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Bilarge neutrino mixing and mass of the lightest neutrino from third generation dominance
in a democratic approach

Radovan Dermı´šek*
Davis Institute for High Energy Physics, University of California, Davis, California 95616, USA

~Received 17 December 2003; revised 19 March 2004; published 17 August 2004!

We show that both small mixing in the quark sector and large mixing in the lepton sector can be obtained
from a simple assumption of universality of Yukawa couplings and the right-handed neutrino Majorana mass
matrix in leading order. We discuss conditions under which bilarge mixing in the lepton sector is achieved with
a minimal amount of fine-tuning requirements for possible models. From knowledge of the solar and atmo-
spheric mixing angles we determine the allowed values of sinu13. If embedded into grand unified theories, the
third generation Yukawa coupling unification is a generic feature while masses of the first two generations of
charged fermions depend on small perturbations. In the neutrino sector, the heavier two neutrinos are model
dependent, while the mass of the lightest neutrino in this approach does not depend on perturbations in the
leading order. The right-handed neutrino mass scale can be identified with the GUT scale in which case the
mass of the lightest neutrino is given as (mtop

2 /MGUT)sin2 u23 sin2 u12 in the limit sinu13.0. Discussing sym-
metries we make a connection with hierarchical models and show that the basis independent characteristic of
this scenario is a strong dominance of the third generation right-handed neutrino,M1 ,M2,1024M3 , M3

5MGUT .
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I. INTRODUCTION

The masses of three generations of fermions in the s
dard model are scattered in six orders of magnitude betw
the mass of the electron~0.5 MeV! and the mass of the to
quark~175 GeV!. Neutrino experiments suggest that mas
of neutrinos (,0.05 eV) are another seven orders of mag
tude lighter than the electron. Furthermore, the mix
angles in the quark sector given by the Cabibbo-Kobaya
Maskawa matrixVCKM are small, while the mixing in the
lepton sector is large. The solar neutrino data point to la
mixing and the atmospheric neutrino data require close
maximal mixing. This is one of the most challenging puzz
in elementary particle physics.

A lot of effort was made in order to understand the orig
of hierarchy and mixing in fermion masses@1#. Some of the
most promising models are based on grand unified theo
~GUTs! in which all fermions originate from just a few mu
tiplets of the GUT gauge symmetry group. Putting all p
ticles of one generation into the same multiplet@as it is, for
example, in SO~10!# offers a very attractive possibility tha
their Yukawa couplings are all equal at the GUT scale in
similar way to the well-established gauge coupling unific
tion. This works quite well for the third generation of ferm
ons but fails for the first two generations. Explaining t
spectrum of the first two generations requires very spec
assumptions about the underlying theory at the GUT sca

In the hierarchical approach, the unification of the th
generation Yukawa couplings is typically the starting po
and in the leading order only this coupling is generated. T
is usually achieved by imposing family symmetries. Yuka
couplings of the first two families are generated in the p
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cess of family symmetry breaking. Although these mod
can reproduce the observed spectrum and mixing, the l
of model building involved casts a shadow on third gene
tion Yukawa unification itself. Why should the third gener
tion be special when it is so easy to build models which
not unify the first two? Small mixing angles in this approa
can be understood as a consequence of the large hierarc
mass matrices. However, in order to obtain large mixing
the lepton sector it is often assumed that neutrinos are v
different; the neutrino Yukawa matrixis not hierarchical or
the right-handed Majorana mass matrix has a special f
@1,2#, or the neutrino sector is completely random@3#.

Hierarchy in quark masses can also be understood wi
a democratic approach@4#, in which all Yukawa couplings
are identical in the leading order and all differences res
from small departures from universality. However, in ord
to generate large mixing in the lepton sector, neutrinos
again assumed to be special. This time it is required that
neutrino mass matrixis not democratic~it is diagonal or it
has another special form!. This is either a by hand assump
tion @5# or can be achieved in specific models@6#.

In what follows we show that both small mixing in th
quark sector and large mixing in the lepton sector can
obtained from a simple assumption of the universality
Yukawa couplings. After introducing notation in Sec. II, w
start with a discussion of two families only, Sec. III, since t
mechanism which generates large mixing in the lepton se
is easier to follow in this case. Within a democratic approa
assuming the same universal form of all Yukawa matric
and the right-handed neutrino Majorana mass matrix~in the
leading order!, we identify a condition under which larg
mixing in the lepton sector is achieved. We show that
universal part of the resulting left-handed neutrino mass m
trix is washed out due to the seesaw mechanism and
dominant contribution to neutrino masses comes from sm
departures from universality. This is what distinguish
©2004 The American Physical Society07-1



s

ar
r
e

w
ch
n
n

m
i

sh
i-
.

er
av
a
eu
in
h
an
ix
al
re

as
th
n

in
i

w
ns
e

an

,
n

ue
en
tri

ex-

:

t-
ana

e

me
:

and
of

nt
wa

by

RADOVAN DERMı́ŠEK PHYSICAL REVIEW D 70, 033007 ~2004!
quarks from leptons. The case of three families is discus
in detail in Sec. IV.

