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Physical renormalization condition for the quark-mixing matrix
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We investigate the renormalization of the quark-mixing matrix in the electroweak standard model. The
corresponding counterterms are gauge independent as can be shown using an extended BRS symmetry. Using
rigid SU(2)L symmetry, we prove that the ultraviolet-divergent parts of the invariant counterterms are related
to the field renormalization constants of the quark fields. We point out that for a general class of renormaliza-
tion schemes rigid SU(2)L symmetry cannot be preserved in its classical form, but is renormalized by finite
counterterms. Finally, we discuss a genuine physical renormalization condition for the quark-mixing matrix
that is gauge independent and does not destroy the symmetry between quark generations.
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I. INTRODUCTION

Presently, the parameters of the quark-mixing ma
~QMM! are being precisely measured at theB factories.
When calculating precision observables involving the QM
in general the renormalization of the QMM is required. Th
was first realized in Ref.@1# for the Cabibbo angle in the
standard model~SM! with two fermion generations. An ex
ample where the counterterms for the QMM for three g
erations have been taken into account can be found in
@2#. In the SM the effects of the renormalization of the QM
are numerically small, since the masses of all down-ty
quarks are small compared to the W-boson mass@3#. How-
ever, a consistent renormalization of the QMM should
formulated for conceptual reasons. Moreover, the renorm
ization of mixing matrices may become phenomenologica
relevant in extensions of the SM.

The most straightforward way to renormalize the QMM
to directly fix the four independent parameters of the QM
three angles, and aCP-violating phase, by choosing fou
suitable observables—e.g., four specific W-boson decays@4#.
However, the counterterms determined in this way depend
the chosen observables, and the symmetry between the
plitudes involving different generations is destroyed. A sy
metric renormalization condition can be obtained natura
using the modified minimal subtraction (MS) scheme~see,
e.g., Refs.@5#, @6#!. This, however, is not a physical conditio
and depends on an arbitrary renormalization scale. Moreo
in this scheme, the renormalizedS-matrix elements exhibit
singularities of the form 1/(mq,i

2 2mq,k
2 ) in the limit of de-

generate up-type or down-type quark massesmq,i'mq,k ;
i.e., the limit of degenerate quark masses, where the QMM
equal to the unit matrix and need not be renormalized, is
approached smoothly.

A renormalization condition for the QMM in the on-she
scheme was first proposed in Refs.@3#, @7#. In this proposal,
the counterterms of the QMM are determined from the fi
1550-7998/2004/70~3!/033002~12!/$22.50 70 0330
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renormalization constants of the quark fields in the on-sh
renormalization scheme. This prescription is simple, does
introduce a renormalization scale, and is smoothly connec
to the limit of degenerate quark masses. Later it was disc
ered@8#, however, that the renormalization condition of Re
@3#, @7# leads to gauge-parameter-dependent counterterm
the QMM and thus to gauge-parameter-dependentS-matrix
elements. In Ref.@8# a modified renormalization condition
was proposed based on field renormalization constants
fined at zero momentum. This scheme gives gau
parameter-independent results at the one-loop level, but le
to singularities in theS-matrix elements for degenerate qua
masses. Moreover, it is not clear whether it can be gene
ized beyond one-loop order.

It was also suggested to split off the gauge-parame
dependent part of the on-shell quark-field renormalizat
constants as far as the definition of the QMM counterterm
concerned—i.e., to define the QMM counterterm from t
quark-field renormalization constants calculated in
’t Hooft-Feynman gauge@9#. This scheme correspond
exactly to the original one of Refs.@3#, @7#. It is gauge-
parameter independent by definition, but of course depe
implicitly on the choice of the ’t Hooft-Feynman gaug
Generalizing this philosophy, it was argued in Ref.@6# that
any renormalization scheme for the QMM may be viewed
a gauge-invariant scheme by definition. This is possible si
any scheme is related to the~gauge-invariant! MS scheme by
ultraviolet- ~UV-! finite matrices which can be chosen
match any renormalization condition.

In Ref. @10# desirable properties for the renormalizatio
condition of the QMM have been formulated. These are U
finiteness, gauge-parameter independence, and unitarit
the renormalized QMM. In addition, the renormalizatio
condition should be physically motivated and treat all ge
erations on an equal footing. The requirement that the re
malized amplitudes approach the limit of degenerate up-t
or down-type masses smoothly is also implicitly contained
©2004 The American Physical Society02-1
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this paper. A renormalization condition was formulated th
obeys all these properties and is also applicable to the le
mixing in Majorana-neutrino theories. In this scheme,
renormalized QMM is fixed by matching the matrix elemen
for W-boson decay in the SM with those in reference theo
with zero mixing and different assignments of down-ty
quarks to the generations. The unitarity of the renormali
QMM is obtained by subtracting the unitarity-violating pa
from the counterterm obtained from the reference theory

All the mentioned prescriptions have only been used
the one-loop level, and it is not clear how they can be c
sistently generalized to higher orders. Recently, a renorm
ization prescription for the QMM has been proposed@11#
that could overcome all these weaknesses. This renorma
tion condition has been introduced via a two-step proced
and Ref.@11# leaves a lot of questions open. In the pres
paper we rederive the renormalization condition of Ref.@11#
in a different way and put it on a more sound basis.

Before we consider explicit renormalization conditio
for the QMM we first investigate the consequences of
symmetries of the theory on the QMM and its renormaliz
tion. In gauge theories, the gauge-parameter dependen
Green functions can be controlled by extending the ga
parameterj to a Becchi-Rouet-Stora~BRS! doublet ~j, x!,
wherex is a Grassmann-valued parameter. Gauge-param
dependence of Green functions and counterterms is d
mined by an extended Slavnov-Taylor~ST! identity @12,13#.
By solving the extended ST identity it is seen that, in ge
eral, physical parameters and their counterterms have t
gauge-parameter independent. Finally, it is possible to pr
gauge-parameter independence of physicalS-matrix ele-
ments@13,14#.

This formalism has been first applied to the renormali
tion of the QMM in Ref.@8#, yielding the result that coun
terterms to the QMM are gauge-parameter independent
an additional constraint the authors of Ref.@8# require that
the Ward-Takahashi identity of gauge invariance in
background-field gauge be preserved in its classical form
all orders. As we show, the gauge-parameter dependenc
S-matrix elements and counterterms is governed by the B
invariance only. Thus, the use of the Ward-Takahashi iden
is not adequate in this context. In particular, invariance of
Ward-Takahashi identity implies that the renormalization
the QMM is related to the renormalization of quark fields.
the renormalization of the QMM is required to be gau
independent in this context, the renormalization of the qu
fields must be gauge independent, too. Thus, a complete
shell renormalization scheme is not admissible in this
proach. Therefore, the authors of Ref.@8# modify the on-shell
conditions for quark fields to renormalizations at zero m
mentum, at least as far as the renormalization of the QMM
concerned.

