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We investigate the renormalization of the quark-mixing matrix in the electroweak standard model. The
corresponding counterterms are gauge independent as can be shown using an extended BRS symmetry. Using
rigid SU(2). symmetry, we prove that the ultraviolet-divergent parts of the invariant counterterms are related
to the field renormalization constants of the quark fields. We point out that for a general class of renormaliza-
tion schemes rigid SU(2)symmetry cannot be preserved in its classical form, but is renormalized by finite
counterterms. Finally, we discuss a genuine physical renormalization condition for the quark-mixing matrix
that is gauge independent and does not destroy the symmetry between quark generations.
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I. INTRODUCTION renormalization constants of the quark fields in the on-shell
renormalization scheme. This prescription is simple, does not
Presently, the parameters of the quark-mixing matrixintroduce a renormalization scale, and is smoothly connected
(QMM) are being precisely measured at tBefactories. to the limit of degenerate quark masses. Later it was discov-
When calculating precision observables involving the QMM, ered[8], however, that the renormalization condition of Refs.
in general the renormalization of the QMM is required. This[3], [7] leads to gauge-parameter-dependent counterterms for
was first realized in Refl1] for the Cabibbo angle in the the QMM and thus to gauge-parameter-dependemiatrix
standard mode{SM) with two fermion generations. An ex- elements. In Ref[8] a modified renormalization condition
ample where the counterterms for the QMM for three genwas proposed based on field renormalization constants de-
erations have been taken into account can be found in Refined at zero momentum. This scheme gives gauge-
[2]. In the SM the effects of the renormalization of the QMM parameter-independent results at the one-loop level, but leads
are numerically small, since the masses of all down-typao singularities in th&s-matrix elements for degenerate quark
quarks are small compared to the W-boson nmi@sHow-  masses. Moreover, it is not clear whether it can be general-
ever, a consistent renormalization of the QMM should beized beyond one-loop order.
formulated for conceptual reasons. Moreover, the renormal- |t was also suggested to split off the gauge-parameter-
ization of mixing matrices may become phenomenologicallydependent part of the on-shell quark-field renormalization
relevant in extensions of the SM. constants as far as the definition of the QMM counterterm is
The most straightforward way to renormalize the QMM is concerned—i.e., to define the QMM counterterm from the
to directly fix the four independent parameters of the QMM,quark-field renormalization constants calculated in the
three angles, and &P-violating phase, by choosing four 't Hooft-Feynman gauge[9]. This scheme corresponds
suitable observables—e.g., four specific W-boson defgllys exactly to the original one of Ref§3], [7]. It is gauge-
However, the counterterms determined in this way depend oparameter independent by definition, but of course depends
the chosen observables, and the symmetry between the aimplicitly on the choice of the 't Hooft-Feynman gauge.
plitudes involving different generations is destroyed. A sym-Generalizing this philosophy, it was argued in R that
metric renormalization condition can be obtained naturallyany renormalization scheme for the QMM may be viewed as
using the modified minimal subtractioM@) scheme(see, a gauge-invariant scheme by definition. This is possible since
e.g., Refs[5], [6]). This, however, is not a physical condition any scheme is related to thgauge-invariantMS scheme by
and depends on an arbitrary renormalization scale. Moreovegltraviolet- (UV-) finite matrices which can be chosen to
in this scheme, the renormalize&imatrix elements exhibit match any renormalization condition.
singularities of the form 1f(1§’i—m§'k) in the limit of de- In Ref. [10] desirable properties for the renormalization
generate up-type or down-type quark masegg~mg; condition of the QMM have been formulated. These are UV
i.e., the limit of degenerate quark masses, where the QMM ifiniteness, gauge-parameter independence, and unitarity of
equal to the unit matrix and need not be renormalized, is nathe renormalized QMM. In addition, the renormalization
approached smoothly. condition should be physically motivated and treat all gen-
A renormalization condition for the QMM in the on-shell erations on an equal footing. The requirement that the renor-
scheme was first proposed in Rdf3], [7]. In this proposal, malized amplitudes approach the limit of degenerate up-type
the counterterms of the QMM are determined from the fieldor down-type masses smoothly is also implicitly contained in
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this paper. A renormalization condition was formulated thatthe invariant counterterms and, in particular, relates the di-
obeys all these properties and is also applicable to the leptorergent parts of the field renormalization constants and of the
mixing in Majorana-neutrino theories. In this scheme, thecounterterms of the QMM. However, finite field redefinitions
renormalized QMM is fixed by matching the matrix elementscan be introduced that renormalize the Ward identity of rigid
for W-boson decay in the SM with those in reference theoriednvariance. These are, in particular, needed in the complete
with zero mixing and different assignments of down-typeon-shell scheme in order to have enough freedom to intro-
quarks to the generations. The unitarity of the renormalizedluce complete on-shell conditions in agreement with gauge-
QMM is obtained by subtracting the unitarity-violating part Parameter independence of the QMM.
from the counterterm obtained from the reference theory. _ ThiS paperis organized as follows: in Sec. Il we show that
All the mentioned prescriptions have only been used afl€ counterterms for the QMM are gauge-parameter indepen-
the one-loop level, and it is not clear how they can be condent as a consequence of the BRS invariance of the SM.
sistently generalized to higher orders. Recently, a renormal/Sing rigid symmetry, we prove in Sec. Il that the UV-
ization prescription for the QMM has been propogéd] divergent parts c_>f the invariant counterterms of the QMM are
that could overcome all these weaknesses. This renormalizig!ated to the field renormalization constants of the quark
tion condition has been introduced via a two-step procedurdi€!ds. The free parameters of the QMM and their counter-
and Ref.[11] leaves a lot of questions open. In the presenf€'ms are elaborated in Sec. IV. Finally, we discuss a physi-
paper we rederive the renormalization condition of R&] cal renormalization condition for the QMM in Sec. V. The

in a different way and put it on a more sound basis. Appendix contains some discussion of absorptive parts.
Before we consider explicit renormalization conditions

for the QMM we first investigate the consequences of the Il. IMPLICATIONS OF BRS INVARIANCE

symmetries of the theory on the QMM and its renormaliza- ON COUNTERTERMS

tion. In gauge theories, the gauge-parameter dependence of . L
Green functions can be controlled by extending the gauggnghtﬁénftizzgl"’xn%imvaelfzgttigﬁ roefnﬁlr;nat?ﬂof?e?gsthrﬁaggswilt
parameter¢ to a Becchi-Rouet-StoréBRS) doublet (¢, ), rticularly difficult to disentangle theq auge-parameter de-
wherey is a Grassmann-valued parameter. Gauge-prclrrclmetgl‘;1 y 9 gauge-p

dependence of Green functions and counterterms is deteE—e:]dn?gge ?:];?e gf;fsniﬁéndzsf g?u;rt:rgggsdghgr:g:aerizmis
mined by an extended Slavnov-Tayk®T) identity [12,13. y y 9 gauge-p P

