
PHYSICAL REVIEW D 70, 026009 ~2004!
Tree-level S matrix of Yang-Mills theory
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We further investigate the procedure for computing tree-level amplitudes in Yang-Mills theory from con-
nected instantons in the B model onP3u4, emphasizing that the problem of calculating Feynman diagrams is
recast into the problem of finding solutions to a certain set of algebraic equations. We show that the B model
correctly reproduces all 6-particle amplitudes, including non-MHV amplitudes with three negative and three
positive helicity gluons. As a further check, we also show thatn-particle amplitudes obtained from the B model
obey a number of properties required of gauge theory, such as parity symmetry~which relates an integral over
degreed curves to one over degreen2d22 curves! and the soft and collinear gluon poles.

DOI: 10.1103/PhysRevD.70.026009 PACS number~s!: 11.25.Hf
e

e

e
nd

i-
a

e
th

i-
te

l

n

us

n
an
ily
eory

e

is-

ge
pa-
s,
ed

n
ula
be
en

i-
-
of

ical

-
n-

ral
on
h

I. INTRODUCTION

In @1# Witten proposed a remarkable connection betwe
scattering amplitudes in Yang-Mills~YM ! theory and a cer-
tain topological string theory, the B model onP3u4 ~recent
related work includes@2–9#!. This conjecture leads to th
following formula~equivalent to one first written down in@2#
and studied further in@3,4#! for the n-particle amplitude,
written in a manifestlyN54 supersymmetric notation:

An5 i ~2p!4gYM
n22(

d51

n23 E dMn,d)
i 51

n

d2~l i
a2j i Pi

a!

3)
k50

d

d2S (
i 51

n

j is i
kl̃ i

ȧD d4S (
i 51

n

j is i
kh iAD . ~1.1!

The details of this formula will be clarified in Sec. II, but w
have written it down here in order to stress its simplicity a
importance. We believe that Eq.~1.1! encapsulates thecom-
plete n-particle tree-levelS matrix of YM theory ~for any
gauge group!, thereby providing an exact solution of class
cal YM theory in four dimensions. This formula sums up
huge number of Feynman diagrams~see for example Fig. 1!
into an expression which fits on a single line. In this pap
we provide strong evidence supporting our confidence in
formula and explore some of its structure.

The formula~1.1! was derived by considering the contr
bution to the scattering amplitude from a single connec
instanton~5holomorphic curve inP3u4) of degreed in the
topological B model.@As explained in@1#, counting the fer-
mionic modes reveals that the degreed is related to the tota
helicity (hi of all n particles according tod51/2(n2(hi
22).] In @1# Witten speculated that one might have to co
sider, in addition to Eq.~1.1!, contributions from collections
of disconnected instantons of degreesdi with (di5d. ~See
Fig. 2 for a schematic depiction for then56, d53 ampli-
tude.!

However, it was found in@2,4# that the formula~1.1! cor-
rectly reproduces the known YM result for the mostly min
0556-2821/2004/70~2!/026009~10!/$22.50 70 0260
n

r
is

d

-

MHV ~maximally helicity violating! amplitudes~sometimes
called ‘‘googly MHV’’ or MHV) that are related to the
mostly plus MHV amplitudes by complex conjugation. Eve
though the googly MHV amplitudes are calculated from
integral over the moduli space of instantons of arbitrar
high degree, precise agreement was found with gauge th
without the need for additional contributions.

More recently, a novel method for calculating YM tre
amplitudes, also motivated by the B model onP3u4, was
proposed in a very interesting paper@6#. The starting point
for their proposal involved considering only completely d
connected instantons~i.e.,d instantons of degree 1!. Remark-
ably, it was found that their rule also gives correct gau
theory amplitudes. The B model seems to give two se
rately correct methods for calculating YM tree amplitude
rather than a set of contributions which need to be summ
~see Fig. 2!.

The proposal of@6# involves a diagrammatic expansio
which bears no apparently obvious connection to the form
~1.1!, except that they both seem to be correct. It would
very interesting to understand directly the relation betwe
these two methods. Moreover, if the B model onP3u4 gives
us two not obviously equivalent formulas for YM ampl
tudes, then it will likely give us an infinite family of formu
las ~which roughly speaking weight the different types
diagrams in Fig. 2 differently!. Undoubtedly we have only
encountered the tip of the iceberg connecting the topolog
B model to Yang-Mills amplitudes.

So far the formula~1.1! had only been checked for MHV
andMHV amplitudes@2,4#. In Sec. III of this paper we con
firm that the formula also gives the correct 6-particle no
MHV amplitudes. In Sec. IV we check that for anyn andd,
Eq. ~1.1! satisfies a number of properties required of gene
Yang-Mills amplitudes, such as the soft and collinear glu
limits. Of particular importance is parity symmetry, whic

requires that Eq.~1.1! should be invariant underl↔l̃. This
non-manifest symmetry of Eq.~1.1! is proved explicitly in
©2004 The American Physical Society09-1
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Sec. IV B below. We conclude with a list of open questio
and puzzles. First, however, we turn our attention to the
tails of Eq. ~1.1! and highlight a crucial fact about the fo
mula: namely, that it is not really an integral at all.

II. MAIN FORMULA

In this section we first clarify the ingredients appearing
the formula~1.1! and then investigate some of its mathema
cal properties. The quantityAn in Eq. ~1.1! denotes the color-
strippedn-particle partial amplitude~see for example@11#!,
and we employ the spinor helicity notation in writingAn as a
function of (l i

a ,l̃ i
ȧ ,h iA), i 51,...,n, wherel andl̃ are com-

muting real two-component spinors of positive and nega
chirality, respectively,1 andhA is the four-component Grass
mann coordinate ofN54 superspace.