In the present paper we investigate the consequence
the symmetries of the theory on the QMM and its renorm
ization in the general linearRj gauge. As already mentioned
the relevant symmetry to control the gauge-parameter de
dence of counterterms as well as of physicalS-matrix ele-
ments is BRS symmetry in form of the ST identity. On t
other hand, rigid invariance restricts the UV divergences
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the invariant counterterms and, in particular, relates the
vergent parts of the field renormalization constants and of
counterterms of the QMM. However, finite field redefinition
can be introduced that renormalize the Ward identity of rig
invariance. These are, in particular, needed in the comp
on-shell scheme in order to have enough freedom to in
duce complete on-shell conditions in agreement with gau
parameter independence of the QMM.

This paper is organized as follows: in Sec. II we show th
the counterterms for the QMM are gauge-parameter indep
dent as a consequence of the BRS invariance of the
Using rigid symmetry, we prove in Sec. III that the UV
divergent parts of the invariant counterterms of the QMM a
related to the field renormalization constants of the qu
fields. The free parameters of the QMM and their count
terms are elaborated in Sec. IV. Finally, we discuss a ph
cal renormalization condition for the QMM in Sec. V. Th
Appendix contains some discussion of absorptive parts.

II. IMPLICATIONS OF BRS INVARIANCE
ON COUNTERTERMS

The interplay between the renormalization of the QM
and the field renormalization of the quark fields makes
particularly difficult to disentangle the gauge-parameter
pendence of the different kinds of counterterms. The relev
symmetry that governs the gauge-parameter dependen
the BRS symmetry. This is considered in this section.

Following closely the conventions of Ref.@7# the part of
the classical action of the SM relevant for quark mixin
reads

Gcl
quark5E d4xH iQ̄i

LgmDi j
mQj

L1 iūi
RgmDi j

muj
R1 id̄i

RgmDi j
mdj

R

2md,i~ d̄i
Ldi

R1d̄i
Rdi

L!2mu,i~ ūi
Lui

R1ūi
Rui

L!

2
e

&MWsw

@Q̄i
LV i j Fmd,jdj

R

1Q̄i
LV i j

† ~ is2!F* mu,juj
R1H.c.#J , ~2.1!

where the left-handed quarks~isospin doublets! are denoted
by Qi

L5(ui
L ,di

L)T, the right-handed quarks~isospin singlets!
by ui

R,di
R, and the Highs doublet, with vacuum expectati

value (0,v/&)T subtracted, byF. The indicesi, j run overN
quark families. The sine and cosine of the weak mixing an
are defined as usual bycw5A12sw

2 5MW /MZ , ands2 is a
Pauli matrix.

The matrixV is a unitary 2N32N matrix in the quark-
family and isospin space and is composed as

V i j 5S Vi j 0

0 d i j
D , V†V51. ~2.2!

This matrix includes the QMMVi j which is a unitaryN
3N matrix depending onN(N21)/2 angles and (N21)(N
2-2
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22)/2 phases. These are the Cabibbo angle forN52 and the
three angles and one phase of the Cabibbo-Kobaya
Maskawa matrix forN53. In case ofCP conservation all
phases vanish.

The covariant derivatives of the quark fields read

Di j
mQj

L5H d i j ]
m1 i

e

cw
d i j

Yw
Q

2
~swZm1cwAm!

2 i
e

sw
@Vi j I w

1W1m1Vi j
† I w

2W2m

1d i j I w
3 ~cwZm2swAm!#J Qj

L ,

Di j
mqj

R5F]m1 i
e

cw

Yw
q

2
~swZm1cwAm!Gd i j qj

R,

qj
R5uj

R,dj
R, ~2.3!

where Vi j
† 5Vji* , and the generators of the SU(2)L gauge

group are defined byI w
a 5sa/2 with the Pauli matricessa.

For convenience, we replaced in Eqs.~2.3! the generatorsI w
1,2

by

I w
65

1

&
~ I w

1 6 iI w
2 !. ~2.4!

The hypercharges of the fieldsQj
L andqj

R are denoted byYw
Q

andYw
q , respectively. Note that the QMMVi j appears in Eq.

~2.3! only in terms involving W bosons.
The classical action, partially given by Eq.~2.1!, is com-

plete in the sense that it is the most general field polynom
that is consistent with power counting and respects all s
metry requirements of the underlying theory. In particul
invariance under BRS symmetry implies unitarity of t
QMM. Besides BRS symmetry, rigid SU(2)L symmetry and
local U(1)Y gauge symmetry of hypercharge are the relev
symmetries of the SM~see Ref.@15#!. Since the BRS sym-
metry controls the gauge-parameter dependence of
QMM, we focus on BRS transformations in the followin
and come back to gauge transformations later.

The BRS transformations of the quark fields take the fo

sQi
L5H 2 i

e

cw
d i j

Yw
Q

2
~swcZ1cwcA!

1 i
e

sw
@Vi j I w

1c11Vi j
† I w

2c2

1d i j I w
3 ~cwcZ2swcA!#J Qj

L ,

sqi
R52 i

e

cw

Yw
q

2
~swcZ1cwcA!d i j qj

R, ~2.5!
03300
hi-

al
-

,

t

he

wherecA , cZ , andc6 are Faddeev-Popov ghost fields. Th
BRS transformations for vector-boson and scalar fields h
the usual form and can be found, for instance, in Refs.@15#,
@16#.

Since the BRS transformations of the quark fields
composite operators and receive quantum corrections,
couple them to external fieldscq,i

L andC i
R,

Gcl
ext5E d4xF¯1(

i 51

N

~ c̄u,i
L sui

R1c̄d,i
L sdi

R1C̄ i
RsQi

L1H.c.!G ,

~2.6!

and addGcl
ext to the classical action. The auxiliary nonprop

gating fieldscq,i
L and C i

R5(cu,i
R ,cd,i

R )T have ghost charge
21 and are BRS invariants—i.e.,scq,i

L/R50. For quantization,
BRS transformations are encoded in the ST identity

S~G!5E d4xF¯1(
i 51

N S dG

dc̄u,i
L

dG

dui
R

1
dG

dc̄d,i
L

dG

ddi
R

1
dG

dC̄ i
R

dG

dQi
L

1H.c.D G50, ~2.7!

whereG is the generating functional of one-particle irredu
ible Green functions. The ellipses in Eqs.~2.6! and ~2.7!
denote the contributions from vector-boson, scalar, lept
and ghost fields~see Refs.@15#, @16# for details!. As usual,
the linearized ST operatorsG is defined by the expansion

S~G1D!5S~G!1sGD1O~D2!. ~2.8!