. ; A : the BRS symmetry. This is considered in this section.
By solving the extended ST identity it is seen that, in gen Following closely the conventions of Rdf7] the part of

eral, physical parameters and their counterterms have to b[ﬁe classical action of the SM relevant for quark mixin
gauge-parameter independent. Finally, it is possible to prove q 9

gauge-parameter independence of physiSahatrix ele- eads

ments[13,14.

' This formalism.has been first applied to the renormaliza- Fqluark:J d*x ia‘)’ Df-‘QL+iURy DHu-R+iERy DER
tion of the QMM in Ref.[8], yielding the result that coun- ¢ R
terterms to the QMM are gauge-parameter independent. As

an additional constraint the authors of RES] require that —myg; (dFdR+didh) — my, (UruR+ufulb)

the Ward-Takahashi identity of gauge invariance in the

background-field gauge be preserved in its classical form to _ € [G-LV--CDm R

all orders. As we show, the gauge-parameter dependence of VIMysS, A

Smatrix elements and counterterms is governed by the BRS

invariance only. Thus, the use of the Ward-Takahashi identity Lt 2 R

is not adequate in this context. In particular, invariance of the +QiVij(ic9)®*my;ui+H.c]y, 2.1
Ward-Takahashi identity implies that the renormalization of

the renormalizaion of the QUM is required to be gauge/M'e he,eft-handed quarkisospin doubletsare denoted
independent in this context, the renormalization of the quarlﬁy QFE N (R“i a4 the. right-handed qyarl(ssospm smglet)s.
fields must be gauge independent, too. Thus, a complete o ui™,dr, a”OT' the Highs doublet, W!th vacuum expectation
shell renormalization scheme is not admissible in this apyalue (0"/.‘.&) subtrgcted, byb. The indices, j run pyerN
proach. Therefore, the authors of Rig] modify the on-shell quark fgmlhes. The sine and cosine of the weak m|x2|r?g angle
conditions for quark fields to renormalizations at zero mo-are defined as usual ly,= y1—s,=My/Mz, ando* is a
mentum, at least as far as the renormalization of the QMM i$auli matrix.
concerned. The matrixV is a unitary 2N X 2N matrix in the quark-

In the present paper we investigate the consequences Bmily and isospin space and is composed as
the symmetries of the theory on the QMM and its renormal-
ization in the general lined,; gauge. As already mentioned,
the relevant symmetry to control the gauge-parameter depen-
dence of counterterms as well as of physi€ahatrix ele-
ments is BRS symmetry in form of the ST identity. On the This matrix includes the QMMV;; which is a unitaryN
other hand, rigid invariance restricts the UV divergences o< N matrix depending oWN(N—1)/2 angles andN—1)(N

v-:(v” ) yiv=1 2.2
ilo s
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—2)/2 phases. These are the Cabibbo anglé&fer2 and the
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wherec,, ¢z, andc.. are Faddeev-Popov ghost fields. The

three angles and one phase of the Cabibbo-KobayashBRS transformations for vector-boson and scalar fields have

Maskawa matrix forN=3. In case ofCP conservation all
phases vanish.
The covariant derivatives of the quark fields read

. e Y@
DI/']LQJ = 5ij0"+lc—5ij7(s\NZ“+cWA“)
W

ij'w

e
. T — —
—|§[v”—|jvw+#+v | W H

+5iiliv<cwz”—swAﬂ>]]Q,-L,

R e Yy
Dfjq;= (7M+IC—7(SWZM+CWA'“)

w

5iquR,

R gR

gr=uf.df, (2.3

where ViTJ:V]-*i, and the generators of the SU(2yauge
group are defined byg,= o?/2 with the Pauli matrices®.
For convenience, we replaced in E¢&.3) the generatorr;&;2

by

=+
IW

1,42
wEils).

= (1 (2.4)
v .
The hypercharges of the fiel@ andq; are denoted by
andYy}, respectively. Note that the QMM;; appears in Eq.

(2.3) only in terms involving W bosons.
The classical action, partially given by E@.1), is com-

the usual form and can be found, for instance, in RefS],
[16].

Since the BRS transformations of the quark fields are
composite operators and receive quantum corrections, we
couple them to external fields;; and W,

pet J dt'x
(2.6)

and addl"$ to the classical action. The auxiliary nonpropa-
gating fieldsyg; and W= (yf; 4§ )" have ghost charge
—1 and are BRS invariants—i.e;;/;b{'?zo. For quantization,
BRS transformations are encoded in the ST identity

N
e D (g sul+ g sdf+ WRsQE+H.c) |
i=1 ' '

o or 6T 6T
S(I‘):fd“x et _R+ R
=1 sy OuT Sy, O
or o +H 0 2.7
—— ——+H.c.||=0, .
SUR 8QF

wherel is the generating functional of one-particle irreduc-
ible Green functions. The ellipses in Eg&.6) and (2.7
denote the contributions from vector-boson, scalar, lepton,
and ghost fieldgsee Refs[15], [16] for detailg. As usual,
the linearized ST operatay- is defined by the expansion
S(T+A)=8(')+sA+O(A?). (2.8
All counterterms compatible with the ST identity are
called BRS-invariantcounterterms in the following. These
comprise counterterms that are invariant under rigid symme-

plete in the sense that it is the most general field polynomiajy, hyt also those that are netee Sec. Il According to the
that is consistent with power counting and respects all Symgefinjtion of the BRS-invariant counterterms, they are invari-

metry requirements of the underlying theory. In particular, 5t under the linearized ST operator

invariance under BRS symmetry implies unitarity of the

QMM. Besides BRS symmetry, rigid SU(2 symmetry and

SrI'ers-invi=0. (2.9

local U(1)y gauge symmetry of hypercharge are the relevant

symmetries of the SMsee Ref[15]). Since the BRS sym-

These counterterms can be expressed in form of differential

metry controls the gauge-parameter dependence of thgperatorsD; that commute with the linearized ST operator:

QMM, we focus on BRS transformations in the following

and come back to gauge transformations later.

