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Remarks on the high-energy behavior of string scattering amplitudes in warped spacetimes
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The high-energy behavior of string scattering in warped spacetimes is studied to all orders in perturbation
theory. If one assumes that the theory is finite, the amplitedestlyfall as powers of momentum.
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I. INTRODUCTION 1 o
So= f d’z f9e**y,,DX*DX", (2.2
Recently, the high-energy behavior of type-l1IB super- Ama’ )3,

string amplitudes was studied in the case of warped space-

time geometries which are the products of Ad@th some  whereX is a closed Riemann surface of gergisThe sim-
five-manifolds[1-5]. One of the most important results is Plest vertex operators predicated on this form of action are
that of Polchinski and Strasslgt]. They proposed a scheme ¢,,,(p)DX* DX"ePX dressed by some "@¢0,(0y).?

of evaluating high-energy fixed-angle string amplitudes inThen, integrating over the world shegg,

terms of vertex operators on a spherical world sheet and

found that the amplitudes fall as powers of momentum. ) — XA

Thus, a long-standing problem on the way to a string theory Va,p= L d’z ? €, (p)DX* DX EP X e 2¢O, (Qy).
description of hadronic processes was solved. In fact, it was 9 2.3
already known in the 1970s that the amplitudes of exclusive '

hadronic processes at large momentum transfer scélg]as For reasons that will soon become apparent, we restrict val-

ues of A’s to positive integers. We also discard quantum
numbers which are due to the manifdid

String scattering amplitudes are defined as expectation
wherep is a large momentum scale ands a total number of  values of the vertex operators. In the problem of interest, a

hadronic constituents/alence quarks reasonable first guess for gloop amplitude of the 2:2
In this paper we extend the analysis to higher orders okcattering processSis

string perturbation theory. We assume that the perturbation
theory in question is a topological expansion as it is in S®(Dat -+ AB—CD)=
Minkowski space. (Pa Ppo) My(AB—CD)

M~pfn+4

(1.9

1
1+0
p

Il. GENERAL ARGUMENT (2.4

As mentioned earlier, if the spacetime geometry is chosefyhere the pair of brackets means integrals over the matter
as the product of AdSwith a five-manifoldK, the high-  fie|ds, ghost fields as well as moduli space of closed Rie-
energy behavior of tree string amplitudes is hapbwer  mann surfaces of genus We do not know the precise de-
law). Let us write the metric as tails about these integrals. However, what is only important

dszzeapmwdxﬂ dx’+R?dg?+ R? dﬂi- (2.1) for our purposes is a_n_integrql over the bosonic zero modes
of X's and ¢. Its explicit form is given b§
whereRis the radius of AdSand 7, is a four-dimensional
Minkowski metric. We assume thét does not provide any j 4 f*‘”d 40
dimensionfull parameter except Moreover,dQﬁ is inde- X e eeT
pendent ofR.

Unfortunately, full control of type-1IB string theory on  afier performing the integration, the amplitude takes the
curved backgrounds like AdSis beyond our grasp at form
present. However, we will argue that the scaling behavior
can be understood from a nonlinear sigma model perspective———
which bypasses the known difficulty with Ramond-Ramo_nd 2To be precise, this form only includes the dominant term in the
(RR) packgrounds. SQ the part of the Wor_ld ‘?‘heet actionjmjt of large ¢. Subdominant terms result infdLtorrections in Eq.
which is most appropriate for our purposes is sinply (1.1), so we suppress them. For more discussion of vertex operators,

see, e.g.[8] and references therein.

3We omit the explicit dependence on the string coupling constant
*Also at Landau Institute for Theoretical Physics, Moscow, Rus-g. For a discussion of this issue, sde4].

sia. Email address: andreev@physik.hu-berlin.de “For a discussion of path integral measure within the sigma model
We use the superspace notationd approach, see, e.d9].

(2.5
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1 o !
My(AB—CD)= Er(z—A/2)< L d’z ?0 €7, DX*DX" A]'[ Yy, ,pi> , (2.6)
g

4aa’

where A=A,+---+Ap. The prime means that the zero turbation theory in question is a topological expansion and
modes were integrated out. collecting together the results for each order, the amplitude is

One thing about E2.6) may be disturbing. It seems that simply
the amplitude is divergent for evem’'s because the
I'-function prefactor develops polésThe answer to this
puzzle is simple: integration over the matter fields cancels M(AB—CD)=
the factor out. We will discuss this later.