All counterterms compatible with the ST identity a
called BRS-invariantcounterterms in the following. Thes
comprise counterterms that are invariant under rigid symm
try, but also those that are not~see Sec. III!. According to the
definition of the BRS-invariant counterterms, they are inva
ant under the linearized ST operator

sGcl
GBRS-inv,i50. ~2.9!

These counterterms can be expressed in form of differen
operatorsDi that commute with the linearized ST operato

GBRS-inv,i5dZi~j!DiGcl , DiS~F!2sFDiF50,
~2.10!

whereF is an arbitrary field polynomial. In order to invest
gate the gauge-parameter dependence of the renormaliz
constantsdZi(j), we introduce BRS-varying gauge param
eters following Refs.@12#, @13#:

sj5x, sx50, ~2.11!

wherej is a gauge parameter, and the new auxiliary cons
field x is Grassmann valued and has ghost charge21. We
include the BRS transformation ofj into an extended ST
identity:

Sx~G!5S~G!1x]jG50. ~2.12!
2-3
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This construction allows us to classify the counterterms i
genuine gauge-parameter-dependent and -independent
and to prove the gauge-parameter independence of
S-matrix elements~see Ref.@14# for details!. It is important
to realize that the introduction of the additional constant fi
x is only an auxiliary construction and does not affect t
x-independent part ofG, since the part ofG involving the
BRS doublet~j, x! is free of anomalies by construction, an
x does not appear in ST identities for physical Green fu
tions.

In the following, we are searching for counterterms th
are invariant with respect to the extended ST identity~2.12!,

sGcl

x GBRS-inv,i
x 50, ~2.13!

and investigate the consequences for the gauge-param
dependence of the renormalization constantsdZi(j). In gen-
eral, the counterterms~2.10! violate the extended ST iden
tity:

sGcl

x GBRS-inv,i5x„]j ln dZi~j!…GBRS-inv,i . ~2.14!

There are two possibilities to construct counterterms com
ible with the extended ST identity.

~i! If a local field polynomialD̂ i exists such that

GBRS-inv,i5dZi~j!sGcl
D̂ i , ~2.15!

we are able to build an invariant counterterm for the e
tended ST identity~2.12! by defining

GBRS-inv,i
x

ªGBRS-inv,i2x„]jdZi~j!…D̂ i . ~2.16!

In this case there is no restriction on the gauge-param
dependence of the renormalization constantdZi(j). Typical
examples of such counterterms are field renormalization
the matter fields, gauge-fixing, and ghost terms, and in
case of the minimal supersymmetric standard model s
supersymmetry-breaking terms if they are introduced acc
ing to Ref.@17#.

~ii ! If GBRS-inv,i cannot be written in form of Eq.~2.15!,
the renormalization constantdZi must be gauge-paramete
independent, and the counterterm of the extended ST ide
reads

GBRS-inv,i
x

ªGBRS-inv,i with ]jdZi50. ~2.17!

Examples of such counterterms are those for the phys
parameters of the SM, like the gauge couplings and ma
~cf. Refs.@18–21#!.

As a result, the counterterms split into two classes: th
of the first class can be written as asGcl

variation and are in
general gauge-parameter dependent; those of the se
class cannot be written in the form of Eq.~2.15! and thus
must be genuinely gauge-parameter independent, prov
that appropriate renormalization conditions are chosen
do not lead to an artificial gauge-parameter dependenc
careful separation between both classes is necessary in
to draw conclusions on gauge-parameter dependence.
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For the renormalization of the QMM the following coun
terterms are relevant.

~i! The field renormalizations of the quark fields res
from sGcl

variations as

GBRS-inv,i j
q,L/R 52dZi j

q,L/RsGcl
~ c̄q,i

R/Lqj
L/R!1H.c.

5dZi j
q,L/RNi j

q,L/RGcl1H.c., ~2.18!

with

Ni j
q,L/R5E d4xF ~qj

L/R!T
d

dqi
L/R

2c̄q,i
R/L d

d~c̄q, j
R/L!TG .

~2.19!

Thus, the field renormalization constants of the quark fie
are in general gauge-parameter dependent, which is a w
known fact. The field renormalization constantsZq,L/R are in
general complexN3N matrices. The field-number operato
Ni j

q,L/R commutes with the ST operator@cf. ~Eq. 2.10!#.
Equivalently, field renormalization can be introduced u

ing the field redefinitions

qi
L/R→Zi j

q,L/Rqj
L/R5~d i j 1dZi j

q,L/R!qj
L/R ,

c̄q,i
R/L→c̄q, j

R/L~Zq,L/R! j i
215c̄q, j

R/L~d j i 2dZji
q,L/R!,

~2.20!

and the one obtained by Hermitian adjungation. The ST
erator is invariant under these transformations. However,
rigid transformations are not invariant under Eqs.~2.20! as
will be stressed in the next section.

~ii ! On the other hand, the counterterms correspondin
the parametersun of the QMM and the quark massesmq,k
cannot be written in form of asGcl

variation. Therefore, they
are genuinely gauge-parameter-independent quantities. T
counterterms read

GBRS-inv
un 5dun

]

]un
Gcl , GBRS-inv

mq,k 5dmq,k

]

]mq,k
Gcl ,

~2.21!

and can be introduced by parameter redefinitions

un→un1dun , mq,k→mq,k1dmq,k , ~2.22!

with

]jdun5]jdmq,k50. ~2.23!

III. RESTRICTIONS FROM RIGID SU „2…L INVARIANCE

In this section, we want to construct all invariant count
terms of the SM relevant for our case. Invariant counterter
correspond to local field operators that respect the defin
symmetries of the underlying model. The relevant symm
tries for the renormalization of the QMM in the SM are th
extended BRS symmetry as discussed in the previous se
but also the~spontaneously broken! rigid SU(2)L gauge
symmetry. The latter is usually expressed in form of a Wa
identity. In the following, we construct the invariant counte
2-4
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terms from the BRS-invariant counterterms by requiri
rigid SU(2)L gauge symmetry in addition. Like in the case
the BRS-invariant counterterms@cf. Eqs. ~2.10!#, we define
the invariant counterterms by invariant operators that co
mute with both the ST and Ward operators. Finally, we
troduce finite field redefinitions for the quark fields, whic
leads to a renormalization of SU(2)L gauge symmetry. We
show that these new parameters are required to impose
shell renormalization conditions for the quark fields.

Before discussing the invariant counterterms, we wo
like to comment on symmetry breaking resulting from t
chosen regularization. If we assume an invariant regular
tion scheme for the renormalization in the SM, we need o
invariant counterterms for the renormalization procedu
Unfortunately for the SM there is no regularization meth
known which respects all symmetries owing to the so-ca
g5 problem. Therefore, we require that the symmetry bre
ing owing to the regularization be restored in a first step
introducing symmetry-restoring counterterms. These co
terterms need not respect the symmetries of the underl
model and can also include UV divergences. In the follo
ing, we assume that this has been done and the symme
are restored. Hence, the remaining UV divergences res
the symmetry identities and can be absorbed by invar
counterterms only.

