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We further investigate the procedure for computing tree-level amplitudes in Yang-Mills theory from con-
nected instantons in the B model &3, emphasizing that the problem of calculating Feynman diagrams is
recast into the problem of finding solutions to a certain set of algebraic equations. We show that the B model
correctly reproduces all 6-particle amplitudes, including non-MHV amplitudes with three negative and three
positive helicity gluons. As a further check, we also show thparticle amplitudes obtained from the B model
obey a number of properties required of gauge theory, such as parity synimbich relates an integral over
degreed curves to one over degree-d—2 curve$ and the soft and collinear gluon poles.
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I. INTRODUCTION MHV (maximally helicity violating amplitudes(sometimes

In [1] Witten proposed a remarkable connection betweerf@/led “googly MHV” or MHV) that are related to the
scattering amplitudes in Yang-Millé’M) theory and a cer- mostly plus MHV amplitudes by complex conjugation. Even

tain topological string theory, the B model drl* (recent j[hough the googly MHV.ampIitudes' are calculated frpm an
related work includeg2-9]). This conjecture leads to the integral over the moduli space of instantons of arbitrarily
following formula(equivalent to one first written down [2] ~ high degree, precise agreement was found with gauge theory
and studied further if3,4]) for the n-particle amplitude, Without the need for additional contributions.
written in a manifestly\'=4 supersymmetric notation: More recently, a novel method for calculating YM tree
amplitudes, also motivated by the B model bA* was
n-3 n proposed in a very interesting pagél. The starting point
Ar=i(2m)igh2 > f dMa gl 2O\ &PD) for their proposal involved considering only completely dis-
=1 =1 connected instantorise., d instantons of degree) IRemark-
d n , n ably, it was found that their rule also gives correct gauge
<11 52(2 gia}‘X?) 54<2 gia:‘mA). (1.))  theory amplitudes. The B model seems to give two sepa-
k=0 \i=l =1 rately correct methods for calculating YM tree amplitudes,
rather than a set of contributions which need to be summed
d(see Fig. 2
The proposal of 6] involves a diagrammatic expansion
which bears no apparently obvious connection to the formula

gauge group thereby providing an exact solution of classi- (1.1),'except.that they both seem to be correct.. It would be
cal YM theory in four dimensions. This formula sums up a €'Y interesting to understand _dlrectly the relatlcin petween
huge number of Feynman diagraitsee for example Fig.)1 these two methods. Moreover, if the B model BH* gives .
into an expression which fits on a single line. In this paperS two not obviously equivalent formulas for YM ampli-
we provide strong evidence supporting our confidence in thigudes, then it will likely give us an infinite family of formu-
formula and explore some of its structure. las (which roughly speaking weight the different types of
The formula(1.1) was derived by considering the contri- diagrams in Fig. 2 differently Undoubtedly we have only
bution to the scattering amplitude from a single connectegncountered the tip of the iceberg connecting the topological
instanton(=holomorphic curve inP34) of degreed in the B model to Yang-Mills amplitudes.
topological B model[As explained in 1], counting the fer- So far the formulg1.1) had only been checked for MHV
mionic modes reveals that the degeis related to the total  andMHV amplitudes[2,4]. In Sec. Il of this paper we con-
helicity =h; of all n particles according tal=1/2(h—Xh;  firm that the formula also gives the correct 6-particle non-
—2).] In [1] Witten speculated that one might have to con-MHV amplitudes. In Sec. IV we check that for anyandd,
sider, in addition to Eq(1.1), contributions from collections  gq, (1.1) satisfies a number of properties required of general
of disconnected instantons of degrekswvith 2di=d. (See  yang-Mills amplitudes, such as the soft and collinear gluon
Fig. 2 for a schematic depiction for the=6, d=3 ampli-  jimjts, Of particular importance is parity symmetry, which

tude) requires that Eq(1.1) should be invariant undexr—X. This

However, it was found if2,4] that the formula1.1) cor- i £ EdLD) | d licitly |
rectly reproduces the known YM result for the mostly minusneN-manifest symmetry o q1.1) is proved explicitly in

The details of this formula will be clarified in Sec. II, but we
have written it down here in order to stress its simplicity an
importance. We believe that E(L.1) encapsulates theom-
plete nparticle tree-levelS matrix of YM theory (for any
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FIG. 1. The standard computation of a six-gluon tree amplitude /G- 2. Schematic depiction of how one might have thought to

requires summing 220 Feynman diagrafinsconventional gaugés organize the calculation of the 6-particle mostly minus MHY (
[10]. =3) amplitude in the B model oi®*. The darkx’s mark the
insertions of the 6 external particles, the dotted line is a twistor
. . . space propagatdronstructed irff6]), and the solid lines represent
Sec. IVB belov_v. We conclude with a list of open quesuonsinpstantgns?i.g (r:l(olomorphic CrlEI’\};S i34y of degreedz? 2,3
and puzzles. First, however, we turn our attention to the de;, ' e

. L . (schematically encoded in the waviness of the cuéthough one
tails of Eq.(1.1) an(_j .hlgh“ght a Cruc!al fact about the for- might have expected that it would be necessary to sum together
mula: namely, that it is not really an integral at all.

