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Building on our previous resultéRef. [4]), we study D-brane and string prototypes in weakly coupled
(3+1)-dimensional supersymmetric field theory engineered to suppoit)-dimensional domain walls, “non-
Abelian” strings and various junctions. Our main but not exclusive task is the study of localization of non-
Abelian gauge fields on the walls. The model we work with\ls-2 QCD, with the gauge group SU(2)
XU(1) andN¢=4 flavors of fundamental hypermultipletseferred to as quarksperturbed by the Fayet-
lliopoulos term of the 1) factor. In the limit of large but almost equal quark mass terms a set of vacua exists
in which this theory is at weak coupling. We focus on these vamadled the quark vacyaWe study
elementary BPS domain walls interpolating between selected quark vacua, as well as their bound state, a
composite wall. The composite wall is demonstrated to localize a non-Abelian gauge field on its world sheet.
Next, we turn to the analysis of recently proposed “non-Abelian” strifflysc tubes which carry orientational
moduli corresponding to rotations of the “color-magnetic” flux direction inside a glob@).ONe find a
1/4-BPS solution for the string ending on the composite domain wall. The end point of this string is shown to
play the role of a non-Abeliaidual) charge in the effective world volume theory of non-Abelight1)-
dimensional vector fields confined to the wall.
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[. INTRODUCTION especially, how they end on the walls. In this way we con-
tinue the line of research initiated in Refs-7].

String theory which emerged from dual hadronic models The setup that will provide us with the appropriate tools is
in the late 1960s and 1970s, elevated to the “theory of evthe same as in the previous papél, namelyA’=2 SQCD
erything” in the 1980s and 1990s when it experienced arfnalyzed by Seiberg and Witt¢8,9]. Compared to Ref4]
unprecedented expansion, has seemingly entered a “returkve will deal with a somewhat different version, however. We
to-roots” stage. Results and techniques of string-D-branavill start from the SU3) theory with four “quark” hyper-
theory, being applied to non-Abelian field theorigsth, su- multiplets (N;=4) in the fundamental representation. The
persymmetric and nonsupersymmeliricave recently gener- SU(3) gauge group will be spontaneously broken down to
ated numerous predictions for gauge theories at strong co®U(2)xU(1) at a large scalem where m~my=m, A
pling. If the latter are, in a sense, dual to string-D-brane=1,2,3,4, andm;,m,,m; and m, are the mass terms as-
theory — as is generally believed to be the case — they mustribed to the four quark flavors that are present in the model.
support domain wallgof the D-brane type[1], and we Generically, allm,’s are different, but we will choose a non-
know, they do[2,3]. In addition, string-D-brane theory generic configuration.
teaches us that a fundamental string that starts on a confined Although SU3) N'=2 SQCD provides a conceptual skel-
quark, can end on the domain wéll]. eton for our setup, in essence its role is to stay behind the

In our previous papeid] we embarked on the studies of scene, as a motivating factor. Since the gaugé€3sgroup
field-theoretic prototypes of D branes and strings. To this enaill be broken at the largest scale relevant to the model, and
we considered2+1)-dimensional domain walls it3+1)-  the bulk of our present work refers to lower scales, in prac-
dimensional\V/=2 SQCD with the S(R) gauge grougand tice our setup is based on SU(2Y(1) gauge model with
N;=2 flavors of fundamental hypermultiplets—quarkser-  four quark hypermultiplets and unbrokévi=2 . The under-
turbed by a small mass term of the adjoint matter. In fact, outying SU(3) N=2 SQCD which one may or may not keep in
analysis reduced to that of the effective low-energymind in reading this paper, will be referred to as the “proto-
N=2 SQED with a(generalizefl Fayet-lliopoulos term. We theory.”
found 1/2 BPS-saturated domain wall solution interpolating With four flavors, the S(2) subsector is conformal;
between two quark vacua at weak coupling. The main findtherefore the problem we address can be fully analyzed in the
ing was thdocalizationof a U(1) gauge field on this domain weak coupling regime. In fact, two of four quarks will be just
wall. We also demonstrated that the Abrikosov-Nielsen-spectators while the other two will play a nontrivial role in
Olesen magnetic flux tube can end on the wall. the solution. The role of the spectators is to ensure the con-

The goal of the present work is the extension of the abovdormal regime(see below
results. Now we want to consider composite walls, analogs As was mentioned, we will deal with the gauge symmetry
of a stack of D branes, to see that they localize non-Abeliafreaking pattern of a hierarchical type. First, at a large scale
gauge fields, say (2). Our second task—as important to us ~m>Agy3 the gauge group SB) is broken down to a
as the first one—is the study of non-Abelian flux tubes, andsubgroup SU(2XU(1) by the vacuum expectation values
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(VEV's) of the adjoint scalar%[HereASU(g) is the dynami- gauge coupling
cal scale parameter of $8).] Second, at a lower scale Il-
~/um,, in the presence of the adjoint mass tearir ®2,
the light squark fields acquire VEV’s of the color-flavor di-
agonal form(“color-flavor locking”),

ar=8kJum, k,A=1,2. (1.1

In each vacuum to be considered below, the squark fields of

two (out of foun flavors will be condensed, so that we can Alsum Vul_m A

label each vacuum by a set of two numbeisBj, showing

that the flavorsA andB are condensed. For instance, we will  FIG. 1. The scale hierarchy: illustrating the fact that the gauge

speak of 12-vacuum, 13-vacuum and so on. couplings never become large in the problem at hand. According to
The basic idea of the gauge field localization on the do£Eq. (2.6) um=¢/6.

main walls is that the quark fieldalmos) vanish inside the

wall. Therefore, the gauge group SU(2W(1), being That is where the S(2) gauge coupling could have ex-

Higgsed in the vacua to the right and to the left of the wall,ploded. However, the problem under consideration is insen-

is restored inside the wall. Correspondingly, dual gaug@itive to this scale, as we will explain in detail in due course.

bosons, being confined outside the wall are unconfifed The theory at hand has domain walls of distinct types.

less confiney inside, thus leading to localizatidi2]. Assume that in the vacuum to the left of the wall the squarks
In fact, there is another scale in the problem which playSNith the flavor indices 1 and 2 condense. If in the vacuum to

an important role in the aforementioned hierarchy. In dealinghe right of the wall the condensed squarks are 1 and 3, we

with domain walls we cannot consider the limit in whiah ~ Will call such a wallelementaryIf, on the other hand, the

quark masses are exactly equal. In this limit the pairs ofondensed squarks to the right of the wall are 3 and 4, this

appropriate vacua coalesce, and we have no domain waliall is obviously composite—it “consists” of two elemen-

interpolating between them. Therefore, we consider the limitary walls, 12-13 and 13- 34; see Fig. 2.

l
m scale

of almost coinciding quark mass terms, The domain wall which localizes SB) gauge fields is
not elementary. It is a bound state of two elementary domain
m=m,, mg=m,; Am=m;—ms; |Am|<m. walls placed at one and the same position. This is in accor-

(1.2 dance with the string-brane picture in which @Y gauge
theory is localized on the world volume of a stack of two

The resulting hierarchy coinciding D-branes. If, however, the two D-branes are sepa-
rated, then in string theory the $2) gauge group is broken
|Am|, m>Agya), to U(1)?, while the masses of the “chargeV bosons are

linear in the brane separations. We will recover this picture in
our field-theoretical setup.

The first stage of the spontaneous symmetry breaking,
SU(3)—SU(2)XU(1), iswell studied in the literature, and
presents no interest for our purposes. Therefore, our dynami-
cal analysis will start in essence from the SUKA)(1)
model. If one wishes, one can keep in mind that this latter

m Tt Ms (1.4 model is originally embedded in SU(3)¥=2 SQCD, the
2 “prototheory,” but this is not crucial.
Next, we turn to the analysis of recently proposed non-
Note thatA g, is a would-be S(R) dynamical scale. It is Abelian strings(flux tubes which carry orientational moduli

is exhibited in Fig. 1, together with the behavior of the cor-
responding gauge couplings. Here

of the order of corresponding to rotations of the “color-magnetic” flux di-
Asua~ |Am|exp(— 47293 ). (1.5
s su@) {a,) #0 {a,) #0 (a,) #0
(9,) #0 (q,) 0 (q,) 0

The generic pattern of the $8) gauge group breaking by the
adjoint VEV’s is SU(3)~U(1)XU(1). This case essentially re-
duces to the problem which had been considered previously
[2,4,10—localization of the Abelian gauge fields on the wall. Here
we are interested in localization of the non-Abelian gauge fields.

Therefore, we will deal with a special regime in which SU(3) \elemean

—SU(2)XU(1). In Refs.[11,12 (see alsd13]) it was shown that

some of /=1 vacua of SUN) N=2 SQCD can preserve a non- FIG. 2. Two elementary walls which comprise a composite 12
Abelian subgroup. — 34 wall.

walls

025013-2



LOCALIZATION OF NON-ABELIAN GAUGE FIELDS ON.. .. PHYSICAL REVIEW D70, 025013 (2004

rection inside a global S@@) [6] (similar results in three A is the flavor indexA=1,2,3,4. Note that the scalagg”

dimensions were obtained in R¢E]).?2 We find a 1/4-BPS and §**=7q,, form a doublet under the action of the global
solutions for the non-Abelian string ending on the compositesu(z)R group.

domain wall. The end point of the string is shown to play the  pg original SW3) theory was perturbed by adding a
role of a non-Abelian charge in the effective world volume gma)| mass term for the adjoint matter, via the superpotential
theory of non-Abelian2+1)-dimensional gauge fields con- W= u Trd2. Generally speaking, this superpotential breaks

fined to the wall. N=2 down to N=1. The Coulomb branch shrinks to a
number ofisolated V=1 vacua[11,12. In the limit of u
[l. THEORETICAL SETUP: SU (2)XU(1) N'=2 SQCD —0 these vacua correspond to special singular points on the

Coulomb branch in which pair of monopoles or dyons or
guarks become massless. The first three of these poiftes
referred to as the Seiberg-Witten vagaae always at strong
coupling. They correspond td/=1 vacua of pure S(3)
gauge theory.

The massless quark points—they present vacua of a dis-

A. The model tinct type, to be referred to as the quark vacua—may or may

As was mentioned in Sec. |, the model we will deal with not be at weak coupling depending on the values of the quark
derives fromA/=2 SQCD with the gauge group $8) and  Mass parameters,. If ma>Agy3), the quark vacua do lie
four flavors of the quark hypermultiplets. At a generic pointat weak coupling. Below we will be interested only in the
on the Coulomb branch of this theory, the gauge group igluark vacua assuming that the conditiog> A sy(3) is met.
broken down to U(1XU(1). We will be interested, how- In the low-energy SU(2XU(1) theory, which is our
ever, in a particular subspace of the Coulomb branch, ostarting point, the perturbatiodV=u Tr®? can be trun-
which the gauge group is broken down to SUKA)(1). We  cated, leading to a crucial simplification. Indeed, sincehe
will enforce® this regime by a special choice of the quark chiral superfield, theV=2 superpartner of the @) gauge
mass terms; see E(L.2). field,*

The breaking SU(3)>SU(2)XU(1) occurs at the scale
m which is supposed to lie very highm>Agy). Corre-
spondingly, the masses of the gauge bosons from
SU(3)/SU(2)XU(1) and their superpartners, proportional
to m, are very large, and so are the masses of the third coldf N0t charged under the gauge group SU{2)(1), one can
component of the matter fields in the fundamental represerintroduce the superpotential linear i,
tation. We will be interested in phenomena at the scales
Therefore, our starting point is in fact the SURY(1)
model with four matter fields in the doublet representation of
SU(2), as it emerges after the SU(3)SU(2)X U(1) break-
ing. These matter fields are also coupled to th&)lgauge
field.

fl The field c?r:ltent Of_l_ﬁ;([%}zu(l) N=2 ISQ|CD with fourf It is rather obvious thatV, is indeed a linear truncation of
avors IS as Toflows. =2 vector multiplet consists o W=uTrd2. A remarkable feature of the superpotential

the U1) gauge fieldsA, and SU2) gauge f|e|ldAa 4 (here 2 5)'is that it doesnot break AV'=2 supersymmetry15,16.
a=11,2,§), their Weyl fermion superpartners (, A;) and  keeping higher order terms i Tr &2 would inevitably ex-
(A%, N5, and complex scalar fields anda®, the latter in  pjicitly break A’=2 . For our purposes it is crucial that the
the adjoint of SW2). The spinorial index of\’s runs over  model we will deal with isexactlyA’=2 supersymmetric.

a@=1,2. In this sector the global SU(g symmetry inherent The bosonic part of our SU(XU(1) theory has the
to the model at hand manifests itself through rotationsorm® [6]

A n2,
The quark multiplets of SU(2YU(1) theory consist of
the complex scalar fields* andg, (squarks and the Weyl “The superscript 2 in Eq2.1) is the global SU(2) index of A

fermionsy** and sy, all in the fundamental representation rather tham squared. _ _

of SU(2) gauge group. Herk=1,2 is the color index while 2Here r;\nd l:ZJeIow we use a formally Euclldgap notatlonl, e.g.,
Fo,=2FG+Fi, (0,8)°=(d0a)’+(da)?, etc. This is appropriate

since we are going to study statitme-independentfield configu-

rations, andA,=0. Then the Euclidean action is nothing but the

@nergy functional. Furthermore, we definé“‘:(l,—i;-), Tha

In this section we will describe the model we will work
with [a descendant of SB) Seiberg-Witten model with four
matter hypermultiplefsand appropriate pairs of vacua which
are connected by elementary and composite walls.

A=a+ 2\20+F 6, (2.1

1

V2

Wi EA. (2.2

2A very fresh publicatiorf14], which appeared after the comple-
tion of the present paper, also examines strings and their relation

monopoles. =(1,i7). Lowing and raising of spinor indices is performed by

3n certain vacua to be considered in this paper the gauge group Mrtue of the antisymmetric tensor defined ag,=e1;=1, &%
further broken to U(1X U(1) at a much lower scaldm|; see Sec. =s?=—1. The same raising and lowering convention applies to
Il B. the flavor SW2) indicesf, g, etc.
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TABLE |. Field content of the model under consideration.

