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We compute the strange quark massand the average of the andd quark masses using full lattice
QCD with three dynamical quarks combined with the experimental values forrtlad K masses. The
simulations have degeneratendd quarks with masses,=my=m as low asm,/8, and two different values
of the lattice spacing. The bare lattice quark masses obtained are converted MStiseheme using
perturbation theory atO(ag). Our results are mgﬂ_s(z GeV)=76(0)(3)(7)(0) MeV, rﬁm(z GeV)
=2.8(0)(1)(3)(0) MeV, andﬂslfn=27.4(1)(4)(0)(1), vhere the errors are from statistics, simulation,
perturbation theory, and electromagnetic effects, respectively.
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I. INTRODUCTION masses to rather large systematic errd@—20% arising
from the inconsistency of comparing such a theory with ex-
The masses of the strange and light quarks are fundameReriment. The determination presented here uses simulations
tal parameters of the standard model that arpriori un- ~ With the improved staggered quark formalism that have a
known and must be determined from experiment. This ignuch more realistic QCD vacuum with two light dynamical
complicated, however, by confinement in QCD, so thatquarks and one strange dynamical quark. We describe how

uarks cannot be observed as isolated particles. We can onflhe bare quark masses in the lattice QCD Lagrangian can be
q P ' ted using chiral perturbation theory to extrapolate lattice

determine their masses by solving QCD for observable quarngits to the physical point, and how the lattice quark
tities, such as hadron masses, as a function of the quatkasses obtained can be transformed to a continuum scheme
mass. This can be accomplished with the numerical techj;s) ysing lattice perturbation theory. Working in the region
niques _of lattice QCD. Precise knowledge of quark massegf dynamicalu/d quark masses belomy/2 and down to
constrains beyond the standard model scenarios as well &8/8 gives us control of chiral extrapolations and avoids the
providing input for phenomenological calculations of stan-|arge systematic errors from dynamical quark mass and un-
dard model physics. The strange quark mass, in particular, i§uenching effects that previous calculations have had.
needed for various phenomenological studies, including the Staggered quarks are fast to simulate. They keep a rem-
important CP-violating quantity e’/e [1], where its uncer- nant of chiral symmetry on the lattice, and therefore give a
tainty severely limits the theoretical precision. Goldstone pion mass which vanishes with the bare quark
Previously, shortcomings in the formulation of QCD on mass. This allows the relatively simple determination of the
the lattice and limitations in computing power have meantquark mass described here, which is not available, for ex-
that lattice calculations were forced to work with an unreal-ample, in the Wilson quark formalism.
istic QCD vacuum that either ignored dynamicséa quarks The staggered quark formalism does have several un-
or included onlyu andd quarks with masses much heavier wanted features, however. With the naive staggered action,
than in Nature. This condemned determinations of the quarkarge discretization errors appear, although they are formally
only O(a?) or higher @ is the lattice spacing The renor-
malization of operators to match a continuum scheme can

*MILC Collaboration. also be large and badly behaved in perturbation theory. This
THPQCD Collaboration. is true, for example, for the mass renormalization that is
*UKQCD Collaboration. needed here. It turns out that both problems have the same

1550-7998/2004/73)/0315045)/$22.50 70 031504-1 ©2004 The American Physical Society



RAPID COMMUNICATIONS

AUBIN et al. PHYSICAL REVIEW D 70, 031504R) (2004

source, a particular form of discretization error in the action statistical errors are large, and they are not very sensitive to
called “taste violation,” and both are ameliorated by use ofthe quark masses.

