU(x,s;mF
2 ,m0

2) describes the evolution
from the scalem0

2 to the scalemF
2 and represents the solutio

of an evolution equation equivalent to~C1!, given by

d

d ln mF
2

U~x,s;mF
2,m0

2!5V„x,u,as~mF
2!…^

u
U~u,s;mF

2,m0
2!.

~C4!

It is convenient to express the nonperturbative input D
wp(x,m0

2), as an expansion over Gegenbauer polynom
Ck

3/2(2x21), which represent the eigenfunctions of the L
kernelV0, i.e.,

wp~x,m0
2!56x~12x!F11 ( 8

m52

`

am~m0
2!Cm

3/2~2x21!G ,

~C5!

in which (8 denotes the sum over even indices only. T
nonperturbative input is now contained in theam(m0

2) coef-
ficients. The Gegenbauer polynomialsCn

3/2(2x21) satisfy
the orthogonalization condition

E
0

1

dxx~12x!Cn
3/2~2x21!Cm

3/2~2x21!5Nndnm ~C6!

with respect to the weightx(12x), where

Nn5
~n11!~n12!

4~2n13!
. ~C7!

The moments of the evolution kernel

Mkn@as~mF
2!#5Ck

3/2~2x21! ^

x
V„x,y;as~mF

2!…

^

y

y~12y!

Nn
Cn

3/2~2y21!, ~C8a!

or, equivalently, the anomalous dimensions

gkn@as~mF
2!#522Mkn@as~mF

2!#, ~C8b!

represent the elements of the triangular matrix (k>n). While
the LO kernel is diagonal with respect to the Gegenba
polynomialsCn

3/2 ~only thegnn
(0)[gn

(0) elements appear!, the
structure of the NLO and still higher-order kernels leads
4-26
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the appearance of off-diagonal terms in the matrix of
anomalous dimensions~both types of termsgnn

(1)[gn
(1) as

well asgkn
(1) ,k.n are present!. Accordingly, the solution of

the evolution equation~C4! takes the general form

U~x,s;mF
2,m0

2!5 ( 8
n50

`

En~mF
2 ,m0

2!FCn
3/2~2x21!

1
as~mF

2!

4p ( 8
k5n12

`

dkn
(1)~mF

2 ,m0
2!Ck

3/2~2x

21!1O~as
3!G x~12x!

Nn
Cn

3/2~2s21!.

~C9!

The effect of the diagonal termsgnn[gn is completely con-
tained in the factorEn(mF

2 ,m0
2), which is given by

En~mF
2 ,m0

2!5expF2E
as(m0

2)

as(mF
2)

das

gn~as!

2b~as!
G . ~C10!

The expansion of the anomalous dimensions in terms oas
reads

gn„as~m2!…5
as~m2!

4p
gn

(0)1
as

2~m2!

~4p!2
gn

(1)1 . . . , ~C11a!

whereas the lowest-order anomalous dimensions can be
resented in closed form by

gn
(0)52CFF4S1~n11!232

2

~n11!~n12!G , ~C11b!

with S1(n11)5( i 51
n111/i 5c(n12)1c(1), while the func-

tion c(z) is defined asc(z)5d ln G(z)/dz. Since the anoma
lous dimensionsgn coincide with the flavor nonsingle
anomalous dimensions, i.e., the moments of the splitting
nels in deep inelastic scattering, we can use forgn

(1) the
results obtained in Refs.@131,132#; viz.,

g0
(1)50, g2

(1)5
830

81
Nf2

34450

243
, g4

(1)5
31132

2025
Nf2

662846

3375
,

~C11c!

whereNf denotes the number of active flavors.12 The nondi-
agonal matrix elementsgkn (k.n) manifest themselves in
the dkn

(1) terms of the eigenfunctions expansion and were
tained in closed form in@70,71,130#:

dkn
(1)~mF

2 ,m0
2!52

Nn

Nk
Skn~mF

2 ,m0
2!Ckn

(1) , ~C12!

where

12For Q251.7–18.5 GeV2 this number is 4, whereas for sti
higherQ2 values, it starts to be equal to 5.
03301
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Skn~mF
2 ,m0

2!5
gk

(0)2gn
(0)

gk
(0)2gn

(0)22b0

3H 12Fas~mF
2!

as~m0
2!

