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We present an investigation of the pion’s electromagnetic form fa€tdiQ?) in the spacelike region
utilizing two new ingredients(i) a double-humped, end-point-suppressed pion distribution amplitude derived
before via QCD sum rules with nonlocal condensates—found to comply ataHevel with the CLEO data
on the 7y transition—and(ii) analytic perturbation theory at the level of parton amplitudes for hadronic
reactions. The computation &f (Q?) within this approach is performed at the next to leading ofbié&1O) of
QCD perturbation theorystandard and analylicincluding the evolution of the pion distribution amplitude at
the same order. We consider the NLO corrections to the form factor iM@iescheme with various renor-
malization scale settings and also in #ag scheme. We find that using standard perturbation theory, the size
of the NLO corrections is quite sensitive to the adopted renormalization scheme and scale setting. The main
results of our analysis are the following) Replacing the QCD coupling and its powers by their analytic
images, both dependencies are diminished and the predictions for the pion form factor are quasi-scheme- and
scale-setting independeiii.) The magnitude of the factorized pion form factor, calculated with the aforemen-
tioned pion distribution amplitude, is only slightly larger than the result obtained with the asymptotic one in all
considered schemeg@ii ) Including the soft pion form factor via local duality and ensuring the Ward identity at
Q?=0, we present predictions that are in remarkably good agreement with the existing experimental data both
in trend and magnitude.
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[. INTRODUCTION allow to assess nonperturbative features of Q@@ re-
views, see, for instance, Refd3-17). In the following, the
It is the purpose of this paper to review and discuss quesdiscussion is centered around the pion’s electromagnetic
tions relating to the calculation of the electromagnetic pionform factor. At a more theoretical level, “hard” means that at
form factor with an improved pion distribution amplitude least some part of the process amplitude, recast in terms of
(DA), derived from QCD sum rules with nonlocal conden- quarks collinear to hadrongin an appropriate Lorentz
sateq 1], and to use QCD analytic perturbation theGdPT)  frame, should become amenable to perturbation theory via
[2—6] beyond the leading ordétO). Before going into the factorization theorems on account of the hard-momentum
details of this framework, let us expose, in general termsscale of the process, sa9?, that should suppress factorized
what these two ingredients mean for the analysis and alsmfrared (IR) subprocesses, thus ensuring short-distance
make some introductory remarks. dominance. Under these circumstances one can safely evalu-
Hadronic form factors are typical examples of hard-ate logarithmic scaling violations by means of perturbative
scattering processes within QGDP-12] and clearly the first QCD (PQCD and the renormalization-group equation.
level of knowledge necessary to understand the structure &vhen no hard momenta flow on the side of the initiat
intact hadrons in terms of quarks and gluons. Such processeoming or the final (outgoing hadron, factorization fails
have been much explored both because of their physical reknd a renormalization-group analysis cannot be made, so that
evance, as being accessible to experiments, and because thiewrder to calculate the nonfactorizable part of the pion form
factor, one has to resort to phenomenological mo¢w@isne
examples of which are Refgl8-21]), or employ theoretical

*Electronic address: bakulev@thsunZl.jinr.ru concepts like thelocal) quark-hadron duality22] and their
TElectronic address: passek@thphys.irb.hr descendant23-25.
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understanding within QCD for a variety of reasons, among
others:

(1) Limited knowledge of higher-order perturbative and
power-law-behave(k.g., higher-twistcorrections to the am-
plitudes.

(2) Presence of singularitietof end-point, mass, soft,
collinear, or pinch origin that may spoil factorization in
some kinematic regions.

(3) Insignificant knowledge of hadron distribution ampli-
tudes owing to the lack of a reliable nonperturbative ap-
proach.

(4) Nonfactorizing contributions that are not calculable
within PQCD and hence introduce a strong model depen-
dence.

While it may still be not possible to clarify all these the-
oretical issues conclusively, we believe that significant
progress has quite recently been achieved in understanding
the pion structure both from the theoretical side—
perturbatively{26—-30 and nonperturbativeljl,31-34—as
well as from the experimental sid85—-37 and associated
data-processing techniqugd88-4Q, progress that could
bring a cleaner comparison between data and various theo-
retical QCD prediction$31,39—49.1 Moreover, a program
to compute the electromagnetic and transition form factors of
mesons on the lattice has been launched by two collabora-
tions, in Refs.[51,52 and in Ref.[53], that may provide
valuable insights when it is completed. This situation
prompts an in-depth review and update of these issues, in an
effort to consolidate previous calculations of the pion’s elec-
tromagnetic form factor and narrow down theoretical uncer-
tainties.

We will focus our present discussion on two main issuesw

PHYSICAL REVIEW DO, 033014 (2004

construction, i.e., without introducing ad hoc IR regu-
lators, e.g., an effective gluon mddst,63, and there-

fore the validity of the perturbative expansidm
mass-independent renormalization schemiss not
jeopardized by IR-renormalon power-law ambiguities.
In addition, APT provides better stability against
higher-loop corrections and a weaker renormalization-
scheme dependence than the standard QCD perturba-
tive expansion—see Rdf29] and Sec. VIID.

(i) How to improve the nonperturbative input by em-
ploying a pion DA that incorporates the nonperturba-
tive features of the QCD vacuum in terms of a non-
local quark condensatg64—68. This accounts for
the possibility that vacuum quarks can flow with a
nonzero average virtualityé, in an attempt to con-
nect dynamic properties of the pion, like its electro-
magnetic form factor, directly with the QCD vacuum
structure(we refer to Ref.[34] for further detail$.
Within this scheme, the pion DAtermed Bakuleyv,
Mikhailov, and Stefani§BMS) [1] in the following]
turns out to be double-humped with strongly sup-
pressed end pointsx€0,1), the latter feature being
related to the nonlocality paramemﬁ. It has been
advocated, for example, in Reff28,29 (see also
Refs.[16,69), that a suppression of the end-point re-
gion (which is essentially nonperturbativas strong
as possible is a prerequisite for the self-consistent ap-
plication of QCD perturbation theory within a factor-
ization scheme.

In a recent series of papelr$,39,4(, two of us together

ith S. V. Mikhailov have conducted an analysis of the

) ) CLEO data[35] on the pion-photon transition using at-
(i) How QCD_pe_:rturt_)atlon theory can be safe_ly used toiputes from QCD light-cone sum ruleg31,38, NLO
make predictions in the low-momentum regime WhereEfremov-Radyushkin-Brodsky-Lepa@ERBL) [9-17] evo-

conventional power series expansions in the QCO
coupling break down and nonperturbative effectst
dominate. Such an extension is based on recent work
on “analytization” of the running strong coupling
adQ?) [2,3,6,54-58(see also Ref59] for a slightly
different approachand their generalization to the par-
tonic level of hadron amplitudes, like the electromag-
netic and the pion-photon transition form factor, or the
Drell-Yan process, beyond the level of a single

(0]

ution [70,71], and detailed estimates of uncertainties owing

higher-twist contributions and next-to-next-to-leading-

Srder (NNLO) perturbative correction$30]. These works
confirmed the gross features of the previous Schmedding-
Yakovlev (SY) analysis[38]; notably, both the Chernyak-
Zhitnitsky (CZ) [13] pion DA as well as the asymptotic one
are incompatible with the CLEO dafa5] at the 4r and 3
level, respectively, whereas the aforementioned BMS pion

scheme scalé28,29,60,61 In contradiction to the DA, which incorporates the vacuum nonlocality, is within the

usual assumption of singular growth @f(Q?) in the

1o error ellipse. Moreover, this approach revealed the pos-

IR domain, the QCD coupling in this scheme has ansibility of using the CLEO experimental data to estimate the
IR fixed point, with the unphysical Landau pole being value of the QCD vacuum correlation lengt l Indeed, it
completely absent. In conventional perturbative ap-turns out that the extracted valm§:0.4 GeV is consistent
proaches, a choice of the renormalization scale in thavith those obtained before using QCD sum rul@g—-74
region of a fewA ocp, as required, for instance, by the and also with numerical simulations on the lattjz&,76. In

Brodsky-Lepage-MackenziéBLM) scale-fixing pro-

addition, it was showr40] that the value of the inverse

cedure[62], would induce singularities, thus prohibit- moment(x 1), (u?) = [§¢.(x;u?)x " 1dx of the pion DA,
ing the perturbative calculation of hadronic observ-calculated by means of aimdependentQCD sum rule, is

For theoretical predictions df_(Q?) in the timelike region, see,
for instance Refd.25,50.

ables. Using APT, these singularities are avoided bycompatible with that extracted from the CLEO data. These
findings give us confidence to use the BMS pion rclud-

ing also the range of its intrinsic theoretical uncertaintias
order to derive predictions for the electromagnetic pion form
factor within the factorization scheme of QCD at NLO, pre-
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FIG. 1. lllustration of the structure of the factorized pion form factor within PQCD at NLO of the hard-scattering amplitude and the
evolution effect of the pion DA. Hard gluons are indicated by broken lines, whereas the external off-shell photon is denoted by a cross.

senting also results that include the nonfactorizing soft conity, i.e., the large momentum transfer injected into the pion,

tribution [23,25 to compare with available experimental andF . is normalized td-,(0)=1. Based on the above con-

data. siderations, the pion form factor can be generically written in
The structure of the paper is as follows. In Sec. Il we shallthe form[9-12]

recall the QCD factorization of the pion’s electromagnetic

form factor. Section Ill deals with the basics of the pion F(Q)=FPYQ? +FI"Q?), 2.2

distribution amplitude and its derivation from QCD sum facty ~2v . o

rules with nonlocal condensates. The perturbative results fdf"?o?nfaec':wzl@ ) is the factorized part within PQCD and

the pion form factor at NLO order, on the basis of the resultd » - (Q%) is the nonfactorizable part—usually being re-

given in Ref[26], are summarized in Sec. IV, whereas issuederred to as the “soft contribution[23]—that contains sub-

related to the setting of the renormalization scheme and scaléading power-behavee.g., twist-4 and higher-twistcon-

are discussed in Sec. V. The important topic of the noniributions Originating from nonperturbative effeCtS. It iS

power-series expansion of the pion form factor in the contextmportant to understand that E(.2) becomes increasingly

of analytic perturbation theory is considered in Sec. VI. Ourunreliable asQ?—0, owing to the breakdown of perturba-

numerical analysis and the comparison of our results witdion theory at such low momentum scales. Hence, we expect

available experimenta| data are presented in Sec. VII. F|the real form factor to be different from the right-hand side

nally, in Sec. VIIl we give a summary of the results and draw(RHS) of this equation at lowQ®. We shall show in Sec.

our conclusions. Important technical details of the analysig/!l D how to remedy this problem. The leading-twist factor-

are supplied in five Appendixes. izable contribution can be expressed as a convolution in the

form

Il. QCD FACTORIZATION APPLIED FoO( Q2 uB) = 0% (X, 1B @ Th(x,y,Q% iR

TO THE PION FORM FACTOR
L o _ Q® (y,ud), 2.3
The outstanding virtue of factorization is that a hadronic y (v, 18) 23
process can be dissected in such a way as to isolate a Pafhere ® denotes the usual convolution symbph(z)
tonic part accessible to PQCD. Provided that the partoni¢y; g(z)= [1dzA(z)B(z)] over the longitudinal momentum

subprocesses are free of IR singularities, then at large m??action variablex (y) and represents the factorization
mentum transferF .(Q?)/f2~1/Q? modulo logarithmic . y HF TEP )
) e . scale at which the separation between the Iqsgall trans
corrections due to renormalization. Hence, the amplitude for .
T ) . -verse momentuinand short-distancéarge transverse mo-
the electromagnetic pion form factor is short-distance domi- entun dynamics takes place, withy standing for the
nated and can be expressed in terms of its constituent quarmc, ayn . P X R 91 i
; . . : . renormalizationcoupling constantscale. A graphic illustra
collinear to the pion with the errors of this replacement bemg[. : ; .
. ion of the factorized pion form factor in terms of Feynman
suppressed by powers ofl/ Even more, one can rigorously diaarams is given in Fig. 1
dissect the QCD amplitude into a coefficient function that E' e T g 2. 29'2 ' is the hard-scattering amoli-
contains the hard quark-gluon interactions, and two matrix dee S,esgr(ib,iz'Qs'r’:éFr{-léiRs)tarfce einteiact?zgﬁs eat %hg parton
elements corresponding to the initial and final pion states (31“ I’ : i t% litude f I I P K
the leading-twist operator with the quantum numbers of th e"t_e' "elz itis 'fhatmf: ude Orf‘r%o ltneaL \:)a ence tqu?r :
pion according to the operator product expangiofB. In aﬂ |?uar _tﬂa'r Wi to atmon:jen uri’ struck by 5]“. vir u?
this way, one establishes that the coefficient function WillpfO on W'“ |m0||ﬂen uny Olfn typ agkam n a'(t:r?n Igura u;m
scale asymptqtically according to its dimensionality m_odglo0 , i Sira gngiggCgeq:;}(r:u-lzltqeguaerrtupr)ggtiy/vél iT?dTee?oLrer:
anomalous dimensions controlled by the renormalizatio g and ca P y
group equation. of an expansion in the QCD coupling, the latter to be evalu-

The pion’s electromagnetic form factor is defined by the@t€d at the reference scale of renormalizaigit
matrix element
T(X.Y,Q% uE, ud) = al R TY(x,y, Q%)

2, 2
+ as(MR)