the improved staggered formalisfi2]. The perturbation Our analysis uses)®T [11] to fit the dependence of the
theory then shows small renormalizatid®s-5] and discreti-  results on the quark masses. This dependence can then be
zation errors are much reducggl8]. Empirically, taste vio-  extrapolated/interpolated to the point where (@®ldstong

lation remains the most important discretization error in ther andK have their physical masses, thereby determining the
improved theory, despite being subleading to “generic” dis-pare |atticem andmj. At the level of precision at which we
cretization errors. The Goldstone meson masses we will disgre working, and because we take,=my, we must be

cuss here are affected by this at one loop in the chiral expanareful about electromagnetiEM) and isospin-violating ef-

sion. Staggered chiral perturbation thedSxPT) [9-12  fects. At lowest nontrivial order ie? and the quark masses,
allows us to control these effects and reduce d'scret'zat'oﬁashen’s theorenf21] states thatm?, and m§+ receive

errzr?nzlr%nm(r:l?dgtrlz.ental concern about staggered fermions igqual EM contributions; while ther® and K® masses are
Unaffected. However, at next order, there can be large and

based on the need to take the fourth root of the quark deter:. N 2 2 5 5

minant to convert the fourfold duplication of “tastes” into different contributions tan” . andmi . of orderemy [22—

one quark flavor. It is possible that there are nonlocalities ir?4]- LetzAE [2?] parameterize V|20Iat|or;s of Dashen’s theo-

the continuum limit that would spoil the description of QCD rem: (My+—Myo)em=(1+Ag)(M_+ =M o)gm. Then Refs.

at some level. Checks of the formalism against experimentd2—-24 suggestAg~1.

results[12—16, make this unlikely, we believe, but further  Including EM and isospin effects, the physical values of

work along these lines is crucial and continuing. m andm can then be determined by extrapolating the lattice

squared meson masses mfrz mio and mﬁz[mimL mi+

—(1+AE)(mi+—mio)]/2, using experimental values on

The simulation data of the MILC collaboratidii4,17  the right hand side of these expressions. We are neglecting
are analyzed: staggered quarks with leading errors &P((m,—mg)?) corrections, which should be tinj26]. EM
O(asa?,a”) [2] and one-loop Symanzik improved gluons contributions to the neutral particle masses are also ne-
with tadpole improvemenf18,19. Two sets of configura- glected, and we take account of this in our error. For#fle
tions are used: a “coarse” set at lattice spacag1/8 fm  the violation of Dashen’s theorem @(e’m?2/(8*f2)) and
and sea quark masses afm,=am,=am’ =0.005, 0.007, negligible. Formio the violation is in principle the same
0.01, 0.02, 0.03 witham,=0.05, and a “fine” set ata  order as form. [23], but in model calculationf24] it ap-
~1/11 fm with sea quark masses af’ =0.0062, 0.0124 Pears to be very small. To be conservative, we consider EM
and am,=0.031. Here we use primes on the sea quarkeontributions tomﬁo of order of half the violations of Dash-
masses to emphasize that these are the nominal quark masé&s theorem, with unknown sign. Effectively, this replaces
used in the simulation, not the physical massesor m  Ag=~1 in the formula formﬁ above with the range 0-2,
=(m,+mgy)/2. The simulations are “partially quenched,” which we take as the EM systematic error.
with a range of valence masses framj, down to m{/10
(coars¢ and m./5 (fine), not necessarily equal to the sea Ill. CHIRAL FITS AND SYSTEMATIC ERRORS

guark masses, simulated on each lattice. It should be noted

that the quark masses in lattice units quoted here contain a Here we briefly describe t_he fits toy8T theory forms
. . and the estimate of the associated erf@&15. Because the
factor of ugp, the tadpole-improvement factor determined

from the fourth root of the average plaquette, compared wit quared meson massed ’?(‘?50’) are nearly linear in the va-
a more conventional definition of quark maig. This is ence quark masses, the final values of the quark masses are

taken care of nonperturbatively before our renormalizatiorgu“e insensitive to details of the chiral fits. Chiral logs and
below analytic terms at next-to-leading ordéXLO) and higher
The lattice spacin@ is determined ultimately from the only aﬁegt the_ r_esults at th_eS% Ieve(;. hich di
Y'-Y mass differencg20], a useful quantity because it is SX'.DT IS a joint expansion IXq andXgz, which are di-
approximately independent of quark masses, includingsthe menslonless measures _of the size of quark mass and lattice
mass. An analysis of a wide range of other “gold-plated” SPacing effects, respectively:
hadron masses and decay constants on these configurations
shows agreement with experiment at the 2—-3 % l¢8]. xo=_——19
Gold-plated hadrons are stablen QCD), with masses at d 8772fi’
least 100 MeV below decay thresholds, so their masses are
weII.-d.efined both experimentally and theoretically, impor.tantmq is the quark mass, 2m, is the tree-level mass of @a
for fixing the parameters of QCD. The only gold-plated "ghtmeson, and_~131 MeV. a%A is an average meson split-

mesons available to fim andms are thew andK. There is  ting between different tastes. On the coarse lattiggs
none with onlys valence quarks because tieis unstable  ~0.09; on the finex,2~0.03.