G211(gk
(0)

2gn
(0))/(2b0)J

~C13a!

and

Ckn
(1)5~2n13!H 2gn

(0)22b018CF Akn

2~k2n!~k1n13!

1
2CF@Akn2c~k12!1c~1!#

~n11!~n12! J ~C13b!

with

Akn5cS k1n14

2 D2cS k2n

2 D12c~k2n!2c~k12!

2c~1!. ~C13c!

We turn now our attention to the finite-order solutions of t
evolution equation~C4!, i.e., ~C1!. Denoting the formal so-
lution of the LO equation, which contains only theV0 kernel,
by ULO(x,s;mF

2 ,m0
2), the corresponding functionEn , de-

fined in Eq.~C10!, becomes

En
LO~mF

2 ,m0
2!5Fas~mF

2!

as~m0
2!

G gn
(0)/(2b0)

. ~C14!

Analogously, the solution of the NLO equation, containi
both kernels V0 and V1, will be represented by
UNLO(x,s;mF

2 ,m0
2). This expression contains contribution

coming from both the diagonal (En) and the nondiagona
(dkn

(1)) parts. One finds in the literature two representatio
for the En

NLO(mF
2 ,m0

2) function. The form which retains the
manifest renormalization-group proper
@En

NLO(m1
2 ,m2

2)En
NLO(m2

2 ,m3
2)5En

NLO(m1
2 ,m3

2)# reads@130#

En
NLO~mF

2 ,m0
2!5

en~mF
2!

en~m0
2!

; v~n![
gn

(1)b02gn
(0)b1

2b0b1
; ~C15!

en~mF
2![@as~mF

2!#gn
(0)/(2b0)F11

b1

4pb0
as~mF

2!Gv(n)

.

~C16!

Alternatively, one can recastEn
NLO in the form @26,133#

Ên
NLO~mF

2 ,m0
2!5Fas~mF

2!

as~m0
2!

G gn
(0)/(2b0)

3H 11
b1

4pb0
as~mF

2!F12
as~m0

2!

as~mF
2!

Gv~n!J ,

~C17!
4-27
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which corresponds to a resummation of the leading lo
rithms associated with the diagonal terms, while the suble
ing ones are expanded with respect toas . In this work we
employ ~C15!.13

Finally, we systematize below some previous results
recasting them in a form that is more suitable for practi
purposes. As mentioned in previous sections, the coeffici
an(mF

2) encapsulate nonperturbative information about
binding dynamics inside the pion and correspond to ma
elements of local operators according to the OPE, de
mined at some low-energy scale, characteristic of the n
perturbative dynamics employed@1,91,94,134,135#. To ob-
tain these coefficients at a higher scale, say,mF

2 , one has to
apply LO or NLO ERBL evolution. Specifically the coeffi
cients which correspond to the LO evolution equation
given by

an
LO~mF

2!5an
D,LO~mF

2!5an~m0
2!En

LO~mF
2 ,m0

2!, ~C18!

while those corresponding to the NLO evolution equat
can be written in the form

an
NLO~mF

2!5an
D,NLO~mF

2!1
as~mF

2!

4p
an

ND,NLO~mF
2!, ~C19a!

where

an
D,NLO~mF

2!5an~m0
2!En

NLO~mF
2 ,m0

2!, ~C19b!

an
ND,NLO~mF

2!5 (
k50

n22

ak~m0
2!Ek

NLO~mF
2 ,m0

2!dnk
(1)~mF

2 ,m0
2!.

~C19c!

We note that using instead of~C15! the expression~C17!,
would introduce only minor numerical corrections in th
an

NLO coefficients of the orderas
2 ~amounting to, for example

a 1% relative deviation inan
NLO at 10 GeV2).

