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On the plane-wave cubic vertex
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The exact bosonic Neumann matrices of the cubic vertex in plane-wave light-cone string field theory are
derived using the contour integration techniques developed in our earlier paper. This simplifies the original
derivation of the vertex. In particular, the Neumann matrices are written in termsdaefformed Gamma-
functions, thus casting them into a form that elegantly generalizes the well-known flat-space solution. The
asymptotics of thex-deformed Gamma-functions allow one to determine the largpehavior of the Neumann
matrices including exponential corrections. We provide an explicit expression for the first exponential correc-
tion and make a conjecture for the subsequent exponential correction terms.
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[. INTRODUCTION method for summing certain infinite series, which was devel-
oped in[14]. One of the main merits of this approach is that

The BMN-correspondencgl] between the plane-wave it allows a derivation very close to the one known for the flat
limit of 1B string theory onAdS;x S° [2,3] and a certain ~ Space vertex ifi5]. The solution to the cubic vertex equation,
sector of thed=4, N'=4 SYM theory has proven to be a as in[14], will be written in terms ofu-deformed Gamma-
powerful means in paving the way towards an improved unfunctions. This gives an elegant generalization of the flat-
derstanding of the AdS/CFT correspondence. space solutions db].

Despite the impressive advancements in the analysis of There is a slight discrepancy between the explicit expres-
both sides of this correspondence, some key questions stfion of the Neumann matrices [11] and ours. It appears
remain to be answered. One central point that has so far né@at the only problem ir11] is the final expression for the
been addressed to full satisfaction is the study of interactiondleumann vectorsi.e., their equatior(52)).? We derive the
and their dual interpretation. For instance, given the exad@rge u asymptotics directly from the exact expression for
cubic vertex, the string scattering amplitudes can in principléhe Neumann vectors, which agree with thos¢ ifi|. De-
be calculated for all values ofi. For large u this would  SPite the discrepancy in the exact expression, this is not sur-
allow comparison with perturbative gauge theory calcula-Prising since the asymptotics ifil] were not developed
tions and moreover the knowledge of finite corrections ~ from their exact expression for the vertex. We will elaborate

could provide very interesting predictions for finik¢ cor- ~ On this in Sec. Ill C. We also extend the largeasymptotics
rections in the gauge theory. by e?<pI|C|tIy computing the first exponential corrections and
Some important results in this direction have already beeRrovide a conjecture for the subsequent exponential correc-
obtained. On the string theory side, progress has been madén terms.
towards understanding the interactions in the framework of The plan of this paper is as follows. In Sec. Il we present
light-cone string field theory. This was first developed for flatthe derivation of the cubic vertex in flat space using the
space in[4—6] and then generalized to the plane-wave incontour method for summing series [df4]. In Sec. IIl we
[7—14). For comparisons to the gauge theory side see, e.ggeneralize this to the cubic vertex in the plane-wave. In Sec.
[15—17.% However, quantities that have been computed folV we use the asymptotics of thg-deformed Gamma-
all u are still rather rare, and we believe comprise only thefunctions to derive the largg-expansions of the Neumann
results off 11] for the cubic closed interaction vertex as well matrices. We also comment upon the exponential corrections
as[14] for the open-closed vertex. Furthermore, in order to@Ppearing in the large- asymptotic expansions and explic-
perform computations of scattering amplitudes based offly give the first term, as well as providing a conjecture for
these results, it would be advantageous if the interactions af8€e subsequent terms. We conclude in Sec. V. There are four
expressed in a concise form reminiscent of the flat-spac@Ppendices in which various properties and asymptotics of

results. the u-deformed Gamma-functions are derived.
The main motivation for the present paper is to readdress
the analysis of the plane-wave cubic vertex. The derivation Il. THE CUBIC VERTEX IN FLAT-SPACE

that we shall provide for the vertex relies on the contour ] . ]
In this section, as a warm-up, we will use the contour

method of{14] in order to derive the well-known flat-space
*Electronic address: j.lucietti@damtp.cam.ac.uk Neumann matricedN;>, for the cubic string vertex, which
TElectronic address: s.schafer-nameki@damtp.cam.ac.uk
*Electronic address: a.sinha@damtp.cam.ac.uk
'For a more complete list of references $&8—23, and[24] for 2In fact it is easy to see that there is some errof58) of [11];
recent progress. simply note thatp,,; in the equation in question is divergent.
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originally were determined if5]. We shall focus on the flat-space. The equationg2.5) are equivalent to
bosonic part of the vertex, for which the standard ansatz is

(_1)m . To
13 2z _ > sinmap)f=m—, 2.9
|V)=Nexp<— > > a'iNFat) m=1 as
r,s=1 mn=1
3 o) o0
+2, > a")NjP+KP?||0), (2.) E (—1)™"m ”(—”Blﬂ?)— e
=1 m=1 m= m ,3 2B

wherea"), are the normalized oscillators of thi¢h string
andP'=2p; p,—2p, p; . Geometrical continuity conditions

oo

2( 1)™m sin(lm#B) ) _ 1 77?2)

and momentum conservation then imply constraints upon the <, ZomA1+p)2'm T~ (B+1)2 -
Neumann matrices. It was shown that the Neumann matrices (2.10
satisfy
“ s 1+8 & 2
— mna1a2a3_ —_ B n n ﬁ n
[ r NS — n(—1 + n
Nimn Na, + Mag NN 22 CVlnzl =D n“—m°g® a, =1 n°-m*(1+p)°
T 1 1
where = ) — ) —. 2.1
2a3( 2 sikmmB) ™ aja, m? (217

