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On the plane-wave cubic vertex
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The exact bosonic Neumann matrices of the cubic vertex in plane-wave light-cone string field theory are
derived using the contour integration techniques developed in our earlier paper. This simplifies the original
derivation of the vertex. In particular, the Neumann matrices are written in terms ofm-deformed Gamma-
functions, thus casting them into a form that elegantly generalizes the well-known flat-space solution. The
asymptotics of them-deformed Gamma-functions allow one to determine the large-m behavior of the Neumann
matrices including exponential corrections. We provide an explicit expression for the first exponential correc-
tion and make a conjecture for the subsequent exponential correction terms.
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I. INTRODUCTION

The BMN-correspondence@1# between the plane-wav
limit of IIB string theory onAdS53S5 @2,3# and a certain
sector of thed54, N54 SYM theory has proven to be
powerful means in paving the way towards an improved
derstanding of the AdS/CFT correspondence.

Despite the impressive advancements in the analysi
both sides of this correspondence, some key questions
remain to be answered. One central point that has so far
been addressed to full satisfaction is the study of interact
and their dual interpretation. For instance, given the ex
cubic vertex, the string scattering amplitudes can in princi
be calculated for all values ofm. For largem this would
allow comparison with perturbative gauge theory calcu
tions and moreover the knowledge of finitem corrections
could provide very interesting predictions for finitel8 cor-
rections in the gauge theory.

Some important results in this direction have already b
obtained. On the string theory side, progress has been m
towards understanding the interactions in the framework
light-cone string field theory. This was first developed for fl
space in@4–6# and then generalized to the plane-wave
@7–14#. For comparisons to the gauge theory side see, e
@15–17#.1 However, quantities that have been computed
all m are still rather rare, and we believe comprise only
results of@11# for the cubic closed interaction vertex as we
as @14# for the open-closed vertex. Furthermore, in order
perform computations of scattering amplitudes based
these results, it would be advantageous if the interactions
expressed in a concise form reminiscent of the flat-sp
results.

The main motivation for the present paper is to readdr
the analysis of the plane-wave cubic vertex. The derivat
that we shall provide for the vertex relies on the conto

*Electronic address: j.lucietti@damtp.cam.ac.uk
†Electronic address: s.schafer-nameki@damtp.cam.ac.uk
‡Electronic address: a.sinha@damtp.cam.ac.uk
1For a more complete list of references see@18–23#, and@24# for

recent progress.
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method for summing certain infinite series, which was dev
oped in@14#. One of the main merits of this approach is th
it allows a derivation very close to the one known for the fl
space vertex in@5#. The solution to the cubic vertex equatio
as in @14#, will be written in terms ofm-deformed Gamma-
functions. This gives an elegant generalization of the fl
space solutions of@5#.

There is a slight discrepancy between the explicit expr
sion of the Neumann matrices in@11# and ours. It appears
that the only problem in@11# is the final expression for the
Neumann vectors~i.e., their equation~52!!.2 We derive the
large m asymptotics directly from the exact expression f
the Neumann vectors, which agree with those in@11#. De-
spite the discrepancy in the exact expression, this is not
prising since the asymptotics in@11# were not developed
from their exact expression for the vertex. We will elabora
on this in Sec. III C. We also extend the large-m asymptotics
by explicitly computing the first exponential corrections a
provide a conjecture for the subsequent exponential cor
tion terms.

The plan of this paper is as follows. In Sec. II we prese
the derivation of the cubic vertex in flat space using t
contour method for summing series of@14#. In Sec. III we
generalize this to the cubic vertex in the plane-wave. In S
IV we use the asymptotics of them-deformed Gamma-
functions to derive the large-m expansions of the Neuman
matrices. We also comment upon the exponential correct
appearing in the large-m asymptotic expansions and explic
itly give the first term, as well as providing a conjecture f
the subsequent terms. We conclude in Sec. V. There are
appendices in which various properties and asymptotics
the m-deformed Gamma-functions are derived.

II. THE CUBIC VERTEX IN FLAT-SPACE

In this section, as a warm-up, we will use the conto
method of@14# in order to derive the well-known flat-spac
Neumann matricesN̄mn

rs for the cubic string vertex, which

2In fact it is easy to see that there is some error in~52! of @11#;
simply note thatfm3 in the equation in question is divergent.
©2004 The American Physical Society05-1
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originally were determined in@5#. We shall focus on the
bosonic part of the vertex, for which the standard ansatz

uV&5N expS 1

2 (
r ,s51

3

(
m,n51

`

a2m
~r ! N̄mn

rs a2n
~s!

1(
r 51

3

(
m51

`

a2m
~r ! N̄m

r P1KP2D u0&, ~2.1!

wherea2m
(r ) are the normalized oscillators of ther th string

andPi52p1
1p2

i 22p2
1p1

i . Geometrical continuity conditions
and momentum conservation then imply constraints upon
Neumann matrices. It was shown that the Neumann matr
satisfy

N̄mn
rs 52

mna1a2a3

na r1mas
N̄m

r N̄n
s , ~2.2!

where

N̄m
r 52~~A~r !! tG21B!m , K52 1

4 BG21B, ~2.3!

and a i52p( i )1 are the momenta of the various string
which are chosen such that( i 51

3 a i50, and t0

5( r 51
3 a r loguaru. Without loss of generality we assumea1 ,

a2.0 anda3,0. The matricesA andB are defined in Ap-
pendix A and correspond to various Fourier modes. Furt

G5(
r 51

3

A~r !~A~r !! t. ~2.4!

To solve for the Neumann matrices, it is clear that it is s
ficient to determineG21B. This is most conveniently don
by solving the two coupled series

(
n51

`

An f̄n
~3!Anm

~r !5
a3

a r
Am f̄m

~r ! ,

~2.5!