1 1
Szf d*| — (F2 )>+—(F,,)?>+—=|D ,a??
495 "7 49t " g%l a SU(2)c repr— R
——————— singlet fundamental /anti adjoint
Spin|
1 = ~
+ 510,80+ [V, 29,2 V(ah Ga 2 ) . 0 O aa
1
1/2 AL y Aa )\
23 S N
1 A, A
HereD, is the covariant derivative in the adjoint represen-
tation of SU2), while
i a 87 + 2.7
| T —_— n . .
V,=d,— =A,—iA? (2.4) 95 Asuy)

M wo

At large m the SU?2) sector is indeed weakly coupled.

The U1) coupling undergoes an additional renormaliza-
tion from scalem down to the scale determined by the
masses of light states in the low-energy the(the latter are
of the order ofum~ & see Sec. Il B At the scalem the
both couplingsgs andg? unify since at this scale they be-
long to SU3). Note that in passing from the $8) theory to
SU(2)XU(1) we changed the normalization of the eighth

where we suppress the color &) indices, andr® are the
SU(2) Pauli matrices. The coupling constagtsandg, cor-
respond to the (1) and SU?2) sectors, respectively. With our
conventions the (1) charges of the fundamental matter
fields are+1/2.

The potentiaM(g”,q,,a? a) in the Lagrangiar2.3) is a
sum of D andF terms,

g% 1 _ A A2 generator of_ S(B) which becamg the ge_nera_\tor of1); see _
V(qA,aA’aa,a):7 _28abcgbac+qAEqA_aAE~A Eq. (_2.4). Th|§_change of normalization implies that the uni-
g5 ication condition takes the form
97 — A_T =AN2 9 - anA[2 8m? 8m?
+ 5 (4a0" = dad™) "+ - [aa™q" =3 2.9

gi(m) gi(m)
o7 13
+71|?1Aq’*—§|2+5 > {l(a++2m, The one-loop coefficient of thgs function for the U1)
A=1 theory is 8=2%2n2N; where the first factor of 2 reflects
= the difference in normalizations of the SV versus W1)
A|2 2
+7%a%) g2+ |(a+ V2ma+ 7a?)qa| 2, generators, the extra factor of two comes from the fact that
(2.5 for each flavor we deal with matter doublets, and, finally, the
electric chargen,=1/2, see Eq.2.4. Thus, evolvingg?
where the sum over repeated flavor indiées implied, and  from m down to \/um we get
we introduced aonstant¢ related tou as follows:

8 m m
£=6um, (2.6 —"__—6In +2I—t---. (29
g7(vum) ASU(3) m

The first and second lines represéhtterms, the third line
the F 4 terms, while the fourth and the fifth lines representClearly, this coupling is even smaller than that of the(3U
the squarkF terms. As we know6,13,15-17, this theory  sector.

supports BPS vortices. To make readers’ journey through this work easier we
Bearing in mind that we have four flavors we concludedisplay in Table | the field content of the model.

that the SW2) coupling does not run: S@) theory It is also instructive to summarize the symmetries of the

with N;=4 is conformal. Henceg3 is given by its value at model and patterns of their breaking; see Table II. Besides

the scalem, the gauge symmetries, of importance are the global symme-

TABLE Il. Pattern of the symmetry breaking.

N=2 SUSY unbroken
SU(2)g unbroken

U(1) diagX SU(2) iagX SU( ),

{U(1)xSU(2)} X SU(2); X SU(2);, X U(1) —1{ 12 vacuum;
U(1)giag, 13 vacuum
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tries of the model. Our “proto-S(3)-model” (mentioned in I
passing had SU(3) broken down to SU(2XU(1). This > elementary wall
breaking occurs at the scate The resulting superpotential > composite wall
1A (34) (12) ;
w= 2 AE_)l (AaAG”+aaA272g%) + mlAEi , qag” 0 mL = rln /Jm
= =1, 5V~\\\ A/ 1
—Am -
1 [ 1|
+m qaq”— —=¢&A, 2.1 (13)(14)
3/2;4 dad 2 £ (2.10 (23) (24)

has, in addition, a large global SU(Z)<SU(2),,xU(1)
flavor symmetry. At the scaldm the color SU2) may or
may not be broken. In the 13, 14, 23, and 24 vacua it is 1. SU(2) symmetric vacua
broken by the vacuum expectation valueadfdown to U1),
paving the way to monopoles with typical sizeAm) 1.

In the 12 and 34 vacuéa®) does not develop, and we can
descend further, down the scafe At this scale all gauge 3\ _ = Zmi= — 2m+O(A 21
symmetries, in all six vacua under consideration, are fully (@%)=0, (a) vam, Vam+0(am), (212
Higgsed. The Abrikosov-Nielsen-Oles¢éANO, Ref. [18])  wherem is defined in Eq(1.4). If the values of the mass
strings are supported. The transverse size of these stringsarametersn, ; and 1 are real, we can exploit the freedom
~¢& 7%, is much larger thanXm)~". In fact, we will deal  of rotations in SW2) and U1) to make the quark VEV's real

primitive ANO counterparts. They correspofid the quasi-  |gcked form

classical limi} to distinct types of winding, see Sec. V for

further details. - \/E(l 0)
(@D=@=vV3l5 1)

B. The vacuum structure and excitation spectrum

FIG. 3. The vacuum structure on thelz) plane.

Let us first consider the 1@r 34) vacuum. The adjoint
fields develop the following VEV’s:

This section briefly outlines the vacuum structure and the k=12, A=1z2. (213

excitation mass spectrum of our basic SU)(1) model  rnig harticular form of the squark condensates is dictated by

(for further details, including 'Fhose refgrring to _the full & the third line in Eq(2.5. Note that the squark fields stabilize
theory, see Ref$6,11-13). First, we will examine relevant at non-vanishing values entirely due to théllfactor—the

vacua. . second term in the third line.
The vacua of the theor§2.3) are determined by the zeros The gauge invariants corresponding to the vacu2r3
of the potential2.5). We will assume the conditiond.3) to are

be met. Then, besides three strong-coupling vacua which ex-
ist in pure SU3) A'=2 Yang-Mills theory, we have eight
vacua in which one quark flavor is condensed, and six vacua =5, I=my, 13=0. (2149
in which two quark flavors develop nonvanishing VEV’s.
For our problem—domain walls and flux tubes at weakat first site it might seem that, say, the field configuration
coupling—we will choose these latter six vacua. They are
12-, 34-, 13-, 14-, 23- and 24-vacua. In the first two(3U — £0 1
gauge symmetry is unbroken by adjoint scalars while in the (N =(q= 201 0):
last four vacua it is broken by them at the scAle.
Each of the above six vacyAB) is labeled by a triplet of k=12 A=12 (2.15
gauge-invariant order parametéss | andl 5 defined as o " '

which also provides d12)-vacuum solution, presents an-

<6AqB>E | 15?\1 other vacuum. This is obviously not the case, since it is noth-
ing but a gauge copy of Eq2.13. The gauge invariants
(ﬁAan>E _ \/§| ><|15E obtained from Eq(2.15 are the same as in EQ.14).

Let us move on to the issue of the excitation spectrum in
this vacuum. The mass matrix for the gauge fieIél% AL

~ 1 can be read off from the quark kinetic terms in E2.3) and
(Gna7a0%)= 5! 1(73)A, 21D (s the form
g; O
where summation over the $2) color indices is implied. M\2,=§( 2 2)_ (2.16
The corresponding vacuum structure is exhibited in Fig. 3. 0 91
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Thus all three S(2) gauge bosons become massive, withfour such supermultiplets—two doublets of the global3U

one and the same mass There are no massless excitations in this vacuum.
The 34-vacuum is similar. The only difference is that the
My 2 3= gov/E. (2.17  Vvalue of the gauge invariatin the 34-vacuum i$=ms.

. . . I 2. SU(2) nonsymmetric vacua
The equality of the masses is no accident. The point is that @ y

our model actually has the symmetry SU(X)SU(Z)MZ As an example of such vacuum we will consider the 13-

. . Now, in contradistinction with the previous case
X SU(2), , where the first flavor S(2) corresponds to rota- vacuum. Now, 3 ’
. : . both adjoint fields{a”) and{a), develop vacuum expecta-
tions of theA=1,2 flavors, while the second flavor &) to ] () (@) b P

) tion values, so that Eq2.12 must be replaced b
rotations of theA= 3,4 flavors. The pattern of the spontane- q2.12 P y

ous breaking is such that the diagonal(8JJfrom the prod- my— Mg Am
uct SU(2)xSU(2), remains an unbroken global &) (a3):—TE—T,
symmetry of the theory. Sure enough, SU,(324)is also un- 2 2
broken, since thé = 3,4 flavors play a passive role of spec- m.+m
tators in the 12-vacuum. a)=————2=—2m. 21
. (a) (2.19
The mass of the (1) gauge boson is V2

_g.E The above vacuum values of the adjoint scalars follow from
Mu)=01V¢. (218 examination of the last two lines in E@2.5. The squark

fields in the vacuum are similar to those in Eg.13, with

From the mass scale down to the scaleAm| the gauge the replacement of the second flavor by the third one,

coupling g% does not run because of conformality. Below namely,

|Am|, the conformality is broken: two quark flavors out of

four have mass of the order &fm and, hence, decouple. KA KA \/E 10

Therefore g3 runs, generating a dynamical mass sdalé). (99 =(a")= 2lo0 1)’

At the mass scaltl ; , ;= g,/€ this last running gets frozen.

SinceM 5 3> Agy(z), by assumption, the running ay% in k=12, A=13, (2.20

the interval from|Am| down to /¢ can be neglected. There-

fore, we can treag% in the above relations as a scale inde-Up to gauge copies. The gauge Invariant order parameters are

pendent constantcoinciding with the gauge constant nor- &
malized atm). The mass spectrum of the adjoint scalar Il=§, I=m, Ilz=—Am, (2.21
excitations is the same as for the gauge bosons. This is en-
forced by N=2 . see Fig. 3.
What is the mass spectrum of the quésijuark excita- Next, let us examine the excitation spectrum in this

tiqns’? These f_ields are c_oIor doublets. To ease the notation\lgeyum. In this vacuum the gauge group of our model is
will be convenieni{sometimesto usefubscnptsandb(red fully Higgsed, too—all four gauge bosons acquire masses.
and blué for the color indices ofj andg. It is rather obvious No *“custodial” global SU2) survives, however. Corre-
thatq(*~ Y, g{*~2), 9ls_,, andqfs_,, are “eaten up”in the ~ spondingly, the masses of the gauge bossfis? on the one
Higgs mechanism. The remaining four superfiekﬂ,%‘i,zz), hand, andAi on the other, split.

a{"™ Y, Qla_,) andGes_ split into two groups—a singlet ~ More concretely,

under the residual global SP) with the mass(2.18),
and a triplet under the residual global &Y with the
mass (2.17). Altogether we have ¥3=4 long massive | hile the masses ok, andA® (and the same foa anda®)

N=2 supermultiplets with mass squared proportionaf.to are given by the same values as in the(Btsymmetric
As for the spectator quark flavo(those that do not con-

M(A}L:iz):M(alriz):Am>§, (2.22

dense in the given vacuuimthe quarks and squarks of the vacua,

third and fourth flavors are much heavier. They have masses MU(1)=91\/E,

~|Am|, as is clear from Eq(2.5). Assuming the limit(1.2),

we include the spectator quarks and squarks in the low- Ms=g,VE. (2.23
energy theory2.3). In particular, each spectator quark flavor

with the mass ternm;—remember, we have two of those—  The mass matrix for the lightest quarks has the size 8

produces twoV=2 multiplets. The first one, with the mass X8, including four(rea) components of th«e],1 quark and
|mz—m,|=|Am|, is formed from ther-components of the four components of thg? quark. It has two vanishing eigen-
spectator quark, while the second one, with the same mass,values associated with two states “eaten” by the Higgs
formed from its b-components. Thus, each supermultipletmechanism for two () gauge factors, and two nonzero
contains four bosonic and four fermioniceal) degrees of eigenvalues coinciding with massé®.23. Each of these
freedom (short A/=2 supermultiplet Altogether we have nonzero eigenvalues corresponds to three quark eigenvec-
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tors. Altogether we have two long/=2 multiplets with ~ Yang-Mills (SYM) theories[2] paved the way to multiple

masseg2.23, each one containing eight bosonic and eightexplorations and uses of tfi#,0) and(0,1) central charges in
fermionic states. field theory(e.g.[20—27 to name just a fey

Let us remember that, in the limih, =m, andms=m,, Two observations severely constrain the form of the cen-
the 13-vacuum coalesce with three others, namely, the 14tal chargez'9: first, it must be(antjholomorphic in fields;
23- and 24-vacua; see Fig. 3. This means that we have massecond, it must be a SU(R)vector. As a result, the most
less multiplets in these vacua. In fact, the common positiomeneral form compatible with the above observatiofis is
of these vacua on the Coulomb branch is the root of a Higgs
branch. This Higgs branch has dimension eight[t1,13. 4 c e
To see this observe, that in th&,B) vacuum withA=1,2 ZI9=A| — —=¢M94+ 12)\f)\9+ —22)\"’”)\39 ,
andB=3,4 we have 16 real quark scalar variablg$,(q?, V2 16m 16m
g: andqy) subject to twaD-term conditions and fouF-term

conditions. Also we have to subtract twd1) phases. Over- ) .
all we have 16-6—2=8 which gives us the dimension of where A means the difference of the expectation values of

the Higgs branch. This dimension should be a multiple oftn€ OPerator in parentheses in two vacua between which the
four since the Higgs branches are hypéhia manifolds  wall in question interpolates. Furthermore, the paramgier

(3.3

[9]. is an SU(2) matrix (related to a real vect(ﬁ) introduced in
Ref. [16]. In the model under considerationt™
lIl. THE A/=2 CENTRAL CHARGES RELEVANT =(&/2) diag1,— 1}, see the remark after E(B.4).
TO THE PROBLEM The last two terms in Eq3.3), containing numerical co-