The BRS transformations of the quark fields take the form

e Y
_Iaéij7(s\NCZ+CWCA)

SQ.L:

+i3[vij|jvc++vifjlv;c_
Sw

+ 81 9(CuCz—SwCa) 11 QF

q
R eY

= _ia 7W(chz+ cuCa) 80l

(2.9

I'grs.invj = 0Zi(§)Dil'g, DiS(F)—s£D;F=0,

(2.10

whereF is an arbitrary field polynomial. In order to investi-
gate the gauge-parameter dependence of the renormalization
constantssZ;(£), we introduce BRS-varying gauge param-
eters following Refs[12], [13]:

SE= X, (2.1

whereé is a gauge parameter, and the new auxiliary constant
field y is Grassmann valued and has ghost charde We
include the BRS transformation &f into an extended ST
identity:

sy=0,

SX(I)=8(I')+ xa,I'=0. (2.12
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This construction allows us to classify the counterterms into For the renormalization of the QMM the following coun-
genuine gauge-parameter-dependent and -independent oriegerms are relevant.

and to prove the gauge-parameter independence of the (i) The field renormalizations of the quark fields result
S matrix elementgsee Ref[14] for detail9. It is important  from s, variations as

to realize that the introduction of the additional constant field

x is only an auxiliary construction and does not affect the Fg’IR;/SRjinvij S 5ziqj’L’Rsr (EE/iquL/R)+H.C.
x-independent part of, since the part of” involving the ' o
BRS doublet(, ) is free of anomalies by construction, and = 6ZWRNIYRr g+ Hee., (2.18
x does not appear in ST identities for physical Green func-
tions. with
In the following, we are searching for counterterms that
are invariant with respect to the extended ST ider@tl 2, Niq_,L/R: f d*x (ql__/R)T 4 ZR/IL 4 _
) ) i b R Y 5@5,’#“
S)r(clr BRs-inv; = 0» (2.13 (2.19

and investigate the consequences for the gauge-parameteus, the field renormalization constants of the quark fields
dependence of the renormalization constaizig£). In gen- ~ are in general gauge-parameter dependent, which is a well-
eral, the counterterm.10 violate the extended ST iden- known fact. The field renormalization consta@fs-"® are in
tity: general compleN X N matrices. The field-number operator
NHR commutes with the ST operatpef. (Eq. 2.10].
St Ters-invi = x(9¢In 6Zi(§))grsinvi - (2.14 Equivalently, field renormalization can be introduced us-
ing the field redefinitions
There are two possibilities to construct counterterms compat- LR URLR
. . . . . (s q,L/Ry ~L/R
ible with the extended ST identity. o —Zj =8+ ez N,
i) If a local field polynomialA; exists such that ,
(i) poly i JRILGRIL(ZGUR) SL R 5 570 UR)
2 2.2
Tarsin = 0Z ()5 Aj, (2.15 (2.20
and the one obtained by Hermitian adjungation. The ST op-
we are able to build an invariant counterterm for the ex-erator is invariant under these transformations. However, the

tended ST identity2.12 by defining rigid transformations are not invariant under E(&20 as
. will be stressed in the next section.
I'&Rs-invi= I Brs-invi — X (d:0Zi(&))A; . (2.16 (i) On the other hand, the counterterms corresponding to

_ _ o the parameterg,, of the QMM and the quark masses,
In this case there is no restriction on the gauge-paramet&annot be written in form of g, variation. Therefore, they
dependence of the renormalization constéff(£). Typical e genuinely gauge-parameter-independent quantities. These
examples of such counterterms are field renormalizations of, nterterms read
the matter fields, gauge-fixing, and ghost terms, and in the

case of the minimal supersymmetric standard model soft- o, MK
supersymmetry-breaking terms if they are introduced accord- Igrsin=9 ena_gnrcl » I'gRsin~ 5mq,k(9mq « T,
ing to Ref.[17]. T (2.2)

(i) If Tgrs.inyj CanNnot be written in form of Eq(2.15), _ o
the renormalization constariZ; must be gauge-parameter and can be introduced by parameter redefinitions
independent, and the counterterm of the extended ST identit
readrs) Y On— Oy +56,, Mg — Mg+ Mgy, (2.22

. with
I'&rsinvi*=T'Brs-nvi With  9.6Z;=0.  (2.17)
(9559n=&§5mq'k=0. (223
Examples of such counterterms are those for the physical
parameters of the SM, like the gauge couplings and massesji. RESTRICTIONS FROM RIGID SU (2), INVARIANCE
(cf. Refs.[18-21)).
As a result, the counterterms split into two classes: those |p, this section, we want to construct all invariant counter-

of the first class can be written assa variation and are in  teyms of the SM relevant for our case. Invariant counterterms
general gauge-parameter dependent; those of the secoodrrespond to local field operators that respect the defining
class cannot be written in the form of E@®.195 and thus symmetries of the underlying model. The relevant symme-
must be genuinely gauge-parameter independent, providedes for the renormalization of the QMM in the SM are the
that appropriate renormalization conditions are chosen thaxtended BRS symmetry as discussed in the previous section
do not lead to an artificial gauge-parameter dependence. But also the(spontaneously brokenrigid SU(2), gauge
careful separation between both classes is necessary in ordgrmmetry. The latter is usually expressed in form of a Ward
to draw conclusions on gauge-parameter dependence. identity. In the following, we construct the invariant counter-