T a(ytp—1 _ _1lppr-1
Nmn= = (AT B)m, - K B8, @23 Here, we defineB= o, /a3<<0.
d a=2p0+ h ta of th . i We sh_all now apply the co_ntour method i_n order to derive
and aj=cps aré e momenta ot the varlous stiNgs, e sojutions to these equations. Schematically, the contour
Wh'?,,h are chosgn such thatzi=10_‘izo’ and 7o method provides one with solutiorign) to certain coupled
=32;_jarlog|ar|. Without loss of generality we assumg,  geriess f(n)=F for givenF (note these can be interpreted
@,>0 anda;<0. The matricesA andB are defined in Ap- 55 infinite dimensional matrix equation¥he main idea is to
pendix A and correspond to various Fourier modes. Furthermap the sum to a contour integral in the plane so that by

Cauchy’s theorem

=2, ADAM) (2.4) .
21 f(n)+2k Res_, 7 cot(72)f(2)

w

To solve for the Neumann matrices, it is clear that it is suf-

ficient to determind” ~'B. This is most conveniently done L dz
by solving the two coupled series = Fle'mw c2m " cowz)i(2), (212
2 Jn (3>A<r>_ mfn?, whereCg is the contour given by a circle of radil& cen-

tered on the origin, not intersecting any poles of the inte-
(2.5 grand (so in particularR+#1,2,3,...). If the RHS 0f(2.12
3 = \/‘ vanishes, one can compare the sum over residues Ryith
E 2 A“)_(’)— —B,, which allows one to infer the poles and zeroed @) (note
r=1n= we will assert thatf(z)=0 for z=0,—1,—2,...). For more
details and examples on the contour method we refer the
for?,({). These are related to the Neumann vectors by reader tg 14].
Applied to the present context, i.e., in order to find the

solutions for?(r), we map the sum to a contour integral in

o, —
Fn:)z\/—L N - (2.6)  the complex plane, i.e., consider in view @8),
m
An additional constraint is 3Note that the RHS of this equation equélswhich in flat-space

can be determined using conformal invariance, whereby one maps
the known Neumann functions of the complex plane to the light-
(2.7 cone string diagram, cf25]. Due to the absence of explicit confor-
mal invariance in the light-cone gauge, this is not possible anymore
in the plane-wave, so that the conditi¢®.7) cannot be used to
which comes from the knowledge of the explicit formkofn  derive properties of ®. This will be discussed in the next section.

E Jnf®B,=

alaz
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é 7TCOT(77m) COE{];Tm) Sin(l::rﬂ)?g)(m) m_5/2ﬁmﬁ(1+13)m(1+ﬁ (m)
5, Mg M1 ) TR
—}fﬂr L= m) SNMTA) s, )
2i (m ) ( m) m (m)’ :m—5/ze_mro/a3f(3)(m). (218)

(213 Thys, ¥ must contain a factoe™o’?3, but could in prin-

where we have rewritten—1)™=1/cos¢rm). Assume that ciple also be proportional t8,a,m* for some suitable pow-

there are no relative cancellations of residues, and that th&/S k= which respect the required asymptotics. The same
contribution to the sum comes from a single residue. ThéSymptotic behavior is obtained for the integrands(g)

sum(2.8) arises from the poles ane N. In order to cancel and(2.10. We shall fully determind below. _
the poles off' (m+1) for meZ._, f73)(m) needs to have a With the new ansatz2.16), the residue for the sum in

factor 11°(m-+1). Further, it can have poles atge 7 or (2.8 becomes

mBeZ, , i.e. f&«I'(+Bm). In fact, it has to have such a = am dF3(m)
factor, as otherwise, evaluating the contour integral(208) 2 sin( mwﬂ)?(nf): T ,
would imply that?,ﬂl) vanishes, which is unphysical. Further, m=1 M M Tm=o
since <0 the only consistent choice is that the poles are at (2.19
mpBeZ, , as otherwiseﬂﬁ) would be singular for the par- so that
ticular valueB= —1. In summary we deduced that
r(-mg) dm) - _n (2.20
33 (3) am =—. .
fOm)=f®(m) ——v T(m+1)’ (2.19 m=o0 &3
23 ) Now consider the integral for E@2.9),
with 1©)(m) having no poles atme Z or mB e Z.
In evaluating the integral fof2.10), . [ dm 7 cottmm) sin(mmB) I'(— ,B)A(g)
(-1 mo—-s5 £/ (m).
_ 2mi cogmm) n°—m‘B° I'(m+1)
dm I'(—m) T 2(3)
2w T(1+mp) n°~m*(1+p)

The only pole that has a nontrivial residue is locatednat
one obtains poles a= +n/(1+ B). Assuming that the con- =n/g, which results in

tributions to the sums come only from one term implies that
f® has to have zeroes at all values such thatzm(1

+ B) e Z, for one of the signgy= =+ 1. Thus, we may make
the further ansatz

T F(_n/B)Af(S) ?1)_ (2.22

(_1)n+lﬁf [(n+1) "B 282

1 With (2.16), the functionf® is now determined as

f(3)— FISN 2.1
I(=ym(1+p)+1) ™ (219 = (— 1)+l I'(=n/p) $3)
n L(—n/B—n+1)I'(n+1) M

For the choicez=1" the residue of(2.15 at m=—n/(1
+p) implies B I'(=(az/ai)n) “(3)
" T(—n(ap/a;+1)+1)T(n+1) Nesler’

I'(n/(1+5)) .

