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Localization of non-Abelian gauge fields on domain walls at weak coupling: D-brane prototypes
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Building on our previous results~Ref. @4#!, we study D-brane and string prototypes in weakly coupled
~311!-dimensional supersymmetric field theory engineered to support~211!-dimensional domain walls, ‘‘non-
Abelian’’ strings and various junctions. Our main but not exclusive task is the study of localization of non-
Abelian gauge fields on the walls. The model we work with isN52 QCD, with the gauge group SU(2)
3U(1) andNf54 flavors of fundamental hypermultiplets~referred to as quarks!, perturbed by the Fayet-
Iliopoulos term of the U~1! factor. In the limit of large but almost equal quark mass terms a set of vacua exists
in which this theory is at weak coupling. We focus on these vacua~called the quark vacua!. We study
elementary BPS domain walls interpolating between selected quark vacua, as well as their bound state, a
composite wall. The composite wall is demonstrated to localize a non-Abelian gauge field on its world sheet.
Next, we turn to the analysis of recently proposed ‘‘non-Abelian’’ strings~flux tubes! which carry orientational
moduli corresponding to rotations of the ‘‘color-magnetic’’ flux direction inside a global O~3!. We find a
1/4-BPS solution for the string ending on the composite domain wall. The end point of this string is shown to
play the role of a non-Abelian~dual! charge in the effective world volume theory of non-Abelian~211!-
dimensional vector fields confined to the wall.

DOI: 10.1103/PhysRevD.70.025013 PACS number~s!: 11.27.1d, 11.10.Lm, 11.25.Uv, 11.30.Pb
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I. INTRODUCTION

String theory which emerged from dual hadronic mod
in the late 1960s and 1970s, elevated to the ‘‘theory of
erything’’ in the 1980s and 1990s when it experienced
unprecedented expansion, has seemingly entered a ‘‘re
to-roots’’ stage. Results and techniques of string-D-bra
theory, being applied to non-Abelian field theories~both, su-
persymmetric and nonsupersymmetric!, have recently gener
ated numerous predictions for gauge theories at strong
pling. If the latter are, in a sense, dual to string-D-bra
theory — as is generally believed to be the case — they m
support domain walls~of the D-brane type! @1#, and we
know, they do @2,3#. In addition, string-D-brane theor
teaches us that a fundamental string that starts on a con
quark, can end on the domain wall@1#.

In our previous paper@4# we embarked on the studies o
field-theoretic prototypes of D branes and strings. To this
we considered~211!-dimensional domain walls in~311!-
dimensionalN52 SQCD with the SU~2! gauge group~and
Nf52 flavors of fundamental hypermultiplets—quarks!, per-
turbed by a small mass term of the adjoint matter. In fact,
analysis reduced to that of the effective low-ener
N52 SQED with a~generalized! Fayet-Iliopoulos term. We
found 1/2 BPS-saturated domain wall solution interpolat
between two quark vacua at weak coupling. The main fi
ing was thelocalizationof a U~1! gauge field on this domain
wall. We also demonstrated that the Abrikosov-Nielse
Olesen magnetic flux tube can end on the wall.

The goal of the present work is the extension of the ab
results. Now we want to consider composite walls, anal
of a stack of D branes, to see that they localize non-Abe
gauge fields, say U~2!. Our second task—as important to u
as the first one—is the study of non-Abelian flux tubes, a
0556-2821/2004/70~2!/025013~28!/$22.50 70 0250
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especially, how they end on the walls. In this way we co
tinue the line of research initiated in Refs.@5–7#.

The setup that will provide us with the appropriate tools
the same as in the previous paper@4#, namelyN52 SQCD
analyzed by Seiberg and Witten@8,9#. Compared to Ref.@4#
we will deal with a somewhat different version, however. W
will start from the SU~3! theory with four ‘‘quark’’ hyper-
multiplets (Nf54) in the fundamental representation. Th
SU~3! gauge group will be spontaneously broken down
SU(2)3U(1) at a large scalem where m;mA5m, A
51,2,3,4, andm1 ,m2 ,m3 and m4 are the mass terms as
cribed to the four quark flavors that are present in the mo
Generically, allmA’s are different, but we will choose a non
generic configuration.

Although SU~3! N52 SQCD provides a conceptual ske
eton for our setup, in essence its role is to stay behind
scene, as a motivating factor. Since the gauge SU~3! group
will be broken at the largest scale relevant to the model,
the bulk of our present work refers to lower scales, in pr
tice our setup is based on SU(2)3U(1) gauge model with
four quark hypermultiplets and unbrokenN52 . The under-
lying SU~3! N52 SQCD which one may or may not keep
mind in reading this paper, will be referred to as the ‘‘prot
theory.’’

With four flavors, the SU~2! subsector is conformal
therefore the problem we address can be fully analyzed in
weak coupling regime. In fact, two of four quarks will be ju
spectators while the other two will play a nontrivial role
the solution. The role of the spectators is to ensure the c
formal regime~see below!.

As was mentioned, we will deal with the gauge symme
breaking pattern of a hierarchical type. First, at a large sc
;m@LSU(3) the gauge group SU~3! is broken down to a
subgroup SU(2)3U(1) by the vacuum expectation value
©2004 The American Physical Society13-1
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M. SHIFMAN AND A. YUNG PHYSICAL REVIEW D 70, 025013 ~2004!
~VEV’s! of the adjoint scalars.1 @HereLSU(3) is the dynami-
cal scale parameter of SU~3!.# Second, at a lower scal
;AmmA, in the presence of the adjoint mass termm Tr F2,
the light squark fields acquire VEV’s of the color-flavor d
agonal form~‘‘color-flavor locking’’ !,

qk
A5dA

kAmm, k,A51,2. ~1.1!

In each vacuum to be considered below, the squark field
two ~out of four! flavors will be condensed, so that we ca
label each vacuum by a set of two numbers, (AB), showing
that the flavorsA andB are condensed. For instance, we w
speak of 12-vacuum, 13-vacuum and so on.

The basic idea of the gauge field localization on the
main walls is that the quark fields~almost! vanish inside the
wall. Therefore, the gauge group SU(2)3U(1), being
Higgsed in the vacua to the right and to the left of the wa
is restored inside the wall. Correspondingly, dual gau
bosons, being confined outside the wall are unconfined~or
less confined!, inside, thus leading to localization@2#.

In fact, there is another scale in the problem which pla
an important role in the aforementioned hierarchy. In deal
with domain walls we cannot consider the limit in whichall
quark masses are exactly equal. In this limit the pairs
appropriate vacua coalesce, and we have no domain w
interpolating between them. Therefore, we consider the li
of almost coinciding quark mass terms,

m15m2 , m35m4 ; Dm[m12m3 ; uDmu!m.
~1.2!

The resulting hierarchy

uDmu, m@LSU(3) ,

LSU(2)!Amm!uDmu!m ~1.3!

is exhibited in Fig. 1, together with the behavior of the co
responding gauge couplings. Here

m5
m11m3

2
. ~1.4!

Note thatLSU(2) is a would-be SU~2! dynamical scale. It is
of the order of

LSU(2);uDmuexp~24p2/gSU(2)
2 !. ~1.5!

1The generic pattern of the SU~3! gauge group breaking by th
adjoint VEV’s is SU(3)→U(1)3U(1). This case essentially re
duces to the problem which had been considered previo
@2,4,10#—localization of the Abelian gauge fields on the wall. He
we are interested in localization of the non-Abelian gauge fie
Therefore, we will deal with a special regime in which SU(
→SU(2)3U(1). In Refs.@11,12# ~see also@13#! it was shown that
some ofN51 vacua of SU(N) N52 SQCD can preserve a non
Abelian subgroup.
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That is where the SU~2! gauge coupling could have ex
ploded. However, the problem under consideration is ins
sitive to this scale, as we will explain in detail in due cours

The theory at hand has domain walls of distinct typ
Assume that in the vacuum to the left of the wall the squa
with the flavor indices 1 and 2 condense. If in the vacuum
the right of the wall the condensed squarks are 1 and 3,
will call such a wallelementary. If, on the other hand, the
condensed squarks to the right of the wall are 3 and 4,
wall is obviously composite—it ‘‘consists’’ of two elemen
tary walls, 12→13 and 13→34; see Fig. 2.

The domain wall which localizes SU~2! gauge fields is
not elementary. It is a bound state of two elementary dom
walls placed at one and the same position. This is in ac
dance with the string-brane picture in which SU~2! gauge
theory is localized on the world volume of a stack of tw
coinciding D-branes. If, however, the two D-branes are se
rated, then in string theory the SU~2! gauge group is broken
to U(1)2, while the masses of the ‘‘charged’’W bosons are
linear in the brane separations. We will recover this picture
our field-theoretical setup.

The first stage of the spontaneous symmetry break
SU(3)→SU(2)3U(1), is well studied in the literature, and
presents no interest for our purposes. Therefore, our dyna
cal analysis will start in essence from the SU(2)3U(1)
model. If one wishes, one can keep in mind that this la
model is originally embedded in SU(3)N52 SQCD, the
‘‘prototheory,’’ but this is not crucial.

Next, we turn to the analysis of recently proposed no
Abelian strings~flux tubes! which carry orientational modul
corresponding to rotations of the ‘‘color-magnetic’’ flux d

ly

.

FIG. 1. The scale hierarchy: illustrating the fact that the gau
couplings never become large in the problem at hand. Accordin
Eq. ~2.6! mm5j/6.

FIG. 2. Two elementary walls which comprise a composite
→34 wall.
3-2
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LOCALIZATION OF NON-ABELIAN GAUGE FIELDS ON . . . PHYSICAL REVIEW D70, 025013 ~2004!
rection inside a global SU~2! @6# ~similar results in three
dimensions were obtained in Ref.@5#!.2 We find a 1/4-BPS
solutions for the non-Abelian string ending on the compos
domain wall. The end point of the string is shown to play t
role of a non-Abelian charge in the effective world volum
theory of non-Abelian~211!-dimensional gauge fields con
fined to the wall.

II. THEORETICAL SETUP: SU „2…ÃU„1… NÄ2 SQCD

In this section we will describe the model we will wor
with @a descendant of SU~3! Seiberg-Witten model with four
matter hypermultiplets# and appropriate pairs of vacua whic
are connected by elementary and composite walls.

A. The model

As was mentioned in Sec. I, the model we will deal w
derives fromN52 SQCD with the gauge group SU~3! and
four flavors of the quark hypermultiplets. At a generic po
on the Coulomb branch of this theory, the gauge group
broken down to U(1)3U(1). We will be interested, how-
ever, in a particular subspace of the Coulomb branch,
which the gauge group is broken down to SU(2)3U(1). We
will enforce3 this regime by a special choice of the qua
mass terms; see Eq.~1.2!.

The breaking SU(3)→SU(2)3U(1) occurs at the scale
m which is supposed to lie very high,m@LSU(3) . Corre-
spondingly, the masses of the gauge bosons fr
SU(3)/SU(2)3U(1) and their superpartners, proportion
to m, are very large, and so are the masses of the third c
component of the matter fields in the fundamental repres
tation. We will be interested in phenomena at the scales!m.
Therefore, our starting point is in fact the SU(2)3U(1)
model with four matter fields in the doublet representation
SU~2!, as it emerges after the SU(3)→SU(2)3U(1) break-
ing. These matter fields are also coupled to the U~1! gauge
field.

The field content of SU(2)3U(1) N52 SQCD with four
flavors is as follows. TheN52 vector multiplet consists o
the U~1! gauge fieldsAm and SU~2! gauge fieldAm

a , ~here
a51,2,3), their Weyl fermion superpartners (la

1 , la
2) and

(la
1a , la

2a), and complex scalar fieldsa, andaa, the latter in
the adjoint of SU~2!. The spinorial index ofl ’s runs over
a51,2. In this sector the global SU(2)R symmetry inherent
to the model at hand manifests itself through rotatio
l1↔l2.

The quark multiplets of SU(2)3U(1) theory consist of
the complex scalar fieldsqkA andq̃Ak ~squarks! and the Weyl
fermionsckA andc̃Ak , all in the fundamental representatio
of SU~2! gauge group. Herek51,2 is the color index while

2A very fresh publication@14#, which appeared after the comple
tion of the present paper, also examines strings and their relatio
monopoles.

3In certain vacua to be considered in this paper the gauge gro
further broken to U(1)3U(1) at a much lower scaleuDmu; see Sec.
II B.
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A is the flavor index,A51,2,3,4. Note that the scalarsqkA

andqD kA[q̃Ak form a doublet under the action of the glob
SU(2)R group.

The original SU~3! theory was perturbed by adding
small mass term for the adjoint matter, via the superpoten
W5m Tr F2. Generally speaking, this superpotential brea
N52 down to N51. The Coulomb branch shrinks to
number of isolated N51 vacua@11,12#. In the limit of m
→0 these vacua correspond to special singular points on
Coulomb branch in which pair of monopoles or dyons
quarks become massless. The first three of these points~often
referred to as the Seiberg-Witten vacua! are always at strong
coupling. They correspond toN51 vacua of pure SU~3!
gauge theory.

The massless quark points—they present vacua of a
tinct type, to be referred to as the quark vacua—may or m
not be at weak coupling depending on the values of the qu
mass parametersmA . If mA@LSU(3) , the quark vacua do lie
at weak coupling. Below we will be interested only in th
quark vacua assuming that the conditionmA@LSU(3) is met.

In the low-energy SU(2)3U(1) theory, which is our
starting point, the perturbationW5m Tr F2 can be trun-
cated, leading to a crucial simplification. Indeed, since theA
chiral superfield, theN52 superpartner of the U~1! gauge
field,4

A[a1A2l2u1Fau2, ~2.1!

it not charged under the gauge group SU(2)3U(1), one can
introduce the superpotential linear inA,

WA52
1

A2
jA. ~2.2!

It is rather obvious thatWA is indeed a linear truncation o
W5m Tr F2. A remarkable feature of the superpotent
~2.2! is that it doesnot breakN52 supersymmetry@15,16#.
Keeping higher order terms inm Tr F2 would inevitably ex-
plicitly break N52 . For our purposes it is crucial that th
model we will deal with isexactlyN52 supersymmetric.

The bosonic part of our SU(2)3U(1) theory has the
form5 @6#

to

is

4The superscript 2 in Eq.~2.1! is the global SU(2)R index of l
rather thanl squared.

5Here and below we use a formally Euclidean notation, e
Fmn

2 52F0i
2 1Fi j

2 , (]ma)25(]0a)21(] ia)2, etc. This is appropriate
since we are going to study static~time-independent! field configu-
rations, andA050. Then the Euclidean action is nothing but th

energy functional. Furthermore, we definesaȧ5(1,2 i tW ), s̄ ȧa

5(1,i tW ). Lowing and raising of spinor indices is performed b
virtue of the antisymmetric tensor defined as«125« 1̇2̇51, «12

5« 1̇2̇521. The same raising and lowering convention applies
the flavor SU~2! indicesf, g, etc.
3-3
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S5E d4xF 1

4g2
2 ~Fmn

a !21
1

4g1
2 ~Fmn!21

1

g2
2

uDmaau2

1
1

g1
2

u]mau21u¹mqAu21u¹m q̄̃Au21V~qA,q̃A ,aa,a!G .