(
r 51

3

(
n51

` An

a r
Amn

~r ! f̄ n
~r !52Bm ,

for f̄ n
(r ) . These are related to the Neumann vectors by

f̄ m
~r !5

a r

Am
N̄m

r . ~2.6!

An additional constraint is

(
n51

`

An f̄n
~3!Bn522

t0

a1a2
, ~2.7!

which comes from the knowledge of the explicit form ofK in
02600
e
es

,

r

-

flat-space.3 The equations~2.5! are equivalent to

(
m51

`
~21!m

m
sin~mpb! f̄ m

~3!5p
t0

a3
, ~2.8!

(
m51

`

~21!m1nm
sin~mpb!

n22m2b2 f̄ m
~3!52

p

2b2 f̄ n
~1! ,

~2.9!

(
m51

`

~21!mm
sin~mpb!

n22m2~11b!2 f̄ m
~3!5

1

~b11!2

p

2
f̄ n

~2! ,

~2.10!

b

a1
(
n51

`

n~21!n
f̄ n

~1!

n22m2b2 1
11b

a2
(
n51

`

n
f̄ n

~2!

n22m2~11b!2

5
p

2a3
~21!m

1

sin~mpb!
f̄ m

~3!2
a3

a1a2

1

m2 . ~2.11!

Here, we definedb5a1 /a3,0.
We shall now apply the contour method in order to der

the solutions to these equations. Schematically, the con
method provides one with solutionsf (n) to certain coupled
series(nf (n)5F for given F ~note these can be interprete
as infinite dimensional matrix equations!. The main idea is to
map the sum to a contour integral in the plane so that
Cauchy’s theorem

(
n51

`

f ~n!1(
k

Resz5zk
p cot~pz! f ~z!

5 lim
R→`

R
CR

dz

2p i
p cot~pz! f ~z!, ~2.12!

whereCR is the contour given by a circle of radiusR cen-
tered on the origin, not intersecting any poles of the in
grand ~so in particularRÞ1,2,3,...). If the RHS of~2.12!
vanishes, one can compare the sum over residues witF,
which allows one to infer the poles and zeroes off (z) ~note
we will assert thatf (z)50 for z50,21,22,...). For more
details and examples on the contour method we refer
reader to@14#.

Applied to the present context, i.e., in order to find t
solutions for f̄ n

(r ) , we map the sum to a contour integral
the complex plane, i.e., consider in view of~2.8!,

3Note that the RHS of this equation equalsK, which in flat-space
can be determined using conformal invariance, whereby one m
the known Neumann functions of the complex plane to the lig
cone string diagram, cf.@25#. Due to the absence of explicit confo
mal invariance in the light-cone gauge, this is not possible anym
in the plane-wave, so that the condition~2.7! cannot be used to
derive properties off (3). This will be discussed in the next sectio
5-2
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R dm

2p i
p cot~pm!

1

cos~pm!

sin~mpb!

m
f̄ ~3!~m!

52 R dm

2p i
G~m11!G~2m!

sin~mpb!

m
f̄ ~3!~m!,

~2.13!

where we have rewritten (21)m51/cos(pm). Assume that
there are no relative cancellations of residues, and that
contribution to the sum comes from a single residue. T
sum ~2.8! arises from the poles atmPN. In order to cancel
the poles ofG(m11) for mPZ2 , f̄ (3)(m) needs to have a
factor 1/G(m11). Further, it can have poles atmbPZ2 or
mbPZ1 , i.e., f̄ m

(3)}G(6bm). In fact, it has to have such
factor, as otherwise, evaluating the contour integral for~2.9!
would imply that f̄ n

(1) vanishes, which is unphysical. Furthe
sinceb,0 the only consistent choice is that the poles are
mbPZ1 , as otherwisef̄ m

(3) would be singular for the par
ticular valueb521. In summary we deduced that

f̄ ~3!~m!5 f̂ ~3!~m!
G~2mb!

G~m11!
, ~2.14!

with f̂ (3)(m) having no poles atmPZ or mbPZ.
In evaluating the integral for~2.10!,

R dm

2p i
m

G~2m!

G~11mb!

p

n22m2~11b!2 f̂ m
~3! , ~2.15!

one obtains poles atm56n/(11b). Assuming that the con
tributions to the sums come only from one term implies t
f̂ m

(3) has to have zeroes at all valuesm, such thathm(1
1b)PZ1 for one of the signsh561. Thus, we may make
the further ansatz

f̂ m
~3!5

1

G~2hm~11b!11!
f̌ m

~3! . ~2.16!

For the choiceh51,4 the residue of~2.15! at m52n/(1
1b) implies

f̄ n
~2!5

G~n/~11b!!

G~12n~b/~11b!!!G~n11!
f̌ 2n/~11b!

~3!

5
G~2na3 /a2!

G~2n~a3 /a211!11!G~n11!
f̌ na3 /a2

~3! .

~2.17!

The contour argument applies only if the integrand suita
falls off at infinity ~cf. @14#!. Invoking Stirling’s formula, the
m-dependent part of the integrand in~2.15! has an
asymptotic behavior given by

4With the choiceh521, one would encounter a pole at som
positive real integer for some choice ofb. The nonvanishing con-
tributions from this pole would lead to inconsistencies.
02600
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m25/2bmb~11b!m~11b! f̌ ~3!~m!

5m25/2a1
2ma1 /a3a2

2ma2 /a3~2a3!2mf̌ ~3!~m!

5m25/2e2mt0 /a3 f̌ ~3!~m!. ~2.18!

Thus, f̌ (3) must contain a factoremt0 /a3, but could in prin-
ciple also be proportional to(kakm

k for some suitable pow-
ers k, which respect the required asymptotics. The sa
asymptotic behavior is obtained for the integrands for~2.8!
and ~2.10!. We shall fully determinef̌ below.