We are interested in the hard scattering limit. Its kinemat
ics is very special: there is one independent parameter—t
Mandelstam variabls—while the others are functions of it
and fixed scattering anglé. This allows us to easily deter-
mine the dependence anof the amplitude for .the scalars (i) Our analysis can be easily generalized to include sur-
(dilatong whose masses are much less tham this case we 5o with boundaries. In this case two new features are es-
get, from Eq.(2.6) by rescalingX=X/s, p;=sp;, pecially noteworthy. First, there are vertex operators associ-

ated with boundaries. The simplest one to be suggested is a
A4 vector statee,(p)DX*eP X dressed by €*¢0,(Qy). Sec-
. 2.7 ond, perturbation theory is determined by the Euler number
x- Thus, the amplitude takes the form

1 n—4 «
@) > cy(0s,¢), (2.9

g=0

‘wheren=n,+ - - - +np . Unfortunately, we cannot, with our
esent methods, determine the explicit form of the coeffi-

cientscy(ds, ).
At this point, a couple of short remarks is in order.

) 1
(dily _ ~(dil)
/\/lg =Cy (—_S

Herec{" is given by the right-hand side of E(.6) with
the X's and p;’s replaced by théX's and p;’s. Its indepen-
dence ofs can be understood from general reasonail” is
a function of the Mandelstam variables, defined in terms of (ji) Certainly, our derivation of the scaling behavior is
rescaled momenta, which are independens. of valid for any value of the radius of AdSr, equivalently, for
In the case of hadrons, taken as bound states of spinleggy value of the ’t Hooft coupling.

constituents, this would be the end of the story if the param-
etersA; were related to the numbers of constituents in the
corresponding hadrons as=n; [1]. Clearly the existence of
spin-2 statesggravitons as follows from the form of the ver- Other approaches to the problem result in the scaling be-
tex operatorg2.3) provides a strong objection to spinless havior at the tree levdll,4]. A notable difference is the ab-
constituents only. Because of spinning constituents, each vesence in those of nonzero modes of theand Q fields.

tex operator contributes an additional factqisf%, where $  Nevertheless, as follows from our discussion these nonzero
means its four-dimensional spin. For the graviton vertex opmodes do not play a crucial role in the derivation of the
erator, it gives (/s)2.% As a result, we get scaling behavior and therefore may be discarded. So it is

quite natural to pursue this line of thought further.
)A+4 A reasonable first guess forgaloop amplitude within the

M(AB—CD)=
X=2

1 n—4—o
ﬁ> > ¢(gs.¢). (210

Ill. SIMPLIFIED MODEL

Mégrav)zc(ggrav)<i (2.9  simplified models is

Vs
= 5 Ao
Finally, the desired result is obtained by identifying th ( My(AB=CD) f A dp &¥A(AB—CD)
—2)’s with the numbers of constituents in the corresponding
hadrons as if1]. x JI e ey (), (3.1
Having established the scaling behavior of thilwop am- i=A,...D
plitude, we turn to a perturbation series. Assuming that per-
where A4(AB— CD) is the standard string-loop amplitude
with o' replaced bya=a’e ?¢ and ¢; are normalized
SIn fact, the integral ovep diverges atp=—. This divergence eigenfunctions of the Laplace operator I§n
is due to the net factor@¢ coming from the vertex operators. For the sake of simplicity, let us specialize to the case of
®As in QCD[10], one can think o&{%*” as (T;u;) ., €(p), where  scalars—e.g., the dilatons. On the one hand side, in the hard
€(p) plays the same role as the dilaton wave function apdre  scattering limit the scaling behavior of the amplitude can be
wave functions of free spinning constituents. Note that in QCD thederived by rescaling as ¢— ¢+ 3 In a’s. At the tree level
u;'s are the free spinors normalized Egpmuﬂ= y-p+m. this method was used i@] but it also works for Eq(3.1).

