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Holography and eternal inflation
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We show that eternal inflation is compatible with holography. In particular, we emphasize that if a region is
asymptotically de Sitter in the future, holographic arguments by themselves place no bound on the number of
paste-foldings. We also comment briefly on holographic restrictions on the production of baby universes.

DOI: 10.1103/PhysRevD.70.026001 PACS number~s!: 11.25.2w, 04.60.2m, 98.80.Qc
e-
. I

b
e

lti

i
rv

fla
is

c
a
al
op
ac

ck
te
lo
o

v

e
g

m
e
h
a

ry
ven
.
es

ob-
tter
the
de
hat
e
ew
se
th a

pe-
vers
all

hen
le to
and
at it
ds

ing

c
ht
or-
og-

h

e
s
ns

. We
l for
I. INTRODUCTION

New inflation models typically suffer from severe fin
tuning problems associated with the choice of initial state
the eternal inflation scenario, these problems are avoided
cause inflating bubbles persist along any time slice, and th
inflating regions self-reproduce, leading to a fractal mu
verse spacetime structure@1#. From the point of view of a
local observer the details of this multiverse structure are
relevant, except to set up the initial conditions for the obse
er’s own inflating bubble.

In this paper, we examine constraints on the eternal in
tion scenario arising from holographic entropy bounds. H
torically, the idea of holographic bounds@2,3# and their cous-
ins @4–7# emerged from the study of black hole entropy~but
see@8–10#! and some researchers find motivation for su
bounds in certain results from string theory. Such bounds
equivalent to the assumption that black holes are maxim
entropic objects of a given size; they state that the entr
residing inside the relevant region is bounded by its surf
area in Planck units@2,3,11#.

On the other hand, for at least one proposed form@12# of
the holographic bound, it was argued in@13# that when~i! the
number of fields is small,~ii ! the matterTmn is not too an-
isotropic locally, and~iii ! temperatures are below the Plan
scale, the bound follows as a consequence of the Eins
equations. Similarly, one generally does not expect ho
graphic bounds to impose additional restrictions on therm
dynamics at temperatures below the Planck scale. Howe
Banks and Fischler argued that holography~of a somewhat
different form than that used in@12#!, together with certain
additional assumptions, requires any late-time observer
tering a region dominated by a small value of the cosmolo
cal constant to observe a bounded number ofe-foldings @14#.
See@15,16# for subsequent related works.

Here we wish to emphasize one of the additional assu
tions of @14#. In particular,@14# considers a scenario wher
the universe is inflating at early times, passes throug
matter-dominated regime, and then becomes asymptotic
de Sitter in the future. The assumption of interest is thatthe
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total entropy of the universe in the early-time inflationa
region can be computed by local field theory methods e
when no observer can directly measure all of this entropyIn
particular, we will see in Sec. II that most of this entropy li
outside the past light cone of any observer.

We are motivated to question this assumption by the
servation that a similar assumption in the late-time de Si
region would already violate any holographic bound on
entropy of the system. This is just the observation that
Sitter space expands to infinite size in the far future, so t
any field theory with any finite cutoff contains an infinit
number of degrees of freedom. This observation is not n
and is well known to proponents of holography who propo
that nevertheless de Sitter space is associated only wi
finite number of states. The usual resolution~see, e.g.,@17#!
is to note that this calculation does not contradict the ex
rience of any observer in the spacetime, as such obser
have access to only a small part of the entropy—sm
enough, it turns out, to satisfy a holographic bound. One t
supposes that the true entropy of the system is comparab
the maximum entropy measurable by any given observer
that field theory breaks down on scales large enough th
would predict violations of the holographic entropy boun
~see, e.g.,@18#!.

Our goal here is to show that applying similar reason
to the system considered in@14# yields a similar conclusion.
That is, in contrast to@14# we assume that holographi
bounds restrict only the field theory entropy in any past lig
cone, as field theory may generally acquire holographic c
rections on larger scales. In this context we show that hol
raphy imposes no restrictions on inflation.1 In particular, the
number ofe-foldings can be arbitrarily large. To distinguis
our assumption from that of@14# we refer to it as ‘‘light-cone
holography’’ below.2 We also comment briefly on claims@21#
of holographic restrictions on baby universe formation.