) ) . . . efficientsc, ,, present a quantum anomaly, a generalization

The model under consideration supports, in various limitSf that of Ref.[2]. The coefficients; , are readily calculable
all three classes of topological defects that are under scruting terms of the Casimir operators of the gauge group of the
in the current literature: domain walls, strings and mono-mgge| under consideration; they also depend on the matter
poles. Below we will explore BPS-saturated defects, with &gntent. We will not dwell on them here because, given our
special emphasis on various junctions. The domain walls a”Hierarchy of parameterél.3), the anomalous terms ig 9
strings are _1/2 BPS, the wall-string junctions and the stringy| play no role. A rather straightforward algebti con-
string junctions are 1/4 BPS. _ , junction with known resultsyields us the coefficient in front

It is instructive to begin from the discussion of corre- ¢ £'94 quoted in Eq.(3.3. To this end we combine Eq.

sponding central charges ixi=2 superalgebra. While a part (2.10 above with Eqs(3.19 and (3.20 from Ref.[23]. In
of the material below is a mini-review, in the analysis of the 5, normalization the BPS wall tension reduées 9.

monopole central charge we will add a bifermion term which, 1+ _ E2
was routinely omitted previously. It was omitted for a good "
reason, though: for a free monopole the contribution of this

bifermion term vanishes. It is crucial, however, for the con- B. (V2, ¥2) central charge
fined monopoles to which we will turn below. This central charge is saturated by stririfjgx tubes.? It
appears in the anticommutat{ibg@;g}. This central charge
A. (1,0 and (0,1) central charges is not holomorphic, and has no particular symmetry with
These central charges are saturated by domain walls. Thé§SPect to permutations of the SUgZindicesf andg.
appear in the anticommutator{sQLQg} (remember, f,g It is well known that the(1/2, 1/2 central charge exists

—1,2 are SU(2} indices. Since{QLQ%}~dea,; where  also inN'=1 supersymmetric QEIDSQE_D) with the Fayet-
d2 .z is the element of the area of the domain wall in ques_ll!qpoulos term, see R’_e[_27] and espemally Re]{28], Spe-
tion (d3,5=d3 ), the (1/2,1/2 central charges must be cifically devoted to this issue. In Reff28] it is shown, in

g : _ particular, that if the spontaneous breaking ¢fLLis due to
symmetric with respect to the interchange-g. More pre the Fayet-lliopoulos terri29], then the corresponding ANO

cisely, string is saturated iflV=1 , and the string tension is given
fOd = —45 Zt9 31 by the value of the central charge. In Rgf4] it was proven
{Qu Q! 2apZ, 31 that at weak coupling this is thenly mechanism leading to
where

1 . ®Derivation of Eq.(3.3) also exploits the specific feature of
Eaﬁ= — EJ dx[#dxy](cr”)aa(ch)§~Wall area, =2 theories that each given superfield enters in the superpotential
wall linearly; see Eq(2.10. This implies, in particular, that in any given

3.2 vacuum (at the classical levelW,+W;=0 whereW, ; are the

_ guadratic and cubic parts of the superpotential.
while the central charg€'® ought to be an SU(2) vector. "For generic matrice€ '9 it is the eigenvalue o "9 that counts.
In the string-theory context thél,0) and (0,1) central 8t is also instrumental in the issue of BPS-saturated vorfi2és

charges were first discussed in REE9]. The discovery of and wall junctiong24,25. One can trace this line of reasoning to
the corresponding field-theoretic anomaly in supersymmetriRef. [26].
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BPS strings inV=1 theories, which are, thus, by necessity, 1 i i
the ANO strings’ (r=5e""0, —a*F,+ —aF,,
Our emphasis will be on “non-Abelian,” rather than ANO 92 91
strings (the meaning of “non-Abelian-ness” is explained in . 2
Sec. V. It is only the extended\V=2 , sgpersymmetry that +—\f Saﬁ)\%gngr ﬁlpAsaﬁTﬁAﬁ . (39
can make them BPS-saturated. Following R&6|, the (1/ 472 “ 472 ¢
2,1/2 anticommutator in the\'=2 model at hand can be
written as follows: wheres,; is a symmetric matrix corresponding to the Lor-

1 entz representatiofi,0) in the spinorial notation,
{QLQjg} =284(0") 4jsPu+ 41 (07) sy f %% €0,5,F 5y

54 Sap= (01" 0D, 3.9
while the square brackets in the superscripts denote antisym-
whereP,, is energy-momentum operator wiiife metrization with respect tp and o. Moreover,c is a nu-
merical coefficient.
§;= (Tm/Z)ggm. Two comments are in order here. First, the first two terms

in Eq. (3.8 present the conventional “monopole” central

Moreover, the vectog™ is a SU(2) triplet of generalized charge which is routinely discussed in numerous reviews. It

Fayet-lliopoulos paramete® our model onlyé'=¢isnon- ~ emerges from the canonit@antjcommutators at the tree

zero. level. In generic models it is in fact thel,00 gauge field
The second term in Eq3.4) is the (1/2, 1/2 central  strength tensor which appears in these classical terms in the

charge. It is worth emphasizing that it is only th¢lfield ~ first line in Eq.(3.8), i.e., the(antjself-dual combination. In

F s, that enters; the S(2) gauge field does not contribute to the model at hand only the magnetic field survives in the

this central charge for rather evident reasons. The centr@xpression for the central charge; therefore, we dropped the

charge is obviously proportional tg the length of the string, ~€lectric compone.nt. _ _

times the magnetic flux of the strinﬁplzxé directed along The last two(bifermion) terms in Eq.(3.8) are due to an

the string axis. With the normalizations accepted throughoufoMaly, which is, in a sense, ai=2 counter-partner to
this paper one can write for the BPS string tension that of Ref.[Z]. They will be discussed in more deta_ll in the
accompanying pap¢B2] where the value of the coefficieat

will be determined. They were unknown previously playing
|§|:27T§, (3.5 no role in the routine monopole analysis. They do play a
crucial role, however, for the Higgs phase monopdlam-
) ) fined monopoles to be discussed in brief in Sec. VI. In fact,
where the last equality refers to the elementary strings. Fofhis anomaly must match the recently obtained anomalous
the ANO string the flux is twice larger, so th&ano  central chargd33] in two-dimensional €8) sigma model.
=4m§, see Sec. V. More on that will be said in Sec. VI and RéB2].

TS:f d?xB

C. The Lorentz-scalar central charge IV. DOMAIN WALLS

As is well known[31], this central charge is possible only |, yhis section we study BPS domain walls between vari-
because of the extended naturfe ng supersymmafry2 . It ;5 yacua described in Secs. Il B 1 and I B 2. First, we de-
appears in the anticommutatd@,,Q’;} and has the structure jye the first order equations for the BPS walls and, second,

f g fg find and analyze their solutions. Our final goal is to work out
1Q.Q B} Eapt 27, (3.6 the solution for the composite wall 2234 on which we will

_ ) _ eventually get localized non-Abelian gauge fields.
whereZ is an SU(2) singlet while the factor of 2 on the

right-hand side is a traditional normalization. It is most con-

venient to writeZ in terms of the topological charge, an

integral over the topological density, Let us note that the structure of the vacuum condensates
in all six vacua considered in Secs. Il B 1 and Il B 2 suggests

A. First-order equations for elementary and composite walls

3 0 that we can search for the domain wall solutions using the
Z=f d°xZ7(x). (3.7  ansatz
In the model at hand KA AkA_ L kA
q"=q"=—=¢", (4.1
V2
Note, however, that théL/2,1/2 central charge is missing in the Where we introduce a new complex figld”, k=r,b. Note
general analysis of Ref30]. that the aboveansatzviolates holomorphy in the space of

ONote that the definition ofg in Ref.[16] differs by a factor of 2. fields inherent td~ terms: superpotentials and certain other
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expressions derivable from them. This is why some expres- g2
sions presented below which should be holomorphic on gen- da=— _\/1_
242

eral grounds, do not look holomorphic on taesatz(4.1).
Within this ansatzthe effective actior(2.3) becomes Tensions of the walls satisfying the above equations are
given by the surface term in E¢4.3).1? Say, for the elemen-

1 1 1 tary walls 12-1B or 12—-B2 (B=3,4), this gives
S=J d4x[—2(Ff‘w)2+—2(F#V)2+—2|D#aa|2 Y ( ) 9
49; 497 93 T(12218) = 7(12-B2) = (Am) ¢, (4.5

(|2 =28). (4.4)

1 g5 —
+ 10,82+ V0" 2+ F (eare™)?
1 m;—mg Am

AaE(a)ls_(a)lZZT_E-

where we use the fact that

2
+ 322024 S (a2 ak {22
8 2 Remember, the elementary walls are those for which both
vacua, initial and final, have a common flavor. The wall 12
—34 can be considered as a bound state of two elementary
walls 12—-1B and BB—CB (C=3,4,B#C). For the com-
posite walls Eq(4.3) implies

4.2

where we use the same notation as in &4).

For the time being let us drop the gauge field in Eq§2).
It is irrelevant for the “standard” domain wall. If we assume T(2=39=2(Am)¢, (4.6)
that all fields depend only on the coordinatesxs, the
Bogomolny completioht of the wall energy functional can
be written as

o dz|

sinceAa is twice larger. We see that this wall has twice the
tension of the elementary walls. This means that the bound
state is marginally stable; the elementary BPS components
2 forming the composite wall do not interact. Equatiqasb)

and (4.6) and the subsequent statement are valid up to non-
perturbative effects residing in the anomalous terms in Eq.
(3.9). For further discussion see Sec. VII.

1
achAiE(aar% a++2m,) o*

2

+ i&Za""iﬂ(goAr""goA) B. Elementary domain walls
92 22 L . . .
It is time to explicitly work out the solution to the first-
1 9 2 order equationg4.4) for the domain wall interpolating be-
+|—dax——(|e"2-28)| =2¢d,at. tween the vacuél?) and (1B) whereB=3 or 4. We assume
91 ©2y2 that
4.3 -
m>Ams/é=\/6um. 4.7
In the above expression we have omitted another full-This condition allows us to find analytic domain wall solu-
derivative boundary term proportional to tions. In addition, it makes transparent the physical reason

(0/92)=Q(dW/9Q) where the sum runs over all superfields. for the gauge field localization on domain wgl§. Accept-
Since in all vacua gW/9Q) =0, this term produces no im- ing Eq.(4.7) we guarantee, as will be shown shortly, that the
pact whatsoever. quark fields (almos) vanish inside the composite

Putting mod-squared terms to zero gives us the first-ordef12—34)-wall, to be treated in Sec. IV C. The only gauge
Bogomolny equations, while the surface teftime last one in ~ Symmetry breaking surviving inside this wall is that induced
Eq. (4.3)] gives the wall tension. Assuming for definitenessPY the VEV of the SW2) singlet adjoint fielda.

the BPS equations, boundary conditions for the fields® anda are obviously as

follows (cf. Secs. IIB1 and 1B 2

1 3— f— — = —
DoPe — = (ar+ at V2 oh, a%(—%)=0, a(—w=)=—12m,,

\/E 1
ad(w)=——Am, a(®)=—+2m. (4.9

9 — V2

(9 aa: _ a_A ,
‘ 2\/5(%7 #") We see that the range of variation of the fieifsanda

inside the wall is of the order akm. Minimization of their
kinetic energies implies then that these fields are slowly
The Bogomolny completion is routinely used in such problems
after its introduction in Ref[34] and the subsequent identification
of the central charges of various superalgebras with topological 't is easy to check that the very same result follows from the
chargeq 35]. central charg€3.3).
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o’ o except narrow areas of sizel/\/¢ near the edges of the wall
— & M E . at z—zy= = R/2. Substituting the solutiof4.9) into the last
_______ ) i 0, two equations in Eq(4.4) we get
\ /
Z . Am( 1,1 1
0 =—\=+—]. .
| g ¢ \gf 9
I At the same time, the solution forquark inside the wall is
/ a
— 3
N ~Al2
g2 g1 Pr=Pro~ ~ \/; (4.12
2
92 31t 3
FIG. 4. Internal structure of the 2214 domain wall: two edges 91 02
(domainsE; ,) of the width~ ¢~ Y2 are separated by a broad middle S ) _
band(domainM) of the widthR: see Eq(4.11). We see that the-quark field inside the wall differs from its

value in the bulk, generally speaking. Only if we tage
varying. Therefore, we may safely assume that the wall is= 92 [which is not what comes out from the SB) “proto-
thick on the scale of 2 the wall sizeR>1/\E. This fact model,” see Eq(2.8)] o7, becomes equal tgé, its value in
will be confirmed shortly, see also the previous investigatiorthe bulk. SinceAm/\/£>1, the result(4.11) shows thatR
[4]. >1/\/€, justifying our approximation.
On the contrary, the quark fields vary inside small regions As a test of the validity of the solution above, let us verify
of the order of 1{/é—this scale is determined by the massesthat the solutione!=const satisfies the first of equations
of the light quarks(2.23. In particular, 3 varies from its (4.4 inside the wall. Substituting solutiori@.9) for the a

VEV in the 12-vacuunisee Eq(2.13], fields in this equation we get,¢,=0, in full accord with
our solution(4.12. Furthermore, we can now use the first
(D)= V¢, relation in Eq. (4.4 to determine the tails of the
b-components of the 2,4-squark fields inside the wall.
at z=— to zero near the left edge of the wdlfFig. 4), To this end, consider first the left ed@de domainE, in

whereaspy varies from zero to its VEV in the 14-vacuum, Fig. 4) atz—z,=—R/2. Substituting the above solution for
a’s in the equation forp? we arrive at

a4\ | _
Kool Ve qu: \/Ee—(Am/ZR)(z—zom/z)?_ (4.13
near the right edge of the wall. The" quark field does not . o o )
vanish inside the wall because it has a nonzero VEV This behavior is valid in the domaiM, at (z—z,+R/2)
>1//¢, and shows that the field of the second quark flavor
<‘Prl>: N tends to zero exponentially inside the wall, as was expected.

By the same token, we can consider the behaviob of
in both vacua, initial and final. It acquires a constant valuecomponents of the fourth flavor squark field near the right
@}, inside the wall which will be determined shortly. edge of the wall az—2z,=R/2. The first equation in Eq.