The virtue of this approach is that all mass matrices
treated in the same way, providing a simple framewo
which can be easily embedded into more fundamental th
ries. If embedded into GUTs, the third generation Yuka
coupling unification is a generic feature in this approa
while the spectrum of the first two generations of quarks a
charged leptons crucially depends on small perturbatio
This becomes even more obvious in Sec. V, where sym
tries of this framework are discussed and the connection w
hierarchical models is made. It is shown that the distingui
ing ~basis independent! feature of this approach is the dom
nance of the third generation right-handed neutrino mass

Masses of light neutrinos do not follow the same patt
as masses of quarks and charged leptons. The two he
neutrinos are given in terms of perturbations and so
highly model dependent, while the mass of the lightest n
trino does not depend on details of a model in the lead
order. If the right-handed neutrino scale is identified with t
GUT scale, the mass of the lightest neutrino is predicted
it is related to the elements of the lepton mixing matr
Avoiding the necessity of introducing an intermediate sc
for right-handed neutrinos makes this framework very p
dictive. Finally, we conclude in Sec. VI.

After the first version of this paper was finished it w
brought to our attention that a democratic form of bo
Yukawa matrices and the right-handed neutrino Majora
mass matrix was previously suggested in@7#. Some of our
results—namely, the conditions under which large mixing
the lepton sector is achieved—coincide with the findings
Ref. @7#. For related studies, see also@8,9#.

II. NOTATION

The masses of quarks and leptons originate from Yuka
couplings of matter fields to one or more Higgs boso
When Higgs fields acquire vacuum expectation valu
~VEV!, the Lagrangian containing mass terms of quarks
leptons can be written as

Lm52v f f̄ Li~Yf ! i j f R j1H.c., f 5u,d,e,n, ~1!

wherev f result from VEV of Higgs fields which couple to
the corresponding quark or lepton,f L ( f R) represents left-
handed~right-handed! fields, andYf are Yukawa couplings
in general arbitrary 333 complex matrices in generatio
space represented by subscriptsi , j . The Yukawa matrices
can be diagonalized by biunitary transformations

Ŷf5U fYfVf
† , ~2!

whereŶf are diagonal matrices containing mass eigenval
andU f andVf are unitary matrices. The mismatch betwe
diagonalization of up-quark and down-quark Yukawa ma
ces appears in the charged current Lagrangian in the form
the Cabibbo-Kobayashi-Maskawa~CKM! matrix

VCKM5UuUd
† . ~3!
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The smallness of neutrino masses can be naturally
plained by the seesaw mechanism@10# which assumes the
existence of Majorana masses for right-handed neutrinos

LnR
52

1

2
nR

TM nR
nR1H.c., ~4!

where MR is a matrix in generation space. When righ
handed neutrinos are integrated out we obtain a Major
mass matrix for left-handed neutrinos:

M nL
52vn

2YnM nR

21Yn
T , ~5!

which can be diagonalized by a single unitary matrix

M̂ nL
5UnL

M nL
UnL

T . ~6!

And finally, the lepton mixing matrix which appears in th
charged current Lagrangian is given as

U5UeUnL

† . ~7!

III. DEMOCRATIC MATRICES: TWO FAMILIES

Let us start with only two generations and let us assu
their Yukawa couplings are universal in the leading order

Yf'
1

2
l fI, I5S 1 1

1 1D . ~8!

If the Yukawa matrices are exactly equal toI l f /2, mass
eigenvalues are$0,l f% and the diagonalization matrix is

UI5S 2
1

A2

1

A2

1

A2

1

A2

D . ~9!

Therefore one generation is massless in the leading order
the CKM matrix is the identity matrix as a consequence
the unitarity constraintVCKM5UuUd

†5UIUI
†51. This is

quite a good approximation to reality, taking into accou
that the only assumption so far is the universality of Yuka
couplings.

Now let us parametrize the departure from universality
matricesEf so that1

Yf[
1

2
l f~I2Ef !, Ef5S e f 11 e f 12

e f 12 e f 22
D . ~10!

Taking, for example,e f 1150 and e f 125e f 22[e f we find
ms /mb.ed/4, mc /mt.eu/4, and Vcb.(ed2eu)/4
.ms /mb . The predicted value ofuVcbu in this case is 0.02
which is not so far from the desired valueuVcbu50.036.
Clearly, relaxing the condition between elements ofE, there

1For simplicity we assume real symmetric Yukawa matrices.
7-2
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BILARGE NEUTRINO MIXING AND MASS OF THE . . . PHYSICAL REVIEW D 70, 033007 ~2004!
is enough freedom to fit precisely both quark masses
CKM elements. For specific models see Ref.@1#. The generic
consequence in this approach is that the value ofuVcbu is
proportional to the generated hierarchy in quark masses.
diagonalization matrices differ only byO(e) from UI .
Therefore the resulting CKM matrix differs from the identi
matrix by O(e) although the mixing in both up and dow
sectors is close to maximal.

Let us turn our attention to the lepton sector. If the on
source of neutrino mass was the neutrino Yukawa matrix,
lepton mixing matrix would naturally be close to the ident
matrix ~in the same way as the CKM matrix!, although it is
reasonable to expect off-diagonal elements to be much la
than the corresponding CKM elements due to the fact
the hierarchy in both charged lepton and neutrino sector
much smaller than in the quark sector (mn2

/mn3
*0.16).

However, close to maximal mixing would require fine-tunin
(en12;1). Fortunately, we will see that the lepton mixin
matrix can naturally be very different when consideri
right-handed neutrino Majorana mass and the seesaw me
nism.