1This agrees with results of@19,20# where the quasi–de Sitter cas
was studied. In particular, in@19# holography plus thermodynamic
was shown to imply the linearized Einstein equation for fluctuatio
around de Sitter.

2Bousso’s covariant entropy bound@12# is a special case of light-
cone holography, but we allow much more general settings here
emphasize that some form of light-cone holography is essentia
any consistent holographic description of de Sitter space.
©2004 The American Physical Society01-1
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II. BOUND ON e-FOLDINGS FROM ENTROPY
IN A LIGHT CONE?

In Fig. 1, we show a~rough! conformal diagram of the
class of spacetimes considered in@14#. This spacetime region
might appear as some portion of an eternally inflating spa
time, which we show in an over-simplified form in Fig. 2. A
inflating region with vacuum energy densityL is patched
onto a Friedmann-Robertson-Walker~FRW! phase domi-
nated by some form of matter satisfyingp5kr, which in
turn asymptotes to a de Sitter region with small cosmolog
constantl!L. We assume homogeneity, isotropy, and s
tial flatness. The latter is at least a good approximation as
are most interested in the case where theL region undergoes
a large number ofe-foldings. Following @14#, we consider
only the region shown in Fig. 1 and do not concern oursel
with holographic restrictions on what occurs to the past
the L de Sitter horizon.

The basic idea of our analysis is already clear from t
diagram. Consider some observer in the far future. Her p
light cone to the future oft5t I is determined by propagatin
null rays ~dashed line! backwards through the FRW andl
regions. Clearly, then, the spacetime region visible to her

FIG. 1. Spacetime diagram. The dashed line is the past l
cone of a late-time observer.

FIG. 2. A representation of the spacetime of eternal inflati
The shaded triangle corresponds to the region shown in Fig. 1
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e-

l
-
e

s
f

s
st

ut

later than time t i is independent of the numberN of
e-foldings that takes place in theL region. Thus light-cone
holographic bounds in the FRW region cannot impose a
restrictions onN.

Now, if we continue to trace the light cone backwar
through theL region, we will find one of two things to be
true. The first possibility is that the light cone att5t i is
larger than the de Sitter horizon in theL region. For this
discussion the reader may wish to consult Fig. 3, which
picts the inflating patch of pureL de Sitter space with its
horizons. We have also indicated in each region the size
the suppressed spheres relative toLL , the L-horizon scale.
In this first case, standard results from de Sitter space te
that the light conecontracts~when traced backwards! until
we reach the de Sitter horizon. Thus, the largest piece oL
de Sitter spacetime is seen at timet5t i and, since holo-
graphic bounds are most stringent for large regions, lig
cone holographic considerations at earlier times can y
only weaker restrictions. In particular, since a bound appl
at t5t i cannot restrictN, it is impossible for a bound a
earlier times to do so. More generally, it is clear thatt5t i
places the most stringent bound on the entropy.

If on the other hand the light cone is smaller than theL de
Sitter horizon att5t i , it will be expanding and will continue
to expand when traced further backward. However, it w
remain smaller than the horizon size until it crosses theL de
Sitter horizon. But it is well known that observing a horizo
scale region of de Sitter space does not contradict any h
graphic bounds. Thus, once again nothing new is lear
from the regiont,t i .

Thus it is clear that light-cone holographic consideratio
can place no bound onN. Nonetheless, one might still as
whether they place bounds on other quantities relevant to
scenario above. We now turn to this question and investig
in detail the past light cone of a late-time observer.

Late-time past light cone

There is, however, the issue of just which sort of ho
graphic bound we wish to consider. One popular formulat

ht

.

FIG. 3. The inflating patch ofL de Sitter space.
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is Bousso’s covariant entropy bound@12#. However, this
counts only entropy that flows throughcontracting light
sheets and some holographers may desire a tighter bou3

Thus, for the rest of this section we will simply assume th
holographic considerations restrict the entire entropy vis
to any observer on any homogeneous spacelike sliceS to be
less than the areaA of the intersection ofS with the observ-
ers past light cone.