027901-2



BRIEF REPORTS PHYSICAL REVIEW Y0, 027901 (2004

On the other hand, it is knowfi1] that A, is well ap-  Even if we expect that superstring theory is finite at a given
proximated by its saddle point expressi.d@m(&s)ae*bas, order of perturbation theory, there is no guarantee for con-
where a,b are some positive functions af and ¢. This ~ vergence. For instance, a rapid growth of the volume of
makes it possible to perform the integration oyeexplic- ~ Moduli space might be the reason for divergept®]. As
itly. As expected, the amplitude falls as a power&. A noted earlier, we cannot, with our present methods, deter-
by-product of the integration i§(a—2+A/2). Unlike the Mine the explicit form of the coefficientsy,c, and, there-
T'-function prefactor in Eq(2.6), it is now finite. The pointis 0re, address the issue of convergence. o
that the integrand becomes nonsingulakat — after in- Thus, our general statement is that if the theory is finite,

tegration over the matter fields and moduli generates a factdf€® @mplitudesxactlyfall as powers of momentum.
o bsa'e 2 i dumps g%, (i) A strong belief is that the geometry given by E}.1)

. . . . . is valid in the limit of largeg or, equivalently, large, where
It is worth noting that in Minkowski space the saddle o ' '
. o : . -~ r=Re*. At smaller values of it is somehow deformed. So
Fhoérc])tr ei\:] a:ﬁgt:?rgi tlifvlglrldecfy?sr [?Ll(j]I\-/rehnusorgesrmog||pe;;$::gn it is of some interest to evaluate corrections to the scaling. To
in qugstion s s Thig is ot tHe cas’e for warE)ed geom- do so, let us first consider the simplified model of Sec. Ill. In

etries. Let us first trv to get a heuristic understanding of Wha{)rder for the saddle point evaluation to be consistent with the
' ytog 9 deformation of geometry, we should require tipatbe large.

happens.4; is now expanded in powers ofds. The re-  This means thaw's>A. Truncating then the geometry at
mainder of the integral is dominated by~¢, , where  gome smalk=r,, we estimate the correction té1, as
a’'se ?9x~A. Thus, we end up with an expansion im1/

This means that\ should be large in order for the saddle LIPS 2 bans

point evaluation to be valid. Actually one can come to the J; drr 2 Ag(AB—CD)~(ags)% e >*  (4.1)
same conclusion on general grounds. The dependence in the

dilaton amplitude ofe’s is absorbed into the redefinition of
¢. Then, as follows from our ansai{8.1), the amplitude
becomes a function af only. If a saddle exists, it may be a
good approximation only in the limit of larg®. The point is
that theA,’s are restricted to positive integers, 4ois an
integer bounded from below and the limit of smalldoes
not exist’

A final remark: it was shown ih12] that states with large
guantum numbers are described by special classical solutio
of the AdS;x S° nonlinear sigma model in the limit of large
't Hooft coupling. Certainly, no derivation of the high-energy

and we note that it is just the soft string amplitude with
replaced bywy=a'R?/rZ. Itis indeed subleading to the hard
amplitude.

Returning to the settings of Sec. Il, one thing that can help
with an understanding of what happens in the hard scattering
limit is some analogue betweem and the Liouville field of
2D gravity. It was suggested by Polyakpl\4] and exploited
Ii]t%[4] for deriving the scaling behavior of the amplitudes. Let
us pursue this point of view further. Assuming thatis
slowly varying, we can consider the notion of a low-energy
fixed-angle scattering amplitudes of states with latges effective action. This actipn occurs from the right-hand side
from classical solutions is known. But we believe that theOf Eq. (2.4) after integration over the matter fields, ghosts,

preceding comments are significant hints that it can be don%nd m?dsuli. It”ils Iea_lsy to finS@an effective potential along the
and this issue is worthy of future study. ines of Sec. lll. Itis given

Ver(@)=p e ?¢, (4.2

IV. CONCLUDING COMMENTS where u is an effective cosmological constant linearly de-

pending ons. Thus, the effective potential suppresses the
(i) Here we considered type-lIB string theory; however, path integral for large negative. The effect becomes stron-
similar results will hold for other string theories. In fact, ger with the growth of. Finally, only large positive values
warped geometry in spacetime is sufficient to formally en-of ,, will be allowed. The known 2D gravity analogue of this

sure that scattering amplitudes are hard in the high-energy the “Liouville wall” which keeps the theory in the weak
limit at fixed angle. For instance, in the case of bosoniccoupling regime.

string one can get the scaling behavior of amplitudes by
repeating the arguments of Sec. Il for the bosonic part of the ACKNOWLEDGMENTS
world sheet action.

Actually, there might be gaps in the above reasoning. We would like to thank S. Brodsky and G.F. de Teramond
First, one must show that the corresponding background i®r useful discussions concerning this subject and H. Dorn
conformal. From this point of view type IIB is of course and A.A. Tseytlin for comments on the manuscript. The work
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"Strictly speaking, it assumes a single hard process. Landshoff®We drop possible linear terms. From the viewpoint of 2D gravity
diagrams may result in nonintegars. these correspond to the dilaton background.
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