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Bilarge neutrino mixing and mass of the lightest neutrino from third generation dominance
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We show that both small mixing in the quark sector and large mixing in the lepton sector can be obtained
from a simple assumption of universality of Yukawa couplings and the right-handed neutrino Majorana mass
matrix in leading order. We discuss conditions under which bilarge mixing in the lepton sector is achieved with
a minimal amount of fine-tuning requirements for possible models. From knowledge of the solar and atmo-
spheric mixing angles we determine the allowed values ofisinlf embedded into grand unified theories, the
third generation Yukawa coupling unification is a generic feature while masses of the first two generations of
charged fermions depend on small perturbations. In the neutrino sector, the heavier two neutrinos are model
dependent, while the mass of the lightest neutrino in this approach does not depend on perturbations in the
leading order. The right-handed neutrino mass scale can be identified with the GUT scale in which case the
mass of the lightest neutrino is given a’sfgp/M GuT)SIN? by3Sir? 6y, in the limit sind;3=0. Discussing sym-
metries we make a connection with hierarchical models and show that the basis independent characteristic of
this scenario is a strong dominance of the third generation right-handed neMtin®,<10 *Mj, M,
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[. INTRODUCTION cess of family symmetry breaking. Although these models
can reproduce the observed spectrum and mixing, the level
The masses of three generations of fermions in the staref model building involved casts a shadow on third genera-
dard model are scattered in six orders of magnitude betweelfpon Yukawa unification itself. Why should the third genera-
the mass of the electrof®.5 MeV) and the mass of the top tion be special when it is so easy to build models which do
quark (175 GeV. Neutrino experiments suggest that massediot unify the first two? Small mixing angles in this approach
of neutrinos 0.05 eV) are another seven orders of magni-an be understood as a consequence of the large hierarchy in

tude lighter than the electron. Furthermore, the mixingMass matrices. However, in order to obtain large mixing in

angles in the quark sector given by the Cabibbo-Kobayashit-he lepton sector it is often assume.q that neutrinos are very
different; the neutrino Yukawa matriie not hierarchical or

Maskawa matrixVey are small, while the mixing in the o right-handed Majorana mass matrix has a special form
I n ris large. Th lar neutrin int to lar i . .
epton sector is large. The solar neutrino data point o la gil,Z], or the neutrino sector is completely randaj.

mixing anq t.he atmo§pher|c neutrino data require close t Hierarchy in quark masses can also be understood within
maximal mixing. This is one of the most challenging puzzles

: . ! a democratic approadi], in which all Yukawa couplings
in elementary particle phys_lcs. .. _are identical in the leading order and all differences result
A lot of effort was made in order to understand the origin¢om small departures from universality. However, in order
of hierarchy and mixing in fermion massg. Some of the  , generate large mixing in the lepton sector, neutrinos are
most promising models are based on grand unified theoriegyain assumed to be special. This time it is required that the
(GUTs) in which all fermions originate from just a few mul- neytrino mass matriis not democratic(it is diagonal or it
tiplets of the GUT gauge symmetry group. Putting all par-has another special fopmThis is either a by hand assump-
ticles of one generation into the same multigies it is, for  tion [5] or can be achieved in specific modg&.
example, in SQLO)] offers a very attractive possibility that In what follows we show that both small mixing in the
their Yukawa couplings are all equal at the GUT scale in aquark sector and large mixing in the lepton sector can be
similar way to the well-established gauge coupling unifica-obtained from a simple assumption of the universality of
tion. This works quite well for the third generation of fermi- Yukawa couplings. After introducing notation in Sec. I, we
ons but fails for the first two generations. Explaining thestart with a discussion of two families only, Sec. lll, since the
spectrum of the first two generations requires very specifienechanism which generates large mixing in the lepton sector
assumptions about the underlying theory at the GUT scale.is easier to follow in this case. Within a democratic approach,
In the hierarchical approach, the unification of the thirdassuming the same universal form of all Yukawa matrices
generation Yukawa couplings is typically the starting pointandthe right-handed neutrino Majorana mass matirxthe
and in the leading order only this coupling is generated. Thideading ordey, we identify a condition under which large
is usually achieved by imposing family symmetries. Yukawamixing in the lepton sector is achieved. We show that the
couplings of the first two families are generated in the pro-universal part of the resulting left-handed neutrino mass ma-
trix is washed out due to the seesaw mechanism and the
dominant contribution to neutrino masses comes from small
*Email address: dermisek@physics.ucdavis.edu departures from universality. This is what distinguishes
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qguarks from leptons. The case of three families is discussed The smallness of neutrino masses can be naturally ex-

in detail in Sec. IV. plained by the seesaw mechani$i®] which assumes the
The virtue of this approach is that all mass matrices arexistence of Majorana masses for right-handed neutrinos:

treated in the same way, providing a simple framework

which can be easily embedded into more fundamental theo- Lo—— 1 ™ tH.C @)

ries. If embedded into GUTSs, the third generation Yukawa R 2 VRV vgVRT LG

coupling unification is a generic feature in this approach,

while the spectrum of the first two generations of quarks andvhere Mg is a matrix in generation space. When right-

charged leptons crucially depends on small perturbationdlanded neutrinos are integrated out we obtain a Majorana

