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Remarks on the high-energy behavior of string scattering amplitudes in warped spacetimes
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The high-energy behavior of string scattering in warped spacetimes is studied to all orders in perturbation
theory. If one assumes that the theory is finite, the amplitudesexactlyfall as powers of momentum.
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I. INTRODUCTION

Recently, the high-energy behavior of type-IIB sup
string amplitudes was studied in the case of warped sp
time geometries which are the products of AdS5 with some
five-manifolds@1–5#. One of the most important results
that of Polchinski and Strassler@1#. They proposed a schem
of evaluating high-energy fixed-angle string amplitudes
terms of vertex operators on a spherical world sheet
found that the amplitudes fall as powers of momentu
Thus, a long-standing problem on the way to a string the
description of hadronic processes was solved. In fact, it
already known in the 1970s that the amplitudes of exclus
hadronic processes at large momentum transfer scale as@6#

M;p2n14F11OS 1

pD G , ~1.1!

wherep is a large momentum scale andn is a total number of
hadronic constituents~valence quarks!.

In this paper we extend the analysis to higher orders
string perturbation theory. We assume that the perturba
theory in question is a topological expansion as it is
Minkowski space.

II. GENERAL ARGUMENT

As mentioned earlier, if the spacetime geometry is cho
as the product of AdS5 with a five-manifoldK, the high-
energy behavior of tree string amplitudes is hard~power
law!. Let us write the metric as

ds25e2whmn dxm dxn1R2 dw21R2 dVK
2 , ~2.1!

whereR is the radius of AdS5 andhmn is a four-dimensional
Minkowski metric. We assume thatK does not provide any
dimensionfull parameter exceptR. Moreover,dVK

2 is inde-
pendent ofR.

Unfortunately, full control of type-IIB string theory on
curved backgrounds like AdS5 is beyond our grasp a
present. However, we will argue that the scaling behav
can be understood from a nonlinear sigma model perspec
which bypasses the known difficulty with Ramond-Ramo
~RR! backgrounds. So the part of the world sheet act
which is most appropriate for our purposes is simply1

*Also at Landau Institute for Theoretical Physics, Moscow, R
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1We use the superspace notations of@7#.
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d2z d2u e2whmn D̄Xm DXn, ~2.2!

whereSg is a closed Riemann surface of genusg. The sim-
plest vertex operators predicated on this form of action
emn(p)D̄Xm DXn eip•X dressed by some e2DwOD(VK).2

Then, integrating over the world sheetSg ,

VD,p5E
Sg

d2z d2u emn~p!D̄Xm DXneip•X e2DwOD~VK!.

~2.3!

For reasons that will soon become apparent, we restrict
ues of D ’s to positive integers. We also discard quantu
numbers which are due to the manifoldK.

String scattering amplitudes are defined as expecta
values of the vertex operators. In the problem of interes
reasonable first guess for ag-loop amplitude of the 2→2
scattering process is3

d (4)~pA1•••1pD!Mg~AB→CD!5K )
i 5A, . . . ,D

VD i ,piL ,

~2.4!

where the pair of brackets means integrals over the ma
fields, ghost fields as well as moduli space of closed R
mann surfaces of genusg. We do not know the precise de
tails about these integrals. However, what is only import
for our purposes is an integral over the bosonic zero mo
of X’s andw. Its explicit form is given by4

E d4xE
2`

1`

dw e4w. ~2.5!

After performing the integration, the amplitude takes t
form

-

2To be precise, this form only includes the dominant term in
limit of large w. Subdominant terms result in 1/p corrections in Eq.
~1.1!, so we suppress them. For more discussion of vertex opera
see, e.g.,@8# and references therein.

3We omit the explicit dependence on the string coupling cons
gs . For a discussion of this issue, see@1,4#.

4For a discussion of path integral measure within the sigma mo
approach, see, e.g.,@9#.
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Mg~AB→CD!5
1

2
G~22D/2!K F 1

4pa8
E

Sg

d2z d2u e2whmn D̄Xm DXnGD/222

)
i 5A, . . . ,D

VD i ,piL 8
, ~2.6!
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where D5DA1•••1DD . The prime means that the zer
modes were integrated out.

One thing about Eq.~2.6! may be disturbing. It seems tha
the amplitude is divergent for evenD ’s because the
G-function prefactor develops poles.5 The answer to this
puzzle is simple: integration over the matter fields canc
the factor out. We will discuss this later.