033002-4



PHYSICAL RENORMALIZATION CONDITION FOR THE . .. PHYSICAL REVIEW D 70, 033002 (2004

terms from the BRS-invariant counterterms by requiring _ i _
rigid SU(2), gauge symmetry in addition. Like in the case of 8"dr=—Viur, §"9dr=0
the BRS-invariant counterternisf. Egs.(2.10], we define V2
the invariant counterterms by invariant operators that com-
mute with both the ST and Ward operators. Finally, we in-
troduce finite field redefinitions for the quark fields, which
leads to a renormalization of SU(2pauge symmetry. We
show that these new parameters are required to impose on- .
shell renormalization conditions for the quark fields. 89yR =0, &IYR. =— '_EE_VT, ,
Before discussing the invariant counterterms, we would o ey T
like to comment on symmetry breaking resulting from the
chosen regularization. If we assume an invariant regulariza- _ _ i
tion scheme for the renormalization in the SM, we need only 80y =0, oTyT=- _EEjVji :
invariant counterterms for the renormalization procedure. V2
Unfortunately for the SM there is no regularization method
known which respects all symmetries owing to the so-called
vs problem. Therefore, we require that the symmetry break-
ing owing to the regularization be restored in a first step by
introducing symmetry-restoring counterterms. These counthe rigid transformations for the auxiliary fieldg; are de-
terterms need not respect the symmetries of the underlyingned such that the ST operator is invariant under Egg).
model and can also include UV divergences. In the follow-The rigid transformations of the other fields take their usual
ing, we assume that this has been done and the symmetrigsrm (see, e.g., Ref.16)).
are restored. Hence, the remaining UV divergences respect Counterterms that respect both the ST identityd the
the symmetry identities and can be absorbed by invarianjyard identities(3.1) of rigid SU(2), symmetry in the clas-

) i )
519¢5,i: 5Vij w?,j ) 519_5i =0,

. i .
Syi=— Vi S9yR. =0, (3.4)

counterterms only. _ N sical form (3.4) are calledinvariant counterterms. Like in
The rigid SU(2) Ward identities take the form Sec. Il, we discuss the gauge-parameter-dependent and
-independent counterterms separately.

_ 4. i or _ _ (i) In order to generate quark-field counterterms invariant
Wal“—f d X5ﬁg¢k5751<_0+0()()’ a=1234, under BRSandrigid symmetries, we search for all field re-
(3.1 definitions(2.20 that leave the rigid Ward identities invari-
ant. While the Ward operatond/; , are not affected by the
where ¢, runs over all fields. The Ward operators,, a  replacement$2.20, W.. in Egs.(3.4) are in general modi-
=1,2,3, in Eq.3.1) respect the algebra of the SU(2Qroup, fied by Egs.(2.20. Requiring that the rigid transformations
(3.4 be invariant under the replaceme(#.20), the field
Wa Wel=li€p Ve, a,b,c=1,23, (3.2 renormalization$2.20) of the left-handed fields are restricted
by (ziby~tvzel=V, resulting in
and commute with the Ward operata¥, of U(1)y symme-
try of hypercharge. The Ward identity has to be fulfilled by Zob=vTzuly, (3.5
the y-independent part of, while the unphysical part in-
volving the field y need not be rigidly invariant. Using the Since the field renormalizations of the right-handed fields are

definition not restricted by rigid invariance, the corresponding BRS-
invariant counterterms are also invariant counterterms—i.e.,
1 Z3*=27%R. Furthermore, the operatafg!® corresponding
We=—(W1EiW,), (3.3 to the invariant countertern&}’R commute with the Ward
V2 operators.
. . . . i (i) The renormalization operato@my d/dmg  of Egs.
in the classical approximation the rigid transformations for(2.2]) commute with the ST and Ward operators and, hence,
W take the form generate invariant counterterms:

_ i _ " d
519u=‘= 5V|Jd:-, 619U|L: 0, I‘in\(}k: 5mq’qu’k Fc| . (36)

On the other hand, the operators that correspond to the renor-
gyt malization of the angles and phases of the QMM do not
T commute with the Ward operatotd’. . In order to disen-
tangle the counterterms to the QMM from the counterterms
of the field renormalizations, we construct the invariant op-
erators that commute with both the ST operator and the Ward
operators as

8"ut=0, &ut=-—

S -

| | i
L
8%y =0, &Y%di=——UV;,
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J 1 ,,_t?Vik ; 1/\/‘1'L ; IV include UV di\(erg_ences anq are only needed to satisfy on-
Dy=7g-+ EJV}} Zo. Vi~ 3N Vikgg- THe. shell renormalization conditions.
n n n With the so-defined invariant counterterms and finite field
3.7) redefinitions, we are able to define a more convenient set of

These operators define the gauge-parameter-independent, [ghormalization constants:

variant counterterms to the QMM:

) Vij—Vij+6Vij,
I =600Dy 'y, (3.8
where the parameter, run over the angles and phases of

the QMM. This renormalization includes both renormaliza- —RIL R —q LR —1_ TRIL a.LR
tion transformations of the mixing angles and field renormal- g (20Nt = (6 — 6z,
izations, (3.11)
6,— 0,+ 56,,, with
i 1 . 8V=50,(d4, V),
824N &)= 8Zhi () + 250 (95 VIVT
1 inv 2 n\ve, ’
d}-{ =3 5(9nvi*k(agnvkj)}djL :

1 SZMH &)=V OZiy (£)V - % 80V, V) + SR™(4),
Zs,i_)ﬁ,j[ Si—5 50n(5oank)VL}:

OZVR(£)= 6T (8). (312
: (3.9

1 T
Sjit 5 600V (dg Vii)

ZdR'_)ZdR,j 2

!
,

In Egs.(3.12 we have indicated the gauge-parameter depen-
) » o ) dence of the renormalization constants explicitly. The defini-
and the corresponding Hermitian ad!omt transformations. tion of the renormalization consta@V in Egs. (3.12 im-

~ Both 6mg, and 66, are genuine gauge-parameter- yjies that the renormalized QMM stays unitary in all orders
independent counterterms. o by construction as is required by BRS invariance of the

The relation(3.5 and the renormalization of the QMM theory.
(3.9 restrict the UV-divergence structure of the invariant Using Egs.(3.12 we can express the UV divergences of
counterterms. the QMM in terms of UV divergences of left-handed field

The remaining field renormalization parameters of Eqs_redeﬁmuons:

(2.20—i.e., those that do not respect E§.5—belong to a
new type of renormalization constants—namely, finite field V=24
redefinitions.