(m (P30 7 (P))=(P+P"),F.(Q%, (2.
A T&l)(xiyinrl*LIZ:’lqu)—i_ Tt

whereJ,, is the electromagnetic current expressed in terms
of quark fields, P’ —P)2=qg?=—Q? is the photon virtual- (2.9
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The explicit results for the hard-scattering amplitude in LOadvocated in Refs.[18,20,21,23,25,42,67,79that at
and NLO accuracy are supplied in Appendix A. All trans- momentum-transfer values probed experimentally so far, this
verse momenta below the factorization scale that wouldatter contribution, though power suppressed because it be-
cause divergences associated with the propagation of partohgves like 10* for large Q?, dominates and mimics rather
over long distances have been absorbed into the pion DAgvell the observed ©@? behavior. To account for this effect,
which have the correct long-distance behavior, as dictated bye will include the soft contributiohi25] (discussed in Sec.
nonperturbative QCD. VIl C) into our form-factor prediction when comparing with
Because the QCD perturbation series expansion in thée data, albeit the poor quality of the latter at higl@
strong coupling is only asymptotic, this calculation bears arfn@kes it impossible to draw any definite conclusions about
intrinsic error owing to its truncation that is of the order of (€ transition from one regime to the other. Therefore, our
the first neglected term-C/QP, with C and p being, in main purpose in this paper is to <_:a|cu|ate the fact_orlzaple
general, dependent on the particular observable il$ontr|but|on as accurately as possible. The calculational in-

qguestion—here the pion form factor. Lacking all-order re_gre((;;eﬂgsew;llls bae ;oon erturbative input a set of pion DAS
sults for the perturbative coefficients, one has to resort to P b b

fixed-order, renormalization-, and factorization-scheme-(’o”(X"uO)’ derived in Ref.[1] from QCD sum rules with

o nonlocal condensates, with the optimum one, termed BMS
dependent contributions @ECI(QZ, ,ué) that do not exceed P

. . . ~model, standing out;
beyond the NLQ 26]. The truncation of this series expansion (b) evolve ¢_(x MZ) by employing a kernel and corre-
at any finite order introduces a residual dependence of th AN

€ponding anomalous dimensions up to N[D,71,8Q both

corresponding  fixed-order or partly resummed hardyinin the standard and the analytic perturbation theory:

scattering amplitude and, consequently, also of the finite- (c) employ a hard-scattering amplitude

order prediction forF™®, on the renormalization scheme Tu(x,y,Q% u2, 42) up to NLO ordef26,80—88, using both
adopted and on the renorr_ne_llization Scalechosen. In ordc_er standard power and also non-power-series expansions;
that the perturbative prediction comes as close as possible to (d) take into account the sofhonfactorizablg contribu-
the physical form factor, measured in experiments—which istion Fronfacy 32y “on the basis of the local duality.D) ap-

e)r(]agit::);;nggﬁgpr;e:;:fei?h;ent?ég][al'iﬁﬂ;?\yeo:‘fraunns}onproac_h when comparing the theoretical predictions with the
phy P P experimental data.

would be the one that minimizes the error owing to the dis-
regarded higher-order corrections. This can be accomplished,
for instance, by trading the conventional power-series pertur- ll. PION DISTRIBUTION AMPLITUDE
bative expansion in favor of a nonpower series expansion in
terms of an analytic strong running coupling, performing the
calculations in the framework of analytic perturbation theory ~ Turning our attention now to the pion distribution ampli-
to be discussed in Sec. VI. Here it suffices to state that in thigude, we note thatb,(x,u2) specifies in a process- and
framework the QCD running coupling has an IR fixed pointframe-independent wayhe longitudinal-momentumP dis-
and hence avoidso ipsolR-renormalon ambiguities allow- tribution of the valence quartand antiquark which carries a
ing to adopt a BLM scale setting procedure. fraction x=1—x) in the pion with momentunP. At the
By convoluting the finite-order result for the hard- twist-2 level it is defined by the following universal operator

scattering amplitude, expressed in the form of 4), with matrix elemenisee, e.g., Ref.13] for a review
the distribution amplitud€3.5) truncated at the same order

A. Nonperturbative input

in ¢, an additional residual dependence on the factorization (0[d(2) ¥ ¥5C(z,0u(0)|7(P))| 2_¢
scheme and the factorization scalg appears. We show in )

Appendix B how to get rid of the factorization scale depen- :-P,Lf dxe*@P P 2_,-2)y (3.7
dence at fixed order of perturbation thedNLO) by proving ! 0 X o=z 5, (3.1

that noncanceling terms B°(Q?; u2) are of order? . For
an alternative way of handling theﬁ dependence, we refer 1
the reader to Ref§27,77]. For practical purposes, the pref- j D (x,ud)dx="_, (3.2
erable form of the convolution equation f(ﬂfECt(Qz) is
given by adopting the so-called “default” choice, i.e., setting
in Egs. (2.3,(2.4 uZ=Q? Note, however, that the same
choice of scale in different schemes yields also to differen
results for finite-order approximants for the pion form factor _
[78]. Problems connected with heavy-quark mass thresholds (0]d(0)y, ysu(0)|w*(P))=ip,f, (3.3
in the B function are given below particular attention both in
the hard-scattering part and in the evolution part. and where

Another crucial question is whether the factorizable
PQCD contribution to the pion form factor is actually suffi-
cient to describe the available experimental data, or if one ?Provided the same factorization scheme is used for all considered
has to take into account the soft part as well. It has beeprocesse$16,69.

with f_=130.7+0.4 MeV [86] being the pion decay con-
tstant defined by
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where [d?k, ] is an appropriate integration measure over
(3.4 transverse momentfil2], helicity labels have been sup-

pressed, and a logarithmic prefactor due to quark self-energy
is the Fock—Schwinger phase factapined the color “con- @nd photon-vertex corrections has been absorbed for the sake
nector” in Ref. [87]), path-ordered along the straight line ©f simplicity into the definition of the pion wave function.
connecting the points 0 argl to preserve gauge invariance. The_non_perturbatl;/e input, 82.|IaS t_he pion DA at the initial
The scaleu?, called the normalization scale of the pion DA, Normalization scalgeg, ¢.(x,up), will be expressed as an
is related to the ultraviolelUV) regularization of the quark- €xpansion over Gegenbauer polynomials that form an eigen-

field operators on the light cone whose product becomes sifunction decomposition, having recourse to a convenient rep-
gular for z2=0. resentation that separates theand x> dependencéa de-

Although the distribution amplitude is intrinsically a non- tailed exposition can be found in R¢fL6]). Then, the pion
perturbative quantity, its evolution is governed by PQ@D DA at the initial scaleug reads
detailed discussion is relegated to Appendixadd can be

expressed in the form ©.(x, 12) = 6x(1—X)[ 1+ ay(u2) C¥2x— 1)

(Dﬂ'(XI/J'IZ:): U(X,S;,LL?:,,LL%)(%CD,T(S,M%), (35) +a4(/.LS)Ci/2(2X_ 1)+ B ], (38)

z
C(02)= Pexr{ - igsj0 A% (y)dy*

where (I)w(s,,ug) is a nonperturbative input determined at

some low-energy normalization point; [where the local ~With all nonperturbative information being encapsulated in
operators in Eq(3.1) are renormalizeg—which is of the the coefficients,,. These coefficients will be taken from a
order of 1 Ge\Z—while U(X,S;MIZ:,M%) is the operator to QCD sum-rule calculation employing nonlocal condensates
evolve that DA from the scalg? to the scalex? and is [1_,34], and we refer the reader to these works for more de-
calculable in QCD perturbation theory. In the asymptoticta'ls' 2Here we only use the results obtained there. Wezfound
limit, the shape of the pion DA is completely fixed by PQCD @ #o=1.35 GeV¥ and for a quark virtuality of Ag

with the nonperturbative input being solely contained jn ~ =04 GeV:
Neglecting thek, dependence of the hard-scattering am-
plitude at largeQ?,® it is convenient to introduce a dimen- ag=1, a,=0.19, a,=—0.13,
sionless pion DA .(X), normalized to 1, ag=5x10"3, a=4x10°%,  a,=4x10°2,
D (%, 115) = F o (X, 1), (3.6 (3.9

that can be defined as the probability amplitude for findingy,e appreciates that all Gegenbauer coefficients with#
two partons with longitudinal momentum fractiorsandx  are close to zero and can therefore be neglected. Hence, to

“smeared” over transverse momerka< u?, i.e., model the pion DA, it is sufficient to keep only the first two
, coefficients, which we display below in comparison with

X, u2) = J'kf# d2k x.K), 3. those for the asymptotic DA and the GZ3] model after

enlX.n) 0 [, Jgixk,) S two-loop evolution to the reference scal§=1 Ge\?, i.e.,

Pas’ 8,=0, n=2 /-L(%:/-leir
epvs: a,=0, n>4 a,=0.20, a,=—0.14 u3=1 Ge\?,
¢czi 3,=0, n>2  a,=0.56 ui=1 Ge\2. (3.10
|
The shapes of these DAs are displayed in Fig. 2. in the literature that double-humped pion DAs should be
At this point some important remarks and observationsavoided because they may emphasize the end-point region,
are in order. where the use of perturbation theory is unjustified, is un-

(1) The BMS pion DA, though doubly peaked, has its founded.
end pointsx—0 andx—1 strongly suppressed due to the (2) The BMS pion DA approaches asymptoticaly in
nonlocality parametexg. Hence, fears frequently expressed the endpoints frombelow whereas¢c, approaches the
asymptotic limit fromabove which means that the endpoint
behavior of the latter is dangerous until very large values of
2 - . . .
3This actually means that for all initi&?,<Q? and analogously Q- It is well known [15,16,2§ that in the endpoint region
for all final 12,<Q?, radiative corrections sense only single quark X—1 the spectator quark in the hard process, carrying the
and gluon lines. small longitudinal momentum fractior, can “wait” for a
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2 ‘ ‘ - ‘ ‘ the longitudinal momentum fractions is approximated by a
o-function §(x) and its derivatives. For that reason, the con-
densate terms, i.e., the nonperturbative contributions to the
sum rule, force the pion DA to be end-point-concentrated,
with the perturbative loop contribution proportional x¢1

—X) being insufficient to compensate these two sharp peaks
atx=0 andx=1. Allowing for a smooth distribution in the
longitudinal momentum for the vacuum quarks, i.e., using
nonlocal condensates in the QCD sum rulas done in the
derivation of the BMS pion DA the end-point regions of the
extracted DA are suppressed, despite the fact that its shape is
doubly peaked.

(5) The end-point behavior of the pion DA is the root
cause why the pion-photon transition form factor—which in
LO is purely electromagnetic—calculated with the CZ pion
DA was found[43] to overshoot the CLEO data. More re-
cently, the analysis of the CLEO data using light-cone sum
rules[31,38-4Q has excluded the CZ pion DA at thesr4
confidence level, while the BMS DA was found to be inside
long time until it exchanges a soft gluon with the struck the 1o error ellipse for \g=4 GeV’), whereas even the
quark to fit again into the final pion wave function. As a @Symptotic DA was also excluded by the CLEO data at the
result, a strong Sudakov suppress[@8] is needed in that 3o level. The_se guoted flno_llngs are reflecte_d_ in the behavior
case in order to justify the use of perturbation theory. InOf the predictions for the pion-photon transition form factor
contrast, the end-point behavior of the BMS DA is not con-displayed in Fig. 4, which is based on the corrected version
troversial because, though doubly peaked, it does not emph&f Ref.[1] (the displayed strip is therefore slightly different
size the end-point regions. Even more, as Fig. 3 shows bffom that in Ref.[47]). .
plotting the first inverse momentx~1),, calculated as To make these statements more transparent, let us define
fﬁ*o'ozgow(x)x’ldx and normalized to 100%y( axis), the the DA profile deviation factor
BMS DA receives in this region even less contributions than (x~1y#
the asymptotic DA, as we explained above. . A= - T =1l+a,tas+---, (3.11

(3) By the same token, the Sudakov suppression of the (x~1yhs
end-point region of the BMS DA is less crucial compared to
end-point-concentrated DAs. The implementation of Sudawhich quantifies the deviation of a model DA from the
kov corrections using the analytic factorization scheme wassymptotic one and supply its value in Table | for several
considered in technical detail in R¢R28] for the case of the pion DAs suggested in the literature in comparison with the
asymptotic pion DA. Such an analysis for the BMS DA is constraints from the experimental data and theoretical calcu-
more involved and will be conducted in a future publication.lations. Reading this table in conjunction with Fig. 4, one

(4) The deep reason for the failure of the CZ DA was comes to the conclusion that the BMS “bunch” provides the
provided in Refs[65,66,89. The condensate terms in the CZ best agreement with the CLEO and CELLO experimental
sum rules are strongly peaked at the end paoirtsD andx  constraints, being also in compliance with various theoretical
—1, the reason being that the vacuum quark distribution irconstraints and lattice calculations.

FIG. 2. Comparison of selected pion DAs denoted by obviou
acronymsip,s (dotted ling, ¢z (dashed ling[13], and¢gys (solid
line) [1], defined by Eq(3.8) in conjunction with(3.10. All DAs
are normalized at the same scalg~1 Ge\2.

10 10

BMS

(b)

FIG. 3. Percentage distributidsee texx of the first inverse moment ix of the BMS model DA 1] in comparison with the CZ onfe 3]
(a) and the asymptotic DAb).
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0.2} QQFW*WﬁW(QZ) (GeV] T

0 2 4 6 8 10
Q* [GeV?]

FIG. 4. Light-cone sum-rule predictions fQZFy* 7_”T(Qz) in comparison with the CELLQdiamonds[90]) and the CLEQ(riangles,
[35]) experimental data evaluated with the twist-4 parameter vam_q:OJQ GeV [39,40. The predictions shown correspond to the
following pion DA models:pc, (upper dashed ling13], BMS-“bunch” (shaded strip[1], two instanton-based models, vig91] (dotted
line) and[92] (dash-dotted ling and the asymptotic pion D, (lower dashed line[9,11]. A recent transverse lattice res{#3] is very
close to the dash-dotted line, but starts to be closer to the center of the BMS st@p=*@ Ge\?.