This becomes even more obvious in Sec. V, where symmenass matrix for left-handed neutrinos:

tries of this framework are discussed and the connection with 2 _1oT

hierarchical models is made. It is shown that the distinguish- M L vyY,M VR Yo )

ing (basis independenteature of this approach is the domi-

nance of the third generation right-handed neutrino mass.
Masses of light neutrinos do not follow the same pattern

as masses of quarks and charged leptons. The two heavier

neutrinos are given in terms of perturbations and so are ) o ) ) )

highly model dependent, while the mass of the lightest neuAnd finally, the lepton mixing matrix which appears in the

trino does not depend on details of a model in the leadingharged current Lagrangian is given as

order. If the right-handed neutrino scale is identified with the

which can be diagonalized by a single unitary matrix

M, =U,M,UT . (6)
L L L L

: > M : U=U.’ . @)
GUT scale, the mass of the lightest neutrino is predicted and e
it is related to the elements of the lepton mixing matrix.
Avoiding the necessity of introducing an intermediate scale Ill. DEMOCRATIC MATRICES: TWO FAMILIES
for right-handed neutrinos makes this framework very pre- _ i
dictive. Finally, we conclude in Sec. VI. Let us start with only two generations and let us assume

After the first version of this paper was finished it was their Yukawa couplings are universal in the leading order:
brought to our attention that a democratic form of both 1 1 1
Yukawa matrices and the right-handed neutrino Majorana Yi~ N\, I=( ) (8)
mass matrix was previously suggested . Some of our 2 11

results—namely, the conditions under which large mixing in )
the lepton sector is achieved—coincide with the findings in'f the Yukawa matrices are exactly equal T0\{/2, mass

Ref.[7]. For related studies, see alk&9)]. eigenvalues ar€0,\;} and the diagonalization matrix is

1. NOTATION _ i i

- V2 2
The masses of quarks and leptons originate from Yukawa U= . 9)

couplings of matter fields to one or more Higgs bosons. 1 1
When Higgs fields acquire vacuum expectation values E ﬁ
(VEV), the Lagrangian containing mass terms of quarks and
leptons can be written as Therefore one generation is massless in the leading order and

_ the CKM matrix is the identity matrix as a consequence of
Ln=—vfLi(Ye)ifrj+He., f=ud.e, (1) the unitarity constraintVcyy=U,Ul=UUl=1. This is
quite a good approximation to reality, taking into account

wherev; result _from VEV of Higgs fields which couple t0  inat the only assumption so far is the universality of Yukawa
the corresponding quark or leptofy, (fg) represents left- couplings.

handed(right-handedl fields, andY are Yukawa couplings, Now let us parametrize the departure from universality by
in general arbitrary 33 complex matrices in generation matricess; so that
space represented by subscripts. The Yukawa matrices

can be diagonalized by biunitary transformations

€f11 fflz) (10

1
Y= E)\f(I_gf)y &= (
€f12  €f22

Yi=UY VY, ()
. Taking, for example,e;1;=0 and e1,= €1,,=¢€; we find
whereY; are diagonal matrices containing mass eigenvalueg,/m,= e4/4, m./m= e /4, and  Vp=(eq—€,)/4
ande apd Vi are unitary matrices. The mismatch betwee_n: m¢/m, . The predicted value diV.,| in this case is 0.02
diagonalization of up-quark and down-quark Yukawa matri-which is not so far from the desired valu¥,,|=0.036.

ces appears in the charged current Lagrangian in the form @learly, relaxing the condition between elementsCothere
the Cabibbo-Kobayashi-Maskaw@KM) matrix

_ T
Vekm=UyUyg. ) For simplicity we assume real symmetric Yukawa matrices.
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is enough freedom to fi'F .precisely both quark masses angl6) comes fromZRT and the last term includes 5V7A31
CKM elements. For specific models see Ré&f. The generic —I7“251+5V7%£I. The eigenvalues of the first matrix in Eq.

consequence in this approach is that the valug¢\gf| is vy . - L
proportional to the generated hierarchy in quark masses. Th(aé'SB) are{0,,"+¢,} and the diagonalization matrix is given

diagonalization matrices differ only by¥(e) from U;.
Therefore the resulting CKM matrix differs from the identity
matrix by O(e) although the mixing in both up and down
sectors is close to maximal.