Let us make a similar assumption about the form ofM nR

as we made for Dirac Yukawa matrices:

M nR
5

1

2
~I2R!M0 , R5S r 11 r 12

r 12 r 22
D . ~11!

It is useful to write the inverse of this matrix as

M nR

215
1

Me f f
~ Î1R̂!, ~12!

where

Î[S 21 1

1 21D , R̂[S r 22 2r 12

2r 12 r 11
D , ~13!

and the effective right-handed neutrino mass scale is

Me f f5
1

2
~r 2detR!M0 , ~14!

with

r[ (
i , j 51

2

R̂i j 5r 111r 2222r 12. ~15!

In the case whenr i j are much smaller compared toen i j
from Eqs.~5! and ~12! we get the left-handed neutrino Ma
jorana mass matrix in the form

M nL
52

ln
2vn

2

4Me f f
F S en8

2 en8en

en8en en
2 D 1rI1O~r i j en i j !G ,

~16!

whereen85en112en12 anden5en122en22. The special form

of I causes that (I2En)Î(I2En)T5EnÎE n
T which corre-

sponds to the first matrix in Eq.~16!. The second term in Eq
03300
d
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~16! comes fromIR̂I and the last term includes2EnR̂I
2IR̂E n

T1EnR̂E n
T . The eigenvalues of the first matrix in Eq

~16! are$0,en8
21en

2% and the diagonalization matrix is give
as

UnL
5S 2

x

A11x2

1

A11x2

1

A11x2

x

A11x2

D , x5
en

en8
. ~17!

In the limit x→6` or x→0 this matrix is either diagonal o
off diagonal. Assuming further that the charged lepton dia
nalization matrix has approximately the form ofUI in Eq.
~9! we find that the lepton mixing matrix~7! is approxi-
mately equal toUI up to sign changes in different elemen
corresponding to different limits. These situations lead
maximal mixing in the lepton sector and they occur wh
one ofe11 ande22 either dominates or is close toe12. Both
situations are reasonable to assume. No particular fine-tu
is necessary. Close to maximal mixingU12;1/A260.1 will
be achieved every time whenuxu*7 or uxu&1/7.

The second term in Eq.~16! lifts the first eigenvalue. In
situations when large mixing in the lepton sector is gen
ated, the masses of left-handed neutrinos are given
ln

2vn
2/(2rM 0)3$r ,e2%, where e25max(en

2 ,en8
2) and we as-

sumer ,e2 and r @r i j
2 ~in other words there is no cancella

tion betweenr i j which would maker smaller than higher
order terms2!. An interesting consequence of this approach
a very robust prediction for the mass of the lightest neutri

mn1
5ln

2vn
2 /~2M0!, ~18!

which is given by the universal Yukawa couplingln and the
overall right-handed neutrino mass scaleM0 . It does not
depend either on details of the Yukawa matrix (en i j ) or de-
tails of the right-handed neutrino Majorana mass ma
(r i j ). We discuss this more in the case of three families.

Before we discuss three families, let us summarize wh
was possible to obtain large mixing in the lepton sector. T
form of Î given in Eq.~13! plays the crucial role. The sum o
elements of this matrix in every row and column is zero.
a result,IÎ50 and so the 1’s from the neutrino Yukaw
matrix wash out, leaving products ofen i j as the dominant
contributions to the left-handed neutrino Majorana mass m
trix after the seesaw. If the resultingM nL

is hierarchical~and

it is if we assume thatEn is similar to the perturbation ma

2Such a cancellation is of course possible but unless it comes
naturally from some models it would require fine-tuning. We do n
consider this possibility here. On the other hand, we do not h
any reason to assume thatr is smaller than the dominante2. How-
ever, if this condition is not satisfied and therI term in Eq.~16!
dominates, the neutrino mass matrix resembles the charged le
mass matrix and large hierarchy in neutrino masses and small
ing in the lepton sector would be generated.
7-3
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RADOVAN DERMı́ŠEK PHYSICAL REVIEW D 70, 033007 ~2004!
trices for other fermions!, the lepton mixing matrix will be
dominated byUe . Perhaps the only nontrivial assumption
that r ,e2. However, this assumption does not require a
parture from a democratic approach. Quite the contrary
just means thatM nR

has to be somewhat more democra

than Dirac Yukawa matrices. We will see that the matrixÎ
has the same property in the case of three families altho
the form of this matrix and the resulting left-handed neutr
Majorana mass matrix is much more complicated.

IV. DEMOCRATIC MATRICES: THREE FAMILIES

Let us now assume that all three generations are indis
guishable in leading order and so Yukawa couplings
given as

Yf[
1

3
l f~I2Ef !, Ef5S e f 11 e f 12 e f 13

e f 12 e f 22 e f 23

e f 13 e f 23 e f 33

D , ~19!

where we use the same symbolI for the 333 matrix with
unit elements as we did in the 232 case, and similarly we
parametrize the departure from universality by matricesEf .
If Yukawa matrices were equal toIl f /3, then mass eigenval
ues are$0,0,l f% and the diagonalization matrix is

UI5S cosuI sinuI 0

2sinuI cosuI 0

0 0 1
D S 1

A2
2

1

A2
0

1

A6

1

A6
2

2

A6

1

A3

1

A3

1

A3

D .