B. Perturbative NLO evolution %LTO(X,M%) =6xX(1—X)[1+ aE'LO(,uﬁ) Cg/Z(ZX— 1)

Let us now discuss how the pion DA evolves at NLO +alo(u?)Ccd2x—1)], (3.12
using first standard perturbation theory to be followed by
analogous considerations within APT. The evolution of thewhereaS"°(u2) andal*°(u2) are given by(C18 taking
distribution amplitude3.8) proceeds along the lines outlined recourse tqC14), and D denotes “diagonal,” while ND be-
in Appendix C. Taking into account only the first two Ge- low stands for “nondiagonal.” On the other hand, the solu-
genbauer coefficients and LO evolution, one obtains tion of the NLO evolution equation takes the form

TABLE I. Estimates for the Gegenbauer coefficients and the DA profile deviation fagtap to polynomial order 4 for the asymptotic,
the BMS, and the CZ DAs compared with constraints derived from light-cone sum (L@SR9, QCD sum rulegSR9 with nonlocal
condensate€NL QCD SR ) for the DA and the inverse momeft~1),2 and by analyzing the CLEO data. Also shown are the corresponding
entries for instanton-based modeADT, Petrov, Polyakov, Rushkov, Weiss, and Go¢R®RWQ, Praszalowicz and RostworowsiR)]
and those associated with a transverse-lattice calculation—labeled Lattice. All values displayed are normalized at thé scale
=1.35 GeV, corresponding to the scale of NL QCD SRs.

DA models/methods a, a, a,+ay a,—ay A,
Asymptotic 0 0 0 0 1
BMS 0.19 -0.13 0.06 0.32 1.06
Ccz 0.52 0 0.52 0.52 1.52
PPRWG[91] 0.042 0.006 0.05 0.04 1.05
PR[134] 0.09 -0.02 0.07 0.10 1.07
ADT [94] 0.05 —0.04 0.01 0.09 1.01
Lattice [93] 0.08 0.02 0.10 0.06 1.10
LCSRs[33] [0.07,0.37 — — — 1.22+0.15
NL QCD SRs for DA[1] [0.13,0.23% [—-0.04-0.202 [+0.02+0.09 [+0.18,+0.46] 1.06+0.04
NL QCD SRs for(x ™) [1] — — [+0.00+0.20] — 1.10+0.10
CLEO 1o limits [40] [0.15,0.43¢ [—0.60,-0.04 2 [-0.21+0.15 [+0.21+1.00] 0.97+0.18
CLEO 2¢ limits [40] [0.11,0.47% [—-0.71+0.07] 2 [-0.31+0.25 [+0.07+1.14] 0.97+0.28
CLEO 3o limits [40] [0.07,0.51 ¢ [—0.82,+0.19 2 [-0.41+0.35 [-0.07+1.28] 0.97+0.38

®Note that the uncertainties on the Gegenbauer coefficentnd a, are correlated. Here, the rectangular limits of the fiducial ellipses
extracted from the NL QCD SR4] and from the CLEO data in Refg39,4Q are shown.
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1.75 O (m,uz) 1.75 P (a:, “2)

FIG. 5. The left panel shows the effect of the LO diagonal part of the evolution equatiof8.E8, on the BMS DA. The convex solid
line denotes the asymptotic profile of the pion DA, the other solid one stand;sBﬁ;g(x) at 1 GeV?, while the broken lines represent
chMS(x) at 4, 20, and 100 Ge\/(with the larger scale corresponding also to the larger value of the DA at the middle. (Rigtt panel:
Comparison Of(pBMS [Eg. (3.12—solid line] and @Ek,l% [Eq. (3.13—dashed lingat 20 Ge to illustrate the effect of NLO evolution.

Mgs=4.3 GeV(with M;=M,=M3=0) has been employed

[96]. A discussion of the relation of this exact solution to the

(3.133 usual approximation, promoted by the Particle Data Group
' [86], has recently been given in R¢#0] (see also Appendix

where 0.

2
as(up)
NLO(X, 2)+ (,DND'NLO(X, '2:)

NLO 2 D,
er (X up)=¢, s

(PBNLO( aM;ZZ) IV. PION FORM FACTOR AT NLO: ANALYTIC RESULTS

The NLO results for the hard-scattering amplitudgare
=6x(1—x)|1 E DNLO( 2y C¥2(2x—1) summarized in Appendix A. Setting if2.4) uZ=Q? and

- taking into account the NLO evolution of the pion QAvia
(3.13np  (3.13, we obtain from(2.3)

and FEYQ% ud) =FL2AQ%uR T FY Q% kB, (4D
where the LO term is given by
ND NLO ND,NLO 3/2
o) =x(17) 2 an" D Ca2x=1). FLO(Q% ud) = s B) FO(Q2), (4.2
(3.130

D,NLO ND,NLO

Q*FR(QY=8nf7[1+a3" QY
The coefficientsa, (2 F) anda, (,u,zz) are given in DNLO, 2112
(C19b and(C190, respectively, by employingC15), while +a Q) (4.3
2" denotes the sum over even indices only. Note that, alang the calligraphic letters denote quantities with thejr
though the input DA (X, 45), was parametrized by only gependence pulled out. In order to make a distinction be-
two Gegenbauer coefficients, and a4, higher harmonics tween the contributions stemming from the diagonal and the
also appear due to the nondiagonal nature of the NLGondiagonal parts of the NLO evolution equation of the pion

evolution? The effect of the inclusion of the LO diagonal DA, we express the NLO correction to the form factor in the
part of the evolution kernel is important, as one sees from thqbrm

left part of Fig. 5, which shows this effect for the BMS pion
DA.

On the other hand, from the right part of Fig. 5, we de- FNOQ2 ud)=—— S(MR) [FONO(Q2?; ud)
duce that the NLO nondiagonal evolution is rather small. We
note that in the above computation the exact two-loop ex- +]_-I\JD,Nu_o(Qz.NM =x)] (4.9
w ’ ax .

pression for as [95] in the MS scheme Lacp
=410 MeVN;=3) was employed, cf(6.15, in which  and write the diagonal contribution

matching at the heavy-flavor thresholl¥s,=1.3 GeV and
’ ’ . FENO(Q2 uB)=boF HO(Q2 uE) + CrF Q)

+CeF QY (4.5
“Sinceal\PNO(u2) decreases with, for the purpose of numeri- N
cal calculations, we use an approximate form¢@f-=C(x,«2) in as a color decompositiofin correspondence withA3)] in
which we neglecaY>NO(42) for n>100. terms of
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Q?FA(Q% pR) =2t

5 3+(43/6)a NLO(Q?) +(136/15a) NLO(QZ)

PHYSICAL REVIEW D 70, 033014 (2004

Q2
7 |[1+22™ Q%) +a3 M (Q?) 12,

497 161
S7 Q% |-

QZFS'F%QZ):zwfi( - 761 ay ”L°<Q2>[ 6

1387 ADNLO
-5 M@ )H

and
Q?F1O Q2 =27f2{—0.67+aYN°(Q?)[18.70
+16.35D,NLO 2)]+aD NLO 2)[24_23
+36.765N°(Q?) +20.26N°(Q?) ]},
(4.60

where the superscripts F and G refer to the color fadBys
andCg=

two terms[cf. Eq. (A7)]:
Q2FUFE Q?)=27f2{-15.67-a>NC(Q?)[21.52
-6. ZbD NLO(Q )] aD NLO(QZ)[7.37
—37.4m>N°(Q?) - 33.617M°(Q?)]}.

LEN 1+ayNO(Q?) +a7 M (Q?) MR

Crg—Ca/2, respectively. Note that for the matter of
calculational convenience, we also display the sum of these

(4.6

1123 9793
DNLO
@ )[ 450

300 a-g,NLO( 2)

(4.6b

whereNy,, denotes the maximal number of Gegenbauer har-
monics taken into account in order to achieve the desired
accuracy.

As it was shown in Ref[26], the effects of the LO DA
evolution are crucial. In order to investigate the importance
of the NLO DA evolution, we compare the predictions ob-
tained using the complete NLO results, given above, with
those derived by employing only the LO DA evolution via
(3.12. The corresponding expressions in this latter case fol-
low from those above by performing the replacements

adNO_,aPLO and a\PN-O_, 4.9
so that the contributioF N\°N-9(Q?; 13) is absent. Introduc-

ing the notation

F=F "I 0 o evolution: (4.10
(4.7
. we analyze the relative importance of the various contribu-
On the other hand, the nondiagonal term reads tions [LO, NLO, and local duality(LD) part—see Sec.
Q2FNPNLO(Q2 N, ) = 47 f2[ 1+ aDNO(Q?) VIl C] by defining the following ratios:
Nivax LO; A2 ND,NLO/ ~2.
+aPNo(Q 2)]22, alPNLO(2) R(O? Ny = F Q)+ (ag/m)F (Q% Npmax) |
FLAQ) + (as/ m) F P NO(Q? Nyay=0)
(4.9 (4.17
|
B(O% Ny F22(Q2) + aoF-2(Q) + (@l m) FYPNO(Q% Nyyay) w12
s INM = I .
P FPQY) + aoF Q) + (a2l m) FYPNO(QF Nyay=20)
F(Q%
Rinod Q2) = = : (4.13
" FLAQY) +(as! m) FRPNO(Q? Nygar=2)
. FL(Q)+aF2(Q%)
Rmod Q%)= - (4.14

FP(Q2) + as FEO(Q?) + (a2l ) FNPNO(Q2: Nyy= )
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1.002 1.002
il ﬁ 1 ﬁ J—
0.998 /’//' R(Q* Narax) 0.998 /,;”'/ - R(Q?, Nrax)
0.996 ',-"' 0.996 4';//
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FIG. 6. (Color onling Left: The ratioR(Q? Nya . defined in Eq(4.11), for three different values ad? as a function oNy,,. The blue
dotted curve corresponds @=2 Ge\?, the green solid curve t9?=10 Ge\?, and the red dashed one @ =50 Ge\?. Crosses of the
same color represent the valuesR{iQ? Ny.x=4), whereas triangles refer R,,,{Q?), Eq.(4.13. Right: The same designations hold as

for the left side, but now for the ratié(QZ,NMax) given by Eq.(4.12 and correspondingly fomeod—Eq. (4.14).

These ratios are displayed graphically in Fig. 6 for the BMSavoidably on the renormalization scale and scheme choice.
DA [a(u2)=0.2,a,(u3)=—0.14] in the regionNy.,=4  If one could optimize the choice of the renormalization scale
—100. We infer from this figure that, adopting in our calcu- and scheme according to some sensible criteria, the size of
lations an accuracy on the order of 99.5%, we can safelyhe higher-order corrections, as well as the size of the expan-
neglect the nondiagonal part of the NLO evolution equatiorsion parameter, i.e., the QCD running coupling, could serve
and use for the pion form-factor computations to follow theas sensible indicators for the convergence of the perturbative
approximate expressioimitting the superscript apprpx expansion. In what follows, we shall consider several scheme

5 and scale-setting options.
Foe PP Q% uh) = arg( mR) F(Q% ) o
A. MS scheme

2 2
ag(pr) . . .
+ STRFE'NLO(QZ;Mé). (4.15 The results we have presented in the previous subsection
were obtained in th&1S renormalizatio{and factorizatioh
Actually, the difference betweenF2MO(Q2; 42) and scheme. Let us discuss the choice of the renormalization
’ T ’

FONLO(92: 1,2) is of the order ofrg(Q?), so that it is safe to  SCACAR I some more detail. We see that in our NLO re-
USWE ev(egywlﬁz)re only the LO evcs)ﬁign. We have verified insults, Eq.(4.4), this dependence is contained in the coupling

2 i iopF(18)
our numerical calculations that the difference is indeed les onstantay( ur) as W.e” as in t_he NLO correcthlﬁ.-‘ﬂ )
than 1%. he latter correction is proportional to tl coefficient of

the B function and isN; dependent. Hence, a natural ques-
tion arises: How can we determine the right valueNgfin
the form-factor expression?
We propose here to apply the following procedures.
The choice of the expansion parameter represents the ma- (i) The first one concerns the standard chqige= Q? and
jor ambiguity in the interpretation of the PQCD predictions suggests to shif,uzR at the heavy-quark threshold in order to
because finite-order perturbative predictions depend urensure the continuity of the form factor according to

V. SETTING THE RENORMALIZATION SCHEME
AND SCALE

FEN Q% uz=Q) Iy =3 for Q*<Mj3;
FlaciQ2)={ FaNQ?% uk=Q%+6uf)ln,-a for {M2<Q? Q%+ u2<M2 (5.19
FR(Q% ug= Q%+ Spi+ dub)ln,—s for ME<Q?+ou2.

SActually, to the order we are calculating these dependencies, they can be represented by a single parameter, say, the renormalization scale
becausé, andb; are renormalization-scheme invariant.
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TABLE Il. Scalesupys, “rac, #ev » @nduy for the asymptotic, the BMS, and the CZ DAs.

DA QZ/lfvéAc QZ/MrZDMS QzlﬂéLM QZ/M\Z/ Q?