Let us turn our attention to the lepton sector. If the only u, =
source of neutrino mass was the neutrino Yukawa matrix, the -
lepton mixing matrix would naturally be close to the identity
matrix (in the same way as the CKM matjjalthough it is
reasonable to expect off-diagonal elements to be much Iargtﬁrl
than the corresponding CKM elements due to the fact tha(g

the hierarchy in both charged lepton and neutrino sectors IS alization matrix has approximately the form ©f, in Eq.

much smaller than in the quark sectan/m, =0.16). (9) we find that the lepton mixing matrix7) is approxi-
However, close to maximal m_ixing would require fine-tl_m_ing mately equal tdJ; up to sign changes in different elements
(€,12~1). Fortunately, we will see that the lepton mixing corresponding to different limits. These situations lead to
matrix can naturally be very different when considering maximal mixing in the lepton sector and they occur when
right-handed neutrino Majorana mass and the seesaw mechgnhe of €1, and e,, either dominates or is close tq,. Both

X 1
V1+x2 J1+x2 €,
s X=—’.
eV

(17)

1 X
V1+x2 J1+x?

the limit x— *= o or x— 0 this matrix is either diagonal or
ff diagonal. Assuming further that the charged lepton diago-

nism.
Let us make a similar assumption about the forrrI\/tqfR

as we made for Dirac Yukawa matrices:

M, = S(T-R)Mg, R= er”) (11)
R2 o o T2l
It is useful to write the inverse of this matrix as
M, 1= T+7R), (12)
R Meff(
where
R -1 1 R o, —rqo
I= , R= , 13
( 1 _1) (_rlz M1 3

and the effective right-handed neutrino mass scale is
1
Meffzi(r_detR)Mo, (14)
with

2
rE_Zl Rij=r11tro—2r15.
1,]=

(19

In the case whem;; are much smaller compared &;;

from Egs.(5) and(12) we get the left-handed neutrino Ma-

jorana mass matrix in the form

12
7\2U2

'
€ € €
Wy v vy
MVL:_4M , 2 —I—I’I—I—O(rije,,”-) y
eff €,€, €,

(16)

wheree!,=€,1,— €,1, and e, = €,1,— €. The special form
of 7 causes that 1—&,)Z(Z—&,)T=E,ZE which corre-
sponds to the first matrix in E416). The second term in Eq.

situations are reasonable to assume. No particular fine-tuning
is necessary. Close to maximal mixifby,~ 1/y2+0.1 will
be achieved every time whér|=7 or |x|<1/7.

The second term in Eq16) lifts the first eigenvalue. In
situations when large mixing in the lepton sector is gener-
ated, the masses of left-handed neutrinos are given as
N20?%/(2rM o) X {r,€?}, where e?=max(€,e/”) and we as-
sumer < €2 andr>ri2j (in other words there is no cancella-
tion betweenr;; which would maker smaller than higher
order term$). An interesting consequence of this approach is
a very robust prediction for the mass of the lightest neutrino:

m, =\202/(2My), (18)
1
which is given by the universal Yukawa couplihg and the
overall right-handed neutrino mass scélly,. It does not
depend either on details of the Yukawa matré;() or de-
tails of the right-handed neutrino Majorana mass matrix
(rij). We discuss this more in the case of three families.

Before we discuss three families, let us summarize why it

was possible to obtain large mixing in the lepton sector. The

form of Z given in Eq.(13) plays the crucial role. The sum of
elements of this matrix in every row and column is zero. As

a result,ZZ=0 and so the 1's from the neutrino Yukawa
matrix wash out, leaving products ef,; as the dominant
contributions to the left-handed neutrino Majorana mass ma-
trix after the seesaw. If the resultirllg,,L is hierarchicaland

it is if we assume thaf, is similar to the perturbation ma-

2Such a cancellation is of course possible but unless it comes out
naturally from some models it would require fine-tuning. We do not
consider this possibility here. On the other hand, we do not have
any reason to assume thrais smaller than the dominast. How-
ever, if this condition is not satisfied and th& term in Eq.(16)
dominates, the neutrino mass matrix resembles the charged lepton
mass matrix and large hierarchy in neutrino masses and small mix-
ing in the lepton sector would be generated.
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trices for other fermions the lepton mixing matrix will be  The inverse of this matrix is given as
dominated byU.. Perhaps the only nontrivial assumption is
thatr < e?. However, this assumption does not require a de-

—-1_ o ~
parture from a democratic approach. Quite the contrary, it MVR B Meff(z+ R), (22
just means thaM e has to be somewhat more democratic
than Dirac Yukawa matrices. We will see that the maffix WhereZ can be written as
has the same property in the case of three families although _ _ n
the form of this matrix and the resulting left-handed neutrino M f17 13 s
Majorana mass matrix is much more complicated. =|ri—rg —ry+2rg—=ry, —rz+ry|, (23

+ry —ra+r, -,

IV. DEMOCRATIC MATRICES: THREE FAMILIES
with
Let us now assume that all three generations are indistin-
guishable in leading order and so Yukawa couplings are F1="FppF 33— 2l 03, (24)
given as
F2=Tr11+ 12— 2, (25

1 €f11  €f12  €f13
YfE§)\f(I—5f), E=| €r12 €2 €r23|, (19 Fa=Taotl13— 1o~ Mag. (26

€f13 €f23 €33 P .
From the form ofZ it is easy to see the correspondence with

where we use the same symiofor the 3x 3 matrix with ~ the 2x2 case, since it can also be written as
unit elements as we did in thexX2 case, and similarly we

parametrize the departure from universality by matri€es T=r1Ty+ 1,1+ r5(I3+15), 27
If Yukawa matrices were equal 1\ ;/3, then mass eigenval-
ues are{0,0)\;} and the diagonalization matrix is where
1 1 -1 1 0 0 0 0
Z & 0 =l 1 -1 0|, Z,=|0 -1 1],
cosf; sinfy O 0 0 0 0 1 -1
U sinf; cosf; O ! ! 2
=| - T T —-— = T =
o 0 o 1 /6 6 6 0 -1 1
1 1 1 Z,=| 0 1 -1]. (29
ﬁ ﬁ ﬁ 0 0 0
(20)

The matrixR is proportional to the inverse of the matfi.