contributions of all three types, we find that thimgle diagram of
the first type(studied here and ifi2,4]) and the sum of the 21
Il. MAIN FORMULA diagrams of the third typéstudied in[6]) separatelygive the cor-
rect gauge theory answer.
In this section we first clarify the ingredients appearing in

the formula(1.1) and then investigate some of its mathemati- A. Key point
cal properties. The quanti#, in Eq.(1.1) denotes the color-
strippedn-particle partial amplitudésee for examplé11]),
and we employ the spinor helicity notation in writidg as a

A = + + 218 diagrams

The single most important fact about the intedrall) is
that it is not really an integral. To see this, let us start by
a showing that Eq.(1.1) respects momentum conservation.

function of (A, A7, 7ia), 1=1,...n, where\ and\ are com-  Taking a particular linear combination of the quantities set to
muting real two-component spinors of positive and negativeserg by the delta functions gives

chirality, respectively,and 7, is the four-component Grass- .

mann coordinate a'=4 superspace. . n T
The P* are two degreel polynomials ino which we 0= 2, ag 21 Eon] :Zl §iPia?\ia:_Zl )\ia)\ia:,zl e,

parametrize as - o o - o (2.4

n

a d A K where we used the definitig2.1) and some more delta func-
Pi= E o (2.1)  tions from Eqg.(1.1). Therefore, the delta functions in Eq.
(1.1) indeed force overall momentum conservation.

. o a At the practical level, this means we can “pull out” the
in terms of 21+2 coefficients(moduli a,. When n(laeded, overall factor of 8%(=p;) at the expense of introducing a
we will follow the conventions of2,4] in denotingP; = A, Jacobian, by using an identity such as

andP?=B, . The measure for integration in E(..1) is

n 2 d n Yay1l k
)\i Bi )\i )\i O'i )
S -+ 8
M :dZd*zad”odngﬁ 1 22 iﬂl (7\,1 Ai>kHo (21 Ai
" Vol[GL(2)] =1 &i(oi—0is1) ' n "2 B e
—AA54( ) 5(_'__') 52( i i |>
The factor of 1/vdlGL(2)] is included because the integrand v IZ1 P I=H3 NDOA kE[l '21 A

is invariant under a certain G2) symmetry and so the inte- (2.5
gral would otherwise be infinite. Practically, the consequence

of this factor is simply that we can choose to fix four of the
variables(which we will take to be any one of th&'s and
any three of ther's) at the expense of introducing a Jacobian
factor of

(where we used; =)\i1/Ai). In writing this identity we have

made a particular choice of which four delta functions to pull

out. There is however no canonical choice, and different

choices are useful for different calculatio@d lead to dif-

ferent Jacobians so it is convenient to leave momentum
J=a(oi—0o))(o;— o) (o= 0j). (2.3 conservation slightly scrambled into the delta functions in

Eqg. (1.1). Note that supermomentum conservation

The choice of whicha and which threeo’s to leave un-  6°(EA7;4) pulls out similarly.

integrated is arbitrary and does not affect the final result. Let us now return to the claim that E(L.2) is not really

an integral. The measumM,, 4 in Eq. (2.2) has (2+2)

+(n)+(n)—(4)=2n+2d-2 integration variables, while

'For simplicity we work in signaturer + — —, where such the integrand in Eq(1.1) has 21+ 2d+ 2 delta functions. If
spinors are possible. It is straightforward to analytically continuewe “pull out” the overall momentum conservation delta
the tree-level YM amplitudes to signature + + + if desired. functions, then for any andd there are precisely as many
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integration variables as delta functions. Therefore the entiréinding the solutior{which in general can be compleaf Eq.
integral is supported on a discrete set of points, and the for2.6) and then summing a Jacobian over the set of roots.
mula (1.2 is just a recipe to solve then2-2d+2 polyno-

mial equations C. Diagrammatic expansion?

d From this new standpoint, let us ask ourselves whether the
)\?zgiE ofad, a=12, i=1,.n, formula might have another, more natural interpretation. The

k=0 fact that the computation of a scattering amplitude from the

formula (1.1) reduces to summing a certain quantity over a

" ~a finite set of points is reminiscent of some sort of diagram-
0=izl §ojhi, a=12, k=0,..d, (2.6)  matic expansion, where, for example, E2.7) suggests that
there is a single diagram for mostly plus and mostly minus
MHV amplitudes, while four diagrams contribute to the
6-point non-MHV amplitudes.

It is tempting to wonder whether there is any connection
rJRe'tween such “diagrams” and the new diagrammatic expan-
sion for YM scattering amplitudes which was recently pro-
posed in[6]. According to their proposah, 4 is associated
with the collection of trees witim cyclically labeled external
legs andd vertices, such that each vertex has at least 3 legs.

for the variables €%, 0 ,£;), and then to sum a certain Jaco-
bian [obtained in the usual way from Eq1.1)] over the
collection of roots.