~2.3!

HereDm is the covariant derivative in the adjoint represe
tation of SU~2!, while

¹m5]m2
i

2
Am2 iAm

a ta

2
, ~2.4!

where we suppress the color SU~2! indices, andta are the
SU~2! Pauli matrices. The coupling constantsg1 andg2 cor-
respond to the U~1! and SU~2! sectors, respectively. With ou
conventions the U~1! charges of the fundamental matt
fields are61/2.

The potentialV(qA,q̃A ,aa,a) in the Lagrangian~2.3! is a
sum ofD andF terms,

V~qA,q̃A ,aa,a!5
g2

2

2 S 1

g2
2
«abcābac1q̄A

ta

2
qA2q̃A

ta

2
q̄̃AD 2

1
g1

2

8
~ q̄AqA2q̃Aq̄̃A!21

g2
2

2
uq̃AtaqAu2

1
g1

2

2
uq̃AqA2ju21

1

2 (
A51

4

$u~a1A2mA

1taaa!qAu21u~a1A2mA1taaa! q̄̃Au2%,

~2.5!

where the sum over repeated flavor indicesA is implied, and
we introduced aconstantj related tom as follows:

j56mm. ~2.6!

The first and second lines representD terms, the third line
the FA terms, while the fourth and the fifth lines represe
the squarkF terms. As we know@6,13,15–17#, this theory
supports BPS vortices.

Bearing in mind that we have four flavors we conclu
that the SU~2! coupling does not run: SU~2! theory

2
with Nf54 is conformal. Hence,g2 is given by its value at
the scalem,

des
me-

02501
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8p2

g2
2

52 ln
m

LSU(3)
1•••. ~2.7!

At large m the SU~2! sector is indeed weakly coupled.
The U~1! coupling undergoes an additional renormaliz

tion from scalem down to the scale determined by th
masses of light states in the low-energy theory~the latter are
of the order ofAmm;Aj; see Sec. II B!. At the scalem the
both couplings,g2

2 andg1
2 unify since at this scale they be

long to SU~3!. Note that in passing from the SU~3! theory to
SU(2)3U(1) we changed the normalization of the eigh
generator of SU~3! which became the generator of U~1!; see
Eq. ~2.4!. This change of normalization implies that the un
fication condition takes the form

8p2

g1
2~m!

53
8p2

g2
2~m!

. ~2.8!

The one-loop coefficient of theb function for the U~1!
theory isb05232ne

2Nf where the first factor of 2 reflect
the difference in normalizations of the SU(N) versus U~1!
generators, the extra factor of two comes from the fact t
for each flavor we deal with matter doublets, and, finally, t
electric chargene51/2, see Eq.~2.4!. Thus, evolvingg1

2

from m down toAmm we get

8p2

g1
2~Amm!

56 ln
m

LSU(3)
12 ln

m

m
1•••. ~2.9!

Clearly, this coupling is even smaller than that of the SU~2!
sector.

To make readers’ journey through this work easier
display in Table I the field content of the model.

It is also instructive to summarize the symmetries of t
model and patterns of their breaking; see Table II. Besi
the gauge symmetries, of importance are the global sym

TABLE I. Field content of the model under consideration.

SU(2)C repr.→
Spin↓ singlet fundamental /anti adjoint

0 a qA
q̃A

aa

1/2 l1 l2 cA
c̃A

l1a l2a

1 Am Am
a

TABLE II. Pattern of the symmetry breaking.

N52 SUSY unbroken
SU(2)R unbroken

$U(1)3SU(2)%G3SU(2)f 12
3SU(2)f 34

3U(1) →HU~1!diag3SU~2!diag3SU~2! f 34
,

12 vacuum;

U~1!diag, 13 vacuum
3-4
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tries of the model. Our ‘‘proto-SU~3!-model’’ ~mentioned in
passing! had SU(3)c broken down to SU(2)3U(1). This
breaking occurs at the scalem. The resulting superpotentia

W5
1

A2
(
A51

4

~ q̃AAqA1q̃AA ataqA!1m1 (
A51,2

q̃AqA

1m3 (
A53,4

q̃AqA2
1

A2
jA, ~2.10!

has, in addition, a large global SU(2)f 12
3SU(2)f 34

3U(1)

flavor symmetry. At the scaleDm the color SU~2! may or
may not be broken. In the 13, 14, 23, and 24 vacua i
broken by the vacuum expectation value ofa3 down to U~1!,
paving the way to monopoles with typical sizes;(Dm)21.
In the 12 and 34 vacuâa3& does not develop, and we ca
descend further, down the scalej. At this scale all gauge
symmetries, in all six vacua under consideration, are fu
Higgsed. The Abrikosov-Nielsen-Olesen~ANO, Ref. @18#!
strings are supported. The transverse size of these str
;j21/2, is much larger than (Dm)21. In fact, we will deal
with two distinct types of strings which generalize their mo
primitive ANO counterparts. They correspond~in the quasi-
classical limit! to distinct types of winding, see Sec. V fo
further details.

B. The vacuum structure and excitation spectrum

This section briefly outlines the vacuum structure and
excitation mass spectrum of our basic SU(2)3U(1) model
~for further details, including those referring to the full SU~3!
theory, see Refs.@6,11–13#!. First, we will examine relevan
vacua.

The vacua of the theory~2.3! are determined by the zero
of the potential~2.5!. We will assume the conditions~1.3! to
be met. Then, besides three strong-coupling vacua which
ist in pure SU~3! N52 Yang-Mills theory, we have eigh
vacua in which one quark flavor is condensed, and six va
in which two quark flavors develop nonvanishing VEV’
For our problem—domain walls and flux tubes at we
coupling—we will choose these latter six vacua. They
12-, 34-, 13-, 14-, 23- and 24-vacua. In the first two SU~2!
gauge symmetry is unbroken by adjoint scalars while in
last four vacua it is broken by them at the scaleDm.

Each of the above six vacua~AB! is labeled by a triplet of
gauge-invariant order parametersI 1 , I and I 3 defined as

^q̃AqB&[I 1dA
B ,

^q̃AaqB&[2A2I 3I 1dA
B ,

^q̃AaataqB&[
1

A2
I 33I 1~t3!A

B , ~2.11!

where summation over the SU~2! color indices is implied.
The corresponding vacuum structure is exhibited in Fig.
02501
s
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1. SU(2) symmetric vacua

Let us first consider the 12~or 34! vacuum. The adjoint
fields develop the following VEV’s:

^a3&50, ^a&52A2m152A2m1O~Dm!, ~2.12!

wherem is defined in Eq.~1.4!. If the values of the mass
parametersm1,3 andm are real, we can exploit the freedom
of rotations in SU~2! and U~1! to make the quark VEV’s rea
too. Then in the case at hand they take the color-fla
locked form

^qkA&5^ q̄̃kA&5Aj

2S 1 0

0 1D ,

k51,2, A51,2. ~2.13!

This particular form of the squark condensates is dictated
the third line in Eq.~2.5!. Note that the squark fields stabiliz
at non-vanishing values entirely due to the U~1! factor—the
second term in the third line.

The gauge invariants corresponding to the vacuum~2.13!
are

I 15
j

2
, I 5m1 , I 350. ~2.14!

At first site it might seem that, say, the field configuration

^qkA&5^ q̄̃kA&5Aj

2S 0 1

1 0D ,

k51,2, A51,2, ~2.15!

which also provides a~12!-vacuum solution, presents an
other vacuum. This is obviously not the case, since it is no
ing but a gauge copy of Eq.~2.13!. The gauge invariants
obtained from Eq.~2.15! are the same as in Eq.~2.14!.

Let us move on to the issue of the excitation spectrum
this vacuum. The mass matrix for the gauge fields (Am

a ,Am)
can be read off from the quark kinetic terms in Eq.~2.3! and
has the form

M V
25jS g2

2 0

0 g1
2D . ~2.16!

FIG. 3. The vacuum structure on the (I ,I 3) plane.
3-5
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Thus all three SU~2! gauge bosons become massive, w
one and the same mass

M1,2,35g2Aj. ~2.17!

The equality of the masses is no accident. The point is
our model actually has the symmetry SU(2)c3SU(2)f 1,2

3SU(2)f 3,4
where the first flavor SU~2! corresponds to rota

tions of theA51,2 flavors, while the second flavor SU~2! to
rotations of theA53,4 flavors. The pattern of the spontan
ous breaking is such that the diagonal SU~2! from the prod-
uct SU(2)c3SU(2)f 1,2

remains an unbroken global SU~2!

symmetry of the theory. Sure enough, SU(2)f 3,4
is also un-

broken, since theA53,4 flavors play a passive role of spe
tators in the 12-vacuum.

The mass of the U~1! gauge boson is

MU(1)5g1Aj. ~2.18!

From the mass scalem down to the scaleuDmu the gauge
coupling g2

2 does not run because of conformality. Belo
uDmu, the conformality is broken: two quark flavors out
four have mass of the order ofDm and, hence, decouple
Therefore,g2

2 runs, generating a dynamical mass scale~1.5!.
At the mass scaleM1,2,35g2Aj this last running gets frozen
SinceM1,2,3@LSU(2) , by assumption, the running ofg2

2 in
the interval fromuDmu down toAj can be neglected. There
fore, we can treatg2

2 in the above relations as a scale ind
pendent constant~coinciding with the gauge constant no
malized at m). The mass spectrum of the adjoint sca
excitations is the same as for the gauge bosons. This is
forced byN52 .

What is the mass spectrum of the quark~squark! excita-
tions? These fields are color doublets. To ease the notati
will be convenient~sometimes! to use subscriptsr andb ~red
and blue! for the color indices ofq andq̃. It is rather obvious
thatqr

(A51) , qb
(A52) , q̃(A51)

r andq̃(A52)
b are ‘‘eaten up’’ in the

Higgs mechanism. The remaining four superfields,qr
(A52) ,

qb
(A51) , q̃(A52)

r and q̃(A51)
b split into two groups—a single

under the residual global SU~2! with the mass ~2.18!,
and a triplet under the residual global SU~2! with the
mass ~2.17!. Altogether we have 11354 long massive
N52 supermultiplets with mass squared proportional toj.

As for the spectator quark flavors~those that do not con
dense in the given vacuum!, the quarks and squarks of th
third and fourth flavors are much heavier. They have mas
;uDmu, as is clear from Eq.~2.5!. Assuming the limit~1.2!,
we include the spectator quarks and squarks in the l
energy theory~2.3!. In particular, each spectator quark flav
with the mass termm3—remember, we have two of those—
produces twoN52 multiplets. The first one, with the mas
um32m1u5uDmu, is formed from ther-components of the
spectator quark, while the second one, with the same mas
formed from its b-components. Thus, each supermultip
contains four bosonic and four fermionic~real! degrees of
freedom ~short N52 supermultiplet!. Altogether we have
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four such supermultiplets—two doublets of the global SU~2!.
There are no massless excitations in this vacuum.

The 34-vacuum is similar. The only difference is that t
value of the gauge invariantI in the 34-vacuum isI 5m3.

2. SU(2) nonsymmetric vacua

As an example of such vacuum we will consider the 1
vacuum. Now, in contradistinction with the previous cas
both adjoint fields,̂ a3& and ^a&, develop vacuum expecta
tion values, so that Eq.~2.12! must be replaced by

^a3&52
m12m3

A2
[2

Dm

A2
,

^a&52
m11m3

A2
[2A2m. ~2.19!

The above vacuum values of the adjoint scalars follow fr
examination of the last two lines in Eq.~2.5!. The squark
fields in the vacuum are similar to those in Eq.~2.13!, with
the replacement of the second flavor by the third o
namely,

^qkA&5^ q̄̃kA&5Aj

2S 1 0

0 1D ,

k51,2, A51,3, ~2.20!

up to gauge copies. The gauge invariant order parameter

I 15
j

2
, I 5m, I 352Dm, ~2.21!

see Fig. 3.
Next, let us examine the excitation spectrum in th

vacuum. In this vacuum the gauge group of our mode
fully Higgsed, too—all four gauge bosons acquire mass
No ‘‘custodial’’ global SU~2! survives, however. Corre
spondingly, the masses of the gauge bosonsAm

16 i2 on the one
hand, andAm

3 on the other, split.
More concretely,

M ~Am
16 i2!5M ~a16 i2!5Dm@j, ~2.22!

while the masses ofAm andAm
3 ~and the same fora anda3)

are given by the same values as in the SU~2!-symmetric
vacua,

MU(1)5g1Aj,

M35g2Aj. ~2.23!

The mass matrix for the lightest quarks has the size
38, including four~real! components of theqr

1 quark and
four components of theqb

3 quark. It has two vanishing eigen
values associated with two states ‘‘eaten’’ by the Hig
mechanism for two U~1! gauge factors, and two nonzer
eigenvalues coinciding with masses~2.23!. Each of these
nonzero eigenvalues corresponds to three quark eigen
3-6
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tors. Altogether we have two longN52 multiplets with
masses~2.23!, each one containing eight bosonic and eig
fermionic states.

Let us remember that, in the limitm15m2 andm35m4,
the 13-vacuum coalesce with three others, namely, the
23- and 24-vacua; see Fig. 3. This means that we have m
less multiplets in these vacua. In fact, the common posi
of these vacua on the Coulomb branch is the root of a Hi
branch. This Higgs branch has dimension eight, cf.@11,13#.
To see this observe, that in the (A,B) vacuum withA51,2
andB53,4 we have 16 real quark scalar variables (qr

1 , qr
2 ,

qb
3 andqb

4) subject to twoD-term conditions and fourF-term
conditions. Also we have to subtract two U~1! phases. Over-
all we have 16262258 which gives us the dimension o
the Higgs branch. This dimension should be a multiple
four since the Higgs branches are hyper-Ka¨hler manifolds
@9#.

III. THE NÄ2 CENTRAL CHARGES RELEVANT
TO THE PROBLEM

The model under consideration supports, in various lim
all three classes of topological defects that are under scru
in the current literature: domain walls, strings and mon
poles. Below we will explore BPS-saturated defects, with
special emphasis on various junctions. The domain walls
strings are 1/2 BPS, the wall-string junctions and the stri
string junctions are 1/4 BPS.

It is instructive to begin from the discussion of corr
sponding central charges inN52 superalgebra. While a pa
of the material below is a mini-review, in the analysis of t
monopole central charge we will add a bifermion term wh
was routinely omitted previously. It was omitted for a go
reason, though: for a free monopole the contribution of t
bifermion term vanishes. It is crucial, however, for the co
fined monopoles to which we will turn below.