(iii) We introduce finite field redefinitions for the left- SV=—(8Z"YHTV+V(8z%4 T +finite terms, (3.13
handed down-type quarks sinééﬁ;\'; is constrained by Eg.
(3.5. The finite field redefinitions of the down-type quarks where we usedd, V)V'=—V(d, V'). As the UV diver-

74—V 674+ finite terms,

compatible with the ST identity read gences satisfy also the extended ST identity, the gauge-
L ofingl i L parameter-dependent part of field redefinitions cancels in
d _’Ri}ndj =(3;+ 5Riljn)d‘ ' Egs. (3.13 in such a way that the UV divergences of the
4 , QMM are gauge independent. Since in & scheme only
“R 7R -1_7R
URi— U (R™ =4k (5 — oRI), (3.10  the UV-divergent parts and gauge-independent constants are

subtracted 5V can be consistently determined M5 field

with an arbitrary complexN XN matrix SR™. Since the re- renormalizations:

placement3.10 is done everywhere—i.e., in the action, in

the ST operator, and in the Ward operators—it does not dis- .

turb the validity of the symmetry requirements of the theory. 5\/—5; _ }{[(ﬂu,L,M—S)T_ 5z“~Lm]v

While the ST operator an#l; 4 Stay unchanged, the renor- 2

malized rigid transformations corresponding . are — —

modified. The renormalized Ward operatdts are obtained +V[6Z4EMS— (524 EM9)T), (3.14
from Eq.(3.4) by the substitutiort3.10. As shown in Sec. I,

these field redefinitions are in general gauge-parameter d&rom Egs.(3.12 it can be seen that the renormalization
pendent. Furthermore, these renormalization constants do netheme which uses adS subtraction foréV but on-shell
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conditions forsZ%YR is fully consisten{5,6], yielding, how- and Smatrix elements and which yields in the present case
ever, contrary to the purtS scheme renormalized Ward the gauge independence of counterterms to the QMM.

identities of rigid symmetry. For this reason we do not establish conditions which are
ization condition also for the finite parts, of Ref.[8] but fix the counterterms of the QMM directly on
physical matrix element&ee Sec. Y.
!
SV=— %{[(ﬁu,L)T_ SZULIV+ V[ 6Z%L— (5294 TL, IV. PARAMETERS OF THE QUARK-MIXING MATRIX
(3.15 Before we turn to the definition of a physical renormal-
ization condition for the QMM in Sec. V, we investigate the
which is equivalent to different types of parameters included in the QMM and the

field redefinitionsZ®"R, and study how these parameters
| contribute to the bilinear action and to the"Wd, vertex.
SRfin— (sRIMT=0. (3.16 The SM allows the generalized field redefinitiof811)
of the quark fields wher@® "R are general compleN X N
This renormalization condition sets the anti-Hermitian partmatrices. A general complex matrix can be decomposed into
of the renormalization constan@R™"(£) to zero. In order to & Hermitian and a unitary matrix,
satisfy the on-shell conditionsZ""- and 5Z%" are needed as Z4,LUR_ |ja.URa.LR 4.1)
independent counterterms at our dispasale Sec. IV. As ' ’
Eq.(3.12 shows, the gauge-dependent part$af-(¢) and  with
6Z%Y(&€) can in general be absorbed iﬁZﬁ;VL(f) and
SRM(£). However, if SRM—(sRMT=0, the renormaliza- (HRERT=HaR —(yatRyTyatR=1 (4.2
tion condition(3.15 requires one to adjusid,. This leads
in general to a gauge-parameter-depend&ff, which is
inconsistent with the extended ST identity. For this reaso
the renormalization conditio(8.15 yields gauge-parameter- _
dependent results for physical matrix elements, as has been rgﬁ'd-redzf d'x > [igrxdtagr+igixdRaaR
confirmed by an explicit one-loop calculation in RE). g=ud
To circumvent these problemg, the authors of R&fgive +(GEM3gR+H.c)T, 4.3
up the complete on-shell conditions, but propose renormal- P
ization conditions respecting the Ward identi®.1) in its  with
classical form—i.e., SR™=0—and resulting in gauge-

Applying the field redefinitiong3.11) to the bilinear part
rpf the classical actiof2.1) yields

parameter-independent counterterms to QMM by using XOUR= (HaLR)THa LR

fermion-field renormalization constants fixed at zero mo-

mentum. In this scheme, gauge independence of the QMM M= (HH T (UM U @ RHER, (4.9
has been confirmed by an explicit one-loop calculation, but )

could not be confirmed to all orders. and M g,g=diagy,s,...,Mgn)-

In Ref. [8] the motivation for constructing a scheme in  Inspecting this result, we see that the Hermitian parts of
accordance with the classical Ward identity is based on théhe matricesZ%" and Z%® can be determined on kinetic
theorem that any renormalization prescription that preservel€rms, while the unitary parts can be flx?d on mass terms
the rigid Ward identity in its classical form leads to a gauge-UP to @ common complex diagonal  matrix
parameter-independent definition of the QMM. Note that thisdiadexp(i¢]),....exp(iey)], which can be extracted as
theorem requires the assumptions that the extended ST iden- N N
tity is satisfied and that the Ward operator commutes with the ql_ 29 o ™l q.R_ 79« ™a,R
extended ST operator, as can be seen in the proof of this Ui ‘gl ewali g _kgl &40 Uy
theorem in Ref[8]. However, in this form the theorem of (4.5
Ref.[8] is only of little use, especially in the on-shell scheme , ) ]
where the Ward identity has to be renormalized as discusset’® diagonal matrix can be parametrized as
before. Preserving the rigid Ward identity means to take N-1
5Rﬂn(§)=0. Then, the rigid Ward identity is preserved in its ei$?5ij - exp( iy (Pg-l-giag) exp(idTda9)
classical form for anyé6, irrespective of its gauge- n=1
parameter dependence. As we have shown in Sec. Il it is the ,
extended BRS invariance alone which controls gaugewhere the matrice§°? denote theN—1 traceless diagonal
parameter dependence or independence of Green functiogenerators of SWN) and T%9=1/,2N.