With the new ansatz~2.16!, the residue for the sum in
~2.8! becomes

(
m51

`
~21!m

m
sin~mpb! f̄ m

~3!5p
d f̌ ~3!~m!

dm
U

m50

,

~2.19!

so that

d f̌ ~3!~m!

dm
U

m50

5
t0

a3
. ~2.20!

Now consider the integral for Eq.~2.9!,

~21!n R dm

2p i

p cot~pm!

cos~pm!
m

sin~mpb!

n22m2b2

G~2mb!

G~m11!
f̂ ~3!~m!.

~2.21!

The only pole that has a nontrivial residue is located atm
5n/b, which results in

~21!n11
p

2b2

G~2n/b!

G~n11!
f̂ n/b

~3! 5
p

2b2 f̄ n
~1! . ~2.22!

With ~2.16!, the functionf̄ (1) is now determined as

f̄ n
~1!5~21!n11

G~2n/b!

G~2n/b2n11!G~n11!
f̌ n/b

~3!

5
G~2~a2 /a1!n!

G~2n~a2 /a111!11!G~n11!
f̌ na3 /a1

~3! ,

~2.23!

where the reflection identity has been applied. In order
further constrain the functionf̌ we need to discuss the las
equation~2.11!. Consider the term that gives rise to the fir
term in ~2.11!, involving f̄ n

(1)

2 R dn

2p i
n

f̌ ~3!~n/b!G~2n!

n22m2b2

G~n1n/b!

G~11n/b!
. ~2.24!

The poles are determined as in Appendix E of@5#. At n50
the pole is

Resn5052
f̌ ~3!~0!

b~11b!m2 . ~2.25!
5-3
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At n5mb the residue is

Resn5mb52 f̌ ~3!~m!
G~2bm!G~~11b!m!

2G~11m!
, ~2.26!

and fornPb/(11b)Z2 the residues give rise to the sum

2 (
k51

`

f̌ ~3!

3S 2k

11b D 1

k22m2~b11!2

G~k/~b11!!

G~k!G~12kb/~11b!!
.

~2.27!

Comparison with~2.11! yields the following additional con-
dition on f̌ (3),

f̌ ~3!~0!

a1~11b!m2 52
a3

a1a2m2 , ~2.28!

so that

f̌ ~3!~0!51. ~2.29!

In order to fully determinef̌ , recall that from the asymptoti
cal behavior in ~2.18! we deduced that f̌ (3)(m)
5(kakm

kemt0 /a3. Now, ~2.29! and ~2.20! imply that a051
anda150. Since any higher power ofk would alter the as-
ymptotics such that the contour method would not be ap
cable anymore, we conclude that

f̌ ~3!~m!5emt0 /a3. ~2.30!

This is in agreement with@5#. In summary, the solutions to
the equations~2.8!–~2.11! take the general form

f̄ m
~r !5 f̌ m

~r !
G~2ma r 11 /a r !

G~m11!G~2m~a r 11 /a r11!11!
, ~2.31!

where we set

f̌ m
~r !5 f̌ ma3 /ar

~3! 5emt0 /ar. ~2.32!

In particular, ~2.8!–~2.11! imply that the Neumann vector
are given by

2
1

a r
Am f̄m

~r !5~~A~r !! tG21B!m52N̄m
r , ~2.33!

which completes the contour method derivation for the fl
space cubic vertex.

III. THE CUBIC VERTEX FOR THE PLANE-WAVE

Having illustrated the contour method, we are now rea
to apply it to derive the cubic vertex for the plane-wa
string theory. Again, we are interested in the bosonic N
mann coefficients. As in the case of the open-closed ve
derived in @14#, the cubic vertex will turn out to be mos
02600
i-

-

y
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x

concisely expressed in terms ofm-deformed Gamma-
functions. In particular, the following functions will be use
ful,

Gm
~r !~z!5e2garvz

1

a rz
)
n51

` S n

v rn1a rvz
earvz /nD

5G2mar

I ~a rz!, ~3.1!

where v rn5An21a r
2m2 and Gm

I (z) is the m-deformed
Gamma-function defined in@14# ~exceptn as opposed tovn
appears in the denominator of the infinite product!. We shall
define the Gamma-function without a superscript

Gm~z!5Gm
~r !~z!, for a r51. ~3.2!

A key property of these functions is that they satisfy a ge
eralization of the reflection identity of the Gamma-functio

Gm
~r !~z!Gm

~r !~2z!52
p

a rz sin~pa rz!
. ~3.3!

Various properties of these functions, such as asymptotic
z and inm, are discussed in the Appendices and in@14#.

A. Vertex equations

The ansatz for the bosonic part of the plane-wave cu
vertex is as in~2.1!. The conditions on the Neumann matr
ces in the plane-wave case have been derived in@7#, which
again reduce to the problem of findingf m

(3) ~denoted byYm in
@11#! such that

(
n51

`

~G1!mnf n
~3!5(

r 51

3

(
n51

`

~A~r !U ~r !~Ar ! t!mnf n
~3!5Bm ,

~3.4!

where

~U ~r !!mn5dmn

~v rm2v r0!

m
. ~3.5!

The conventions are as in@7,8,11# and the relation to Sec. I
is by f n

(r )um505 f̄ n
(r )An.

As in flat space,~3.4! has the interpretation of continuit
conditions on the vertex at the interaction, i.e., att50. The
strategy, which we shall pursue~and which is in contrast to
@11#!, is to proceed as in flat space and stepwise solve
f m

(3) , i.e., to find solutionsf m
(r ) to the set of equations

(
p51

`

f p
~3!Apm

~r ! 5
a3

a r
f m

~r ! , ~3.6!

(
p51

`

(
r 51

3
1

a r
~A~r !U ~r !!mpf p

~r !52Bm . ~3.7!