As a consequence of degenerate zero eigenvalues the filts elements are cofactors of the corresponding elements
two rows of this matrix are not uniquely specified and areof R:
model dependentf has to be taken into accoynThey can
be replaced by any of their linear combinations and the cor- B :E s (29)
responding orthogonal combination, which is accounted for ij = 2 €iki €jmnlkmin -
by the first matrix which rotates the first two rows. As a
result, the CKM matrix is not the identity matrix in the lead- And finally, M¢¢; is given as
ing order as it was in the case of two families, but rather a
unitary matrix with an arbitrary 1-2 elemeht.

The Majorana mass matrix for right-handed neutrinos is
parametrized in a similar way as before:

1
Meff=§(r—det7€)l\/|0, (30)

where
i1 Tz Tz

1 3
Mszg(I_R)MO’ R=| T2 I TIog|. (21) rEZ 'fzij:rlrz_rg. (31)

~y
riz rfog ra3 h

Let us again assume thgj are much smaller thag,;; . In

this case we get
3Therefore the Cabibbo angle is not necessarily related to the 9

hierarchy in quark masses. Other off-diagonal elements 1-3 and 2-3 \2p2
are zero in the leading order and their exact values are related to the M, =———[M+rI+ o(fgij i), (32
generated hierarchy in quark sector. - IMets
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whereMEE,iSI is a 3X 3 equivalent to the first matrix in SIr? @,5=Sir? 6 m=0.52. (45)
Eq. (16). As in the case of two families the matrix! de- o

pends on differences betweep; . It is useful to define the The 3o ranges for mixing angles are

perturbation vectors

0.23<sir? 05,=<0.39, (46)
e=&,1—-E,, 33 :
G 33 0.31<Sir? 0, <0.72, 47)
9=&2=Eua (34) and the 3r upper bound on the third mixing angle is
where&,; is theith column of the perturbation matri&, . Sin? 6,5 0.054 (48)

The matrixM can be written as

> T -~ or > ap s T In the casen, <m,_,m,_we can interpret these results as
M=—ry(e-e)—ry(g-g’)—rs(e-g +g-e). (39 oo

. o - =JAm2 =8.3x103
From this expression it is easy to see theatv,=0 for My, = VAMS,, 83107 eV, (49)
JOJ_ e, JOLQ. Therefore, the eigenvector corresponding to ,
the zero eigenvalue is given as m,,=\Am,,=5.1x10"% eV, (50)
. éxé and as a result of sh#;3=0, the mixing angles are related to
Vo= (36)  the elements of the lepton mixing matrix in the following
lexg] simple way:
The heavy two eigenvalues can be written as Sir? 6,5~ |U 152, (51)

m+=%t(1t \ll—ﬂ), (37) SIN? 63=|U 4%, (52)
- t

with B. Back to three families
From the experimental results above we see that the lep-
t=p1tpo+2p3C0Sa, (39 ton mixing matrix is characterized by a very small 1-3 mix-
ing and close to maximal 2-3 mixing. The lepton mixing
d=(p1p2—p§) sirfa, (39 matrix originates from both the charged lepton diagonaliza-
tion matrix U and the neutrino diagonalization mattik, .
where In a democratic approach the charged lepton diagonalization
matrix already contains large mixing angles. If al$pL con-
tains large mixing angles, it would require a conspiracy be-
tween elements of all perturbation matrices in order to
achieve sif#;3=0 and siR 6,;=0.5. Of course, such a con-
E'piracy might naturally occur in some models.

pi=—ril€l®,  p,=—r,lg>, ps=—ralellgl, 40

and « is the angle betweea and § The eigenvectors cor-
responding to these two eigenstates are given as two o

thogonal linear combinations @ andg: In order to avoid any exact relations between elements of
- - - &e, €,, andR the simplest way to proceed is to assume that
v.=a.etb.g, (41 the perturbation matri€, introduces the minimal amount of

. . mixing into the lepton mixing matrix. This happens when
wherea. ,b. can be written in terms op,, p,, p3, and g P g PP

cosa. Before we proceed further let us summarize the Curperturbation vectore andg are dominated by a single ele-

rent status of neutrino masses and mixing. ment ~(0,0,1)', (0,1,0)', or (1,0,0) with eLg. In this
caseU » IS given as