A. „1,0… and „0,1… central charges

These central charges are saturated by domain walls. T
appear in the anticommutators$Qa

f Qb
g% ~remember, f ,g

51,2 are SU(2)R indices!. Since $Qa
f Qb

g%;*dSab where
dSab is the element of the area of the domain wall in qu
tion (dSab5dSba), the ~1/2,1/2! central charges must b
symmetric with respect to the interchangef↔g. More pre-
cisely,

$Qa
f Qb

g%524SabZ̄f g, ~3.1!

where

Sab52
1

2Ewall
dx[mdxn]~sm!aȧ~ s̄n!b

ȧ;wall area,

~3.2!

while the central chargeZ̄f g ought to be an SU(2)R vector.
In the string-theory context the~1,0! and ~0,1! central

charges were first discussed in Ref.@19#. The discovery of
the corresponding field-theoretic anomaly in supersymme
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Yang-Mills ~SYM! theories@2# paved the way to multiple
explorations and uses of the~1,0! and~0,1! central charges in
field theory~e.g. @20–22# to name just a few!.

Two observations severely constrain the form of the c
tral chargeZ̄f g: first, it must be~anti!holomorphic in fields;
second, it must be a SU(2)R vector. As a result, the mos
general form compatible with the above observations is6

Z f g5DS 2
4

A2
j f gA1

c1

16p2
l flg1

c2

16p2
la flagD ,

~3.3!

whereD means the difference of the expectation values
the operator in parentheses in two vacua between which
wall in question interpolates. Furthermore, the parameterj̄ f g

is an SU(2)R matrix ~related to a real vectorjW ) introduced in
Ref. @16#. In the model under considerationj f g

5(j/2) diag$1,21%, see the remark after Eq.~3.4!.
The last two terms in Eq.~3.3!, containing numerical co-

efficientsc1,2, present a quantum anomaly, a generalizat
of that of Ref.@2#. The coefficientsc1,2 are readily calculable
in terms of the Casimir operators of the gauge group of
model under consideration; they also depend on the ma
content. We will not dwell on them here because, given
hierarchy of parameters~1.3!, the anomalous terms inZ f g

will play no role. A rather straightforward algebra~in con-
junction with known results! yields us the coefficient in fron
of j f gA quoted in Eq.~3.3!. To this end we combine Eq
~2.10! above with Eqs.~3.19! and ~3.20! from Ref. @23#. In
our normalization the BPS wall tension reduces,7 e.g.,
to Tw5uZ 11u.

B. „1Õ2, 1Õ2… central charge

This central charge is saturated by strings~flux tubes!.8 It
appears in the anticommutator$Qa

f Q̄ḃg%. This central charge
is not holomorphic, and has no particular symmetry w
respect to permutations of the SU(2)R indicesf andg.

It is well known that the~1/2, 1/2! central charge exists
also inN51 supersymmetric QED~SQED! with the Fayet-
Iliopoulos term, see Ref.@27# and especially Ref.@28#, spe-
cifically devoted to this issue. In Ref.@28# it is shown, in
particular, that if the spontaneous breaking of U~1! is due to
the Fayet-Iliopoulos term@29#, then the corresponding ANO
string is saturated inN51 , and the string tension is give
by the value of the central charge. In Ref.@24# it was proven
that at weak coupling this is theonly mechanism leading to

6Derivation of Eq.~3.3! also exploits the specific feature ofN
52 theories that each given superfield enters in the superpote
linearly; see Eq.~2.10!. This implies, in particular, that in any given
vacuum ~at the classical level! W21W3[0 whereW2,3 are the
quadratic and cubic parts of the superpotential.

7For generic matricesZ f g it is the eigenvalue ofZ f g that counts.
8It is also instrumental in the issue of BPS-saturated vortices@21#

and wall junctions@24,25#. One can trace this line of reasoning
Ref. @26#.
3-7
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BPS strings inN51 theories, which are, thus, by necessi
the ANO strings.9

Our emphasis will be on ‘‘non-Abelian,’’ rather than ANO
strings~the meaning of ‘‘non-Abelian-ness’’ is explained
Sec. V!. It is only the extended,N52 , supersymmetry tha
can make them BPS-saturated. Following Ref.@16#, the ~1/
2,1/2! anticommutator in theN52 model at hand can b
written as follows:

$Qa
f Q̄ḃg%52dg

f ~sm!aḃPm14i ~sm!aḃjg
f E d3x

1

2
«0mdgFdg ,

~3.4!

wherePm is energy-momentum operator while10

jg
f 5~tm/2!g

f jm.

Moreover, the vectorjm is a SU(2)R triplet of generalized
Fayet-Iliopoulos parameters~in our model onlyj1[j is non-
zero!.

The second term in Eq.~3.4! is the ~1/2, 1/2! central
charge. It is worth emphasizing that it is only the U~1! field
Fdg that enters; the SU~2! gauge field does not contribute t
this central charge for rather evident reasons. The cen
charge is obviously proportional toL, the length of the string
times the magnetic flux of the string*d2xBW directed along
the string axis. With the normalizations accepted through
this paper one can write for the BPS string tension

Ts5U E d2xBW UujW u52pj, ~3.5!

where the last equality refers to the elementary strings.
the ANO string the flux is twice larger, so thatTANO
54pj, see Sec. V.

C. The Lorentz-scalar central charge

As is well known@31#, this central charge is possible on
because of the extended nature of supersymmetry,N52 . It
appears in the anticommutator$Qa

f Q b
g % and has the structur

$Qa
f Q b

g %5«ab« f g2Z, ~3.6!

whereZ is an SU(2)R singlet while the factor of 2 on the
right-hand side is a traditional normalization. It is most co
venient to writeZ in terms of the topological charge, a
integral over the topological density,

Z5E d3xz0~x!. ~3.7!

In the model at hand

9Note, however, that the~1/2,1/2! central charge is missing in th
general analysis of Ref.@30#.

10Note that the definition ofjg
f in Ref. @16# differs by a factor of 2.
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2

aFrs

1
c

4p2
la

f sablb
g« f g1

2cg2
2

4p2
ca

Asabc̃AbD , ~3.8!

wheresab is a symmetric matrix corresponding to the Lo
entz representation~1,0! in the spinorial notation,

sab5~s [r!aȧ~ s̄s] !b
ȧ , ~3.9!

while the square brackets in the superscripts denote antis
metrization with respect tor and s. Moreover,c is a nu-
merical coefficient.

Two comments are in order here. First, the first two ter
in Eq. ~3.8! present the conventional ‘‘monopole’’ centra
charge which is routinely discussed in numerous reviews
emerges from the canonic~anti!commutators at the tree
level. In generic models it is in fact the~1,0! gauge field
strength tensor which appears in these classical terms in
first line in Eq.~3.8!, i.e., the~anti!self-dual combination. In
the model at hand only the magnetic field survives in
expression for the central charge; therefore, we dropped
electric component.

The last two~bifermion! terms in Eq.~3.8! are due to an
anomaly, which is, in a sense, anN52 counter-partner to
that of Ref.@2#. They will be discussed in more detail in th
accompanying paper@32# where the value of the coefficientc
will be determined. They were unknown previously playin
no role in the routine monopole analysis. They do play
crucial role, however, for the Higgs phase monopoles~con-
fined monopoles!, to be discussed in brief in Sec. VI. In fac
this anomaly must match the recently obtained anomal
central charge@33# in two-dimensional O~3! sigma model.
More on that will be said in Sec. VI and Ref.@32#.

IV. DOMAIN WALLS

In this section we study BPS domain walls between va
ous vacua described in Secs. II B 1 and II B 2. First, we
rive the first order equations for the BPS walls and, seco
find and analyze their solutions. Our final goal is to work o
the solution for the composite wall 12→34 on which we will
eventually get localized non-Abelian gauge fields.

A. First-order equations for elementary and composite walls

Let us note that the structure of the vacuum condens
in all six vacua considered in Secs. II B 1 and II B 2 sugge
that we can search for the domain wall solutions using
ansatz

qkA5qD kA[
1

A2
wkA, ~4.1!

where we introduce a new complex fieldwkA, k5r ,b. Note
that the aboveansatzviolates holomorphy in the space o
fields inherent toF terms: superpotentials and certain oth
3-8



re
e

e

ul
o
s
-

rd

ss

are

oth
12
tary

he
und
ents

on-
Eq.

-
-

u-
son

he
e
e

ed

wly
m
n
ic the

LOCALIZATION OF NON-ABELIAN GAUGE FIELDS ON . . . PHYSICAL REVIEW D70, 025013 ~2004!
expressions derivable from them. This is why some exp
sions presented below which should be holomorphic on g
eral grounds, do not look holomorphic on theansatz~4.1!.

Within this ansatzthe effective action~2.3! becomes

S5E d4xH 1

4g2
2 ~Fmn

a !21
1

4g1
2 ~Fmn!21

1

g2
2

uDmaau2

1
1

g1
2

u]mau21u¹mwAu21
g2

2

8
~ w̄AtawA!2

1
g1

2

8
~ uwAu222j!21

1

2
u~aata1a1A2mA!wAu2J ,

~4.2!

where we use the same notation as in Eq.~2.4!.
For the time being let us drop the gauge field in Eq.~4.2!.

It is irrelevant for the ‘‘standard’’ domain wall. If we assum
that all fields depend only on the coordinatez[x3, the
Bogomolny completion11 of the wall energy functional can
be written as

Tw5E dzH U]zw
A6

1

A2
~aata1a1A2mA!wAU2

1U 1

g2
]za

a6
g2

2A2
~ w̄AtawA!U2

1U 1

g1
]za6

g1

2A2
~ uwAu222j!U2

6A2j]zaJ .

~4.3!

In the above expression we have omitted another f
derivative boundary term proportional t
(]/]z)(Q(]W/]Q) where the sum runs over all superfield
Since in all vacua (]W/]Q)50, this term produces no im
pact whatsoever.

Putting mod-squared terms to zero gives us the first-o
Bogomolny equations, while the surface term@the last one in
Eq. ~4.3!# gives the wall tension. Assuming for definitene
that Dm.0 and choosing the upper sign in Eq.~4.3! we get
the BPS equations,

]zw
A52

1

A2
~aata1a1A2mA!wA,

]za
a52

g2
2

2A2
~ w̄AtawA!,

11The Bogomolny completion is routinely used in such proble
after its introduction in Ref.@34# and the subsequent identificatio
of the central charges of various superalgebras with topolog
charges@35#.
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g1

2

2A2
~ uwAu222j!. ~4.4!

Tensions of the walls satisfying the above equations
given by the surface term in Eq.~4.3!.12 Say, for the elemen-
tary walls 12→1B or 12→B2 (B53,4), this gives

Tw
(12→1B)5Tw

(12→B2)5~Dm!j, ~4.5!

where we use the fact that

Da[~a!132~a!125
m12m3

A2
5

Dm

A2
.

Remember, the elementary walls are those for which b
vacua, initial and final, have a common flavor. The wall
→34 can be considered as a bound state of two elemen
walls 12→1B and 1B→CB (C53,4, BÞC). For the com-
posite walls Eq.~4.3! implies

Tw
(12→34)52~Dm!j, ~4.6!

sinceDa is twice larger. We see that this wall has twice t
tension of the elementary walls. This means that the bo
state is marginally stable; the elementary BPS compon
forming the composite wall do not interact. Equations~4.5!
and ~4.6! and the subsequent statement are valid up to n
perturbative effects residing in the anomalous terms in
~3.3!. For further discussion see Sec. VII.

B. Elementary domain walls

It is time to explicitly work out the solution to the first
order equations~4.4! for the domain wall interpolating be
tween the vacua~12! and (1B) whereB53 or 4. We assume
that

m@Dm@Aj5A6mm. ~4.7!

This condition allows us to find analytic domain wall sol
tions. In addition, it makes transparent the physical rea
for the gauge field localization on domain walls@4#. Accept-
ing Eq.~4.7! we guarantee, as will be shown shortly, that t
quark fields ~almost! vanish inside the composit
(12→34)-wall, to be treated in Sec. IV C. The only gaug
symmetry breaking surviving inside this wall is that induc
by the VEV of the SU~2! singlet adjoint fielda.

Let us choose the wall 12→14 for definiteness. The
boundary conditions for the fieldsa3 anda are obviously as
follows ~cf. Secs. II B 1 and II B 2!:

a3~2`!50, a~2`!52A2m1 ,

a3~`!52
1

A2
Dm, a~`!52A2m. ~4.8!

We see that the range of variation of the fieldsa3 anda
inside the wall is of the order ofDm. Minimization of their
kinetic energies implies then that these fields are slo

s

al 12It is easy to check that the very same result follows from
central charge~3.3!.
3-9
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varying. Therefore, we may safely assume that the wal
thick on the scale ofj21/2; the wall sizeR@1/Aj. This fact
will be confirmed shortly, see also the previous investigat
@4#.

On the contrary, the quark fields vary inside small regio
of the order of 1/Aj—this scale is determined by the mass
of the light quarks~2.23!. In particular,wb

2 varies from its
VEV in the 12-vacuum@see Eq.~2.13!#,

^wb
2&5Aj,

at z52` to zero near the left edge of the wall~Fig. 4!,
whereaswb

4 varies from zero to its VEV in the 14-vacuum

u^wb
4&u5Aj,

near the right edge of the wall. Thew r
1 quark field does not

vanish inside the wall because it has a nonzero VEV

^w r
1&5Aj

in both vacua, initial and final. It acquires a constant va
w r0

1 inside the wall which will be determined shortly.
With these values of the quark fields inside the wall, t

last two equations in Eq.~4.4! tell us that the fieldsa3 anda
are linear function ofz ~cf. Ref.@4#!. The solutions fora3 and
a take the form

a52A2S m2
Dm

2

z2z02R/2

R D ,

a352
1

A2
Dm

z2z01R/2

R
, ~4.9!

where the collective coordinatez0 is the position of the wall
center, whileR is the wall thickness~Fig. 4!. It is worth
remembering thatDm is assumed positive. The solution~4.9!
is valid in a wide domain ofz,

uz2z0u,
R

2
, ~4.10!

FIG. 4. Internal structure of the 12→14 domain wall: two edges
~domainsE1,2) of the width;j21/2 are separated by a broad midd
band~domainM ) of the widthR; see Eq.~4.11!.
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except narrow areas of size;1/Aj near the edges of the wa
at z2z056R/2. Substituting the solution~4.9! into the last
two equations in Eq.~4.4! we get

R5
Dm

j S 1

g1
2

1
1

g2
2D . ~4.11!

At the same time, the solution forr-quark inside the wall is

w r
15w r0

1 5A 2j

g2
2S 1

g1
2

1
1

g2
2D 'Aj

2
. ~4.12!

We see that ther-quark field inside the wall differs from its
value in the bulk, generally speaking. Only if we takeg1
5g2 @which is not what comes out from the SU~3! ‘‘proto-
model,’’ see Eq.~2.8!# w r0

1 becomes equal toAj, its value in
the bulk. SinceDm/Aj@1, the result~4.11! shows thatR
@1/Aj, justifying our approximation.