With these values of the quark fields inside the wall, the(4.4) for A=4 implies
last two equations in Ed4.4) tell us that the fielda® anda A 2
are linear function of (cf. Ref.[4]). The solutions foa® and pp=e'"\ge” (AMR)(z= 20~ 27, (4.14

a take the form I L . .
which is valid in the domaimM provided that

Am z—z,—R/2
a=—2 m_TOT , (RI2—z+25)> 1€
Hereo is an Abelian wall modulugof the phase typesimi-
3 1 z—29+R/2 lar to that discovered in our previous wofk] where the
a"=- ﬁ mT’ (4.9 reader can find extensive explanations as to its origin. Inside
the wall the fourth quark fields tend to zero exponentially
too.

where the collective coordinai® is the position of the wall
center, whileR is the wall thicknesqFig. 4). It is worth
remembering thah m is assumed positive. The soluti¢h9) z—2zp=*R/2,
is valid in a wide domain of,

In the domains near the wall edges,

the fields<pﬁb as well asa® anda smoothly interpolate be-
122 |<E 4.10 tween their VEV’s in the given vacua and the inside-the-wall
o2 ' behavior determined by Eq#$4.9), (4.13, and (4.149). It is
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monopole because monopoles are in the confining phase in
the quark vacugsee[13] and a brief review in Sec. V below
on the flux tubes in SU(2¥U(1) A'=2 QCD). As we will
see in Sec. V, it is this string that will end on our elementary
walls, the string end point playing the role of@ual) electric
charge for the(2+1)-dimensional W1) gauge field(4.15
living on the wall world volume.

In conclusion of this section it is worth noting that the
scalar{(x,) and the gauge field\,(x,) form the bosonic
part of V=2 vector supermultiplet in 21 dimensions.

12 1
C. Composite walls(12—34) (bound states of the type
(12—-14+(14—34))

FIG. 5. Root and weight vectors of the ) algebra. In. this sect.ion we will consider the composite domain
wall interpolating between the vacua 12 and 34.

not difficult to check that these domains produce contribu- 1 he boundary conditions for all fields at- —c are given
tions to the wall tension of the order @f2, which makes PY their VEV's in the 12-vacuum

them negligible. a3(—)=0
A comment is in order here regarding the collective coor- ’
dinates characterizing the elementary domain wall. We have N
; . . . ! a(—o)=—2m;,
two collective coordinates in our wall solution: the position
of the centerz, and the phase-. In the effective low-ener
0 P gy o1 (=)= (=)= Vg,

theory on the wall world volume they becor(mseudgscalar
fields of the world volume (2+1)-dimensional theory,
{(t,x,y) ando(t,X,y), respectively. The target space of the
second field isS;, as is obvious from Eqg4.14).

In (2+1)-dimensional theory on the wall the compact
(pseudgscalar is equivalent to a () gauge field via the a()=0,
relation[36]

@3(—2)=pp(—*)=0, (4.1

while atz=o they are given by VEV’s in the 34-vacuum,

a(e)=— \/Ems,

@ (®)=pp()=0,

FC D= constX &m0, (4.15

wheren,m,k=1,2,3.

We see that our elementary domain wall localizes the (%)= gp(»)=E. (4.17
U(1) gauge field on its world volume, as was expected, and
in full accord with the string and D-brane notions. The physi-Now all quark fields(nearly vanish inside the wall. The
cal reason for this localization was first suggestefRihand  solution for thea fields in the middle domain MFig. 4) is
then elaborated in detail ip4] for the case ofV=2 QCD  given by
with the SU2) gauge grouga model effectively reducible to

SQED. In this particular aspect—the gauge field localiza- z2—279+R/2

tion on the elementary wall—the present SU(A)(1) a=—\/§( ml_AmT)'

model has slight distinctions compared to that of R&fthat

are worth mentioning. a3=0, (4.18

In the bulk the gauge symmetry is broken down to (1)
by the VEV of thea® adjoint field, and then, at a much lower \ypere we introduce the thickneRsof the composite wall, to

scale, it is completely broken by the squark condensation. AE) . ~ .
N s e considered largdy>1/\/¢, see below. The equation for
the same time, inside the wall the only nonvanishing squark s in Eq. (4.4) is trivially safisfied, while the equation far

field is ther-component of the first quark flavor. Therefore, a

inside the wall the (1) factor orthogonal to the-th weight yields

vector of the gauge group $8) is restored. This (1) factor 2AM

is associated withe,-root of the gauge group; see Fig. 5 R= (4.19
where we imagine an embedding of the SUK)(1) gauge gf

group in the SW3) gauge group of our underlying “proto- 5

model.” Thus we have a localization of theg gauge field on  demonstrating that indeed tHae 1/\/£. Note, that for a par-

12— 14 wall. ticular (unrealisti¢ caseg,=g, [which we donot consider,
Note that this field is dual to the one present in the bulksince, according to Eq2.8), g, #4d,] the size of the com-

[2,4,10. This means that if we put the,-monopole at a posite wall is equal to that of the elementary ones; see Eq.

certain point in the bulk, the,-string will be attached to this (4.11).
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Substituting the above solutions in the first two equations The order paramete&? £ is non-singlet with respect to the
in Eq. (4.4) we determine the falloff of the quark fields inside global U2) inherent to our model upon its complete
the wall. Namely, near the left edge Higgsing. In both vacua, 12 and 34, the order param@ter
equals to unit matrix—this is quite evident. Howevernist
trivial on the 12-34 wall. On the Walbﬁ(t,x,y) reduces to
a constant (2) matrix (independent of,x,y) of the form

_ D _ B 2
SDrl:\/Ee (AMV2R) (z- 29 +R12)?

<P§: \/Ee—(Am/zﬁ)(z—zoﬁe/z)Z, (4.20
while near the right one 03=U03. (4.2
KB— [z(T)\kBa— (AM/2R)(z—zy+R/2)? -
PrB=E(U)kBe (AmAR (=20 K27 =34 Applying all available symmetries of the model at hand, the

(4.2 best we can do is to reduce the number of parameters resid-
ing in OF to four: one U1) phase and three parameters of

where the matriXJ is a matrix from the ) global flavor L
group, which takes into account possible flavor rotations in-.gIObaI SU2). There are no massless moduli in both vacua,

side the flavor paiB=3,4. It can be represented as a Ioroduct|n|t|aI and final; thus all of these four parameters are collec-

. tive coordinates of the wall.
of a U1) phase factor and a matrix U from &) Below we will identify these four moduli with(2-+1)-

U=eooU. (4.22 dimensional gauge fields living on the wall world volume via

duality relations of the type presented in E4.15.
This matrix is parametrized by four phases, plus three Thus, we get four gauge fields localized on the wall. The
phases residing in the matrix. physical interpretation of this result is as follows. The quark

The occurrence of these four wall moduli—one related tofields are condensed outside the-124 wall while inside
U(1) and three to S(®)—can be illustrated by the argument they vanish. This means that dual gauge fields are severely
which runs parallel to that outlined in Re#]. Indeed, in  confined outside the wall while inside the confinement be-
both vacua, 12 or 34, taken separately, one can always u§®mes inoperative. This is precisely the mechanism of the
the symmetries of the theory to render the vacuum matriygauge field localization suggested in Rief].

{$*™ diagonal,
D. Effective field theory on the wall

1 0
{" " hac= \/E( 0 1), A=12 or A=34, (4.23 In this section we work out thé2+1)-dimensional low-
energy theory of the moduli on the wall. First we will discuss

with the real parametey& in front. When both 12- and 34- the elementary walls and then focus on the composite wall
vacua get involved—as is the case in the problem of the2—34.
composite wall—a necessity arises of taking into account

their relative alignment. The most concise way to see how

these moduli emerge is through examination ghanloca) In this section we will deal with the elementary domain
gauge-invariantorder parameté? walls 1,2-1,B with B=3 or 4. Our task is to work out the
effective (2+1)-dimensional theory for the wall collective
coordinategwhich become the world-volume fields-or the
elementary walls the overall situation is quite similar to that
discussed in our previous wofld]. Therefore, we will be

L a
Xexp[ij dz(%Ag(t,x,y|z) rather fragmentary.
—-L
1

1. Elementary walls

B 1/—
OA(th:Y)E E QDA(t,X,y|Z: - L)

As was elucidated in Sec. IV B, the elementary wall has
two bosonic collective coordinateg, and o, plus their fer-
< B _ mionic counterpart;®’. We make slowly varying fields de-
+2A3(t,x,y|z))]<p (txylz L)>’ (4.29 pendent ort,x,y=x,(n=0,1,2),

where Zo—L(Xy), o—0o(Xy), 77—=7(x,). (4.2

A=12; B=34
We can limit ourselves to the bosonic field$x,) and
andL is a large parameter which we are supposed to take tg(x,)—the residual supersymmetry will allow us to readily
infinity at the very endin practice,L>R). reconstruct the fermion part of the effective action.
The fields¢(x,) and o(x,) are in one-to-one correspon-
dence with the zero modes in the wall background; therefore,
13The definition below is restricted to thmsatz(4.1). In defining  they have no potential terms in the world sheet theory, only
the nonlocal gauge invariant order parameter relevant to the domakinetic. Our immediate task is to derive these kinetic terms
walls this is by no means necessary. The general definition is simiessentially repeating the procedure of Réf. For {(x,) this
lar to that in Eq.(4.24 with the replacemenp—q. is trivial. Substituting the wall solutior{4.9), (4.13, and
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(4.14) in the action(4.2) and accounting for the,, depen- R

dence of{(x,), with no further delay we arrive at Zi:Z_ZOIE (4.33
Tw . . . . .
Y dBx(a.6)2. 4.2 is implied. z.. are the coordinates which vanish at the wall
2| (a0 azy o mol

) o ) To make the kinetic energy of the second quark flavor
This answer is quite general and would be valid for the transfjnjte we impose the boundary conditions

lational modulus in any model.

As far as the kinetic term foo(x,) is concerned an ad- Xo— x3—0, z——o. (4.39
ditional (albeit modest effort is needed. We start from Eq. o
(4.14) for the quark fields on the right edge of the wall which A paral_lel proc_edure for those quarks that have nonvanishing
depend on the phase parametrizing a relative phase orien- VEV'S in the final vacuum leads us to
tation of the fourth flavor with regards to the second one. To "
calculate the corresponding kinetic term we have to modify anbB=i((9n0')( 1— Xo X3) o(—27.). (4.35
our ansatzfor the gauge fields, namely, 2

This gives us the desired boundary conditions for the func-

Ar= = x3(2) 3o (Xn), o p 8t 2os +51

An=X0(2)dno(Xp). (4.28 Xo— X3— 1, z— +o. (4.36

We introduce extra profile functiong,(z) andxs(z), much  Now we are ready to assemble all necessary elements. Sub-
in the same way it was done [#]. They have no role in the  stituting Eqs.(4.29), (4.31) and(4.35) in the action and tak-

static wall solutionper se However, in constructing the ki- ing into account the kinetic term for the gauge fields we
netic part of the world-volume theory for the moduli fields gprive at

their occurrence cannot be avoided.
These new profile functions give rise to their own action,
which must be subject to minimization. The gauge potentiaIsS§'+1=f dz

1 1 1
= (9x3)°+ = (92x0)*+ 5 (X0~ xa)*(¢™)?
(4.28 are introduced in order to cancel tRelependence of 9 91

2

the quark fields far from the walln the final quark vacuum Yo+ x3|2
at z—) emerging through th& dependence oF(x,); see +2|1- ) o(—2,)?
Eq. (4.14. 2
Now let us turn to the kinetic terms in th&+1)- 1 1
dimensional effective action coming from the quark kinetic +_(X0+X3)2<P(Z)2] f d3x= (9,0)2. (4.37)
terms in Eq.(4.2). For the first flavor we have 2 2

i The expression in the integral ovemust be viewed as an
Vog't=— 5((%0)()(0—)(3)‘,0”- (429  action for they profile functions. To get the classical solu-
tion for the BPS walland the wall world-volume theory of
This expression is valid far away from the edges of the do_the.moduli fields we must minimize this 'action. The minimi-
main wall, that is to say, in the middle domaify whereq'* zation leads to two §econd-order equat!ons for the fun_ctlons
is a nonvanishing constaft.12, and atz— *+ whereq'* X0 and y3. The solutions to these equations are linear in the

tends to its vacuum expectation valu&. To ensure the middle domainM, for both functions,

finiteness of the kinetic energy of the first quark flavor we z—2y+RI/2
impose the following boundary conditions on the functions Xos=" R - (4.38
Xo and x3:
. Furthermore, outside the domain wall the both functions ex-
Xo— X3, Z—* . (4.30

ponentially approach their boundary valugs36), (4.34).
This exponential approach is controlled by the photon mass
(2.18 for the U1) field and the W-boson ma$2.17) for the

i SU(2) field (cf. [4]). Substituting the solutiofd.38) in the y
E(ana)(XOJrXe,)cp(z,), (4.31 action (4.37) and taking into account Ed4.11) we finally
obtain

For the second flavor we have
anbzz -

where we introduced the quark profile function given by

¢ 1
i $+1=mf d3X§(5n0)2- (4.39

z)= Z— >, 4.3 . .
#(2) \/Ee—(AmR)ZZ, T (4.32 As has been already mentioned previously, the compact
scalar fieldo(t,x,y) can be reinterpreted as a dual to the
and the shorthand (2+1)-dimensional Abelian gauge field living on the wall,
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see Eq(4.15. Note, that Eqs(4.28 and(4.38 demonstrate Therefore, in order to cancel thg-dependence of the quark
that the particular combination of two () gauge fields fields far away from the wall, in the final vacuum, we have to
which is localized inside the wall is the combination with the introduce in theansatzfour gauge fields,

following alignment:

An:XO(Z)&n‘TO(Xn)y

A2= _An
a

This combination corresponds to tleg-root of the SU3) T—Aaz—i Aa-U(x)1U " L(x 4.4
gauge group of the “prototheory;” see Fig. 5. In particular, 2" X290V () JU (). (4.43
the ¢! quark which has a nonvanishimgcomponent inside
the wall is not charged under this combination. Here x and x, are the profile functions for S@@) and U1)

The result presented in E¢4.39 implies that the cou- gauge fields, respectively. Calculations of the quark and
pling constant of the effective () theory on the wall gauge kinetic terms run parallel to those in Sec. IV D 1 lead-