A. Experimental results
P 1 0 0

100
U, =| 0 cosd, —sing, P[0 1 0], (53
0 sing, cosb, 0 0 1

A global analysis of neutrino oscillation ddtbl,12 gives
the best fit to the neutrino mass-squared differences

AmZ,=m; —m: =6.9<10 ° eV?, (42)
whereP is a permutation matrix which interchanges rows of
AmZ,, = m]2/3_m12}122_6>< 1073 eV? (43  the iderltity mi\trix depending on the choice of perturbation
vectorse andg. Note that, since cag=0, the eigenvalues
and mixing angles and co9, are given in terms of three parametgis p,, and
ps. Namely, in Eq(37), t=p,+ p, andd=p,p,— p3, and in
Sir? 61,=sir? 654=0.30, (44  Eq.(53),
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where the permutation matrix from E¢3) was absorbed in
the redefinition of co#, since the permutation matrix
switches columns of the second matrix above and this can be
accounted for by rotation of the first two rows of that matrix.
The lepton mixing matrix in this simplest scheme is given
in terms of two parameterg, and @, and so it is not trivial
that the resulting three mixing angles can be simultaneously
within experimental bounds, although from the suggestive
form of the matrix in the middle of Eq(56) it might be
guessed that it will happen for smdl} and 6,,. In Fig. 2 we
present contours of constant 5#; (blue) as a function of
6. and 6,. Dark blue contours represent the central value
E == = i i N 2 [Eqg. (45)] and the blue-shaded area corresponds to the
; ' 3o-allowed region[Eq. (47)]. Green stripes represent the
3o-allowed region of sif¥,; given in Eq.(48) and the green
FIG. 1. coss, as a function ofz; see Eq(54). area is the overlap of @-allowed regions of si#,; and
Sir? 6,5. We see that it is not particularly difficult to achieve
a very smallf,; and close to maximal,3. In the majority of

costy, {10

0.5

cosf,= ! (54) cases, the value of €if,; consistent with the limits on
\/2+222—sz sir? 65 is within or above the 8-allowed region.
In Fig. 3 we present a similar plot for the solar mixing
(up to an overall sign where angle. Contours of constant $ify, are represented by yel-
low. Brown contours correspond to the central valis.
P2—P1 (44)] and the yellow-shaded area represents threaBowed
7= 203 (59 region[Eq. (46)]. Green stripes have the same meaning as in

the Fig. 2 and the overlap ofc3allowed regions of sif;,
and sirf 6,5 is given by the pink area. The value of 5,
consistent with the limits on sh¥,; is always within or
above the 3--allowed region.

However, the 3-allowed regions of all three mixing
angles overlap only in two small regions as can be seen in
Fig. 4. These regions are represented by magerdte the

eriodicity of the picture; regions disconnected at the bound-
ies of the plot are not counted separately

This function is plotted in Fig. 1. We see that ajsvaries
fast for small|z| and is almost constant foz|> 0. Therefore,
the least-fine-tuned situations correspond|zp>0 which
happens foll ps| <max|pi|.|psl}. Actually, no strong hierar-
chy is necessary; cas is very close to 1 foz as small as 3.

Note that, if we assumée|<|g|, which is reasonable to
assume about all perturbation matrices in order to genera
hierarchy between generatioripg| <max|p,|p,l} is satis-
fied for a huge variety of possible entrigs.

From Eqgs.(7), (20), and(53) we see that the most general
form of the lepton mixing matrix in this case can be written  Since we do not measury, it is interesting to ask what
ad values of sif ;5 can be achieved within this approach while

satisfying the % experimental bounds of gim,; and

C. How small can sirf 6,5 be?

1 1 Sir? 6;,. In Fig. 4 we see that thed3regions of sif 6,3 and
V2 2
cosf, sinf, O
U sinf, cosh, O ! ! 2
= e e = = T =
0 o 1| V8 & V6
1 1 1
V3 3 B
1 0 0
x| O «cos#, sing, |, (56) 0 w/4 w/2 3w/4 0w
0 -—sinf, cosb, O

FIG. 2. (Color onling Contours of constant sirg,; (blue) as a
function of 6, and 6,. Dark blue contours represent the central
4In the most general case there are an additional three angles {iue and the blue-shaded area corresponds to dhallBwed re-
this matrix corresponding to the overall rotation of the given per-gion. Overlayed is the @ region of sif 6,5 (green stripes The
turbation vectorse andﬁ to the basis chosen here. One of those green shaded area represents the overlapre&l®wed regions of
angles and also cescan be always absorbed into ags Sir? 6,3 and siff ;5.
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T The only allowed values of, are close to 0 otr/4. The
charged lepton diagonalization matrix corresponding to these
3m/4 two possibilities is close to the forms
6, /2 1 1 0
2 2
» V2. 2
U 1 1 2 (59
0 Sl V6 6
1 1 1
FIG. 3. (Color onling Contours of constant i, , (yellow) as \/§ \/§ \/§
a function of6, and @, . Brown contours represent the central value
and the yellow-shaded area corresponds to teaBowed region.  for .=0 and
Overlayed is the & region of sif 6,5 (green stripes The pink-
shaded area represents the overlapefdowed regions of sid;, —-y3-1 \/§— 1 2
and sirt 613 U=—=| V3-1 —\3-1 2 (60)
2\3
2 2 2