T2 3)

o FA—n(Bl(1+p))I'(n+1) s (2.23
[(—nag/a,) where the reflection identity has been applied. In order to

f3

F( N(asla, 1)+ DT (nt 1) nasle; further constrain the functioh we need to discuss the last
3 2

equation(2.11). Consider the term that gives rise to the first
(217 term in(2.1), involving f!

The contour argument applies only if the integrand suitably ¥(3) B

falls off at infinity (cf. [14]). Invoking Stirling’s formula, the — d_n'nf (2/'8)1;( . n) F(ntn/g) . (2.29
m-dependent part of the integrand i2.15 has an 2mi n“=m°g=  I'(1+n/p)
asymptotic behavior given by

The poles are determined as in Appendix §%f At n=0

the pole is
4With the choicen=—1, one would encounter a pole at some 1(3)
positive real integer for some choice Bf The nonvanishing con- Res,_o= — (0) (2.25
tributions from this pole would lead to inconsistencies. =0 ,8(1+,8)m7' ’
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At n=m§p the residue is concisely expressed in terms qfi-deformed Gamma-
I T ) functions. In particular, the following functions will be use-
. —pBm 1+B)m ful
=_F® ,
Res-ng=— 1 (m) —Zr o= (220 )
n
: . . . (r) — A Yoy, arw, In
and forne B/(1+ B)Z_ the residues give rise to the sum ', (z)=e wz il —wm+arwze
_ E ‘f(g) =F|2ﬂar(ar2), (3.1)
k=1
k 1 P (K(B+1)) where wg,=+n?+a?u? and I',(2) is the u-deformed
% s 5 _ Gamma-function defined ifiL4] (exceptn as opposed to,
1+p/k*=m B+ 1) T(KI'(1-kB/(1+p)) appears in the denominator of the infinite produt¥e shall
(2.27) define the Gamma-function without a superscript
Comparison with(2.11) yields the following additional con- I'(2)=T(2), for a=1. (3.2
iti F(3)
ey property of these functions is that they satisfy a gen-
dition on f'*/, AK f th f : is that th isfy
;(3)(0) s eralization of the reflection identity of the Gamma-function
0[1(1+ﬁ)m2:— alasz' (228) ") "
<o that FM (Z)F,u (—Z)——m. (3.3)
F3(0)=1 (2.29 Various properties of these functions, such as asymptotics in

zand inu, are discussed in the Appendices andld].

In order to fully determind, recall that from the asymptoti-

cal behavior in (2.18 we deduced thatf®)(m)

=3, amem0’/®s Now, (2.29 and(2.20 imply thata,=1 The ansatz for the bosonic part of the plane-wave cubic

anda;=0. Since any higher power &fwould alter the as- vertex is as in(2.1). The conditions on the Neumann matri-

ymptotics such that the contour method would not be applices in the plane-wave case have been derivgdjinwhich

cable anymore, we conclude that again reduce to the problem of findimﬁ') (denoted by, in
[11]) such that

A. Vertex equations

{3 (m)=emo’as, (230

o0

3 o
This is in agreement witfi5]. In summary, the solutions to 21 (T ) mnf = 21 21 (ADUDAYY, fD=B, |
the equations2.8)—(2.11) take the general form n= r=1n=

(3.9
FO_F0 T(=may,,/ar) (2.3  Where
monrm+ )M (—m(a,pq/a,+1)+1)"
Wrm— W)
where we set (UMY = 5mn(rmTro_ (3.5
fﬁ;)z?ﬁga,arzem%’“r. (2.32

The conventions are as |i@,8,11] and the relation to Sec. Il
is by )] ,—o=f1"n.
As in flat space(3.4) has the interpretation of continuity

conditions on the vertex at the interaction, i.e.7at0. The

1 _ strategy, which we shall pursyand which is in contrast to
o mfl)=((A™)T !B),=—N,, (233 [11)), is to proceed as in flat space and stepwise solve for

' (3, i.e., to find solutiong ") to the set of equations

which completes the contour method derivation for the flat-

In particular, (2.8)—(2.11) imply that the Neumann vectors
are given by

space cubic vertex. . B A ¥
p};,l 5 Aom= o, T (3.6
Ill. THE CUBIC VERTEX FOR THE PLANE-WAVE
% 3
Having illustrated the contour method, we are now ready 2 i(A(r)U(r)) = _pg 3.7)
to apply it to derive the cubic vertex for the plane-wave =1 /<1 «; meep m '

string theory. Again, we are interested in the bosonic Neu-
mann coefficients. As in the case of the open-closed verteXhe Neumann matrices in the plane-wave case have been
derived in[14], the cubic vertex will turn out to be most shown[26] to satisfy an analogous equation(&?2),
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mna NENS limit. It further satisfiesaf®/aul,_o=7of®, which fol-
INL 5
NiS=— T — (3.8 lows from Eq.(30) of [11].> The ansatz reads
m? rHmri?m
where the Neumann vectors are )— —y)eTolu—op _# 2T K 7 +
fm Zmemy(l y)eo FM(m) M(O )!
_ 1 (3.12
N:n: (Clcr)lIZUrlf(r)_)
"'m where we fixed as ifill] the gauge
= “’fmw if(nz)' (3.9 a1=y, a=l-y, az=-1, (3.13
m m a,
and
and 2 sin(mm(1-y))
m(1l—
1 m= T —vym32 (3.19
K=—ZBT:B. (3.10 ™ yd=ym
as well as
FurtherC,,=médmn, (C;)mn= @rmSmn and thef(’s are de-
- I, (2)z
fined as above. M(z)= ©
_ (2) = 7
Our strategy is now to apply the contour method to the Luy(y2yzl ,1-y)((1=y)2)(1-y)z
sums in(3.6) and(3.7). From Eq.(3.6) one can again deduce (3.19

the pole structure fof(®)(m). Assuming that the residues of
the equations ii3.6) come from a single pole the conditions
are thatf®)(m) has zeroes fome —N as well asm(1