Let us also pause to further orient ourselves to the pr
lem at hand. We have already seen that our light-cone h
graphic bound is satisfied in theL region if it is satisfied at
t5t i . It is also satisfied in thel region by the usual argu
ments for de Sitter space. To address the rest of the F
region, consider the light cone att5t i . Because the univers
as a whole is homogeneous and expanding, if the light c
were at any point expanding toward the future, it would co
tinue to do so for all time and would not converge at t
location of our late-time observer. Thus this light cone m
be contracting toward the future att5t i and throughout the
FRW region. Thus, the part of any constant time slice~at t
.t i) visible to our observer is metrically identical to a subs
of that att5t i , but with a lower entropy density~due to the
expansion!. Thus, if our scenario satisfies the light-cone h
lographic bound att5t i , it will do so throughout the entire
spacetime.

To identify the observer’s past light cone att5t i , recall
that we assumed homogeneity, isotropy, and spatial flatn
Thus, the metric takes the form

ds25dt22a~ t !2dxi
2

and the Friedmann equation is

S ȧ

a
D 2

5
r

3
1

l

3

in units where the reduced Planck mass is set to one@M pl
5(8pG)21/251#. For matter satisfyingp5kr, the density
satisfies~see, e.g.,@22#!

r}
si

11k

a3(11k)
, ~1!

wheresi is the entropy density in comoving coordinates,
time t5t i . The entropy densitysi is constant during the
FRW phase. At the end of inflation (t5t i) the scale factor is
ai5eNiL21/2, whereNi is the number ofe-foldings during
inflation. Note also that inflation ends whenrmatter is of
order L. The universe then expands in a Friedman
Robertson-Walker phase dominated by matter with some
ticular value ofk until the residual cosmological constantl
comes to dominate att't f . The scale factor at this time i
determined by requiring the matter density to decrease t
orderl, so using Eq.~1! we find

3Though it is not clear to what extent one could hold in gener
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l D 1/3(11k)

. ~2!

Now consider the past light cone of a late-time observer
the l region the light cone at each time encloses a spher
volume whose radiusRf at t5t f is of the order of the late-
time de Sitter radiusl. The requirement that each light ra
be null (ds250) allows one to propagate the rays back
time and thus to determine the sizeRi of the visible region at
t5t i . The result is

Ri5
ai

af
Rf1

2

3k11
L21/2F S af

ai
D (3k11)/2

21G . ~3!

Since L@l and any positive energy condition require
k>21, Eqs.~2! and ~3! yield

Ri'L21/2S af

ai
D (3k11)/2

. ~4!

The total entropy in this region is computed using Eq.~1!
where, sincer5L at t5t i , one finds

Si5Ri
3L1/(11k). ~5!

Thus, the above version of the holographic bound
equivalent in our context to the requirement

Si&
1

l
. ~6!

Inserting Eqs.~4! and ~5! yields

l2(3k11)/2(11k)&l21, ~7!

which is clearly independent ofN. Now, since l,1 in
Planck units, Eq.~7! is equivalent to

k<1

and is the same bound that arises from causality consi
ations. Note that although the region visible to the obser
is restricted by Eq.~6!, the entropy across the entire initia
time slicet5t i can be arbitrarily large, allowing for an arb
trary number of previouse-foldings. As described earlier, i
the light-cone holographic bound is satisfied att5t i , it will
be satisfied at all times. Thus no restriction of any sort ari
from light-cone holographic considerations in the spaceti
of Fig. 1 and, in particular, light-cone holography does n
limit the number ofe-foldings.

III. DISCUSSION

We have established that light-cone holography places
bounds on the number ofe-foldings to the past of a late-time
observer and is thus consistent with the eternal inflation s
nario. This conclusion differs from that of@14# because we
do not share their assumption that local field theory can c
rectly compute the entropy of a volume larger than that c
tained in the past light cone of any observer. Again, we n
that assuming local field theory to correctly describe the.
1-3
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tropy of similar large volumes at late times would also co
tradict holographic bounds. In particular, the correspond
calculation in pure de Sitter space would contradict the i
that asymptotically de Sitter space has a finite number
states, on which the discussion of@14# also rests.4 Thus, at
the current level of holographic understanding, we see
reason to suppose a contradiction between holography a
large number ofe-foldings such as would arise in etern
inflation.

