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Bound states in the AdSÕCFT correspondence

Pablo Minces*
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We consider a massive scalar field theory in anti–de Sitter space, in both minimally and non-minimally
coupled cases. We introduce a relevant double-trace perturbation at the boundary, by carefully identifying the
correct source and generating functional for the corresponding conformal operator. We show that such a
relevant double-trace perturbation introduces changes in the coefficients in the boundary terms of the action,
which in turn govern the existence of a bound state in the bulk. For instance, we show that the usual action,
containing no additional boundary terms, gives rise to a bound state, which can be avoided only through the
addition of a proper boundary term. Another notorious example is that of a conformally coupled scalar field,
supplemented by a Gibbons-Hawking term, for which there is no associated bound state. In general, in both
minimally and non-minimally coupled cases, we explicitly compute which boundary terms give rise to a bound
state, and which ones do not. In the non-minimally coupled case, and when the action is supplemented by a
Gibbons-Hawking term, this also fixes the allowed values of the coupling coefficient to the metric. We interpret
our results to indicate that the requirement to satisfy the Breitenlohner-Freedman bound does not suffice to
prevent tachyonic behavior from existing in the bulk, as it must be supplemented by additional conditions on
the coefficients in the boundary terms of the action.
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I. INTRODUCTION

The AdS conformal field theory~CFT! correspondence
@1–3# ~see @4,5# for reviews! proposes the existence of
duality between a field theory on (d11)-dimensional
anti–de Sitter (AdSd11) space, and a conformal field theo
living at its boundary, and since its formulation a lar
amount of work has been devoted to exploring different
pects of this conjecture. A prescription for mapping o
theory into the other was proposed in@2,3#, and it reads

exp~2I AdS@f0# ![ K expS E ddxO~xW !f0~xW ! D L , ~1!

wheref0 is the boundary value of the bulk fieldf, and it
couples to the boundary CFT operatorO. Throughout this
paper, we will be concerned with a scalar field theory in A
space. In the minimally coupled case, the action reads

I 052
1

2E dd11yAg~gmn]mf]nf1m2f2!, ~2!

wherem is the mass of the scalar field. The correspond
equation of motion is of the form (¹22m2)f50.

One relevant aspect of the study of the AdS/CFT conj
ture is the analysis of perturbations of the boundary CFT
double-trace operators. It was proposed in@6,7# that they
give rise to a new perturbation expansion for string theo
based on a non-local world-sheet. Later, it was suggeste
@8,9# that multi-trace interactions can be incorporated in
AdS/CFT correspondence by generalizing the boundary c
ditions that are considered in the usual single-trace case

*Electronic address: pablo@fma.if.usp.br
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In any prescription describing this phenomenon,
should take into account the existence of two normaliza
modes for the scalar field on the AdS space@10,11# ~see also
@12#!, namely ‘‘regular’’ and ‘‘irregular’’ ones, which behave
close to the border asfR;eD1 for regular modes, andf I
;eD2 for irregular ones. Heree is a measure of the distanc
to the boundary, and

D65
d

2
6n, ~3!

n5Ad2

4
1m2, ~4!

wherem satisfies the Breitenlohner-Freedman bound

m2>2
d2

4
. ~5!

The rangem2,2d2/4 corresponds to tachyons in AdS spa
@10,11#, and, in fact, if Eq.~5! is not satisfied, the energy i
neither conserved nor positive definite@12#. It was also
shown in@10,11# that irregular modes are normalizable on
for

n,1. ~6!

In the AdS/CFT picture, the interpretation of the abo
results was considered in@13# ~see also@14# for previous
results!, which points out that we should find two differen
CFT’s at the boundary, corresponding to both possible qu
tizations in the bulk. However, the usual prescription Eq.~1!
accounts for only the CFT with conformal dimensionD1 ,
corresponding to regular modes propagating in the bulk
order to also reproduce the missing conformal dimens
©2004 The American Physical Society11-1
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D2 , corresponding to irregular modes in the bulk, the p
posal in @13# was that its generating functional could b
found by performing a Legendre transformation to the ori
nal one in the theory with conformal dimensionD1 ~see also
@15# for previous results involving group-theoretic analysi!.
Thus, starting from the generating functional in the theo
with conformal dimensionD1 , as considered in@2,16,17#, it
was explicitly shown in@13# that its Legendre transform
gives rise to the conformal dimensionD2 , as expected.