+ B) e Ny and has poles famg e N. Thus, this fixes the pole
and zero structure of the solution, however not the explici
functional dependence. The latter is determined3y). For Jm
this, note thew,, term enteringU"). As discussed if14], @ (m)= —sin(mm(1-y))
the integrals along the branch cuts that are present due to the 7T
square root will not contribute to the contour integral corre- et =om T (ym)T 1y ((1—y)m)
sponding to the sum in question, if theandp dependences X m w1y

are all packaged together inig, and the integrand is odd in
the imaginary part. Thus, in view @B.6), one is led to the (3.1
following explicit realization of the poles and zeroesfi®,

The factorM (0") is computed from(3.11) by imposing the
equation(3.7) and thus is crucial in order to reproduce the
correct residues. Note also thkt(0*)—1 as u—0. So,
{nore explicitly we have

om r,(m) M(0™)

emolh—wm) 1
- I'_, z(—=pBm) - _
f(m)=T3 1B , (3.1 ) m(1-—
(=t (L AmT,m m o m-y)
. . . 1—‘,u,y(ym)
where the particular choice of deformation parameters for the XF (1= T M(0). 3.19
Gamma-functions is chosen, in order to ensure that all ui-y( = (1=y)m7I',(m)

branch cuts coincide. The functidi§ is determined much Eyauation of the contour integrals corresponding@) for
in the same way as we explained in detail for the flat-space=1 andr=2, which have only nontrivial residues at

discussion. Furthermore, one has to ensure that the stl- = —n/y andm=—n/(1-vy), respectively, results in
lution reproduces the right flat-space limit. Note also that the
contour method requires that the integrand falls off suitably (—1)Nemolk+@ny) T, (nly)

at infinity, so that the RHS 0f2.12 vanishes. In the flat- Y (n)=— > T M(0"),
space this discussion relied on applying the Stirling formula “’H/Y‘/ﬁ(l_y) F(#)(n/y)l“iﬁ(n/y)
to the Gamma-functions. For the plane-wave case, it will be (3.18
relevant that theu-deformed Gamma-functions satisfy an o+ On(1—y)
analogous Stirling formula, which is proven in Appendix B. f2(n)= e Y

wn/(l—y)\/ﬁy
: o . L I',(n/(1-y))
From the discussion in the last subsection, which in par-

X
(1) _ (2) _
ticular led to the form(3.11), one obtains the following an- L (nfA=y)I' (n/(1=y))
satz for the functiorf ®)(m), which has the correct flat-space (3.19

B. Solutions to the vertex equations
M(0").

Note this motivates the factor &/, as opposed to 1d{,+ u)
which both have the correct flat space limit.
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Z this, since the integrand is not defined at this point with our

I choice of branch cut. What we can do though is take the
residue of the factors not depending @p and then on the
right side(i.e., alongC,) take the limitn—0" of the rest

. and on the left take the limih—0".

IYI'I 4 In the present case, the only contribution comes fom
> (note the integrand is not regular at the branch points, how-
y c., ever the integral around them still vanishes, in fact goes as

O(€eY?) wheree is the radius of the contour around a branch
point, seg 14]). We find that the contribution fror€_ is

* 2(—l)msinmwyM(o+)M(07) (322
C 7m> %y (1-y)
= y It is easy to verify thaM (0")M(0~)=1, which leaves the
. N contribution fromC _ to be exactlyB,,, thus completing the
- |Y|,| proof.
1 Finally, we need to compute the quantKy which is de-

fined by

FIG. 1. The contour€.. . -
— 1 tr—1p_ 1 (3)
Note that in evaluating the contour integrals for each value K=- ZB I, B=- anl Bafn - (3.23
for r the branch cuts coincide, the integrand being odd along
the cuts, which is of course crucial for the appllcablllty of the For the Computation, we need to consider the contour inte-
contour method. These solutions can be put into the closega|
form
2M(0") [ dm M(—m)eTol~omtr)
y(1-y) 2i Moy, '

eTO(l“+wm/a,)

£() (3.29

" \/E(_ar_a’r+1)wm/ozr
The residues at-me N give —4K and since there are no
Fi{“)(—m/ar) N other poles we are left with the integrals around the branch
XF“)(m/a T D (m/a,) M(0™), (320 cut. There is a singularity in the integrandnat 0 which on
o 7w ' both sides looks like a simple pole. Computing we get

which beautifully generalizes the corresponding expression
in flat-spaceg2.31) taking into account the difference in con- _2M(©") [ dm M (—m)e7ol~ em*#)
ventions. y(1-y) Jc, 2mi Mo

