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Holography and eternal inflation
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We show that eternal inflation is compatible with holography. In particular, we emphasize that if a region is
asymptotically de Sitter in the future, holographic arguments by themselves place no bound on the number of
paste-foldings. We also comment briefly on holographic restrictions on the production of baby universes.
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[. INTRODUCTION total entropy of the universe in the early-time inflationary
region can be computed by local field theory methods even
New inflation models typically suffer from severe fine- When no observer can directly measure all of this entrépy.
tuning problems associated with the choice of initial state. IrParticular, we will see in Sec. Il that most of this entropy lies
the eternal inflation scenario, these problems are avoided b@UtSide the past light cone of any observer.

cause inflating bubbles persist along any time slice, and these V& aré motivated to question this assumption by the ob-
inflating regions self-reproduce, leading to a fractal multi-Servation that a similar assumption in the late-time de Sitter

verse spacetime structufé]. From the point of view of a region would already violate any holographic bound on the

local observer the details of this multiverse structure are ir_entropy of the system. This is just the observation that de

I t it t up the initial diti for the ob Sitter space expands to infinite size in the far future, so that
relevant, exceptio set up the initial conditions for th€ 0bSeVy,y field theory with any finite cutoff contains an infinite
er's own inflating bubble.

) , ) .. number of degrees of freedom. This observation is not new
In this paper, we examine constraints on the eternal 'nf,laénd is well known to proponents of holography who propose

tion scenario arising from holographic entropy bounds. Hisypa; nevertheless de Sitter space is associated only with a
torically, the idea of holographic boun{i8,3] and their cous-  finite number of states. The usual resolutisee, e.g.[17])

ins[4—7] emerged from the study of black hole entrdpyit g {5 note that this calculation does not contradict the expe-
see[8-10)) and some researchers find motivation for suchyjence of any observer in the spacetime, as such observers
bounds in certain results from string theory. Such bounds arf;ve access to only a small part of the entropy—small

equiva_lent to the assumption.that black holes are maximall)énough, it turns out, fo satisfy a holographic bound. One then
entropic objects of a given size; they state that the entropy,nnqses that the true entropy of the system is comparable to
reS|d|_ng inside th(=T relevant region is bounded by its surfacg,e maximum entropy measurable by any given observer and
area in Planck unitg2,3,11. that field theory breaks down on scales large enough that it

On the other hand, for at least one proposed fpI& of 44 predict violations of the holographic entropy bounds
the holographic bound, it was argued i8] that when(i) the (see, e.9.[18)).

number of fields is smalkii) the matterT ,, is not too an- Our goal here is to show that applying similar reasoning
isotropic locally, andiiii) temperatures are below the Plgnck to the system considered 4] yields a similar conclusion.
scale,l the bqund follows as a consequence of the Einsteify, ¢ is, in contrast tg14] we assume that holographic
equations. Similarly, one generally does not expect holoy g ngs restrict only the field theory entropy in any past light
graphlq bounds to impose additional restrictions on thermobone, as field theory may generally acquire holographic cor-
dynamics at temperatures below the Planck scale. Howeversciions on larger scales. In this context we show that holog-
Banks and Fischler argued that holograghf a somewhat ohhy imposes no restrictions on inflatibin particular, the
different form than that used if12]), together with certain 1, mper ofefoldings can be arbitrarily large. To distinguish

additional assumptions, requires any late-time observer ens, assumption from that ¢1.4] we refer to it as “light-cone

tering a region dominated by a small value of th_e C°5m°|09i‘nolography" below? We also comment briefly on clainig1]
cal constant to observe a bounded numbes-fufidings[14]. ot polographic restrictions on baby universe formation.
See[15,16| for subsequent related works.

Here we wish to emphasize one of the additional assump———
tions of[14]. In particular,[14] considers a scenario where 1This agrees with results $19,20 where the quasi—de Sitter case

the univers_e is inﬂati_ng at early times, passes thro“gh Sas studied. In particular, if19] holography plus thermodynamics
matter-dominated regime, and then becomes asymptoticallyas shown to imply the linearized Einstein equation for fluctuations
de Sitter in the future. The assumption of interest is that  4;ound de Sitter.