One of the most interesting questions about the syste
(2.6) is, what is the number of rootdl, 4, for generai and
d? At this point all we know for sure is that

Nn1=Npn-3=1, Ngo=4. (2.7 For generah andd there are
The first two cases are the MHV amdHV amplitudes pre- }(0—3 n+d—2)
viously studied in the literature, arg, is the non-MHV d\d-1 d-1

6-particle amplitude discussed in the following section. In
Sec. IV we prove thaN, ,_4_>=N, 4. Certainly it would such graph$,which in all cases except the trivial case
be very interesting to have a better understanding of the=1 is larger than Eq(2.7). (We have written the number of
mathematics underlying Eq&.6). In particular, it would be  diagrams inV=4 superspace. For particular choices of he-
especially interesting to learn hoM;, 4 grows withn andd.  licities of the external particles there are frequently fewer
diagrams.

However, the diagrams ¢6] have an additional symme-
o ) ] try in the form of an arbitrary spinon? which drops out only

A priori, the moduliag of the curve and the coordinates after summing together all of the graphs. The number of
o; on P! should all be complex variables. In order to evalu- diagrams is not gauge invariant, and special choicesan
ate the integra(1.1) it is necessary to specify an integration set whole classes of diagrams to zero. In contrast, our “dia-
contour in this 21+2d—2 complex dimensional space. In grams” have no residual manifest symmetry—the (&L
spacetime signature + — — it makes sense to takeand  cancels out diagram by diagrafroot by roo} and does not
X to be independent real variables, and it is natural to choosehange their number. Maybe there is some choicey 66r
the integration contour for which all of thaf and o; are  which the diagrams df6] reduce, in number and in value, to

B. Complex puzzle

real. the contributions obtained from the roots of our formula
For both the MHV i=1) andMHV (d=n-3) cases, (1.D. _ '
the unique root of Eqg2.6) indeed has the property that We believe it is more likely that the topological B model

anda are real. However, for the 6-particle amplitude with @S some huge symmetry group which relates the formula
d=2, which we discuss in Sec. Ill, there is a puzzle. De-(1.1), with its associated “diagrams,” to the diagrammatic
expansion off6]. Their parameter; is a small remnant of

pending on the choice af and A, there can be four real éhat huge symmetry.

roots, two real roots and one complex conjugate pair, or tw
complex conjugate pairs. The YM tree amplitude, which is

always real[forgetting thei in front of Eq. (1.1)], is repro- III. SIX-PARTICLE NON-MHV AMPLITUDES
duced only if all four roots are summed over, regardless of | the previous section we introduced the form(dal)
whether they are real or complex. and discussed its basic properties. But what is the connection

The lesson from this analysis is that restricting Fg1)  petween Eq(1.1) and then-particle scattering amplitude in
to the contour where ai’s and o’s are real does not give  gayge theory? Ifil] it was shown that a prescription equiva-
the correct gauge theory scattering amplitudes. In fact, we dynt to thed=1 case of Eq(1.1) reproduces the mostly plus
not know how to write any contour which makes the integral
formula (1.1) valid for arbitrary choices of andX. This
amplifies the comment we made at the beginning of the pre-2the counting of these graphs is equivalent to a combinatorial
vious subsection: the formuld.1) is not really an integral. problem which appeared in Plutarch’s biographical notes on Hip-
To overcome this problem we avoid thinking about Ejl)  parchus[12]. We are grateful to C. Herzog for many fun and en-
as an honest integral, but instead view it as a recipe folightening discussions regarding the combinatorics.
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MHV amplitudes in YM theory. In2,4] it was shown that of the other “integration variables.” The coefficients of this
the formula also works for mostly minus MHV amplitudes. quartic polynomial are themselves polynomialsdn, o,
These havel=n—3 and are relatedin Minkowski signa- and o3 and the covariant kinematic quantitifig] and (ij).
ture) to MHV amplitudes by complex conjugation. The four roots of this master quartic equation determine the
Although the latter check involved an apparently non-solutions for all 14 variables.
trivial integral over the moduli space of curves of arbitrary  Here is a schematic description of how to derive this quar-
degree inP%“, the question of whether E@1.1) is correct tic equation. Choose some subSaif the equations and use
for genuinely non-MHV amplitudes was left open. The sim-them to solve for the’'s and &'s in terms of theo’s. Plug-
plest amplitudes which are neither MHV nor googly MHV ging the solution into the remaining equations gives polyno-
are those witm=6 particles andl=2. Since we work in a mial equations just on the’s. This process can be repeated
manifestly N=4 formalism, our results apply simulta- many times by starting with different se&of equations,
neously to all possible helicity orderinga/hen all six par- leading to a large number of polynomial equationsxgn o
ticles are gluons, there are three cyclically independent heandog. The game then is to find the common roots of these
licity orderings:+ + + — — —, + + — + — —and+ — polynomial equations. In mathematical language, we need to
+ -+ —). construct a Groebner basis for the ideal generated by these
In this paper we report that the formul&a.1), in the case polynomials. Let us now be a little more specific.
n=6 andd=2, precisely matches the 6-gluon scattering am- Start with the equations on the top line of E¢2.6). By
plitudes first computed by Mangano, Parke, and X8]. We  eliminating £; between thea=1 anda=2 versions of this
originally obtained this result numerically, %) choosing at  equation, one arrives at the six equations

random a collection ofX; ,\;) [subject to overall momen- 2 2
tum conservatiori2.4)], (2) numerically solving the polyno- 2 1 k_y1 2 ki