and the pseudoscalar is strongly mixed. Baryons can provide For physical kaons, the relevant expansion parameter is
an alternative, the nucleon fan and the() for mg, but their ~ X,4s=(Xuq+Xs)/2~0.18. Since our lattice data is very pre-

Il. LATTICE DATA

2umy a’A
Xa2= ?Zfi (1)
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cise (0.1 to 0.7% onM2 ), it is clear that we cannot ex- 0.4
pect NLO or even NNLOyPT to work well up to the kaon

mass. If however the valence quark masses are limited by
m,+m,=<0.75m¢, we obtain good fits including NNLO ana-

lytic terms. Such fits are consistent wifPT expectations:
the coefficients of NLO and NNLO terms ar@(1) when ’;;
these terms are expressed as functiong,adnd x,2. When 8
fitting up to the strange mass we include NNNLO as well as <=
NNLO terms, but satisfy the chiral constraints by fixing the g
NLO terms from lower mass fits. Since thguark mass can o
be reached in simulations, the form of the NNLO and « E

0.3

0.2

NNNLO terms is not important; such terms simply allow for 0.1 ‘_ CL=0.28

a reasonable interpolation to the physioa). L X ¢ coarse
Both decay constant arid ?,...,data and both coarse and - / O O fine

fine ensembles are fit simultaneously. Although NLO taste [

violations are explicitly included, we allow for “generic” ool v v by by ]

discretization errors by using a Bayesiar{ #7] that permits 0.0 0.2 0.4 0.6

physical parameters to change by ordgazAQCD~2% in m /m's

going from the coarse to the fine configurations.

TheY system provides an absolute lattice scale, but it is FIG. 1. Partially quenched data for squared meson masses made
convenient to use the relative scale determined frgma  out of valence quarkg andy as a function ofm,/m,. We show
parameter derived from the heavy quark poteri@8,29, to  results from two lattices: a coarse lattice with sea quark masses
compare accurately the scale for different sea quark massesn’=0.01, am.,=0.05, and a fine lattice witram’'=0.0062,
within the coarse or fine setY splittings give r;  amg=0.031. Three sets of “kaon” points with m,
=0.3147)(3) fm [14]. Using the volume dependence cal- =m,0.8m;,0.6m, are plotted for each lattice. “Pion” points have
culated in NLO §PT [10,11], (and tested against results on m,=m, . The solid lines come from a fit to all the ddteot just that
different volumes[14]) the small finite-volume effects plotted. The statistical errors in the points, as well as the variation
(<0.75% inM?2..,) can be removed from our data with in the data with sea quark masses are not visible on this scale. The
negligible residual error. green dashed lines give the continuum fit described in the text, and

Figure 1 compares our fit with our partially quenched datathe magenta vertical dotted line gives the physfoain; obtained.

for M2 .. The data appear quite linear to the eye. Indeed,
linear fits change our result for the quark masses by only 29 1€ Same $PT fits that produce the quark masses above

to 7%, depending on the fit range chosen and whether or ndtive Gasser-Leutwyler parameters in reasonable agreement

the correlated decay constants are fit simultaneously. How!ith Phenomenological valugd2] andf,, andfy in agree-
ever, since the statistical errors in our data are so small, th'%:ent with experimenft12,13. Final results and all details of
nonlinearities from chiral logs and higher order analytictn€ fits will be described in Ref15]. A
terms are crucial for obtaining good fits: linear fits have It is important to provide further checks @fs and m
x?/(degrees of freedom)20. Nonlinear fits have a confi- using other gold-plated masses and mass differences. We fo-
dence level of 0.28, are crucial to Obtaining GasserLus onmg because it has smaller statistical error and less