; ing us to a key formula
€51 =4m 1. (4.40

1
. . _ SSTﬁf dz[—z(&z)(o)z—f—(1—)(0)2(,02(—z+)
This statement will help us make the definition of tRe-1)- 1

dimensional gauge field outlined in E@.15 more precise,

1
2 +x50%(z-) fd3x—(& o0)?
€241 0 5 (n0o
Fslznrl):ﬁgnmké’ka'- (4.41
1
As a result, the effective low-energy theory of the moduli +f dz[—z(&z)()2+(1—)()2goz(—z+)
fields on the wall takes the form 92
T 1 2 2 3 -1 -1
52+1:f dSX[TW(ang)ZJr—Z [F21)2 X% (Z-)“ d*x Tr[(U~"9,U)(U""9,U)],
2+1
(4.49
+ i . . . .
fermion term% (4.42 where the superscript cm stands for compact moduli. The

boundary conditions for the functionysand y, must be cho-
The elementary wall at hand is 1/2 BPS-saturated—it breaksen to ensure finiteness of energy in the domains far away
four supercharges out of eight presentAi=2 theory. Thus  from the wall. This gives
we have four fermion fields residing on the wall" («,f

=1,2). Because of th€2+1)-dimensional Lorentz invari- Xo—x—0, z——oo,
ance of the on-the-wall theory we are certain that these four
fermion moduli fields form twatwo-component Majorana Yo—x—1, z—+o. (4.45

spinors. Thus, the field content of the world-volume theory

we obtained is in full accord with the representation of thegqyation(4.44) can be considered as an action functional for
(2+1)-dimensional extended supersymmetry: one comple and xo.

sc:_a[ar field plus one Dlrac two_—comp_onent'fermmn field.” The functionsy and y, are determined by minimization
Minimal supersymmetry in 21 dimensions(with two SU- ¢ the above action functional which gives a second-order
perchargeswould require one real scalar field and one Ma-gqyjation for each function. We will not present them here,

jorana two-component fermion fiel.d. It is natural that We gince the reader can trivially get them himself or herself by
recover extended supersymmetry: there are eight SUpefjinimization. The solutions in the middle domain have the
charges in our microscopic theory; the domain wall at ha”dalready familiar linear form

is 1/2 BPS; hence, we end up with four supercharges in the
Id-vol th : ~
world-volume theory. 2oz, Re i
2. The composite wall Xo= X = R ' ’
Let us pass to the discussion of the effective world- _
volume theory on the composite domain wall-234. The  where the size of the composite wRllis given in Eq.(4.19.
emphasis will be put on novel elements appearing in théutside the wall the functiong and y, exponentially ap-
theory of the moduli fields on the composite wall which wereproach their boundary valu€d.45. The rate of approach is
absent in the case of the elementary walls. determined by the photon ma&2.18 for the function yo,
The first technical modification compared to Sec. IV D 1while it is determined by th&\-boson mas$2.17) for the
is that now we have four independent compact moduli, rathefunction y. Substituting the solutiot¥.46) back in the action
than one—three residing in the mattik Eq. (4.22 plus oy. (4.44) we obtain the following kinetic term:
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¢ 1 where we use the fact that the tension of elementary walls is
S i=5am) 95 (0no0)? Tw= £Am. .
The second comment is devoted to a technibat very

importan} element of the derivation of Eq4.49. In fact,
] (4.47) this world-volume action was obtained, through the calcula-
' ' tional procedure described above, only at the quadratic level
(i.e. omitting non-Abelian nonlinearitiesThis is rather ob-
Next, as in the elementary wall case, we can try to dualizesious as our derivation, and in particular the identification
the moduli residing inJ, as well aso,, to convert them in  (4.48 and the effective actiof¥.47), limits itself to the qua-

2
+g—;Tr[(U’10nU)(U’1anU)]
2

(2+1)-dimensional gauge fields dratic approximation. Higher-than-quadratic terms in the (3
+1)-dimensional action, such as the commutator term in the
F(2+1)_e§+1 K gauge field strength tensor, would produce four-derivative

nm = 5 &nmk? 00, terms in the (2-1)-dimensional theory4.47). Such terms

were explicitly omitted in the derivation above. To recover
ggﬂ non-quadrati¢truly non-Abelian terms in Eq.(4.49 we use
Frha— _j enmdd "1 U. (4.489  gauge invariance on the world volume.
2m The final remark is about the values of the coupling con-
ptants in the (2 1)-dimensional“macroscopic”) theory in
relation to the (3-1)-dimensional“microscopic”) param-
eters. The 1) and SU2) gauge coupling constants in Eq.
(4.49 are given by

Ta

2

Assembling all the above elements we obtain the action o
the world-volume effective theory,

1 1
Sz+1:f d3x{2 2 (ﬁna2+1)2+zT(Dnag+1)2

€241 92+1 &
" " € 1= Zﬂzm,

1 1
+4T[F$12m+1)]2+ ——[F VP )

€541 J5+1 2 291 3

U5, =27 = —. (4.52
gz AM
+ fermion terms , (4.49
Our domain wall is a 1/2-BPS object so it preserves four

) ) ) ) supercharges on its world volume. Thus, we must have the
of whlch a few comments are in order immediately. ~ extendedN'=2 supersymmetry, with four supercharges, in
The first comment refers to four noncompaca® moduli  the (2+1)-dimensional world-volume theory. This is in ac-
which emerged in Eq4.49 seemingly out of blue. We can ¢qrd with Eq. (4.49 in which the Ul) and SU2) gauge
use gauge transformation in the world volume theory to putia|ds are combined with the scalas, ; andad, , to form
two of them to zero, sagy?,=0. The other twea3,; and  the bosonic parts alv=2 vector multiplets.
a,, 1 should be identified witllinear combinations 9ftwo Now let us discuss the possibility of spontaneous gauge

Cenltﬂs of the elementary walls comprising our compositeymmetry breaking in the world volume theory. Clearly if the

yvr_all More e.xactly,. asyq has no interactions whatsoever adjoint scalara2, , develops a VEV, the S@) gauge sym-
itis to be be identified with the center of mass of the COM-metry is spontaneously broken in our world volume theory
posite wall, (4.49 on the composite wall. We can always use gauge ro-
tations to directaj,,; VEV along third axis in the color
Apiq= \/§A_m92+1i(§1+ L) =TE( L+ Eo), space,{g;l)aﬁo. Then identification(4.51 shows that th'e
V2 separationl =z; —z, between two elementary walls which

(4.50  form our composite wall is nonvanishing. In particular, the

g ] N ) ) ) mass of the (2 1)-dimensional W-boson is given by the
while a3, can be identified with the relative separation be-geparation between elementary walls,

tween the elementary walls,

01

2+1

1 01 my, =mE—I. (4.53

agﬂ:\/fAmgzuﬁ(fl_fz):Wf@(gl_fz), 92

(4.52) The mass grows linearly with This is completely consistent

with similar result for D-branes obtained in string theory.
Now let us discuss how can one see this gauge symmetry

UNote that in Sec. IV C we worked out the solution for the com- Préaking in the (3-1)-dimensional bulk theory. Let us split
posite wall as a bound state of two elementary walls at zero sepdQUr composite wall in two elementary ones, say-124 and
ration. However, in fact, this bound state is marginally unstable and.-4— 34. Now we pull these two elementary walls apart mak-
has a zero mode associated with the possibility of arbitrary separang the separation much larger than the wall thicknéss,
tion between components. >R. The separatioh must be much larger thaR because
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the scale R plays a role of an ultraviolet cutoff in the In Ref.[4] we demonstrated that this picture is also valid in
world-volume theory(4.49. Clearly two well separated el- field theory, in the Abelian gauge field case. Namely, the
ementary walls have only two phase collective coordinatesabelian flux tube was shown to end on the domain wall. The
one per each wall; see Sec. IV B. If we dualize these phasggason for such behavior is easy to understand. In the Higgs
we get two Abe_llan gauge fields in the _effecuve world vol- vacuum(in which electric charges condefsthe magnetic
ume theory. This corresponds to breaking of SU{2)1)  fie|q is trapped into flux tubes. However, inside the wall

g:ggfat?gglr;egytﬁg Wnr:a;c;eLsJ(i?Ut(v&c)) I(; 1E)%i(n‘}|§r?;.ioﬁgl qurflrk fields(glmos) vanishl. Therefore, the magnetic flux
W-bosons become much larger tham [see Eq(4.53] and yvh!ch is carried by the stnng in the bulk can sprea_ld over
they cannot be seen in the effective low-energy world-'”s'd_e the wall. Th_e magnetlp fields become electric upon
volume theory:. dualization. The string end point plays the role of the electric
One may ask where do two extra “non-Abelian” phasescharge for the gauge field localized on the wdl.

of the composite wall disappear at separations larger than the Our task is to generalize this picture to cover the case of
elementary wall width. Of course, they do not disappearthe non-Abelian gauge fields. The main goal is finding a
They just pass into Goldstone modes in the intermediate 14solution for a 1/4-BPS string-wall junction, in which a string

vacuum. Remember that the intermediate 14-vacuum has @rrying a non-Abelian flux can end on the composite wall
Higgs branch; see Sec. Il B 2. The two extra phases are noWs_, 34 \we start implementation of the string-wall junction

associated with the massless moduli on this Higgs branch. Ab.,o.am in earnest in Secs. V B and VI. Meanwhile, a brief
zero separation these phases are collective coordinates of t

composite wall. They belong to the ¢21)-dimensional ?rodgction in non-Angian flux tubes will be ip order, to
world-volume theory. At large separations they become buliecduaint the reader with the necessary machinery. An ad-
excitations living in the intermediate vacuum. We will return Vanced investigation of non-Abelian flux tubes in various
to this issue in Sec. VID where we will show that only regimes will be described elsewhd@2].
Abelian strings can end on the composite wall when the Vortices in non-Abelian theories were studied in many
separation between its components gets larger than the thickapers in recent yeaf43,38—43. However, in all these ex-
ness of the individual components. amples of vortex solutions, the string flux is always directed
To conclude this section, we reiterate that the considerin the Cartan subalgebra of the gauge group. This implies a
ation presented above is certainly not a “rigorous deriva-(hidden) Abelian nature of these strings. Clearly these strings
tion” of the non-Abelian gauge invariance in the effective cannot be used for our purposes because their end points on
world-volume action(4.49. Rather, it can be viewed as a yomain walls cannot act as sources for non-Abelian fields.
motivated argument. Our derivation is carried out only at the Only recently a special regime was foufiél] in which

quaﬁlranc_tl_evelvz\ilnd_ ddoet_s n;)t take into ?Ccol:mtt_non'Abeé'_a'?lux tubes acquire orientational zero modes which allow one
nonlinearities. We identify four compact collective coordi- to freely rotate the string flux inside a non-Abelian group.

nates, to be dualized into four gauge fields living on the Wa”This special reime is associated with the presence of a cer-
We also calculate their kinetic terms which fix the values of P 9 P

the 3D gauge coupling constants. Direct calculation of cubi({)a'nkcorgb'r\]/aé'\?,n 0; glotl)al ?alllége;r}d flavor Sﬁ/ mrr]netri/hn;)t
and quartic interaction terms, i.e.pana fidecomplete deri- roken by S o scajar Tields. below we will show tha

vation, goes beyond the scope of this paper. This is a task fdirecisely this regime is .reallzed in 12- and 34-vacua of the
future work. theory under consideration.

The gauge invariance in E¢4.47) is not apparent since  The theory analyzed in Ref6] is /=2 QCD with the
Eq. (4.47) is written in terms ofgauge invarianphases. The SU(3) gauge group broken down to SU(2)J(1), with four
gauge invariance of the world-volume theory appears only ifluark flavors, all with the same mass. We review the string
Eq. (4.49, after dualization. There are quite compelling al- solution found in this paper and adapt the analysis to our
beit indirect arguments showing that our propoga. the  SU(2)xXU(1) model. To begin with, however, we present
SU(2)x U(1) gauge theory4.49] is the correct generaliza- some general arguments in a simple toy model.
tion of Eq. (4.47). First, the number of fields matches. We
have four compact phases and two noncompact centers.
Upon dualization, they fit into a vector multiplet of 3B A. How “non-abelian” are non-abelian strings we deal with?
=2 theory with the SU(2XU(1) gauge group. Say, if the
gauge group were U(1) we would need four phases and In Ref. [24] it was proven that the only BPS-saturated
four noncompact coordinates, which we do not have. Thusstrings at weak coupling itW=1 theories are those of the
the non-Abelian gauge symmetry of the world-volumeANO type, occurring in Wl1) theories. Here we speak of
theory, in effect, is supported by supersymmetry. Secondinon-Abelian” BPS strings inN'=2. A natural question to
there are ony two distinct coupling constants in E§47),  ask is in which sense the BPS flux tubes under consideration
rather than four. This also indicates that three phases, upaitre non-Abelian strings. A conceptual answer can be given in
dualization, should be unified in the &) gauge theory. a simplified model which does not even need to be super-
symmetric.

Indeed, let us consider gon-supersymmetricmodel

In string theory gauge fields are localized on D-branegvhich generalizes that of Abrikosov-Nielsen-Olesen, and has
because fundamental open strings can end on D bfdjes two gauge groups, SY) and U1), and scalar fields of two

V. NON-ABELIAN FLUX TUBES IN AN=2 QCD
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flavors!® Denote two SU2) doublet fields byp™ and ¢{*,
i,j=1,2. Then, introduce a>22 matrix field

[

(5.1
¢(21) ¢(22) String
The covariant derivatives are defined in such a way that they axis z
act from theleft,
— l NS Ta
VMCD= = EA’U’_IA”E o, (5.2
We assume the action to have the form FIG. 6. Geometry of the string.
1 1 — aia(x)
5= [ a5 FL (R POgZe, I ©9
92 g1 and
+Tr(V,2) (V,0)+ V(D) |, (5.3 A=— 28“ﬁ (5.9
r’ '

where, for the time being, the potential functidhis as-  hereq is the phase in the perpendicular plane, aiislthe

sumed to be gauge invariant as well as invariant under thgjstance from the string axis in the perpendicular plane.

global U(2) Since 7, (U(1))=2Z, we will get in this way a set of the
ANO flux tubes with the arbitrary windings.

P—PUg. (5.4 These are not the strings we are after, however. At first
sight, the presence of the &) gauge symmetry, in addition
to U(1), does not create any new possibilities. Indeed,
m1(SU(2)) is trivial; one can readily unwind windings in
SU(2) relevant to strings.