. . " N a o =\; ago;, i=1,..,6, 3.1
mial equations(2.6), which were always observed to have 'go O 'go 3 @
four roots, and the(3) summing the Jacobian obtained from
Eg. (1.1) over the four roots. The whole calculation takeswhich are conveniently expressed in matrix notation as
only a few seconds on a fast computer and can be repeated as

often as desired for different(,\;). The result was always N Ao Mof A Moy Aod 22
found to agree spectacularly with the formula giver 13]. )\% )\%02 )\%Ug )\g )\502 )\gag g
Note that all three independent helicity configurations can be 11 L2 o 2 5 o a
checked at the same time since the choice of helicities only | A3 X303 X303 A3 N0z Nos | [ af |
affects the fermion determinant and does not change the A Aoy Ao?2 \2 N2g, N202 ag =0.
value of the roots. 11 12 2 2 > al
The only puzzle we encountered is that occasionally, for | As As05 X505 A5 A505 A50% ai
some {;,\;), the roots are complex, as we discussed in Sec. | A} Ngog Agoz N2 Aog Aio: 2
IIB. Precise agreement with gauge theory was nevertheless (3.2
always found by doing the most naive thing possible and
summing over all four roots, whether real or complex. A nontrivial solution exists if and only if the determinant of
Unfortunately, it seems rather difficult to construct an anathis matrix is zero:
lytic proof that the formula(1.1) is correct for the case
=6, d=2. Let us now outline the best line of attack that we RV o T
know of at the moment. We will not give precise formulas _X_i,,;gm,n €ijkimn V(11K L m ) jm)(kn).
for each intermediate step because they are extremely (3.3

lengthy and moreover because we are hopeful that a more
clever way of analyzing the equations will become availableHere V is the cyclic product ofo’s (not the Vandermonde
We believe that only after the mathematical structure of Eqsmatrix):
(2.6) is better understoogfor arbitrary n and d) will it be
clear how best to organize this calculation analytically. Vi, j.k,1,mn)=(oi—0))(oj= o) (o—0)) (01— o)
A. Constructing a Groebner basis: A sketch X(om=an)(0n=oi). 3.4

The most interesting result of the numerical analysis isAnother way to think about this equation is as follows. Since
that the number of roots islg ,=4, which does not appear one of thea’s is fixed by the GI(2) symmetry, we really
obvious from Eqs(2.6). Recall that we can fix one of thes only are allowed to solve for five of tha's. If we choose
and three of ther's (say oy, o, andoj) using the GI2) any five equations of Eq$3.1) to solve for the fivea's and
symmetry. The remainingr2+ 2d— 2= 14 “integration vari-  then plug the solution into the sixth equation, we find the
ables” are fixed by solving Eq$2.6). In fact, it turns out to  condition that Eq(3.4) should vanish.
be possible to express all of the@s, ¢s and two of the Next we turn our attention to the equations on the second
remaining threes’s as rational functions of the finat (say line of Egs.(2.6). These are sixd=1,2k=0,1,2) homoge-
og). Moreover, one can extract from Eq&.6) a single neous linear equations on the six variabfgs When cast in
equation which is quartic irg and does not depend on any matrix form, the relevant matrix is precisely the transpose of
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Eq. (3.2), but with A< N. A nontrivial solution exists if and day, the amplitude can be written schematically as a rational

only if the corresponding determinant vanishes: function in os, summed oversg satisfying some quartic
polynomial:
0=X= kima V(L 1Lk L mn) [ Tk mn). p(os)
i,;,gm,n EijkimnV(i.] )[ij kI mn] Ao 33 e
(35) {06:0(0g)=0} r(0-6)

So far we have obtaine@ubject toX=0) a unique solu- Abel's theorem guarantees that the result of this sum is a
) 3 ) -~ - rational function of the coefficients of the polynomiglsq
tion for all of the modulia, and (subject toX=0) a unique  andr, and it is easy to check numerically that the result
solution for all of the;. The final step is to require that precisely matches the gauge theory amplitude of Mangano,
these solutions be compatible, in that they obey the top lingarke, and X(13]. More generally, Abel’'s theorem guaran-
of Egs.(2.6). There are a many such compatibility conditionstees that for anyn and d, Eq. (1.1) turns into a rational
that one can form, depending on which five of the six equafunction of the covariant quantiti€g) and[ij] once all of the
tions of Egs.(3.1) one uses to solve for the moduli and roots of Eqs(2.6) are summed over.
which five of the six equations from the second line of Egs.
(2.6) that one uses to solve for thie. These equations are B. Analysis for specialA
polynomials inoy4, o5 andog whose coefficients depend on  Although then=6, d=2 amplitude is complicated in
\, X and the fixed values aof,, o, and o3. general, instructive analytic expressions can be obtained by
However, these equatiorfas well as theX=0=X equa- considerinzg spzecial cases. For examplle, let us here consider
tions all have spurious roots ab,=os=0g=a; for i the ca_se?xl_z)\4=_0 and[15]=0. For this degenerate case,
=1,2,3. To eliminate these roots one constructs a linear conflumerical investigation reveals that there are only three roots
bination of these equatiorfwith coefficients involving pow- (One is a double root—the statement thaf,=4 is always
ers of o, and o), with the coefficients chosen so that the trqe when one cpunts multiplicitipd_et us demonstrate ana-
result factors into a single quartic polynomiglo) without  Vtically how to find these three roots. L
the spurious roots times a high-degree polynomial with only We fix the GL(2) symmetry by settingag=1 and o
spurious roots. ={0,1,—1} for i=1,2,3. Also, without loss of generality we
In the previous few paragraphs we have explained irfan rescale tha’s to set\j'=1. From theA\;=B; equa-
words the process of constructing a Groebner basis for thions fori =2,3,4,5,6 we can solve for the modalfj, a}, a2,
ideal generated by the polynomid.6). Once the roots are a5 and o, in terms of o5, 0. The first solution isoy=0,
found, it remains to evaluate the Jacobian. At the end of thand the other one igwith oj; = o — o)