Next (3.7) needs to be checked. Thus consider the follow-

ing contour integral, which corresponds to the sum ofrthe ~ M(0)M(07) (3.29
=1 term in(3.7) (cf. flat space analysis o py(l-y) :
dn 2y(—1)™"*Jmsin(mmy) and
—M(0") 3g — -
27i nsin(n)

. 2M(0™) dm M(—m)em o~ emt#) M (0T)2e27oH
XeTO('u “nry) (wn/y_:Uv) F/.L(lfy)(_(n/y)(l_Y)) - y(1-y) c_2_7Ti Mo, = wy(1—y)
n2_m2y2 Wnyy FM(—H/Y)FM(”) ' (3.26
(3.20)

The residues ahe N give ther=1 term, the residues at

n(1—-y)/yeN give ther=2 term and the residue at K=

=—my gives ther=3 term in(3.7). We are left only with CAy(1-y)u
the integral around the branch cut, which runs fram

=iyu to n=—iyu. Since the integrand is odd along either which we see has the correct flat space linkt{u=0)

side of the cut the line integrals vanish—however, the inte=7,/(2y(1-vy)).

grand is actually singular at=0 and thus we are left with We should emphasize that in this application of the con-
two semicircular contours on either side of the branch cutfour method of14] it has been crucial that the circular inte-
which we will call C, andC_, see Fig. 1. One might be grals around the branch points, as well as the integrals at
tempted to think this contribution is just the residue of theinfinity, vanish—the latter was shown by applying the gen-
integrand anh=0; however, things are not quite as simple aseralization of Stirling’s formula of Appendix B.

Therefore we find that

(M(0")2e?#70—1), (3.27
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C. Comments For f®)(n), the asymptotic formula is only applicable to

A couple of remarks are in order, in particular in view of (3:16, resulting in
the comparison with the solution obtained ir1]. First recall
that the solutiorY ,(«,y) in [11] is to be compared with our a; 1 VO-ma TR
solution f). In this comparison, one will observe that the m 2pa  Owe,
solution in Eq.(52) of [11] only agrees with(3.12), if a3
— —ag as well as the sign of the=3 term in the exponent This expansion agrees precisely withl]. The Neumann

O~ isin(mm ) 4.3
m T 2 .

is flipped, i.e., if vectors,
Ym<u.y>=exp[<u—wm>ro N = o/ @m(@mt par) ) 1
m m m M,
2
m 1) m 1
+ _ _ _ —B , — rm (n_—_
2 (b= bm) = (b3~ bms) |5~ Bm Vo e (4.4
(3.28 . .
thus have the asymptotic behavior for 1,2,
with a3 replaced by 1. Note that the solution as it stands in k1) 2 T
[11] would be divergent for integrai, and thus seems NF %_( b i (w”“+'“ar), (4.5
inconsistent. " 2ma2um Jorm

IV. LARGE- u ASYMPTOTICS as well as for =3,

The largep asymptotics of expressions in plane-wave — 1 1 | g
string theory are of the foremost interest in the context of the ~ Np~— ;sm( mma;) 2n s @am— pLers)’
BMN correspondence, as these are to be compared with per- 2pa 3mi @3m ™ s 4.6
turbative (in \') gauge theory data. Given our expressions ’

for the Neumann matrices, the only nontrivial input in deter'FinaIIy
mining these asymptotic expressions are the largesymp- ;
totics of theu-deformed Gamma-functions, which we derive

we may study the largg-asymptotics oK. Inspect-
ing (3.27) we see that we only negd.1), which leads to

in Appendix C. In applying these one has to keep in mind 1 1
that the asymptotic formulas only apply ©B((z) for K~— ——+ 77 4.7
|arg@)|<m, thus before applying the asymptotics to the func- AYA=y)u  16my*(1=y)"n
tionsf()(m) one has to ensure that upon suitable applicatio . _—
of the reflection identities this condition is satisfied for thenrhese agree with the findings Q).
arguments. . .
First note thatM(0") has the asymptotics, using the A. Exponential corrections
I'-function asymptotics of the Appendix C, given’by In this section we will concentrate on explicitly extracting
the first exponential correction to the Neumann vectors we
. B 1 have derived, thus going further than the results given in
M(0")~e"To# Taay(i=y)’ (4.)  [11]. These corrections could have interesting implications

for the gauge theory.
The problem reduces to finding the largeexponential

Applying these asymptotics upd8.18 and (3.19, we ob- corrections to the deformed Gamma-functions. Here we give

tain a brief argument and one can find a more rigorous derivation
I in Appendix D. In Appendix D we show the following key
(=" n result:
< '
2mN2py(1-y) OpjyN Opyt @ 9 W 1
(r) drlM — 27| |
(4.2 a—logl"# (2)exp=— e 4 14+0(—] |.
2 w7 M
o 1 Vn 4.8

" 2m\2py(1-y) On/(1-y)NOnp(1—y) T L .