~20!

As a consequence of degenerate zero eigenvalues the
two rows of this matrix are not uniquely specified and a
model dependent (E has to be taken into account!. They can
be replaced by any of their linear combinations and the c
responding orthogonal combination, which is accounted
by the first matrix which rotates the first two rows. As
result, the CKM matrix is not the identity matrix in the lea
ing order as it was in the case of two families, but rathe
unitary matrix with an arbitrary 1-2 element.3

The Majorana mass matrix for right-handed neutrinos
parametrized in a similar way as before:

M nR
5

1

3
~I2R!M0 , R5S r 11 r 12 r 13

r 12 r 22 r 23

r 13 r 23 r 33

D . ~21!

3Therefore the Cabibbo angle is not necessarily related to
hierarchy in quark masses. Other off-diagonal elements 1-3 and
are zero in the leading order and their exact values are related t
generated hierarchy in quark sector.
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The inverse of this matrix is given as

M nR

215
1

Me f f
~ Î1R̂!, ~22!

whereÎ can be written as

Î[S 2r 1 r 12r 3 1r 3

r 12r 3 2r 112r 32r 2 2r 31r 2

1r 3 2r 31r 2 2r 2

D , ~23!

with

r 15r 221r 3322r 23, ~24!

r 25r 111r 2222r 12, ~25!

r 35r 221r 132r 122r 23. ~26!

From the form ofÎ it is easy to see the correspondence w
the 232 case, since it can also be written as

Î5r 1Î11r 2Î21r 3~ Î31Î3
T!, ~27!

where

Î1[S 21 1 0

1 21 0

0 0 0
D , Î2[S 0 0 0

0 21 1

0 1 21
D ,

Î3[S 0 21 1

0 1 21

0 0 0
D . ~28!

The matrixR̂ is proportional to the inverse of the matrixR.
Its elements are cofactors of the corresponding elem
of R:

R̂i j 5
1

2
e ikle jmnr kmr ln . ~29!

And finally, Me f f is given as

Me f f5
1

3
~r 2detR!M0 , ~30!

where

r[ (
i , j 51

3

R̂i j 5r 1r 22r 3
2 . ~31!

Let us again assume thatr i j are much smaller thanen i j . In
this case we get

M nL
52

ln
2vn

2

9Me f f
@M1rI1O~R̂i j en i j !#, ~32!

e
-3

the
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BILARGE NEUTRINO MIXING AND MASS OF THE . . . PHYSICAL REVIEW D 70, 033007 ~2004!
whereM[EnÎE n
T is a 333 equivalent to the first matrix in

Eq. ~16!. As in the case of two families the matrixM de-
pends on differences betweenen i j . It is useful to define the
perturbation vectors

eW5En12En2 , ~33!

gW 5En22En3 , ~34!

whereEn i is the i th column of the perturbation matrixEn .
The matrixM can be written as

M52r 1~eW•eWT!2r 2~gW •gW T!2r 3~eW•gW T1gW •eWT!. ~35!

From this expression it is easy to see thatMvW 050 for

vW 0'eW , vW 0'gW . Therefore, the eigenvector corresponding
the zero eigenvalue is given as

vW 05
eW3gW

ueW3gW u
. ~36!

The heavy two eigenvalues can be written as

m65
1

2
tS 16A12

4d

t2 D , ~37!

with

t5r11r212r3 cosa, ~38!

d5~r1r22r3
2! sin2a, ~39!

where

r1[2r 1ueW u2, r2[2r 2ugW u2, r3[2r 3ueW uugW u, ~40!

and a is the angle betweeneW and gW . The eigenvectors cor
responding to these two eigenstates are given as two
thogonal linear combinations ofeW andgW :

vW 65a6eW1b6gW , ~41!

wherea6 ,b6 can be written in terms ofr1 , r2 , r3 , and
cosa. Before we proceed further let us summarize the c
rent status of neutrino masses and mixing.

A. Experimental results

A global analysis of neutrino oscillation data@11,12# gives
the best fit to the neutrino mass-squared differences

Dmsol
2 [mn2

2 2mn1

2 .6.931025 eV2, ~42!

Dmatm
2 [mn3

2 2mn1

2 .2.631023 eV2 ~43!

and mixing angles

sin2 u12[sin2 usol50.30, ~44!
03300
r-

r-

sin2 u23[sin2 uatm50.52. ~45!

The 3s ranges for mixing angles are

0.23<sin2 usol<0.39, ~46!

0.31<sin2 uatm<0.72, ~47!

and the 3s upper bound on the third mixing angle is

sin2 u13<0.054. ~48!

In the casemn1
!mn2

,mn3
we can interpret these results a

mn2
.ADmsol

2 .8.331023 eV, ~49!

mn3
.ADmatm

2 .5.131022 eV, ~50!

and as a result of sin2 u13.0, the mixing angles are related t
the elements of the lepton mixing matrix in the followin
simple way:

sin2 u12.uU12u2, ~51!

sin2 u23.uU23u2. ~52!

B. Back to three families

From the experimental results above we see that the
ton mixing matrix is characterized by a very small 1-3 mi
ing and close to maximal 2-3 mixing. The lepton mixin
matrix originates from both the charged lepton diagonali
tion matrix Ue and the neutrino diagonalization matrixUnL

.
In a democratic approach the charged lepton diagonaliza
matrix already contains large mixing angles. If alsoUnL

con-
tains large mixing angles, it would require a conspiracy b
tween elements of all perturbation matrices in order
achieve sin2 u13.0 and sin2 u23.0.5. Of course, such a con
spiracy might naturally occur in some models.