Leutwyler parameters and affect the decay constants b§fependence on chiral extrapolations. From the heavy hadron
~4—-12%. sector ZnB s— My is sensitive tomg but not to other

We extrapolate/interpolate in mass on the coarse and finmasses. Here B s is the B, B: spin-averaged mass,

lattices separately to find the lattice values of the light anq,seq to reduce dependence on the coefficients of relativistic
strange masses that give> and mg. We getams  corrections in thé>-quark action. Note, however, that tBd
=0.039q1)(20),am=0.001411)(8) on thecoarse lattices is close to decay threshold and may not be gold-plated. Fig-
and 0.02721)(12) and 0.00098@)(40) on the fine, where ure 2 shows coarse-lattice data for this splitting. The results
errors are statistical and systematic. The systematic errors agge 2% high, but this is also our estimate of discretisation
dominated by the chiral extrapolation/interpolation, esti-errors in the calculatiofwe do not expect sensitivity to taste
mated by varying the fits, and the scale uncertaif}  violation[30]). This quantity then provides a check of ang
effects account for the slight difference with4]). Alterna-  determination at the 20% level because the experimental
tively one can extrapolate the chiral fit parameters to thesplitting varies only by~15% in changing fromm to m;.
continuum, setting taste-violating parameters zero, and thepigure 2 also shows results for tiée baryon mass, on both
perform the chiral extrapolation/interpolation to the physicalcoarse and fine ensembles. Although statistical errors are
masses. This is shown as the dashed green lines in Fig. farge there is a trend downwards on the finer lattices and
The methods give finallS masses that differ by less than signs that a continuum extrapolated result will agree with
2%. We choose the first method for the central values anéxperiment. An expected 2% error on the final valuerfpy
include the variation with method in the systematic error. would lead to a 6% determination of.
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2.0 ——T — T T T where b(am)~0.5432-0.46@m)?, correct to 0.1% up to
(am)=0.1. yo=2/m is the universal one-loop anomalous
mass dimension. Naive staggered quarks have a poorly con-
vergentZ,,, with b(0)~ 3.6 as a result of taste-violations. It is
clear that the improved staggered quark result is much better.
Tadpole-improvement is also important, because of the long
paths of gluon fields required to suppress taste-violations.
T Without tadpole-improvemerti(0)=2.27.

| ] We match our lattice to th®1S scheme at the target scale

L 4 of 2 GeV, though the results and errors are not sensitive to
- . this choice. Because the mass renormalization has an anoma-
r 1 lous dimension, the optimaj* value for oy at this scale is
dependent ora. g* is set by a second order BLM method
[38]. On the fine latticesg* is 1.80A [20] and ay(q*)

L 4 =0.247(4) inZ,. On the coarse latticeg,” =2.3354, giv-

-
T T | T
il O |
—
<
e
1 1 | 1

mass (GeV)
3
|

=

I
=
=

|

b szW - My - ing ay(g*)=0.2535). A conservative estimate of the per-
- | | § turbative error inZ,,, informed by the chiral fits, is 1.5
1.2 1 1 1 1 1 1 1 1 1 1 X a\zlmg%.
0.0 0.2 0.4 MS

“ This givesmy> values of 74.3 MeV on the fine lattices
m/ms and 72.3 MeV on the coarse lattices. Our central values are
obtained by extrapolating linearly inga?, the size of the
FIG. 2. Lattice results for two masses which show sensitivity t0leading discretization errors. Alternatives, such as a linear
ms, plotted against’/m . The valences masses are taken at the extrapolation in a2a?, the size of taste-violations, or a
mg values determined here. The bursts give the corresponding &tontinuum-extrapolated chiral fit, give results that vary by
perimental result. The squares areng2 —my for two of the  |agg than 1 MeV, which we take as the extrapolation error

coarse ensembles. The upper results are for the mass@f(ee9  and fold into the total systematic error. Our final quark
baryon, on both coarsgliamond$ and fine(crosses ensembles. masses are:

IV. CONNECTING m'attice \W|TH mMS

The continuum quark mass in the conventional modified mgy>(2 GeV)=76(0)(3)(7)(0) MeV, (4)
Minimal Subtraction scheme is determined from