As a test of the validity of the solution above, let us veri
that the solutionw r

15const satisfies the first of equation
~4.4! inside the wall. Substituting solutions~4.9! for the a
fields in this equation we get]zw r50, in full accord with
our solution~4.12!. Furthermore, we can now use the fir
relation in Eq. ~4.4! to determine the tails of the
b-components of the 2,4-squark fields inside the wall.

To this end, consider first the left edge~the domainE1 in
Fig. 4! at z2z052R/2. Substituting the above solution fo
a’s in the equation forwb

2 we arrive at

wb
25Aje2(Dm/2R)(z2z01R/2)2. ~4.13!

This behavior is valid in the domainM, at (z2z01R/2)
@1/Aj, and shows that the field of the second quark flav
tends to zero exponentially inside the wall, as was expec

By the same token, we can consider the behavior ob
components of the fourth flavor squark field near the rig
edge of the wall atz2z05R/2. The first equation in Eq
~4.4! for A54 implies

wb
45eisAje2(Dm/2R)(z2z02R/2)2, ~4.14!

which is valid in the domainM provided that

~R/22z1z0!@1/Aj.

Heres is an Abelian wall modulus~of the phase type! simi-
lar to that discovered in our previous work@4# where the
reader can find extensive explanations as to its origin. Ins
the wall the fourth quark fields tend to zero exponentia
too.

In the domains near the wall edges,

z2z056R/2,

the fieldsw r ,b
A as well asa3 anda smoothly interpolate be-

tween their VEV’s in the given vacua and the inside-the-w
behavior determined by Eqs.~4.9!, ~4.13!, and ~4.14!. It is
3-10
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not difficult to check that these domains produce contri
tions to the wall tension of the order ofj3/2, which makes
them negligible.

A comment is in order here regarding the collective co
dinates characterizing the elementary domain wall. We h
two collective coordinates in our wall solution: the positio
of the centerz0 and the phases. In the effective low-energy
theory on the wall world volume they become~pseudo!scalar
fields of the world volume ~211!-dimensional theory,
z(t,x,y) ands(t,x,y), respectively. The target space of th
second field isS1, as is obvious from Eqs.~4.14!.

In ~211!-dimensional theory on the wall the compa
~pseudo!scalar is equivalent to a U~1! gauge field via the
relation @36#

Fnm
(211)5const3«nmk]

ks, ~4.15!

wheren,m,k51,2,3.
We see that our elementary domain wall localizes

U~1! gauge field on its world volume, as was expected, a
in full accord with the string and D-brane notions. The phy
cal reason for this localization was first suggested in@2# and
then elaborated in detail in@4# for the case ofN52 QCD
with the SU~2! gauge group~a model effectively reducible to
SQED!. In this particular aspect—the gauge field localiz
tion on the elementary wall—the present SU(2)3U(1)
model has slight distinctions compared to that of Ref.@4# that
are worth mentioning.

In the bulk the gauge symmetry is broken down to U(12

by the VEV of thea3 adjoint field, and then, at a much lowe
scale, it is completely broken by the squark condensation
the same time, inside the wall the only nonvanishing squ
field is ther-component of the first quark flavor. Therefor
inside the wall the U~1! factor orthogonal to ther-th weight
vector of the gauge group SU~3! is restored. This U~1! factor
is associated withe2-root of the gauge group; see Fig.
where we imagine an embedding of the SU(2)3U(1) gauge
group in the SU~3! gauge group of our underlying ‘‘proto
model.’’ Thus we have a localization of thee2 gauge field on
12→14 wall.

Note that this field is dual to the one present in the b
@2,4,10#. This means that if we put thee2-monopole at a
certain point in the bulk, thee2-string will be attached to this

FIG. 5. Root and weight vectors of the SU~3! algebra.
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monopole because monopoles are in the confining phas
the quark vacua~see@13# and a brief review in Sec. V below
on the flux tubes in SU(2)3U(1) N52 QCD!. As we will
see in Sec. V, it is this string that will end on our elementa
walls, the string end point playing the role of a~dual! electric
charge for the~211!-dimensional U~1! gauge field~4.15!
living on the wall world volume.

In conclusion of this section it is worth noting that th
scalarz(xn) and the gauge fieldAm(xn) form the bosonic
part of N52 vector supermultiplet in 211 dimensions.

C. Composite walls„12\34… „bound states of the type
„12\14…¿„14\34……

In this section we will consider the composite doma
wall interpolating between the vacua 12 and 34.

The boundary conditions for all fields atz52` are given
by their VEV’s in the 12-vacuum

a3~2`!50,

a~2`!52A2m1 ,

w r
1~2`!5wb

2~2`!5Aj,

w r
3~2`!5wb

4~2`!50, ~4.16!

while at z5` they are given by VEV’s in the 34-vacuum,

a3~`!50,

a~`!52A2m3 ,

w r
1~`!5wb

2~`!50,

w r
3~`!5wb

4~`!5Aj. ~4.17!

Now all quark fields~nearly! vanish inside the wall. The
solution for thea fields in the middle domain M~Fig. 4! is
given by

a52A2S m12Dm
z2z01R̃/2

R̃
D ,

a350, ~4.18!

where we introduce the thicknessR̃ of the composite wall, to
be considered large,R̃@1/Aj, see below. The equation fo
a3 in Eq. ~4.4! is trivially satisfied, while the equation fora
yields

R̃5
2Dm

g1
2j

, ~4.19!

demonstrating that indeed thatR̃@1/Aj. Note, that for a par-
ticular ~unrealistic! caseg15g2 @which we donot consider,
since, according to Eq.~2.8!, g1Þg2] the size of the com-
posite wall is equal to that of the elementary ones; see
~4.11!.
3-11
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Substituting the above solutions in the first two equatio
in Eq. ~4.4! we determine the falloff of the quark fields insid
the wall. Namely, near the left edge

w r
15Aje2(Dm/2R̃)(z2z01R̃/2)2,

wb
25Aje2(Dm/2R̃)(z2z01R̃/2)2, ~4.20!

while near the right one

wkB5Aj~Ũ !kBe2(Dm/2R̃)(z2z01R̃/2)2, B53,4,
~4.21!

where the matrixŨ is a matrix from the U~2! global flavor
group, which takes into account possible flavor rotations
side the flavor pairB53,4. It can be represented as a prod
of a U~1! phase factor and a matrix U from SU~2!

Ũ5eis0U. ~4.22!

This matrix is parametrized by four phases,s0 plus three
phases residing in the matrixU.

The occurrence of these four wall moduli—one related
U~1! and three to SU~2!—can be illustrated by the argume
which runs parallel to that outlined in Ref.@4#. Indeed, in
both vacua, 12 or 34, taken separately, one can always
the symmetries of the theory to render the vacuum ma
$fkA% diagonal,

$wkA%vac5AjS 1 0

0 1D , A51,2 or A53,4, ~4.23!

with the real parameterAj in front. When both 12- and 34
vacua get involved—as is the case in the problem of
composite wall—a necessity arises of taking into acco
their relative alignment. The most concise way to see h
these moduli emerge is through examination of a~nonlocal!
gauge-invariantorder parameter13

O A
B~ t,x,y![

1

j K w̄A~ t,x,yuz52L !

3expH i E
2L

L

dzS ta

2
A3

a~ t,x,yuz!

1
1

2
A3~ t,x,yuz! D J wB~ t,x,yuz5L !L , ~4.24!

where

A51,2; B53,4

andL is a large parameter which we are supposed to tak
infinity at the very end~in practice,L@R̃!.

13The definition below is restricted to theansatz~4.1!. In defining
the nonlocal gauge invariant order parameter relevant to the dom
walls this is by no means necessary. The general definition is s

lar to that in Eq.~4.24! with the replacementw̄→q̃.
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The order parameterO A
B is non-singlet with respect to th

global U~2! inherent to our model upon its comple
Higgsing. In both vacua, 12 and 34, the order parameterO A

B

equals to unit matrix—this is quite evident. However, isnot
trivial on the 12→34 wall. On the wallO A

B(t,x,y) reduces to
a constant U~2! matrix ~independent oft,x,y) of the form

O A
B5ŨA

B . ~4.25!

Applying all available symmetries of the model at hand, t
best we can do is to reduce the number of parameters re
ing in O A

B to four: one U~1! phase and three parameters
global SU~2!. There are no massless moduli in both vac
initial and final; thus all of these four parameters are coll
tive coordinates of the wall.

Below we will identify these four moduli with~211!-
dimensional gauge fields living on the wall world volume v
duality relations of the type presented in Eq.~4.15!.

Thus, we get four gauge fields localized on the wall. T
physical interpretation of this result is as follows. The qua
fields are condensed outside the 12→34 wall while inside
they vanish. This means that dual gauge fields are seve
confined outside the wall while inside the confinement b
comes inoperative. This is precisely the mechanism of
gauge field localization suggested in Ref.@2#.

D. Effective field theory on the wall

In this section we work out the~211!-dimensional low-
energy theory of the moduli on the wall. First we will discu
the elementary walls and then focus on the composite w
12→34.

1. Elementary walls

In this section we will deal with the elementary doma
walls 1,2→1,B with B53 or 4. Our task is to work out the
effective ~211!-dimensional theory for the wall collective
coordinates~which become the world-volume fields!. For the
elementary walls the overall situation is quite similar to th
discussed in our previous work@4#. Therefore, we will be
rather fragmentary.

As was elucidated in Sec. IV B, the elementary wall h
two bosonic collective coordinates,z0 ands, plus their fer-
mionic counterpartsha f . We make slowly varying fields de
pendent ont,x,y[xn(n50,1,2),

z0→z~xn!, s→s~xn!, ha f→ha f~xn!. ~4.26!

We can limit ourselves to the bosonic fieldsz(xn) and
s(xn)—the residual supersymmetry will allow us to readi
reconstruct the fermion part of the effective action.

The fieldsz(xn) ands(xn) are in one-to-one correspon
dence with the zero modes in the wall background; therefo
they have no potential terms in the world sheet theory, o
kinetic. Our immediate task is to derive these kinetic ter
essentially repeating the procedure of Ref.@4#. Forz(xn) this
is trivial. Substituting the wall solution~4.9!, ~4.13!, and

in
i-
3-12
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~4.14! in the action~4.2! and accounting for thexn depen-
dence ofz(xn), with no further delay we arrive at

Tw

2 E d3x~]nz!2. ~4.27!

This answer is quite general and would be valid for the tra
lational modulus in any model.

As far as the kinetic term fors(xn) is concerned an ad
ditional ~albeit modest! effort is needed. We start from Eq
~4.14! for the quark fields on the right edge of the wall whic
depend on the phases parametrizing a relative phase orie
tation of the fourth flavor with regards to the second one.
calculate the corresponding kinetic term we have to mod
our ansatzfor the gauge fields, namely,

An
352x3~z!]ns~xn!,

An5x0~z!]ns~xn!. ~4.28!

We introduce extra profile functionsx0(z) andx3(z), much
in the same way it was done in@4#. They have no role in the
static wall solutionper se. However, in constructing the ki
netic part of the world-volume theory for the moduli field
their occurrence cannot be avoided.

These new profile functions give rise to their own actio
which must be subject to minimization. The gauge potent
~4.28! are introduced in order to cancel thex dependence o
the quark fields far from the wall~in the final quark vacuum
at z→`) emerging through thex dependence ofs(xn); see
Eq. ~4.14!.

Now let us turn to the kinetic terms in the~211!-
dimensional effective action coming from the quark kine
terms in Eq.~4.2!. For the first flavor we have

¹nqr152
i

2
~]ns!~x02x3!w r1. ~4.29!

This expression is valid far away from the edges of the
main wall, that is to say, in the middle domainM, whereqr1

is a nonvanishing constant~4.12!, and atz→6` whereqr1

tends to its vacuum expectation valueAj. To ensure the
finiteness of the kinetic energy of the first quark flavor w
impose the following boundary conditions on the functio
x0 andx3:

x0→x3 , z→6`. ~4.30!

For the second flavor we have

¹nqb252
i

2
~]ns!~x01x3!w~z2!, ~4.31!

where we introduced the quark profile function given by

w~z!5H Aj,

Aje2(Dm/2R)z2
,

z→7`, ~4.32!

and the shorthand
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z65z2z07
R

2
~4.33!

is implied. z6 are the coordinates which vanish at the w
edges.

To make the kinetic energy of the second quark flav
finite we impose the boundary conditions

x0→x3→0, z→2`. ~4.34!

A parallel procedure for those quarks that have nonvanish
VEV’s in the final vacuum leads us to

¹nqbB5 i ~]ns!S 12
x01x3

2 Dw~2z1!. ~4.35!

This gives us the desired boundary conditions for the fu
tions x at z→1`,

x0→x3→1, z→1`. ~4.36!

Now we are ready to assemble all necessary elements.
stituting Eqs.~4.29!, ~4.31! and~4.35! in the action and tak-
ing into account the kinetic term for the gauge fields w
arrive at

S211
s 5E dzH 1

g2
2 ~]zx3!21

1

g1
2 ~]zx0!21

1

2
~x02x3!2~w r1!2

12S 12
x01x3

2 D 2

w~2z1!2

1
1

2
~x01x3!2w~z2!2J E d3x

1

2
~]ns!2. ~4.37!

The expression in the integral overz must be viewed as an
action for thex profile functions. To get the classical solu
tion for the BPS walland the wall world-volume theory of
the moduli fields we must minimize this action. The minim
zation leads to two second-order equations for the functi
x0 andx3. The solutions to these equations are linear in
middle domainM, for both functions,

x0,35
z2z01R/2

R
. ~4.38!

Furthermore, outside the domain wall the both functions
ponentially approach their boundary values~4.36!, ~4.34!.
This exponential approach is controlled by the photon m
~2.18! for the U~1! field and the W-boson mass~2.17! for the
SU~2! field ~cf. @4#!. Substituting the solution~4.38! in thex
action ~4.37! and taking into account Eq.~4.11! we finally
obtain

S211
s 5

j

DmE d3x
1

2
~]ns!2. ~4.39!

As has been already mentioned previously, the comp
scalar fields(t,x,y) can be reinterpreted as a dual to t
~211!-dimensional Abelian gauge field living on the wa
3-13
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see Eq.~4.15!. Note, that Eqs.~4.28! and~4.38! demonstrate
that the particular combination of two U~1! gauge fields
which is localized inside the wall is the combination with t
following alignment:

An
352An .

This combination corresponds to thee2-root of the SU~3!
gauge group of the ‘‘prototheory;’’ see Fig. 5. In particula
the w1 quark which has a nonvanishingr-component inside
the wall is not charged under this combination.

The result presented in Eq.~4.39! implies that the cou-
pling constant of the effective U~1! theory on the wall

e211
2 54p2

j

Dm
. ~4.40!