Na\sh 6053063056 Aol 2N 3k 605062063~ N5053 A 6056063+ 2N 30753075 |

04= (3.7

N3\s\ 6053063056+ N o[ Nsh 052062056 2N 3( — T6A 5N 500551 N605062063) | -

The 0,=0 root gives a unique solution fers, og when  makes it implausible that some complication arises for fur-
we plug the expressions far, a2, a2 anda3 into the equa- ther amplitudes which might render E(..1) invalid. Nev-
tions following from the second line of Eq&.6). The non-  ertheless, it would certainly be satisfying to prove that the

zeroo, root gives a simple solution farg, formula (1.1) is correct, perhaps by showing that it satisfies
the recursion relation dfl4]. Since we do not have a com-
[65](A3—N2)N\g plete proof yet, we will content ourselves with tabulating

(3.8 several consistency checks that Et.l) is indeed the tree-

level S matrix of YM theory for arbitraryn andd.
and a quadratic equation ery. In other words, the analogue
of th.e fourth order polynomial despribed in the previous sub- A gome properties of gauge theory scattering amplitudes
section factorizes into a quadratic one and the square of a _ _ . .
linear one. Solving the equations and plugging them into the Color-ordered partial amplitudes in YM theory satisfy a
Jacobian gives a result which agrees numerically with théumber of important properties, including the following:

767 2[45]N N5+ [65](2Nohg— Aohg— Aghg) |

known gauge theory result. (i) Cyclicity:
A(2,3,..n,1)=A(1,2,...n), (4.1)
IV. CHECKS ON n-PARTICLE AMPLITUDES
To summarize, we now know that the formuth1) cor- (i) Reflection:
rectly reproduces all MHV anMHV amplitudes, as well as
all 6-particle amplitudes. The nontriviality of these checks A(n,n—1,..,)=(-1)"A(1,2,...n), (4.2
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(iii ) Conjugation: Parity symmetry implies that the ampli-
tude is invariant under interchanging each helicity— —

and simultaneously interchanging—X.% The N'=4 super-
symmetric version of this statement is

AN, ).
(4.3

A()\,X,n)=f d‘“‘zﬁexr{i; Nt

(iv) Dual Ward(or sub-cyclig identity:

A(1,2,3,..0)=0,
C(1..n—-1)

(4.9

wheren is held fixed in the last position and(1,...n—1)
denotes the set of cyclic permutations{df...n—1}. This
identity expresses decoupling of thé1ldegree of freedom
[15].

(v) In [16] it was proved that YM amplitudes satisfy the
following generalization ofiv):

>

Perni,j)

Ay eeimsitseejk,n+1)=0,

<

=n—1, m+k=n, (4.5
where the sum is taken over permutations of the se
(i1y--sdmsj1s---) Which preserve the order of the
(i1,--iim) @and (q,...,jx) Separately.

(vi) Soft-gluon limit: In the limit p;—0, the amplitude

behaves as

(n2)

A(1+,2,...npm

A2,..n). (4.6)

PHYSICAL REVIEW D 70, 026009 (2004

A(1*,27°3,..0)— A(p*.3,..n)

z 1
Jz(1-2z) [12]
(1-2)?

" Vz(1—2) @

A(p~,3,..n).

4.9

(viii) Multi-particle poles: Color-ordered amplitudes can
only have poles in channels corresponding to a sum of cy-
clically adjacent momenta going on-shElll]. If we denote
Pim=P1t P2t -+ pn, then the amplitude factors in the
p%,—0 limit according to

Ay(l,..n)— > Apiq(L,...m,p¥)
X==

[
X—=Ap_mri(m+1,..n,p~%).
1m

4.9

Properties(i), (ii), (iv) and(v) are manifest in Eq(1.1)
due to the way ther; enter in Eq.(2.2). Indeed they follow
so trivially from Eq.(2.2) that the reader may well wonder
why we have bothered to mention them. We have done so
only because not all of these properties are immediately ob-
Yious from the Feynman diagram expansion of gauge theory
amplitudes(These properties are also not all manifest in the
diagrammatic prescription ¢8].)