The Neumann matrices in the plane-wave case have b
shown@26# to satisfy an analogous equation to~2.2!,
5-4
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N̄mn
rs 52

mna

11maK

N̄m
r N̄n

s

asv rm1a rvsn
, ~3.8!

where the Neumann vectors are

N̄m
r 5S ~C21Cr !

1/2Ur
21f ~r !

1

a r
D

m

5Av rm

m

~v rm1ma r !

m

1

a r
f m

~r ! , ~3.9!

and

K52
1

4
BtG1

21B. ~3.10!

FurtherCmn5mdmn , (Cr)mn5v rmdmn and thef (r )’s are de-
fined as above.

Our strategy is now to apply the contour method to
sums in~3.6! and~3.7!. From Eq.~3.6! one can again deduc
the pole structure forf (3)(m). Assuming that the residues o
the equations in~3.6! come from a single pole the condition
are that f (3)(m) has zeroes formP2N as well asm(1
1b)PN0 and has poles formbPN. Thus, this fixes the pole
and zero structure of the solution, however not the expl
functional dependence. The latter is determined by~3.7!. For
this, note thev rp term enteringU (r ). As discussed in@14#,
the integrals along the branch cuts that are present due t
square root will not contribute to the contour integral cor
sponding to the sum in question, if them andp dependences
are all packaged together intov rp and the integrand is odd in
the imaginary part. Thus, in view of~3.6!, one is led to the
following explicit realization of the poles and zeroes inf (3),

f ~3!~m!5 f̃ m
~3!

G2mb~2bm!

Gm~11b!~2~11b!m!Gm~m!
, ~3.11!

where the particular choice of deformation parameters for
Gamma-functions is chosen, in order to ensure that
branch cuts coincide. The functionf̃ m

(3) is determined much
in the same way as we explained in detail for the flat-sp
discussion. Furthermore, one has to ensure that the all-m so-
lution reproduces the right flat-space limit. Note also that
contour method requires that the integrand falls off suita
at infinity, so that the RHS of~2.12! vanishes. In the flat-
space this discussion relied on applying the Stirling form
to the Gamma-functions. For the plane-wave case, it will
relevant that them-deformed Gamma-functions satisfy a
analogous Stirling formula, which is proven in Appendix

B. Solutions to the vertex equations

From the discussion in the last subsection, which in p
ticular led to the form~3.11!, one obtains the following an
satz for the functionf (3)(m), which has the correct flat-spac
02600
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limit. It further satisfies] f (3)/]mum505t0f (3), which fol-
lows from Eq.~30! of @11#.5 The ansatz reads

f m
~3!5

m2

2vm
Bmy~12y!et0~m2vm!

Gm
~1!~m!Gm

~2!~m!

Gm~m!
M ~01!,

~3.12!

where we fixed as in@11# the gauge

a15y, a2512y, a3521, ~3.13!

and

Bm5
2

p

sin~mp~12y!!

y~12y!m3/2 , ~3.14!

as well as

M ~z!5
Gm~z!z

Gmy~yz!yzGm~12y!~~12y!z!~12y!z
.

~3.15!

The factorM (01) is computed from~3.11! by imposing the
equation~3.7! and thus is crucial in order to reproduce th
correct residues. Note also thatM (01)→1 as m→0. So,
more explicitly we have

f ~3!~m!5
Am

p
sin~mp~12y!!

3
et0~m2vm!

vm

Gmy~ym!Gm~12y!~~12y!m!

Gm~m!
M ~01!

~3.16!

52
et0~m2vm!

vm

1

Am~12y!

3
Gmy~ym!

Gm~12y!~2~12y!m!Gm~m!
M ~01!. ~3.17!

Evaluation of the contour integrals corresponding to~3.6! for
r 51 and r 52, which have only nontrivial residues atm
52n/y andm52n/(12y), respectively, results in

f ~1!~n!52
~21!net0~m1vn/y!

vn/yAn~12y!

Gm~n/y!

Gm
~2!~n/y!Gm

~1!~n/y!
M ~01!,

~3.18!

f ~2!~n!5
et0~m1vn/~12y!!

vn/~12y!Any

3
Gm~n/~12y!!

Gm
~1!~n/~12y!!Gm

~2!~n/~12y!!
M ~01!.

~3.19!

5Note this motivates the factor 1/vm as opposed to 1/(vm1m)
which both have the correct flat space limit.
5-5
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Note that in evaluating the contour integrals for each va
for r the branch cuts coincide, the integrand being odd al
the cuts, which is of course crucial for the applicability of t
contour method. These solutions can be put into the clo
form

f m
~r !5

et0~m1vm/ar
!

Am~2a r2a r 11!vm/ar

3
Gm

~r 11!~2m/a r !

Gm
~r !~m/a r !Gm

~r 21!~m/a r !
M ~01!, ~3.20!

which beautifully generalizes the corresponding express
in flat-space~2.31! taking into account the difference in con
ventions.

Next ~3.7! needs to be checked. Thus consider the follo
ing contour integral, which corresponds to the sum of thr
51 term in ~3.7! ~cf. flat space analysis!

2M ~01! R dn

2p i

2y~21!m11Am sin~mpy!

n sin~pn!

3
et0~m1vn/y!

n22m2y2

~vn/y2m!

vn/y

Gm~12y!~2~n/y!~12y!!

Gm~2n/y!Gmy~n!
.

~3.21!

The residues atnPN give the r 51 term, the residues a
n(12y)/yPN give the r 52 term and the residue atn
52my gives ther 53 term in ~3.7!. We are left only with
the integral around the branch cut, which runs fromn
5 iym to n52 iym. Since the integrand is odd along eith
side of the cut the line integrals vanish—however, the in
grand is actually singular atn50 and thus we are left with
two semicircular contours on either side of the branch c
which we will call C1 and C2 , see Fig. 1. One might be
tempted to think this contribution is just the residue of t
integrand atn50; however, things are not quite as simple

FIG. 1. The contoursC6 .
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this, since the integrand is not defined at this point with o
choice of branch cut. What we can do though is take
residue of the factors not depending onvn and then on the
right side~i.e., alongC1) take the limitn→01 of the rest
and on the left take the limitn→02.