This statement will help us make the definition of the~211!-
dimensional gauge field outlined in Eq.~4.15! more precise,

Fnm
(211)5

e211
2

2p
«nmk]

ks. ~4.41!

As a result, the effective low-energy theory of the mod
fields on the wall takes the form

S2115E d3xH Tw

2
~]nz!21

1

4e211
2 @Fnm

(211)#2

1fermion termsJ . ~4.42!

The elementary wall at hand is 1/2 BPS-saturated—it bre
four supercharges out of eight present inN52 theory. Thus
we have four fermion fields residing on the wall,ha f (a, f
51,2). Because of the~211!-dimensional Lorentz invari-
ance of the on-the-wall theory we are certain that these
fermion moduli fields form two~two-component! Majorana
spinors. Thus, the field content of the world-volume theo
we obtained is in full accord with the representation of t
~211!-dimensional extended supersymmetry: one comp
scalar field plus one Dirac two-component fermion fie
Minimal supersymmetry in 211 dimensions~with two su-
percharges! would require one real scalar field and one M
jorana two-component fermion field. It is natural that w
recover extended supersymmetry: there are eight su
charges in our microscopic theory; the domain wall at ha
is 1/2 BPS; hence, we end up with four supercharges in
world-volume theory.

2. The composite wall

Let us pass to the discussion of the effective wor
volume theory on the composite domain wall 12→34. The
emphasis will be put on novel elements appearing in
theory of the moduli fields on the composite wall which we
absent in the case of the elementary walls.

The first technical modification compared to Sec. IV D
is that now we have four independent compact moduli, rat
than one—three residing in the matrixU, Eq. ~4.22! pluss0.
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Therefore, in order to cancel thexn-dependence of the quar
fields far away from the wall, in the final vacuum, we have
introduce in theansatzfour gauge fields,

An5x0~z!]ns0~xn!,

ta

2
An

a52 ix~z!@]nU~xn!#U21~xn!. ~4.43!

Herex andx0 are the profile functions for SU~2! and U~1!
gauge fields, respectively. Calculations of the quark a
gauge kinetic terms run parallel to those in Sec. IV D 1 lea
ing us to a key formula

S211
cm 5E dzF 1

g1
2 ~]zx0!21~12x0!2w2~2z1!

1x0
2w2~z2!G E d3x

1

2
~]ns0!2

1E dzF 1

g2
2 ~]zx!21~12x!2w2~2z1!

1x2w2~z2!G E d3x Tr@~U21]nU !~U21]nU !#,

~4.44!

where the superscript cm stands for compact moduli. T
boundary conditions for the functionsx andx0 must be cho-
sen to ensure finiteness of energy in the domains far a
from the wall. This gives

x0→x→0, z→2`,

x0→x→1, z→1`. ~4.45!

Equation~4.44! can be considered as an action functional
x andx0.

The functionsx and x0 are determined by minimization
of the above action functional which gives a second-or
equation for each function. We will not present them he
since the reader can trivially get them himself or herself
minimization. The solutions in the middle domain have t
already familiar linear form,

x05x5
z2z01R̃/2

R̃
, ~4.46!

where the size of the composite wallR̃ is given in Eq.~4.19!.
Outside the wall the functionsx and x0 exponentially ap-
proach their boundary values~4.45!. The rate of approach is
determined by the photon mass~2.18! for the functionx0,
while it is determined by theW-boson mass~2.17! for the
functionx. Substituting the solution~4.46! back in the action
~4.44! we obtain the following kinetic term:
3-14
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S211
cm 5

j

2DmE d3xH 1

2
~]ns0!2

1
g1

2

g2
2

Tr@~U21]nU !~U21]nU !#J . ~4.47!

Next, as in the elementary wall case, we can try to dua
the moduli residing inU, as well ass0, to convert them in
~211!-dimensional gauge fields

Fnm
(211)5

e211
2

2p
«nmk]

ks0 ,

ta

2
Fnm

(211)a52 i
g211

2

2p
«nmkU

21]kU. ~4.48!

Assembling all the above elements we obtain the action
the world-volume effective theory,

S2115E d3xH 1

2e211
2 ~]na211!21

1

2g211
2 ~Dna211

a !2

1
1

4e211
2 @Fnm

(211)#21
1

4g211
2 @Fnm

(211)a#2

1fermion termsJ , ~4.49!

of which a few comments are in order immediately.
The first comment refers to four noncompacta,aa moduli

which emerged in Eq.~4.49! seemingly out of blue. We can
use gauge transformation in the world volume theory to
two of them to zero, saya211

1,2 50. The other twoa211
3 and

a211 should be identified with~linear combinations of! two
centers of the elementary walls comprising our compo
wall.14 More exactly, asa211 has no interactions whatsoev
it is to be be identified with the center of mass of the co
posite wall,

a2115AjDme211

1

A2
~z11z2!5pj~z11z2!,

~4.50!

while a211
3 can be identified with the relative separation b

tween the elementary walls,

a211
3 5AjDmg211

1

A2
~z12z2!5pj

g1

g2
~z12z2!,

~4.51!

14Note that in Sec. IV C we worked out the solution for the co
posite wall as a bound state of two elementary walls at zero s
ration. However, in fact, this bound state is marginally unstable
has a zero mode associated with the possibility of arbitrary sep
tion between components.
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where we use the fact that the tension of elementary wall
Tw5jDm.

The second comment is devoted to a technical~but very
important! element of the derivation of Eq.~4.49!. In fact,
this world-volume action was obtained, through the calcu
tional procedure described above, only at the quadratic le
~i.e. omitting non-Abelian nonlinearities!. This is rather ob-
vious as our derivation, and in particular the identificati
~4.48! and the effective action~4.47!, limits itself to the qua-
dratic approximation. Higher-than-quadratic terms in the
11)-dimensional action, such as the commutator term in
gauge field strength tensor, would produce four-derivat
terms in the (211)-dimensional theory~4.47!. Such terms
were explicitly omitted in the derivation above. To recov
non-quadratic~truly non-Abelian! terms in Eq.~4.49! we use
gauge invariance on the world volume.

The final remark is about the values of the coupling co
stants in the (211)-dimensional~‘‘macroscopic’’! theory in
relation to the (311)-dimensional~‘‘microscopic’’! param-
eters. The U~1! and SU~2! gauge coupling constants in Eq
~4.49! are given by

e211
2 52p2

j

Dm
,

g211
2 52p2

g1
2

g2
2

j

Dm
. ~4.52!

Our domain wall is a 1/2-BPS object so it preserves fo
supercharges on its world volume. Thus, we must have
extendedN52 supersymmetry, with four supercharges,
the (211)-dimensional world-volume theory. This is in ac
cord with Eq. ~4.49! in which the U~1! and SU~2! gauge
fields are combined with the scalarsa211 anda211

a to form
the bosonic parts ofN52 vector multiplets.

Now let us discuss the possibility of spontaneous ga
symmetry breaking in the world volume theory. Clearly if th
adjoint scalara211

a develops a VEV, the SU~2! gauge sym-
metry is spontaneously broken in our world volume theo
~4.49! on the composite wall. We can always use gauge
tations to directa211

a VEV along third axis in the color
space,̂ a211

3 &Þ0. Then identification~4.51! shows that the
separationl 5z12z2 between two elementary walls whic
form our composite wall is nonvanishing. In particular, t
mass of the (211)-dimensional W-boson is given by th
separation between elementary walls,

mW
2115pj

g1

g2
l . ~4.53!

The mass grows linearly withl. This is completely consisten
with similar result for D-branes obtained in string theory.

Now let us discuss how can one see this gauge symm
breaking in the (311)-dimensional bulk theory. Let us spl
our composite wall in two elementary ones, say, 12→14 and
14→34. Now we pull these two elementary walls apart ma
ing the separation much larger than the wall thicknessl
@R. The separationl must be much larger thanR because

a-
d
a-
3-15
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the scale 1/R plays a role of an ultraviolet cutoff in the
world-volume theory~4.49!. Clearly two well separated el
ementary walls have only two phase collective coordina
one per each wall; see Sec. IV B. If we dualize these pha
we get two Abelian gauge fields in the effective world vo
ume theory. This corresponds to breaking of SU(2)3U(1)
gauge symmetry down to U(1)3U(1) in Eq. ~4.49!. At
separationsl @R the masses of two (211)-dimensional
W-bosons become much larger thanDm @see Eq.~4.53!# and
they cannot be seen in the effective low-energy wor
volume theory.

One may ask where do two extra ‘‘non-Abelian’’ phas
of the composite wall disappear at separations larger than
elementary wall width. Of course, they do not disappe
They just pass into Goldstone modes in the intermediate
vacuum. Remember that the intermediate 14-vacuum h
Higgs branch; see Sec. II B 2. The two extra phases are
associated with the massless moduli on this Higgs branch
zero separation these phases are collective coordinates o
composite wall. They belong to the (211)-dimensional
world-volume theory. At large separations they become b
excitations living in the intermediate vacuum. We will retu
to this issue in Sec. VI D where we will show that on
Abelian strings can end on the composite wall when
separation between its components gets larger than the t
ness of the individual components.

To conclude this section, we reiterate that the consid
ation presented above is certainly not a ‘‘rigorous deri
tion’’ of the non-Abelian gauge invariance in the effectiv
world-volume action~4.49!. Rather, it can be viewed as
motivated argument. Our derivation is carried out only at
quadratic level and does not take into account non-Abe
nonlinearities. We identify four compact collective coord
nates, to be dualized into four gauge fields living on the w
We also calculate their kinetic terms which fix the values
the 3D gauge coupling constants. Direct calculation of cu
and quartic interaction terms, i.e., abona fidecomplete deri-
vation, goes beyond the scope of this paper. This is a task
future work.

The gauge invariance in Eq.~4.47! is not apparent since
Eq. ~4.47! is written in terms ofgauge invariantphases. The
gauge invariance of the world-volume theory appears onl
Eq. ~4.49!, after dualization. There are quite compelling a
beit indirect arguments showing that our proposal@i.e. the
SU(2)3U(1) gauge theory~4.49!# is the correct generaliza
tion of Eq. ~4.47!. First, the number of fields matches. W
have four compact phases and two noncompact cen
Upon dualization, they fit into a vector multiplet of 3DN
52 theory with the SU(2)3U(1) gauge group. Say, if the
gauge group were U(1)4, we would need four phases an
four noncompact coordinates, which we do not have. Th
the non-Abelian gauge symmetry of the world-volum
theory, in effect, is supported by supersymmetry. Seco
there are ony two distinct coupling constants in Eq.~4.47!,
rather than four. This also indicates that three phases, u
dualization, should be unified in the SU~2! gauge theory.

V. NON-ABELIAN FLUX TUBES IN NÄ2 QCD

In string theory gauge fields are localized on D-bran
because fundamental open strings can end on D branes@1#.
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In Ref. @4# we demonstrated that this picture is also valid
field theory, in the Abelian gauge field case. Namely, t
Abelian flux tube was shown to end on the domain wall. T
reason for such behavior is easy to understand. In the H
vacuum~in which electric charges condense!, the magnetic
field is trapped into flux tubes. However, inside the w
quark fields~almost! vanish. Therefore, the magnetic flu
which is carried by the string in the bulk can spread ov
inside the wall. The magnetic fields become electric up
dualization. The string end point plays the role of the elec
charge for the gauge field localized on the wall@4#.

Our task is to generalize this picture to cover the case
the non-Abelian gauge fields. The main goal is finding
solution for a 1/4-BPS string-wall junction, in which a strin
carrying a non-Abelian flux can end on the composite w
12→34. We start implementation of the string-wall junctio
program in earnest in Secs. V B and VI. Meanwhile, a br
introduction in non-Abelian flux tubes will be in order, t
acquaint the reader with the necessary machinery. An
vanced investigation of non-Abelian flux tubes in vario
regimes will be described elsewhere@32#.

Vortices in non-Abelian theories were studied in ma
papers in recent years@13,38–43#. However, in all these ex-
amples of vortex solutions, the string flux is always direct
in the Cartan subalgebra of the gauge group. This implie
~hidden! Abelian nature of these strings. Clearly these strin
cannot be used for our purposes because their end poin
domain walls cannot act as sources for non-Abelian field

Only recently a special regime was found@6# in which
flux tubes acquire orientational zero modes which allow o
to freely rotate the string flux inside a non-Abelian grou
This special regime is associated with the presence of a
tain combination of global gauge and flavor symmetry n
broken by VEV’s of scalar fields. Below we will show tha
precisely this regime is realized in 12- and 34-vacua of
theory under consideration.

The theory analyzed in Ref.@6# is N52 QCD with the
SU~3! gauge group broken down to SU(2)3U(1), with four
quark flavors, all with the same mass. We review the str
solution found in this paper and adapt the analysis to
SU(2)3U(1) model. To begin with, however, we prese
some general arguments in a simple toy model.

A. How ‘‘non-abelian’’ are non-abelian strings we deal with?

In Ref. @24# it was proven that the only BPS-saturate
strings at weak coupling inN51 theories are those of th
ANO type, occurring in U~1! theories. Here we speak o
‘‘non-Abelian’’ BPS strings inN52. A natural question to
ask is in which sense the BPS flux tubes under considera
are non-Abelian strings. A conceptual answer can be give
a simplified model which does not even need to be sup
symmetric.

Indeed, let us consider a~non-supersymmetric! model
which generalizes that of Abrikosov-Nielsen-Olesen, and
two gauge groups, SU~2! and U~1!, and scalar fields of two
3-16
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flavors.15 Denote two SU~2! doublet fields byw i
(1) andf j

(2) ,
i , j 51,2. Then, introduce a 232 matrix field

F5S f1
(1) f1

(2)

f2
(1) f2

(2)D . ~5.1!

The covariant derivatives are defined in such a way that t
act from theleft,

¹mF[S ]m2
i

2
Am2 iAm

a ta

2 DF. ~5.2!

We assume the action to have the form

S5E d4xF 1

4g2
2 ~Fmn

a !21
1

4g1
2 ~Fmn!2

1Tr~¹mF!†~¹mF!1V~F!G , ~5.3!

where, for the time being, the potential functionV is as-
sumed to be gauge invariant as well as invariant under
global U~2!

F→FUR . ~5.4!

HereUR is a constant matrix from U~2!, and the multiplica-
tion is performed from theright. The action~5.3! is invariant
under the local U~2!,

F→UL~x!F, ~5.5!

with Am and Am
a transformed appropriately,and under the

global U~2!, Eq. ~5.4!.
Models of the type~5.3! were engineered long ago@44#

with the purpose of providing a set up for the spontane
breaking of the local~gauge! group G down to a diagonal
globalG. Indeed, with an appropriate choice of the poten
function V, one can ensure the vacuum expectation value
F to be diagonal,

Fvac5vS 1 0

0 1D , vÞ0. ~5.6!