In order to avoid any exact relations between elements
Ee , En , andR the simplest way to proceed is to assume t
the perturbation matrixEn introduces the minimal amount o
mixing into the lepton mixing matrix. This happens whe
perturbation vectorseW andgW are dominated by a single ele
ment ;(0,0,1)T, (0,1,0)T, or (1,0,0)T with eW'gW . In this
caseUnL

is given as

UnL
5S 1 0 0

0 cosun 2sinun

0 sinun cosun

D PS 1 0 0

0 1 0

0 0 1
D , ~53!

whereP is a permutation matrix which interchanges rows
the identity matrix depending on the choice of perturbat
vectorseW and gW . Note that, since cosa50, the eigenvalues
and cosun are given in terms of three parametersr1 , r2 , and
r3 . Namely, in Eq.~37!, t5r11r2 andd5r1r22r3

2, and in
Eq. ~53!,
7-5
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cosun5
1

A212z222zA11z2
~54!

~up to an overall sign!, where

z[
r22r1

2r3
. ~55!

This function is plotted in Fig. 1. We see that cosun varies
fast for smalluzu and is almost constant foruzu@0. Therefore,
the least-fine-tuned situations correspond touzu@0 which
happens forur3u!max$ur1u,ur2u%. Actually, no strong hierar-
chy is necessary; cosun is very close to 1 forz as small as 3.
Note that, if we assumeueW u!ugW u, which is reasonable to
assume about all perturbation matrices in order to gene
hierarchy between generations,ur3u!max$ur1u,ur2u% is satis-
fied for a huge variety of possible entriesr i j .

From Eqs.~7!, ~20!, and~53! we see that the most gener
form of the lepton mixing matrix in this case can be writt
as4

U5S cosue sinue 0

2sinue cosue 0

0 0 1
D S 1

A2
2

1

A2
0

1

A6

1

A6
2

2

A6

1

A3

1

A3

1

A3

D
3S 1 0 0

0 cosun sinun

0 2sinun cosun

D , ~56!

4In the most general case there are an additional three angl
this matrix corresponding to the overall rotation of the given p

turbation vectorseW and gW to the basis chosen here. One of tho
angles and also cosa can be always absorbed into cosun .

FIG. 1. cosun as a function ofz; see Eq.~54!.
03300
te

where the permutation matrix from Eq.~53! was absorbed in
the redefinition of cosue since the permutation matrix
switches columns of the second matrix above and this ca
accounted for by rotation of the first two rows of that matr

The lepton mixing matrix in this simplest scheme is giv
in terms of two parametersue andun , and so it is not trivial
that the resulting three mixing angles can be simultaneou
within experimental bounds, although from the suggest
form of the matrix in the middle of Eq.~56! it might be
guessed that it will happen for smallue andun . In Fig. 2 we
present contours of constant sin2 u23 ~blue! as a function of
ue and un . Dark blue contours represent the central va
@Eq. ~45!# and the blue-shaded area corresponds to
3s-allowed region@Eq. ~47!#. Green stripes represent th
3s-allowed region of sin2u13 given in Eq.~48! and the green
area is the overlap of 3s-allowed regions of sin2 u23 and
sin2 u13. We see that it is not particularly difficult to achiev
a very smallu13 and close to maximalu23. In the majority of
cases, the value of sin2 u23 consistent with the limits on
sin2 u13 is within or above the 3s-allowed region.

In Fig. 3 we present a similar plot for the solar mixin
angle. Contours of constant sin2 u12 are represented by yel
low. Brown contours correspond to the central value@Eq.
~44!# and the yellow-shaded area represents the 3s-allowed
region@Eq. ~46!#. Green stripes have the same meaning a
the Fig. 2 and the overlap of 3s-allowed regions of sin2 u12
and sin2 u13 is given by the pink area. The value of sin2 u12
consistent with the limits on sin2 u13 is always within or
above the 3s-allowed region.

However, the 3s-allowed regions of all three mixing
angles overlap only in two small regions as can be see
Fig. 4. These regions are represented by magenta~note the
periodicity of the picture; regions disconnected at the bou
aries of the plot are not counted separately!.

C. How small can sin2 u13 be?

Since we do not measureu13, it is interesting to ask wha
values of sin2 u13 can be achieved within this approach whi
satisfying the 3s experimental bounds of sin2 u23 and
sin2 u12. In Fig. 4 we see that the 3s regions of sin2 u23 and

in
-

FIG. 2. ~Color online! Contours of constant sin2 u23 ~blue! as a
function of ue and un . Dark blue contours represent the centr
value and the blue-shaded area corresponds to the 3s-allowed re-
gion. Overlayed is the 3s region of sin2 u13 ~green stripes!. The
green shaded area represents the overlap of 3s-allowed regions of
sin2 u23 and sin2 u13.
7-6
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sin2 u12 overlap in four places: two regions containing m
genta areas~region I! and the regions around pointsue
.p/2, un.5p/8 andue.7p/8, un.7p/8 ~region II!. Note
that the two areas in region I predict sinu13 with opposite
signs, and the same applies to region II. The predicted va
of sin2 u13 from these regions are

0.008<sin2 u13<0.14 ~region I!, ~57!