Note that, near the boundary, the scalar field behave
~for n,1)

f~e,xW !5eD1a~xW !1eD2b~xW !, ~7!

wherexW are coordinates in the boundary. One possibility is
impose the boundary conditionb(xW )50. In this circum-
stance,a(xW ) is understood as the expectation value of a c
formal operatorOb with dimensionD1 @13,14#. On the other
hand, when we consider the boundary condition

a~xW !50, ~8!

then irregular modes, instead of regular ones, propagat
the bulk. Now the boundary theory has a conformal opera
Oa of dimensionD2 , whose expectation value is given b

b~xW ![^Oa~xW !&. ~9!

In order to describe the way in which double-trace pert
bations are incorporated in the AdS/CFT conjecture, we fi
note that, since 2D2,d, a relevant double-trace deforma
tion should be of the form@8#

W@Oa#5
f

2
O a

2 , ~10!

wheref is a coupling constant, and, as pointed out before,Oa
has dimensionD2 . Then, the prescription in@8# is that the
above double-trace perturbation is described by the gen
ized boundary condition

a5 f b. ~11!

Note that, forf 50, the above boundary condition reduces
Eq. ~8!, as expected. The above equation describes a re
malization group flow@8#, starting from the UV fixed point
at f 50, and having an end point at an IR fixed point who
generating functional is related to the one of thef 50 case by
a Legendre transformation, as explained above~see@18–20#
for analyses on this subject!. Additional references on the
topic of double-trace interactions in the AdS/CFT corresp
dence are@21–30#.

In particular, in this work we will be concerned with th
recent results in@28#, regarding unstable double-trace pertu
bations. As pointed out in@8#, the stability of a double-trace
deformation is related to the sign of its coefficientf @see Eq.
~10!#. Specifically, stable perturbations correspond tof .0,
whereas unstable ones exist forf ,0. The author of@28#
asks how the bulk theory detects an unstable theory in
boundary, and, in order to answer such a question, consi
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a careful analysis of the solution to the radial wave equat
for a massive scalar field in AdS space. Calculations
performed in the representation of the AdSd11 space in
Lorentzian Poincare´ coordinates. The author of@28# points
out the existence of a bound state having tachyonic beha
in the spectrum of the radial equation, whena andb in Eq.
~7! satisfy

a

b
,0. ~12!

But, on the other hand, we note from Eq.~11! that the above
condition is equivalent to setf ,0, and this led the author o
@28# to conclude that an unstable double-trace deformatio
the boundary corresponds to the existence of a solution to
bulk wave equation with tachyonic behavior in a Minkows
slice. Note that the tachyonic behavior appears even w
the Breitenlohner-Freedman bound Eq.~5! is satisfied. This
result adds a new entry to the AdS/CFT dictionary, and,
pointed out in@28#, could be relevant to the analysis of ca
sality and Lorentzian aspects of the AdS/CFT corresp
dence.

One of the purposes of this paper is to propose a dee
insight into the above detailed results. In particular, we w
be concerned with the role of the action in the phenome
of the existence of bound states for the scalar field in A
space. Note that, as emphasized in@28#, a bulk theory is
specified not only by the background geometry, but also
the boundary conditions that are imposed on the bulk fie
But boundary conditions are governed by the action, and
suggests that a careful analysis, in this context, of the ac
of the bulk theory could shed some new light into the ph
nomenon of the existence of bound states.

There have been previous situations where a careful s
of the action, and not only of its corresponding equation
motion, has proven to be fruitful in the context of the Ad
CFT correspondence. An example of this is the case of
spinor field, whose action contains, at most, first order
rivatives, and vanishes on shell. Because of this, it w
pointed out in@31# that, in order to compute the generatin
functional for the corresponding dual CFT, a boundary te
should be added to the bulk action. Such a boundary t
was later computed using the Hamiltonian formalism@32#
and the variational principle@33#. Analogous situations were
found in the cases of the antisymmetric tensor field@34# and
the self-dual model@35#.

In the case of the scalar field theory, it was shown in@36#
that a boundary CFT with conformal dimensionD2 could be
generated by adding a proper boundary term to the u
action. Later, this result was combined with the Legen
transform prescription in@13# in order to find a generalized
AdS/CFT prescription which is able to map to the bounda
all constraints arising from the quantization in the bulk.
order to illustrate this, we consider a non-minimally coupl
scalar field, where the action Eq.~2! should be replaced by

I052
1

2E dd11yAg@gmn]mf]nf1~m21%R!f2#.