The rigid SU(2)L Ward identities take the form

WaG5E d4xda
rigfk

dG

dfk
501O~x!, a51,2,3,4,

~3.1!

where fk runs over all fields. The Ward operatorsWa , a
51,2,3, in Eq.~3.1! respect the algebra of the SU(2)L group,

@Wa ,Wb#5 ieabcWc , a,b,c51,2,3, ~3.2!

and commute with the Ward operatorW4 of U(1)Y symme-
try of hypercharge. The Ward identity has to be fulfilled
the x-independent part ofG, while the unphysical part in-
volving the fieldx need not be rigidly invariant. Using th
definition

W65
1

&
~W16 iW2!, ~3.3!

in the classical approximation the rigid transformations
W6 take the form

d1
rigui

L5
i

&
Vi j dj

L, d1
rigūi

L50,

d2
rigui

L50, d2
rigūi

L52
i

&
d̄ j

LVji
† ,

d1
rigdi

L50, d1
rigd̄i

L52
i

&
ū j

LVji ,
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d2
rigdi

L5
i

&
Vi j

† uj
L , d2

rigd̄i
L50,

d1
rigcu,i

R 5
i

&
Vi j cd,j

R , d1
rigc̄u,i

R 50,

d2
rigcu,i

R 50, d2
rigc̄u,i

R 52
i

&
c̄d,j

R Vji
† ,

d1
rigcd,i

R 50, d1
rigc̄d,i

R 52
i

&
c̄u,j

R Vji ,

d2
rigcd,i

R 5
i

&
Vi j

† cu,j
R , d2

rigc̄d,i
R 50. ~3.4!

The rigid transformations for the auxiliary fieldscq
R are de-

fined such that the ST operator is invariant under Eqs.~3.4!.
The rigid transformations of the other fields take their us
form ~see, e.g., Ref.@16#!.

Counterterms that respect both the ST identityand the
Ward identities~3.1! of rigid SU(2)L symmetry in the clas-
sical form ~3.4! are calledinvariant counterterms. Like in
Sec. II, we discuss the gauge-parameter-dependent
-independent counterterms separately.

~i! In order to generate quark-field counterterms invari
under BRSand rigid symmetries, we search for all field re
definitions~2.20! that leave the rigid Ward identities invar
ant. While the Ward operatorsW3,4 are not affected by the
replacements~2.20!, W6 in Eqs. ~3.4! are in general modi-
fied by Eqs.~2.20!. Requiring that the rigid transformation
~3.4! be invariant under the replacement~2.20!, the field
renormalizations~2.20! of the left-handed fields are restricte
by (Zinv

u,L)21VZinv
d,L5V, resulting in

Zinv
d,L5V†Zinv

u,LV. ~3.5!

Since the field renormalizations of the right-handed fields
not restricted by rigid invariance, the corresponding BR
invariant counterterms are also invariant counterterms—
Zinv

q,R5Zq,R. Furthermore, the operatorsNi j
q,L/R corresponding

to the invariant countertermsZinv
q,L/R commute with the Ward

operators.
~ii ! The renormalization operatorsdmq,k]/]mq,k of Eqs.

~2.21! commute with the ST and Ward operators and, hen
generate invariant counterterms:

G inv
mq,k5dmq,k

]

]mq,k
Gcl . ~3.6!

On the other hand, the operators that correspond to the re
malization of the angles and phases of the QMM do
commute with the Ward operatorsW6 . In order to disen-
tangle the counterterms to the QMM from the counterter
of the field renormalizations, we construct the invariant o
erators that commute with both the ST operator and the W
operators as
2-5
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Dun
5

]

]un
1F1

2
Ni j

u,L ]Vik

]un
Vk j

† 2
1

2
Ni j

d,LVik
† ]Vk j

]un
1H.c.G .

~3.7!

These operators define the gauge-parameter-independen
variant counterterms to the QMM:

G inv
un 5dunDun

Gcl , ~3.8!

where the parametersun run over the angles and phases
the QMM. This renormalization includes both renormaliz
tion transformations of the mixing angles and field renorm
izations,

un→un1dun ,

ui
L→Fd i j 1

1

2
dun~]un

Vik!Vk j
† Guj

L ,

di
L→Fd i j 2

1

2
dunVik

† ~]un
Vk j!Gdj

L ,

c̄u,i
R →c̄u,j

R Fd j i 2
1

2
dun~]un

Vjk!Vki
† G ,

c̄d,i
R →c̄d,j

R Fd j i 1
1

2
dunVjk

† ~]un
Vki!G , ~3.9!

and the corresponding Hermitian adjoint transformations
Both dmq,k and dun are genuine gauge-paramete

independent counterterms.
The relation~3.5! and the renormalization of the QMM

~3.9! restrict the UV-divergence structure of the invaria
counterterms.

The remaining field renormalization parameters of E
~2.20!—i.e., those that do not respect Eq.~3.5!—belong to a
new type of renormalization constants—namely, finite fie
redefinitions.

~iii ! We introduce finite field redefinitions for the lef
handed down-type quarks sincedZinv

d,L is constrained by Eq
~3.5!. The finite field redefinitions of the down-type quar
compatible with the ST identity read

di
L→Ri j

findj
L5~d i j 1dRi j

fin!dj
L ,

c̄d,i
R →c̄d,j

R ~Rfin! j i
215c̄d,j

R ~d j i 2dRji
fin!, ~3.10!

with an arbitrary complexN3N matrix dRfin. Since the re-
placement~3.10! is done everywhere—i.e., in the action,
the ST operator, and in the Ward operators—it does not
turb the validity of the symmetry requirements of the theo
While the ST operator andW3,4 stay unchanged, the reno
malized rigid transformations corresponding toW6 are
modified. The renormalized Ward operatorsW6 are obtained
from Eq.~3.4! by the substitution~3.10!. As shown in Sec. II,
these field redefinitions are in general gauge-parameter
pendent. Furthermore, these renormalization constants do
03300
in-

f
-
l-

t

.

s-
.

e-
ot

include UV divergences and are only needed to satisfy
shell renormalization conditions.

With the so-defined invariant counterterms and finite fie
redefinitions, we are able to define a more convenient se
renormalization constants:

Vi j →Vi j 1dVi j ,

qi
L/R→Zi j

q,L/Rqj
L/R5~d i j 1dZi j

q,L/R!qj
L/R ,

c̄ i
R/L→c̄ j

R/L~Zq,L/R! j i
215c̄ j

R/L~d j i 2dZji
q,L/R!,

~3.11!

with

dV5dun~]un
V!,

dZu,L~j!5dZinv
u,L~j!1

1

2
dun~]un

V!V†,

dZd,L~j!5V†dZinv
u,L~j!V2

1

2
dunV†~]un

V!1dRfin~j!,

dZq,R~j!5dZinv
q,R~j!. ~3.12!