If one does an integration with respect goby parts(i.e.,
integrate thee~271*l#) then we can prove that

5The authors of11] have confirmed the sign discrepancies in the

equation in question. We would like to thank Y. He and M. Spradlin
for discussions on this poi A 1
point. 10g T "(2) gr= e 27lele 14+ 0( = ||, (4.9
"As in [11], A(x)~B(x) meansA(u)=B(u)+O0(elelmy, w AP 21 | @, wl |
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LUCIETTI, SCHAFER-NAMEKI, AND SINHA PHYSICAL REVIEW D 70, 026005 (2004

the details of which are provided in Appendix D. This essenwhere the conjecture is that ti&(1/x) terms do not lead to
tially means that the remaining integral simply contributes toany mixing of the exponentials in the series. We provide
the O(1/u) part. Now it is a simple matter of some algebra some arguments in favor of this conjecture in Appendix D1.
to deduce the corrections to the Neumann vectors. We find Using the above conjecture and upon expanding the ex-
the following result: ponential, in general the exponential corrections can be writ-

ten schematically as
r'Yre (Z) V2me??0 N, + u | 1+ Vi

z N1 Z 27w *
ey Z S, gn(pea)e2mladl, (4.14
( e 2myn 1 e 27(l-y)u n=1
X 1+0|— —_—
Ny wl] oy _ . . .
which suggests the interpretation of these quantities in terms
1 1 of a series of nonperturbative corrections. Note that, in de-
X[11+0 —) —e 2Tk 1+O(—” ] riving the exponential corrections, we made use of the
® ® asymptotic expansion of the Bessel functop(x). It is well

(4.10 known that this expansion is not Borel summable. The exact
significance of this for the dual gauge theory needs to be
U(s)lng this it is straightforward to deduce the corrections toynderstood.
£,
Curiously, it can be shown that the exponential correc-
tions are related to the Casimir energy of a two-dimensional V. PLANE-WAVE NEUMANN MATRIX MANUAL
massive boson on a cylindrical world-sheet with periodic

boundary condition. The Casimir energy is given[&y,2§ The purpose of this section is to summarize our main

results, in order to facilitate the comparison with gauge
theory calculations for which the Neumann matrices are es-
A = 1 2 dt —p2t—m2a2u?t 4.11) sential. We give the expressions for the Neumann matrices
b= " )2 , . . . X
(2m) valid for all u, the largex expansion as well as the first

exponential corrections, which we have determined explic-

using which it can be easily shown that the exponential coritly. The subsequent exponential terms are only conjectural

rections for the deformed Gamma-function satisfies the foland can be obtained fro.13.

lowing relation: So, to summarize, we have expressed the plane-wave
Neumann matrices as

(9logl“(ﬂ”(z)exp_ 1 &A;wzr 1 aA,u

Xy
= .41
u w0, I o, da, (4.12

_ mna NP NS
NS = — mr (5.1)

1+ paK agomt o o,

a parametrizes the length of the world-sheet. Since the
a-derivative of the energy can be interpreted as pressure,
these corrections probably arise due to the tidal forces in this
background 27]. The exact physical significance of this re- Where the Neumann vectol;, are related to the functions

sult, particularly on the gauge theory side, needs to be ext via

plored.

It is tempting to extend the analysis applied for the first o (0 + ) 1
term in(4.9) in order to extract the full series of exponential N = Orm Orm T HAE) = £ (5.2)
corrections. In this paper, we shall content ourselves by giv- m m ay

ing a conjectural expression for the ser{és9),

® \/W 1 We have determined the explicit form of_these functi_ons in
10gT " (2) gyo= > e—2ﬂnar|M—rM(1+O(_)), (3.20, and furthermoreK was computed in(3.27). Putting
. = 27| a| Vno, all this together, we obtain the Neumann matrices for all
(4.13 p-values to be

4 en0lhT Omat Onja) a (wrm+nar)(wsn+ws)

~ mn (5M(07)2=e"270) (ay + ap s 1) (ast asi1) (0mos) A @som T o o5,
y v Y(-ma,) )( I D (—nlay)

rOm/a)ly Y (m/a,) | | TP (nlag I (n/ag) |

NS —
Nmn

(5.9
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where theu-deformed Gamma-functions are defined3ml) « Finally, it is tempting to conjecture that all flat space am-
and(3.2). Applying the largep asymptotics for the deformed  plitudes, which can be expressed in terms of gamma-
Gamma-functions obtained in Appendix C one can extract functions, can be carried over in the plane-wave back-
the largep behavior, which is of interest for comparison ground by replacing them with suitablg-deformed
with the gauge theory. We have given the explicit forms of gamma-functions.

the largex. Neumann vectors in Sec. 1V, and the asymptotics
for (5.1) are straightforwardly obtained froid.5—(4.7).

The first term in the exponential corrections to these
large asymptotics, which had so far not been determined, \we thank Michael B. Green, Sean Hartnoll, Yang-Hui He,
follows from the exponential corrections of the Gamma-Minxin Huang, Stefano Kovacs, S. Prem Kumar and Mark
functions in(4.10, together with(5.1). Spradlin for very useful discussions. JL is supported by
EPSRC. S.S.N. thanks the University of Pennsylvania and
the 1AS, Princeton, for hospitality during the final stages of
this work. A.S. acknowledges financial support from the

In this paper we have derived the bosonic Neumann maGates Cambridge Trust and the Matthews’ scholarship of
trices in plane-wave string theory using the contour methodsonville and Caius College, Cambridge.
developed in14], which allows us to express the result in
terms Of,u'deformEd Gamma-functions. This approach not APPENDIX A: NOTATIONS AND CONVENTIONS
only simplifies the derivation of the Neumann matrices and
their largeu-asymptotics, the latter being in agreement with ~ The following definitions have been used in the main
[11], but allows us to extract exponential corrections, i.e.,pbody of the paper
terms ofO(e™27l#) . We have derived an explicit form for
the first term in these exponential corrections, and provided a A<1)— ( 1)m+n+1\/—/3 sin( mTf,B)