APPENDIX D: NLO EVOLUTION BY TAKING
INTO ACCOUNT HEAVY-QUARK THRESHOLDS

We describe here the modification of the evolution form
las, presented in Appendix C, due to the inclusion of hea
03301
-
d-

y
l
ts
e
x
r-
n-

e

-
-

flavor thresholds atM451.3 GeV andM554.3 GeV ~with
M15M25M350). First of all, for calculational conve
nience, we limit our study to pion DAs that include at th
initial scalem0

2 only two Gegenbauer coefficients~i.e., eigen-
functions!

wp~x,m0
2!56x~12x!@11a2

0C2
3/2~2x21!1a4

0C4
3/2~2x21!#

~D1!

and rewrite expressions~C19! in terms of these coefficient
$a2

0 ,a4
0% in the more compact form

a2
NLO~mF

2!5Ẽ2~mF
2,m0

2!a2
01D̃20~mF

2 ,m0
2!, ~D2a!

a4
NLO~mF

2!5Ẽ4~mF
2,m0

2!a4
01D̃42~mF

2 ,m0
2!a2

0

1D̃40~mF
2 ,m0

2!, ~D2b!

an.4
NLO~mF

2!5D̃n4~mF
2,m0

2!Ẽ4~mF
2 ,m0

2!a4
0

1D̃n2~mF
2 ,m0

2!Ẽ2~mF
2 ,m0

2!a2
0

1D̃n0~mF
2 ,m0

2!, ~D2c!

where

D̃nk~mF
2 ,m0

2![
as~mF

2!

4p
dnk

(1)~mF
2 ,m0

2!. ~D2d!

We start the evolution from the initial scalem0
251 GeV2,

which corresponds toNf53. WhenmF
2P@M4

2 ,M5
2#, we need

to change our evolution formulas by adopting the valueNf

54. Finally, whenmF
2>M5

2 , we need to use the valueNf

55. Besides changing the number of active flavorsNf , we
need also to match the initial conditions of evolution in ea
considered region. This generates the following evolut
functions ~omitting in the following expressions the supe
script NLO!:
Ẽn~mF
2,m0

2!5H En~mF
2 ,m0

2 ;Nf53!, mF
2<M4

2

En~mF
2 ,M4

2 ;Nf54!Ẽn~M4
2 ,m0

2!, mF
2P~M4

2 ,M5
2#

En~mF
2 ,M5

2 ;Nf55!Ẽn~M5
2 ,m0

2!, mF
2.M5

2 .

~D3a!

We define in this way the diagonal part of the evolution equation from a fixed initial scalem0
2 using

Ẽn~mF
2 ,q2![Ẽn~mF

2,m0
2!Ẽn

21~q2,m0
2!. ~D3b!

13The expression~C15! is obtained by expandinggn andb to NLO in Eq. ~C10! and integrating overas . To obtain the form~C17!, one
expands the integrand in~C10! over as and performs subsequently the integration.
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In this way we are able to derive the non-diagonal evolution functions~for the sake of brevity, we omit the explicit indicatio
of the correspondingmF

2 regions!; namely,

D̃20~mF
2,m0

2!5H D20~mF
2 ,m0

2 ;Nf53!,

D20~mF
2 ,M4

2 ;Nf54!1Ẽ2~mF
2 ,M4

2!D̃20~M4
2 ,m0

2!,

D20~mF
2 ,M5

2 ;Nf55!1Ẽ2~mF
2 ,M5

2!D̃20~M5
2 ,m0

2!;

~D4!

D̃40~mF
2,m0

2!5H D40~mF
2 ,m0

2 ;Nf53!,

D40~mF
2 ,M4

2 ;Nf54!1Ẽ4~mF
2 ,M4

2!D̃40~M4
2 ,m0

2!,

D40~mF
2 ,M5

2 ;Nf55!1Ẽ4~mF
2 ,M5

2!D̃40~M5
2 ,m0

2!;

~D5!

D̃42~mF
2,m0

2!5H D42~mF
2 ,m0

2 ;Nf53!Ẽ2~mF
2 ,m0

2!,

D42~mF
2 ,M4

2 ;Nf54!Ẽ2~mF
2 ,m0

2!1Ẽ4~mF
2 ,M4

2!D̃42~M4
2 ,m0

2!,

D42~mF
2 ,M5

2 ;Nf55!Ẽ2~mF
2 ,m0

2!1Ẽ4~mF
2 ,M5

2!D̃42~M5
2 ,m0

2!.

~D6!

For n.4 andk50,2,4, we have

D̃nk~mF
2,m0

2!5H Dnk~mF
2 ,m0

2 ;Nf53!,

Ẽn~mF
2 ,M4

2!Ẽk
21~mF

2 ,M4
2!Dnk~mF

2 ,M4
2 ;Nf54!1D̃nk~M4

2 ,m0
2!,

Ẽn~mF
2 ,M5

2!Ẽk
21~mF

2 ,M5
2!Dnk~mF

2 ,M5
2 ;Nf55!1D̃nk~M5

2 ,m0
2!.