In Eqs.~3.12! we have indicated the gauge-parameter dep
dence of the renormalization constants explicitly. The defi
tion of the renormalization constantdV in Eqs. ~3.12! im-
plies that the renormalized QMM stays unitary in all orde
by construction as is required by BRS invariance of t
theory.

Using Eqs.~3.12! we can express the UV divergences
the QMM in terms of UV divergences of left-handed fie
redefinitions:

dV5dZu,LV2VdZd,L1finite terms,

dV52~dZu,L!†V1V~dZd,L!†1finite terms, ~3.13!

where we used (]un
V)V†52V(]un

V†). As the UV diver-
gences satisfy also the extended ST identity, the gau
parameter-dependent part of field redefinitions cancels
Eqs. ~3.13! in such a way that the UV divergences of th
QMM are gauge independent. Since in theMS scheme only
the UV-divergent parts and gauge-independent constants
subtracted,dV can be consistently determined byMS field
renormalizations:

dVMS5
!

2
1

2
$@~dZu,L,MS!†2dZu,L,MS#V

1V@dZd,L,MS2~dZd,L,MS!†#%. ~3.14!

From Eqs.~3.12! it can be seen that the renormalizatio
scheme which uses anMS subtraction fordV but on-shell
2-6
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conditions fordZq,L/R is fully consistent@5,6#, yielding, how-
ever, contrary to the pureMS scheme renormalized War
identities of rigid symmetry.

In Refs.@3#, @7#, the relation~3.14! is used as a renorma
ization condition also for the finite parts,1

dV5
!

2
1

2
$@~dZu,L!†2dZu,L#V1V@dZd,L2~dZd,L!†#%,

~3.15!

which is equivalent to

dRfin2~dRfin!†5
!

0. ~3.16!

This renormalization condition sets the anti-Hermitian p
of the renormalization constantsdRfin(j) to zero. In order to
satisfy the on-shell conditions,dZu,L anddZd,L are needed as
independent counterterms at our disposal~see Sec. IV!. As
Eq. ~3.12! shows, the gauge-dependent parts ofdZu,L(j) and
dZd,L(j) can in general be absorbed indZinv

u,L(j) and
dRfin(j). However, if dRfin2(dRfin)†50, the renormaliza-
tion condition~3.15! requires one to adjustdun . This leads
in general to a gauge-parameter-dependentdun , which is
inconsistent with the extended ST identity. For this reas
the renormalization condition~3.15! yields gauge-parameter
dependent results for physical matrix elements, as has b
confirmed by an explicit one-loop calculation in Ref.@8#.

To circumvent these problems, the authors of Ref.@8# give
up the complete on-shell conditions, but propose renorm
ization conditions respecting the Ward identity~3.1! in its
classical form—i.e., dRfin50—and resulting in gauge
parameter-independent counterterms to QMM by us
fermion-field renormalization constants fixed at zero m
mentum. In this scheme, gauge independence of the Q
has been confirmed by an explicit one-loop calculation,
could not be confirmed to all orders.

In Ref. @8# the motivation for constructing a scheme
accordance with the classical Ward identity is based on
theorem that any renormalization prescription that prese
the rigid Ward identity in its classical form leads to a gaug
parameter-independent definition of the QMM. Note that t
theorem requires the assumptions that the extended ST
tity is satisfied and that the Ward operator commutes with
extended ST operator, as can be seen in the proof of
theorem in Ref.@8#. However, in this form the theorem o
Ref. @8# is only of little use, especially in the on-shell schem
where the Ward identity has to be renormalized as discus
before. Preserving the rigid Ward identity means to ta
dRfin(j)50. Then, the rigid Ward identity is preserved in i
classical form for anydun irrespective of its gauge
parameter dependence. As we have shown in Sec. II, it is
extended BRS invariance alone which controls gau
parameter dependence or independence of Green func

1Note that our notation differs from the one of Ref.@7# by a factor
of 2 in the definition of the field renormalization constants.
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and S-matrix elements and which yields in the present ca
the gauge independence of counterterms to the QMM.

For this reason we do not establish conditions which
motivated by rigid invariance like Eq.~3.15! or the scheme
of Ref. @8# but fix the counterterms of the QMM directly o
physical matrix elements~see Sec. V!.

IV. PARAMETERS OF THE QUARK-MIXING MATRIX

Before we turn to the definition of a physical renorma
ization condition for the QMM in Sec. V, we investigate th
different types of parameters included in the QMM and t
field redefinitionsZq,L/R, and study how these paramete
contribute to the bilinear action and to the W1ūidj vertex.

The SM allows the generalized field redefinitions~3.11!
of the quark fields whereZq,L/R are general complexN3N
matrices. A general complex matrix can be decomposed
a Hermitian and a unitary matrix,

Zq,L/R5Uq,L/RHq,L/R, ~4.1!

with

~Hq,L,R!†5Hq,L/R, ~Uq,L/R!†Uq,L/R51. ~4.2!

Applying the field redefinitions~3.11! to the bilinear part
of the classical action~2.1! yields

Gbil
field-red5E d4x (

q5u,d
@ iq̄i

LXi j
q,L]”qi

L1 iq̄i
RXi j

q,R]”qi
R

1~ q̄i
LMi j

q qj
R1H.c.!#, ~4.3!

with

Xq,L/R5~Hq,L/R!†Hq,L/R,

Mq5~Hq,L!†~Uq,L!†Mdiag
q Uq,RHq,R, ~4.4!

andMdiag
q 5diag(mq,1 ,...,mq,N).

Inspecting this result, we see that the Hermitian parts
the matricesZq,L and Zq,R can be determined on kineti
terms, while the unitary parts can be fixed on mass te
up to a common complex diagonal matr
diag@exp(iw̃1

q),...,exp(iw̃N
q )#, which can be extracted as

Ui j
q,L5 (

k51

N

eiw̃ i
q
d ikŨk j

q,L , Ui j
q,R5 (

k51

N

eiw̃ i
q
d i j Ũk j

q,R.

~4.5!

The diagonal matrix can be parametrized as

eiw̄ i
q
d i j 5FexpS i (

n51

N21

wn
qTn

diagD exp~ iw0
qT0

diag!G
i j

, ~4.6!

where the matricesTn
diag denote theN21 traceless diagona

generators of SU(N) andT0
diag51/A2N.

The number of physical parameters of the QMM forN
quark families is determined as follows: BRS invariance i
plies that the QMM is a general unitary matrix. A gener
unitary matrixY hasN2 parameters. We can use the diagon
2-7
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matrices that are not fixed on bilinear terms to removeN
21 phases fromY and obtain the usual form of the QMM
including only physical parameters:

V5expS 2 i (
n51

N21

wn
uTn

diagD exp~2 iw0
uT0

diag!Y

3expS i (
n51

N21

wn
dTn

diagD exp~ iw0
dT0

diag!