0.22<sin2 u13<0.66 ~region II!. ~58!

Region I overlaps with the experimentally allowed regi
and it shows that the value of sin2 u13 which can be accom
modated in this approach can be as low as 0.008. Note
this minimal value of sin2 u13 corresponds to the maxima
allowed values of sin2 u23 and sin2 u12. On the other hand
the central values of sin2 u23 and sin2 u12 correspond to
sin2 u13 near its present experimental upper bound.

D. Consequences for models

The magenta regions in Fig. 4 are not large. Neverthel
the good news is that they are located aroundun.p/2 or
un.0,p, which corresponds to the least-fine-tuned possib
ties discussed after Eq.~55!.

FIG. 3. ~Color online! Contours of constant sin2 u12 ~yellow! as
a function ofue andun . Brown contours represent the central val
and the yellow-shaded area corresponds to the 3s-allowed region.
Overlayed is the 3s region of sin2 u13 ~green stripes!. The pink-
shaded area represents the overlap of 3s-allowed regions of sin2 u12

and sin2 u13.

FIG. 4. ~Color online! The 3s-allowed regions of sin2 u23 ~blue,
green!, sin2 u12 ~yellow, pink!, and sin2 u13 ~green, pink! from Figs.
2 and 3 overlayed. The magenta regions represent their overla
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The only allowed values ofue are close to 0 orp/4. The
charged lepton diagonalization matrix corresponding to th
two possibilities is close to the forms

Ue5S 1

A2
2

1

A2
0

1

A6

1

A6
2

2

A6

1

A3

1

A3

1

A3

D ~59!

for ue50 and

Ue5
1

2A3 S 2A321 A321 2

A321 2A321 2

2 2 2
D ~60!

for ue5p/4 ~up to overall sign changes in the rows!. The
first solution is obvious, sinceUe is very close to the ob-
served lepton mixing matrix in this case. The second solut
is not so obvious and its symmetric form is quite surprisin

Perhaps the simplest models of this kind are those wit
dominant 3-3 component in all perturbation matrices,E.R
.diag(0,0,e). This perturbation generates masses of the s
ond family. In this caseUe is very close to the one in Eq
~59! and gW .(0,0,1)T. There are many ways to introduc
masses of the first family. Simple examples areE.R
.diag(0,d,e) ~this perturbation was suggested in@7#! or
diag(d,0,e), whered!e ~with different numerical values for
different perturbation matrices!. These situations have all th
desired featureseW'gW ~approximately! and uzu@0.

It is certainly remarkable that very simple forms of pe
turbation matrices, which on top of everything can be cho
to be the same for all mass matrices, lead to the obse
pattern of fermion masses and mixing. This should co
with a warning, however. The simple form of perturbatio
matrices does not guarantee that it is easy to obtain th
naturally in some models. Especially in models with fam
symmetries this is very complicated compared to the sit
tion in hierarchical models. The reason is that in hierarchi
models hierarchy is achieved by suppressing or forbidd
some entries in mass matrices. This can be easily achie
by assigning different charges under a family symmetry
different particles. In democratic models, however, fam
symmetries have to allow all entries in mass matrices and
they have to account for small differences in specific e
ments of mass matrices. This is certainly not trivial
achieve.

E. Mass of the lightest neutrino

The mass of the lightest neutrino is lifted when the seco
term in Eq.~32! is taken into account. Since we assume it
just a small correction to the first term, it can be treated a
perturbation. Adding this perturbation does not significan
affect the two heavy eigenvalues and the diagonalization
7-7
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trix, but it is crucial for the lightest eigenvalue which
exactly zero in the limit when this term is ignored. In th
case of nondegenerate eigenvalues the correction to e
valuesmi of a matrix M generated by a matrixdM are
given as

dmi5ui
TdMui , ~61!

whereui are normalized eigenvectors. In our casedM5rI
@up to the overall factor in Eq.~32!# and the eigenvecto
corresponding to the zero eigenvalue isvW 0.(1,0,0)T. There-
fore,

mn1
5

ln
2vn

2

9Me f f
r . ~62!

SinceMe f f.rM 0/3 @see Eq.~30!#, the mass of the lightes
neutrino again does not depend on details of a model in
leading order and is given as

mn1
5

ln
2vn

2

3M0
. ~63!

This result is based on our assumption of the minim
amount of mixing coming from the neutrino diagonalizati
matrix. However, it is possible to make a prediction whi
does not depend on this assumption.

Let us suppose that we do not know what the eigenve
corresponding to the lightest eigenvalue is. As a result of
universal form ofdM, we have

vW 0
TdMvW 05r j2, ~64!

where

j5(
i 51

3

v0i , ~65!

and so the mass of the lightest neutrino is given as

mn1
5

ln
2vn

2

3M0
j2. ~66!

In generalj can be anything between 0 andA3. However, in
order to satisfy bounds on lepton mixing anglesj cannot be
arbitrary. The 3-1 element of the lepton mixing matrix
given by

Ut15~UeUnL

† !315S 1

A3
,

1

A3
,

1

A3
D •vW 05

1

A3
j, ~67!

and so

mn1
5

ln
2vn

2

M0
Ut1

2 . ~68!