As 18 27 106 20 any
BMS 16-20 24-29 105-117 20-22 1-50 GeV
Cz 146-62 217-92 475-278 90-52 1-50 GeV

As a result, we have to fulfill the following matching condi- coefficient in the perturbative expansion of the physical
tions: quantity in question vanishes, which here means

fac 2.p012
F7T t(M41M4)|Nf:3 FL\ITLO(QZ;MZR: IU’IZ:AC):O' (53)
:FECt(Mzzu?M421+5M421)|Nf=4: (5.1b
On the other hand, following the principle of minimum sen-
sitivity (PMS) [99—-107, one mimics locally the global inde-
pendence of the all-order expansion by choosing the renor-
malization scalewg to coincide with the stationary point of

FEo(ME- 5M§?M§)|Nf:4

=FR(ME— 55 ; M3+ 5ud)|n s the truncated perturbative series. In our case, this reads
(5.10
(ii) The second procedure addresses specifically the BLM d FLO02 ,2)+ ENO(02: 42\ 2. 2 =0
scale setting.2= w3, , - In this case, the only problem is the d,ué[ = QR QR Nz
small value of the BLM scalésee Table Il due to the fact (5.9

that the by term is completely absent and;-dependent
terms do not arise. Therefore, we propose to implement the
BLM scale setting only above some minimal scaley, -
Below this scale, which is in the range of the typical meso
scales and hence only the light-quark sectdy=€ 3) contrib-
utes, we fix u2=p2,, and set Ny=3 using the

In the Brodsky-Lepage-Mackenzi¢éBLM) procedure
n[62]' all vacuum-polarization effects from the QG®func-
tion (i.e., the effects of quark loopsre absorbed into the
renormalized running coupling by resumming the large
LB A2. .2 . . - (bgag)" terms, giving rise to infrared renormalons. Accord-
F 7" (Q mimin) term in the form provided bys.13—more ing to the BLM procedure, the renormalization scale best

explanations W'II be given shortly._ . . suited to a particular process at a given order of expansion
The truncation of the perturbative series to a finite order,

introd idual d d t th | h an be, in practice, determined by demanding that the terms
Introduces a residual dependence of the results on the ScaE?oportional to theB-function should vanish. This naturally
MR, While the inclusion of higher-order corrections de-

_connects to conformal field theory and we refer the interested

creases thlshdependelnce.b!\lonethfel?]ss, we abre still left IWI ader to Ref[103] for a recent review. The optimization of
an intrinsic theoretical ambiguity of the perturbative resultS.yo renormalization scale and scheme setting in exclusive

One can try to estimate the uncertainty entailed by this am- rocesses by emplovina the BLM scale fixing was elaborated
biguity (see, for example, Ref26]) or choose the renormal- b y empioying g

oo . ) in Ref.[45] and in references cited therein. The renormaliza-
ization scaleur on the basis of some physical arguments.

he simpl idel hoi : : . tion scales in the BLM method are “physical” in the sense
_ The simplest and widely used choice jog is to identify ¢ they reflect the mean virtuality of the gluon propagators
it with the large external scale, i.e., to set

involved in the Feynman diagrams. According to the BLM

2 2 procedure, the renormalization scale is determined by the
mr=Q%, (5.2 condition

the justification for adopting this choice being mainly a prag-

matic one. However, physical arguments suggest that a more FP(Q? h= phiwm) =0. (5.9
appropriate scale should be lower. Namely, since each exter-

nal momentum entering an exclusive reaction is partitioned ) ) ,

among many propagators of the underlying hard—scattering;r calculational convenience, we exprgsg in terms of
amplitude in the associated Feynman diagrams, the physicad °

scales that control these processes are related to the average

momentum flowing thr(_)ugh the internal quark and gluon ,LLﬁ:a(QZ)QZ (5.6
lines and are therefore inevitably softer than the overall mo-

mentum transfer. To treat this problem, several suggestions

have been made in the literature. According to the so-callednd proceed to calculate this quantity in the above-
fastest apparent convergen@®AC) procedure[97,98, the  mentioned scale-setting schemes. Then, the FAC procedure
scale ur is determined by the requirement that the NLO leads to
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apws(Q?) =e “ap(Q?) (5.9

w| o

apac(Q?) = exr{ -

with clzbllbé. This value corresponds to the stationary
3+(43/6)a2DvNL0(Q2)+(136/15a5vNL0(Q2) point (the maximum of the NLO prediction forFf;';‘C‘.

- On the other hand, for the BLM scale one obtains
1+a7" Q%) +a2™(Q?)

4 FEFOQY)+FIPNOQ?)

" by : B =2 (Q) Q% (5.93
bo FOQ?) ' (5.7) Mam=apm(Q)Q

which can be related to the PMS procedure via where

) 5 3+(43/6)a5NC(Q?) +(136/15a2N°(Q?)
(O TS T e r QY |

(5.9b

The values of the scalgspys, wrpac, andug v for the it is possible to improve this scale-setting procedure in the
asymptotic, the CZ, and the BMS DAs, defined®10, are  following way.
listed in Table 1. One notices that the BLM scale is rather First of all, let us rewrite the BLM prescription in the
low for all considered DAs. This makes its applicability at more suggestive form
experimentally accessibl@? values rather questionable. But

1 B&
Fo(Q%uf), FEQ% uh) = 27 70(Q)n ]
4 ram(Q?)
BLM
= {F(Q% uém(Q9), FU(Q% ugim(Q%)=0}. (5.10
|
It becomes evident that when the BLM scale yieldsvalues Himin™ M- (5.1

close to unity, perturbation theory breaks down. To avoid this

happening, one can, of course, introduce ad hoc a cutoff for 5 _ _ _

as, operative, say, above 0.5-0.6, or one can “freezg’at Here g stands for a typical nonperturbatiieadronig scale

low Q2 scales to some finite value by introducing an effec-in the range 0.4-1.5 GéVand corresponds roughly to the
tive gluon masg45,63.5 Still another possibility is to use Inverse distance at which the parton and hadron representa-

the analytic coupling56], as done in Refg28,29 (see next tions have to match each other. Note that the smaifg, is
section. chosen, the deeper the end-point region1 can be ex-

In order to protect the BLM scale from intruding into the pIored for smaller values @2. Itis intuitively clear that the
forbidden nonperturbative soft region, where perturbatiorfypical parton virtuality in théhard Feynman diagrams—let
theory becomes invalid, one can make use of a minimunts call it,ué—should not become less than its counterpart in
scale,unmin, based on the grounds of QCD factorization theo-the pion bound statazfr. Because the latter is linked to the
rems and the OPE, as applied for instance in Ref84—  scaleuj, the scaleu?;, should be limited from below by
107] and also in Ref[32]: this scale. Consequently, we assume that the following hier-

archy of scales—partoni@.e., perturbative and hadronic
(i.e., nonperturbative—holds:
SRestricting the value ofts does not necessarily limit the quark
and gluon virtualities in the Feynman diagrams to values for which 2 2 2 2
perturbation theory applies. )\q<Mo<Mq<MR scheme (5.12
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Then, if w3, y< w3, one obtains instead of E5.10), the IR
protected versiofftermed in our analysiBLM prescription

PHYSICAL REVIEW D 70, 033014 (2004

The scale-fixed relation between the couplinggs and
ay is given by[45]

{FLQ% 13 (@], FEAIQ?, 12 (Q)]=0} ay(1y) 8Ca

as( phm) = ay(py)| 1+ yp 3 +---], (5.153
BLM 1
= [ Fo(Q% min) 5 (Q% i) = 27 (Q4)In - where
2 =€ gy - (5.15b
ﬂ) } (513 . _ . _
1203,(Q?) The scalesuy associated with selected pion DAs are in-

cluded in Table II.

Taking into account Eqg5.15, the NLO prediction for
the pion form factor, given by Eq$4.1)—(4.8), gets modified
as follows:

This modification of the BLM scale setting enables us to
treat the problem of th&l; dependence of thg function in
the termF#)(Q?; 1) without any further assumptions or
modifications. Because of the fact that the sqafeis now
bounded from below by5.11), one is not faced with ambi-
guities related to the variation of the number of active flavors .-pNLO, ~2 D,NLO; 2\ — (LFG) A2 LO; ~2
N; due to heavy-quark thresholds in thg coefficient enter- w Q)= F7 QY =F2 QY +27(Q )('5 16
ing %) (Q? u2). According to this, we sell;=3 for u3 '
= w2, Whereas foua= ua > us;, there is no ambiguity We are not going to present predictions in this scheme using
by virtue of]-'STl'B)(QZ;MéLM):OI Therefore, the bona fide the standard QCD coupling, as this would require the intro-
BLM scale setting reads duction of exogenous parameters, like an effective gluon
mass, that cannot be fixed within the same approach but have
(5.14  to be taken from elsewhere. For such an application, we refer
the interested reader to the analysis of Rédf]. The con-
where i, Will be specified later on in connection with the nection of Ref[45] to the analytic approach, which we will
soft part of the form factor. use below, was discussed in detail in R&X9]. Predictions
for the pion form factor within thex,, scheme will be pre-
sented below in the context of analytic perturbation theory.

as(ni)— ay(pud),

MBIV = MaX LgLM » Mmin »

B. @, scheme

The self-consistency of perturbation theory implies that
the difference in the calculation to ordenf the same physi-
cal quantity in two different schemes must be of order
+1. This means that relations among different physical ob- A. One-loop case
servables must be independent of the renormalization scale |, ihe one-loop approximation we have a rather simple
and scheme conventions to any fixed order of perturbatiorl’enormalization—group(RG) equation for the running cou-
theory. In Ref[108] it was argued that by applying the BLM pling constant:
scale-fixing procedure to perturbative predictions of two ob-

VI. STRONG RUNNING COUPLING
AND NON-POWER-SERIES EXPANSIONS

servables in, for example, thdS scheme, and then algebra- darg(u?)

ically eliminating ars, one can link to each other any per- ——=B(p?), (6.1
turbatively calculable observables without scale and scheme dingp

ambiguity. Within this approach, the choice of the BLM 2, 2

scale ensures that the resulting “commensurate scale rela- Bricod 12)=—b (as(,u )) 6.2
tion” is independent of the choice of the intermediate renor- 1-loopl 4 o 47 ) '

malization scheme employed. On these grounds, Brodsky

et al. [45] have analyzed several exclusive hadronic ampli-With b given in Appendix A. The solution of this equation
tudes in theay, scheme, in which the effective coupling has the form

ay(p?) is defined by utilizing the heavy-quark potential

V(u?). The ay scheme is a “natural,” physically motivated (1) A2y _ Am
scheme, which by definition, automatically incorporates s (Q)= boIn(Q%/A2)’
vacuum polarization effects due to the fermion-antifermion

pairs into the coupling. Thﬁ\z, scale which then appears in where A=A cp is the QCD scale parameter. A well-known
the argument of they, coupling reflects the mean virtuality problem here is the appearance of an IR poldat A?,

of the exchanged gluons. Furthermore, siageis an effec-  which spoils the analyticity of the QCD running coupling.
tive running coupling defined by virtue of a physical quan- In a series of paper$2,56,109,110 Shirkov and So-
tity, it must be finite at low momenta, and, therefore, an lovtsov introduced an analytic running coupling that avoids
appropriate parametrization of the low-energy region shouldby construction the Landau singularity, thus generalizing ear-
in principle, be included. lier attempts by Radyushkifl11] and Krasnikov and Pivo-

(6.3
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TABLE Ill. Parameters entering E@6.22 for different values of the QCD scale paramemggg.

N¢{=3 N¢=3 N¢=3
Parameters Agtp =350 MeV Agtp =400 MeV Agtp =450 MeV
it —-1.012 —-1.015 -1.091
Aoy 57 MeV 67 MeV 69 MeV
In(A2/1 Ge\?) -5.738 ~5.412 ~5.349
varov [112]. To this end, they used the spectral representa- 47\ 2 1 Q2A2
tion for the QCD running coupling.s(Q?) (the bar over A(l)(QZ)I(—> + . (6.10
Q g plings(Q“) ( g 2 bo InZ(QZ/AZ) (AZ_ Q2)2

means that the analyticity property is valiahd expressed it

in the form

p(o)

oc+Q%—ie 6.4

— 1 (=
@)=~ "do

without subtractions due to the fact that the spectral density

p(o) decreases as 1fm for large o. The corresponding
one-loop spectral density reads

v

(1) e
pla) (bo)|n2(a//\2)+w2 69

and provides the one-loop singularity-free coupling function

1 . A2
IN(Q¥A%) A%2-Q?

4

Q%A=
b

. (6.9

Notice at this point some key properties of these functions:
(a) each.A{"(Q?) with k=2 tends to zero fo?—0;
(b) each A(Y(Q? has exactlyk—1 zeros for Q2
e[0,);
(©) whenQ?— =, eachA(M(Q?)|gz_..~ 1/IN{Q?] tends
to 0.
These properties are universal in the sense that they do
not depend on the loop order. The functiog Q?) are used
in the so-called analytic perturbation thed,3,6,56—58
where standard perturbative series, for example, for the Adler
function

as(Q?)
+

w

DQ%)=Ne2 ef| 1+ dy

™

as(Qz)r
R

(6.17

is recast into a non-power-series expansion to obtain

The first term on the RHS expresses the standard UV behav-

ior of the invariant coupling, while the second one compen-
sates the ghost pole &°=A? and has a nonperturbative

origin, being suppressed F— .

Let us now consider powers of the analytic coupling func-

tion. By performing an analytic continuation of thah
power of the function(6.3) in the complexQ?-plane, one
determines the corresponding spectral functipﬁé(o), (k
=1,2,...):

ST,
Pk bo In(—a/A?)]

which in turn determines the analytic imagé{"(Q?) of

[«P(QY)]K ie.,

(6.7

1= po)
W2y~ —
A(Q9) Wfo d0-0'+Q2_iE. (6.8
Fork=1,2,..., wehave
47\ dAD(Q?)
(1) 2 |- k
A1(Q9) = (kbo>—aln 02
APQ)=a(QYA?), 6.9

which for k=1 reduces to

2
A1(Q%) d,

™ Tr

Ax(Q?) N

1+ >

DAPT(Q%) = NCZ e
(6.12

The one-loop expressions fot; and.A, are given in(6.9
and(6.10, respectively.

B. Two-loop case

In the two-loop case the situation is more complicated.
The corresponding function reads

b0a2

ﬂZ—Ioop(a) = _471_

(6.13

1

with the first two beta coefficients given in Appendix A.
Integrating the RG equatio(6.1), we obtain the transcen-
dental equation

L Aar | N A ) b,
=—————c¢nfcy+t ————|, 1=,
@ a(Lgby T a(Lg)bg ! b3
Lo=In(Q¥A?). (6.19

As has been shown in Rd5], the two-loop running cou-
pling in QCD, being the solution of this equation, can be
written via the LamberWW_, function
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- A2\ e\ 77t 0.1 1 10 100 1000 10000
2(02)= - |1+ B el ‘ . . . : .
Q)= |1 wl( cel 2 H < o
S
(6.15 0.5
For some more explanations we refer the interested reader t0 4
Ref.[39], Appendix C, Eqs(C15 and(C20) in conjunction ) o
with Fig. 5. By performing the analytic continuation of func- %
tion (6.15 in the complexQ? plane, the spectral function ©-3 “
p®(o) can be determineflL13]: e
0.2 h S
) _ 4 | 1 (6 1@ ¢ e ee.ea
P b, ™ T Trwizont) @
0.1 1 10 100 1000 10000
where Q* [GeV?