Then, since this vacuum is obviously invariant under
combined multiplication

F→ULFUR , ~5.7!

with UR5UL
† , the diagonal global U~2! will be preserved.

Now we can discuss topological defects of the string ty
Defects of the ANO type are always possible. Indeed, put
SU~2! gauge field to zero~and temporarily forget about i
whatsoever!. A nontrivial topology will be realized through
the U~1! winding of F,

15This model is also a version of the Higgs sector of the stand
model.
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F~x!5eia(x)v, uxu→`, ~5.8!

and

A,522«,k

xk

r
, ~5.9!

wherea is the phase in the perpendicular plane, andr is the
distance from the string axis in the perpendicular pla
Since p1(U(1))5Z, we will get in this way a set of the
ANO flux tubes with the arbitrary windings.

These are not the strings we are after, however. At fi
sight, the presence of the SU~2! gauge symmetry, in addition
to U~1!, does not create any new possibilities. Indee
p1(SU(2)) is trivial; one can readily unwind windings i
SU~2! relevant to strings.

Nevertheless, the fact that SU~2! has a center,Z2, does
create a new possibility.16 To see that this is the case, let u
examine the following topology. A large circle in the plan
perpendicular to the string axis is depicted in Fig. 6. Assu
that one starts from a certain point on this circle and make
full rotation around the string. Introduce the winding
SU~2!, and assume the full rotation above to bring us to
same element up to the center, namely,

F~x!5eivW (x)tW /2F~x0!→2F~x0! at x→x0 after rot.,

~5.10!

see Fig. 7. The condition~5.10! per seis forbidden, since it
results in a discontinuity of theF field. One can eliminate
this discontinuity by supplementing the SU~2! winding
above by a U~1! winding with the condition

F~x!5eia(x)/2F~x0!→2F~x0! at x→x0 after rot.
~5.11!

The formula

F~x!5expS ia~x!
16t3

2 DF~x0!, a~x!→2p after rot.,

~5.12!

rd 16Of course, any element of U~1! can be considered as a cente
since this group is Abelian.

FIG. 6. Geometry of the string.
3-17
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summarizes this pattern. Depending on the choice of the
in the exponent, only ther or only theb components of the
fieldsf (1,2) have a nontrivial winding. It is clear from Fig.
that one cannot unwind it. It is also clear that the flux
corresponding to the fieldsAm andAm

3 are half the flux of the
U~1! field of the ANO string. We will refer to such strings a
(1,0) and (0,1)—the first winding number corresponding
the indexr, the second tob. This notation seems rather awk
ward given the way we introduced the setup. It emer
naturally within the historical line of development, howeve
see below. The standard ANO string emerges as a sum o
(1,0) and (0,1) strings. The question as to which strings
more favorable energetically depends on dynamical det
We will return to it later.

A remarkable feature of the (1,0) and (0,1) strings is
appearance of non-Abelian moduli which are absent in
ANO strings. Indeed, while the vacuum field~5.6! is invari-
ant under the global SU~2! by virtue of Eq.~5.7!, the string
configuration~5.12! is not. Therefore, if there is a solution o
the form ~5.12! there is a family of solutions obtained from
Eq. ~5.12! by the replacement

F~x!→Vf~x!V† ~5.13!

where V is an x-independent matrix from U~2!. Generally
speaking, it is parametrized by four parameters. The U~1!
factor is nothing but a shift of the origin of the anglea,
however; one should not count it. Thus, what remains
SU~2!. Moreover, in fact, it is SU~2!/U~1!, as is clearly seen
from Eq.~5.12!. @Rotations around the third axis in the SU~2!
space leave the solution intact.# SU~2!/U~1! is the target
space of theCP1 @or O(3)] sigma model which, thus, pro
vides the adequate description of the moduli dynamics@5,6#.

It is just this aspect that allows us to refer to the strin
above as ‘‘non-Abelian.’’ They are as non-Abelian as it g
at weak coupling.

Note that the stability of the (1,0) and (0,1) strings und
consideration would be impossible without the presence
the U~1! factor.

In conclusion, it is instructive to ask what happens if w
explicitly break the SU~2! flavor symmetry of the mode
~5.3! by introducing unequal masses to the fieldsf (1) and
f (2), namely,

FIG. 7. Topology of the~1,0! and~0,1! strings. The trajectories
in the group spaces corresponding to circumnavigating along
large circle in Fig. 6 are denoted by bold lines.
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SM5E d4x Tr~FM 2F†!, ~5.14!

where the mass matrix has the form

M 25S m1
2 0

0 m2
2D , m1

2Þm2
2 . ~5.15!

Intuitively it is clear that ifDm2 is small, the only change is
as follows: the SU~2! symmetry of theCP1 model must be
broken, producing quasi-moduli from the would-be mod
of CP1. What survives is U~1!, rather than SU~2!. Later,
after re-introduction of supersymmetry, we will see that th
process is nothing but the transition from theN52 CP1

model to the one with the twisted mass.17 Anticipating our
further needs we present here the bosonic part of theCP1

model with the twisted mass,

LCP(1),t.m.5G$]mf̄]mf2um̃u2f̄f%, ~5.16!

whereG is the metric on the target space,

G[
2

g2

1

~11ff̄!2
, ~5.17!

and

x[11ff̄.

~It is useful to note that the Ricci tensorR52x22.! The
twisted mass parameterm̃ introduced in Eq.~5.16! is related
to the mass splittingDm of the microscopic theory,m̃
5Dm.

Anticipating further applications, we hasten to add th
theN52 superalgebra of theCP1 model~which is our mac-
roscopic theory! is centrally extended, namely,

$QLQ̄R%52 im̃qU(1)2m̃E dz]zh1
1

pE dz]z~x22C̄RCL!,

~5.18!

where the first term is proportional to the U~1! chargeqU(1) ,
while in the second termh52(2/g2)(1/x) presents the main
impact of the twisted mass. The last term is the cen
charge anomaly established in Ref.@33#. It is proportional to
the difference between the bifermion condensates in the fi
and initial vacua. The central charge anomaly becomes
portant in the limitm̃→0 corresponding tom1→m2 in the
microscopic theory. Then the classical terms;qU(1) and;h
vanish, and the central charge is entirely determined by
anomaly.

17N52 sigma models with twisted mass were first constructed
Ref. @45#. The superspace/superfield description was develope
Refs.@46,47#. In particular, the notion of a twisted chiral superfie
was introduced in the second of these works. The word ‘‘twiste
appears for the first time in the given context in Ref.@47#.

e

3-18
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The above central charge is in one-to-one corresponde
with the BPS kinks in theCP1 model. Sure enough, it mus
~and does! have a counterpart in the microscopic theory, s
Sec. III C. Projecting them onto one another allows one
establish relations between the parameters of the microsc
and macroscopic theories@32#, for instance,

1

gCP1
2 5

2p

g2
2

. ~5.19!

Let us note thatg2
2 in runs according to the formula o

asymptotic freedom down toj ~at Dm50), where it is fro-
zen in the bulk. The asymptotic freedom running ofg2

2 is
taken over and matched by that ofgCP1

2 in the macroscopic
~world-volume! theory.

B. Back to strings inNÄ2

For definiteness let us consider strings in the 12-vacu
To find the BPS string solutions we use the sameansatzas in
Eq. ~4.1! and also put adjoint fields, which are irrelevant f
the string solutions, equal to their VEV’s~2.12!. With these
simplifications our theory~4.2! becomes

S5E d4xF 1

4g2
2 ~Fmn

a !21
1

4g1
2 ~Fmn!21u¹mwAu2

1
g2

2

8
~ w̄AtawA!21

g1
2

8
~ w̄AwA22j!2G . ~5.20!

Clearly, only those two flavorsA51,2 which develop VEV’s
in the 12-vacuum will play a role in the classical vorte
solution. Other flavors remain vanishing on the solutio
Hence, we consider the quark fieldswkA to be 232 matrices
in this section. Note, however, that the additional two flav
are crucial in quantum theory, in keeping the SU~2! interac-
tions weak.

The string tension can be written in the manner of Bog
molny @34# as follows:

T5E d2xH F 1

A2g2

F3*
a6

g2

2A2
~ w̄AtawA!G 2

1F 1

A2g1

F3*

6
g1

2A2
~ uwAu222j!G 2

1u¹1wA6 i¹2wAu26jF3* J ,

~5.21!

where

F3* [
1

2
e i j Fi j ~ i , j 51,2!, ~5.22!

plus the same forF3*
a , are the coordinates in the plane o

thogonal to the string axis directed along the third~i.e., z)
axis. The Bogomolny representation implies the first-or
equations for the BPS strings,
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F3*
a1

g2
2

2
«~w̄AtawA!50, a51,2,3;

F3* 1
g1

2

2
«~ uwAu222j!50;

~¹11 i«¹2!wA50, ~5.23!

where

«561

is the sign of the total flux specified below.
We first review the U(1)3U(1) string solutions found

@13# in the unequal quark mass case, and then show tha
the limit of equal quark masses additional orientational z
modes arise making the string non-Abelian@6#. For unequal
quark masses some of the orientational moduli beco
quasi-moduli, corresponding to passing from theCP1 sigma
model with no twisted mass to that with a twisted mass;
Sec. V A.

The U(1)3U(1) strings can be recognized, with no e
fort, as particular solutions of Eqs.~5.23!. To construct them
we further restrict the gauge fieldsAm

a to a single~third!
color componentAm

3 ~by settingAm
1 5Am

2 50), and consider
only the quark fields of the 232 color-flavor diagonal form,

wkA~x!Þ0, for k5A51,2, ~5.24!

with vanishing other components. For the unequal mas
the relevant topological classification is

p1S U~1!3U~1!

Z2
D5Z2, ~5.25!

and the allowed strings form a lattice labeled by two integ
winding numbers. To be more specific, assume that the
flavor windsn times while the second flavor windsk times.
The solutions of Eq.~5.23! are sought for using a ‘‘natural’
ansatz,

wkA~x!5S einaf1~r ! 0

0 eikaf2~r !D ,

Ai
3~x!52«e i j

xj

r 2
@~n2k!2 f 3~r !#,

Ai~x!52«e i j

xj

r 2
@~n1k!2 f ~r !#, ~5.26!

where (r ,a) are the polar coordinates in the~12!-plane while
the profile functionsf1 , f2 for the scalar fields andf 3 , f for
the gauge fields depend only onr ( i , j 51,2).

With this ansatz, the first-order equations~5.23! take the
form @13#
3-19
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r
d

dr
f1~r !2

1

2
@ f ~r !1 f 3~r !#f1~r !50,

r
d

dr
f2~r !2

1

2
@ f ~r !2 f 3~r !#f2~r !50,

2
1

r

d

dr
f ~r !1

g1
2

2
@f1~r !21f2~r !222j#50,

2
1

r

d

dr
f 3~r !1

g2
2

2
@f1~r !22f2~r !2#50.

~5.27!

The profile functions in these equations are determined
the following boundary conditions:

f 3~0!5«n,k~n2k!, f ~0!5«n,k~n1k!,

f 3~`!50, f ~`!50 ~5.28!

for the gauge fields. The boundary conditions for the qu
fields are

f1~`!5Aj, f2~`!5Aj,

f1~0!50, f2~0!50 ~5.29!

for both n andk nonvanishing, while, say, fork50 the only
condition atr 50 is f1(0)50. Here the sign of the string
flux is defined as

«5«n,k5
n1k

un1ku
5sgn~n1k!561. ~5.30!

The tension of a (n,k)-string is determined by the flux o
the U~1! gauge field alone and is given by the formula@6,13#

Tn,k52pjun1ku. ~5.31!

Note thatF3*
3 does not enter the central charge of theN

52 algebra and, therefore, does not affect the string tens
The stability of the string in this case is due to the U~1!
factor of the SU(2)3U(1) group only. Note also that (1,0
and (0,1)-strings are exactly degenerate.

For a generic (n,k)-string equations~5.27! do not reduce
to the standard Bogomolny equations. For instance, for
~1,1!-string these equations reduce to two Bogomolny eq
tions while for the~1,0! and ~0,1! strings they do not. Nu-
merical solutions for the two ‘‘elementary’’~1,0! and ~0,1!
strings were obtained in Ref.@6#.

The charges of (n,k)-strings can be plotted on the Carta
plane of the SU~3! algebra of the ‘‘prototheory.’’ We shal
use the convention of labeling the flux of a given string
the magnetic charge of the monopole which produces
flux and can be attached to its end. This is possible, s
both, string fluxes and the monopole charges, are elemen
the groupp1(U(1)2)5Z2. This convention is quite conve
nient because specifying the flux of a given string autom
cally fixes the charge of the monopole that it confines.
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Our strings are formed as a result of the quark conden
tion; the quarks have electric charges equal to the weight
the SU~3! algebra. The Dirac quantization condition tells
@13# that the lattice of the (n,k)-strings is formed by roots o
the SU~3! algebra. The lattice of (n,k)-strings is shown in
Fig. 8. Two strings, (1,0) and (0,1), are the ‘‘elementary’’
‘‘minimal.’’ They are BPS-saturated. All other strings can b
considered as bound states of these ‘‘elementary’’ strings
we plot two lines along the charges of these ‘‘elementa
strings ~Fig. 8! they divide the lattice into four sectors.
turns out@13# that the strings in the upper and lower secto
are BPS but they are marginally unstable. At the same ti
the strings in the right and left sectors are~meta!stable bound
states of the ‘‘elementary’’ ones but they are not BPS.

Now, let us generalize the string solutions~5.26! to the
case of the equal quark masses, when the SU~2!3U~1! gauge
group is not broken by the difference of the quark masses
is the case in the 12-vacuum. The relevant homotopy gr
in this case is the fundamental group

p1S SU~2!3U~1!

Z2
D5Z, ~5.32!

replacing Eq. ~5.25!. This means that the lattice o
(n,k)-strings reduces to a tower labeled by one integern
1k). For instance, the (1,21)-string becomes completel
unstable. On the restored SU~2! -group manifold it corre-
sponds to a winding along the meridian on the sphereS3.
Clearly this winding can be shrunk to nothing by contracti
the loop towards the north or south poles@37#.

On the other hand, the (1,0) and (0,1) strings cannot
shrunk because their winding is half a circle~Fig. 7!. They
have the same tension

T152pj ~5.33!

for equal quark masses and, thus, apparently belong
doublet of SU~2!.

FIG. 8. Lattice of (n,k) vortices.
3-20
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Below we will show that there is a continuous deform
tion of the (1,0)-string solution transforming it into
(0,1)-string. This deformation leaves the string tension
changed and, therefore, corresponds to an orientational
mode@6#.

First let us fix the unitary gauge~at least globally, which
is enough for our purposes! by imposing the condition tha
the squark VEV’s are given precisely by Eq.~2.13!, and so
all gauge phases vanish. Now transform the (1,0)-string
lution ~5.26! into the unitary gauge, which corresponds to t
singular gauge, in which the string flux comes from the s
gularity of the gauge potential at zero. In this gauge
solution ~5.26! for the (1,0)-string takes the form

wkA5S f1~r ! 0

0 f2~r !D ,

Ai
3~x!5e i j

xj

r 2
f 3~r !, Ai~x!5e i j

xj

r 2
f ~r !.