The Pa are two degreed polynomials in s which we
parametrize as

Pi
a5 (

k50

d

ak
as i

k ~2.1!

in terms of 2d12 coefficients~moduli! ak
a . When needed

we will follow the conventions of@2,4# in denotingPi
15Ai

andPi
25Bi . The measure for integration in Eq.~1.1! is

dMn,d5
d2d12adnsdnj

vol@GL~2!# )
i 51

n
1

j i~s i2s i 11!
. ~2.2!

The factor of 1/vol@GL~2!# is included because the integran
is invariant under a certain GL~2! symmetry and so the inte
gral would otherwise be infinite. Practically, the conseque
of this factor is simply that we can choose to fix four of t
variables~which we will take to be any one of thea’s and
any three of thes’s! at the expense of introducing a Jacobi
factor of

J5a~s i2s j !~s j2sk!~sk2s i !. ~2.3!

The choice of whicha and which threes’s to leave un-
integrated is arbitrary and does not affect the final result

1For simplicity we work in signature1 1 2 2, where such
spinors are possible. It is straightforward to analytically contin
the tree-level YM amplitudes to signature2 1 1 1 if desired.

FIG. 1. The standard computation of a six-gluon tree amplitu
requires summing 220 Feynman diagrams~in conventional gauges!
@10#.
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A. Key point

The single most important fact about the integral~1.1! is
that it is not really an integral. To see this, let us start
showing that Eq.~1.1! respects momentum conservatio
Taking a particular linear combination of the quantities se
zero by the delta functions gives

05 (
k50

d

ak
aS (

i 51

n

j is i
kl̃ i

ȧD 5(
i 51

n

j i Pi
al̃ i

ȧ5(
i 51

n

l i
al̃ i

ȧ5(
i 51

n

pi
aȧ ,

~2.4!

where we used the definition~2.1! and some more delta func
tions from Eq.~1.1!. Therefore, the delta functions in Eq
~1.1! indeed force overall momentum conservation.

At the practical level, this means we can ‘‘pull out’’ th
overall factor ofd4((pi) at the expense of introducing
Jacobian, by using an identity such as

)
i 51

n

dS l i
2

l i
12

Bi

Ai
D )

k50

d

d2S (
i 51

n
l̃ i

ȧl i
1s i

k

Ai
D

5A1A2d4S (
i 51

n

pi D)
i 53

n

dS l i
2

l i
12

Bi

Ai
D )

k51

d

d2S (
i 51

n
l̃ i

ȧl i
1s i

k

Ai
D

~2.5!

~where we usedj i5l i
1/Ai). In writing this identity we have

made a particular choice of which four delta functions to p
out. There is however no canonical choice, and differ
choices are useful for different calculations~and lead to dif-
ferent Jacobians!, so it is convenient to leave momentu
conservation slightly scrambled into the delta functions
Eq. ~1.1!. Note that supermomentum conservati
d8((l i

ah iA) pulls out similarly.
Let us now return to the claim that Eq.~1.1! is not really

an integral. The measuredMn,d in Eq. ~2.2! has (2d12)
1(n)1(n)2(4)52n12d22 integration variables, while
the integrand in Eq.~1.1! has 2n12d12 delta functions. If
we ‘‘pull out’’ the overall momentum conservation delt
functions, then for anyn andd there are precisely as man

e

e FIG. 2. Schematic depiction of how one might have thought
organize the calculation of the 6-particle mostly minus MHVd
53) amplitude in the B model onP3u4. The dark3’s mark the
insertions of the 6 external particles, the dotted line is a twis
space propagator~constructed in@6#!, and the solid lines represen
instantons~i.e., holomorphic curves inP3u4) of degreed51,2,3
~schematically encoded in the waviness of the curve!. Although one
might have expected that it would be necessary to sum toge
contributions of all three types, we find that thesinglediagram of
the first type~studied here and in@2,4#! and the sum of the 21
diagrams of the third type~studied in@6#! separatelygive the cor-
rect gauge theory answer.
9-2
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TREE-LEVEL S MATRIX OF YANG-MILLS THEORY PHYSICAL REVIEW D 70, 026009 ~2004!
integration variables as delta functions. Therefore the en
integral is supported on a discrete set of points, and the
mula ~1.1! is just a recipe to solve the 2n12d12 polyno-
mial equations

l i
a5j i (

k50

d

s i
kak

a , a51,2, i 51,...,n,

05(
i 51

n

j is i
kl̃ i

ȧ , ȧ51,2, k50,...d, ~2.6!

for the variables (ak
a ,s i ,j i), and then to sum a certain Jac

bian @obtained in the usual way from Eq.~1.1!# over the
collection of roots.

One of the most interesting questions about the sys
~2.6! is, what is the number of roots,Nn,d , for generaln and
d? At this point all we know for sure is that

Nn,15Nn,n2351, N6,254. ~2.7!

The first two cases are the MHV andMHV amplitudes pre-
viously studied in the literature, andN6,2 is the non-MHV
6-particle amplitude discussed in the following section.
Sec. IV we prove thatNn,n2d225Nn,d . Certainly it would
be very interesting to have a better understanding of
mathematics underlying Eqs.~2.6!. In particular, it would be
especially interesting to learn howNn,d grows withn andd.

B. Complex puzzle

A priori, the moduliak
a of the curve and the coordinate

s i on P1 should all be complex variables. In order to eva
ate the integral~1.1! it is necessary to specify an integratio
contour in this 2n12d22 complex dimensional space. I
spacetime signature1 1 2 2 it makes sense to takel and
l̃ to be independent real variables, and it is natural to cho
the integration contour for which all of theak

a and s i are
real.

For both the MHV (d51) andMHV ( d5n23) cases,
the unique root of Eqs.~2.6! indeed has the property thats i

and ak
a are real. However, for the 6-particle amplitude wi

d52, which we discuss in Sec. III, there is a puzzle. D
pending on the choice ofl and l̃, there can be four rea
roots, two real roots and one complex conjugate pair, or
complex conjugate pairs. The YM tree amplitude, which
always real@forgetting thei in front of Eq. ~1.1!#, is repro-
duced only if all four roots are summed over, regardless
whether they are real or complex.