1 ) FIG. 7. The solid line shows the approximate expression, given
z(o)= EGXF{_ olci+i(lle;—1)m].  (6.17 1y RRM(Q2), Eq. (6.22, whereas the bullets represent the exact
values of E@(QZ) taking into account heavy-quark threshold

. . . tching.
Then, the analytic couphng)_zgz)(Qz) in the two-loop ap- matening

proximation becomes Solovtsov terminology [4]—abbreviated by the self-

explaining label “fit") case another approximatidn:

2
K(Inf—z,cf2it1>

21

w (2)
;gZ)(QZ): %J do.p—w-)_ (6.18

0 ct+Q2—ie ;(sz,fit)(QZ): , (6.22

4o
bo(N;=3)"°
However, this expression is too complex to be treated ex- fit ; ;
actly. For that reason, Shirkov and Solovtsov suggested iWith the parameters,; and A ,, listed in Table Ill. The qual-

Ref.[2] to use instead the approximate expression ity of this approximation ensures a deviation less than 1% in

the wholeQ? interval and is illustrated in Fig. 7.
Nf:3

A To fix the parameteA , We use[86]
alPWNQY = prad tlo.en]. (619 P
a®(m2)=0.120, (6.23
— 1 1 . .
-4 - — 2 2 which gives us
a(?) €+ T—exi()’ €(Lg,C) LQ+C|n\/LQ+47T ,
(6.20 ANT3-400 MeV. (6.24)

QCD

with the samel 4 as in(6.14). This expression reproduces  Let us now focus our attention to powers of the analytic
both the UV two-loop asymptotic behavior as well as thecoupling function. By performing the analytic continuation
value at the infrared fixed poir®?=0 rather well. More  of thekth power of function(6.15 in the complexQ? plane,

specifically, above abou?=1 GeV#, it resembles the ex- one determines the corresponding spectral functidf$o),
act result with an accuracy in the range of 99% and can be=12 . . :

used for all higheiQ? values. Note in this context that the

one-loop expressio@l)(Qz), Eq. (6.3, can be represented ) 47 \ ¥ 1 X
PP = Im - =], (629
by bocq 1+Wq[z(1)]
), g AT which in turn provide the analytic imaged (?(Q?) of
ag’(Q) = b_oas(LQ)- 6.2D  [2P(Q)1; viz.,

2
The only feature not yet taken into account in the above Aﬁz)(QZ)zifmdo&. (6.26
approximation is the matching at the quark-flavor thresholds: mlo  o+Q%—ie

M,=1.3 GeV, M5=4.3 GeV, and Mg=170 GeV (with

M;=M,=M3;=0). However, taking into account this

matching, the approximate formu(&.19 starts to become  "This interpolation is based upon data contained in Refs.
inaccurate. As a result of the interpolation procedure, wg113,114 and also on unpublished data provided to us by B. A.
obtain then in this(so-called “global” fit in the Shirkov- Magradze.
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TABLE IV. Parameters entering E¢6.28 for different values of the QCD scale paramezte%‘&?.

N¢=3 N¢=3 N;=3
Parameters Agtp =350 MeV Agtp =400 MeV Aghp =450 MeV
i —1.549 —1.544 —1.534
Asp 29 MeV 34.5 MeV 41 MeV
In(A2/1 Ge\?) —7.088 —6.734 —6.399

These functions obey a more complicated recurrence relatioact and approximate expression starts to be negligible with
(k=1,2,...): the sizable deviation being confined in the regiQf
<1 Ge\~.

)2
M: —k-2 A2 (Q?)+ LA(Z) (Q?)
dInQ? Q| KFL 4hy” KF2 ’ C. Factorization of the pion form factor
at NLO under analytization

The analytization procedure of the pion form factor at
AP(QH=aP(QYA?). (6.27  NLO leads to ambiguities, first discussed in Rf9]. The
key question is: according to what analytization prescription
As a result of the interpolation procedure, we obtain in the2’® We replacing the running strong coupling and its powers
“global” case the following approximation fok=2, by their analytic images? In fact, it is possible to impose the
analytization of the NLO term of ™ following two differ-
ent main options:
A r| 1 (1) In keeping with our philosophy of the analytization of

A(Zz,fit)(Qz):[bo observables as a whol|€0,61], we may adopt anaximally

(Ny=3)] [L2 analytic prescription and use in the NLO term of the pion
form factor also the analytic image oﬁ This amounts to
exp(L)
[1—expL)]?), _ 2y gty
L= (n(QAZ)) 23 [FRHQ% 1) Tvaxan= 2P (u3) F2(Q%)
(6.28

) + EA(Z)(MZ).FNLO(QZ.,U/Z)
with the parametersll, and A ,, being listed in Table IV. The o2 PR HRD
quality of the approximation is high with the deviation re-

stricted to about 1% (10% for Q%=1 Ge\? (Q? (6.293
<0.1 GeVP), as illustrated in Fig. 8. One sees from this

figure that forQ?=10 Ge\? the difference between the ex- which will be evaluated with the aid of E@6.28.

0.001 0.1 10 1000
0.2 1

0.175 4@

0.15 AT N

0.125] // .\\

0.1 o

0.075 '

0.05 '
0.025 PO : AD(@Q?) L = eyl

0.001 0.1 10 1000 -5 -4 -3 -2 -1 0 1 2

QZ [GCVZ] lglo [Qz/l GevZ}

N O 0 PN

$
o o (@] o

FIG. 8. (Left) The solid line represents the approximate expressigh™(Q?) given by Eq.(6.28, whereas the bullets denote the exact
values of A{?)(Q?) taking into account the heavy-quark threshold matchiiitjghty Comparison of A >™(Q?) (dashed curvewith
[2®>™(Q?)1? (solid curve. Note the modified scale of the abscissa.
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0.5 T
Vo QUERe (2, 4)
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0.2}
0.1
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(@) Q* [GeV?| (b) Q? [GeV?]

FIG. 9. The ratidRy o(Q?), (), and the NLO results fo?F™@, (b), in theMS scheme with various renormalization scale settings. The
dashed line corresponds = Q?, the solid line to theBLM scale setting withu2,,= u5=1 Ge\?, while the dash-dotted one denotes the
result obtained with the BLMa) and FAC(b) scale settings. The analogous result for the PMS scale setting is shown as a dotted line. Note

that in both panels the BMS DA has been employed and that for the FAC and PMS scale $éttiragsbeen fixed to 3.

(2) Another procedure, we cahaive analyti¢ replaces soft nonfactorizable contribution, modeled on the basis of
the strong coupling and its powers by the analytic couplingocal duality. To join properly the hard and soft contributions,

as and its powerse? everywhere in the NLO term g, local duality, and the Ward identity @°=0 will be em-
This is actually the analytization procedure proposed in RefPloyed in order to ensure that each of these contributions is
[29] and amounts to the following requirement: evaluated in its own region of validity, according to the fac-
torization of the parton and hadron representations. A com-
[Fl;fct(Q2;ﬂZR)]NaivAn:E(SZ)(Mé)]_-Iq_TO(QZ) parison of these predictions with the corresponding ones ob-

tained with the asymptotic pion DA will be included.

1
+ [P (R PFIO(Q% ).
A. Standard perturbative approach

(6.29 As outlined in Sec. V, the NLO prediction for the pion

rm factor, as any other finite-order prediction, contains a
eoretical uncertainty stemming from its dependence on the
renormalization scalg.g and the scheme used. This depen-
dence is, however, reduced in comparison with the LO pre-
diction due to the inclusion of the NLO correction. To quan-
tify these s}\lattoements,Lowe plot in Fig.(8® the ratio
an 2\ — [ Efact 42 _refact 42y7 Ranio(Q2) =FN°(Q?)/FL°(Q?) and in Fig. 9b) the result
AFZIQY =[FZHQ%) uaan=[F Q) Inaan ’(6.30) for the factorized form factor at NLO, using the BMS DA in
the MS scheme with different scale settings. The main ob-
which provides a quantitative measure for the analytizatiorservation from these figures is the strong sensitivity of

Note that the naive analytization does not respect nonline;{ﬁ
relations of the coupling owing to different dispersive im-
ages.

Anticipating our detailed numerical analysis of the pion
form factor using APT, we define

ambiguity. Rnio(Q?) and the moderate dependencerd(Q?) on the
scale-setting procedure adopted—especiallpavalues ac-
V1. PION FORM FACTOR AT NLO: cessible to present experiments.
NUMERICAL ANALYSIS AND COMPARISON Let us discuss these figures ina systematic way.
WITH EXPERIMENTAL DATA (@ Foruf=Q?, the ratioRy o(Q?) is positive, larggon

) ) ) o the order of about 50%&and decreases very slowly, white,

In this section we would like to present our predictions forjs small (~0.3). As a result, the LO contribution is about
the pion form factor utilizing the BMS pion DA and PQCD yice as the NLO one and the form factor is small.
at the level of NLO accuracy. First, we consider the standard (b) Using the FAC scale setting, the whole NLO contri-
perturbative approach with different scale settings within theyytion vanishes, so that also the ratio is zero. In this case, the
MS scheme and continue then with a detailed discussion dgbrm factor is rather moderate down to momenta of the order
the pion form factor as a non-power-series expansion of thgf 10 Ge\?, where the QCD effective coupling becomes of
QCD analytic coupling. To this end, we employ the analyti-order unity.
zation procedures discussed before to ob@fir 2 in the (c) Applying the PMS scale setting, the NLO contribu-
MS scheme, with different scale settings, and also indthe tion is negative withRy o(Q?) being small and also nega-
scheme. To confront our theoretical predictions with the extive down to a critical value 0Q?=6 Ge\? (see Table I,
perimental data in the last subsection, we will include thewhere the absolute value of the NLO contribution becomes
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FIG. 10. The NLO analytization ambiguitQ?AF2(Q?) (left) and the ratioAFV[F2]y s, of the NLO analytization ambiguity
relative to the factorized pion form factor, computed with the “maximally analytic” proceduight) within the MS scheme with various

scale settingsﬂé:Q2 (dashed ling BLM (dotted ling, BLM (solid line), and thea,, scheme(dash-dotted line The curves shown
correspond to the BMS DA.

equal to the LO one and the form factor becomes zero. Fashown because this would require the introduction of exog-
this scale setting, already @=6 Ge\?, the QCD effective enous IR regulators.

coupling starts “feeling” the Landau singularity and be-

comes excessively large, while above 10 Géhe form fac- B. Use of non-power-series expansions

tor is rather moderate. We turn now to the results obtained in APT. To exploit the

~(d) Adopting the BLM procedure, the results are quite gffact of the analytization ambiguity on the factorized pion
similar to those obtained with the PMS scale setting Withfgrm factor, according t96.30, we plot in Fig. 10(left

respect to the rati®y, o(Q?), whereas the form factor now pane)

is negative and very large below 50 Gelying outside the

range of Fig. )] because the corresponding NLO correc- AP (D) - [P (D o )
tion is again negative and even larger. The reason for this AF7(Q%)= - Fr Q% uR)
behavior is that in this scheme the typical parton virtualities

in the Feynman diagrams are much lower than the external

scaleQ? (see Table Nl giving rise to a large value of the and the ratioA F2Y[Ffact waxan (right panel, employing the
QCD effective coupling. ="

, . . BMS DA and theMS scheme with different scale settings.
(e) TheBLM scale setting has two distinct regimes, char-

. 5 N Analogous results for tha, scheme are also included; using
acterized by the fact that the rafiy o(Q<) changes its sign

@i s . APT there is no need to introduce external IR regulators.
around 20 GeV. in the regime below this momentum value,  gymmarizing the results in Fig. 10, the main observations
the result for the form factor resembles that found with the,o a5 follows:

wa=Q? scale setting, though its fall-off wittp? is not that (i) The NLO analytization ambiguityAF(Q?), (left
steep. On the other hand, above 20 Gethe form factor ane) and the ratio AF2YF™ (right pane), the latter be-

glergionsgt coincides with the one calculated with the PMS scal g computed with the “maximally analytic’ procedure

. . . 2_ 2 .
A further complication: it is not clear how to implement within the MS scheme with theuz=Q" (dashed ling and

quark-mass thresholds when using the FAC and PMS scafétM (szolid line) scale settings, is small and almost scaling
settings. Therefore, the predictions shown have been ofith Q“ above about 10 GéY/ albeit in the second case
tained by fixingN;=3. This is because both scales dependN€re is a sign change around %PFGG)E\Th'_S is because be-
on B, and this induces discontinuities in the form factor at/oOW this momentum, the ternf>’, Wh'Chl IS negative,
the quark-mass thresholds. For that reason, we refrain frorrevails, while above that scale the tefy™” becomes
using the FAC and PMS schemes in our further considerdominant due to- In(Q%ug)—in contrast to the former case
ations. To summarize, all scale settings can be safely uséd which the interplay between these two terms is fixed ow-
above about 20 GEY/ while at smalleiQ? values, the PMS ing to the absence of the log term. _For that reason, the
and FAC settings become unphysical, whereasihel and ~ “maximally analytic” procedure with théBLM scale setting
w2=Q2 scale-setting procedures can further be used at vaenhances the form factor at high@f relative to the “naive”
ues ofQ? exhausting the validity domain of PQCD. On the One.

other hand, the BLM scale setting remains inapplicable up to (i) The results with the BLM scale settir{gotted ling
scales of the order of 50 G&\[see Fig. 9a)]. As already resemble those computed with tag scheme(dash-dotted
explained before, no predictions in thg scheme have been line). In both cases, AP (u2)—[a®(n2)]? is large and

(7.1
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0.4} [QzF;w(Qz)] NaiAn 0.4t [QzF:w(Qz)] MaxAn
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(@) Q* [GeV?] (b) Q’ [GeV?]