~5.34!

Now, please, observe that a global diagonal subgroup in
product of gauge and flavor symmetries SU(2)C3SU(2)F is
not broken by the quark VEV’s. Namely,

UC1F^q&UC1F
21 5^q&, ~5.35!

where UC1F is a global rotation in SU~2! while the quark
VEV matrix is given by Eq.~2.13!. We refer to this unbroken
group as SU(2)C1F .

Let us apply this global rotation to the (1,0) string sol
tion ~5.34!. We find

wkA5UC1FS f1~r ! 0

0 f2~r !D UC1F
21 ,

ta

2
Ai

a~x!5
1

2
natae i j

xj

r 2
f 3~r !,

Ai~x!5e i j

xj

r 2
f ~r !, ~5.36!

where we define

UC1Ft3UC1F
21 5nata. ~5.37!

Herena is a unit vector onS2 , nW 251.
It is easy to check that the rotated string~5.36! is a solu-

tion to the non-Abelian first-order equations~5.23!. Clearly
the solution ~5.26! interpolates between (1,0) and (0,1
strings. In particular it gives a (1,0)-string forn5(0,0,1)
and a (0,1)-string forn5(0,0,21).

The vectornW has a clear-cut physical meaning. Its orie
tation is the orientation of the magnetic flux. The constru
tion above—which was carried out in the singular gauge
shows that the SU~2! flux of the string is directed along th
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vector na. This fact becomes even more transparent, if
examine a gauge-invariant definition of the magnetic flux
the non-Abelian string, which is very instructive. This can
done as follows. Define ‘‘non-Abelian’’ field strength~to be
denoted by bold letters! as follows:

F3*
a5

1

j
TrS F†F3*

b tb

2
FtaD . ~5.38!

From the very definition it is clear that this field isgauge
invariant. Moreover, it is clear from Eq.~5.36! that

F3*
a52na

~f1
21f2

2!

2j

1

r

d f3

dr
. ~5.39!

Thus, the physical meaning of these moduli is as follow
The flux of the color-magnetic field in the flux tube is d
rected alongnW . We see that the SU(2)C1F symmetry is
physical and does not correspond to any of the gauge r
tions which are ‘‘eaten up’’ by the Higgs mechanism. At th
same time, a non-Abelian gauge group—a ‘‘new color’’—
resurrected. For strings in Eq.~5.26! the ‘‘new-color’’-
magnetic flux is directed along the third axis in the O~3!
group space, either upward or downward.

The SU(2)C1F symmetry is exact and the tension of th
string solution~5.36! is independent ofna; see Eq.~5.33!.
However, an explicit vortex solution breaks the exa
SU(2)C1F in the following manner:

SU~2!C1F→U~1!. ~5.40!

Two angles associated with vectorna becomes two orienta
tional bosonic zero modes of the string. The vectorna pa-
rametrize the quotient space SU(2)/U(1);CP1;S2. This
means that, as we have already explained in Sec. V A,
(111)-dimensional low-energy effective theory for the
orientational zero modes is the O~3! sigma model@O~3!
sigma model is the same asCP1 sigma model; if we started
from SQCD with the gauge group SU(N)3U(1), wewould
instead arrive@5,6# at CPN21]. Since the string is 1/2-BPS
saturated we have four supercharges in the effective w
sheet theory. This corresponds toN52 supersymmetry in
(111)-dimensions.

Classically the O~3! sigma model is characterized by
spontaneous breaking of the O~3! symmetry leading to two
massless Goldstone bosons. This is to say that in the qu
classical treatment the vectorna points in some particular
direction for a given string.

However, quantum physics ofN52 sigma model is quite
different. The model is asymptotically free and runs into
strong coupling regime at low energies. This theory ha
dynamically generated mass gap

LCP1;Aj exp~22p/gCP1
2

!;Aj exp~24p2/g2
2!.

~5.41!

There is no spontaneous breaking of O~3!, and no Goldstone
bosons are generated. In terms of strings in four dimens
this means that the string orientation vectorna has no par-
ticular direction. The O~3! sigma model has two vacua@48#.
In the microscopic four-dimensional picture this means t
3-21
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we have two ‘‘elementary’’ non-Abelian strings which form
a doublet with respect to SU(2)C1F .

Note however, that they arenot the (1,0) and (0,1) strings
of the quasiclassical U(1)3U(1) theory. In both strings the
vector na has no particular direction. Still the number
‘‘elementary’’ string states remains the same—two—in t
limit of equal quark masses.

The O~3! sigma model has a kink interpolating betwe
the two vacua. In four dimensions this interpolation will b
interpreted as a monopole which produces a junction of
‘‘elementary’’ non-Abelian strings@6,7#. This monopole lives
on the string world sheet because monopoles are in the
fining phase in our theory, and do not exist as free state

The charge of this monopole lies entirely inside the SU~2!
factor of the gauge group. IfDmÞ0, its charge is (1,21).
Classically the mass of this monopole isDm(4p/g2

2) and
tends to zero when the gauge symmetry is enhanced f
U(1)3U(1) to SU(2)3U(1) atDm50. Simultaneously its
size becomes infinite~cf. @49#!. However, in quantum theory
the story is different. This monopole has a finite size sin
there are no massless states in the O~3! sigma model. It is
massive but extremely light with a mass determined by
scale of the sigma modelLCP1; see Eq.~5.41!. The mass of
this monopole is lifted from zero and is given by the anom
lous term in the central charge~5.18! of the O~3! sigma
model. Its charge is no longer (1,21) because it interpolate
now between quantum vacua of the O~3! sigma model for
which the vectorna has no particular direction. Further de
tails are reported in@32#.

VI. STRING-WALL JUNCTIONS

In this section we derive the BPS equations and fin
1/4-BPS solutions for string-wall junctions. First we wo
out the first-order equations for string-wall junctions th
find a solution of Abelian string ending on the elementa
wall and, finally, discuss a non-Abelian string ending on
composite wall.

A. First-order equations for junctions

In Ref. @4# we found string-wall junction solution picking
up two supercharges~1/4 BPS!! which act trivially both on
the string and wall solutions. Here we take a slightly diffe
ent route inspecting the Bogomolny representation for
energy functional. We keep the quark, adjoint and ga
fields in our action because all of these fields play a role
the string-wall junction.

It is natural to assume that at large separations from
string end point atr 50, z50, the wall is almost parallel to
the (x1 ,x2) plane while the string is stretched along thez
axis at negativez. Since both solutions, for the string and th
wall, were obtained using theansatz~4.1! we restrict our
search for the wall-string junction to the sameansatz. As
usual, we look for a static solution assuming that all relev
fields can depend only onxn , (n51,2,3).

Then we can represent the energy functional of our the
~4.2! as follows:
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E5E d3xH F 1

A2g2

F3*
a1

g2

2A2
~ w̄AtawA!1

1

g2
D3aaG 2

1F 1

A2g1

F3* 1
g1

2A2
~ uwAu222j!1

1

g1
]3aG 2

1
1

g2
2 F 1

A2
~F1*

a1 iF 2*
a!1~D11 iD 2!aaG 2

1
1

g1
2 F 1

A2
~F1* 1 iF 2* !1~]11 i ]2!aG 2

1u¹1wA1 i¹2wAu2

1U¹3wA1
1

A2
~aata1a1A2mA!wAU2J

1surface terms, ~6.1!

where we assume that the quark mass terms and ad
fields are real. The surface terms are

Esurface5jE d3xF3* 1A2jE d2x^a&U
z52`

z5`

2A2
^a3&

g2
2 E dSnFn*

3 , ~6.2!

where the integral in the last term runs over a large tw
dimensional sphere atxn

2→`, and

Fn*
3[

1

2
eni jFi j

3 , ~6.3!

cf. Eq. ~5.22!. This is in full accord with the general discus
sion in Sec. III.

The Bogomolny representation~6.1! leads us to the fol-
lowing first-order equations:

F1* 1 iF 2* 1A2~]11 i ]2!a50,

F1*
a1 iF 2*

a1A2~D11 iD 2!aa50,

F3* 1
g1

2

2
~ uwAu222j!1A2]3a50,

F3*
a1

g2
2

2
~ w̄AtawA!1A2D3aa50,

¹3wA52
1

A2
~aata1a1A2mA!wA,

~¹11 i¹2!wA50. ~6.4!

These are ourmaster equations.
Once these equations are satisfied the energy of the

object is given by Eq.~6.2!. Please, observe that Eq.~6.2!
has three terms corresponding to central charges of
string, domain wall and monopoles of the SU~2! subgroup,
respectively. Say, for the string the three-dimensional in
3-22
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gral in the first term in Eq.~6.2! gives the string length time
its flux. For the wall the two-dimensional integral in the se
ond term in Eq.~6.2! gives the area of a wall times th
tension. For the monopole the integral in the last term in
~6.2! gives the monopole flux. This means that our mas
equations~6.4! can be used to study the BPS strings, dom
walls, monopoles, and all their possible junctions.

It is instructive to check that the wall, string and mon
pole solutions, separately, satisfy these equations. Say
start from the wall solution. In this case the gauge fields
put to zero, and all fields depend only onz. Thus, the first
two and the last two equations in Eq.~6.4! are trivially sat-
isfied. The components of the gauge fieldsF3* andF3*

a van-
ish in the third and fourth equations; hence these equat
reduce to the last two equations in Eq.~4.4!. The fifth equa-
tion in Eq. ~6.4! coincides with the first one in Eq.~4.4!.

For the string which lies, say, in the 12-vacuum, all qua
fields vanish exceptqA, A51,2 whilea andaa are given by
their VEV’s. The gauge flux is directed along thez axis, so
that F1* 5F2* 5F1*

a5F2*
a50. All fields depend only on the

coordinatesx1 andx2. Then the first two equations and th
fifth one in Eq.~6.4! are trivially satisfied. The third and th
fourth equation reduce to the first two ones in Eq.~5.23!. The
last equation in Eq.~6.4! for A51,2 reduces to the last equa
tion in Eq.~5.23!, while for B53,4 these equations are triv
ally satisfied.

Equations for the monopole arise from the ones in E
~6.4! in the limit j50. Then all quark fields vanish, and E
~6.4! reduces to the standard first-order equation for
monopole in the BPS limit,

Fn*
a1A2Dnaa50, ~6.5!

while a is given by its VEV and the U~1! gauge field van-
ishes.

In particular, Eq.~6.2! shows that the central charge of th
SU~2! monopole is determined bŷa3& which is proportional
to the quark mass difference in the given vacuum. Say,
the monopole in the 12-vacuum it gives zero. However,
was mentioned at the end of Sec. V B, the mass of
monopole is lifted from zero atjÞ0. In this case this mono
pole becomes a junction of two ‘‘elementary’’ strings of th
SU(2)3U(1) theory and acquires a nonvanishing mass
to nonperturbative effects in the O~3! sigma model on the
string world sheet.

Let us note that the Abelian version of the first-order m
ter equations~6.4! was first derived in Ref.@4# and used to
find a 1/4-BPS solution for the string-wall junction. Qui
recently a non-Abelian version for SU(2)3U(1) theory was
used@7# to study the junction of two ‘‘elementary’’ string
via a small-size monopole atDmÞ0 and large.

B. The Abelian string ending on the elementary wall

In this section we consider an Abelian string ending
the elementary wall. The 12→14 wall has a nonvanishing
r-component of the first flavor inside the wall; see Sec. IV
Therefore, only the (0,1)-string whose flux is orthogonal
the r-weight vector can end on this wall.
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Needless to say the solution of the first-order equati
~6.4! for the string ending on the wall can be found on
numerically, especially near the end-point of the string wh
both the string and the wall profiles are heavily deforme
However, far from the string end point, deformations a
weak and we can find the asymptotic behavior analytical

Let the string be on thez,0 side of the wall, inside the
12-vacuum. Consider first the regionz→2` far away from
the string end-point atz;0. Then the solution to Eq.~6.4! is
given by an almost unperturbed string. Namely, atz→2`
there is noz dependence to the leading order, and, hence,
solution

wkA5S f2~r ! 0

0 f1~r !D ,

Ai
3~x!52e i j

xj

r 2
f 3~r !,

Ai~x!5e i j

xj

r 2
f ~r ! ~6.6!

@which is a singular-gauge version of the solution~5.26! for
n50, k51; cf. Eq.~5.34!# satisfies Eqs.~6.4!. We also take
the fieldsA35A3

a50 andwB (B53,4) to be zero, witha’s
equal to their VEV’s~2.12!. On the other side of the wall, a
z→1`, we have an almost unperturbed 14-vacuum with
fields given by their respective VEV’s.

Now consider the domainr→` at smallz. In this domain
the solution to Eq.~6.4! is given by a perturbation of the wa
solution. Let us use theansatzin which the solutions for the
fields a, aa and wA are given by the same equations~4.9!,
~4.12!, ~4.13! and~4.14! in which the size of the wall is still
given by Eq.~4.11!, and the only modificationis that the
position of the wallz0 and the phases now become slowly-
varying functions ofr and a @i.e., the polar coordinates o
the (x1 ,x2) plane#. It is quite obvious thatz0 will depend
only on r.

As long as the third, fourth and fifth equations in Eq.~6.4!
do not contain derivatives with respect toxi , i 51,2, they are
identically satisfied for any functionsz0(r ,a) and s(r ,a)
~note thatF3* 5F3*

a50, the field strength is almost paralle
to the domain wall plane andA35A3

a50).
However, the first two and the last two equations in E

~6.4! become nontrivial. Consider the first two. Inside t
string the gauge fields are directed along thez axis and their
fluxes are 2p for F3* and22p for F3*

3 @remember, we trea
the (0,1)-string#. This flux is spread out inside the wall an
directed almost alongxi in the (x1 ,x2) plane at larger. Since
the flux is conserved, we have

Fi* 5
1

R

xi

r 2

Fi*
352

1

R

xi

r 2
, ~6.7!
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inside the wall atuz2z0(r ,a)u,R/2.
Substituting this in the first two equations in Eq.~6.4! and

assuming thatz0 depends only onr we get that the two
equations are consistent with each other and

] rz05
1

Dmr
. ~6.8!

Needless to say our ‘‘adiabatic’’ approximation holds on
provided the above derivative is small, i.e., sufficiently
from the string end point,Ajr @1.

The solution to this equation is straightforward,

z05
1

Dm
ln r 1const. ~6.9!

We see that the wall is logarithmically bent according to
Coulomb law in 211 dimensions. Similar to the case co
sidered in@4#, one can show that this bending produces
balance of forces between the string and the wall in thz
direction so that the whole configuration is static.