~ WS _
@am mMS(2 GeV)=2.8(0)(1)(3)(0) MeV, (5)

a

mMS( ) = [1+ ay(q*)Z@(ap,(am)o) + O(a?)],

2 ms/m=27.41)(4)(0)(1), (6)

where @m), is the a posteriorituned bare mass in lattice . . .
units obtained above. converted from the MILC conventionWhere the errors come from statistics, simulation systemat-

by dividing by Ugp. Z,, is the mass renormalization that ics, perturbation theory, and electromagnetic effects, respec-

ts the b latti dNe The st tively. The systematic error includes the scale error in
connects the bare 1afliceé mass and mass. 1hne strong guadrature with the chiral and continuum extrapolation er-
coupling constant in th& scheme is set using third order

perturbative expressions for the logarithms of small Wilson©rS- The ratians/miin Eg. (6) is almost independent of the
loops[31,32 compared with lattice results on these Conﬁgu_perturbatmn theory. It is also strongly constrained by the fact

2 2 . . .

rations. The value obtained is run to an optimal sgle  that 2m—m7 is almost independent of light quark mass
chosen as described below. over a large range. For our coarse lattices it increases by 2%

Z is calculated by connecting the bare quark-mass to th@sm’ changes fromm¢/5 to mg; for the fine lattices by 4%.
pole-mass in lattice perturbation thedi§], and using the
pole mass tdMS mass relatioi33] at one loop. The lattice
calculation was done both by hand and using automatedy cOMPARISON WITH PREVIOUS DETERMINATIONS
methods[34,35, which become increasingly important for _ ) o
improved actions. The evaluation has been checked to lower There is a long history of sum rule determinations of the
precision via a completely different meth¢@6]. Integrals ~ Strange quark mass, with the general trend of decreasing val-

were evaluated here using the numerical integration packagt€s- The current stat89—41 is broad agreement between
VEGAS [37]. We find results from scalar and pseudoscalar spectral functions and
from SU(3) breaking inT hadronic decays, witimg around
4 o 100(20) MeV. The latter method, however, is sensitive to the
) _ 5 c value of|V,4. Lattice results in the quenched approximation
Zm'(ap,amp) =| b(amp) 37 Trln(a“) ’ © give values around 100 MeV but more recent results with
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two flavors of rather heavy dynamical quarks give a smaller VI. CONCLUSIONS

value around 90_Me\242]. Both quenched anty =2 resglts Lattice QCD simulations with improved staggered quarks
suffer from the inherent systematic error of comparing an,aye allowed a new determination of the strange and light

unphysical theory with experiment: results depend on WhaEI
hadronic masses are used. Some determinations also do %\tlues

use gold-plated quantities. The JLQCD Collaboratjd3]
guotes a preliminarm;= 3 result of 75.63.4) MeV, not yet

including discretization and finite volume errors. They use

clover quarks withm’=my/2, settinga with the p mass.

Here we give results from;=3 simulations in the chiral

uark masses with much reduced systematic error: our final
are mYS(2 GeV)=76(8) MeV; m'S(2 GeV)
=2.8(3) MeV (adding errors in quadraturelThe current lat-
tice simulation error can be reduced still further by generat-
ing ensembles with a secofiidwer) value of the sea strange
quark mass and is already underway. The limiting factor for
this determination is no longer unquenching but the un-

regime. Using gold-plated quantities to fix the QCD param-known higher order terms in the perturbative mass renormal-
eters means that there is no remaining ambiguity in thézation. The two-loop calculation is clearly needed to im-
match between QCD and experiment. The value we obtaiprove our result significantly and is also underway. The
for ms is lower than previous results, but we maintain that itthree-loop errors on masses that would then remain would be
is based on a firmer footing. It violates some quoted bound&nly O(2%), putting the determination into a new region of

from sum ruleg44], but these are open to questieti]. Our

result for ms/rﬁ is significantly larger than that determined
from NLO yPT phenomenologi45], but is compatible with
a NNLO analysig46]. We believe that existing staggered-

precision.
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