FIG. 11. (Color onling NLO predictions forQ2Fys Q?, using the “naive analytica) and “maximally analytic” (b) procedures and
employing the BMS DA. The dashed line correspondg.fe=Q?, the dotted one denotes the result obtained with the standard BLM scale
setting, whereas the solid line shows the result calculated with the moBifidscale setting and the cutoff sca)d¢%= 1 Ge\”. The results
obtained with thew,, scheme are displayed as a dash-dotted line in both panels.

negative(cf. Fig. 8—right panel while 7F®is also nega- ~0.02 Ge\f with ag~0.75, rendering the PQCD expansion
tive. Hence, the overall sign qﬁFi“(Qz) is plus because the unreliable. This deficiency is lifted when applying the
F(1# is absent. However, in the, scheme the shift towards “maximally analytic’ procedure—see Fig. 14). Indeed,
smaller values of thexs argument is much less pronounced Such is the impact of the “maximally analytic” condition that
and consequently the enhancement provided by the use afl renormalization-scheme and scale-setting ambiguities are
AP(u?) instead of P (u2)]? is rather weaksee also Eq.  diminished, with all results for the form factor almost coin-
(5.16)]. ciding, as it is obvious from Fig. 1f). Moreover, from Fig.
Next, we present the results for the factorized pion forml11(b), we can estimate the effect of varying,,= u§ in the
factor derived with APT at the NLO level and adopting either BLM scale-setting procedure by comparing 8eM (black
the “naive analytic” or the “maximally analytic” procedure. solid) and the BLM (red dotted curves. IndeedﬂéLM just
From Fig. 11, we see that for both analytization proceduregaries from 0.5 Ge¥ (at Q?=50 Ge\?) to 0.02 GeV (at
the results for theui=Q? (dashed ling and BLM (solid ~ Q?=2 Ge\?), while the difference between these two
line) scale settings are very close to each other. Note that theurves is no more than 10%asing the “maximally analytic”
ay scheme yields a similar restfash-dotted ling but with  condition. Actually, for w2, varying in the range

a much smaller steepness of the curve at QW On the [1,0.5] Ge\?, this difference does not even exceed the level
other hand, the standard BLM scale settidgtted ling pro-  of 5%.

duces even an exact cancellation of the NLO and LO terms | et us close this discussion with some brief comments on
at the momentum valu@?~2 Ge\* [so too behaves the the behavior of the rati®y o(Q?). The message from Fig.
ratio Ry o(Q?) = FN-°(Q?)/F-°(Q?)—see Fig. 12)]. The 12 is that, except for the BLM scale settiriglready dis-
origin of this cancellation is, however, purely accidental andcussed, all other scale settings are not sensitive to the ana-
unphysical: the BLM scale at this point isuéLM lytization procedure adopted. The induced differences are in-

0.75 [Rxro (Q2)]NaiAn ] 0.75¢ [RNLO(QZ)]MaxAn

-0.25) e ; — -
0.5}
-1 d ] Ll |
10 20 30 20 50 10 55 35 <5 =N
(a) Q? [GeV?] (b) Q? [GeV?]

FIG. 12. Results obtained for the rafy o(Q?) using the “naive analytic'(a and “maximally analytic”(b) procedures and employing
the BMS DA. Notations are the same as in Fig. 11.
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deed marginal, withRy o(Q?) being positive, large, and
practically scaling withQ? for the ui=Q? scale setting
(dashed ling while this quantity in thea, scheme(dash-

dotted ling exhibits the same behavior but with the reverse
sign and having approximately half of its magnitude. The 0.3

situation for theBLM scale setting is somewhat transient

between these two options, providing with both analytization

procedures enhancement at the low en@éfand reducing
the form factor aQ? values higher tha?=20 Ge\?. This
effect is due to thenegative term F{F®) gaining ground
againstF*#) that becomes smaller becauseQfiu3) is
growing.

C. Nonfactorizable contribution to the pion form factor

PHYSICAL REVIEW DO, 033014 (2004
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So far we have discussed only the factorizable part of the FIG. 13. Calculation of the soft part of the pion form factor in

pion form factor{cf. (2.2)]. But as argued originally in Refs.
[18,23,115,11F and confirmed later on in several works, for
instance, in Refs[21,25,28,29,7P the dominant contribu-

the local duality approach.

=2 Ge\? and up to 20% at highe®? values. Just recently,

tion at low to moderate values of the momentum transfehowever, it was shown in Reff118] that taking into account

Q?<10 Ge\? originates mainly from the soft contribution

all radiative corrections to the correlator, the Sudakov loga-

that involves no hard-gluon exchanges and is attributed toithms cancel out. On the face of this finding, we use in this
the Feynman mechanism. At present there is no unique wayork Egs.(7.2—(7.3).

to calculate this contribution from first principles at the par-

The soft contribution calculated hefgee Fig. 1Bis con-

tonic level. One has to resort to theoretical models, based osistent with the result obtained in Ref29] for the
assumptions that attempt to capture the characteristic fea&symptotic pion DA on the basis of the soft overlap of the
tures of nonperturbative QCD. In the present investigatiorpion wave functions, modeling thei;, dependence in terms
we use the LD approach to calculate the soft contribution, irof the Brodsky-Huang-Lepage Gaussian anfht8] and us-
which it is assumed that the pion form factor is dual to theing a constituent-like quark mass w,=330 MeV. Though

free quark spectral densif23,24, i.e.,

1

2¢2
e

FL0(Q?)= foofoopa(s,s',QZ)dsds

1+ 6s,/Q?
(1+4s,/Q%)3%

(7.2

with the 3-point spectral densitys(s,s’,t=Q?) given by

(5.5 0)=| 2 d> t3dd 1 73
s,s' t)=|t°P—+ = —|——— .
Ps dt2 3 de3|n(s,s' 1)
where

A(s,s',t)=(s+s' +t)°—4sS. (7.4

Here the duality intervals, corresponds to the effective
threshold for the higher excited states and the “continuum

in the channels with the axial-current quantum numbers. Th

LD prescription for the corresponding correlaf@g] implies
the relation
SOZ 47T2f37 .

(7.9

A key issue of the soft contribution is the inclusion of
Sudakov-type radiative corrections. In R¢R5] only the

the crossover from the soft to the hard regime and the
asymptotic behavior are strongly model dependent, with the

mass factor exp(5ma/xx) (where Bg is the width of the
Gaussian distribution, specific for each particular pion)DA
playing an important role in tuning this behavior—see Ref.
[21] for a detailed analysis—the trend at lower value€3f

up to about 4 Ge¥is approximately the same. Similar re-
sults were also obtained in R¢fL20] using a Bethe-Salpeter
equation and a constituent-type quark mass rof
=330 MeV. In both approaches mention¢@9,12Q the
quark mass in the hard part was set equal to zero and the
effective QCD coupling was assumed to saturate at@iw
with a transition scale from soft to hard in the ran@é
=12-18 GeV.

D. Comparison with experimental data

It is time to step up one level higher and consider the total

«form factor in order to compare our theoretical predictions

ith the experimental data. So far we have considered the
actorized hard contribution to the pion form factor only at
higher values 0f?, where PQCD is safe. However, attempt-
ing to compute the total pion form factor in the fu?
range, according to Ed2.2), we have to combine this con-
tribution with the soft part. Recall that we have neglected in
the hard-scattering amplitude[i.e., in the parton
propagators—cf. Eqs(Al), (A6a), and (A7)] all parton

Sudakov corrections to the quark-photon vertex were taketransverse momenta against the large s@&land integrated

into account on the basis of R¢117] leading to a reduction
of the soft contribution by approximately 6% at lo@?

out in the pion wave functions all transverse momenta up to
the scaleu3. But below some momentum scale of this order,

033014-20



PION FORM FACTOR IN QCD: FROM NONLOCA. .. PHYSICAL REVIEW D 70, 033014 (2004

these contributions iy start to be comparabl@specially F;D(O;M§)=1. (7.8

in the endpoint region whenre—1) and,a fortiori, the col-

linear factorization becomes increasingly unreliable. ToThe 2-loop approximation for the spectral density,
avoid this happening, we have to restrict the evaluation Ofog"""p(s;qu), can be obtained from the" e~ cross section

the hard form-factor contribution to theyr’ domain compat-  R(s) [121], because these quantities in massless QCD are
ible with the collinear approximation. In technical terms this proportional to each other, so that

means that below the scadg (the duality thresholdwe have
to switch from the parton representation to the hadron repre-
sentation according to local dualfy.

As we have seen in Sec. V, fixing the renormalization
scale,uﬁ in all considered schemes entails problems related
to the smallQ? behavior of the factorizable term of the pion % ( . bo s

2

1
2-loopr . ,,2) —
p2 (SaﬁLR) 471.

1+

o

as(nd) ) ( asw@) 2
v

form factor: the NLO term can reach the level of 50% of the 2=l (7.9

4 2
LO part, casting doubts on the validity of the perturbative Hr
expansion per se. In addition, both terfi<O and NLO
generate a fast growth of the form factor at sn@f| artifi- o= EC [ic _ EC +b 1_1_4(3)”
cially induced by large values of the strong coupling and by 2747127~ g7F "0l g '
a 1/Q? factor. The origin of this failure, as stated above, can (7.10
be traced to the violation of the collinear factorization ap-
proximation, i.e., the resurrection of small momentaTip  where {(3) is the Riemann zeta function. Then, E@.7)
that have initially been neglected and absorbed into the piogields the following nonlinear relation for the 2-loop effec-

DA.° tive thresholds3 ™%
Hence, it becomes clear that we must correct the factor-
ization results in the lov®? region in order to ensure that aq 2) aq 2) 2 b g2-loop
each contribution lies in the corresponding domain of valid-sg-'oop[ 1+ > KR ( s\HR ) Fy— Ol p= _1)“
ity. To achieve this goal, we need a conceptual framework. 77 77 4 Mé
This is provided by gauge invariance that protects the =4772ffr, (7.10

value of F_(0) by means of the Ward identity relating a
three-point Feynman diagram at zero-momentum transfer to )
a 2-point diagram. Consider theloop approximation in the Which replaces the standard LD relation, notably, &45).

LD approach. Then, using the replacemesys»s; P and ~ Note in this context that the effective 2-loop threshsfd®?
p3(s,s',Q% u2)—p5 °%(s,s",Q% ), Eq. (7.2 relates should be used only in formulas containing the 2-loop spec-
FI°(Q?) to the integrated 3-point spectral density i@l densityp3"°(s,s’,Q?). Were we in the position to write
ps °%(s,s", Q% w2), which is now dependent gn?. Recall ~down the 2-loop spectral dens%_’ OOp(Sy_S',QZ) for all Q*
that the Ward identity links the 2-poirite., axial-axial cur-  Values, then we would have obtained via Eqs2)~(7.7) an
rent spectral densityob '°°P(s; x2) to the 3-point(vector- ~ €Xpression for the pion form factor va!ld ®Dt(a‘°é)' I2nstead,
axial-axial currentspectral density’ °"(s,s’,0;2) in the ~ We use the leading-order LD expressiéf},’(Q% ug), and
following way: add perturbativeD(ag) and O(ag) corrections explicitly in
terms of F"®°(Q?; u2). Recalling Eq.(7.8), we then have
p5°%(s,s' ,0up)=mo(s—8)p; "Ns;uR). (7.6

FR(Q?=0;u%)=0. (7.12

Taking into account the LD expression for the pion decay

constant, The next task is to match this lo@? value with the large-
2 result of PQCDF(Q?; 12). The most straightforward
L T MR g
fizifso OOPPE 098 5; 1i2)dis, (77 wayis to adog)thjC‘(Q_z;Mé) at Iarge Q* and correct its
m™Jo singular (~1/Q¢) behavior at smalQ“ by introducing some
reasonable mass scaly, * via the replacemett
one finds
- M3 M3
Fri Q% b =Fa(Qud)—, = Fa( Q) ———;
8A smooth transition from the partonic to the hadronic regime Q Mo+Q
may go via an intermediate constituent-quark formation due to (7.13

QCD dressing. Because there is no unambiguous way to do this, we

prefer to ignore this regime hefand refer for a discussion of such

dressed quarks to R€f29]). 100ne may think of this scale as corresponding to the maximum
%Their explicit inclusion would give logarithmic and power- transverse quark-antiquark separatipr- M, still accessible to the

behaved corrections amounting to Sudakov-type exponentials coirard form factor via hard-gluon exchange just before the crossover

taining perturbativg88] and nonperturbative correctiop80]. to the nonperturbative dynamics.
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However, this expression has the wrong limit@t=0, so 0.6

that one needs to correct it in order to maintain the Ward @F (@)
identity (WI): 0.5}
Fo(Q% uR) = —Fo(QAuR) P (QPIMY) 0.4/
_ M3 0.3}
+F QA ud)—5——. (714
M5+Q? 0.2}

Here the function®(z) is some smooth function with 4 ;
®(0)=1 andzd(z) -0 whenz— o, introduced to preserve H
the high Q? asymptotics of F(Q?; u2). The simplest [

; ; — +22 vieldi 1 2 3 4 5 6 7 8
choice ford(z) is ®(z)=1/(1+2z)*, yielding 0* [Cev?]
2 2
fact-Wly 2. 2\ _F 2.2 0 M5 FIG. 14. Comparison of the pion form factor calculated by
F (Q% ur) =F Q% uR) -
& TR me PR M(2)+ Q? MS"’ Q2 Radyushkin24] using the LD approach and interpolation from low
to high Q2 (dash-dotted linewith our result for the total form
QZ 2 factor given by Eq(7.17), computed with the asymptotic DA in the

(7.15  MS scheme with thé&8LM scale setting and using LO APBolid
line). The experimental data are taken fr¢@6] (diamond$ and
[122,123 (triangles.

The scale paramet&3 should be identified with the thresh-

old 255™°°Pto readM§ = 2s5"°° becausas; °®is the “natu-  with the asymptotic DA in théS scheme with theBLM
ral” scale parameter for the 2-point correlator in the pionscale setting using for the sake of comparison LO A&dlid
case, while the scale characterizing the 3-point correlatoline).
corresponding to the form factor, is two times larg@r]. Employing the above considerations we now present pre-
In this way, we finally arrive at dictions for the total scaled form factor \@? in different
renormalization schemes and perturbation-theory approaches
Q? using the BMS pion DA. Figure 15 shows the results for the

=F2Q% uf)

M3+ Q?