2Bousso’s covariant entropy boufiti2] is a special case of light-
cone holography, but we allow much more general settings here. We
*Electronic address: lowe@brown.edu emphasize that some form of light-cone holography is essential for
TElectronic address: marolf@physics.ucsb.edu any consistent holographic description of de Sitter space.
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FIG. 3. The inflating patch ol de Sitter space.

later than timet; is independent of the numbeX of
e-foldings that takes place in th& region. Thus light-cone
ﬁolographic bounds in the FRW region cannot impose any
restrictions on\.

Now, if we continue to trace the light cone backwards
through theA region, we will find one of two things to be
true. The first possibility is that the light cone &tt; is

In Fig. 1, we show &rough conformal diagram of the larger than the de Sitter horizon in th'e region. For this
class of spacetimes considered 14]. This spacetime region discussion the reader may wish to consult Fig. 3, which de-
might appear as some portion of an eternally inflating spacePicts the inflating patch of purd de Sitter space with its
time, which we show in an over-simplified form in Fig. 2. An horizons. We have also indicated in each region the size of
inflating region with vacuum energy density is patched the suppressed spheres relativeltp, the A-horizon scale.
onto a Friedmann-Robertson-WalkéFRW) phase domi- In this first case, standard results from de Sitter space tell us
nated by some form of matter satisfyimg= xp, which in  that the light conecontracts(when traced backwargisintil
turn asymptotes to a de Sitter region with small cosmologicae reach the de Sitter horizon. Thus, the largest piec& of
constant\<A. We assume homogeneity, isotropy, and spade Sitter spacetime is seen at tiet; and, since holo-
tial flatness. The latter is at least a good approximation as wgraphic bounds are most stringent for large regions, light-
are most interested in the case WhereAhEegion undergoes cone holographic considerations at earlier times can vyield
a large number o&-foldings. Following[14], we consider Only weaker restrictions. In particular, since a bound applied
only the region shown in Fig. 1 and do not concern ourselvedt t=t; cannot restrictN, it is impossible for a bound at
with holographic restrictions on what occurs to the past ofearlier times to do so. More generally, it is clear thatt;
the A de Sitter horizon. places the most stringent bound on the entropy.

The basic idea of our analysis is already clear from this If on the other hand the light cone is smaller than shde
diagram. Consider some observer in the far future. Her pasgitter horizon at=t;, it will be expanding and will continue
light cone to the future of=t, is determined by propagating t0 expand when traced further backward. However, it will
null rays (dashed ling backwards through the FRW and  remain smaller than the horizon size until it crossesAhde
regions. Clearly, then, the spacetime region visible to her buBitter horizon. But it is well known that observing a horizon-
scale region of de Sitter space does not contradict any holo-
graphic bounds. Thus, once again nothing new is learned
from the regiont<t;.

Thus it is clear that light-cone holographic considerations
can place no bound oN. Nonetheless, one might still ask
whether they place bounds on other quantities relevant to the
scenario above. We now turn to this question and investigate
in detail the past light cone of a late-time observer.

FIG. 1. Spacetime diagram. The dashed line is the past ligh
cone of a late-time observer.

II. BOUND ON e-FOLDINGS FROM ENTROPY
IN A LIGHT CONE?

Late-time past light cone

FIG. 2. A representation of the spacetime of eternal inflation. There is, however, the issue of just which sort of holo-
The shaded triangle corresponds to the region shown in Fig. 1. graphic bound we wish to consider. One popular formulation

026001-2



HOLOGRAPHY AND ETERNAL INFLATION PHYSICAL REVIEW D 70, 026001 (2004

is Bousso’s covariant entropy bourjd2]. However, this as
counts only entropy that flows througtontracting light a
sheets and some holographers may desire a tighter bound. '
Thus, for the rest of this section we will simply assume thatNow consider the past light cone of a late-time observer. In
holographic considerations restrict the entire entropy visiblghe \ region the light cone at each time encloses a spherical
to any observer on any homogeneous spacelike Blit@be  yolume whose radiui; att=t; is of the order of the late-
less than the are@ of the intersection o with the observ-  time de Sitter radiua.. The requirement that each light ray
ers past light cone. be null (ds?=0) allows one to propagate the rays back in