The lesson from this analysis is that restricting Eq.~1.1!
to the contour where alla’s and s’s are real does not give
the correct gauge theory scattering amplitudes. In fact, we
not know how to write any contour which makes the integ
formula ~1.1! valid for arbitrary choices ofl and l̃. This
amplifies the comment we made at the beginning of the p
vious subsection: the formula~1.1! is not really an integral.
To overcome this problem we avoid thinking about Eq.~1.1!
as an honest integral, but instead view it as a recipe
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finding the solution~which in general can be complex! of Eq.
~2.6! and then summing a Jacobian over the set of roots

C. Diagrammatic expansion?

From this new standpoint, let us ask ourselves whether
formula might have another, more natural interpretation. T
fact that the computation of a scattering amplitude from
formula ~1.1! reduces to summing a certain quantity over
finite set of points is reminiscent of some sort of diagra
matic expansion, where, for example, Eq.~2.7! suggests that
there is a single diagram for mostly plus and mostly min
MHV amplitudes, while four diagrams contribute to th
6-point non-MHV amplitudes.

It is tempting to wonder whether there is any connect
between such ‘‘diagrams’’ and the new diagrammatic exp
sion for YM scattering amplitudes which was recently pr
posed in@6#. According to their proposal,An,d is associated
with the collection of trees withn cyclically labeled external
legs andd vertices, such that each vertex has at least 3 le
For generaln andd there are

1

d S n23
d21D S n1d22

d21 D
such graphs,2 which in all cases except the trivial cased
51 is larger than Eq.~2.7!. ~We have written the number o
diagrams inN54 superspace. For particular choices of h
licities of the external particles there are frequently few
diagrams.!

However, the diagrams of@6# have an additional symme
try in the form of an arbitrary spinorh ȧ which drops out only
after summing together all of the graphs. The number
diagrams is not gauge invariant, and special choices ofh can
set whole classes of diagrams to zero. In contrast, our ‘‘d
grams’’ have no residual manifest symmetry—the GL~2!
cancels out diagram by diagram~root by root! and does not
change their number. Maybe there is some choice ofh for
which the diagrams of@6# reduce, in number and in value, t
the contributions obtained from the roots of our formu
~1.1!.

We believe it is more likely that the topological B mod
has some huge symmetry group which relates the form
~1.1!, with its associated ‘‘diagrams,’’ to the diagrammat
expansion of@6#. Their parameterh is a small remnant of
that huge symmetry.

III. SIX-PARTICLE NON-MHV AMPLITUDES

In the previous section we introduced the formula~1.1!
and discussed its basic properties. But what is the connec
between Eq.~1.1! and then-particle scattering amplitude in
gauge theory? In@1# it was shown that a prescription equiva
lent to thed51 case of Eq.~1.1! reproduces the mostly plu

2The counting of these graphs is equivalent to a combinato
problem which appeared in Plutarch’s biographical notes on H
parchus@12#. We are grateful to C. Herzog for many fun and e
lightening discussions regarding the combinatorics.
9-3
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ROIBAN, SPRADLIN, AND VOLOVICH PHYSICAL REVIEW D 70, 026009 ~2004!
MHV amplitudes in YM theory. In@2,4# it was shown that
the formula also works for mostly minus MHV amplitude
These haved5n23 and are related~in Minkowski signa-
ture! to MHV amplitudes by complex conjugation.

Although the latter check involved an apparently no
trivial integral over the moduli space of curves of arbitra
degree inP3u4, the question of whether Eq.~1.1! is correct
for genuinely non-MHV amplitudes was left open. The sim
plest amplitudes which are neither MHV nor googly MH
are those withn56 particles andd52. Since we work in a
manifestly N54 formalism, our results apply simulta
neously to all possible helicity orderings~when all six par-
ticles are gluons, there are three cyclically independent
licity orderings:1 1 1 2 2 2, 1 1 2 1 2 2 and1 2
1 2 1 2!.

In this paper we report that the formula~1.1!, in the case
n56 andd52, precisely matches the 6-gluon scattering a
plitudes first computed by Mangano, Parke, and Xu@13#. We
originally obtained this result numerically, by~1! choosing at
random a collection of (l i ,l̃ i) @subject to overall momen
tum conservation~2.4!#, ~2! numerically solving the polyno-
mial equations~2.6!, which were always observed to hav
four roots, and then~3! summing the Jacobian obtained fro
Eq. ~1.1! over the four roots. The whole calculation tak
only a few seconds on a fast computer and can be repeat
often as desired for different (l i ,l̃ i). The result was always
found to agree spectacularly with the formula given in@13#.
Note that all three independent helicity configurations can
checked at the same time since the choice of helicities o
affects the fermion determinant and does not change
value of the roots.

The only puzzle we encountered is that occasionally,
some (l i ,l̃ i), the roots are complex, as we discussed in S
II B. Precise agreement with gauge theory was neverthe
always found by doing the most naive thing possible a
summing over all four roots, whether real or complex.

Unfortunately, it seems rather difficult to construct an an
lytic proof that the formula~1.1! is correct for the casen
56, d52. Let us now outline the best line of attack that w
know of at the moment. We will not give precise formul
for each intermediate step because they are extrem
lengthy and moreover because we are hopeful that a m
clever way of analyzing the equations will become availab
We believe that only after the mathematical structure of E
~2.6! is better understood~for arbitrary n and d! will it be
clear how best to organize this calculation analytically.