Note that the third row inUe is not model dependent unlike
the first two rows are. It can receive only small correctio
03300
en-

e

l

or
e

s

from the perturbation matrix. Finally, in the case of compl
matrices,vW T in Eq. ~64! becomesvW † and Ut1

2 in Eq. ~68!
becomesuUt1u2.

Although we do not measureUt1 , it is related to the
observed mixing angles due to the unitarity of the lept
mixing matrix. In the case sinu13.0 it is simply given by

Ut15sinu23sinu12. ~69!

A global analysis of neutrino oscillation data@11# gives the
3s range

0.20<uUt1u<0.58. ~70!

The value ofUt151/A3—in which case Eq.~68! gives the
same result as Eq.~63!—is close to the upper limit.

The masses of the two heavier neutrinos are given
terms ofr i j ,enkl , and so they are highly model depende
Let us look at a simple example to get a feeling for typic
values of perturbations which lead to the observed spectr
Let us assume that the form of all perturbations
;diag(d,0,e). In this case we haveueW u25dn

2 , ugW u25en
2 , r 1

5e r , r 25d r , and r 350, from which we getr15e rdn
2 , r2

5d ren
2 , r350, andr 5r 1r 2 . The neutrino masses are give

by

mn2,3
5

ln
2vn

2

9Me f f
$r1 ,r2%.

ln
2vn

2

3M0r
$r1 ,r2%.

ln
2vn

2

3M0
H dn

2

d r
,
en

2

e r
J .

~71!

Using Eq.~68! we get

mn2,3
.

mn1

3uUt1u2 H dn
2

d r
,
en

2

e r
J . ~72!

In order to havemn2
,mn3

.mn1
we needd r,dn

2 and e r

,en
2 , and so the hierarchy in the right-handed neutrino m

matrix has to be much larger than the hierarchy in the n
trino Yukawa matrix. This coincides with the assumption w
had to make in order to achieve large lepton mixing; s
Eq. ~32!.

In simple SO~10!-type modelsluvu5lnvn , in which
case the lightest and heaviest fermions of the standard m
are connected through the relation in Eq.~68! whereln

2vn
2 is

replaced bymtop
2 ~actually, to be precise,lu5ln is a relation

at the GUT scale and the effects of the renormalization gr
running between the GUT scale and the electroweak s
should be taken into account!. This is a very pleasant featur
since we can further identifyM0 with the GUT scale,
MGUT;231016 GeV, in which case we get

mn1
5

mtop
2

MGUT
uUt1u2, ~73!

and predict the mass of the lightest neutrino to be betw
531025 eV and 531024 eV depending on the value o
Ut1 .
7-8
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From experimental values ofmn2
andmn3

, given in Eqs.

~49! and ~50!, and from the predicted mass ofmn1
, we see

that en
2/e r in Eq. ~72! is of order 102 anddn

2/d r is an order
of magnitude smaller. The largeste f necessary to fit the
masses of the second generation of charged fermions c
sponds toee.0.28. If we takeen.0.1, we finde r.1024

and the mass of the second right-handed neutrino isM2
.(1024– 1025)M3 , where M35M05MGUT . This is a
very rough estimate and it is not clear how to reasona
estimateM1 , besides the relationM1,M2 . We conclude
that the spectrum of the right-handed neutrinos consis
with bilarge mixing in our setup isM1,M2,1024M3 and
M3.MGUT .

V. SYMMETRY FOR THIRD GENERATION DOMINANCE

The democratic Yukawa matrices are well motivated
S3L3S3R family symmetry@1#. However, the right-handed
neutrino Majorana mass matrix is then constrained by
S3R symmetry only and the democratic form is not uniqu
The most general form of the right-handed neutrino m
matrix is given as a linear combination of the democra
matrix and the identity matrix.

It has been shown that the democratic forms of Yuka
matrices and the right-handed neutrino mass matrix
uniquely specified by imposing aZ3 symmetry realized in
the following way@8#:

f Li→Pi j
† f L j , ~74!

f Ri→Pi j f R j , ~75!

where

P5
iv*

A3 S v 1 1

1 v 1

1 1 v
D , v5ei2p/3. ~76!

It is straightforward to check that this is indeed aZ3 symme-
try, and the proof that it is responsible for the democra
form of Yukawa matrices and the right-handed neutrino m
matrix can be found in Ref.@8#. Here we provide an alterna
tive proof and a very simple understanding of this pecu
symmetry.

Let us first note that a democratic matrixMD ~which rep-
resents both Yukawa matrices and the right-handed Majo
mass matrix!,

MD5
1

3 S 1 1 1

1 1 1

1 1 1
D , ~77!

can be brought to a diagonal~hierarchical! form
03300
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MH5S 0 0 0

0 0 0

0 0 1
D ~78!

by a unitary transformation

MH5UIMDUI
T , ~79!

whereUI is given in Eq.~20!.
It is obvious that aZ3 symmetry under which the first two

generations of left-handed fermions have charge21, the first
two generations of right-handed fermions have charge11
~or, equivalently, charge conjugates of right-handed fermi
have charge21), and the third generation of fermions ha
charge zero uniquely specifies theMH form of Yukawa ma-
trices and the right-handed neutrino Majorana mass matri
follows from the fact that any coupling involving first and/o
second generation fermions is simply forbidden. Theref
the only nonzero element of a mass matrix is the 3-3 e
ment. This can be written in the form of transformations~74!
and ~75! with P replaced byPH :

PH5S v 0 0

0 v 0

0 0 1
D , ~80!

where the subscriptH indicates that it is a symmetry trans
formation specifying the hierarchical form of mass matric
Therefore we proved

PHM PH5M⇔M5lMH . ~81!