Let us also pause to further orient ourselves to the probtime and thus to determine the siReof the visible region at
lem at hand. We have already seen that our light-cone hola—t, . The result is

graphic bound is satisfied in the region if it is satisfied at
t=t;. It is also satisfied in tha region by the usual argu-
ments for de Sitter space. To address the rest of the FRW
region, consider the light cone &tt;. Because the universe
as a whole is homogeneous and expanding, if the light con8ince A>\ and any positive energy condition requires
were at any point expanding toward the future, it would con-«=—1, Egs.(2) and (3) yield

tinue to do so for all time and would not converge at the

location of our late-time observer. Thus this light cone must R~ A~ 1/2
be contracting toward the future &tt; and throughout the '

FRW region. Thus, the part of any constant time sliaet o o _
>1;) visible to our observer is metrically identical to a subsetThe total entropy in this region is computed using ED.
of that att=t;, but with a lower entropy densitidue to the ~Where, sincp=A att=t;, one finds

expansi_om Thus, if our ;ceqario satisfies the Iight-cone_ ho- S=RIA V(L) ®)
lographic bound at=t;, it will do so throughout the entire ' '
spacetime. Thus, the above version of the holographic bound is

To identify the observer’s past light conetatt;, .recall equivalent in our context to the requirement
that we assumed homogeneity, isotropy, and spatial flatness.

Thus, the metric takes the form 1
S=y- (6)

A

A 1/3(1+ k)
) 2

as

g

Afl/2

(3k+1)/12
— 1} 3

R=JR+
i_a_f F3k+1

a| Gxr 12

g;

4

dg?=dt?—a(t)?dx?

Inserting Eqs(4) and (5) yields
and the Friedmann equation is

a
a
in units where the reduced Planck mass is set to[dng,
=(8wG)~Y2=1]. For matter satisfyingg=xp, the density and is the same bound that arises from causality consider-

)\*(3K+1)/2(1+K)S)\*1 (7)
2

_E+§ which is clearly independent oN. Now, sinceA<<1 in
33

Planck units, Eq(7) is equivalent to

k=1

satisfies(see, e.9.[22]) ations. Note that although the region visible to the observer
is restricted by Eq(6), the entropy across the entire initial
Si1+:< time slicet=t; can be arbitrarily large, allowing for an arbi-
P* ST (1)  trary number of previous-foldings. As described earlier, if
a the light-cone holographic bound is satisfied &tt; , it will

be satisfied at all times. Thus no restriction of any sort arises
wheres; is the entropy density in comoving coordinates, atfrom light-cone holographic considerations in the spacetime
time t=t;. The entropy densitys; is constant during the of Fig. 1 and, in particular, light-cone holography does not
FRW phase. At the end of inflatiori€t;) the scale factor is limit the number ofe-foldings.
a;=eNiA "2 whereN; is the number of-foldings during
inflation. Note also that inflation ends when,ater IS Of Ill. DISCUSSION
order A. The universe then expands in a Friedmann-
Robertson-Walker phase dominated by matter with some par- We have established that light-cone holography places no
ticular value ofx until the residual cosmological constant  bounds on the number effoldings to the past of a late-time
comes to dominate dt=t;. The scale factor at this time is observer and is thus consistent with the eternal inflation sce-
determined by requiring the matter density to decrease to afario. This conclusion differs from that §14] because we
order)\, so using Eq(1) we find do not share their assumption that local field theory can cor-
rectly compute the entropy of a volume larger than that con-
tained in the past light cone of any observer. Again, we note
3Though it is not clear to what extent one could hold in general. that assuming local field theory to correctly describe the en-
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tropy of similar large volumes at late times would also con-This may prevent the formation of such bubbles in the first

tradict holographic bounds. In particular, the correspondinglace. Even if they are formed, a curvature singularity sepa-
calculation in pure de Sitter space would contradict the idedates any external observer from the inflating interior of the

that asymptotically de Sitter space has a finite number obubble, so the application of holography is not entirely clear.