In the present case, the only contribution comes fromC2

~note the integrand is not regular at the branch points, h
ever the integral around them still vanishes, in fact goes
O(e1/2) wheree is the radius of the contour around a bran
point, see@14#!. We find that the contribution fromC2 is

2
2~21!m sinmpy

pm3/2y~12y!
M ~01!M ~02!. ~3.22!

It is easy to verify thatM (01)M (02)51, which leaves the
contribution fromC2 to be exactlyBm , thus completing the
proof.

Finally, we need to compute the quantityK, which is de-
fined by

K52
1

4
BtG1

21B52
1

4 (
n51

`

Bnf n
~3! . ~3.23!

For the computation, we need to consider the contour in
gral

2
2M ~01!

y~12y!
R dm

2p i

M ~2m!et0~2vm1m!

mvm
. ~3.24!

The residues at2mPN give 24K and since there are n
other poles we are left with the integrals around the bra
cut. There is a singularity in the integrand atm50 which on
both sides looks like a simple pole. Computing we get

2
2M ~01!

y~12y!
E

C1

dm

2p i

M ~2m!et0~2vm1m!

mvm

52
M ~01!M ~02!

my~12y!
, ~3.25!

and

2
2M ~01!

y~12y!
E

C2

dm

2p i

M ~2m!et0~2vm1m!

mvm
5

M ~01!2e2t0m

my~12y!
.

~3.26!

Therefore we find that

K5
1

4y~12y!m
~M ~01!2e2mt021!, ~3.27!

which we see has the correct flat space limit,K(m50)
5t0 /(2y(12y)).

We should emphasize that in this application of the co
tour method of@14# it has been crucial that the circular inte
grals around the branch points, as well as the integral
infinity, vanish—the latter was shown by applying the ge
eralization of Stirling’s formula of Appendix B.
5-6
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C. Comments

A couple of remarks are in order, in particular in view
the comparison with the solution obtained in@11#. First recall
that the solutionYm(m,y) in @11# is to be compared with ou
solution f m

(3) . In this comparison, one will observe that th
solution in Eq.~52! of @11# only agrees with~3.12!, if a3
→2a3 as well as the sign of ther 53 term in the exponen
is flipped, i.e., if

Ym~m,y!5expF ~m2vm!t0

1(
r 51

2

~f r2fmr!2~f32fm3!G m

2vm
Bm ,

~3.28!

with a3 replaced by 1. Note that the solution as it stands
@11# would be divergent for integralm, and thus seems
inconsistent.6

IV. LARGE- m ASYMPTOTICS

The large-m asymptotics of expressions in plane-wa
string theory are of the foremost interest in the context of
BMN correspondence, as these are to be compared with
turbative ~in l8) gauge theory data. Given our expressio
for the Neumann matrices, the only nontrivial input in det
mining these asymptotic expressions are the large-m asymp-
totics of them-deformed Gamma-functions, which we deriv
in Appendix C. In applying these one has to keep in m
that the asymptotic formulas only apply toG (r )(z) for
uarg(z)u,p, thus before applying the asymptotics to the fun
tions f (r )(m) one has to ensure that upon suitable applicat
of the reflection identities this condition is satisfied for t
arguments.

First note thatM (01) has the asymptotics, using th
G-function asymptotics of the Appendix C, given by7

M ~01!'e2t0mA 1

4pmy~12y!
. ~4.1!

Applying these asymptotics upon~3.18! and ~3.19!, we ob-
tain

f n
~1!'

~21!n

2pA2my~12y!

An

vn/yAvn/y1m
,

~4.2!

f n
~2!'

1

2pA2my~12y!

An

vn/~12y!Avn/~12y!1m
.

6The authors of@11# have confirmed the sign discrepancies in t
equation in question. We would like to thank Y. He and M. Sprad
for discussions on this point.

7As in @11#, A(m)'B(m) meansA(m)5B(m)1O(e2uar um).
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For f (3)(n), the asymptotic formula is only applicable t
~3.16!, resulting in

f m
~3!'

1

p
sin~mpa2!

a3

Am

1

A2ma

Av2m/a3
1m

vm/a3

. ~4.3!

This expansion agrees precisely with@11#. The Neumann
vectors,

N̄m
r 5Av rm

m

~v rm1ma r !

m
f m

~r !
1

a r

5Av rm

m

m

~v rm2ma r !
f m

~r !
1

a r
, ~4.4!

thus have the asymptotic behavior forr 51,2,

N̄m
r '2

~21!r ~n11!a r
1/2

2paA2mm

A~v rm1ma r !

Av rm

, ~4.5!

as well as forr 53,

N̄m
3 '2

1

p
sin~mpa2!

1

A2ma
A ua3u

v3m~v3m2ma3!
.

~4.6!

Finally, we may study the large-m asymptotics ofK. Inspect-
ing ~3.27! we see that we only need~4.1!, which leads to

K'2
1

4y~12y!m
1

1

16py2~12y!2m2 . ~4.7!

These agree with the findings of@11#.

A. Exponential corrections

In this section we will concentrate on explicitly extractin
the first exponential correction to the Neumann vectors
have derived, thus going further than the results given
@11#. These corrections could have interesting implicatio
for the gauge theory.

The problem reduces to finding the large-m exponential
corrections to the deformed Gamma-functions. Here we g
a brief argument and one can find a more rigorous deriva
in Appendix D. In Appendix D we show the following ke
result:

]

]m
logGm

~r !~z!exp52
Aua r um

vz
e22puar umF11OS 1

m D G .
~4.8!