A. Constructing a Groebner basis: A sketch

The most interesting result of the numerical analysis
that the number of roots isN6,254, which does not appea
obvious from Eqs.~2.6!. Recall that we can fix one of thea’s
and three of thes’s ~say s1 , s2 and s3) using the GL~2!
symmetry. The remaining 2n12d22514 ‘‘integration vari-
ables’’ are fixed by solving Eqs.~2.6!. In fact, it turns out to
be possible to express all of thea’s, j’s and two of the
remaining threes’s as rational functions of the finals ~say
s6). Moreover, one can extract from Eqs.~2.6! a single
equation which is quartic ins6 and does not depend on an
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of the other ‘‘integration variables.’’ The coefficients of th
quartic polynomial are themselves polynomials ins1 , s2
and s3 and the covariant kinematic quantities@ij # and ^ij &.
The four roots of this master quartic equation determine
solutions for all 14 variables.

Here is a schematic description of how to derive this qu
tic equation. Choose some subsetS of the equations and us
them to solve for thea’s andj’s in terms of thes’s. Plug-
ging the solution into the remaining equations gives polyn
mial equations just on thes’s. This process can be repeate
many times by starting with different setsS of equations,
leading to a large number of polynomial equations ons4 , s5
ands6 . The game then is to find the common roots of the
polynomial equations. In mathematical language, we nee
construct a Groebner basis for the ideal generated by th
polynomials. Let us now be a little more specific.

Start with the equations on the top line of Eqs.~2.6!. By
eliminating j i between thea51 anda52 versions of this
equation, one arrives at the six equations

l i
2(

k50

2

ak
1s i

k5l i
1(

k50

2

ak
2s i

k , i 51,...,6, ~3.1!

which are conveniently expressed in matrix notation as

S l1
1 l1

1s1 l1
1s1

2 l1
2 l1

2s1 l1
2s1

2

l2
1 l2

1s2 l2
1s2

2 l2
2 l2

2s2 l2
2s2

2

l3
1 l3

1s3 l3
1s3

2 l2
2 l2

2s2 l2
2s3

2

l4
1 l4

1s4 l4
1s4

2 l4
2 l4

2s4 l4
2s4

2

l5
1 l5

1s5 l5
1s5

2 l5
2 l5

2s5 l5
2s5

2

l6
1 l6

1s6 l6
1s6

2 l6
2 l6

2s6 l6
2s6

2

D S a0
2

a1
2

a2
2

a0
1

a1
1

a2
1

D 50.

~3.2!

A nontrivial solution exists if and only if the determinant o
this matrix is zero:

05X5 (
i , j ,k,l ,m,n

e i jklmnV~ i , j ,k,l ,m,n!^ i l &^ jm&^kn&.

~3.3!

Here V is the cyclic product ofs’s ~not the Vandermonde
matrix!:

V~ i , j ,k,l ,m,n!5~s i2s j !~s j2sk!~sk2s l !~s l2sm!

3~sm2sn!~sn2s i !. ~3.4!

Another way to think about this equation is as follows. Sin
one of thea’s is fixed by the GL~2! symmetry, we really
only are allowed to solve for five of thea’s. If we choose
any five equations of Eqs.~3.1! to solve for the fivea’s and
then plug the solution into the sixth equation, we find t
condition that Eq.~3.4! should vanish.

Next we turn our attention to the equations on the sec
line of Eqs.~2.6!. These are six (ȧ51,2,k50,1,2) homoge-
neous linear equations on the six variablesj i . When cast in
matrix form, the relevant matrix is precisely the transpose
9-4



t
lin
ns
ua
d

qs
e
n

om

e

nl

i
th

th

nal

s a

ult
no,
-

by
sider
e,
ots

-

e

TREE-LEVEL S MATRIX OF YANG-MILLS THEORY PHYSICAL REVIEW D 70, 026009 ~2004!
Eq. ~3.2!, but with l↔l̃. A nontrivial solution exists if and
only if the corresponding determinant vanishes:

05X̃5 (
i , j ,k,l ,m,n

e i jklmnV~ i , j ,k,l ,m,n!@ i j #@kl#@mn#.

~3.5!

So far we have obtained~subject toX50) a unique solu-
tion for all of the moduliak

ȧ and~subject toX̃50) a unique
solution for all of thej i . The final step is to require tha
these solutions be compatible, in that they obey the top
of Eqs.~2.6!. There are a many such compatibility conditio
that one can form, depending on which five of the six eq
tions of Eqs.~3.1! one uses to solve for the moduli an
which five of the six equations from the second line of E
~2.6! that one uses to solve for thej i . These equations ar
polynomials ins4 , s5 ands6 whose coefficients depend o
l, l̃ and the fixed values ofs1 , s2 ands3 .

However, these equations~as well as theX505X̃ equa-
tions! all have spurious roots ats45s55s65s i for i
51,2,3. To eliminate these roots one constructs a linear c
bination of these equations~with coefficients involving pow-
ers of s4 and s5), with the coefficients chosen so that th
result factors into a single quartic polynomialq(s6) without
the spurious roots times a high-degree polynomial with o
spurious roots.

In the previous few paragraphs we have explained
words the process of constructing a Groebner basis for
ideal generated by the polynomials~2.6!. Once the roots are
found, it remains to evaluate the Jacobian. At the end of
e
ub
of
th
th

ks
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day, the amplitude can be written schematically as a ratio
function in s6 , summed overs6 satisfying some quartic
polynomial:

A6,25 (
$s6 :q~s6!50%

p~s6!

r ~s6!
. ~3.6!

Abel’s theorem guarantees that the result of this sum i
rational function of the coefficients of the polynomialsp, q
and r, and it is easy to check numerically that the res
precisely matches the gauge theory amplitude of Manga
Parke, and Xu@13#. More generally, Abel’s theorem guaran
tees that for anyn and d, Eq. ~1.1! turns into a rational
function of the covariant quantities^ij & and@ij # once all of the
roots of Eqs.~2.6! are summed over.