Now let us consider the last equation in Eq.~6.4!. First,
we will dwell on the gauge potential which enters the cov
riant derivatives in this equation. In order to produce the fi
strength~6.7!, Am and Am

a in the middle domain should re
duce to

Ai5
1

R
« i j

xj

r 2 Fz2z0~r !1
R

2G , i 51,2,

Ai
352

1

R
« i j

xj

r 2 Fz2z0~r !1
R

2G , i 51,2,

A05A0
350, A35A3

350. ~6.10!

Please, observe that nonvanishing field of the first quark
vor satisfies the equation since it has only ther-component
which is not charged with respect to the field~6.10!. Con-
sider the second quark flavor whoseb-component is given by
Eq. ~4.13! in the middle domain near the left edge of the w
at z2z0;2R/2. Taking into account the gauge potentia
~6.10! and the wall bending~6.8! it is easy to check that the
second flavor satisfies the last equation in Eq.~6.4!.

Finally, let us considerwb4 in the middle domain near th
right edge of the wall,z2z0;R/2. Substituting Eq.~4.14!
into the last equation in Eq.~6.4! we get the following equa-
tions for the phases:

]s

]a
51,

]s

]r
50. ~6.11!

The solution to these equations is

s5a. ~6.12!

In terms of the dual Abelian gauge field localized on t
wall, this solution reflects nothing but the unit source char

The above relation between the vortex solution and
unit source charge calls for a comment. One can identify
02501
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e
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compact scalar fields with the electric field living on the
domain wall world volume via Eq.~4.41!. Then the result
~6.12! gives for this electric field

F0i
(211)5

e211
2

2p

xi

r 2
, ~6.13!

where the (211)-dimensional coupling is given in Eq
~4.40!.

This is the field of a point-like electric charge in 211
dimensions placed atxi50. The interpretation of this resul
is that the string end point on the wall plays a role of t
electric charge in the dual U~1! theory on the wall, cf.@4#.

C. Non-Abelian string ending on the composite wall

Now we pass to the non-Abelian string ending on t
composite wall interpolating between the 12- and 34-vac
Our strategy is as follows. We start with the (0,1) Abeli
string as in Sec. VI B and consider its junction with the co
posite 12→34 wall of Sec. IV C. We then apply the
SU(2)C1F rotation introduced and discussed in Sec. V
this junction. Namely, we write down the first two flavors
a 232 matrix wkA (A51,2) and the last two flavors as a
32 matrix wkB (B53,4), and rotate them according to

w→UC1FwUC1F
21 , flavor indices51,2,

w→UC1FwUC1F
21 , flavor indices53,4,

~6.14!

with one and the same matrix from SU(2)C1F .
Note that both the 12- and 34-vacua do not break t

symmetry. However, the string and the string-wall juncti
are not invariant. Therefore, if we apply this rotation to t
solution for the (0,1)-string ending on the composite wall w
will get the solution of Eq.~6.4! for a non-Abelian string
ending on the composite wall, with the same energy.

Having set the general strategy, it is time to proceed t
technical analysis of the junction of the (0,1) string with t
composite wall. Assume for simplicity that in the absence
the string, the matrixŨ5I @see Eq.~4.21!# so that the devia-
tion of Ũ from the unit matrix is due to the string flux. Ou
composite wall can be considered as a marginally sta
bound state of the 12→14 and 14→34 walls. While the so-
lution presented in Sec. IV C has a vanishing separation
tween the constituents, the two elementary walls in t
bound state do not interact and their positions can be shi
to arbitrary separations. As the (0,1)-string can end only
the 12→14 wall, it is clear that it will pick up this wall and
pull it out to the left; see Fig. 9. The (14→34) constituent
stays unbent and does not play a role in the junction solu
at hand.18 We see that the solution for the (0,1)-string endi

18Of course, there could be some interaction of the end poin
the string on the 12→1B wall with 14→34 wall but this interaction
is short range and dies out atr @1/Aj.
3-24
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on the composite wall reduces to the solution for t
(0,1)-string ending on the (12→14) wall considered in Sec
VI B.

The solution for the (0,1)-string ending on the 12→14
wall has theb-component of the fourth flavor multiplied b
exp(2is) with s given by Eq.~6.12!; see Eq.~4.14!. The
14→34 wall has all phases vanishing because there is no
going inside this wall.

Thus, our junction has the quark matrix of the fin
vacuum determined by the matrix

Ũ5S 1 0

0 e2 iaD , ~6.15!

see Eq. ~4.21!. This shows that the junction of th
(0,1)-string and the composite wall has the following pha
s0 and the SU~2! matrix U @see Eq.~4.22!#:

s052
a

2
,

U5expS i
t3

2
a D . ~6.16!

Now let us apply the SU(2)C1F rotation ~6.14! to the
whole configuration. The flux of the string is now determin
by an arbitrary vectorna inside the SU~2! subgroup while the
quark matrix of the final vacuum gets rotated as

Ũ5UC1FS 1 0

0 e2 iaDUC1F
21 . ~6.17!

In terms of the phases0 and the SU~2! matrix U this
amounts to

s052
a

2
,

U5expS i
nata

2
a D . ~6.18!

FIG. 9. Junction of the string and the composite wall. The str
pulls out one of the components of the composite wall. Arro
show the spread of the magnetic flux inside the wall.
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This result clearly means that the end point of the string
a point-like source of the non-Abelian gauge field on t
composite wall. To see this more explicitly let us write dow
the (211)-dimensional gauge fields associated withs0 and
the matrixU using Eq.~4.48!. We get

F0i
(211)52

e211
2

4p

xi

r 2
,

F0i
a(211)5

g211
2

2p

xi

r 2
na. ~6.19!

As we see, this is the field of a classical point-like charge
the SU(2)3U(1) gauge theory on the wall. The direction o
the SU~2! field in the color space is determined by the vec
na associated with the string flux.

D. Gauge symmetry breaking

As was discussed at the end of Sec. IV D 2, if our co
posite wall is split into elementary components whose se
ration is larger than their thickness, the non-Abelian gau
symmetry in the world-volume theory~4.49! is broken down
to U(1)3U(1). In particular, the mass of the
(211)-dimensionalW-bosons becomes proportional to th
separationl between the elementary walls; see Eq.~4.53!.

Our analysis demonstrates that localization of a ga
field on a wall and existence of the corresponding string-w
junction are two sides of one and the same phenomenon
this section we address the question: ‘‘what happens with
string-wall junction in the (311)-dimensional bulk theory if
we split the composite wall and pull the components apar

Consider a string-wall junction for the non-Abelian strin
ending on the composite wall, as in Sec. VI C. If^ l &50 two
elementary walls which form the 12→34 wall overlap at
larger (r is the distance from the string end point along t
wall!. In fact, the composite 12→34 wall can be represente
as a bound state of two elementary walls in many differ
ways depending on which particular combination of t
quark fields is nonzero in the given elementary walls.
particular, the string with flux;na picks up a particular
elementary wall with

wkA;UC1FS 1 0

0 0DUC1F
21 , A51,2, ~6.20!

nonvanishing inside the wall. The string pulls it out to th
left while the ‘‘other wall’’ is ~almost! unbent; see Fig. 9. The
string ends on the wall specified by Eq.~6.20! so the string
flux spreads inside this wall, and at larger is given by Eq.
~6.19!. The flux direction in the color space is determined
the string flux vectorna.

Now suppose that̂l &Þ0. In other words, the composit
wall is split in particular elementary components which
not overlap even atr→`; see Fig. 10. Say, if we have th
14-vacuum between the walls the elementary wall on the
has a concrete nonvanishing quark field, with necess
namely, the quark field proportional to

g
s

3-25
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wkA;S 1 0

0 0D , A51,2. ~6.21!

This guarantees that only the (0,1)-string can end on
wall. The flux inside the wall is given in this case by E
~6.19! with a specificna, namely,na5(0,0,1).

If, instead, we have the 23-vacuum between the walls
elementary wall on the left has the nonvanishing quark fi
proportional to

wkA;S 0 0

0 1D , A51,2. ~6.22!

This means that only the (1,0)-string can end on this w
configuration. The flux inside the wall will be given in th
case by Eq.~6.19! with na5(0,0,21). String with generic
fluxes determined by an arbitrarily-oriented vectorna just
cannot end on the composite domain wall if^ l &.R.

Of course, this is perfectly consistent with the breaking
the SU(2)3U(1) gauge group down to U(1)3U(1), sothat
the (211)-dimensionalW6-bosons are heavy, do not prop
gate, and the massless gauge fields on the wall are byAn

211

andAn
3(211) .

VII. DYNAMICS OF THE WORLD-VOLUME THEORY

In this section we briefly discuss dynamics of the wor
volume theory emerging on the wall. We will focus on no
perturbative instanton effects which lead to a run-aw
vacuum in the world-volume theory.

A. BPS saturation of the composite wall

In Sec. IV A we demonstrated that the central charges
the composite wall and its two constituents are aligned,
that the tension of the composite wall equals twice the t
sion of the elementary wall. This statement is valid to a
order in perturbation theory. If so, the composite wall wou

FIG. 10. Junction of the string and the composite w
for ^ l &Þ0.
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be marginally stable: there would be no interaction betwe
the constituent walls no matter what the separation betw
the constituents is.

In terms of the world-volume theory~4.49! this means
that the flat direction is not lifted. No superpotential is ge
erated to any finite order in perturbation theory. Phrased
way, the assertion seems almost obvious. From other
amples we know, however, that a superpotential might
generated nonperturbatively. An indication that this may
the case comes from the occurrence of the anomalous te
in the central charge~3.3!. Some well-known old results will
allow us to answer this question quickly.

B. Nonperturbative effects

Dynamics of N52 (211)-dimensional gauge theor
with the SU~2! gauge group was studied by Affleck, Harve
and Witten @50#. It was shown that instantons@in (211)
dimensions they are nothing but ’t Hooft–Polyakov mon
poles, tHP for short# generate a superpotential which pr
duces a run-away vacuum.19 Classically there is a flat direc
tion in the theory~4.49! so that the scalar fielda211

3 can
develop an arbitrary VEV breaking the SU~2! gauge group
on the wall down to U~1!. Then An

1,2(211) acquire a mass
while An

211 and An
3(211) remain massless. We can dualiz

An
3(211) into a compact scalars3 according to Eq.~4.48!, to

introduce a complex scalar filedF5a211
3 1 is3. This scalar

is the lowest component of a chiral supermultiplet.
It was shown in@50# that instantons-tHP monopoles ge

erate the superpotential20

W211;expS 2
F

g211
2 D . ~7.1!

The potential arising from this superpotential

V211;expS 2
2a211

3

g211
2 D ~7.2!

leads to a run-away vacuum. Using Eq.~4.51! we can rein-
terpret this potential as an interaction potential between
ementary walls which comprise our composite (12→34)
wall,

Vint;expS 2
g2

g1

Dm

p
l D . ~7.3!

Classically the elementary walls do not interact. Nonp
turbative effects on the world volume induce a repulsive
teraction between the elementary walls, so that the B

19Historically this work presented the first example ever in whi
perturbative nonrenormalization theorem—the absence of
superpotential—was shown to be violated nonperturbatively.

20The mechanism is quite similar to the one in the nonsupers
metric version of the theory studied by Polyakov@36#. Monopoles
form a Coulomb gas in (211) dimensions which is equivalent t
the sine-Gordon theory.

l
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LOCALIZATION OF NON-ABELIAN GAUGE FIELDS ON . . . PHYSICAL REVIEW D70, 025013 ~2004!
bound state can formally appear only in the limit of infini
separation between walls. However, in fact, the interacti
~7.3! become negligibly small already at separationsl * of
the order of (Dm)21. In other words, the ratiol * /R
;j/(Dm)2!1. HereR represents the wall thickness.

We observe an interesting interplay between bulk phys
and physics on the wall. In particular, above we extracted
interaction potential between the elementary walls from
known results on the effective theory on the wall. This bu
brane duality is somewhat similar to the AdS-CFT cor
spondence. A weak coupling regime in the bulk maps on
strong coupling regime on the wall andvice versa. To see
that this is indeed the case, suffice it to remember that w
the bulk coupling constantsg1

2 and g2
2 are small the

(211)-dimensional couplings~4.52! are large compared to
the characteristic scale of massive excitations on the w
which are of the order of 1/R̃ ~cf. @4#!.

C. Compatibility with the D-brane picture

Returning to the issue of the elementary wall exponen
repulsion, one may ask how this can be interpreted in v
of the well-known fact that the two-stacks~as well as all
other stacks! of D-branes are stable. The answer is qu
clear. D-branes have no thickness. Our construction belo
to weak coupling where the walls do have a thickness. T
repulsive nonperturbative interaction dies off at distan
much less than the wall thickness. Therefore, squeezing
walls to vanishing thickness automatically switches the
pulsion off.

VIII. CONCLUSIONS

In this paper we studied localization of non-Abelia
gauge fields on domain walls. We showed that although
ementary domain walls can localize only Abelian fields t
composite domain wall does localize non-Abelian gau
fields. In order to have this localization we consideredN
52 QCD with the gauge group SU(2)3U(1) in a special
regime. Although the gauge group is completely Higgsed
the quark VEV’s in the bulk it is restored inside the compo
ite domain wall where all quark fields are almost zero. T
ensures localization of the non-Abelian gauge field on
wall.
g,
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Another side of this phenomenon is the possibility f
non-Abelian flux tubes to end on the wall. The non-Abeli
flux tubes were recently found in Ref.@6# in four dimensions
and in Ref.@5# in three dimensions. They carry addition
orientational zero modes corresponding to rotations of
color-magnetic flux inside the SU~2! subgroup of the gauge
group. The key ingredient for the existence of such no
Abelian strings is the presence of a diagonal color-fla
group SU(2)C1F unbroken by the vacuum condensat
~color-flavor locking!. We found a 1/4-BPS solution for suc
non-Abelian string ending on the composite wall. The e
point of the string plays the role of a color charge in the
11)-dimensional~dual! non-Abelian gauge theory on th
wall.

To study the string-wall junctions we use the first-ord
master equations~6.4! which in the Abelian case were de
rived in @4#. In fact, the same equations can be used for
possible junctions between domain walls, strings and mo
poles. In particular, recently they were used@7# to study the
(1,21) monopole as a junction of the (1,0) and (0,1) strin
in the limit of largeDm. We discuss this monopole in th
opposite limit of equal quark masses,Dm→0, when it be-
comes a junction of two strings associated with two quant
vacua of the (111)-dimensional O~3! sigma model on the
string world sheet. We show that the mass of this monop
is lifted from zero by non-perturbative effects in the O~3!
sigma model. We will come back to this issue@32#.

We also studied the effective (211)-dimensional non-
Abelian theory on the composite domain wall. We found
interesting bulk-brane duality. In particular, the weak co
pling regime in the bulk maps onto the strong coupling
gime on the wall andvice versa. This is quite similar in spirit
to the AdS-CFT correspondence.
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