The number of physical parameters of the QMM fér
quark families is determined as follows: BRS invariance im-
INote that our notation differs from the one of Rgf] by a factor ~ plies that the QMM is a general unitary matrix. A general
of 2 in the definition of the field renormalization constants. unitary matrixY hasN? parameters. We can use the diagonal

, (4.9
ij
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matrices that are not fixed on bilinear terms to remoe 2
—1 phases fron¥ and obtain the usual form of the QMM
including only physical parameters:

V=exp<
N—-1

xexp i Y, @iTdia
n=1

N—-1
- in; <pﬁTﬁ‘ag> exp —ipgTe™9Y

explip§T99)

N—-1

=exp(—i(e5— 95 T5™) eXP( - ingl wﬁTﬁiag> Y

N—-1

xexp i 2, @ﬂTﬁiag), 4.7
n=1

where we used the fact thaf®? is the only generator that
commutes with all generators of the SU(group. Thus, the
QMM has N?—(2N—1)=(N—1)? physical parameters.
These consist dl(N—1)/2 anglesd,, of anN X N orthogo-
nal matrix and of N—1)(N—2)/2 complex phase factors
exp (i)

Similar to the decompositio#.1) of the field redefinition
matrices, the corresponding counterterd&®R can be
written as a linear combination of Hermitian and anti-
Hermitian matrices:

NZ-1

579 HR= nzo S2RT,, (4.8

where 5z3“R are complex numbers arii,, n=1,..N°—1
are the generators of SNj and To=1/y/2N. In the same
way as we have discussed for the matrizé4'R in the be-
ginning of this section, not all of théz%" and 6z%'% can be
determined on the bilinear terms:

ST field-red_ f d‘*xq;ud [igr oxqr +igRox Ragl

+(qr oM{lgR+H.c)], (4.9
with
5Xq‘L/R:(5Zq’L/R)T+ 5zq,L/R,
M= (5Z%H) "M+ MiagdZOR. (4.10

Common imaginary parts of the coefficienizﬂ"‘ and 5zﬂ'R
corresponding to the diagonal generat'ﬁﬂ?g remain as free
parameters. Splitting off these free parameters, we obtain

N—-1
574t = 5794+ inzo cdrdag,

N—-1
SZ%R= s79R+i >, ciTdiag,

n=0

(4.11
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with free real parameters?, and 6Z%" and 6Z%R having
fixed values for the imaginary parts of the diagonal entries.
One can choose for example real diagonal entries for the

left-handed  field renormalization  constantssZ3'"
=(8Zh*.
Now we turn to the counterterms of the QMM. Owing to

BRS invariance Y+ 6V) is a unitary matrix. The unitarity
constraint reads

(V+8V)(V+8V)T=(V+ V)T (V+68V)=1, (4.12
which implies

SVIV+VIsV=—sVTsVv.
(4.13

These equations are implicitly solved by decomposikgy"
into a Hermitian and an anti-Hermitian part:

SVVI+Vsvi=—svevT,

1 - - -
5v——§5vava+ SV with  svVvi=—(svvhHT.

(4.14

Equation(4.14) can be solved perturbatively félv oncesV

is given. ThereforesV has the same number of independent
parameters agV or V—namely, N—1)2.

In order to formulate a renormalization condition for the
QMM, we investigate the WUidj vertex. Including counter-
terms, this vertex reads

L
idi

e
ngd=‘/2—sw f d*XUr AW (V+ F o), (4.19

with the matrix

oe o
7, 25 O
€ Sy

SFu=V +(8Z2"H TV +Vezit+ V.
(4.16

Inserting the decompositio@.11) as well as Eq(4.14), this
can be written as

ISy

oe - -
5Fct:V( OZw+ - AR UYERVE AL

1 -
-5 SVoVTIV+5Y, (4.17)
where we defined
NZ-1
oY=—i ngl (cUTdia0y — v/ cdTdiag) —j(cl—cd)V+ SV.
(4.18

While 82y, de, 8s,,, and5Z%" are fixed from other vertex
functions, we have thii? parameters of the matri&Y at our
disposal for renormalization conditions of the QMMN (
—1)? free parameters fromV, 2(N—1) real constants
from the traceless diagonal generatﬁ%ag, and one real
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constantcd from T329, These parameters are just sufficient - e
to fix a general unitary matrix. For later use we note that Eqgs. Myjj=— \/i_sw u(py,)é(pw)o-v(pg;), (5.2
(4.18 and(4.14 imply the anti-Hermiticity ofsYV:

and the chiral projecto® = (1— ys)/2. The matrix element

SV = — (sYVHT 4.19 including radiative corrections can be written as

2
Mi=2 2 FaiMai (5.3
V. PHYSICAL RENORMALIZATION a=1 ==

OF THE QUARK-MIXING MATRIX . . S .
with four standard matrix element®tg . The corresponding

In the previous section we found that the field renormal-four gauge-invariant form factorsJ are functions ofM?2,

ization Constanﬁzq,L/R can be determined on the quark self- mﬁ,i’ and mg] The form faCtOfFI y the Only one appearing

energies only up to some unphysical phases. These phasgSjowest order and thus involving overall UV divergences
can be used to extend the QMM to a general unitary matrixgnq counterterms, can be decomposed as

In this section we formulate a physical renormalization con-
dition for this unitary matrix and thus for the QMM. _ _ — 0
As we have already seen in Sec. Il, the counterterms to F1=V+Fg0pat 5Fct:v+§1 (6F00p,1+ OF ct),
the QMM are genuinely gauge-parameter independent. In or- - (5.4)
der not to introduce an artificial gauge-parameter depen-
dence, the renormalization conditions have to be chosewhere 5F|Sélp),1 summarizes théth-order loop contributions
properly. If gauge-parameter-independent matrix elementicluding also counterterm insertions of lower orders and
that involve the QMM are available, these matrix elementssk()) includes thelth-order overall counterterms as defined
can be used to determin®/. If we ignore for the moment Eq. (4.16.
the instability of the W bosons and the quarks, such matrix - sjnce the form factoF; depends on the counterterms of
elements are those of the decayé’Wuidj ory—W~d;ifa  the QMM, it can be used to define a proper renormalization
top quark is involved. Both types of decays are related byondition for the QMM. Owing to loop corrections this form
crossing symmetry. factor is a general compleX XN matrix. We decomp0§e
Before we come to the actual renormalization conditionthis form factor into a unitary matrixy and a Hermitian
we want to add some comments on the difficulties related tenatrix H:

unstable particles. Matrix elements to the decayJS—V\UiEj
or u—Wd; suffer from the fact that the external particles

are unstable. Contrary to stable particles it is not known howas giscussed at the end of Sec. IV. we have enough param-
to construct gauge-parameter-independent matrix elemenigers at our disposal for the renormalization of the QMM to
with unstable particles at external legs. Nevertheless, we usg, 5 general unitary matrix. This allows us to require that the

these matrix elements for a renormalization condition for th%nitary part of the form factoF; not receive quantum cor-
QMM. The problem related to the instability of the external rections in higher orders—i.e !