sir? 6;, overlap in four places: two regions containing ma-
genta areaqregion ) and the regions around point,
=/2, ,=5m/8 andf,=7=/8, 6,=7 /8 (region Il). Note
that the two areas in region | predict gipy with opposite
signs, and the same applies to region Il. The predicted valu
of sir? 6,5 from these regions are

for 6,= /4 (up to overall sign changes in the rowghe
first solution is obvious, sinctl, is very close to the ob-
esserved lepton mixing matrix in this case. The second solution
IS not so obvious and its symmetric form is quite surprising.
Perhaps the simplest models of this kind are those with a
0.008<sir? §,5<0.14 (region ), (57)  dominant 3-3 component in all perturbation matricés;R
=diag(0,0¢). This perturbation generates masses of the sec-
ond family. In this caséJ, is very close to the one in Eq.

(59) and g=(0,0,1)". There are many ways to introduce
masses of the first family. Simple examples &eR
=diag(0g,€) (this perturbation was suggested [iii]) or
d{'ag(b‘,o,e), whered< e (with different numerical values for
%lfferent perturbation matricésThese situations have all the

desired featuresLl g (approximately and|z|>0.

It is certainly remarkable that very simple forms of per-
turbation matrices, which on top of everything can be chosen
to be the same for all mass matrices, lead to the observed
pattern of fermion masses and mixing. This should come
D. Consequences for models with a warning, however. The simple form of perturbation

The magenta regions in Fig. 4 are not large. Neverthelesghatrices does not guarantee that it is easy to obtain them
the good news is that they are located aroune-w/2 or  haturally in some models. Especially in models with family

6,~0,7, which corresponds to the least-fine-tuned possibili-Symmetries this is very complicated compared to the situa-
ties discussed after E¢B5). tion in hierarchical models. The reason is that in hierarchical

models hierarchy is achieved by suppressing or forbidding
some entries in mass matrices. This can be easily achieved

0.22<sir? ,3<0.66 (region II). (58

Region | overlaps with the experimentally allowed region
and it shows that the value of $if,3 which can be accom-
modated in this approach can be as low as 0.008. Note th
this minimal value of sifif;5 corresponds to the maximal
allowed values of sh#,; and siff 6;,. On the other hand,
the central values of sh¥,; and sirf6;, correspond to
Sir? 6,5 near its present experimental upper bound.

™
. by assigning different charges under a family symmetry to
37 /4 different particles. In democratic models, however, family
symmetries have to allow all entries in mass matrices and yet
6, /2 they have to account for small differences in specific ele-
ments of mass matrices. This is certainly not trivial to
/4 achieve.
E. Mass of the lightest neutrino
0 afd w/2 3x/4 o« ) L
0 The mass of the lightest neutrino is lifted when the second

term in Eq.(32) is taken into account. Since we assume it is
FIG. 4. (Color onling The 3o-allowed regions of sté,; (blue,  just a small correction to the first term, it can be treated as a
green, sir? 6, (yellow, pink), and sif 65 (green, pink from Figs.  perturbation. Adding this perturbation does not significantly
2 and 3 overlayed. The magenta regions represent their overlap. affect the two heavy eigenvalues and the diagonalization ma-
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trix, but it is crucial for the lightest eigenvalue which is from the perturbation matrix. Finally, in the case of complex
exactly zero in the limit when this term is ignored. In the matrices,v™ in Eq. (64) becomesy™ and U, in Eq. (68)

s

case of nondegenerate eigenvalues the correction to eigefecomegu ,|2.
valuesm; of a matrix M generated by a matriéM are Although we do not measurdl ,, it is related to the
given as observed mixing angles due to the unitarity of the lepton

smy=uT SMu; 61) mixing matrix. In the case sié3=0 it is simply given by

. . U,1=sinfy3SiN05. 69
whereu; are normalized eigenvectors. In our caset=rZ m 23>0 69

[up to the overall factor in Eq(32)] and the eigenvector A giobal analysis of neutrino oscillation dafal] gives the
corresponding to the zero eigenvaluejs=(1,0,0)". There- 3¢ range

fore,
0.20<|U ,|<0.58. (70)
)\2U2
m, = 9|\/|effr' (62)  The value ofU_,=1//3—in which case Eq(68) gives the

same result as Eq63)—is close to the upper limit.