5exp~2 i~w0
u2w0

d!T0
diag!expS 2 i (

n51

N21

wn
uTn

diagDY

3expS i (
n51

N21

wn
dTn

diagD , ~4.7!

where we used the fact thatT0
diag is the only generator tha

commutes with all generators of the SU(N) group. Thus, the
QMM has N22(2N21)5(N21)2 physical parameters
These consist ofN(N21)/2 anglesqm of anN3N orthogo-
nal matrix and of (N21)(N22)/2 complex phase factor
exp (iw l).

Similar to the decomposition~4.1! of the field redefinition
matrices, the corresponding countertermsdZq,L/R can be
written as a linear combination of Hermitian and an
Hermitian matrices:

dZq,L/R5 (
n50

N221

dzn
q,L/RTn , ~4.8!

wheredzn
q,L/R are complex numbers andTn , n51,...,N221

are the generators of SU(N) and T051/A2N. In the same
way as we have discussed for the matricesZq,L/R in the be-
ginning of this section, not all of thedzn

q,L anddzn
q,R can be

determined on the bilinear terms:

dGbil
field-red5E d4x (

q5u,d
@ iq̄i

LdXi j
q,L]”qi

L1 iq̄i
RdXi j

q,R]”qi
R

1~ q̄i
LdMi j

q qj
R1H.c.!#, ~4.9!

with

dXq,L/R5~dZq,L/R!†1dZq,L/R,

dMq5~dZq,L!†Mdiag
q 1Mdiag

q dZq,R. ~4.10!

Common imaginary parts of the coefficientsdzn
q,L anddzn

q,R

corresponding to the diagonal generatorsTn
diag remain as free

parameters. Splitting off these free parameters, we obtai

dZq,L5dZ̃q,L1 i (
n50

N21

cn
qTn

diag,

dZq,R5dZ̃q,R1 i (
n50

N21

cn
qTn

diag, ~4.11!
03300
with free real parameterscn
q , and dZ̃q,L and dZ̃q,R having

fixed values for the imaginary parts of the diagonal entri
One can choose for example real diagonal entries for
left-handed field renormalization constantsdZ̃ii

q,L

5(dZ̃ii
q,L)* .

Now we turn to the counterterms of the QMM. Owing
BRS invariance (V1dV) is a unitary matrix. The unitarity
constraint reads

~V1dV!~V1dV!†5~V1dV!†~V1dV!51, ~4.12!

which implies

dVV†1VdV†52dVdV†, dV†V1V†dV52dV†dV.
~4.13!

These equations are implicitly solved by decomposingdVV†

into a Hermitian and an anti-Hermitian part:

dV52
1

2
dVdV†V1dṼ with dṼV†52~dṼV†!†.

~4.14!

Equation~4.14! can be solved perturbatively fordV oncedṼ

is given. Therefore,dṼ has the same number of independe
parameters asdV or V—namely, (N21)2.

In order to formulate a renormalization condition for th
QMM, we investigate the W1ūidj vertex. Including counter-
terms, this vertex reads

GWūd5
e

&sw
E d4xūi

LgmWm
1~V1dFct! i j dj

L , ~4.15!

with the matrix

dFct5VS dZW1
de

e
2

dsw

sw
D1~dZu,L!†V1VdZd,L1dV.

~4.16!

Inserting the decomposition~4.11! as well as Eq.~4.14!, this
can be written as

dFct5VS dZW1
de

e
2

dsw

sw
D1~dZ̃u,L!†V1VdZ̃d,L

2
1

2
dVdV†V1dỸ, ~4.17!

where we defined

dỸ52 i (
n51

N221

~cn
uTn

diagV2Vcn
dTn

diag!2 i~c0
u2c0

d!V1dṼ.

~4.18!

While dZW , de, dsw , anddZ̃q,L are fixed from other vertex
functions, we have theN2 parameters of the matrixdỸ at our
disposal for renormalization conditions of the QMM: (N

21)2 free parameters fromdṼ, 2(N21) real constantscn
q

from the traceless diagonal generatorsTn
diag, and one real
2-8
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constantc0
q from T0

diag. These parameters are just sufficie
to fix a general unitary matrix. For later use we note that E
~4.18! and ~4.14! imply the anti-Hermiticity ofdỸV†:

dỸV†52~dỸV†!†. ~4.19!

V. PHYSICAL RENORMALIZATION
OF THE QUARK-MIXING MATRIX

In the previous section we found that the field renorm
ization constantdZq,L/R can be determined on the quark se
energies only up to some unphysical phases. These ph
can be used to extend the QMM to a general unitary mat
In this section we formulate a physical renormalization co
dition for this unitary matrix and thus for the QMM.

As we have already seen in Sec. II, the counterterm
the QMM are genuinely gauge-parameter independent. In
der not to introduce an artificial gauge-parameter dep
dence, the renormalization conditions have to be cho
properly. If gauge-parameter-independent matrix eleme
that involve the QMM are available, these matrix eleme
can be used to determinedV. If we ignore for the moment
the instability of the W bosons and the quarks, such ma
elements are those of the decays W1→ui d̄j or ūi→W2d̄j if a
top quark is involved. Both types of decays are related
crossing symmetry.

Before we come to the actual renormalization conditio
we want to add some comments on the difficulties related
unstable particles. Matrix elements to the decays W1→ui d̄j

or ūi→W2d̄j suffer from the fact that the external particle
are unstable. Contrary to stable particles it is not known h
to construct gauge-parameter-independent matrix elem
with unstable particles at external legs. Nevertheless, we
these matrix elements for a renormalization condition for
QMM. The problem related to the instability of the extern
particles manifests itself in contributions of the order of t
decay width of these particles, which we cannot control. S
eral attempts to obtain gauge-parameter-independent m
elements involving internal or external unstable partic
have been undertaken in the literature~see, e.g., Refs.@22–
25#!. For the case where no gauge-parameter-indepen
matrix element is available, a fully consistent prescripti
has been given in Ref.@13#, which defines renormalization
conditions for gauge-parameter-independent counterterm
arbitrary gauge-parameter-dependent Green functions. In
section we treat the external particles as stable and ignore
problems related to their finite decay widths. This approa
implies that absorptive parts should be disregarded in
following results. Some remarks on the absorptive parts
made at the end of this section and in the Appendix.