~13!
1-2
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BOUND STATES IN THE AdS/CFT CORRESPONDENCE PHYSICAL REVIEW D70, 025011 ~2004!
Here R is the Ricci scalar corresponding to the AdS spa
@and it is a negative constant,R52d(d11)] and % is an
arbitrary coupling coefficient. The equation of motion gen
alizes to@¹22(m21%R)#f50. In this situation, Eqs.~3!,
~4! should include a dependence on%, and thus be replace
by

D6~% !5
d

2
6n~% !, ~14!

n~% !5Ad2

4
1m21%R. ~15!

As before, irregular modes propagate for

n~% !,1. ~16!

Note that the Breitenlohner-Freedman bound Eq.~5! now
reads

m21%R>2
d2

4
. ~17!

When performing the quantization of the non-minima
coupled scalar field in AdS space, the energy of such a the
was defined in@10,11# as the conserved charge arising fro
the current which is obtained by contracting the stress-ene
tensor with the Killing vector corresponding to time trans
tions. With this definition, the energy is conserved, posit
and finite for irregular modes propagating in the bulk wh
the following constraint is satisfied@10,11#:

%5
1

2

D2~% !

112D2~% !
. ~18!

Now, the Legendre transformation in@13# can be performed
for any values of%, so that the constraint Eq.~18! should be
imposed by hand. An additional difficulty was that such
prescription, where the leading non-local term of the act
is selectedbefore performing the Legendre transformatio
does not work forn50, due to the presence of a logarithm
term in the generating functional@36#.

In order to solve these problems, the proposal in@37# was
to introduce a modified formulation both in the bulk and
the AdS/CFT correspondence. From the bulk point of view
modified quantization was performed where the ‘‘canonic
energy, which is constructed out of the Noether current c
responding to time displacements, is employed instead of
usual ‘‘metrical’’ one which is defined through the stres
energy tensor, as in@10,11#. The reason for this is that, a
explained in@37#, the canonical energy is sensitive to th
addition of boundary terms to the action, a property inheri
from the Noether current, whereas the usual metrical on
not.1 This modified quantization gives rise to new constrai
for the propagation of irregular modes~which make the ca-

1Recently, another definition of the energy of the scalar fi
theory in AdS space, which is also sensitive to the boundary c
ditions, was introduced in@38#.
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nonical energy to be conserved, positive and finite! that come
to replace Eq.~18!. Such constraints depend on the particu
boundary term that is added to the action, and many differ
examples were considered in@37#. On the other hand, the
constraint Eq. ~16!, together with the Breitenlohner
Freedman bound@see Eqs.~5!, ~17!#, remain unchanged, a
expected.

From the AdS/CFT point of view, the proposal in@37# was
to consider a modified prescription where the sourcef0 in
Eq. ~1! is replaced by a more general one, which depends
the boundary conditions, or, equivalently, on the bound
term that is added to the action, and could be a combina
of both the field and its normal derivative. In addition, it w
considered a generalized Legendre transform prescriptio
which the Legendre transformation is performed on
whole on-shell action, containing all local and non-loc
terms, instead of only on the leading non-local term, as in
usual prescription. The generalized Legendre transforma
contains all the information about the constraints aris
from the quantization in the bulk, and it was shown in@37#
that it solves all the problems mentioned above regarding
usual formulation. In particular, the main goal in@37# was to
show, for many different boundary terms added to the act
that the constraints for which the irregular modes propag
in the bulk when the canonical energy is considered inst
of the metrical one, are the same for which the diverg
local terms of the on-shell action cancel out, and the gen
alized Legendre transformation interpolates between dif
ent conformal dimensions, namelyD1 andD2 .

Motivated by the above detailed results in@28#, regarding
the relation between unstable double-trace perturbation
the boundary, and bound states in the bulk, the purpos
this paper is to show that the action of the bulk theory go
erns, via the addition of boundary terms, the existence o
bound state in the bulk. We aim at computing, in both mi
mally and non-minimally coupled cases, which bounda
terms give rise to the existence of a bound state in the b
and which ones do not. We would also like to incorpora
relevant double-trace perturbations, and the description
bound states in the bulk and unstable theories at the bo
ary, into an extended formalism which is able to descr
phenomena involving both the AdS/CFT duality and t
quantization of the theory in the bulk. In this respect, t
constraints computed in@37# for the propagation of irregula
modes in the bulk will appear here again, this time in the r
of the points where the relevant double-trace perturbati
begin.