For eternal inflation to be self-reproducing, the inflat
must be able to fluctuate up its potential with some fin
probability, giving rise to inflating regions with an increasin
rate of expansion. One may also ask if there are hologra
constraints on this process. Discussions of related iss
have appeared in@25#.

Let us begin with a clear example that illustrates how t
mechanism can be compatible with holography. Conside
region of spacetime with some effective Hubble parame
H, homogeneous over many horizon volumes. Suppos
bubble with effective Hubble parameterH8.H is nucleated
inside this region with a size larger than the horizon size
by H. This process occurs with finite probability in the ete
nal inflation scenario@1#. Applying the holographic bound to
this situation@11# one finds that the generalized second l
yields no constraint on the evolution of this super-horiz
size bubble, as it is unable to collapse. The bubble is t
free to expand in a manner compatible with holography, a
no contradiction is later reached when inflation ends in t
bubble and a vast amount of entropy is produced, despite
fact the bubble started out at a scale associated with s
grand unified theory~GUT!, with low entropy. From a quan
tum mechanical viewpoint, the system starts in a special s
of low entropy, but as time evolves the state explores a la
subspace of the full Hilbert space of states, correspondin
the H8 bubble expanding into the ambientH region. Clearly
we have ignored inhomogeneities, but we believe this
ample suffices to illustrate the essential compatibility of
seeding mechanism of eternal inflation with holography.

Another oft-discussed situation occurs when the initial
dius of the bubbleH8 is smaller than the ambient spacetime
inverse Hubble scaleH21. For H8.H this bubble will col-
lapse and can form a black hole whose interior become
baby universe that undergoes inflation. For unchar
bubbles, Farhi and Guth@26,27# concluded the initial condi-
tions for the formation of such a bubble are always singu

4The authors of@14# express their skepticism of the existence o
consistent theory which approximates local field theory in the
flating L region and leads to similar predictions for the cosm
microwave background~CMB!, but yields a smaller total entropy in
the inflating regime. We have no such example to offer, but see
reason why creating such a model is fundamentally more diffi
than achieving the same goal for de Sitter space itself, a task no
completed for which the authors of@14# expect success. See@23,24#
for some steps toward a model for de Sitter with a finite dim
sional Hilbert space. Unfortunately, until a model exists for t
perhaps simpler pure de Sitter case, there will be few solid grou
on which to resolve this difference of opinion.
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This may prevent the formation of such bubbles in the fi
place. Even if they are formed, a curvature singularity se
rates any external observer from the inflating interior of t
bubble, so the application of holography is not entirely cle
The case of charged bubbles was analyzed in@28#. There it
was found that these problems can be avoided, but a
difficulty appears because the inflating region lies inside
Cauchy horizon, which is unstable@29–34#.

Let us nonetheless assume that such problems are s
how solvable and that sub-horizon scale bubbles do pla
role in seeding eternal inflation. In this scenario, we wish
analyze possible constraints of holography. If semi-class
physics is valid in the appropriate regions of spacetime,
bubbles will collapse and form horizons. Banks has argu
that the entropy of such bubbles should be bounded by
Bekenstein-Hawking entropy of the resulting horizon@21#.
In particular, the argument is that universes such as o
today haveS'1085, which requires an event horizon of ra
dius 108m, somewhat larger than the radius of the Earth. T
probability of nucleating such a large bubble in the ea
universe is extremely small.

However, there are a number of subtleties in the ab
argument. Let us at least enumerate some of the possibili
assuming we start with a GUT scale bubble that collapse
form a black hole. Such a GUT bubble might have form
during quantum fluctuations in the eternal inflation foam
perhaps through interactions in a very high energy part
accelerator.