We are interested in the hard scattering limit. Its kinem
ics is very special: there is one independent parameter—
Mandelstam variables—while the others are functions of
and fixed scattering anglef. This allows us to easily deter
mine the dependence ons of the amplitude for the scalar
~dilatons! whose masses are much less thans. In this case we
get, from Eq.~2.6! by rescalingX5X̃/As, pi5Asp̃i ,

M g
(dil )5cg

(dil )S 1

As
D D24

. ~2.7!

Herecg
(dil ) is given by the right-hand side of Eq.~2.6! with

the X’s and pi ’s replaced by theX̃’s and p̃i ’s. Its indepen-
dence ofs can be understood from general reasoning.cg

(dil ) is
a function of the Mandelstam variables, defined in terms
rescaled momenta, which are independent ofs.

In the case of hadrons, taken as bound states of spin
constituents, this would be the end of the story if the para
etersD i were related to the numbers of constituents in
corresponding hadrons asD i5ni @1#. Clearly the existence o
spin-2 states~gravitons! as follows from the form of the ver
tex operators~2.3! provides a strong objection to spinle
constituents only. Because of spinning constituents, each
tex operator contributes an additional factor (As)Si, where Si
means its four-dimensional spin. For the graviton vertex
erator, it gives (As)2.6 As a result, we get

M g
(grav)5cg

(grav)S 1

As
D D14

. ~2.8!

Finally, the desired result is obtained by identifying the (D i
22)’s with the numbers of constituents in the correspond
hadrons as in@1#.

Having established the scaling behavior of theg-loop am-
plitude, we turn to a perturbation series. Assuming that p

5In fact, the integral overw diverges atw52`. This divergence
is due to the net factor e2Dw coming from the vertex operators.

6As in QCD@10#, one can think ofemn
(grav) as () iui)mne(p), where

e(p) plays the same role as the dilaton wave function andui are
wave functions of free spinning constituents. Note that in QCD

ui ’s are the free spinors normalized as(spinuū5g•p1m.
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turbation theory in question is a topological expansion a
collecting together the results for each order, the amplitud
simply

M~AB→CD!5S 1

As
D n24

(
g50

`

cg~gs ,f!, ~2.9!

wheren5nA1•••1nD . Unfortunately, we cannot, with ou
present methods, determine the explicit form of the coe
cientscg(gs ,f).

At this point, a couple of short remarks is in order.
~i! Our analysis can be easily generalized to include s

faces with boundaries. In this case two new features are
pecially noteworthy. First, there are vertex operators ass
ated with boundaries. The simplest one to be suggested
vector stateem(p)DXmeip•X dressed by e2DwOD(VK). Sec-
ond, perturbation theory is determined by the Euler num
x. Thus, the amplitude takes the form

M~AB→CD!5S 1

As
D n24

(
x52

2`

cx~gs ,f!. ~2.10!

~ii ! Certainly, our derivation of the scaling behavior
valid for any value of the radius of AdS5 or, equivalently, for
any value of the ’t Hooft coupling.

III. SIMPLIFIED MODEL

Other approaches to the problem result in the scaling
havior at the tree level@1,4#. A notable difference is the ab
sence in those of nonzero modes of thew and V fields.
Nevertheless, as follows from our discussion these nonz
modes do not play a crucial role in the derivation of t
scaling behavior and therefore may be discarded. So
quite natural to pursue this line of thought further.

A reasonable first guess for ag-loop amplitude within the
simplified models is

Mg~AB→CD!5E d5V dw e4wAg~AB→CD!

3 )
i 5A, . . . ,D

e2D iwc i~V!, ~3.1!

whereAg(AB→CD) is the standard stringg-loop amplitude
with a8 replaced byâ5a8e22w and c i are normalized
eigenfunctions of the Laplace operator onK.

For the sake of simplicity, let us specialize to the case
scalars—e.g., the dilatons. On the one hand side, in the
scattering limit the scaling behavior of the amplitude can
derived by rescalingw asw→w1 1

2 ln a8s. At the tree level
this method was used in@4# but it also works for Eq.~3.1!.
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On the other hand, it is known@11# that Ag is well ap-
proximated by its saddle point expressionAg'(âs)ae2bâs,
where a,b are some positive functions ofg and w. This
makes it possible to perform the integration overw explic-
itly. As expected, the amplitude falls as a power ofAs. A
by-product of the integration isG(a221D/2). Unlike the
G-function prefactor in Eq.~2.6!, it is now finite. The point is
that the integrand becomes nonsingular atw52` after in-
tegration over the matter fields and moduli generates a fa
e2bsa8e22w

which dumps e2Dw.
It is worth noting that in Minkowski space the sadd

point evaluation is valid for a given order of perturbatio
theory in the limit of largea’s @11#. Thus, a small paramete
in question is 1/a’s. This is not the case for warped geom
etries. Let us first try to get a heuristic understanding of w
happens.Ag is now expanded in powers of 1/âs. The re-
mainder of the integral is dominated byw;w* , where
a ’s e22w