2

faci .2 iy
FriQ%pR). (716 standard perturbation theory within tMS scheme adopting
the M§=Q2 (dashed ling and theBLM (solid line) scale
We are now in the position to supply an expression for thesettings. In Fig. 16 we present analogous predictions calcu-
total pion form factor valid in the whol®? range: lated with the APT. In this case, it is possible to include
results computed with the BLM scale setting and to use the
F.(Q%u2)=FLL(Q?) +FctWi g2 2y (7.17  ay scheme. We observe from this figuteft pane) that the
“naive analytization” gives results that bear a rather strong
This expression comprises the NLO prediction for the factorscheme and scale-setting dependence. In contrast, applying
ized part under the proviso of the Ward identity@#t=0 and
the non-factorizable soft par(Parenthetically, note the ex- o0.6F

Ff,:Ct-WI(QZ; /-ng) — (

plicit x4 dependence of this expression as a consequence ¢ Q*F(Q%)

the truncation of the perturbative serigsee Eqgs.(4.1)— 0.5}

(4.8]) . SO
Before continuing with the presentation of our final re- 0.4f & -=

sults, let us remark that a similar type of matching has beer 9; §

applied by Radyushkifi24] to describe the pion form factor, ©-3f
providing the result

0.2f
LD(0); 2 2 -1
F(Q?)— Fa Q%)+ (as/m)[1+Q%(2s0) ] 0.1l
1+aglm
(7.18
1 2 3 4 5 6 7 8
illustrated in Fig. 14a) (dash-dotted ling Q2 [GeV?)
In this equation—which follows the Brodsky-Lepage in-
terpolation formula for thery transition form factof124]— FIG. 15. Theoretical predictions fd®?F ,(Q?) obtained with

the first term means the soft form factor calculated with thethe BMS pion DA using standard PQCD within thtS scheme and
LD approach, while the second one includes the LO radiativeidopting theu%=Q? (dashed lingandBLM (solid line) scale set-
corrections. It is evident from this figure that Radyushkin'stings. The experimental data are taken frf®6] (diamond$ and

result is very close to that given by E{/.17), evaluated [122,123 (triangles.
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Q*Fr(Q?)

FIG. 16. (Color onling Theoretical predictions foD?F .(Q?) using analytic perturbation theory and the BMS DA in conjunction with
the “naive analytic”(a) and “maximally analytic” (b) analytization procedures. Different scale settings withinNt& scheme are used:
M§=Q2 (dashed ling BLM (dotted ling, andBLM (solid line). The dash-dotted line represents the prediction obtained with\jrseheme.
Also included are the prediction for the soft form-factor padlid blue ling and below this, the hard contributions in correspondence with
the predictions for the total form factor on the upper part of the figure. The experimental data are taken frofBaRéfamond$ and
[122,12] (triangles.

the “maximal analytic” procedure, the arbitrariness in the region of predictions associated with the asymptotic pion
scheme and scale setting is minimized—Fig(kl@eing a DA. These results can be compared with previous theoretical
graphic proof of that. Note that this figure shows also sepapredictions and also with further experimental data to be ob-
rately the soft part of the form factor, displayed in Fig. 13,tained at Jefferson Laboratorfgee right part of Fig. 17,
and the hard contributions corresponding to the variousaken from Ref[37]). The data points extending ©? of
scheme and scale settings discussed above and presentediGe\? are expectations from projected experiments at Jef-
Fig. 11(b). ferson Laboratory after the planned upgrade of CEBAF to 12
The phenomenological upshot of our analysis is summaé&eV (we refer to Ref[37] for further explanations and re-
rized in the left panel of Fig. 17, where we show predictionslated references
for the whole BMS “bunch” of pion DAs[1]. The shaded These striking findings give convincing evidence that the
strip incorporates the nonperturbative uncertainties related tend-point-suppressed structure of the BMS type pion DA not
nonlocal QCD sum rules and also the ambiguities induced bwnly provides best agreement with the CLEO and CELLO
the scheme and renormalization scale setting—in correspomtata (cf. Fig. 4), it also allows to describe the pion form-
dence to Fig. 16. Note that the two broken lines mark thefactor data with at least the same quality as with the

0.6 6 | ] 1
Q2FW(Q2) - . :mendo].ia nl;‘f:':l:i;cs
5 _|a  Brauel ple.e n')Jn Reanalyzed B
0.5 " |® 1Lab E93-021
Maris & Tandy BSE+DSE
Nesterenko & Radyushkin QSR
- b;néghe & NB‘D:E.EP_.R.E.I—.N -------
0.3 Te— Cardarelli CQM T
02 Stefanis pQCD ===
0.1 O Projected E01-004 i
. ¢ Projected SHMS+HMS
1 2 3 4 5 6 7 8 2' 4'_ é a
Q2 [GeV’] QZ (GeV/c)2

FIG. 17. (Color onling (Left) Predictions for the scaled pion form factor calculated with the BMS buygoken strip encompassing
nonperturbative uncertainties from nonlocal QCD sum r{désand renormalization scheme and scale ambiguities at the level of the NLO
accuracy, as discussed in Fig. 16. The dashed lines inside the strip indicate the corresponding area of predictions obtained with the
asymptotic pion DA. Note that this strip contains only perturbative scheme and scale ambiguities at the level of the NLO accuracy, calculated
in APT with the “maximally analytic” procedure. The experimental data are taken from IR&6$.(diamond$ and[122,123 (triangles.

(Right) Summary of existing and projected experimental data on the electromagnetic pion form factor in comparison with the results of
various theoretical calculations; figure taken from R8%] (see there for explanations
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asymptotic pion DA—as it becomes evident from the LHS ofchungsgemeinschatProjects 436 KRO 113/6/0-1 and 436
Fig. 17. RUS 113/752/0-), the Heisenberg—Landau Progragrants
2002 and 2008 the COSY Forschungsprojektlibn/
Bochum, the Russian Foundation for Fundamental Research
(grants 03-02-16816 and 03-02-0402fhe INTAS-CALL
In summary, the key concepts and merits arising from thi2000 N 587, and by the Ministry of Science and Technology
analysis are as follows: of the Republic of Croatia under Contract No. 0098002. The
(i) We worked out interpolation formulas for the analytic work of W.S. was supported in part by the Alexander von
coupling constant and its analytic second power that takélumboldt Foundation and in part by the U.S. Department of
into account heavy-flavor thresholds and greatly facilitateEnergy(D.O.E) under cooperative research agreement DF-
calculations. This allowed us to develop a theoretical proceFC02-94ER40818.
dure and apply its numerical realization in order to compute

VIIl. SUMMARY AND CONCLUSIONS

the evolution of the pion DA using NLO analytic perturba- APPENDIX A: HARD-SCATTERING AMPLITUDE

tion theory. The hard form factor was corrected at I as FOR THE PION'S ELECTROMAGNETIC FORM

to fulfill the Ward identity and was added to the soft form FACTOR AT NLO

factor, derived via local duality, without introducing double ] ) )

counting. In this section we list the NLO results for the hard-

(ii) On the theoretical front, we found that replacing theScattering amplitudé26,80-83, used in our analysis. The
QCD effective coupling and its powers by their analytic LO contribution toTw(x,y,Q% uf), expanded as ir2.4),
images—a procedure we termed “maximally analytic’—not reads
only provides IR protection to the coupling, it also helps
diminishing the renormalization scheme and scale-setting de-
pendence of the form-factor predictions already at the NLO
level, rendering the calculation of still higher-order correc-
tions virtually superfluous. where

(i) From the phenomenological point of view, our most
discernible result is that the BMS pion DA] (out of a N :ZWCF: 8_77
“bunch” of similar doubly peaked end-point-suppressed T Ca 9’
pion DAY yields to predictions for the electromagnetic form )
factor very close to those obtained with the asymptotic piorcr=(Ng—1)/2N=4/3,C,=N.=3 are the color factors of
DA. Hence, concerns that a double-humped pion DA couldSU(3)., and the notatioz=1-z has been used. The usual
jeopardize the sound application of PQCD are unduly. Coneolor decomposition of the NLO correction—marked by
versely, we have shown that a small deviation of the predicself-explainable labels—is given by
tion for the pion form factor from that obtained with the
asymptotic pion DA does not necessarily imply that the un-  T&(Q?% ué,ud) =CeTH2(Q% ud) +boTH(Q% nd)
derlying pion DA has to be close to the asymptotic profile. 1.G
Much more important is the behavior of the pion DA in the +CGT(H (Q?), (A3)
end-point regiorx—0,1. — : L

Looking further into the future is yet more exciting. With :‘Il\jrr]\i:ﬁ)(r?%re(CF Cal2) and the first coefficients of ths
the planned upgrade of the CEBAF experiment to 12 GeV,
the pion’s electromagnetic form factor can be studied up to 11 4 20
Q?=6 GeV* [37], providing crucial constraints to verify the bo=75Ca=3TeNr, by= §C§—<4CF+ ?CA)TRNf-

N+ 1
TO(x,y,Q%) = Q_;ﬁ’ (A1)

(A2)

various theoretical predictions discussed here and elsewhere. (A4)
The apparently good agreement of our results with the avail-
able experimental dat@ee Fig. 1Y is encouraging. Here, Tk=1/2 and N; denotes the number of flavors,
whereas the expansion of ti@efunction in the NLO approxi-
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and present the remainder Bf; as a color decomposition in

the form
Nt 1 28 1y —
(LF) 2.2y T — | _2° -Z
TH (X,y!Q !/'LF) Q2 Xy 3 +|6 X)h’]x
1\ _
+ 6—§)Iny+ln2(xy)
Q? —
+2In=[3+In(xy)]|  (A6b)
M
N+ 1 20 Inx In? —
TLO)(x y Q2 - o g g onxin
Hx.y,Q%) oyl 3 Ex T8y y

—2InxIny+2 IannV+2 In?lny

—2(1-x—y)H(x,y)—2R(X,y) (A6C)

PHYSICAL REVIEW D 70, 033014 (2004

R(x,y)=

(x—ly)2 (2xy—x—y)(Inx+Iny)+(—2xy?

Iny
—2y?+10xy—2y — 4x2)7y +(—2yx?—2x?

In x - _
+10xy— 2x—4y2)7 —(YY?+xxX2)H(x,y) |.

(A8Db)

APPENDIX B: FACTORIZATION SCALE DEPENDENCE
IN STANDARD PQCD

Here we examine thQu,IZ: dependence of the hard-
scattering amplitudésee, for exampld9,11,27,77,12B. We
start with the representation fal,(u2,13), given by(2.4),
to get

as(,lLZR) (1) 2 2
A TH (,LLF”LLR) s
(B1)

Th(pd nd) = ay ud)| TO+

for the color singlet and color non-singlet parts, respectively. 0 ) ) .
For calculational convenience, we also supply the sum owith T{)(x,y,Q?) and T{(x,y,Q% uZ, u3) as in(Al) and

these terms$cf. Eq. (4.7)]:

Ty Q% ud) = CeTi Xy, Q% ud)
+CaTh xy,Q%)
:&LE{ —34+241In(xy)
Q%xy 3
+41n2(xy)+InxIny+InxIny
—Inxln?—ln;Iny
+(1=x=y)H(X,y) +R(X,y)

— @7
+8[3+In(xy)]|n—2], (A7)
ME

where

y .
;)+L|2

Y . XY)
—L|2<§)—L|2 X_y

with Li, being the dilogarithm function, defined by ,(z)
= — [E[In(1—1)dt]/t, and

aE
= |
y 2

X
:y) L, :)
Xy y

(A8a)

1
H(x,y)= 1——x—y[u2

(A3) for the LO and NLO, respectively. These functions can

be represented as follows:

TO=N;Co(x,y,Q?), Co=

o

2

Q—z) [T(x,5.Q%) ®Vo(s.y)
ME s

T (ué pd)=In

+Vo(s,x)@TV(s,y,Q%)]

S

—boln| = | T (x,y,Q?)

2
2
R

+N7C4(x,y,Q?), (B3)

whereC,(x,y,Q?) absorbs all other.2- and u%-independent
terms from(A3). Using this structure with respect to thé
dependence, we can conclude that

dTy
dln w2

= —Tu(p& R @ V(ag nd)—Viag 1d)
® Th(ué ud) +0(a?d), (B4)

whereV(a4(12)) is the ERBL evolution kernelC2). Then,
the whole derivative of the form fact@R.3) is
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dF (QZ% u2) two-loop[126-12§ corrections to the evolution kernel were
T =0 (ud) @ T2 ud) [ V(ag(nd) determined in theV'S scheme, but because of the compli-
din MF cated structure of the two-loop corrections, only the numeri-
9 2 2 cal evaluation of thefirst few) moments of the evolution
—V(as(pr)]® P o(pp) + P (1) kernel was possiblg129,130Q. However, making use of

conformal-symmetry constraints, the complete analytical
®[V(aswé))_V(QS(M@)]@TH(ME’“@ form of the KILO SO|)l/Jti0n of the evolution eqlﬁ)aticoﬁl) ha)ét
®‘DW(M§)+O(6¥§)- (B5) been obtainedl70,71. We note that for,u,zz—mo the solution
of Eg. (C1) takes the asymptotic fOI’thpW(X,,LLFZ:—WC)
Recalling that in the 2-loop approximation of the standard= ¢.dx)=6x(1-Xx).

PQCD The pion DA can be cast in the form
2\ — -2 2 2
dag(u?) ag(1?)]? @(X, wE) = U (X,S; 1w 16) @ @ 7(S, 10) (C3)
—— = —4mho| ——| [1+0(ay(1?))], (B6) Y _
dinu where the operatolt)(x,s; ug,ug) describes the evolution
we have from the scaleu? to the scalguZ and represents the solution

of an evolution equation equivalent (€1), given by

ag(nd)— ag(pnd)

pp Vo+O(a?)