particles manifests itself in contributions of the order of the
decay width of these particles, which we cannot control. Sev- |

F;=HY with H'=H, Y'y=1 (5.5

eral attempts to obtain gauge-parameter-independent matrix Y%V. (5.6)
elements involving internal or external unstable particles o N _
have been undertaken in the literatisee, e.g., Ref§22—  The renormalization conditiofb.6) can be written as

25]). For the case where no gauge-parameter-independent
matrix element is available, a fully consistent prescription
has been given in Refl13], which defines renormalization
con_ditions for gauge-parameter-independent counterterms q_rfsing the Hermiticity ofH, we obtain, as the final result for
arbitrary gauge-parameter-dependent Green functions. In th{ﬁe renormalization condition
section we treat the external particles as stable and ignore the '
problems related to their finite decay widths. This approach |
implies that absorptive parts should be disregarded in the FiVI—V(F)T=0 (5.9
following results. Some remarks on the absorptive parts are
made at the end of this section and in the Appendix. or, using Eq.(5.4),

Following closely the notation of Ref7], the lowest-

order matrix element for the decay*Wequ reads

Fy=HV. (5.7

(V4 OF jopat 5Fct)VT%V(V+ SF joop.1+ SF'. (5.9
Mojj=VijMyj; (5.1)

The decompositiofF; =Y H’ leads to the same renormalization
with the standard matrix element condition (5.11).
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For thel-loop contribution this reads If we take into account absorptive parts, we encounter a
. number of problems and drawbacks: the countertés2)
) Myt —() (It obtained from the decays W-u;d; and y—W d; differs
(8F toop, 1 Ot )VI=V (SF 1001+ OF ). (510 ¢ Pie ‘one obtained analogodsly from the Jdecay§ W
Inserting Eq.(4.17 and using the anti-Hermiticity oYV’ ~ —ud; and y—W"d; owing to Eq.(A6), and the counter-
and the fact thade/e and 5s,,/s,, are real, this equation can terms to the QMM become complex also in the cas€Bf
be solved forsy™": conservation. Moreover, when absorptive parts. of the loop
corrections and of the Lehmann-Symanzik-Zimmermann
~ 1 ~ (LSZ) factors are included in the calculation 8fmatrix el-
sYW=— E[(5Z”‘L('))T— sz v ements, the limit of degenerate fermion masses is no longer
approached smoothly. This problem is related to the lack of a
1 SaLi) St 1 0 <) consistent definition o&matrix elements for unstable exter-
— o VIZE = (8257 1= 5 (62w — 6Zy ) nal particles and applies to all other existing renormalization
prescriptions for the QMM once absorptive parts are taken
into account. One proposal for the modification of the LSZ
factors in the presence of external unstable parti@gsand
the renormalization of the QMM in this approach is dis-
We can rewrite Eq(5.11) into standard form by absorbing cussed in some detail in the appendix. However, it also does
the undetermined phases into the field renormalization angot solve the mentioned problems.
find, dropping the loop indek Therefore, we advocate to only include dispersive parts in
Eq. (5.12.

1 = =)\t
— S Lo = V(SF o) V1. (5.11

1 1
SV=— E[(5zu,L)‘r_ 5ZU’L]V— EV[ 6Zd'L—(5Zd’L)T]
VI. CONCLUSIONS

1 L 1 _ -t

5 (82w= 0Zw) = 51 F toop 1= V(SF100p,) V- We have studied the renormalization of the quark-mixing
(5.12) matrix and the corresponding restrictions from BRS invari-
' ance and rigid SU(2) symmetry.

This together with Eq(4.14) determines the counterterms to ~ We started from the fact that the gauge-parameter depen-
the QMM. As already mentioned, our conventions differ by adence of counterterms and physi&atatrix elements can be
factor of 2 in the definition of the field renormalization con- controlled using a modified Slavnov-Taylor identity, where
stants from those of Reff7]. We note that Eq(5.12) implic- the gauge parametéris extended to a BRS doublet by in-
itly requires us to fix thel such thatsV=66,0V/36,; i.e.,  troducing an auxiliary fielgk. Using this formalism, it can be
the free parameters i8Z%" must be fixed such that the seen that counterterms that cannot be written as a BRS varia-
renormalized QMM can be expressed in terms of the corretion must be genuinely gauge-parameter independent; the
sponding renormalized physical parametése also Ref. others may be gauge-parameter dependent. While the quark
[26]). field renormalization constants are generally gauge-

Let us now discuss the renormalization conditi@nl2), parameter dependent, the counterterms to the QMM do not
leaving aside absorptive parts: it is a physical renormalizadepend on the gauge parameters if appropriate physical
tion condition that satisfies all requirements mentioned in théenormalization conditions are imposed.
Introduction. The corresponding renormalized QMM is In order to satisfy complete on-shell renormalization con-
gauge independent, unitary by construction, and symmetrigitions in the quark sector, finite gauge-parameter-dependent
with respect to the fermion generations. Moreover, the renorfield redefinitions must be introduced. Imposing complete
malized matrix elements approach the limit of degenerat@n-shell conditions without these finite field redefinitions in-
fermion masses smoothly. An apparent drawback of th&luces an artificial gauge-parameter dependence in the coun-
renormalization condition5.12) is that it requires the calcu- terterms to the QMM, as found by an explicit one-loop cal-
lation of the vertex form factodF . This, however, is ~ culation[8] for the renormalization prescription of RefS],
anyhow needed for all processes involving the QMM. Thel7]. These finite field redefinitions appear explicitly in the
renormalization condition5.12) is equivalent to the one rigid SU(2)_ transformations, resulting in a renormalization
given by Zhou in Ref[11]. However, while we impose a Of the rigid symmetry. From rigid SU(2)invariance we
renormalization condition on a physical matrix eleméng)  found relations between the ultraviolet-divergent parts of the
that preserves the unitarity of the QMM, Zhou requires alnvariant counterterms.
condition that violates unitarity. In a second step he corrects Finally, we proposed a physical renormalization condition
this by extracting the unitarity-preserving part of a counter-for the QMM based on the decays Wuidj and t
term, a procedure that was also used in the renormalizatiomw—aj. This condition fixes all counterterms properly and
scheme proposed in R€fL0]. As a further remark, we note yields gauge-parameter-independent results for physical
that exactly the same renormalization condit{érl2 is ob-  Smatrix elements up absorptive parts related to the presence
tained from the decays W—>uidj and y—W~d; or W~ of external unstable particles. Moreover, it is symmetric with
—ud; and Li|—>W+d]- . respect to the fermion generations and, at least for the non-
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absorptive parts, avoids unphysical singularities in the limit In the approach of Ref.25] the quantum corrections to