SinceMg(=rM /3 [see Eq.30)], the mass of the lightest ~ The masses of the two heavier neutrinos are given in
neutrino again does not depend on details of a model in thErms ofrj; ,€,i, and so they are highly model dependent.

leading order and is given as Let us look at a simple example to get a feeling for typical
values of perturbations which lead to the observed spectrum.
A2 Let us assume that the form of all perturbations is
M= 3M, (63 —diag(s,0.€). In this case we havge|2= 82, |g|2=€2, 1,

=¢€,, I,=6,, andrz=0, from which we geto1=er5§, P>
This result is based on our assumption of the minimal= 5@5, p3=0, andr=r4r,. The neutrino masses are given
amount of mixing coming from the neutrino diagonalization by
matrix. However, it is possible to make a prediction which

does not depend on this assumption. Ry A2 A2 (82 €
Let us suppose that we do not know what the eigenvector Mv, 5= gMeff{Pl'PZ}: 3Mor {p1,p2}= 3Mo | 6, ¢ |
corresponding to the lightest eigenvalue is. As a result of the (71

universal form ofé M, we have
Using Eq.(68) we get

Vg OMug=ré2, (64)
mvl [52 62]
where m, =———1i—,—t. (72)
23 3lU, P Lo &
3
2
g:izl Voi» (65) In order to havemyz,mV3>mVl we need§,< 4% and e,

<e§, and so the hierarchy in the right-handed neutrino mass
matrix has to be much larger than the hierarchy in the neu-

and so the mass of the lightest neutrino is given as ) _ : S : .
trino Yukawa matrix. This coincides with the assumption we-

A2p2 had to make in order to achieve large lepton mixing; see
m, = Sl”vl”gz. (66) Eg.(32.
0 In simple SQ@10)-type models\ v, ,=\,v,, in which

case the lightest and heaviest fermions of the standard model
are connected through the relation in E88) wherex?v? is
replaced byntzOp (actually, to be precise,,=\ , is a relation

at the GUT scale and the effects of the renormalization group
running between the GUT scale and the electroweak scale
should be taken into accounthis is a very pleasant feature

,i,i).goz_g, (67) since we can further identiffM, with the GUT scale,
V3' V33 V3 Mgut~2X 10'® GeV, in which case we get

In generalé can be anything between 0 ag@. However, in
order to satisfy bounds on lepton mixing angéesannot be
arbitrary. The 3-1 element of the lepton mixing matrix is
given by

Url:(UeUIL)BlZ(

and so 5
m,
7\12;012; 2 mV;L: MGo:T|U71|21 (73)
m,,lz MO UTl' (68)

and predict the mass of the lightest neutrino to be between
Note that the third row iJ, is notmodel dependent unlike 5x107° eV and 5<10 % eV depending on the value of
the first two rows are. It can receive only small correctionsU ., .
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From experimental values anhVZ and m,, given in Egs.
(49 and (50), and from the predicted mass m‘Vl, we see M, =

that €%/ ¢, in Eq. (72) is of order 18 and 6% &, is an order
of magnitude smaller. The largegt necessary to fit the
masses of the second generation of charged fermions corrgy a unitary transformation
sponds toe,=0.28. If we takee,=0.1, we finde,=10"4
and the mass of the second right-handed neutrindjs _ T
~(10"%-10"%)M,, where M3=My=Mgyr. This is a Mu=UMpUz, 79
very rough estimate and it is not clear how to reasonablyyhereU, is given in Eq.(20).
estimateM, besides the relatioM;<M,. We conclude It is obvious that &5 symmetry under which the first two
that the spectrum of the right-handed neutrinos consistefjenerations of left-handed fermions have charde the first
with bilarge mixing in our setup i#1,<M,<10"*Mz and  wo generations of right-handed fermions have chafde
Ms=Mgyr. (or, equivalently, charge conjugates of right-handed fermions
have charge-1), and the third generation of fermions has
charge zero uniquely specifies tMy; form of Yukawa ma-
V. SYMMETRY FOR THIRD GENERATION DOMINANCE trices and the right-handed neutrino Majorana mass matrix. It
, . . follows from the fact that any coupling involving first and/or
The democratic Yukawa matrices are well motivated bysecong generation fermions is simply forbidden. Therefore
SsL X Sz family symmetry[1]. However, the right-handed he only nonzero element of a mass matrix is the 3-3 ele-

neutrino Majorana mass matrix is then constrained by thenent This can be written in the form of transformatigiié)
Szr symmetry only and the democratic form is not unique.anq (75) with P replaced byPy, :

The most general form of the right-handed neutrino mass
matrix is given as a linear combination of the democratic
matrix and the identity matrix.

It has been shown that the democratic forms of Yukawa P, =

. . . . H

matrices and the right-handed neutrino mass matrix are
uniquely specified by imposing Z; symmetry realized in
the following way|8]:

0
0 (78)
1

o O O
o O O

o o ¢

0
01, (80)
1

o & O

where the subscriptl indicates that it is a symmetry trans-
formation specifying the hierarchical form of mass matrices.
fLi— PiTJ- fL, (74  Therefore we proved

PuMPy,=M&M=AM,. (81
fRi_>Piijj1 (75)
Now we can rotate this result to the democratic basis
where UIP,U,UIMU,UIP,U,=UIMU,
x @ 1 1 sUIMU=\UIM U7,
P: 1 w 1 , w:ei27r/3. (76) (82)
1 1 w

/3

and we obtain

It is straightforward to check that this is indee@ asymme- PMIP=M'=M"=AMp, (83
try, and the proof that it is responsible for the democraticwherer:U}M U, and

form of Yukawa matrices and the right-handed neutrino mass

matrix can be found in Ref8]. Here we provide an alterna- T

tive proof and a very simple understanding of this peculiar P=UzPyUz. (84)
symmetry.