If one does an integration with respect tom by parts~i.e.,
integrate thee22puar um), then we can prove that

logGm
~r !~z!exp5

Aua r um
2pua r uvz

e22puar umF11OS 1

m D G , ~4.9!
5-7
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the details of which are provided in Appendix D. This esse
tially means that the remaining integral simply contributes
the O(1/m) part. Now it is a simple matter of some algeb
to deduce the corrections to the Neumann vectors. We
the following result:

Gm
~1!~z!Gm

~2!~z!

Gm~z!
5

A2pevzt0

Ay~12y!

Avz1m

z H 11
Am

2pvz

3S e22pym

Ay
F11OS 1

m D G1
e22p~12y!m

A12y

3F11OS 1

m D G2e22pmF11OS 1

m D G D J .

~4.10!

Using this it is straightforward to deduce the corrections
f m

(r ) .
Curiously, it can be shown that the exponential corr

tions are related to the Casimir energy of a two-dimensio
massive boson on a cylindrical world-sheet with perio
boundary condition. The Casimir energy is given by@27,28#

Dmar
52

1

~2p!2 (
p51

` E
0

`

dte2p2t2p2ar
2m2/t, ~4.11!

using which it can be easily shown that the exponential c
rections for the deformed Gamma-function satisfies the
lowing relation:

] logGm
~r !~z!exp

]m
5

1

vza r

]Dmar

]m
5

1

vzm

]Dmar

]a r
. ~4.12!

a parametrizes the length of the world-sheet. Since
a-derivative of the energy can be interpreted as press
these corrections probably arise due to the tidal forces in
background@27#. The exact physical significance of this r
sult, particularly on the gauge theory side, needs to be
plored.

It is tempting to extend the analysis applied for the fi
term in ~4.9! in order to extract the full series of exponenti
corrections. In this paper, we shall content ourselves by
ing a conjectural expression for the series~4.9!,

logGm
~r !~z!exp5 (

n51

`

e22pnuar um
Aua r um

2pua r uAnvz
S 11OS 1

m D D ,

~4.13!
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where the conjecture is that theO(1/m) terms do not lead to
any mixing of the exponentials in the series. We provi
some arguments in favor of this conjecture in Appendix D

Using the above conjecture and upon expanding the
ponential, in general the exponential corrections can be w
ten schematically as

(
n51

`

gn~m,a r !e
22pnmuar u, ~4.14!

which suggests the interpretation of these quantities in te
of a series of nonperturbative corrections. Note that, in
riving the exponential corrections, we made use of
asymptotic expansion of the Bessel functionKn(x). It is well
known that this expansion is not Borel summable. The ex
significance of this for the dual gauge theory needs to
understood.

V. PLANE-WAVE NEUMANN MATRIX MANUAL

The purpose of this section is to summarize our m
results, in order to facilitate the comparison with gau
theory calculations for which the Neumann matrices are
sential. We give the expressions for the Neumann matr
valid for all m, the large-m expansion as well as the firs
exponential corrections, which we have determined exp
itly. The subsequent exponential terms are only conjectu
and can be obtained from~4.13!.

So, to summarize, we have expressed the plane-w
Neumann matrices as

N̄mn
rs 52

mna

11maK

N̄m
r N̄n

s

asv rm1a rvsn
, ~5.1!

where the Neumann vectorsN̄m
r are related to the function

f m
(r ) via

N̄m
r 5Av rm

m

~v rm1ma r !

m

1

a r
f m

~r ! . ~5.2!

We have determined the explicit form of these functions
~3.20!, and furthermoreK was computed in~3.27!. Putting
all this together, we obtain the Neumann matrices for
m-values to be
N̄mn
rs 52

4

mn

et0~2m1vm/ar
1vn/as

!

~5/M ~01!22e12mt0!

a

~a r1a r 11!~as1as11!

~v rm1ma r !~vsn1mas!

~v rmvsn!
1/2~asv rm1a rvsn!

3S Gm
~r 11!~2m/a r !

Gm
~r !~m/a r !Gm

~r 21!~m/a r !
D S Gm

~s11!~2n/as!

Gm
~s!~n/as!Gm

~s21!~n/as!
D , ~5.3!
5-8
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where them-deformed Gamma-functions are defined in~3.1!
and~3.2!. Applying the large-m asymptotics for the deforme
Gamma-functions obtained in Appendix C one can extr
the large-m behavior, which is of interest for compariso
with the gauge theory. We have given the explicit forms
the large-m Neumann vectors in Sec. IV, and the asymptot
for ~5.1! are straightforwardly obtained from~4.5!–~4.7!.

The first term in the exponential corrections to the
large-m asymptotics, which had so far not been determin
follows from the exponential corrections of the Gamm
functions in~4.10!, together with~5.1!.

VI. CONCLUSIONS

In this paper we have derived the bosonic Neumann
trices in plane-wave string theory using the contour meth
developed in@14#, which allows us to express the result
terms of m-deformed Gamma-functions. This approach n
only simplifies the derivation of the Neumann matrices a
their large-m-asymptotics, the latter being in agreement w
@11#, but allows us to extract exponential corrections, i.
terms ofO(e22puar um). We have derived an explicit form fo
the first term in these exponential corrections, and provide
conjectural formula for the leading order in 1/m terms in the
full exponential series. A few open questions and remarks
in order.

• The dual gauge-theoretical interpretation of the expon
tial corrections has certainly so far been elusive. The
plicit form for the first term in the exponential correction
which we derived, provides some explicit quantity th
could be compared to the gauge theory. In terms of
effective ’t Hooft coupling,l851/(mp1a8)2, the result is

proportional toe22p/Al8. In particular, these should corre
spond to nonperturbative effects, which are remotely re
niscent of contributions that arise from D-branes in str
theory. A vital question that hereby arises is then: W
objects on the gauge theory side could be attributed s
corrections?