of degenerate quark masses. the decays W— u;d; and g—W™d; are given by Eqs(5.3),
(5.4), and(4.16 with (82“Y)' replaced bysZ"". Using the
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APPENDIX: RENORMALIZATION OF THE QUARK-
MIXING MATRIX IN THE PRESENCE OF LSZ FACTORS
INCLUDING ABSORPTIVE PARTS

——(5zW 8Z%,)V— [5F|;Op'1—V(5F|’oopyl)TV]

(A3)
In Ref.[25] it has been argued that in the case of unstable
external fermions different sets of LSZ factors have to beinstead of Eq.(5.12. This renormalization condition is
introduced for incoming and outgoing fermions in order toequivalent to the one given by Zhou in REf1].
obtain gauge-parameter-independent amplitudes. Although yUsing the decays W-—du; U and uaW*d with an

this approach has a certain appeal, it is still far from a deanalogous renormalization condltlon yields instead
scription of amplitudes for unstable particles. The purpose of

this appendix is to investigate the renormalization of the
QMM in this approach. _ 1 1 _ _
The matrix-valued LSZ factors for all left- and right- 5V=—§[(5Z”'L)T—5Z“"‘]V— EV[(ﬁzd"‘)T—ﬁzd"‘]
handed incoming fermions and out-going antifermions are
denoted bysz%t and 562%R and those for the outgoing fer-

mions and incoming antifermions bzt and 5Z%R. Simi-
larly, the LSZ factor for the incoming W boson and outgo-
ing W~ boson is given byZ,, and the one for the incoming

W~ boson and outgoing W boson byéfw. These LSZ - ) . _
factors are suitable forSmatrix elements and involve WNeredGip1is defined in analogy (@F o, ;. These ma-
trices are related by

enough freedom to include all absorptive parts. However,
they should not be used as field renormalization constants in

the renormalized Lagrangian, since they would violate its 5G,gop,1=(5F|;Op‘])T|VHV* (A5)
hermiticity. In the following, the constan®Z and 6Z can be

understood to include both the LSZ factors and field-or, equivalently,

renormalization constants or only the LSZ factors assuming

that field renormalization has already been performed.

The LSZ factors are fixed by imposing on-shell conditions Resg- .= - 3t TmMSGS = —1m(SE-_ A\t
for incoming and outgoing fermior&5]. From the resulting R€0Cioop.s ﬁé(al:'wp’l) 1M Gioop =~ IMOFi00p)
explicit expressions fosZ%“R and §2%R in terms of self- (A6)
energies given in Ref25] and those of the self-energies we
find the relations

1 _ 1 _ _
— E(EZ\’;V— SZyw)V — E[(EGIoop,l)T_VéGloop,lv]’

(Ad)

as can be seen from the structure of the explicit expressions.
The countertermgA3) and(A4) involve the same dispersive
parts but opposite absorptive parts. In the case®tonser-

—q,LIR_ L . o " .
SZUHR=(SZR)Tly v (A1) yation the renormalization conditiori#3) and (A4) violate
the orthogonality and reality of the QMM. These drawbacks
or, equivalently, can be cured by omitting all absorptive parts in the counter-
o - L - terms for 8V. In this case the expressiolia3) and (A4)
ResZOYR=Rg 6Z9YR)T Im §29YR= —Im(6Z9YR)T, become equivalent, and the counterterm simplifies to
(A2)

using Reand Imas defined in Ref[7], which acts only on  §V= —Re[ [(629YHT— sz vV + = V[5ZdL (629451
the loop integrals but not on the QMM,; i.é?l?»eojects on
dispersive parts and Inon absorptive parts. As a conse-
quence of Eqgs(A2), the barred matricesZ%" and 6Z9R
agree with 294" and (62%R)" in the dispersive parts but
have a different sign for the absorptive parts. Analogous realternatively, this result can be directly obtained from the
lations hold betweedZy, and 5Zy . renormalization condition

1 -
+ 5 [0F00p.1~ V(8Fi00p.) V1 (A7)
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- —\tyt— \taa-
[Fy +(G)IVI=VI(F;)T+G1 ], (A8) S % (L szey % V[ sz0L_ 5784
whereG,,, 1 is the matrix replacing,,, ; in these decays,
and the relation$A2) and (A6) without the need to use the
Re prescription.

As a consequence, also in this approach the most natural
strategy is to discard all absorptive parts in the renormalizawith this counterterm only the combinatio&Z L+ szuL

tion constants of the QMM. Then, the counterterms &t  and§z%-+ 579" that are nonsingular for degenerate fermion
are the same as those introduced in &q12) with the same  masses appear in the renormaliz8anatrix elements for
merits and drawbacks. W+—>uiEj and_q—>W‘Ej. However, the absorptive parts in
Finally, we note that one could construct a co_untertermEq. (A9) violate the unitarity of the renormalized QMM and
that yieldsS-matrix elements for the decays W-u;d; and  are thus not admissible. Moreover, even for these counter-
t—W"d; where the limit of degenerate fermion masses isterms theSmatrix elements for the decays W-u;d; and
approached smoothly by including appropriate absorptivmi—>W+dj are not smooth in the degenerate-quark-mass

1 -
— 5 [0F00p.1= V(0F 100, V1. (A9)

parts of the LSZ factors in EqA7) as limit.
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