Of the remaining propertiegjii), (vi) and (vii) will be
proved in the following subsections. The final propentyi )
regarding multi-particle poles will not be addressed here. In-
deed, note that a proof that E(l.1) satisfies(viii) would
essentially be a proof that E@L.1) is correct—since a tree-
level YM amplitude is uniquely fixed by its poléand their
residues

Of course a conjugated version of this equation should also

hold in the case when particle 1 has negative helicity. We do
not consider that case directly in this paper, since it follows

as a result ofiii) above.

(vii) Collinear limit: In the limit p;—zp and p,—(1
—2)p for ze(0,1) and some with p?’=0, the amplitude
behaves as

1

A(1+,2+,3,...n)*> @

A(p*,3,..n).
4.7

1
Vz(1—2)

B. Parity symmetry

The parity symmetry4.3) is obvious in gauge theory but
not manifest in the formulé&l.1).* On the individual compo-
nent amplituded\, 4, Eq. (4.3 says that

Ann-da-2N N, 4),
(4.10

An'd(k,x,n)=J d4”¢eX[{ii21 niA(ViA

thereby relating an integral over the moduli space of degree

Again it follows from (iii ) that there is an obvious conjugate d

curves to an integral over the moduli space of degree

to this relation for the case when particles 1 and 2 both have-d—2 curves.
negative helicity. The final case, when particles 1 and 2 have The proof of Eq.(4.10 is fairly straightforward. We start

opposite helicity, is

by looking for a way to relate the bosonic part of the ampli-

tudes:

3This transformation makes sense with our choice of signaturé

(see footnote 1 In Minkowski signature we would also have to
take the complex conjugate of the amplitude.

“The parity symmetry was also very recently discussefdjnn

the framework of 3].
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n m
~ T .
A4\ N)=| d SP(N2—&P? Mpi=—=——, i=1..n, m=0,.n—1
n,d( ) f Mn,dil;ll ( i ‘fl |) mi fiHj#i(Ui_Uj) 1
. ) (4.19
2 oK\
><k1;[0 o (Zl GO ) That is, we write
~ ~ _ n — e n—-1 n
An,n—d—z(xl)\)zj d-/\/ln,n—d—zi_l_[1 S(N=&PD) sz d?*ta(detM) [ | 5(2 Mmi()\i_gipi)>-
- m=0 i=1
n—-d—2 n (4-17)
x 11 52(_2 Ngi’&!x?). (4.10
1=0 =1 The second term in the delta function is now
Hered/\~/ln,n_d_2 andP are obvious generalizations of Egs. n " d d
(2.2 and(2.1): T K
—& 2, o= a ,
) ;1 & i(oi— o) glgo kT kgo kPk+m
dMpn_g-2 (4.18
_dz(”_d_z)”?ﬂdnﬁdr% ﬁ 1 using the definition§2.1), (4.14) and(4.16). Then recalling
a vol[GL(2)] i:lzi(ai_ai+1), that py.m, is zero form<n—d-—1, we can split the delta
functions into two kinds:
) n—d-—2 )
Pi= > &%, (4.12 n-d-2 / n
=0 I=(detM) [] 5(2 gia{“xl)fdd“a
=0 i=1
We will show that after integrating out the modalithe first " '
set of delta functions i\ exactly transforms into the second n-1 "o . d
set of delta functions iA\ (and vice versawhen one makes szrl_—[d—l g 21 &ioj )‘m_go APr+m | -
the change of variables .19
4.1
Gi=oi, &= - (4.13
R g'_§iﬂj¢i(0i—tfj) ' ' Thed+1 moduli now appear linearly in the ladt- 1 delta

) ) ) o ) functions and can be integrated out trivially. The Jacobian for
The Jacobian for this coordinate transformation is unity, butps is just 1, becausgy, , is a triangular matrix with diag-
we will pick up a simple Jacobian from manipulating the 5,4 entries,_,= 1. Finally, we conclude that
bosonic delta functions. This Jacobian will exactly cancel a
similar fermionic determinant.

Let us begin by studying the quantity | _f ddﬂaﬁ SOn—£P))
= — &P,
<1

n m

T
= L — )
Pm zlnj#i(o'i_o'j)

—d n
I1 5(2“&0{%), (4.20

n

(4.19 no
= vi[[l &

m=0

We claim thatp,, is a polynomial in theo;’s of degreem
—n+1. To see this, considgy,, as an analytic function of . .
z=a,, (this can of course be repeated for all of tis). It whereV is thg Vandermonde determinant of.all of this
looks like p,,(z) might have poles at the other, butin fact ~and the term in brackets comes from evaluating M(
it is easy to see that the residue is always zerop,Ja@) has The next step is to simply apply E¢.20 in reverse to
no poles, and grows at infinity like" "1, so it must be a 9€t
polynomial of degreen—n+1. In particular,p,, vanishes
for m<n-—1, andp,_,=1. d n

Now consider the first type of delta function & (we H 5(2 fiail(f\i) =
focus on one value cd and restore covariance later k=0 \i=1

n -1
VH §|:| j d(n—d—2)+1'é
=1

I:f dd“a]:[1 SN — &Py, (4.19 Xiﬂl S(Ni—&iPy). (4.20)

and take linear combinations of the delta functions accordingrinally we can combine Eq$4.20 and (4.21) and restore
to thenxn matrix with entries thea anda indices to arrive at
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) C. Soft gluon limit
a
[