Now we can rotate this result to the democratic basis

UI
TPHUIUI

TMUIUI
TPHUI5UI

TMUI

⇔UI
TMUI5lUI

TMHUI ,
~82!

and we obtain

PM8P5M 8⇔M 85lMD , ~83!

whereM 85UI
TMUI and

P5UI
TPHUI . ~84!

Inserting PH from Eq. ~80! and UI from Eq. ~20! it is
straightforward to find that the form of the transformatio
matrix P which guarantees the democratic form of all ma
matrices is exactly that of Eq.~76!.

We see that the special form ofP in Eq. ~76! is just a
simpleZ3 symmetry which allows only 3-3 elements in ma
matrices rotated into the democratic basis. This shows
the approach in which the right-handed neutrino Majora
mass matrix and Yukawa matrices have in the leading or
democratic form is equivalent to the hierarchical approach
which the 3-3 elements in Yukawa matrices and the rig
7-9
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handed neutrino mass matrix dominate. The results obta
in previous sections can be translated into results in co
sponding hierarchical models.5 Namely, the prediction for
the mass of the lightest neutrino does not change, since m
eigenstates are not basis dependent. The necessary~and basis
independent! requirement for achieving large mixing in th
scheme isM1 ,M2,1024M3 ; i.e., the third generation right
handed neutrino has to dominate even more than the t
generation of quarks and charged leptons. Thusthird genera-
tion dominanceis a suitable name for this scenario.

Besides thisZ3 symmetry, the democratic mass matric
have also larger symmetries, likeS3 , for example, which can
be used to specify perturbation matrices in the proces
family symmetry breaking and thus distinguish between
erarchical and democratic starting point.6 However, the com-
plicated form of theZ3 symmetry in the democratic bas
compared to the simple form in the hierarchical basis furt
amplifies the difficulties in constructing specific models
discussed at the end of Sec. IV D.

The fact that these mass matrices are motivated b
simpleZ3 symmetry is certainly a very pleasant feature. U
like S3L3S3R , thisZ3 symmetry acts in the same way on a
particles in each generation. Therefore this approach ca
readily embedded into GUT models, like SO~10!.

VI. CONCLUSIONS

We showed that both small mixing in the quark sector a
large mixing in the lepton sector can be obtained from
simple assumption of universality of Yukawa couplings a
the right-handed neutrino Majorana mass matrix in the le
ing order. We discussed conditions under which bilarge m
ing in the lepton sector is achieved with a minimal amount
fine-tuning requirements for possible models. From kno
edge of the solar and atmospheric mixing angles we de
mined the allowed values of sinu13. The central values o
sin2 u23 and sin2 u12 predict sin2 u13 near its present experi
mental upper bound, while it can be as small as 0.008 if b
sin2 u23 and sin2 u12 are near their 3s upper bounds.

We showed that this approach is equivalent to the hie
chical approach in which the 3-3 elements in Yukawa ma

5For discussion of a similar scenario in the hierarchical basis,
Ref. @13#.

6Similarly, in the hierarchical approach there are many poss
symmetries besides ourZ3 which allow only the 3-3 element o
mass matrices in the leading order.
cl
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ces and the right-handed neutrino mass matrix dominate.
necessary~and basis independent! requirement for achieving
large mixing in this scheme isM1 ,M2,1024M3 . This is
phenomenologically very interesting because it was fou
that under these conditions the effective Majorana mas
neutrinoless double-beta decay might be related to theCP-
violating phase controlling leptogenesis@14#. Furthermore,
since the heaviest right-handed neutrinos effectively
couple, this scenario might provide a natural framework
models with two right-handed neutrinos only@15–17#.

The virtue of this approach is that all mass matrices
treated in the same way, providing a simple framewo
which can be easily embedded into GUTs. If embedded i
simple GUTs, the third generation Yukawa coupling unific
tion ~at least approximate! is inevitable which is theoretically
very appealing and it has interesting consequences for
nomenology@18#. Note that in this framework it is achieve
without making one generation different from others at
fundamental level. On the other hand, the spectrum of
first two generations of quarks and charged leptons cruci
depends on small perturbations. In the neutrino sector,
heavier two neutrinos are model dependent, while the m
of the lightest neutrino in this approach does not depend
perturbations in the leading order. The right-handed neutr
mass scale can be identified with the GUT scale, in wh
case the mass of the lightest neutrino is given
(mtop

2 /MGUT)sin2 u23sin2 u12 in the limit sinu13.0.
We do not provide any understanding of the origin

universal mass matrices and their perturbations. It is
straightforward to construct such models with family sym
metries. Nevertheless, it is worthwhile to look for altern
tives: extra dimensions or composite models. No matter w
the origin is, having all three generations indistinguishable
leading order is certainly something one would like to see
the fundamental theory. After all, the three generations h
exactly the same quantum numbers in the standard m
and even in simple GUT models. Why should their Yukaw
couplings be so different?
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