~D7!
fo

m

of

g

or
Using these expressions, we can revert to our previous
mulas~C19! and write

an
NLO~mF

2!5an
D,NLO~mF

2!1
as~mF

2!

4p
an

ND,NLO~mF
2!, ~D8a!

where

an
D,NLO~mF

2!5an~m0
2!Ẽn~mF

2 ,m0
2!, ~D8b!

an
ND,NLO~mF

2!5 (
k50

n22

ak~m0
2!Ẽk~mF

2 ,m0
2!d̃nk

(1)~mF
2 ,m0

2!,

~D8c!

with

d̃nk
(1)~mF

2 ,m0
2![F 4p

as~mF
2!

G D̃nk~mF
2,m0

2!. ~D8d!

APPENDIX E: EVOLUTION OF THE PION
DISTRIBUTION AMPLITUDE IN ANALYTIC

PERTURBATION THEORY

The pion DA satisfies an evolution equation of the for

dwp~x,mF
2!

d ln mF
2

5V„x,u,ās~mF
2!…^

u
wp~u,mF

2!, ~E1!

with V(x,u,a) having the same functional dependence ona
as in~C2!. Let us rewrite this equation for the coefficients
03301
r-expansion~C5! in terms of Gegenbauer polynomials, usin
the notations proposed in Ref.@130# and linking them to
those in Ref.@71#:

dan~mF
2!

d ln mF
2

5
2ās~mF

2!

8p
Fgn

(0)1
ās~mF

2!

4p
gn

(1)Gan~mF
2!

1
1

2
F ās~mF

2!

4p
G2

( 8
0< j ,n

M j ,naj~mF
2!,

M j ,n52
Nj

Nn
Cn j

(1)@gn
(0)2g j

(0)#. ~E2!

First, we define the diagonal evolution operat
Ên

NLO(Q2,m0
2)5ên(LQ)/ên(Lm0

) with

dên~Lm!

dLm
5

2ās
(2,fit)~m2!

8p
Fgn

(0)1
ās

(2,fit)~m2!

4p
gn

(1)G ên~Lm!,

~E3!

whereLm[ ln(m2/L21
2 ) andās

(2,fit)(m2) is given by~6.22!, i.e.,

ās
(2,fit)~m2!5

4p

b0~3!
ās@,~Lm ,c21

fit !#[
4p

b0~3!
Ās

(2,fit)~Lm!.

~E4!

Then we have
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ên
NLO~Lm!5expS 2E

L0

LmH gn
(0)

2b0~3!
Ās

(2,fit)~L !

1
gn

(1)

2b0~3!2
@Ās

(2,fit)~L !#2J dLD . ~E5!

In principle, the lower limit of integration,L0, can be chosen
to be an arbitrary positive number, but it is more conveni
to set it equal to the average value ofL@mF

2# under actual
consideration. Then, we can represent our solution in a m
fied form—as compared to~C19!; namely,
th
r

tt.

03301
t

i-

an
An~mF

2!5ên
NLO~LmF

!F an~m0
2!

ên
NLO~Lm0

!

1
ās~mF

2!

4p ( 8
0< j ,n

d̂j ,n~mF
2,m0

2!
aj~m0

2!

êj
NLO~Lm0

!G .

~E6!

The advantage of introducing the same factorên
NLO@LmF

# for

the whole functionan
An(mF

2) is that it ensures exact cancella
tion of the diagonal terms in Eq.~E2!. What is left over after
this cancellation provides an equation ford̂ j ,n(mF

2 ,m0
2):
d@ās~mF
2!d̂ j ,n~mF

2,m0
2!#

dLmF

5
ās

2~mF
2!

8p FM j ,n

êj
NLO~LmF

!

ên
NLO~LmF

!
1

ās~mF
2!

4p ( 8
j <m,n

d̂j ,m~mF
2,m0

2!Mm,n

êm
NLO~LmF

!

ên
NLO~LmF

!
G . ~E7!
-

q.
In the NLO approximation this expression becomes

d

dLmF

@Ās
(2,fit)~LmF

!d̂ j ,n~mF
2,m0

2!#

'
M j ,n

2b0~3!
@Ās

(2,fit)~LmF
!#2

êj
NLO~LmF

!