states, on which the discussion [df4] also resté. Thus, at ~ The case of charged bubbles was analyzef8}. There it

the current level of holographic understanding, we see n&/as found that these problems can be avoided, but a new
reason to suppose a contradiction between holography angdifficulty appears because the inflating region lies inside a

large number ofe-foldings such as would arise in eternal Cauchy horizon, which is unstabj@9—-34.
inflation. Let us nonetheless assume that such problems are some-

For eternal inflation to be self-reproducing, the inflaton"0W Solvable and that sub-horizon scale bubbles do play a

must be able to fluctuate up its potential with some finite;?:gl'r;ese%i';%lgti(r)nnasltglrigogf‘ r|1r(]3I:)hlfaszemlifngé;Invie:\c\?gzrs]i::(e)xl
probability, giving rise to inflating regions with an increasing yze p grapny.

rate of expansion. One may also ask if there are holographi hysics is valid in the appropriate regions of spacetime, the
=Xp B Y . . 9raPNig hbles will collapse and form horizons. Banks has argued
constraints on this process. Discussions of related issug

Rat th f such les shoul h
have appeared if5]. at the entropy of such bubbles should be bounded by the

L ) . Bekenstein-Hawking entropy of the resulting horiz®1].
Let us begin with a clear example that illustrates how this, particular, the argument is that universes such as ours

mechanism can be compatible with holography. Consider foday haveS~10P5, which requires an event horizon of ra-
region of spacetime with some effective Hubble paramete,s'1$m, somewnhat larger than the radius of the Earth. The

H, homogeneous over many horizon volumes. Suppose grohability of nucleating such a large bubble in the early
bubble with effective Hubble parametel’ >H is nucleated | hiverse is extremely small.

inside this region with a size larger than the horizon size set g yever there are a number of subtleties in the above

by H. This process occurs with finite probability in the eter- 5qyment. Let us at least enumerate some of the possibilities,
nal inflation scenarigl]. Applying the holographic bound 0 555 ming we start with a GUT scale bubble that collapses to

this situation[11] one finds that the generalized second lawfyrm 4 black hole. Such a GUT bubble might have formed

yields no constraint on the evolution of this super-horizongring quantum fluctuations in the eternal inflation foam or

size bubble, as it is unable to collapse. The bubble is theRerhans through interactions in a very high energy particle
free to expand in a manner compatible with holography, and,.cejerator.

no contradiction is later reached when inflation ends in this
bubble and a vast amount of entropy is produced, despite the
fact the bubble started out at a scale associated with some
grand unified theoryGUT), with low entropy. From a quan-
tum mechanical viewpoint, the system starts in a special state
of low entropy, but as time evolves the state explores a larger
subspace of the full Hilbert space of states, corresponding to
theH'’ bubble expanding into the ambiedtregion. Clearly
we have ignored inhomogeneities, but we believe this ex-
ample suffices to illustrate the essential compatibility of the
seeding mechanism of eternal inflation with holography.
Another oft-discussed situation occurs when the initial ra-
dius of the bubbléd’ is smaller than the ambient spacetime’s
inverse Hubble scalel . ForH’>H this bubble will col-
lapse and can form a black hole whose interior becomes a
baby universe that undergoes inflation. For uncharged
bubbles, Farhi and Gufl26,27] concluded the initial condi-
tions for the formation of such a bubble are always singular.

“The authors of14] express their skepticism of the existence of a
consistent theory which approximates local field theory in the in-
flating A region and leads to similar predictions for the cosmic
microwave backgroun@CMB), but yields a smaller total entropy in
the inflating regime. We have no such example to offer, but see no
reason why creating such a model is fundamentally more difficult
than achieving the same goal for de Sitter space itself, a task not yet
completed for which the authors 4] expect success. SE23,24]
for some steps toward a model for de Sitter with a finite dimen-
sional Hilbert space. Unfortunately, until a model exists for the