Following closely the notation of Ref.@7#, the lowest-
order matrix element for the decay W1→ui d̄j reads

M0,i j 5Vi j M1,i j
2 , ~5.1!

with the standard matrix element
03300
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M1,i j
2 52

e

&sw

ū~pu,i !«” ~pW!v2v~pd,j !, ~5.2!

and the chiral projectorv25(12g5)/2. The matrix element
including radiative corrections can be written as

Mi j 5 (
a51

2

(
s56

Fa,i j
s Ma,i j

s , ~5.3!

with four standard matrix elementsMa
s . The corresponding

four gauge-invariant form factorsFa
s are functions ofMW

2 ,
mu,i

2 , andmd,j
2 . The form factorF1

2 , the only one appearing
at lowest order and thus involving overall UV divergenc
and counterterms, can be decomposed as

F1
25V1dF loop,1

2 1dFct5V1(
l>1

~dF loop,1
2~ l ! 1dFct

~ l !!,

~5.4!

wheredF loop,1
2( l ) summarizes thel th-order loop contributions

including also counterterm insertions of lower orders a
dFct

( l ) includes thel th-order overall counterterms as define
in Eq. ~4.16!.

Since the form factorF1
2 depends on the counterterms

the QMM, it can be used to define a proper renormalizat
condition for the QMM. Owing to loop corrections this form
factor is a general complexN3N matrix. We decompose2

this form factor into a unitary matrixY and a Hermitian
matrix H:

F1
25HY with H†5H, Y†Y51. ~5.5!

As discussed at the end of Sec. IV, we have enough par
eters at our disposal for the renormalization of the QMM
fix a general unitary matrix. This allows us to require that t
unitary part of the form factorF1

2 not receive quantum cor
rections in higher orders—i.e.,

Y5
!

V. ~5.6!

The renormalization condition~5.6! can be written as

F1
25

!

HV. ~5.7!

Using the Hermiticity ofH, we obtain, as the final result fo
the renormalization condition,

F1
2V†2V~F1

2!†5
!

0 ~5.8!

or, using Eq.~5.4!,

~V1dF loop,1
2 1dFct!V

†5
!

V~V1dF loop,1
2 1dFct!

†. ~5.9!

2The decompositionF1
25YH8 leads to the same renormalizatio

condition ~5.11!.
2-9
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For thel-loop contribution this reads

~dF loop,1
2~ l ! 1dFct

~ l !!V†5
!

V~dF loop,1
2~ l ! 1dFct

~ l !!†. ~5.10!

Inserting Eq.~4.17! and using the anti-Hermiticity ofdỸV†

and the fact thatde/e anddsw /sw are real, this equation ca
be solved fordỸ( l ):

dỸ~ l !52
1

2
@~dZ̃u,L~ l !!†2dZ̃u,L~ l !#V

2
1

2
V@dZ̃d,L~ l !2~dZ̃d,L~ l !!†#2

1

2
~dZW

~ l !2dZW*
~ l !!

2
1

2
@dF loop,1

2~ l ! 2V~dF loop,1
2~ l ! !†V#. ~5.11!

We can rewrite Eq.~5.11! into standard form by absorbin
the undetermined phases into the field renormalization
find, dropping the loop indexl:

dṼ52
1

2
@~dZu,L!†2dZu,L#V2

1

2
V@dZd,L2~dZd,L!†#

2
1

2
~dZW2dZW* !2

1

2
@dF loop,1

2 2V~dF loop,1
2 !†V#.

~5.12!

This together with Eq.~4.14! determines the counterterms
the QMM. As already mentioned, our conventions differ by
factor of 2 in the definition of the field renormalization co
stants from those of Ref.@7#. We note that Eq.~5.12! implic-
itly requires us to fix thecn

q such thatdV5dun]V/]un ; i.e.,
the free parameters indZq,L must be fixed such that th
renormalized QMM can be expressed in terms of the co
sponding renormalized physical parameters~see also Ref.
@26#!.

Let us now discuss the renormalization condition~5.12!,
leaving aside absorptive parts: it is a physical renormal
tion condition that satisfies all requirements mentioned in
Introduction. The corresponding renormalized QMM
gauge independent, unitary by construction, and symme
with respect to the fermion generations. Moreover, the ren
malized matrix elements approach the limit of degener
fermion masses smoothly. An apparent drawback of
renormalization condition~5.12! is that it requires the calcu
lation of the vertex form factordF loop,1

2 . This, however, is
anyhow needed for all processes involving the QMM. T
renormalization condition~5.12! is equivalent to the one
given by Zhou in Ref.@11#. However, while we impose a
renormalization condition on a physical matrix element~5.8!
that preserves the unitarity of the QMM, Zhou requires
condition that violates unitarity. In a second step he corre
this by extracting the unitarity-preserving part of a count
term, a procedure that was also used in the renormaliza
scheme proposed in Ref.@10#. As a further remark, we note
that exactly the same renormalization condition~5.12! is ob-
tained from the decays W1→ui d̄j and ūi→W2d̄j or W2

→ūidj and ui→W1dj .
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If we take into account absorptive parts, we encounte
number of problems and drawbacks: the counterterm~5.12!
obtained from the decays W1→ui d̄j and ūi→W2d̄j differs
from the one obtained analogously from the decays W2

→ūidj and ui→W1dj owing to Eq.~A6!, and the counter-
terms to the QMM become complex also in the case ofCP
conservation. Moreover, when absorptive parts of the lo
corrections and of the Lehmann-Symanzik-Zimmerma
~LSZ! factors are included in the calculation ofS-matrix el-
ements, the limit of degenerate fermion masses is no lon
approached smoothly. This problem is related to the lack o
consistent definition ofS-matrix elements for unstable exte
nal particles and applies to all other existing renormalizat
prescriptions for the QMM once absorptive parts are tak
into account. One proposal for the modification of the LS
factors in the presence of external unstable particles@25# and
the renormalization of the QMM in this approach is di
cussed in some detail in the appendix. However, it also d
not solve the mentioned problems.

Therefore, we advocate to only include dispersive parts
Eq. ~5.12!.

VI. CONCLUSIONS

We have studied the renormalization of the quark-mixi
matrix and the corresponding restrictions from BRS inva
ance and rigid SU(2)L symmetry.

We started from the fact that the gauge-parameter dep
dence of counterterms and physicalS-matrix elements can be
controlled using a modified Slavnov-Taylor identity, whe
the gauge parameterj is extended to a BRS doublet by in
troducing an auxiliary fieldx. Using this formalism, it can be
seen that counterterms that cannot be written as a BRS v
tion must be genuinely gauge-parameter independent;
others may be gauge-parameter dependent. While the q
field renormalization constants are generally gau
parameter dependent, the counterterms to the QMM do
depend on the gauge parameters if appropriate phys
renormalization conditions are imposed.

In order to satisfy complete on-shell renormalization co
ditions in the quark sector, finite gauge-parameter-depen
field redefinitions must be introduced. Imposing comple
on-shell conditions without these finite field redefinitions i
duces an artificial gauge-parameter dependence in the c
terterms to the QMM, as found by an explicit one-loop c
culation@8# for the renormalization prescription of Refs.@3#,
@7#. These finite field redefinitions appear explicitly in th
rigid SU(2)L transformations, resulting in a renormalizatio
of the rigid symmetry. From rigid SU(2)L invariance we
found relations between the ultraviolet-divergent parts of
invariant counterterms.