ACKNOWLEDGMENTS

VI. CONCLUSIONS

conjectural formula for the leading order inidferms in the ,3
full exponential series. A few open questions and remarks are
in order. - (,8+1)S|n(m7r,8)
* The dual gauge-theoretical interpretation of the exponen- ( 1) vmn m>(B+1)%
tial corrections has certainly so far been elusive. The ex- (A1)
plicit form for the first term in the exponential corrections, AB =5
. . . .. . mn mn»
which we derived, provides some explicit quantity that
could_be,compared to_ the,gauge t?ec;r);. In terms c_)f the 2 as ., simmp)
effective 't Hooft coupling\'=1/(up™a')*, the result is B,= p alaz(_l) —

proportional toe‘z’f’VF In particular, these should corre-
spond to nonperturbative effects, which are remotely remi-
niscent of contributions that arise from D-branes in strlng
theory. A vital question that hereby arises is then: What
objects on the gauge theory side could be attributed such C
corrections?

e The exponential corrections were shown to be related to
the Casimir energy of a massive two-dimensional boson on
a cylinder. Is this merely a mathematical coincidence or
can it be attributed more physical significance? Uy = 5mn—(“’r'm_w“°) )

« |t would be very interesting to use the results obtained in m
the present paper as well as[ib4] in order to compute
scattering of closed and open strings. In particular, thdiere,5=ai/az. We will mostly work with the choicer;
open string cubic vertex is of course closely related to the=Y anda,=1-y and hencexz=—1, as in[11].
closed cubic vertex and could be used in order to compute
scattering of open strings in orientifold theories or with APPENDIX B: GENERALIZATION OF STIRLING'S
D-branes, such as the ones constructe[®?i29,3Q. Fur- FORMULA
thermore, these should be compared to gauge theoretical
computations including operators dual to D-branes, such aéam

which arise in the Fourier mode expansion of the vertex
equation. Further it is useful to define

mn=MSmn,

(Co)mn= @rmSmns (A2)

n this section we analyze the largeasymptotics of the
ma-functior” ,(z). Recall this is defined gs.4]

in [31-33.
¢ As a mathematical curiosity, it is conceivable that the con- _ w0
. e vz n
tour method could be used more generally to derive inte- I,(2)= evz/n. (B1)
gral transforms, in the same way that the present paper ® Z p=1 0wty
gives a systematic way to obtain the integral transform
used in[11] to derive the cubic vertex. Using the Weierstrass definition of(z) implies

026005-9
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Iog( FF“((ZZ))) =—yw,~2)+ Z log Z:}ﬂ ve
(B2)
Note that lim_,..(w,—2)=0. This allows us to deduce that
mod )0 e
and therefore that
I, (2)~T(2)~2mz* Y%7, (B4)

asz— and of course fotargz <.

APPENDIX C: LARGE- u ASYMPTOTICS OF THE
DEFORMED GAMMA-FUNCTIONS

The largep asymptotics are derived in a similar fashion

as in the appendices §14], applying various techniques of
[34]. Taking the log of both sides @8.1) and differentiating
with respect tou leads to

—|ogrf>( il 2 (—— )—y. (1)
n= @r n
So we need to consider the asymptotics of
S= —— C2
E ( Wy, n) €2
Differentiating both sides with respect poimplies
S & alu
—= . C3
T o, (c3)
Using the results in the appendix [df4],
§ t . +0(e”llm), (ca
= — e % ,
n=1 wrs,n Z(Qrﬂ)s (ar,u)z
which after integrating leads to
1
S= )+ O(e ey, (C5)
2ua,

wherec(a,) is a constant of integration. Differentiating with
respect tox, leads to

7S —21 L X ~+0 |l C6
_ = - e ap
day 2nay;  da ( )- (€6

One should now differentiat8 with respect toa, and then
take the largeu limit of the resulting expression to compare
with this one. This leads to

SRl

a 1
W =— ——5—+—+0(e" vl
207 ap

‘Mr r n

(C7)

PHYSICAL REVIEW D 70, 026005 (2004

Now comparing with Eq(C6) we get

Jc _ i , 9
day
implying that
c(a;)=loga,+c, (C9
and therefore
S= (C10

Substituting this intadC1) and then integrating with respect
to u we arrive at

1
logI"},)(2) = &y w,(c— y— 1+10g(paxr)) + 50w, + 1)

+K(z,a,)+0O(e lalm),

N | (wz-i-z

Za 109 —

(log| —
(C1y

where K(z,«,) comes from integrating with respect o
This function can be determined by taking the layges-
ymptotics of (/z)logT'}(z) and comparing to the anda,
derivatives of(C11), which we will do next. Taking the par-
tial derivative with respect ta of (C11) leads to

i|o 'z)~ ———+(c—y—1+log )a—rz
gz 09" u 2(pu+ w,)w, Y garp w,
tol Z+ w, +Za, oK C12
a, 109 “ (U_z E’ ( )
while the z logarithmic derivative of3.1) leads to
z 1 oz ( 1 1 c1a
T 7 e ot ae, 0 9

Taking the limit u— <0 in both equations results in the con-
dition

IK
oz

1

7

(C19

Now taking the partial derivative with respectag of (C11)
one obtains

2 ogP(2)~(c— y+1 tzlog 222
109 T (2)=(c~ y+log(a ), + zlog|
oK
—, (C19H
da,

while the «, logarithmic derivative of3.1) implies

026005-10
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: i S L A F(z,u)= Ko(2 D4
70z a'—r n=1 wr,n+arwz Wy n it F ' (Z’M)_ 0( |ar|ﬂn77)- ( )