(i) One interpretation of the Bekenstein-Hawking entropy

Sgy is thate®eH bounds the dimension of the Hilbert
space of states associated with the region inside the
horizon. Let us denote this Hilbert space By This
interpretation is supported by string theory calcula-
tions of black hole entropy via D-brane methods. At
first glance, the idea that a black hole with initial
Bekenstein-Hawking entropy of ord@g~10° ex-
pands to give a large universe appears to conflict with
this idea. In particular, suppose one assumes that time
evolution maintains a sharp distinction between those
states inH and those orthogonal té{. By this we
mean both(a) that H and its complement do not sig-
nificantly mix under time evolution an¢b) that the

two classes of states appear quite different to local
observers which experience them. In this case, a local
observer inside the bubble can estimate the dimension
of the Hilbert space of states similar to what she ob-
serves and compare this witH for an initial GUT
size bubble. While it has been argu&®] that precise
measurements are impossible for this observer, it is
clear that there are certain classes of scattering observ-
ables that can be measured with very high precision.
The observer in our present universe would then be
able to conclude with a high degree of certainty that
her Hilbert space is larger than that inherited from a
GUT scale bubble and rule out creation of her uni-
verse via such a black hole.

perhaps simpler pure de Sitter case, there will be few solid grounds (ii) However, it is not clear to what extent the assumption

on which to resolve this difference of opinion.
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sider assumptioffia), that the bubble remains in the We see that in order to arrive at a contradiction, one would
spaceH under time evolution. Certainly the original need to prove the existence of more theh states which
black hole Hawking radiates and may well disappear(@ are macroscopically indistinguishable from our universe
in the distant future. Black hole complementarity sug-and (b) could have been formed from a GUT-scale black
gests that the state of the Hawking particles is actuhole. We conclude that successful production of a de Sitter
ally equivalent to a state inside the black hole and infegion with large apparent entropy must produce some fine-
particular to any baby universe so created. Sincduning of the universe, but not that it is otherwise ruled out
these Hawking particles explore a much larger HilbertWithout additional assumptions. Such a fine-tuning is not a

space, it is conceivable then that the entropy of thiurprise, asdthﬁ instabilli;y of t.he (:Ihqrgedl blagk hOIde"S Caurc;hy
bubble is not constrained by holographic bounds."°"Z0N faT tde resu tlfng singularity arebfi\ yklfr]] ;Ca}te Fhat
From the external point of view, the late time de Sitter SUccessful production of a universe via a black hole s either

far from generic or is dependent on high energy effects not

hase with large entropy could have a complementar ; . . ;
gescription as? a highpyentropy state in tﬁe Hilbert&”ently understood and associated with the singularity. If

spaceHx O, whereO is the Hilbert space of states one believes that the process is possible at all, it is plausible
outside the ’horizon that any fine-tunings required by holography are a natural

(iii) Let us also consider assumpti¢ib), that{ and its result. .
compliment appear quite differerfor all time) to In summary, we see that holography appears quite com-

local observers which experience them. Such ObserVpatible with eternal inflation. In particular, a late time ob-
ers are unable to measure the exact late-time state Gf' /6" S€€S NO bom_md on the numbegaﬁbldlngs or on any

the full system and so end up measuring the entrop ther pa}rameters in the modgl qf Fig. 1. Eurthgrmore, 'the
of a locally accessible subsystem. It is not clear to u echanisms of self-reproduction in eternal inflation survive
whether observations of such subsystems can inde Io_graphlc constraints. Holography _may_place strong con-
distinguish between universes produced via blaciStraints on branches of the eternal inflation spacetime that
holes and those which arose from other initial condi-S°Mehow emerge from black hole interiors, but even here
tions. Let us suppose now that they cannot. Let ussuch a conclusion follows only if one introduces additional
also ﬁote that the von Neumann (in p) entroby of assumptions. Because quantum gravitational processes are

such a subsystem may welkceedhe entropy of the necessarily involved in the production of such regions, any
full system, because the observer is unable to me such assumptions are necessarily difficult to test and must

az"~ o ;
sure correlations with causally disconnected regiongem""In inherently speculative.
of the asymptotically de Sitter space. Indeed the ex-
act von Neumann entropy will vanish if the system is
in a pure state. It is thus conceivable that a late time D.L. thanks T. Hertog and D. Lyth for helpful discussions
observer could see a vastly larger entropy than thend KITP for hospitality. D.L. is supported in part by DOE
Bekenstein-Hawking entropy associated with the ho-grant DE-FE0291ER40688-Task A and NSF grant PHY99-
rizon of an initial black hole from which our uni- 07949. D.M. was supported in part by NSF grants PHYQO-
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