DU (X)D, (5.5 Nevertheless, the fact that &) has a centerZ,, does

create a new possibilit} To see that this is the case, let us

with A, and A% transformed appropriatelgnd under the ~€xamine the following topology. A large circle in the plane

global U2), Eq. (5.4). perpendicular to the string axis is depicted in Fig. 6. Assume

Models of the type(5.3) were engineered long add4]  that one starts from a certain point on this circle and makes a

with the purpose of providing a set up for the spontaneoudull rotation around the string. Introduce the winding in

breaking of the localgauge group G down to a diagonal SU(2), and assume the full rotation above to bring us to the

global G. Indeed, with an appropriate choice of the potentialS@me element up to the center, namely,
functionV, one can ensure the vacuum expectation value of

HereUyg is a constant matrix from (2), and the multiplica-
tion is performed from theight. The action(5.3) is invariant
under the local (R),

® to be diagonal, D(x)=€“M72P(x,)— —D(x,) at x—x, after rot.,
10 (5.10
D= , #0. 5.6 . .. . . . .
vac U(O 1) v ©H see Fig. 7. The conditiot6.10 per seis forbidden, since it

results in a discontinuity of thé field. One can eliminate
Then, since this vacuum is obviously invariant under thethis discontinuity by supplementing the &) winding
combined multiplication above by a (1) winding with the condition

®—-U_ PUg, (5.7 D(x)=e"“M2P(x,)——D(xy) at x—x, afterrot.

(5.11
with Ug=U/, the diagonal global (2) will be preserved.

Now we can discuss topological defects of the string typeThe formula
Defects of the ANO type are always possible. Indeed, put the
SU(2) gauge field to zerdand temporarily forget about it B .
whatsoever A nontrivial topology will be realized through PO)=exp ia(x) (%), a(X)—2m afterrot,
the U1) winding of @, (5.12

1+7°

5This model is also a version of the Higgs sector of the standard *°Of course, any element of () can be considered as a center,
model. since this group is Abelian.
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Su(2)
sM=J d*x Tr(dM2DM, (5.19
u(1)
where the mass matrix has the form
> om0y,
M= 0o m mi#m;. (5.19

Intuitively it is clear that ifAm? is small, the only change is

as follows: the S(R) symmetry of theC P! model must be
FIG. 7. Topology of the1,0) and(0,1) strings. The trajectories broken, producing quasi-moduli from the would-be moduli

in the group spaces corresponding to circumnavigating along thef CP!. What survives is (1), rather than S(P). Later,

large circle in Fig. 6 are denoted by bold lines. after re-introduction of supersymmetry, we will see that this

process is nothing but the transition from thé=2 CP*!

summarizes this pattern. Depending on the choice of the sigiodel to the one with the twisted massAnticipating our

in the exponent, only the or only theb components of the further needs we present here the bosonic part ofQReé

fields (22 have a nontrivial winding. It is clear from Fig. 7 model with the twisted mass,

that one cannot unwind it. It is also clear that the fluxes

(a) (b)

corresponding to the fields, andA> are half the flux of the Lcpyim=G{d, p* ¢—|m|>pp}, (5.16
U(1) field of the ANO string. We will refer to such strings as ) )

(1,0) and (0,1)—the first winding number corresponding toWhereG is the metric on the target space,

the indexr, the second td. This notation seems rather awk-

ward given the way we introduced the setup. It emerges G=E 1 (5.17
naturally within the historical line of development, however; o g% (1+ ¢g)2’ '
see below. The standard ANO string emerges as a sum of the

(1,0) and (0,1) strings. The question as to which strings argnd

more favorable energetically depends on dynamical details.

We will return to it later. x=1+o.

A remarkable feature of the (1,0) and (0,1) strings is the
appearance of non-Abelian moduli which are absent in the|t is useful to note that the Ricci tens&®=2y 2.) The
ANO strings. Indeed, while the vacuum fiel8.6) is invari-  yisted mass parameten introduced in Eq(5.16) is related

ant under the global SQ) by virtue of Eq.(5.7), the string s . . ~
configuration(5.12) is not. Therefore, if there is a solution of '[;)Atrr;]e mass splitingAm of the microscopic theorym

the form (5.12) there is a family of solutions obtained from Anticipating further applications, we hasten to add that

Eg. (512 by the replacement the N'=2 superalgebra of th& P* model(which is our mac-
roscopic theoryis centrally extended, namely,

D (x)—Qp(x)Q1 (5.13

_ - - 1 _
(QUQR =~ iy~ [ 2+~ [ dan(x 2w,
where () is an x-independent matrix from 2). Generally (5.18
speaking, it is parametrized by four parameters. Tlig) U
factor is nothing but a shift of the origin of the angle where the first term is proportional to the1) chargeqyy ,
however; one should not count it. Thus, what remains isvhile in the second term= — (2/g?)(1/x) presents the main
SU(2). Moreover, in fact, it is S(R)/U(1), as is clearly seen impact of the twisted mass. The last term is the central
from Eq.(5.12. [Rotations around the third axis inthe @  charge anomaly established in REF3]. It is proportional to
space leave the solution intgciSU(2)/U(1) is the target the difference between the bifermion condensates in the final
space of theCP?! [or O(3)] sigma model which, thus, pro- and initial vacua. The central charge anomaly becomes im-
vides the adequate description of the moduli dynarif6¢8].  portant in the limitm—O0 corresponding tan;—m, in the
It is just this aspect that allows us to refer to the stringsmicroscopic theory. Then the classical termey ;) and~h
above as “non-Abelian.” They are as non-Abelian as it getsyanish, and the central charge is entirely determined by the
at weak Coupling. anoma|y_
Note that the stability of the (1,0) and (0,1) strings under
consideration would be impossible without the presence of———
the U(1) factor. Y7A/=2 sigma models with twisted mass were first constructed in
In conclusion, it is instructive to ask what happens if we Ref. [45]. The superspace/superfield description was developed in
explicitly break the S(R) flavor symmetry of the model Refs.[46,47. In particular, the notion of a twisted chiral superfield

(5.3) by introducing unequal masses to the fielis) and
»3), namely,

was introduced in the second of these works. The word “twisted”
appears for the first time in the given context in Héf7].
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The above central charge is in one-to-one correspondence 2

with the BPS kinks in theCc P* model. Sure enough, it must F32+ %S(QDATaQDA):O, a=1,23;
(and doeshave a counterpart in the microscopic theory, see
Sec. Il C. Projecting them onto one another allows one to 2
establish relations between the parameters of the microscopic w9 Al2_oe —0-
! ! . Fi+ 5 e(|of?-28)=0;

and macroscopic theori¢82], for instance,

L _o2m (V+ieV,) ¢*=0, (5.23

2 = - (519)

Yepr 92 where

Let us note thatg% in runs according to the formula of e=+1

asymptotic freedom down té (at Am=0), where it is fro-
zen in the bulk. The asymptotic freedom runninggdfis s the sign of the total flux specified below.

taken over and matched by that@ipl in the macroscopic We first review the U(1XU(1) string solutions found
(world-volume theory. [13] in the unequal quark mass case, and then show that in
the limit of equal quark masses additional orientational zero

B. Back to strings in A/=2 modes arise making the string non-Abeli@). For unequal

quark masses some of the orientational moduli become

For definiteness let us consider strings in the 12- -vaculNyyasi-moduli, corresponding to passing from @B! sigma

To find the BPS string solutions we use the s@neatzas in  model with no twisted mass to that with a twisted mass; see
Eqg. (4.1 and also put adjoint fields, which are irrelevant for ggc v A

the string solutions, equal to their VEV(.12. With these The U(1)X U(1) strings can be recognized, with no ef-

simplifications our theory4.2) becomes fort, as particular solutions of Eq€5.23. To construct them
1 1 we further restrict the gauge fleldﬁls"’1 to a single(third)
S:f A% —= (F2 )24 ——(F ,,)%+]|V, 0"|2 color componenA’ (by settingA = Ai 0), and consider
5 . a only the quark fields of the 2 2 color flavor diagonal form,
95 — o — OAx)#0, for k=A=12 (5.24)
+§(¢ATa<PA)2+§(<PA<PA—2§)2 : (5.20 ’ " '

with vanishing other components. For the unequal masses

Clearly, only those two flavor&=1,2 which develop VEV's the relevant topological classification is

in the 12-vacuum will play a role in the classical vortex
solution. Other flavors remain vanishing on the solution. - (
Hence, we consider the quark field§" to be 2< 2 matrices !
in this section. Note, however, that the additional two flavors
are crucial in quantum theory, in keeping the(8Unterac-  and the allowed strings form a lattice labeled by two integer

U(1) X U(1)

_ 2
> 72, (5.25

tions weak. winding numbers. To be more specific, assume that the first
The string tension can be written in the manner of Bogo-flavor windsn times while the second flavor windstimes.
molny [34] as follows: The solutions of Eq(5.23 are sought for using a “natural”
ansatz
_f [ = ——F53 =" (par?0") 2+ - F3 e ehy(r) 0
2 .
\/_92 2 \/— V29, (PkA(X):< 0 e'k“¢2(r)) '
2-28) | + Vit =iV0R 2= EFS T,
2\/—(|<P | £) Vi Y RS 3 3 .
(5.21) Ai(X):_Sfijr_z[(n—k)—fs(r)],
where
X.
1 Ai(X)=—ze;—[(n+k) —f(r)], (5.26
ngifijFij (i,j=1,2), (5.22 '

where {,«) are the polar coordinates in thi£2)-plane while
plus the same foF%?, are the coordinates in the plane or- the profile functionsp,, ¢, for the scalar fields anty;, f for
thogonal to the string axis directed along the thiré., z) the gauge fields depend only or{i,j=1,2).
axis. The Bogomolny representation implies the first-order With this ansatz the first-order equation&.23 take the
equations for the BPS strings, form [13]
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d 1
rgy 210 = 5 [HN) +13(r)]¢a(r) =0,
° o (L1 °
d 1
r——a(r)— 5 [f(r)—f3(r)]¢2(r)=0,
dr 2 0,1)
[ ] (1,0) ® 2-1
1d 93 , )
7 gr (D5 [N+ dy(r)°—2£]=0, . .
) (-1
1d f 92 2 27_
== g fa(+ S Ta(r)>= ga(r)?]=0. o .
(5.27
The profile functions in these equations are determined by ° ® ®
the following boundary conditions:
f3(0)=enk(n=K), f(0)=enk(n+k),
fo()=0, f(®)=0 (5.29 FIG. 8. Lattice of f,k) vortices.
3 ] - .
for the gauge fields. The boundary conditions for the quark OuUr strings are formed as a result of the quark condensa-
fields are tion; the quarks have electric charges equal to the weights of
the SU3) algebra. The Dirac quantization condition tells us
d(0)=VE  Po(0)=E, [13] that the lattice of ther(,k)-strings is formed by roots of
the SU3) algebra. The lattice ofn(k)-strings is shown in
$1(0)=0, ¢»(0)=0 (5.29  Fig. 8. Two strings, (1,0) and (0,1), are the “elementary” or

for both n andk nonvanishing, while, say, fdt=0 the only
condition atr=0 is ¢,(0)=0. Here the sign of the string
flux is defined as

n+k

sn’k:m=sgr(n+ ky==1.

(5.30

e=

The tension of arf,k)-string is determined by the flux of
the U(1) gauge field alone and is given by the form[fa13]

(5.3)

Note thatF%2 does not enter the central charge of e

Tox=2mEn+k|.

=2 algebra and, therefore, does not affect the string tension.

The stability of the string in this case is due to thélJJ
factor of the SU(2)X U(1) group only. Note also that (1,0)
and (0,1)-strings are exactly degenerate.

For a generic 1f,k)-string equation$5.27) do not reduce

“minimal.” They are BPS-saturated. All other strings can be
considered as bound states of these “elementary” strings. If
we plot two lines along the charges of these “elementary”
strings (Fig. 8 they divide the lattice into four sectors. It
turns out[13] that the strings in the upper and lower sectors
are BPS but they are marginally unstable. At the same time,
the strings in the right and left sectors @&neetgstable bound
states of the “elementary” ones but they are not BPS.

Now, let us generalize the string solutiof&26) to the
case of the equal quark masses, when th&pU(1) gauge
group is not broken by the difference of the quark masses, as
is the case in the 12-vacuum. The relevant homotopy group
in this case is the fundamental group
A[S2VD) eg

replacing Eq. (5.25. This means that the lattice of

to the standard Bogomolny equations. For instance, for th€n:K)-strings reduces to a tower labeled by one integer (
(1,)-string these equations reduce to two Bogomolny equa® k). For instance, the (%1)-string becomes completely

tions while for the(1,0) and (0,1) strings they do not. Nu-
merical solutions for the two “elementary(’1,0) and (0,1)
strings were obtained in Ref6].

unstable. On the restored &) -group manifold it corre-
sponds to a winding along the meridian on the splt&ye
Clearly this winding can be shrunk to nothing by contracting

The charges ofr(,k)-strings can be plotted on the Cartan the l0op towards the north or south po[&5].

plane of the SI(B) algebra of the “prototheory.” We shall

On the other hand, the (1,0) and (0,1) strings cannot be

use the convention of labeling the flux of a given string byShrunk because their winding is half a cir¢léig. 7). They
the magnetic charge of the monopole which produces thi§ave the same tension
flux and can be attached to its end. This is possible, since

both, string fluxes and the monopole charges, are elements of

the groupm(U(1)?)=Z?2. This convention is quite conve-

nient because specifying the flux of a given string automatifor equal quark masses and, thus, apparently belong to a
cally fixes the charge of the monopole that it confines. doublet of SU2).

T,=2mé& (5.33

025013-20



LOCALIZATION OF NON-ABELIAN GAUGE FIELDS ON.. ..