] ] ] The largex behavior of this quantity is readily deduced from
Comparing the above two equationszatO and usingC10  that of the Kelvin function§,which gives

leads to the condition

9K 1 \/|ar|M

- _Zwlar‘ﬂ
- (17 F(z.p) o, ©

da, 2a,

1+0

1
—) } (D5)
Mm

Thus we are left with evaluatinfF (z, u)dw. We now prove

Therefore we conclude that i ; .
the following formula crucial for the evaluation of the above

K(z,a;)=—logz—3loga,+c'. (C18  integral:
Finally we have the desired asymptotic expression for the (™ Jt 7§t_\/ﬁe‘§”“ 1
deformed Gamma-functions fdargz < I(z)=] dt me " e, 1+0 ik
D6
logI'}(2) = a,;w,(c—y—1+log(nay)) (b6)
1 w7z We will prove the formula for reak as this is all we will
Iog(a w,+a,u)+za, log ) need. The argument is elementary and goes as follows. Inte-
grate by parts to give
—log(za,)+c'+0O(e |l (C19
e Ep - . 2)
The constantg andc’ can actually be determined, and we (2)=—F— tw, 2§J SN ( 72 t2)3’2 (D7)
will in fact needc’ explicitly. To determine these constants
we employ the large-asymptotics formula derived in Ap- . 2 2242
pendix B which is valid for allu. For largez, the RHS of Since|z°—t%<z*+1* for realz, we have
(C19) (ignoring theO(e™ ar\n) contribution is asymptotic to (Z—1?) ‘ 1 1
’ < = ,
(a,z—3)log(a,2)+ a,z(c— y—1+log 2)+c’. \ﬁ(22+t2)3’2\ Vi(Z2+12)12 \/;(22+M2)1/2
(C20 (D8)
Comparing this to Stirling’s formuldwhich is valid for all wherefore
um) we see that we must have=y—log2 and c’
:|Og V2. (Zz_tz) ‘ e*f#

(D9)

1 f”
— | dte ¢ < .
26), 7 W2+ 28 po,

We shall now derive the exponential corrections in theHence we have provefD6). Note we have not restricted
large.u expansion of the deformed Gamma-functions. In Eq.n this proof at all. Thus one might expect to extend this to

APPENDIX D: O(e™") CORRECTIONS

(C3), the O(e™ #) term is given by complexz for largewu. Using this we conclude that
(QSe = ds - 2 22 * \/|a |,LL 1

=2 2 f e s e N Kt /S D1 f — r — 27| + —1.
I ikt 0 Mzarz nzl D “ F(z.p)du 27T|ar|a)ze Lo u

(D10
which can be written in terms of the modified Bessel func-
tion of the second kind as Finally we comment on the connection [tbl]. For this,
we make use of the following integral representation,

4w|ozr|n§1 nKy(2nmula,)), (D2) T2

o(XM)—f dt——,
where we have used the integral representatioyn(x) Uru

— o (1 A~ t—x2/4 : :

= (1/x)[gdte”" " Integrating with respect tp. leads 0 yajid for x>0, see[35], to express the whole of the expo-
nential corrections in a different form. Using this we may
sumS,, given by(D3), which implies

(D11)

oo

Se=— 221 Ko(2| ay| wnr). (D3)

Thus theO(e™*) terms in(C1) are given by 8Note K ,(x) = m/2xe (1 + O(1/x)).
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S.=—2| dt . D12 f du— Ko(2 ni). D15
: fo 2+ Mz[ezwar\t2+”2_ 1] (012 . M w, nzl o(2]ay| unm) (D15
If we change variables tps=\t?+ u?, we obtain F[II;?SE \rﬁlcag gllt)e asymptotic series for the Kelvin function
S J s ; D13 [= _[° ¢
I — m
T e (b3 Ko(X) =5 & ( mE:O (2X)m+(—l)pRD)' (D16)

Finally, doing the obvious by parts integration results in

Ta, [ s°—1
Sm T [Tas

w? )1 sintP(ma us)”

where the error terniR, for large p, such thatx=p/2+ o
with |o| <1, is given by

;

p

R z\ﬁe_zx o
P T p |2

Applying this to the Kelvin function appearing {iD15) im-

(D14)
(D17)

Thus we have expressed tb€e™#) terms in this nice com-
pact form. Incidentally an equivalent formula (B14) ap-

pears in[11]. plies that
. . . " - _2 V| u 1
1. Conjecture for subsequent exponential corrections logT (Z)expzz g 2mlan_ T 1402/,
. n=1 27| a| \/ﬁwz M

In analogy to the derivation of the first term in the expo- (D18
nential corrections one should be able to compute the full
series(4.14). There are various subtleties in determining this,where it may be of use to point out that tRg-terms do not
in particular related to the approximation of t©€1/u) term  contribute to the leading term in 4/ and thus can be disre-
in (D7). We shall now present some arguments which allongarded. If it now can be ensured tHaf1/u) does not con-
us to conjecture the exact expression for the leading ordeain terms likee™ *, then we can retain the first term, as there
terms, i.e., ofO(1/n). So, we wish to compute the expan- is no mixing at the same order of the coefficient. However, to
sion of the following term into a series of exponential cor- make this statement precise, a better approximation of the
rectionsO(e ™2™l arlxy: O(1/u) terms in(D7) would have to be derived.
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