• The exponential corrections were shown to be related
the Casimir energy of a massive two-dimensional boson
a cylinder. Is this merely a mathematical coincidence
can it be attributed more physical significance?

• It would be very interesting to use the results obtained
the present paper as well as in@14# in order to compute
scattering of closed and open strings. In particular,
open string cubic vertex is of course closely related to
closed cubic vertex and could be used in order to comp
scattering of open strings in orientifold theories or w
D-branes, such as the ones constructed in@27,29,30#. Fur-
thermore, these should be compared to gauge theore
computations including operators dual to D-branes, suc
in @31–33#.

• As a mathematical curiosity, it is conceivable that the co
tour method could be used more generally to derive in
gral transforms, in the same way that the present pa
gives a systematic way to obtain the integral transfo
used in@11# to derive the cubic vertex.
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• Finally, it is tempting to conjecture that all flat space am
plitudes, which can be expressed in terms of gamm
functions, can be carried over in the plane-wave ba
ground by replacing them with suitablem-deformed
gamma-functions.
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APPENDIX A: NOTATIONS AND CONVENTIONS

The following definitions have been used in the ma
body of the paper

Amn
~1!5

2

p
~21!m1n11Amn

b sin~mpb!

n22m2b2 ,

Amn
~2!5

2

p
~21!m11Amn

~b11!sin~mpb!

n22m2~b11!2 ,

~A1!
Amn

~3!5dmn ,

Bm5
2

p

a3

a1a2
~21!m11

sin~mpb!

m3/2 ,

which arise in the Fourier mode expansion of the ver
equation. Further it is useful to define

Cmn5mdmn ,

~Cr !mn5v rmdmn , ~A2!

~U ~r !!mn5dmn

~v r ,m2v r ,0!

m
.

Here,b5a1 /a3 . We will mostly work with the choicea1
5y anda2512y and hencea3521, as in@11#.

APPENDIX B: GENERALIZATION OF STIRLING’S
FORMULA

In this section we analyze the largez asymptotics of the
Gamma-functionGm(z). Recall this is defined as@14#

Gm~z!5
e2gvz

z )
n51

`
n

vz1vn
evz /n. ~B1!

Using the Weierstrass definition ofG(z) implies
5-9
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logS Gm~z!

G~z! D52g~vz2z!1 (
n51

`

logS z1n

vz1vn
D1

vz2z

n
.

~B2!

Note that limz→`(vz2z)50. This allows us to deduce tha

lim
z→`

logS Gm~z!

G~z! D50, ~B3!

and therefore that

Gm~z!;G~z!;A2pzz21/2e2z, ~B4!

asz→` and of course foruargzu,p.

APPENDIX C: LARGE- m ASYMPTOTICS OF THE
DEFORMED GAMMA-FUNCTIONS

The large-m asymptotics are derived in a similar fashio
as in the appendices of@14#, applying various techniques o
@34#. Taking the log of both sides of~3.1! and differentiating
with respect tom leads to

]

]m
logGm

~r !~z!5
a rm

vz
F (

n51

` S 1

n
2

1

v r ,n
D2gG . ~C1!

So we need to consider the asymptotics of

S5 (
n51

` S 1

n
2

1

v r ,n
D . ~C2!

Differentiating both sides with respect tom implies

]S

]m
5 (

n51

` a r
2m

v r ,n
3 . ~C3!

Using the results in the appendix of@14#,

(
n51

`
1

v r ,n
3 52

1

2~a rm!3 1
1

~a rm!2 1O~e2uar um!, ~C4!

which after integrating leads to

S5
1

2ma r
1 logm1c~a r !1O~e2uar um!, ~C5!

wherec(a r) is a constant of integration. Differentiating wit
respect toa r leads to

]S

]a r
52

1

2ma r
2 1

]c

]a r
1O~e2uar um!. ~C6!

One should now differentiateS with respect toa r and then
take the large-m limit of the resulting expression to compa
with this one. This leads to

]S

]a r
5 (

n51

` S m2a r

v r ,n
3 D 52

1

2a r
2m

1
1

a r
1O~e2uar um!.

~C7!
02600
Now comparing with Eq.~C6! we get

]c

]a r
5

1

a r
, ~C8!

implying that

c~a r !5 loga r1c, ~C9!

and therefore

S5
1

ma r
1 log~ma r !1c1O~e2uar um!. ~C10!

Substituting this into~C1! and then integrating with respec
to m we arrive at

logGm
~r !~z!5a rvz~c2g211 log~ma r !!1

1

2
log~vz1m!

1za r logS vz1z

m D1K~z,a r !1O~e2uar um!,

~C11!

where K(z,a r) comes from integrating with respect tom.
This function can be determined by taking the large-m as-
ymptotics of (]/]z)logGm

(r)(z) and comparing to thez anda r

derivatives of~C11!, which we will do next. Taking the par
tial derivative with respect toz of ~C11! leads to

]

]z
logGm

~r !~z!'
z

2~m1vz!vz
1~c2g211 loga rm!

a rz

vz

1a r logS z1vz

m D1
za r

vz
1

]K

]z
, ~C12!

while thez logarithmic derivative of~3.1! leads to

2ga r

z

vz
2

1

z
2

a rz

vz
(
n51

` S 1

v r ,n1a rvz
2

1

nD . ~C13!

Taking the limitm→` in both equations results in the con
dition

]K

]z
52

1

z
. ~C14!

Now taking the partial derivative with respect toa r of ~C11!
one obtains

]

]a r
logGm

~r !~z!'~c2g1 log~a rm!!vz1z logS z1vz

m D
1

]K

]a r
, ~C15!

while thea r logarithmic derivative of~3.1! implies
5-10
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2gvz2
1

a r
2 (

n51

` S 1

v r ,n1a rvz
S a rm

2

v r ,n
1vzD2

vz

n D .