PHYSICAL REVIEW D70, 025013 (2004

Below we will show that there is a continuous deforma-vector n?. This fact becomes even more transparent, if we
tion of the (1,0)-string solution transforming it into a examine a gauge-invariant definition of the magnetic flux of
(0,1)-string. This deformation leaves the string tension unthe non-Abelian string, which is very instructive. This can be
changed and, therefore, corresponds to an orientational zedwne as follows. Define “non-Abelian” field strengtto be

mode[6].
First let us fix the unitary gaug@@t least globally, which

is enough for our purposedy imposing the condition that

the squark VEV'’s are given precisely by E.13), and so

all gauge phases vanish. Now transform the (1,0)-string so-
lution (5.26) into the unitary gauge, which corresponds to the,
singular gauge, in which the string flux comes from the sin-
gularity of the gauge potential at zero. In this gauge the

solution (5.26 for the (1,0)-string takes the form
) (1) 0
A_
71 0 ¢(n)

3 )= e _. kN
Ai(x)_fijr2f3(r)i Ai(X)—Gijrzf(r)-

(5.39

denoted by bold letteysas follows:
1 >
Fgangr(qﬂng?cha

From the very definition it is clear that this field gauge

. (5.38

invariant. Moreover, it is clear from Eq5.36 that

(BT $)
n —25

Thus, the physical meaning of these moduli is as follows.
The flux of the color-magnetic field in the flux tube is di-

rected alongﬁ. We see that the SU(2) ¢ symmetry is
physical and does not correspond to any of the gauge rota-
tions which are “eaten up” by the Higgs mechanism. At the
same time, a non-Abelian gauge group—a “new color’—is
resurrected. For strings in Ed5.26) the “new-color”-
magnetic flux is directed along the third axis in th¢3D

1 df,

Fra=— ——
3 rodr

(5.39

Now, please, observe that a global diagonal subgroup in thﬁroup space, either upward or downward.

product of gauge and flavor symmetries SW{X)SU(2)¢ is
not broken by the quark VEV'’s. Namely,

UC+F<Q>U6iF:<q>’ (5.39

where . ¢ is a global rotation in S(2) while the quark
VEV matrix is given by Eq(2.13. We refer to this unbroken

group as SU(2) .-

The SU(2) ¢ symmetry is exact and the tension of the
string solution(5.36) is independent oh?; see Eq.(5.33.
However, an explicit vortex solution breaks the exact

SU(2)c, r in the following manner:
SU(2)cir—U(D). (5.40

Two angles associated with vecto? becomes two orienta-

Let us apply this global rotation to the (1,0) string solu- tional bosonic zero modes of the string. The veaidrpa-

tion (5.34). We find

P (1) 0
e“*=Uciel o éo(1) Ucie,

a

T—Aa(x)=ln‘31 a ﬁf (r)
20 2 TCi sl

Ai(x>=e”rx—;f<r>, (536

where we define

UcrrmUgtp=n372, (5.37)
Heren? is a unit vector orS,, n=1.

It is easy to check that the rotated strifg36) is a solu-
tion to the non-Abelian first-order equatiofs.23. Clearly

the solution (5.26 interpolates between (1,0) and (0,1)

strings. In particular it gives a (1,0)-string for=(0,0,1)
and a (0,1)-string fon=(0,0,—1).

rametrize the quotient space &)/U(1)~CP*~S?. This
means that, as we have already explained in Sec. V A, the
(1+1)-dimensional low-energy effective theory for these
orientational zero modes is the(® sigma model[O(3)
sigma model is the same &P*! sigma model; if we started
from SQCD with the gauge group SU(NJU(1), wewould
instead arrivg5,6] at CPN™1]. Since the string is 1/2-BPS
saturated we have four supercharges in the effective world
sheet theory. This corresponds Ao=2 supersymmetry in
(1+1)-dimensions.

Classically the @) sigma model is characterized by a
spontaneous breaking of thg3) symmetry leading to two
massless Goldstone bosons. This is to say that in the quasi-
classical treatment the vecto® points in some particular
direction for a given string.

However, quantum physics 8f=2 sigma model is quite
different. The model is asymptotically free and runs into a
strong coupling regime at low energies. This theory has a
dynamically generated mass gap

Acpi~VEexp —2m/gZ )~ VE exp(— 4m2lg3).
(5.41)

There is no spontaneous breaking dB8f) and no Goldstone

The vectorn has a clear-cut physical meaning. Its orien-bosons are generated. In terms of strings in four dimensions
tation is the orientation of the magnetic flux. The construc-this means that the string orientation vectdrhas no par-
tion above—which was carried out in the singular gauge—ticular direction. The @) sigma model has two vac(i48].
shows that the S(2) flux of the string is directed along the In the microscopic four-dimensional picture this means that
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2

we have two “elementary” non-Abelian strings which form 1 9 — 1
a doublet with respect to SU()r. Ezj d3x[ ——F3%4+ ——(pame™)+ —Djza®
Note however, that they aretthe (1,0) and (0,1) strings \/592 2\2 92

of the quasiclassical U(U(1) theory. In both strings the
vector n? has no particular direction. Still the number of
“elementary” string states remains the same—two—in the
limit of equal quark masses.

2
*

J1
V20, 3 2\/2(|

1
Al2-2¢)+ e

The (3) sigma model has a kink interpolating between 1|1 . . 2
the two vacua. In four dimensions this interpolation will be P E(F’l‘aJr'F;a)Jr(Dl“DZ)aa
interpreted as a monopole which produces a junction of two 2
“elementary” non-Abelian string$6,7]. This monopole lives 111 2
on the string world sheet because monopoles are in the con- + — —(FT+iF3)+ (9, +id)a| +|Vie*+iV,eh?
fining phase in our theory, and do not exist as free states. 91 2
The charge of this monopole lies entirely inside the3U 2
factor. of the gauge group. .Pimaéo, its charge is (21—, 1). +| Vaph+ i(aa7a+a+ \/EmA)(PA ]
Classically the mass of this monopole Asn(4x/g5) and N

tends to zero when the gauge symmetry is enhanced from

U(1)xU(1) to SU(2)x U(1) atAm=0. Simultaneously its +surface terms, 6.1

size becomes infinitécf. [49]). However, in quantum theory where we assume that the quark mass terms and adjoint
the story is different. This monopole has a finite size Since}ields are real. The surface terms are
there are no massless states in tH@ Gigma model. It is

massive but extremely light with a mass determined by the S 5
scale of the sigma modélcp1; see Eq(5.41). The mass of Esurface:'ff d°xF3 + \/§§f d“x(a)
this monopole is lifted from zero and is given by the anoma-

lous term in the central chargék.18 of the Q3) sigma (a®) 3

model. Its charge is no longer (11) because it interpolates - \/E—zf dSiFr°, (6.2
now between quantum vacua of thé€3Dsigma model for 92

which the vectom® has no particular direction. Further de- \yhere the integral in the last term runs over a large two-

7=

7z=—

tails are reported iif32]. dimensional sphere at— o, and
Fro=le (6.3
VI. STRING-WALL JUNCTIONS n =2 €nij"ij :

In this section we derive the BPS equations and find &¢ gq.(5.22. This is in full accord with the general discus-
1/4-BPS solutions for string-wall junctions. First we work gign in Sec. Il

out the first-order equations for string-wall junctions then e Bogomolny representatid.1) leads us to the fol-
find a solution of Abelian string ending on the elementaryk)\,\,ing first-order equations:

wall and, finally, discuss a non-Abelian string ending on the

composite wall. F*+iF%+2(9,+id,)a=0,

F*34+iF%3+\2(D,+iD,)a%=0,

A. First-order equations for junctions
2

In Ref.[4] we found string-wall junction solution picking w91 A2 —
up two supercharged/4 BPS) which act trivially both on s+ 2 (lo"*~28)+24:2=0,
the string and wall solutions. Here we take a slightly differ-

ent route inspecting the Bogomolny representation for the
energy functional. We keep the quark, adjoint and gauge
fields in our action because all of these fields play a role in

2
95 —
F3o+ 72(¢A7a¢A)+ V2D3a?=0,

the string-wall junction. A 1 . A
It is natural to assume that at large separations from the Va"=— E(a +at\2my) e,
string end point at =0, z=0, the wall is almost parallel to
the (X1,X,) plane while the string is stretched along the (V,+iV,) e"=0. (6.4

axis at negative. Since both solutions, for the string and the

wall, were obtained using thansatz(4.1) we restrict our These are oumaster equations

search for the wall-string junction to the saramsatz As Once these equations are satisfied the energy of the BPS

usual, we look for a static solution assuming that all relevanbbject is given by Eq(6.2). Please, observe that Ef.2)

fields can depend only ox,, (n=1,2,3). has three terms corresponding to central charges of the
Then we can represent the energy functional of our theorgtring, domain wall and monopoles of the @Wsubgroup,

(4.2) as follows: respectively. Say, for the string the three-dimensional inte-
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gral in the first term in Eq(6.2) gives the string length times Needless to say the solution of the first-order equations
its flux. For the wall the two-dimensional integral in the sec-(6.4) for the string ending on the wall can be found only

ond term in Eq.(6.2 gives the area of a wall times the numerically, especially near the end-point of the string where
tension. For the monopole the integral in the last term in Egboth the string and the wall profiles are heavily deformed.
(6.2) gives the monopole flux. This means that our masteHowever, far from the string end point, deformations are
equationg6.4) can be used to study the BPS strings, domainveak and we can find the asymptotic behavior analytically.

walls, monopoles, and all their possible junctions. Let the string be on the<0 side of the wall, inside the

It is instructive to check that the wall, string and mono- 12-vacuum. Consider first the regian> —co far away from

pole solutions, separately, satisfy these equations. Say, whe string end-point @&~ 0. Then the solution to Eq6.4) is
start from the wall solution. In this case the gauge fields argjiven by an almost unperturbed string. Namelyzat — o

put to zero, and all fields depend only enThus, the first
two and the last two equations in E@.4) are trivially sat-
isfied. The components of the gauge fiekds andF3? van-

ish in the third and fourth equations; hence these equations

reduce to the last two equations in E4.4). The fifth equa-
tion in Eq. (6.4) coincides with the first one in Edq4.4).

there is naz dependence to the leading order, and, hence, the

solution
0
o A= :

P (r)

Po(1)
0

For the string which lies, say, in the 12-vacuum, all quark

fields vanish excep”, A=1,2 whilea anda? are given by
their VEV's. The gauge flux is directed along thexis, so
thatF} =F3 =F}%=F}%=0. All fields depend only on the
coordinatesx; andx,. Then the first two equations and the
fifth one in Eq.(6.4) are trivially satisfied. The third and the
fourth equation reduce to the first two ones in Eg23. The
last equation in Eq6.4) for A=1,2 reduces to the last equa-
tion in Eq.(5.23), while for B= 3,4 these equations are trivi-
ally satisfied.

Equations for the monopole arise from the ones in Eq

(6.4) in the limit £&=0. Then all quark fields vanish, and Eq.
(6.4) reduces to the standard first-order equation for th
monopole in the BPS limit,

F*a4+\2D,a%=0, (6.5
while a is given by its VEV and the () gauge field van-
ishes.

In particular, Eq(6.2) shows that the central charge of the
SU(2) monopole is determined bya®) which is proportional

to the quark mass difference in the given vacuum. Say, fo
the monopole in the 12-vacuum it gives zero. However, a
was mentioned at the end of Sec. V B, the mass of thi

monopole is lifted from zero at+# 0. In this case this mono-

pole becomes a junction of two “elementary” strings of the
SU(2)xXU(1) theory and acquires a nonvanishing mass du

to nonperturbative effects in the(8 sigma model on the
string world sheet.

Let us note that the Abelian version of the first-order mas-

ter equationg6.4) was first derived in Refl4] and used to
find a 1/4-BPS solution for the string-wall junction. Quite
recently a non-Abelian version for SU(R)J(1) theory was
used[7] to study the junction of two “elementary” strings
via a small-size monopole @m0 and large.

B. The Abelian string ending on the elementary wall

In this section we consider an Abelian string ending on

the elementary wall. The 1214 wall has a nonvanishing

r-component of the first flavor inside the wall; see Sec. IV B.
Therefore, only the (0,1)-string whose flux is orthogonal to

the r-weight vector can end on this wall.

S

A3(x)=—e--ﬁf (r)
i |Jr2 3 ’

X.
A= 5 (1) (6.6
[which is a singular-gauge version of the soluti@n26) for
n=0, k=1; cf. Eq.(5.39] satisfies Eqs(6.4). We also take
the fieldsA;=A3=0 and¢® (B=3,4) to be zero, witha’s
equal to their VEV’s(2.12). On the other side of the wall, at

g— T, we have an almost unperturbed 14-vacuum with the

fields given by their respective VEV's.

Now consider the domain— o at smallz. In this domain
the solution to Eq(6.4) is given by a perturbation of the wall
solution. Let us use thansatzin which the solutions for the
fields a, a® and ¢” are given by the same equatio9),
(4.12), (4.13 and(4.14 in which the size of the wall is still
given by Eq.(4.11), andthe only modifications that the
position of the wallz, and the phase- now become slowly-
varying functions ofr and « [i.e., the polar coordinates on

he (x;,X,) pland. It is quite obvious that, will depend
only onr.

As long as the third, fourth and fifth equations in Eg,.4)
do not contain derivatives with respectq i =1,2, they are
identically satisfied for any functiongy(r,«) and o(r,«)

?note thatF =F3%=0, the field strength is almost parallel

to the domain wall plane and;=A%=0).

However, the first two and the last two equations in Eq.
(6.4 become nontrivial. Consider the first two. Inside the
string the gauge fields are directed along ztexis and their
fluxes are &r for F and— 2 for F% 2 [remember, we treat
the (0,1)-strindg. This flux is spread out inside the wall and
directed almost along; in the (X;,X,) plane at large. Since
the flux is conserved, we have

(6.7)
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inside the wall afz—zy(r,a)|<R/2. compact scalar fieldr with the electric field living on the
Substituting this in the first two equations in E§.4) and  domain wall world volume via Eq(4.41). Then the result

assuming thatz, depends only o we get that the two (6.12 gives for this electric field

equations are consistent with each other and

2
1 F(?+l):%ﬁ (6.13
8rzo=m. (6.9 o 27 2’ ’

Needless to say our “adiabatic” approximation holds onlywhere the (2-1)-dimensional coupling is given in Eq.

provided the above derivative is small, i.e., sufficiently far(4.40.

from the string end pointy/&r>1. This is the field of a point-like electric charge int+2
The solution to this equation is straightforward, dimensions placed a;=0. The interpretation of this result

is that the string end point on the wall plays a role of the

electric charge in the dual () theory on the wall, cf[4].