* ;D. Thus, we end up with an expansion in 1/D.
This means thatD should be large in order for the sadd
point evaluation to be valid. Actually one can come to t
same conclusion on general grounds. The dependence i
dilaton amplitude ofa’s is absorbed into the redefinition o
w. Then, as follows from our ansatz~3.1!, the amplitude
becomes a function ofD only. If a saddle exists, it may be
good approximation only in the limit of largeD. The point is
that theD i ’s are restricted to positive integers, soD is an
integer bounded from below and the limit of smallD does
not exist.7

A final remark: it was shown in@12# that states with large
quantum numbers are described by special classical solu
of the AdS53S5 nonlinear sigma model in the limit of larg
’t Hooft coupling. Certainly, no derivation of the high-energ
fixed-angle scattering amplitudes of states with largeD i ’s
from classical solutions is known. But we believe that t
preceding comments are significant hints that it can be do
and this issue is worthy of future study.

IV. CONCLUDING COMMENTS

~i! Here we considered type-IIB string theory; howev
similar results will hold for other string theories. In fac
warped geometry in spacetime is sufficient to formally e
sure that scattering amplitudes are hard in the high-ene
limit at fixed angle. For instance, in the case of boso
string one can get the scaling behavior of amplitudes
repeating the arguments of Sec. II for the bosonic part of
world sheet action.

Actually, there might be gaps in the above reasoni
First, one must show that the corresponding backgroun
conformal. From this point of view type IIB is of cours
preferable to the others. Second, the coefficientscg ,cx must
be finite or, in other words, the theory must be perturbativ
renormalizable. Third, the series~2.9!, ~2.10! must converge.

7Strictly speaking, it assumes a single hard process. Lands
diagrams may result in nonintegerD ’s.
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Even if we expect that superstring theory is finite at a giv
order of perturbation theory, there is no guarantee for c
vergence. For instance, a rapid growth of the volume
moduli space might be the reason for divergence@13#. As
noted earlier, we cannot, with our present methods, de
mine the explicit form of the coefficientscg ,cx and, there-
fore, address the issue of convergence.

Thus, our general statement is that if the theory is fin
the amplitudesexactlyfall as powers of momentum.

~ii ! A strong belief is that the geometry given by Eq.~2.1!
is valid in the limit of largew or, equivalently, larger, where
r 5R ew. At smaller values ofr it is somehow deformed. So
it is of some interest to evaluate corrections to the scaling
do so, let us first consider the simplified model of Sec. III.
order for the saddle point evaluation to be consistent with
deformation of geometry, we should require thatw* be large.
This means thata’s@D. Truncating then the geometry a
some smallr 5r 0, we estimate the correction toMg as

E
0

r 0
drr 32DAg~AB→CD!;~a0s!a e2ba0s ~4.1!

and we note that it is just the soft string amplitude witha8
replaced bya05a8R2/r 0

2. It is indeed subleading to the har
amplitude.

Returning to the settings of Sec. II, one thing that can h
with an understanding of what happens in the hard scatte
limit is some analogue betweenw and the Liouville field of
2D gravity. It was suggested by Polyakov@14# and exploited
in @4# for deriving the scaling behavior of the amplitudes. L
us pursue this point of view further. Assuming thatw is
slowly varying, we can consider the notion of a low-ener
effective action. This action occurs from the right-hand s
of Eq. ~2.4! after integration over the matter fields, ghos
and moduli. It is easy to find an effective potential along t
lines of Sec. III. It is given by8

Ve f f~w!5m e22w, ~4.2!

wherem is an effective cosmological constant linearly d
pending ons. Thus, the effective potential suppresses
path integral for large negativew. The effect becomes stron
ger with the growth ofs. Finally, only large positive values
of w will be allowed. The known 2D gravity analogue of th
is the ‘‘Liouville wall’’ which keeps the theory in the weak
coupling regime.
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ff 8We drop possible linear terms. From the viewpoint of 2D grav
these correspond to the dilaton background.
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