B. Analysis for speciall

Although the n56, d52 amplitude is complicated in
general, instructive analytic expressions can be obtained
considering special cases. For example, let us here con
the casel1

25l4
250 and @15#50. For this degenerate cas

numerical investigation reveals that there are only three ro
~one is a double root—the statement thatN4,254 is always
true when one counts multiplicities!. Let us demonstrate ana
lytically how to find these three roots.

We fix the GL~2! symmetry by settinga0
151 and s i

5$0,1,21% for i 51,2,3. Also, without loss of generality w
can rescale thel’s to setl i

151. From theAil i5Bi equa-
tions for i 52,3,4,5,6 we can solve for the modulia1

1, a2
1, a1

2,
a2

2 and s4 in terms ofs5 , s6 . The first solution iss450,
and the other one is~with s i j 5s i2s j )
s45
l3l5l6s53s63s561l2@2l3l6s5

2s62s632l5s52~l6s56s6312l3s53s6
2!#

l3l5l6s53s63s561l2@l5l6s52s62s5612l3~2s6l5l52s531l6s5s62s63!#
. ~3.7!
ur-

he
es
-
g

a

The s450 root gives a unique solution fors5 , s6 when
we plug the expressions fora1

1, a2
1, a1

2 anda2
2 into the equa-

tions following from the second line of Eqs.~2.6!. The non-
zeros4 root gives a simple solution fors6 ,

s65
@65#~l32l2!l6

2@45#l2l31@65#~2l2l32l2l62l3l6!
, ~3.8!

and a quadratic equation ons5 . In other words, the analogu
of the fourth order polynomial described in the previous s
section factorizes into a quadratic one and the square
linear one. Solving the equations and plugging them into
Jacobian gives a result which agrees numerically with
known gauge theory result.

IV. CHECKS ON n-PARTICLE AMPLITUDES

To summarize, we now know that the formula~1.1! cor-
rectly reproduces all MHV andMHV amplitudes, as well as
all 6-particle amplitudes. The nontriviality of these chec
-
a

e
e

makes it implausible that some complication arises for f
ther amplitudes which might render Eq.~1.1! invalid. Nev-
ertheless, it would certainly be satisfying to prove that t
formula ~1.1! is correct, perhaps by showing that it satisfi
the recursion relation of@14#. Since we do not have a com
plete proof yet, we will content ourselves with tabulatin
several consistency checks that Eq.~1.1! is indeed the tree-
level S matrix of YM theory for arbitraryn andd.

A. Some properties of gauge theory scattering amplitudes

Color-ordered partial amplitudes in YM theory satisfy
number of important properties, including the following:

~i! Cyclicity:

A~2,3,...,n,1!5A~1,2,...,n!, ~4.1!

~ii ! Reflection:

A~n,n21,...,1!5~21!nA~1,2,...,n!, ~4.2!
9-5
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~iii ! Conjugation: Parity symmetry implies that the amp
tude is invariant under interchanging each helicity1↔2

and simultaneously interchangingl↔l̃.3 The N54 super-
symmetric version of this statement is

A~l,l̃,h!5E d4nc expF i(
i 51

n

h iAc i
AGA~ l̃,l,c!.

~4.3!

~iv! Dual Ward~or sub-cyclic! identity:

(
C~1,...,n21!

A~1,2,3,...,n!50, ~4.4!

wheren is held fixed in the last position andC(1,...,n21)
denotes the set of cyclic permutations of$1,...,n21%. This
identity expresses decoupling of the U~1! degree of freedom
@15#.

~v! In @16# it was proved that YM amplitudes satisfy th
following generalization of~iv!:

(
Perm~ i , j !

A~ i 1 ,...,i m , j 1 ,...,j k ,n11!50,

1<m<n21, m1k5n, ~4.5!

where the sum is taken over permutations of the
( i 1 ,...,i m , j 1 ,...,j k) which preserve the order of th
( i 1 ,...,i m) and (j 1 ,...,j k) separately.

~vi! Soft-gluon limit: In the limit p1→0, the amplitude
behaves as

A~11,2,...,n!→ ^n2&

^n1&^12&
A~2,...,n!. ~4.6!

Of course a conjugated version of this equation should a
hold in the case when particle 1 has negative helicity. We
not consider that case directly in this paper, since it follo
as a result of~iii ! above.

~vii ! Collinear limit: In the limit p1→zp and p2→(1
2z)p for zP(0,1) and somep with p250, the amplitude
behaves as

A~11,21,3,...,n!→ 1

Az~12z!

1

^12&
A~p1,3,...,n!.

~4.7!

Again it follows from ~iii ! that there is an obvious conjuga
to this relation for the case when particles 1 and 2 both h
negative helicity. The final case, when particles 1 and 2 h
opposite helicity, is

3This transformation makes sense with our choice of signa
~see footnote 1!. In Minkowski signature we would also have t
take the complex conjugate of the amplitude.
02600
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A~11,223,...,n!→ z2

Az~12z!

1

@12#
A~p1,3,...,n!

1
~12z!2

Az~12z!

1

^12&
A~p2,3,...,n!.

~4.8!

~viii ! Multi-particle poles: Color-ordered amplitudes ca
only have poles in channels corresponding to a sum of
clically adjacent momenta going on-shell@11#. If we denote
p1,m5p11p21¯1pm , then the amplitude factors in th
p1,m

2 →0 limit according to

An~1,...,n!→ (
x56

Am11~1,...,m,px!

3
i

p1,m
2 An2m11~m11,...,n,p2x!. ~4.9!

Properties~i!, ~ii !, ~iv! and ~v! are manifest in Eq.~1.1!
due to the way thes i enter in Eq.~2.2!. Indeed they follow
so trivially from Eq. ~2.2! that the reader may well wonde
why we have bothered to mention them. We have done
only because not all of these properties are immediately
vious from the Feynman diagram expansion of gauge the
amplitudes.~These properties are also not all manifest in t
diagrammatic prescription of@6#.!