Finally, we proposed a physical renormalization conditi
for the QMM based on the decays W1→ui d̄j and t̄
→W2d̄j . This condition fixes all counterterms properly an
yields gauge-parameter-independent results for phys
S-matrix elements up absorptive parts related to the prese
of external unstable particles. Moreover, it is symmetric w
respect to the fermion generations and, at least for the n
2-10
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absorptive parts, avoids unphysical singularities in the li
of degenerate quark masses.
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APPENDIX: RENORMALIZATION OF THE QUARK-
MIXING MATRIX IN THE PRESENCE OF LSZ FACTORS

INCLUDING ABSORPTIVE PARTS

In Ref. @25# it has been argued that in the case of unsta
external fermions different sets of LSZ factors have to
introduced for incoming and outgoing fermions in order
obtain gauge-parameter-independent amplitudes. Altho
this approach has a certain appeal, it is still far from a
scription of amplitudes for unstable particles. The purpose
this appendix is to investigate the renormalization of
QMM in this approach.

The matrix-valued LSZ factors for all left- and righ
handed incoming fermions and out-going antifermions
denoted bydZq,L anddZq,R and those for the outgoing fer
mions and incoming antifermions bydZ̄q,L anddZ̄q,R. Simi-
larly, the LSZ factor for the incoming W1 boson and outgo-
ing W2 boson is given bydZW and the one for the incoming
W2 boson and outgoing W1 boson bydZ̄W . These LSZ
factors are suitable forS-matrix elements and involve
enough freedom to include all absorptive parts. Howev
they should not be used as field renormalization constan
the renormalized Lagrangian, since they would violate
hermiticity. In the following, the constantsdZ anddZ̄ can be
understood to include both the LSZ factors and fie
renormalization constants or only the LSZ factors assum
that field renormalization has already been performed.

The LSZ factors are fixed by imposing on-shell conditio
for incoming and outgoing fermions@25#. From the resulting
explicit expressions fordZq,L/R anddZ̄q,L/R in terms of self-
energies given in Ref.@25# and those of the self-energies w
find the relations

dZ̄q,L/R5~dZq,L/R!TuV→V* ~A1!

or, equivalently,

RẽdZ̄q,L/R5Rẽ~dZq,L/R!†, Im̃ dZ̄q,L/R52Im̃~dZq,L/R!†,

~A2!

using Rẽand Im̃as defined in Ref.@7#, which acts only on
the loop integrals but not on the QMM; i.e., Re˜ projects on
dispersive parts and Im˜ on absorptive parts. As a cons
quence of Eqs.~A2!, the barred matricesdZ̄q,L and dZ̄q,R

agree with (dZq,L)† and (dZq,R)† in the dispersive parts bu
have a different sign for the absorptive parts. Analogous
lations hold betweendZW* anddZ̄W .
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In the approach of Ref.@25# the quantum corrections to
the decays W1→ui d̄j and ūi→W2d̄j are given by Eqs.~5.3!,
~5.4!, and~4.16! with (dZu,L)† replaced bydZ̄u,L. Using the
physical renormalization condition~5.8! leads to

dṼ52
1

2
@dZ̄u,L2~dZ̄u,L!†#V2

1

2
V@dZd,L2~dZd,L!†#

2
1

2
~dZW2dZW* !V2

1

2
@dF loop,1

2 2V~dF loop,1
2 !†V#

~A3!

instead of Eq.~5.12!. This renormalization condition is
equivalent to the one given by Zhou in Ref.@11#.

Using the decays W2→dj ūi and ui→W1dj with an
analogous renormalization condition, yields instead

dṼ52
1

2
@~dZu,L!†2dZu,L#V2

1

2
V@~dZ̄d,L!†2dZ̄d,L#

2
1

2
~dZ̄W* 2dZ̄W!V2

1

2
@~dGloop,1

2 !†2VdGloop,1
2 V#,

~A4!

wheredGloop,1
2 is defined in analogy todF loop,1

2 . These ma-
trices are related by

dGloop,1
2 5~dF loop,1

2 !TuV→V* ~A5!

or, equivalently,

RẽdGloop,1
2 5Rẽ~dF loop,1

2 !†, Im̃ dGloop,1
2 52Im̃~dF loop,1

2 !†,

~A6!

as can be seen from the structure of the explicit expressi
The counterterms~A3! and~A4! involve the same dispersiv
parts but opposite absorptive parts. In the case ofCP conser-
vation the renormalization conditions~A3! and ~A4! violate
the orthogonality and reality of the QMM. These drawbac
can be cured by omitting all absorptive parts in the coun
terms for dṼ. In this case the expressions~A3! and ~A4!
become equivalent, and the counterterm simplifies to

dṼ52RẽH 1

2
@~dZu,L!†2dZu,L#V1

1

2
V@dZd,L2~dZd,L!†#

1
1

2
@dF loop,1

2 2V~dF loop,1
2 !†V#J . ~A7!

Alternatively, this result can be directly obtained from th
renormalization condition
2-11
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@F1
21~G1

2!†#V†5V@~F1
2!†1G1

2#, ~A8!

whereGloop,1
2 is the matrix replacingF loop,1

2 in these decays
and the relations~A2! and ~A6! without the need to use th
Rẽ prescription.

As a consequence, also in this approach the most na
strategy is to discard all absorptive parts in the renormal
tion constants of the QMM. Then, the counterterms fordṼ
are the same as those introduced in Eq.~5.12! with the same
merits and drawbacks.

Finally, we note that one could construct a counterte
that yieldsS-matrix elements for the decays W1→ui d̄j and
t̄→W2d̄j where the limit of degenerate fermion masses
approached smoothly by including appropriate absorp
parts of the LSZ factors in Eq.~A7! as
. B

03300
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s
e

dṼ52
1

2
@dZ̄u,L2dZu,L#V2

1

2
V@dZd,L2dZ̄d,L#

2
1

2
@dF loop,1

2 2V~dF loop,1
2 !†V#. ~A9!

With this counterterm only the combinationsdZ̄u,L1dZu,L

anddZ̄d,L1dZd,L that are nonsingular for degenerate fermi
masses appear in the renormalizedS-matrix elements for
W1→ui d̄j and ūi→W2d̄j . However, the absorptive parts i
Eq. ~A9! violate the unitarity of the renormalized QMM an
are thus not admissible. Moreover, even for these coun
terms theS-matrix elements for the decays W2→ūidj and
ui→W1dj are not smooth in the degenerate-quark-m
limit.
d
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@18# R. Häußling and E. Kraus, Z. Phys. C75, 739 ~1997!.
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