ên
NLO~LmF

!
~E8!

and its solution is given by

d̂ j ,n~mF
2,m0

2!

'
M j ,n

2b0~3!Ās
(2,fit)~LmF

!
E

Lm0

LmF
@Ās

(2,fit)~L !#2
êj

NLO~L !

ên
NLO~L !

dL.

~E9!

Since we do not take into account the nondiagonal part of
evolution equation@see for more details in Sec. IV, just afte
e

Eq. ~4.8!#, we can use an approximate form of Eq.~E6!, viz.,

an
An; D,NLO~mF

2!5an~m0
2!

ên
NLO~LmF

!

ên
NLO~Lm0

!
, ~E10!

where the functionsên
NLO(LmF

) are defined in a two-step nu
merical procedure:

~1! We determine first by numerical integration of E
~E5! the functionsên

num(L) for LP@0,10# andn52,4.
~2! We construct then interpolating functionsên

NLO(L) for
all functions determined in step one.

In order to obtain the termF̃p
LO(mF

2 ,mR
2) in the approxi-

mate formula~4.15! for the factorized form factor, we also
need the LO part of the evolution, namely,

ên
LO~Lm!5expF2E

Lm0

Lm gn
(0)

2b0~3!
Ās

(2,fit)~L !dLG , ~E11!

an
An;LO~mF

2!5an~m0
2!

ên
LO~LmF

!

ên
LO~Lm0

!
. ~E12!
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Éksp. Teor. Fiz.26, 760 ~1977! @JETP Lett.26, 594 ~1977!#.
@9# A.V. Efremov and A.V. Radyushkin, Phys. Lett.94B, 245

~1980!.
@10# A.V. Efremov and A.V. Radyushkin, Theor. Math. Phys.42,

97 ~1980!.
@11# G.P. Lepage and S.J. Brodsky, Phys. Lett.87B, 359 ~1979!.
@12# G.P. Lepage and S.J. Brodsky, Phys. Rev. D22, 2157~1980!.
4-30



rg

ar

l.

ys

B

. C

e-
nd

v

tt.

ys.

n-
-

nd

nd

l.

ys.

v. D

cl.

D

,

d.

PION FORM FACTOR IN QCD: FROM NONLOCAL . . . PHYSICAL REVIEW D 70, 033014 ~2004!
@13# V.L. Chernyak and A.R. Zhitnitsky, Phys. Rep.112, 173
~1984!.

@14# S.J. Brodsky and G.P. Lepage, Adv. Ser. Dir. High Ene
Phys.5, 93 ~1989!.

@15# A.H. Mueller, Nucl. Phys.A622, 3c ~1997!.
@16# N.G. Stefanis, Eur. Phys. J. direct C7, 1 ~1999!.
@17# K. Goeke, M.V. Polyakov, and M. Vanderhaeghen, Prog. P

Nucl. Phys.47, 401 ~2001!.
@18# N. Isgur and C.H. Llewellyn Smith, Phys. Rev. Lett.52, 1080

~1984!.
@19# O.C. Jacob and L.S. Kisslinger, Phys. Rev. Lett.56, 225

~1986!.
@20# N. Isgur and C.H. Llewellyn Smith, Nucl. Phys.B317, 526

~1989!.
@21# R. Jakob and P. Kroll, Phys. Lett. B315, 463 ~1993!; 319,

545~E! ~1993!.
@22# M.A. Shifman, A.I. Vainshtein, and V.I. Zakharov, Nuc

Phys.B147, 385 ~1979!.
@23# V.A. Nesterenko and A.V. Radyushkin, Phys. Lett. B115B,

410 ~1982!.
@24# A.V. Radyushkin, Acta Phys. Pol. B26, 2067~1995!.
@25# A.P. Bakulev, A.V. Radyushkin, and N.G. Stefanis, Ph

Rev. D62, 113001~2000!.
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@27# B. Melić, B. Nižić, and K. Passek, Phys. Rev. D65, 053020

~2002!.
@28# N.G. Stefanis, W. Schroers, and H.-C. Kim, Phys. Lett.

449, 299 ~1999!.
@29# N.G. Stefanis, W. Schroers, and H.-C. Kim, Eur. Phys. J

18, 137 ~2000!.
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