Of the remaining properties,~iii !, ~vi! and ~vii ! will be
proved in the following subsections. The final property~viii !
regarding multi-particle poles will not be addressed here.
deed, note that a proof that Eq.~1.1! satisfies~viii ! would
essentially be a proof that Eq.~1.1! is correct—since a tree
level YM amplitude is uniquely fixed by its poles~and their
residues!.

B. Parity symmetry

The parity symmetry~4.3! is obvious in gauge theory bu
not manifest in the formula~1.1!.4 On the individual compo-
nent amplitudesAn,d , Eq. ~4.3! says that

An,d~l,l̃,h!5E d4nc expF i(
i 51

n

h iAc i
AG Ãn,n2d22~ l̃,l,c!,

~4.10!

thereby relating an integral over the moduli space of deg
d curves to an integral over the moduli space of degren
2d22 curves.

The proof of Eq.~4.10! is fairly straightforward. We start
by looking for a way to relate the bosonic part of the amp
tudes:

re
4The parity symmetry was also very recently discussed in@9# in

the framework of@3#.
9-6
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An,d~l,l̃ !5E dMn,d)
i 51

n

d2~l i
a2j i Pi

a!

3)
k50

d

d2S (
i 51

n

j is i
kl̃ i

ȧD ,

Ãn,n2d22~ l̃,l!5E dM̃n,n2d22)
i 51

n

d2~ l̃ i
ȧ2 j̃ i P̃i

ȧ!

3 )
l 50

n2d22

d2S (
i 51

n

j̃ i s̃ i
ll i

aD . ~4.11!

HeredM̃n,n2d22 and P̃ are obvious generalizations of Eq
~2.2! and ~2.1!:

dM̃n,n2d22

5
d2~n2d22!12ãdns̃dnj̃

vol@GL~2!# )
i 51

n
1

j̃ i~ s̃ i2s̃ i 11!
,

P̃i
ȧ5 (

l 50

n2d22

ãl
ȧs̃ i

l . ~4.12!

We will show that after integrating out the modulia, the first
set of delta functions inA exactly transforms into the secon
set of delta functions inÃ ~and vice versa! when one makes
the change of variables

s̃ i5s i , j̃ i5
1

j i) j Þ i~s i2s j !
. ~4.13!

The Jacobian for this coordinate transformation is unity,
we will pick up a simple Jacobian from manipulating th
bosonic delta functions. This Jacobian will exactly cance
similar fermionic determinant.

Let us begin by studying the quantity

pm5(
i 51

n s i
m

) j Þ i~s i2s j !
. ~4.14!

We claim thatpm is a polynomial in thes i ’s of degreem
2n11. To see this, considerpm as an analytic function o
z5sn ~this can of course be repeated for all of thes’s!. It
looks likepm(z) might have poles at the others i , but in fact
it is easy to see that the residue is always zero. Sopm(z) has
no poles, and grows at infinity likezm2n11, so it must be a
polynomial of degreem2n11. In particular,pm vanishes
for m,n21, andpn2151.

Now consider the first type of delta function inA ~we
focus on one value ofa and restore covariance later!,

I 5E dd11a)
i 51

n

d~l i2j i Pi !, ~4.15!

and take linear combinations of the delta functions accord
to then3n matrix with entries
02600
t

a

g

Mmi5
s i

m

j i) j Þ i~s i2s j !
, i 51,...,n, m50,...,n21.

~4.16!

That is, we write

I 5E dd11a~detM ! )
m50

n21

dS (
i 51

n

Mmi~l i2j i Pi !D .

~4.17!

The second term in the delta function is now

(
i 51

n s i
m

j i) j Þ i~s i2s j !
j i (

k50

d

aks i
k5 (

k50

d

akpk1m ,

~4.18!

using the definitions~2.1!, ~4.14! and ~4.16!. Then recalling
that pk1m is zero for m,n2d21, we can split the delta
functions into two kinds:

I 5~detM ! )
m50

n2d22

dS (
i 51

n

j̃ is i
ml i D E dd11a

3 )
m5n2d21

n21

dS (
i 51

n

j̃ is i
mlm2 (

k50

d

akpk1mD .

~4.19!

The d11 moduli now appear linearly in the lastd11 delta
functions and can be integrated out trivially. The Jacobian
this is just 1, becausepk1m is a triangular matrix with diag-
onal entriespn2151. Finally, we conclude that

I 5E dd11a)
i 51

n

d~l i2j i Pi !

5FV)
i 51

n

j̃ i G )
m50

n2d22

dS (
i 51

n

j̃ is i
ml i D , ~4.20!

whereV is the Vandermonde determinant of all of thes’s
and the term in brackets comes from evaluating det(M).

The next step is to simply apply Eq.~4.20! in reverse to
get

)
k50

d

dS (
i 51

n

j is i
kl̃ i D 5FV)

i 51

n

j i G21E d~n2d22!11ã

3)
i 51

n

d~l̃ i2 j̃ i P̃i !. ~4.21!

Finally we can combine Eqs.~4.20! and ~4.21! and restore
the a and ȧ indices to arrive at
9-7
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E dMn,d)
i 51

n

d2~l i
a2j i Pi

a!)
k50

d

d2S (
i 51

n

j is i
kl̃ i

ȧD
5E dM̃n,n2d22F)

i 51

n
j̃ i

j i
G2

)
i 51

n

d2~ l̃ i
ȧ2 j̃ i P̃i

a!

3 )
l 50

n2d22

d2S (
i 51

n

j is i
ll i

aD . ~4.22!

We have now related the bosonic integral over degred
curves to the bosonic integral over degreen2d22 curves,
up to a factor which with the help of Eq.~4.13! can be
written as

F)
i 51

n
j̃ i

j i
G2

5FV)
i 51

n

j̃ i G4

. ~4.23!