For both the soft gluon and collinear limits, comparing the
left- and right-hand sides of Eqgt.6) and(4.7) reveals that

=
I
o

- & 2n — we will have to perform two integrals and eliminate two
:f dMpn—g-2 H - H S(N—&PD) delta functions. Clearly we want to eliminate the appearance
=1 5] 1=t of gluon 1 on the right-hand side, so we should eliminate the
n—d-2 n two delta functionss?(\§— £,P%) (for a=1,2) by perform-
X 52( 2 §ia:)\f‘> (4.22 ing the integrals oveg; and o. In general there can be
1=0 - several roots which contribute to this integral. However, we

o are only interested in roots which in the desired limit give
We have now related the bosonic integral over degree jse (o a pole in the amplitude. We will argue that only one
curves to the bosonic integral over degreed—2 curves, oot contributes to the coefficient of this pole.

up to a factor which with the help of Ed4.13 can be A prototype for both the soft gluon and collinear limits
written as involves an integral of the form
n ~ 12 n 4
gi _ i J’ dO'l (<|1> |:Bl B|:|)
S VIT & 4.2 I= lim floy) o] gt | 22 21|
iﬂl i} [ |H1 4 423 " o) g1 0 VI (AL A
(4.27)

In fact, this is precisely the factor which should arise from N ) . o
the fermionic Fourier transform in the formu(d.10: Specifically, we are interested in the poles of this integral.
We do not yet need the explicit form &f B or f, and need

n only to make assumptions which are completely reasonable
f d*"y ex;{iz A 64( > Eo zpiA) for the application at hand/A is a rational function ofr
=1 ! =1 with isolated roots, and the functidrhas no poles inr;.
4d n The quantity in brackets in Eq4.27) vanishes wherr;
54( > §i<7ik77iA)- (4.24  =o; and hence can be written as
k=0 =1

n n-d-2

0

VH &
i=1

B, B

A, A =(o1—0y)F(o1—0j,09) (4.28

This completes the proof that E(]..1) satisfies the conjuga-
tion property(4.10.
Incidentally, the above arguments show that given any,. someF. Changing integration variables from, to w
solution of Egs.(2.6) one can construct a solution of the =0, 0; gives
conjugate equations v
dw (i1)
n—d-2 ;
o . li=lim f—é(g(w)). g(w) = 11— WF(W,0).
Ne=F Fad, a=12, i=1..n, o) W A |
=0 (4.29

no In the limit (1i)—0 the roots ofg(w) are easy to analyze.
0=> &3\, a=12, 1=0,.n-d-2, There is one rootwhich we will callw=w) for whichw is

=t (4.25 small (of the same order a&li)), and there may be other

' roots for whichF(w,o;) is small. We assume there is no
L ~ . . degeneracy among the possible roots. Integrating the delta
by takmgo. and§ to be given *?y Eqs(4'.13. Itis not nec-  f,nction gives a factor of &/ (w), which is a number of
essary to independently specify th¢ since the top equa- order 1 at any of the roots. Therefore, the only pole in the
tions in Egs.(4.25 determine them uniquely in terms of integrall; comes from the factor of % evaluated on the root
(i,&). Thus, we have shown that w=wy—0.
The value ofw, is given by the implicit equation
Nn,nfdfzan,d: (4-2@
(i1) 1

and, moreover, that the contribution Ag, 4 from any given WOZW F(wg,00)’ (4.30
root is exactly the conjugate of the contribution of that root i o
tp Ann-d—2- The relatlon(4.2@ IS remwpscent Of. the “?'a' with F(wg, o) being of order unity. The contribution of this
tion between Betti numbers for a manifold of dimension )+ ;e integral is
—2 as well as of the relation between Hodge numbers under

mirror symmetry. It would be interesting to find a relation 1/ag| 1

betweenN, 4 and some invariants df®* (perhaps Gromov- |i:—(—) = —[F(Wq,0i) +WgdyF(Wg,07)] L.
Witten invarianty or of its moduli space of holomorphic WAIW] |y, Wo

curves. (4.31
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SinceF is a rational function an& (wg, ;) is of order unity,  =n (since(12) and(1n) were both going to zej)phere we
the derivatived,,F(wg,o;) cannot blow up. Therefore the can only use Eq(4.32 for i=2 since only(12)—0 in the
second term in brackets can be ignoredags—0, so using  collinear limit. Therefore the second term in brackets in Eq.