Let us first note that a democratic matik, (which rep- hserting P, from Eg. (80) and U, from Eq. (20) it is
resents both Yukawa matrices and the right-handed Majorangraightforward to find that the form of the transformation
mass matrix matrix P which guarantees the democratic form of all mass

matrices is exactly that of E{76).

We see that the special form & in Eq. (76) is just a

1 simpleZ; symmetry which allows only 3-3 elements in mass
1|, 77 matrices rotated into the democratic basis. This shows that

the approach in which the right-handed neutrino Majorana
1 mass matrix and Yukawa matrices have in the leading order

democratic form is equivalent to the hierarchical approach in
can be brought to a diagondlierarchical form which the 3-3 elements in Yukawa matrices and the right-

111
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handed neutrino mass matrix dominate. The results obtainezks and the right-handed neutrino mass matrix dominate. The
in previous sections can be translated into results in correaecessaryand basis independgntequirement for achieving
sponding hierarchical modelsNamely, the prediction for large mixing in this scheme iM;,M,< 10 *M5. This is

the mass of the lightest neutrino does not change, since maggenomenologically very interesting because it was found
eigenstates are not basis dependent. The necegsapasis that under these conditions the effective Majorana mass in
independentrequirement for achieving large mixing in this neuytrinoless double-beta decay might be related toCtRe
scheme isVl;,M,<10"*Mg; i.e., the third generation right- vyiolating phase controlling leptogenesis4]. Furthermore,
handed neutrino has to dominate even more than the thirgince the heaviest right-handed neutrinos effectively de-
generation of quarks and charged leptons. Tthird genera-  couple, this scenario might provide a natural framework for
tion dominances a suitable name for this scenario. models with two right-handed neutrinos orty5—17.

Besides thisZ; symmetry, the democratic mass matrices  The virtue of this approach is that all mass matrices are
have also larger symmetries, i€, for example, which can  treated in the same way, providing a simple framework
be used to specify perturbation matrices in the process afhich can be easily embedded into GUTs. If embedded into
family symmetry breaking and thus distinguish between hissimple GUTs, the third generation Yukawa coupling unifica-
erarchical and democratic starting pdirtiowever, the com-  tjon (at least approximaleés inevitable which is theoretically
plicated form of theZ; symmetry in the democratic basis very appealing and it has interesting consequences for phe-
compared to the simple form in the hierarchical basis furthefhomenology[18]. Note that in this framework it is achieved
amplifies the difficulties in ConStrUCting SpeCiﬁC models aSwithout making one generation different from others at a
discussed at the end of Sec. IV D. fundamental level. On the other hand, the spectrum of the

The fact that these mass matrices are motivated by first two generations of quarks and charged leptons crucially
simpleZ; symmetry is certainly a very pleasant feature. Un-depends on small perturbations. In the neutrino sector, the
like Sy X Sg, this Z3 symmetry acts in the same way on all heavier two neutrinos are model dependent, while the mass
particles in each generation. Therefore this approach can kg the lightest neutrino in this approach does not depend on
readily embedded into GUT models, like S0). perturbations in the leading order. The right-handed neutrino

mass scale can be identified with the GUT scale, in which
case the mass of the lightest neutrino is given as
VI. CONCLUSIONS (MG M) SIN? fa3sir? 61, in the limit siny5~0.
L We do not provide any understanding of the origin of
We showed that both small mixing in the quark sector anq.miversal mass matrices and their perturbations. It is not

Ia_lrge mixing in _the Ieptqn sec_tor can be obtameq from E’lstraightforward to construct such models with family sym-
simple assumption of universality of Yukawa couplings anOImetries. Nevertheless, it is worthwhile to look for alterna-

the right-handed neutrino Majorana mass matrix in the Ief.idt'ives: extra dimensions or composite models. No matter what

ng prder. we d|scusseq condmons u-nder W.h'.Ch bilarge MXthe origin is, having all three generations indistinguishable in
ng in th.e Iepton.sector IS achleveq with a minimal amount OfIeading order is certainly something one would like to see in
fine-tuning requirements for poss!ble .mlodels. From knOWI'the fundamental theory. After all, the three generations have
ed_ge of the solar and atmospherlc mixing angles we dete@xactly the same quantum numbers in the standard model
mined the allowed values of sih;. The central values of

Sir? 63 and iR 6., predict sift 6, near its present experi- and even in simple GUT models. Why should their Yukawa

' i 2
mental upper bound, while it can be as small as 0.008 if botr(]:ouphngs be so different:

Sir? 6,3 and sirf 6;, are near their @ upper bounds.
We showed that this approach is equivalent to the hierar-
chical approach in which the 3-3 elements in Yukawa matri- ACKNOWLEDGMENTS
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