In fact, this is precisely the factor which should arise fro
the fermionic Fourier transform in the formula~4.10!:

E d4nc expF i(
i 51

n

h iAc i
AG )

l 50

n2d22

d4S (
i 51

n

j̃ is i
lc i

AD
5FV)

i 51

n

j̃ i G4

)
k50

d

d4S (
i 51

n

j is i
kh iAD . ~4.24!

This completes the proof that Eq.~1.1! satisfies the conjuga
tion property~4.10!.

Incidentally, the above arguments show that given a
solution of Eqs.~2.6! one can construct a solution of th
conjugate equations

l̃ i
ȧ5 j̃ i (

l 50

n2d22

s̃ i
l ãl

ȧ , ȧ51,2, i 51,...,n,

05(
i 51

n

j̃ i s̃ i
ll i

a , a51,2, l 50,...,n2d22,

~4.25!

by taking s̃ and j̃ to be given by Eqs.~4.13!. It is not nec-
essary to independently specify theãl

ȧ since the top equa
tions in Eqs.~4.25! determine them uniquely in terms o
(s̃ i ,j̃ i). Thus, we have shown that

Nn,n2d225Nn,d , ~4.26!

and, moreover, that the contribution toAn,d from any given
root is exactly the conjugate of the contribution of that ro
to An,n2d22 . The relation~4.26! is reminiscent of the rela
tion between Betti numbers for a manifold of dimensionn
22 as well as of the relation between Hodge numbers un
mirror symmetry. It would be interesting to find a relatio
betweenNn,d and some invariants ofP3u4 ~perhaps Gromov-
Witten invariants! or of its moduli space of holomorphi
curves.
02600
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C. Soft gluon limit

For both the soft gluon and collinear limits, comparing t
left- and right-hand sides of Eqs.~4.6! and~4.7! reveals that
we will have to perform two integrals and eliminate tw
delta functions. Clearly we want to eliminate the appeara
of gluon 1 on the right-hand side, so we should eliminate
two delta functionsd2(l1

a2j1P1
a) ~for a51,2) by perform-

ing the integrals overj1 and s1 . In general there can be
several roots which contribute to this integral. However,
are only interested in roots which in the desired limit gi
rise to a pole in the amplitude. We will argue that only o
root contributes to the coefficient of this pole.

A prototype for both the soft gluon and collinear limi
involves an integral of the form

I i5 lim
^1i &→0

E ds1

s12s i
f ~s1!dS ^ i1&

l1
1l i

12FB1

A1
2

Bi

Ai
G D .

~4.27!

Specifically, we are interested in the poles of this integ
We do not yet need the explicit form ofA, B or f, and need
only to make assumptions which are completely reasona
for the application at hand:B/A is a rational function ofs
with isolated roots, and the functionf has no poles ins1 .

The quantity in brackets in Eq.~4.27! vanishes whens1
5s i and hence can be written as

FB1

A1
2

Bi

Ai
G5~s12s i !F~s12s i ,s i ! ~4.28!

for someF. Changing integration variables froms1 to w
5s12s i gives

I i5 lim
^1i &→0

E dw

w
d~g~w!!, g~w!5

^ i1&
l1

1l i
12wF~w,s i !.

~4.29!

In the limit ^1i &→0 the roots ofg(w) are easy to analyze
There is one root~which we will call w5w0) for which w is
small ~of the same order aŝ1i &), and there may be othe
roots for whichF(w,s i) is small. We assume there is n
degeneracy among the possible roots. Integrating the d
function gives a factor of 1/g8(w), which is a number of
order 1 at any of the roots. Therefore, the only pole in
integralI i comes from the factor of 1/w evaluated on the roo
w5w0→0.

The value ofw0 is given by the implicit equation

w05
^ i1&
l1

1l i
1

1

F~w0 ,s i !
, ~4.30!

with F(w0 ,s i) being of order unity. The contribution of thi
root to the integral is

I i5
1

w S ]g

]wD 21U
w5w0

5
1

w0
@F~w0 ,s i !1w0]wF~w0 ,s i !#

21.

~4.31!
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SinceF is a rational function andF(w0 ,s i) is of order unity,
the derivative]wF(w0 ,s i) cannot blow up. Therefore th
second term in brackets can be ignored asw0→0, so using
Eq. ~4.30! we arrive at the formula

I i5 lim
^1i &→0

E ds1

s12s i
f ~s1!dS ^ i1&

l1
1l i

12FB1

A1
2

Bi

Ai
G D

5
l1

1l i
1

^ i1&
f ~s i !, ~4.32!

which is valid under the assumptions onf, A and B given
above.

Now let us turn our attention to the soft gluon limit~4.6!.
First we set the helicity of gluon 1 to11 by settingh150 in
An,d . This destroys thei 51 term in the third delta function
in Eq. ~1.1!. In the second delta function, thei 51 term also
vanishes trivially in the soft limit sincel̃1

ȧ→0. Particle num-
ber 1 therefore only appears in the integrals

E ds1dj1

1

j1~s12s2!~sn2s1!
d~l1

12j1A1!

3d~l1
22j1B1!. ~4.33!

The j1 integral is trivial and leads to

1

sn2s2

1

~l1
1!2 E ds1F 1

s12s2
2

1

s12sn
GdS l1

2

l1
12

B1

A1
D .

~4.34!

Now we are completely free to subtract from the argumen
the delta function an amount which is equal to zero in
form of l i

2/l i
12Bi /Ai for any iÞ1. ~This is guaranteed to b

zero by the otherl i
a2j i Pi

a delta functions.! Then we simply
apply the formula~4.32!, once with i 52 and once withi
5n, to obtain the factor

1

sn2s2

1

~l1
1!2 ~ I 22I n!5

1

sn2s2

1

~l1
1!2 Fl1

1l2
1

^21&
2

l1
1ln

1

^n1& G
5

1

sn2s2
F ^n2&

^21&^n1&G . ~4.35!