~i! One interpretation of the Bekenstein-Hawking entro
SBH is thateSBH bounds the dimension of the Hilbe
space of states associated with the region inside
horizon. Let us denote this Hilbert space byH. This
interpretation is supported by string theory calcu
tions of black hole entropy via D-brane methods.
first glance, the idea that a black hole with initi
Bekenstein-Hawking entropy of orderSBH'106 ex-
pands to give a large universe appears to conflict w
this idea. In particular, suppose one assumes that t
evolution maintains a sharp distinction between tho
states inH and those orthogonal toH. By this we
mean both~a! that H and its complement do not sig
nificantly mix under time evolution and~b! that the
two classes of states appear quite different to lo
observers which experience them. In this case, a lo
observer inside the bubble can estimate the dimens
of the Hilbert space of states similar to what she o
serves and compare this withH for an initial GUT
size bubble. While it has been argued@35# that precise
measurements are impossible for this observer, i
clear that there are certain classes of scattering obs
ables that can be measured with very high precisi
The observer in our present universe would then
able to conclude with a high degree of certainty th
her Hilbert space is larger than that inherited from
GUT scale bubble and rule out creation of her u
verse via such a black hole.

~ii ! However, it is not clear to what extent the assumpti
in ~i! above is physically justified. In particular, con

-

o
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et

-

ds
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sider assumption~ia!, that the bubble remains in th
spaceH under time evolution. Certainly the origina
black hole Hawking radiates and may well disappe
in the distant future. Black hole complementarity su
gests that the state of the Hawking particles is ac
ally equivalent to a state inside the black hole and
particular to any baby universe so created. Sin
these Hawking particles explore a much larger Hilb
space, it is conceivable then that the entropy of
bubble is not constrained by holographic boun
From the external point of view, the late time de Sitt
phase with large entropy could have a complement
description as a high entropy state in the Hilb
spaceH3O, whereO is the Hilbert space of state
outside the horizon.

~iii ! Let us also consider assumption~ib!, that H and its
compliment appear quite different~for all time! to
local observers which experience them. Such obse
ers are unable to measure the exact late-time sta
the full system and so end up measuring the entr
of a locally accessible subsystem. It is not clear to
whether observations of such subsystems can ind
distinguish between universes produced via bla
holes and those which arose from other initial con
tions. Let us suppose now that they cannot. Let
also note that the von Neumann (Trr ln r) entropy of
such a subsystem may wellexceedthe entropy of the
full system, because the observer is unable to m
sure correlations with causally disconnected regio
of the asymptotically de Sitter space. Indeed the
act von Neumann entropy will vanish if the system
in a pure state. It is thus conceivable that a late ti
observer could see a vastly larger entropy than
Bekenstein-Hawking entropy associated with the h
rizon of an initial black hole from which our uni
verse somehow emerged.
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We see that in order to arrive at a contradiction, one wo
need to prove the existence of more thaneSBH states which
~a! are macroscopically indistinguishable from our univer
and ~b! could have been formed from a GUT-scale bla
hole. We conclude that successful production of a de Si
region with large apparent entropy must produce some fi
tuning of the universe, but not that it is otherwise ruled o
without additional assumptions. Such a fine-tuning is no
surprise, as the instability of the charged black hole’s Cau
horizon and the resulting singularity already indicate th
successful production of a universe via a black hole is eit
far from generic or is dependent on high energy effects
currently understood and associated with the singularity
one believes that the process is possible at all, it is plaus
that any fine-tunings required by holography are a natu
result.

In summary, we see that holography appears quite c
patible with eternal inflation. In particular, a late time o
server sees no bound on the number ofe-foldings or on any
other parameters in the model of Fig. 1. Furthermore,
mechanisms of self-reproduction in eternal inflation surv
holographic constraints. Holography may place strong c
straints on branches of the eternal inflation spacetime
somehow emerge from black hole interiors, but even h
such a conclusion follows only if one introduces addition
assumptions. Because quantum gravitational processes
necessarily involved in the production of such regions, a
such assumptions are necessarily difficult to test and m
remain inherently speculative.
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