~C16!

Comparing the above two equations atz50 and using~C10!
leads to the condition

]K

]a r
52

1

2a r
. ~C17!

Therefore we conclude that

K~z,a r !52 logz2 1
2 loga r1c8. ~C18!

Finally we have the desired asymptotic expression for
deformed Gamma-functions foruargzu,p:

logGm
~r !~z!5a rvz~c2g211 log~ma r !!

1
1

2
log~a rvz1a rm!1za r logS vz1z

m D
2 log~za r !1c81O~e2uar um!. ~C19!

The constantsc and c8 can actually be determined, and w
will in fact needc8 explicitly. To determine these constan
we employ the largez-asymptotics formula derived in Ap
pendix B which is valid for allm. For largez, the RHS of
~C19! ~ignoring theO(e2uar um) contribution! is asymptotic to

~a rz2 1
2 !log~a rz!1a rz~c2g211 log 2!1c8.

~C20!

Comparing this to Stirling’s formula~which is valid for all
m! we see that we must havec5g2 log 2 and c8
5 logA2p.

APPENDIX D: O„eÀµ
… CORRECTIONS

We shall now derive the exponential corrections in t
large-m expansion of the deformed Gamma-functions. In E
~C3!, theO(e2m) term is given by

]Se

]m
52a r

2mE
0

` ds

m2a r
2 e2s(

n51

`

e2n2p2m2ar
2/s, ~D1!

which can be written in terms of the modified Bessel fun
tion of the second kind as

4pua r u (
n51

`

nK1~2npmua r u!, ~D2!

where we have used the integral representationK1(x)
5(1/x)*0

`dte2t2x2/4t. Integrating with respect tom leads to

Se522(
n51

`

K0~2ua r umnp!. ~D3!

Thus theO(e2m) terms in~C1! are given by
02600
e

.

-

F~z,m![22(
n51

`
a rm

vz
K0~2ua r umnp!. ~D4!

The large-m behavior of this quantity is readily deduced fro
that of the Kelvin functions,8 which gives

F~z,m!52
Aua r um

vz
e22puar umF11OS 1

m D G . ~D5!

Thus we are left with evaluating*F(z,m)dm. We now prove
the following formula crucial for the evaluation of the abov
integral:

I ~z!5E
m

`

dt
At

At21z2
e2jt5

Ame2jm

jvz
F11OS 1

m D G .
~D6!

We will prove the formula for realz as this is all we will
need. The argument is elementary and goes as follows. I
grate by parts to give

I ~z!5
Ame2jm

jvz
2

1

2j Em

`

dte2jt
~z22t2!

At~z21t2!3/2
. ~D7!

Sinceuz22t2u,z21t2 for real z, we have

U ~z22t2!

At~z21t2!3/2U,
1

At~z21t2!1/2
<

1

Am~z21m2!1/2
,

~D8!

wherefore

U 1

2j Em

`

dte2jt
~z22t2!

At~z21t2!3/2U,
e2jm

2j2Amvz

. ~D9!

Hence we have proven~D6!. Note we have not restrictedm
in this proof at all. Thus one might expect to extend this
complexz for large-m. Using this we conclude that

E
m

`

F~z,m!dm5
Aua r um

2pua r uvz
e22puar umF11OS 1

m D G .
~D10!

Finally we comment on the connection to@11#. For this,
we make use of the following integral representation,

K0~xm!5E
0

`

dt
e2xAt21m2

At21m2
, ~D11!

valid for x.0, see@35#, to express the whole of the expo
nential corrections in a different form. Using this we ma
sumSe , given by~D3!, which implies

8Note Kn(x)5Ap/2xe2x(11O(1/x)).
5-11



o-
fu
is

ow
rd
n-
r-

n

-

re
, to
the
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Se522E
0

`

dt
1

At21m2@e2par
At21m2

21#
. ~D12!

If we change variables toms5At21m2, we obtain

Se52
2

m3 E
1

`

ds
s

As221

1

e2pmars21
. ~D13!

Finally, doing the obvious by parts integration results in

Se52
pa r

m2 E
1

`

ds
As221

sinh2~pa rms!
. ~D14!

Thus we have expressed theO(e2m) terms in this nice com-
pact form. Incidentally an equivalent formula to~D14! ap-
pears in@11#.

1. Conjecture for subsequent exponential corrections

In analogy to the derivation of the first term in the exp
nential corrections one should be able to compute the
series~4.14!. There are various subtleties in determining th
in particular related to the approximation of theO(1/m) term
in ~D7!. We shall now present some arguments which all
us to conjecture the exact expression for the leading o
terms, i.e., ofO(1/m). So, we wish to compute the expa
sion of the following term into a series of exponential co
rectionsO(e22pnuar um):
E

s.

er
A

B

02600
ll
,

er

E
m

`

dm
m

vz
(
n51

`

K0~2ua r umnp!. ~D15!

First, recall the asymptotic series for the Kelvin functio
~@36#, VII., 7.34!

K0~x!5Ap

2x
e2xS (

m50

p21
cm

~2x!m 1~21!pRpD , ~D16!

where the error termRp for large p, such thatx5p/21s
with usu,1, is given by

Rp;2Ax

p

e22x

p S 1

2
1OS 1

pD D . ~D17!

Applying this to the Kelvin function appearing in~D15! im-
plies that

logGm
~r !~z!exp5 (

n51

`

e22pnuar um
Aua r um

2pua r uAnvz
S 11OS 1

m D D ,

~D18!

where it may be of use to point out that theRp-terms do not
contribute to the leading term in 1/m, and thus can be disre
garded. If it now can be ensured thatO(1/m) does not con-
tain terms likee2m, then we can retain the first term, as the
is no mixing at the same order of the coefficient. However
make this statement precise, a better approximation of
O(1/m) terms in~D7! would have to be derived.
er
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