The factor of 1/(sn2s2) is needed to write the correct me
sure factor~2.2! for the (n21)-particle amplitudeA(2,...,n).
Gluon number one has now completely disappeared from
integral, leaving only the overall factor in brackets, in agre
ment with Eq.~4.6!.

D. Collinear limit

First we consider the factor

1

sn2s2

1

~l1
1!2 E ds1F 1

s12s2
2

1

s12sn
GdS l1

2

l1
12

B1

A1
D ,

~4.36!

which arises exactly as in the previous subsection. Howe
whereas we could there use Eq.~4.32! for both i 52 and i
02600
f
e

e
-

r,

5n ~since^12& and ^1n& were both going to zero!, here we
can only use Eq.~4.32! for i 52 since only^12&→0 in the
collinear limit. Therefore the second term in brackets in E
~4.36! gives no contribution to the pole, and we only pick u
the factor

1

sn2s2

l2
1

l1
1

1

^21&
5

1

sn2s2
FA12z

z

1

^21&G . ~4.37!

At this stage the integrals over the variabless1 and j1
associated with gluon number 1 have been performed,
those associated with gluon 2 remain and we must rew
the l2 dependence in terms ofl5l2 /A12z. In the j2 in-
tegral this is accomplished by rescalingj2 in order to obtain

E dj2

j2
d~l2

12j2A2!d~l2
22j2B2!

5F 1

12zG E dj28

j28
d~l12j28A2!d~l22j28B2!. ~4.38!

The last delta functions to check are the ones of the form

d2S (
i 51

n

j is i
kl̃ i

ȧD 5d2S j1s1
kl̃1

ȧ1j2s2
kl̃2

ȧ1(
i 53

n

j is i
kl̃ i

ȧD
5d2S l1

1

A1
s1

kl̃1
ȧ1j2s2

kl̃2
ȧ1(

i 53

n

j is i
kl̃ i

ȧD
5d2S z

12z

l2
1

A2
s2

kl̃2
ȧ1j2s2

kl̃2
ȧ

1(
i 53

n

j is i
kl̃ i

ȧD , ~4.39!

where in the first line we used the fact that we already in
grated outj1 setting it toj15l1

1/A1 , in the second line we
used the fact that we integrated outs1 settings15s2 , and
in the third line we used the fact thatl1l̃15@z/(1
2z)#l2l̃2 . Of course, we know thatj2 will eventually be
set by a delta function to the valuel2

1/A2 , so we may as well
write the final line as

d2S 1

12z
j2s2

kl̃2
ȧ1(

i 53

n

j is i
kl̃ i

ȧD
5d2S j28s2

kl ȧ1(
i 53

n

j is i
kl̃ i

ȧD , ~4.40!

keeping in mind thatl̃25A12zl̃ andj25A12zj28 .
What remains has precisely the structure of the amplit

A(p,3,...,n), together with the extra factors in brackets fro
Eqs. ~4.37! and ~4.38!, in complete agreement with the co
linear limit ~4.7!. The conjugate of this equation follow
from the parity transformation discussed in Sec. IV B. T
most notable fact following from that analysis is that the po
arises from the root satisfyings12s2.@12#. One might
9-9
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attempt to prove the last collinear limit~4.8! by combining
the above discussion with this observation. Then, the dif
ent z dependence might arise from thel dependence of the
fermionic integrals.

V. CONCLUSIONS AND SPECULATIONS

In this paper we have presented strong evidence that
formula ~1.1! encodes the complete tree-levelS matrix of
Yang-Mills theory in four dimensions. Explicit calculatio
has now shown that Eq.~1.1! agrees with YM theory for all
MHV and MHV amplitudes, as well as all 6-particle non
MHV amplitudes. Moreover the analysis of Sec. IV sho
that for anyn, Eq.~1.1! satisfies a number of important prop
erties required of gauge theory amplitudes, including pa
symmetry. Many interesting directions remain open.

Of primary importance is to understand the connect
between the formula~1.1!, which was obtained in@2# follow-
ing the suggestion in@1# that one should consider a sing
instanton of degreed in the topological B model onP3u4, and
the diagrammatic procedure of@6#, in which arbitrary ampli-
tudes are built out ofd disconnected amplitudes, each
degree 1. We suspect that formulating a proof that Eq.~1.1!
factorizes correctly onto multiparticle poles would esse
tially amount to proving the equivalence of Eq.~1.1! and the
rules of @6#, simply because the factorization properties a
completely manifest in the latter.

The numerical coefficient in front of Eq.~1.1! was fixed
by comparing with gauge theory. We have not computed
coefficient independently in the B model. It is conceivab
that the degreed contribution and the separated degree
in

s

r

l

ee

i-
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is

contributions ~as well as other contributions! have to be
added together to fully reproduce the normalization of
gauge theory scattering amplitudes. It is also possible
the B model has some huge symmetry group which rela
the connected instanton contribution~1.1! to the fully discon-
nected instantons of@6#.

Of course, even forgetting for the moment about the
model, it would also be very interesting to prove rigorous
that the formula~1.1! is the tree-levelSmatrix of Yang-Mills
theory. To this end it would be useful to understand better
mathematical structure of Eqs.~2.6!, and in particular to
learn how many roots they have for generaln and d ~i.e.,
what is the degree of the corresponding Groebner ba!.
These numbers might be related to some interesting inv
ants ofP3u4 or of its moduli space of holomorphic curve
and perhaps the equality ofNn,d and Nn,n2d22 could be
understood in this language.

Finally, all of our considerations have applied to the tre
level Smatrix in gauge theory. An obvious next step of gre
interest would be to see what light the topological B mod
can shed on one-loop calculations@17#.
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