V(ag(ud)—V(ag(ud)=

SU(X,s; MFyMO) V(x,u, ag MF))@’U(U S, MF:MO)

din MF
=0(ad), (B7) (C4
It is convenient to express the nonperturbative input DA,
© (X, ,ué) as an expansion over Gegenbauer polynomials
dFﬂ.(QZ;M%) 3/2(2x 1), which represent the eigenfunctions of the LO
—————=0(ad). (B8)  kernelV,, i.e.,

so that

dln w2

©

1+2 am(ud)C¥(2x— 1)}
(CH

Hence, we conclude that at the level of the NLO approxima- ¢ (X, u5)=6x(1—Xx)
tion of the standard PQCD, the violation of the factorization-
scale independence is one orderaqfhigher

in which 2’ denotes the sum over even indices only. The

APPENDIX C: TWO-LOOP EVOLUTION OF THE PION nonperturbative input is now contained in tag(,ué) coef-
DISTRIBUTION AMPLITUDE IN STANDARD ficients. The Gegenbauer polynomidl$’(2x—1) satisfy
PQCD the orthogonalization condition
The pion distribution amplitudepw(x,,uﬁ) satisfies an 1

evolution equation of the form fo dxx(1-x)CY42x—1)CHA(2x—1)=N,5ym (CH)

de(x.up) _ 2 2 ith t to the weight(1—x), wh

aIn 2 VXU, as(u) @@L (U,pp),  (C1)  with respect to the weig (1—x), where
N ug

(n+1)(n+2)

where V(x,u,as(2)) is the perturbatively calculable NLO Nﬁm- (C7)

evolution kernel
The moments of the evolution kernel

V(x,u,a5) = Vo<X u)+ (40:)2V1<X1U>- (€2 Myl ers( 28)]= CYA2x— 1)@ V(X,Y; ag( 1))

If the distribution amplitudep.(x,x3) is determined at an ( -y)
initial momentum scale,ug (using some nonperturbative
method$, then the integrodifferential evolution equation
(C1) can be integrated using the moment method to givey, equivalently, the anomalous dimensions
@-(x,u?) at any momentum scalgZ. The one-[12] and

il as(ud) 1= = 2Mil as(ud)], (C8b)

\oreover, the dependence gif of the NLO prediction for the ~ Fepresent the elements of the triangular matkix (1) . While
pion form factor was investigated in R¢R6], where it was found the LO kernel is diagonal with respect to the Gegenbauer
that these results vary only slightly with2 rendering the polynomlaIsC3’2 (only the 7(0)_ (©) elements appegrthe
“factorization-scheme ambiguity” to be small. structure of the NLO and still hlgher order kernels leads to

Cc¥2y-1), (C8sa
y
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the appearance of off-diagonal terms in the matrix of the ,y(kO)_,y(O)
anomalous dimensionboth types of termsy()=y{") as  Se(pf,ud) =55
well as (Y k>n are present Accordingly, the solution of k' ~¥n —2bg
the evolution equatioiC4) takes the general form ) 14 (50— 4O)(2b)
- x| 1| ——
VxS ufug)= 2" En(uf.ug)| CYA2x—1) as(1o)
"~ (C133
as(mp) < 1 312 and
> d(uE, uh ¥ 2x
4T kInhe )
( ) (1)—(2n+3) ~Yn _2b0+8CF Akn
~1)+O(a g)} C3’2(2 1). 2(k—n)(k+n+3)

2CH A~ p(k+2)+¢(1)]
(C9 + (n+1)(n+2) } (C139

The effect of the diagonal termg,,= vy, is completely con- with
tained in the factoE,(u2,x3), which is given by

(@) A —w(k+”+4 —¢(k_” T 24(k—n)— g(k+2)
Enwé.ué>=ex;{— L"j‘”j’d s;;( )} (C10 " 2 2
= — (1), (C13¢

The expansion of the anomalous dimensions in termaof

reads We turn now our attention to the finite-order solutions of the

evolution equatior(C4), i.e., (C1). Denoting the formal so-

lution of the LO equation, which contains only tkig kernel,
( ., (c11a by US(x,s;uf,uf), the corresponding functiok,, de-
(4m)? fined in Eq.(C10), becomes

2 2 2
as(ﬂ ) a’S(,LL )
nlas(u?)=—— 1+ Y+

whereas the lowest-order anomalous dimensions can be rep- ¥O1(2bg)

resented in closed form by ErO(pud, ud)=

as(:“«lzi)
ag(pd)

(C19

yO=2C¢ 4S,(n+1)—-3— CERICEDIL (C11b  Analogously, the solution of the NLO equation, containing
both kernels V, and V;, will be represented by
with Sy(n+1)=S"" 11/ = y(n+2)+ ¢(1), while the func-  UNO(X,S;uf,p5). This expression contains contributions
tion y(2) is defined asw(z) dInT(z)/dz Since the anoma- CcomMing from both the diagonals(,) and the nondiagonal
lous dimensionsy, coincide with the flavor nonsinglet (diy) parts. One finds in the literature two representations

anomalous dimensions, i.e., the moments of the splitting kerfor the EN"°(u#, 18) function. The form which retains the
nels in deep inelastic scattering, we can use §¢ the  manifest renormalization-group property
results obtained in Ref$131,133; viz., [ENC(ud, u3)ENO(u3, u3) =EN-C(uf,u3)] reads[130]
830 34450 31132 662846 en(1d) yPbo— ¥ b,
(C119 Mo
- - © by o
whereN; denotes the number of actlve_flavé?sThe nondi- en(ud)=[ag(ud)]7n /b 1+ s ag(u?)
agonal matrix elementy,,, (k>n) manifest themselves in ™o
the d(}) terms of the eigenfunctions expansion and were ob- (C16

tained in closed form if70,71,13Q Alternatively, one can reca&\'© in the form[26,133

N, (20
A (ut md) =2 Salut up)CR, €12 o, [adud|
k En(ME.m0)=|——
h ag(up)
where
by | as(ud)
X1 1+ g as(pp)| - ——- o(n)r,
12 2 i ; i o as{ L
For Q?=1.7-18.5 GeY this number is 4, whereas for still
higher Q? values, it starts to be equal to 5. (C17
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which corresponds to a resummation of the leading logaflavor thresholds aM,=1.3 GeV andMz=4.3 GeV (with
rithms associated with the diagonal terms, while the subleadvi,=M,=M;=0). First of all, for calculational conve-
ing ones are expanded with respectatp. In this work we  nience, we limit our study to pion DAs that include at the

13
employ (C15." initial scaleu3 only two Gegenbauer coefficiertise., eigen-
Finally, we systematize below some previous results byynctiong

recasting them in a form that is more suitable for practical
purposes. As mentioned in previous sections, the coefficients
an(,u,zz) encapsulate nonperturbative information about the® =
binding dynamics inside the pion and correspond to matrix
elements of local operators according to the OPE, deter-
mined at some low-energy scale, characteristic of the nonand rewrite expression€19 in terms of these coefficients
perturbative dynamics employdd,91,94,134,135 To ob-  {a3,a3} in the more compact form

tain these coefficients at a higher scale, sé/ one has to

(X, m8) =6x(1—x)[1+a3C3%(2x—1)+aJC¥42x—1)]
(D1)

apply LO or NLO ERBL evolution. Specifically the coeffi- ao E %+ D D2
cients which correspond to the LO evolution equation are (MF) Z(MF’MO) 2 ZO(MF 'uo) (b2a
given by
NLO
(ud)=Ea(ui nd)ad+ Doy uf, nd)ad
an (up)=ay o uf) =an(uo) Ex (ué puf), (C18 R
+D , , D2b
while those corresponding to the NLO evolution equation sol KE+10) (b2b)
can be written in the form
(1) ans(up) = Dnal uf wd) Ea(uE, u)al
s\HF
NLO(MF) aD NLO( é)"'—awDYNLO(M'z:)’ (C193 +5n2(#§,ﬂg)ﬁz(ﬂé,ﬂg)ag
where + Do 1), (D20)
ay M O(ud)=an(ud) ENO(uE, 1d), (Ciob e
n—-2
P M= 2, A ph) Bk ) A (e, D). - B,
(C199 an(MF'MO)ZTdnk(MF'MO)' (D2d)

We note that using instead 9€15 the expressio(C17),
would introduce only minor numerical corrections in the
an-© coefficients of the orde®? (amounting to, for example,

We start the evolution from the initial scajei=1 Ge\?,
which corresponds thi;=3. WhenuZe[M3,MZ], we need

a 1% relative deviation naELO at 10 GeV?).

APPENDIX D: NLO EVOLUTION BY TAKING
INTO ACCOUNT HEAVY-QUARK THRESHOLDS

to change our evolution formulas by adopting the valje
=4. Finally, whenu?=M2, we need to use the valulé
=5. Besides changing the number of active flavidgs we
need also to match the initial conditions of evolution in each

considered region. This generates the following evolution
We describe here the modification of the evolution formu-functions (omitting in the following expressions the super-
las, presented in Appendix C, due to the inclusion of heavyscript NLO):

En(ug.ugiNi=3), pE<M;
En(p2 ud) =4 En(uB MEN=4E(MZ,uf), nie(MiME] (D3a)
En(u2 M2:N{=5)E (M2, 13), wE>Mg.
We define in this way the diagonal part of the evolution equation from a fixed initial ﬂfple;ing
En(ué 0% =En(ué ud)Eq (07, 15). (D3b)

13The expressioiC15) is obtained by expanding, and 8 to NLO in Eq.(C10) and integrating ovet. To obtain the forr{C17), one
expands the integrand (€10) over as and performs subsequently the integration.
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In this way we are able to derive the non-diagonal evolution functiforsthe sake of brevity, we omit the explicit indication
of the correspondinwﬁ regions; namely,

Doo g, 15Nt =3),

Doo(n2 ud)=1 Dooluf,M5;Ni=4)+Ep(uf,MHDoo(M7, 15), (D4)
[ Do w2, MZ;N¢=5)+Ex(ug, M2 Do MZ, 13);

( Dol ug;Ni=3),

Da( 2 nd)=1 Daoué.M5Ni=4)+Eq(uf MHD 4 MF, 1d), (D5)
[ Daol 8, ME;N;=5)+E4( 2, MZ)Dao M3, 1);

[ Dus ud, udiNe=3)Ex(ud, ud),
542(;“42:’#3):< D42(,U~F,M41Nf 4)E2(MF1M0)+E4(IU'F1 421)542(M421,,U~S), (D6)
( Do uf ME;N=5)E(uf, ud) +E4(uf, MED1AME, 1f).

Forn>4 andk=0,2,4, we have
nk(lu‘F!lu’Ole 3)
Do u ud)=1 En(uf MDE (uE MDD ug M3iNi=4)+ D M3, 15), (D7)
En(uf MHE M(uE M3)D(uf ME:Ni=5)+ D (ME, 1f).

Using these expressions, we can revert to our previous foexpansion(C5) in terms of Gegenbauer polynomials, using
mulas(C19 and write the notations proposed in Ref130] and linking them to
those in Ref[71]:

2
as(up)
ayO(up)=apOud)+ 5 —an"Nup), (083

n n n
where din uf 87 am
DO (D8b) 1] ayu1d?
(B =an(ud) En(uE 1d), D8b L | 5F "M a2
2| " 4 Og'<n Mj,na](/-LF),
n-2
an "M = 2 an(uh) B ué wd) AW (uE uh)., N
(D80 Mjn=25" c<1>[y<°) 7. (E2)

with First, we define the diagonal evolution operator

. L, EN"O(Q? wb) =en(Lg)/en(L,,) with
dS(uE uh)= (D) PRy (08
as F ~ . )
T2y, 2 —2fity, 2
dL 8 Yn 4 En
APPENDIX E: EVOLUTION OF THE PION " ™ ™
DISTRIBUTION AMPLITUDE IN ANALYTIC (E3)

PERTURBATION THEORY

= 2 _(2 fit)yy 2
The pion DA satisfies an evolution equation of the form wherel.,=In(x A2 21) andag™ () is given by(6.22), ie.,

dqzn-lf,]xylglzz) :V(X’U!ZS(/*LIZZ))% (P,,T(U,,LL|2:), (El) _(2 m)(lu‘z)_ b (3)as[€(l-,u ’CfZItl)] b (7;) Zm)(l- )
ME
(E4

with V(x,u,«) having the same functional dependencenon
as in(C2). Let us rewrite this equation for the coefficients of Then we have
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" ~n’ oy
|
2b0(3)As (L)

~NLO _ . Lu
e, (LM)—exp( fL0|

A

A(2.fit) 2
+—2b0(3)2[A3 (L)]]dL). (E5)

In principle, the lower limit of integratior,., can be chosen

to be an arbitrary positive number, but it is more convenien

to set it equal to the average value |.dj,u,2:] under actual

PHYSICAL REVIEW DO, 033014 (2004

- an(pd)
An, 2 NLO Y
a(up)=¢€e, (L, )| ===—
n \MF n ME er’:ILO(L’uO)
jswé) ) ay(up)
4w oZf<n e & (L ,,)
(E6)

iThe advantage of introducing the same fa@pi°[L , ] for
the whole functiora’"(«2) is that it ensures exact cancella-

consideration. Then, we can represent our solution in a modtion of the diagonal terms in EGE2). What is left over after

fied form—as compared t@C19); namely,

this cancellation provides an equation fiyr,(u2,13):

— ~ ~NLO — NLO
dlas(pP)dn(ufud)] _adwd)| & (Lu) ag(uf) ST (L) .
dL#F T 8nm J,néHLO(LM) A jen Jm:U’FIU'O m,n = NLO(L )

F

In the NLO approximation this expression becomes

d , -
G LAPT(L, ) n(pE, )]
ME

~NLO
€] LMF

S [AP(L, )12 (E8)

~2b (3) W

and its solution is given by

aj,n(:“«lziuu“g)
M, NLO(L)

© 2bo(3)ARM(L

f AR g ot

NLO(L)
(E9

MF)

Since we do not take into account the nondiagonal part of the
evolution equatiorisee for more details in Sec. IV, just after

Eq. (4.8)], we can use an approximate form of EF6), viz.,

NLO
(L,
H(MO)'\NLO ]

(L)

An; D, NLO(

an pe)= (E10

where the functionéwLo(LMF) are defined in a two-step nu-
merical procedure:

(1) We determine first by numerical integration of Eq.
(E5) the functionse"™(L) for L e[0,10] andn=2,4.

(2) We construct then interpolating functioa®-°(L) for
all functions determined in step one.

In order to obtain the terr#-°(u2,u2) in the approxi-
mate formula(4.15 for the factorized form factor, we also
need the LO part of the evolution, namely,

(0)

e o(L ) =ex —JL” n ALOLYdL|, (E1D)
noTH L, 2b (3)
eLO(L )
A" P =an( )z — (E12
oL,
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