Eq. (4.30 we arrive at the formula (4.36) gives no contribution to the pole, and we only pick up
do (1) B, B the factor
o I 1 b
Ii—<1|il>r’rlof g Ulf(O'l)‘S()\l)\ [Al AiD 1 )\_é 11 [1-z 1 } .37
N o=y N1 (21 op—o0, z (21 T
=L ¢, (4.32 : - ,
(i1) At this stage the integrals over the variables and ¢;

associated with gluon number 1 have been performed, but
which is valid under the assumptions 6nA and B given  those associated with gluon 2 remain and we must rewrite
above. the N, dependence in terms af=\,/1—z. In the &, in-

Now let us turn our attention to the soft gluon lin#.6).  tegral this is accomplished by rescaliggin order to obtain
First we set the helicity of gluon 1 t&1 by settingy;=0 in

Ap 4. This destroys thé=1 term in the third delta function dé, 5
in Eq. (1.1). In the second delta function, thie-1 term also 5_5(7\2 £2A2) S(N5— &2B3)
vanishes trivially in the soft limit sinck?—0. Particle num-

ber 1 therefore only appears in the integrals

=I5 2 50 £ S0 8, (4.39

1
do,d SN —¢£A
f ! 6151(01—02)(%—01) (A1~ &A) The last delta functions to check are the ones of the form

X O(N1—€1By). (4.33 n , . 0 .
R P e

The &, integral is trivial and leads to

1 1 1 1 A B A I _
- I =8 —=oK\a+ KNa+ gia
P (Ai)zfdgl U102 0170 5()\1 A1 A, 1M1 £20202 i=23§'0I '

(4.39 1
z 2 kya kY a
Now we are completely free to subtract from the argument of =& 1-7A, oAt E2050;

the delta function an amount which is equal to zero in the

form of N?/\!—B; /A, for anyi # 1. (This is guaranteed to be -

zero by the othek®— £;P? delta functions. Then we simply +__23 &N, (4.39
apply the formula(4.32, once withi=2 and once withi "

=n, to obtain the factor where in the first line we used the fact that we already inte-

grated outé; setting it to&;=\1/A,, in the second line we

used the fact that we integrated apt settingo=o,, and

in the third line we used the fact thak,x;=[z/(1

—2)I\oN,. Of course, we know thag, will eventually be

(435 set by a delta function to the valag/A,, so we may as well
write the final line as

The factor of 1/¢-,— 0») is needed to write the correct mea- N

sure factor(2.2) for the (n— 1)-particle amplituded(2,...n). of 1 524 S g o

Gluon number one has now completely disappeared from the d ﬁgZUZ)‘Zf, &GO

integral, leaving only the overall factor in brackets, in agree-

1 B 1 [mg AL
s 2 2T G = (2 (o)
(n2)
(21)(n1) |

1

-0,

ment with Eq.(4.6). 2 .
=& Hos\+ 2 ol (440
=3
D. Collinear limit
First we consider the factor keeping in mind thaf\2= V1-2z\ and &=1-2¢&;.
) What remains has precisely the structure of the amplitude

1 1 1 1 AT B; A(p.3,...n), together with the extra factors in brackets from
—Un—tfz _(7\%)2 doy o1—0, O1—0p )\_i_ A_l ' Egs.(4.37) and(4.38), in complete agreement with the col-
(4.3p linear limit (4.7). The conjugate of this equation follows

from the parity transformation discussed in Sec. IVB. The
which arises exactly as in the previous subsection. Howevemost notable fact following from that analysis is that the pole
whereas we could there use E¢.32 for bothi=2 andi arises from the root satisfying;— o,=[12]. One might
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attempt to prove the last collinear limi4.8) by combining  contributions (as well as other contributiopshave to be
the above discussion with this observation. Then, the differadded together to fully reproduce the normalization of the
entz dependence might arise from thedependence of the gauge theory scattering amplitudes. It is also possible that

fermionic integrals. the B model has some huge symmetry group which relates
the connected instanton contributi@hl) to the fully discon-
V. CONCLUSIONS AND SPECULATIONS nected instantons ¢B6].

i . Of course, even forgetting for the moment about the B
In this paper we have presented strong evidence that thgodel, it would also be very interesting to prove rigorously
formula (1.1) encodes the complete tree-lev@imatrix of  hat the formula1.1) is the tree-leveS matrix of Yang-Mills
Yang-Mills theory in four dimensions. Explicit calculation theory. To this end it would be useful to understand better the
has now shown that Eq1.1) agrees with YM theory for all  mathematical structure of Eq$2.6), and in particular to
MHV and MHV amplitudes, as well as all 6-particle non- |earn how many roots they have for genenahnd d (i.e.,
MHV amplitudes. Moreover the analysis of Sec. IV showswhat is the degree of the corresponding Groebner basis
that for anyn, Eq. (1.1) satisfies a number of important prop- These numbers might be related to some interesting invari-
erties required of gauge theory amplitudes, including parityants of P34 or of its moduli space of holomorphic curves,

symmetry. Many interesting directions remain open. and perhaps the equality &, 4 and N, ,_4_» could be
Of primary importance is to understand the connectionynderstood in this language. '
between the formulél.1), which was obtained if2] follow- Finally, all of our considerations have applied to the tree-

ing the suggestion if1] that one should COHSideera single |evel Smatrix in gauge theory. An obvious next step of great
instanton of degred in the topological B model oft””, and  jnterest would be to see what light the topological B model

the diagrammatic procedure [@], in which arbitrary ampli-  can shed on one-loop calculatiofts7].
tudes are built out ofl disconnected amplitudes, each of

degree 1. We suspect that formulating a proof that (Ed)

factorizes correctly onto multiparticle poles would essen- ACKNOWLEDGMENTS
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