1
zozmln r +const. (6.9

. . . . C. Non-Abelian string ending on the composite wall
We see that the wall is logarithmically bent according to the 9 9 P

Coulomb law in 2+1 dimensions. Similar to the case con- Now we pass to the non-Abelian string ending on the
sidered in[4], one can show that this bending produces acomposite wall interpolating between the 12- and 34-vacua.
balance of forces between the string and the wall inzhe Our strategy is as follows. We start with the (0,1) Abelian
direction so that the whole configuration is static. string as in Sec. VI B and consider its junction with the com-
Now let us consider the last equation in §.4). First,  posite 12534 wall of Sec. IVC. We then apply the
we will dwell on the gauge potential which enters the cova-SU(2)c ¢ rotation introduced and discussed in Sec. V to
riant derivatives in this equation. In order to produce the fielcthis junction. Namely, we write down the first two flavors as

strength(6.7), A, and A% in the middle domain should re- @ 2X2 matrix ¢"* (A=1,2) and the last two flavors as a 2
duce to X 2 matrix ¢*B (B=3,4), and rotate them according to

¢—Uc.reUcie, flavorindices=1,2,

ESR Rl
Ai_ﬁsiir_z z—zo(r)+§ , 1=12, . o
¢—UcireUcy g, flavorindices-3,4,
(6.149
3 1 Xj R .
A=—5eij— z—z9(r)+ |, 1=1.2, . )
R 2 2 with one and the same matrix from SUR)g .

Note that both the 12- and 34-vacua do not break this
AO=A8:O, A3=A§=0. (6.10 symmetry. However, the string and the string-wall junction
are not invariant. Therefore, if we apply this rotation to the
Please, observe that nonvanishing field of the first quark flasolution for the (0,1)-string ending on the composite wall we
vor satisfies the equation since it has only theomponent  will get the solution of Eq.(6.4) for a non-Abelian string
which is not charged with respect to the fi€el10. Con-  ending on the composite wall, with the same energy.
sider the second quark flavor whdse€omponent is given by Having set the general strategy, it is time to proceed to a
Eqg. (4.13 in the middle domain near the left edge of the wall technical analysis of the junction of the (0,1) string with the
at z—zo~ —R/2. Taking into account the gauge potentials composite wall. Assume for simplicity that in the absence of

(6.10 and the wall bending6.9) it is easy to check that the {pe string, the matri) =1 [see Eq(4.21)] so that the devia-

SeCFci)gglIgal\:ac;russa(tzlcfziijél%“l?rslttﬁglﬁité%rl]elg(fan?‘fé)i'n near the tion of U from the unit matrix _is due to the string flux. Our
right edgé of the wallz— zo~R/2. Substituting Eq(4.14 composite wall can be considered as a mar.glnally stable
into the last equation in Ecjoﬁ 4) Wé get the following équa— bo_und state of th.e 214 and 14-34 wa_IIs._ While the >0
tions for the phase- ' lution presented in Sec. IV C has a vanishing separation be-
) tween the constituents, the two elementary walls in this
bound state do not interact and their positions can be shifted
=0. (6.1  to arbitrary separations. As the (0,1)-string can end only on
the 12— 14 wall, it is clear that it will pick up this wall and
pull it out to the left; see Fig. 9. The (3434) constituent
stays unbent and does not play a role in the junction solution
o=a. (6.12  athand:®We see that the solution for the (0,1)-string ending

Jo 1 Jdo
da T ar

The solution to these equations is

In terms of the dual Abelian gauge field localized on the

wall, this solution reflects nothing but the unit source charge. *of course, there could be some interaction of the end point of
The above relation between the vortex solution and thehe string on the 12: 1B wall with 14— 34 wall but this interaction

unit source charge calls for a comment. One can identify thés short range and dies out @t 1/\/€.
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This result clearly means that the end point of the string is
a point-like source of the non-Abelian gauge field on the
composite wall. To see this more explicitly let us write down
the (2+1)-dimensional gauge fields associated withand
the matrixU using Eq.(4.48. We get

2
pern__ S Xi
Oi B 41 r2’

2
0241 Xi
_____ = Fa+l)= e r—zna. (6.19

FIG. 9. Junction of the string and the composite wall. The string
pulls out one of the components of the composite wall. Arrows
show the spread of the magnetic flux inside the wall.

As we see, this is the field of a classical point-like charge in
the SU(2)X U(1) gauge theory on the wall. The direction of
the SU2) field in the color space is determined by the vector

a . . ]
on the composite wall reduces to the solution for the" associated with the string flux.

(0,1)-string ending on the (3:214) wall considered in Sec.
VI B. D. Gauge symmetry breaking

The solution for the (0,1)-string ending on the—124 As was discussed at the end of Sec. IV D 2, if our com-
wall has theb-component of the fourth flavor multiplied by posite wall is split into elementary components whose sepa-

exp(—io) with o given by Eq.(6.12; see Eq.(4.14. The  ration is larger than their thickness, the non-Abelian gauge
14— 34 wall has all phases vanishing because there is no flugymmetry in the world-volume theoi.49 is broken down

going inside this wall. to U(1)XU(1). In particular, the mass of the
Thus, our junction has the quark matrix of the final (2+ 1)-dimensionaM-bosons becomes proportional to the
vacuum determined by the matrix separatiorl between the elementary walls; see E453.
Our analysis demonstrates that localization of a gauge
~ 1 0 field on a wall and existence of the corresponding string-wall
“lo eie)’ (6.19 junction are two sides of one and the same phenomenon. In

this section we address the question: “what happens with the
see Eq.(4.2). This shows that the junction of the String-walljunction in the (3-1)-dimensional bulk theory if
(0,1)-string and the composite wall has the following phaséVe split the composite wall and pull the components apart?”

o and the SR2) matrix U [see Eq(4.22)]: Consider a string-wall junction for the non-Abelian string
ending on the composite wall, as in Sec. VI C{llf=0 two
o elementary walls which form the 1234 wall overlap at

o0=— 5 larger (r is the distance from the string end point along the

wall). In fact, the composite 12 34 wall can be represented
3 as a bound state of two elementary walls in many different
U=ex;{i7—a). (6.16 ways depending on which particular combination of the
2 quark fields is nonzero in the given elementary walls. In
particular, the string with flux~n? picks up a particular
Now let us apply the SU(2),r rotation (6.14 to the elementary wall with
whole configuration. The flux of the string is now determined

by an arbitrary vecton? inside the S(2) subgroup while the A 10 B
quark matrix of the final vacuum gets rotated as ¢ ~Ucyr 00 Ucrr, A=12, (620
~ 1 0 1 nonvanishing inside the wall. The string pulls it out to the
U:UC+F o U . (6ln H “ ” . H
0 ia| Y C+F left while the “other wall” is (almos} unbent; see Fig. 9. The

string ends on the wall specified by E&.20 so the string
In terms of the phaser, and the S2) matrix U this flux spreads insi_de this \_Nall, and at Iargés_given by_ Eq.
amounts to (6.19. The flux direction in the color space is determined by
the string flux vecton?.

Now suppose thatl)# 0. In other words, the composite
oO=— = wall is split in particular elementary components which do
not overlap even at—x; see Fig. 10. Say, if we have the
aa 14-vacuum between the walls the elementary wall on the left
U=exr{i ner a) 6.19 has a concrete nonvanishing quark field, with necessity,

' ' namely, the quark field proportional to
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be marginally stable: there would be no interaction between
the constituent walls no matter what the separation between
the constituents is.

In terms of the world-volume theor{4.49 this means
that the flat direction is not lifted. No superpotential is gen-
erated to any finite order in perturbation theory. Phrased this
way, the assertion seems almost obvious. From other ex-
) amples we know, however, that a superpotential might be

generated nonperturbatively. An indication that this may be
the case comes from the occurrence of the anomalous terms

/\ in the central chargé3.3). Some well-known old results will

allow us to answer this question quickly.

B. Nonperturbative effects

Dynamics of A’=2 (2+1)-dimensional gauge theory
with the SU2) gauge group was studied by Affleck, Harvey
and Witten[50]. It was shown that instantor{sn (2+1)
dimensions they are nothing but 't Hooft—Polyakov mono-
poles, tHP for sholtgenerate a superpotential which pro-
duces a run-away vacuuti Classically there is a flat direc-
tion in the theory(4.49 so that the scalar field3,, can
develop an arbitrary VEV breaking the &) gauge group
This guarantees that only the (0,1)-string can end on th@" the wall dOW”3(tZO+1L()J1)- Then AyZ#Y) acquire a mass
wall. The flux inside the wall is given in this case by Eq. While Ay™" and Ay remain massless. We can dualize
(6.19 with a specificn?, namely,n?=(0,0,1). A" into a compact scalar® according to Eq(4.48), to

If, instead, we have the 23-vacuum between the walls théntroduce a complex scalar filei=a3, , +io>. This scalar
elementary wall on the left has the nonvanishing quark fields the lowest component of a chiral supermultiplet.
proportional to It was shown in50] that instantons-tHP monopoles gen-
erate the superpotentfal

FIG. 10. Junction of the string and the composite wall
for (I)#0.

10

0 o)‘ A=1,2. (6.20)

o |

0 O

KA _ ®
¢ (o 1)’ A=1.2 (6.22 W2+l~exp(— ; ) 7.2
92+1

This means that only the (1,0)-string can end on this wallThe potential arising from this superpotential
configuration. The flux inside the wall will be given in this

case by Eq(6.19 with n?=(0,0,—1). String with generic 2a3
Voi1~exp —

fluxes determined by an arbitrarily-oriented vector just (7.2
cannot end on the composite domain wal{lif>R.

Of course, this is perfectly consistent with the breaking of
the SU(2)xX U(1) gauge group down to U(XU(1), sothat
the (2+1)-dimensionalW=-bosons are heavy, do not propa-
gate, and the massless gauge fields on the wall aby

and A3

leads to a run-away vacuum. Using E4.51) we can rein-
terpret this potential as an interaction potential between el-
ementary walls which comprise our composite {124)
wall,

Am
Vim~ex;{ —%—I). (7.3

In this section we briefly discuss dynamics of the world-  Classically the elementary walls do not interact. Nonper-
volume theory emerging on the wall. We will focus on non- turbative effects on the world volume induce a repulsive in-
perturbative instanton effects which lead to a run-awayteraction between the elementary walls, so that the BPS
vacuum in the world-volume theory.

VIl. DYNAMICS OF THE WORLD-VOLUME THEORY

A. BPS saturation of the composite wall Historically this work presented the first example ever in which

Eerturbative nonrenormalization theorem—the absence of the
In Sec. IV A we demonstrated that the central charges o§yperpotential—was shown to be violated nonperturbatively.

the composite wall and its two constituents are aligned, so 2°The mechanism is quite similar to the one in the nonsupersym-
that the tension of the composite wall equals twice the tenmetric version of the theory studied by Polyak@6]. Monopoles
sion of the elementary wall. This statement is valid to anyform a Coulomb gas in (21) dimensions which is equivalent to
order in perturbation theory. If so, the composite wall wouldthe sine-Gordon theory.
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bound state can formally appear only in the limit of infinite ~ Another side of this phenomenon is the possibility for
separation between walls. However, in fact, the interactiongsion-Abelian flux tubes to end on the wall. The non-Abelian
(7.3 become negligibly small already at separatidbpsof  flux tubes were recently found in R¢B] in four dimensions
the order of @m) ' In other words, the ratid, /R  and in Ref.[5] in three dimensions. They carry additional
~&/(Am)®<1. HereR represents the wall thickness. orientational zero modes corresponding to rotations of the
We observe an interesting interplay between bulk physicgolor-magnetic flux inside the SB) subgroup of the gauge
and phySiCS on the wall. In particular, above we extracted th@roup_ The key ingredient for the existence Of SUCh non-
interaction potential between the elementary walls from theypelian strings is the presence of a diagonal color-flavor
known resu]ts on the effective.th_eory on the wall. This bqu-group SU(2).r unbroken by the vacuum condensates
brane duality is somewhat similar to the AdS-CFT corre-(¢|or flavor locking. We found a 1/4-BPS solution for such

s![oondence. IAweak_coupIingt;hregim”e ir:utige bulk m_?ps ONto 4 4n-Abelian string ending on the composite wall. The end
strong coupiing regime on ihe wall anice versa 1o see oint of the string plays the role of a color charge in the (2
that this is indeed the case, suffice it to remember that whe 1)-dimensional(dua) non-Abelian gauge theory on the

the bulk coupling constantg? and g5 are small the wall

(2+1)-dimensional coupling$4.52 are large compared to To study the string-wall junctions we use the first-order

the characteristic scale of massive excitations on the wall . o X
master equation§s.4) which in the Abelian case were de-

which are of the order of F (cf. [4]). rived in [4]. In fact, the same equations can be used for all
o . possible junctions between domain walls, strings and mono-
C. Compatibility with the D-brane picture poles. In particular, recently they were ugd&d to study the

Returning to the issue of the elementary wall exponentia(1,—1) monopole as a junction of the (1,0) and (0,1) strings
repulsion, one may ask how this can be interpreted in viewn the limit of large Am. We discuss this monopole in the
of the well-known fact that the two-stackas well as all opposite limit of equal quark massesm—0, when it be-
other stacks of D-branes are stable. The answer is quitecomes a junction of two strings associated with two quantum
clear. D-branes have no thickness. Our construction belonggcua of the (4 1)-dimensional @) sigma model on the
to weak coupling where the walls do have a thickness. Thetring world sheet. We show that the mass of this monopole
repulsive nonperturbative interaction dies off at distancess lifted from zero by non-perturbative effects in the3D
much less than the wall thickness. Therefore, squeezing theigma model. We will come back to this issLg2].
walls to vanishing thickness automatically switches the re- We also studied the effective (21)-dimensional non-
pulsion off. Abelian theory on the composite domain wall. We found an

interesting bulk-brane duality. In particular, the weak cou-
VIIl. CONCLUSIONS pling regime in the bulk maps onto the strong coupling re-

. ) o _gime on the wall andice versaThis is quite similar in spirit
In this paper we studied localization of non-Abelian g the AdS-CFT correspondence.

gauge fields on domain walls. We showed that although el-

ementary domain walls can localize only Abelian fields the

composite domain wall d(_)es Ioc_ahz_e non—Abella_m gauge ACKNOWLEDGMENTS
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