In Sec. II, we introduce the background formalism rega
ing irregular modes, which will be the basis for the rest
this paper. With illustrative purposes, we will add to the a
tion Eq. ~2! the simplest possible boundary term, which
quadratic in the field. We will consider the canonical ener
of the theory for irregular modes propagating in the bu
and, in the AdS/CFT context, we will analyze some subt
ties regarding the Legendre transformation. Then, we w
focus on a relevant double-trace perturbation at the bo
and, by also making use of the results in@28#, we will show
that the boundary term in the action governs the existenc
a bound state in the bulk, which will be related to an unsta

n-
1-3
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PABLO MINCES PHYSICAL REVIEW D70, 025011 ~2004!
perturbation at the boundary. A particular notorious exam
will be that of the usual action Eq.~2!, which contains no
additional boundary term. We will show that it has an as
ciated bound state. In general, in performing calculations
will pay a careful attention to the fact that relevant doub
trace perturbations begin at the special points where irreg
modes are allowed to propagate, as computed in@37#.

In Sec. III, we will consider the case of a non-minimal
coupled scalar field, supplemented by a Gibbons-Hawk
boundary term@39#, plus an additional, optional mass term
the boundary. We will show the existence of allowed valu
of % @see Eq.~13!# for which there is no bound state in th
bulk. In particular, we will show that a conformally couple
scalar field has no associated bound state.

In Sec. IV, we introduce, in both the minimally and no
minimally coupled cases, all remaining boundary terms
lowed by the variational principle, whose analysis allows
to perform additional consistency checks on the formalis
In particular, we will reproduce, once again, the result t
the usual action Eq.~2!, containing no additional boundar
term, has an associated bound state.

Finally, in Sec. V, we reconsider the Breitenlohne
Freedman bound, and argue that the requirement for it to
satisfied does not suffice to prevent tachyonic behavior fr
existing in the bulk. It must be supplemented by additio
conditions on the coefficients in the boundary terms of
action, i.e., the ones computed in Secs. II, III and IV. T
reason for this is that the Breitenlohner-Freedman bo
misses the part of the information in the action which
contained in the boundary terms. We also formulate our c
cluding remarks.

II. IRREGULAR MODES AND BOUND STATES

In this paper, we will consider double-trace perturbatio
by a relevant operatorO a

2 , whereOa has dimensionD2

~see the Introduction for notation and details!. But such a
conformal operator is associated with irregular modes pro
gating in the bulk, and this suggests that, in order to ge
complete understanding of such relevant double-trace pe
bations, we should first carefully analyze the phenomeno
the propagation of irregular modes. In order to do this,
first introduce some background results which will be ext
sively used throughout this paper. We will closely follo
@37#, and also write parts of the formalism developed in th
reference in a more refined manner, which will be useful
our present purposes. In particular, we will focus on so
subtleties regarding the Legendre transformation, wh
were not considered in@37#. Then, we will introduce a rel-
evant double-trace perturbation at the boundary, and s
that boundary terms in the action govern the existence
bound state in the bulk. The non-minimally coupled case w
be analyzed in the following section.

We begin by considering global coordinates in
(d11)-dimensional AdS space. After setting the radius
AdSd11 equal to one, the metric reads

ds25
1

cos2r
~2dt21dr21sin2rdVd

2! ~d>2!, ~19!
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wheredVd
2 is the angular element, andr andt are the radial

and time coordinates respectively. They satisfy

0<r,
p

2
~d>2!, ~20!

2`,t,`. ~21!

The above equation~which replaces2p<t,p) indicates
that we are considering the universal covering space CA
This is done in order to avoid closed timelike curves~see for
instance@40#!.

We consider the AdS space as foliated byd-dimensional
surfaces]Mr of fixed radial coordinater. Such surfaces are
homeomorphic to the boundary]M at r→p/2. We refer to
]Mr as the boundary to the interior regionMr . The limit
r→p/2 is to be taken only at the end of the calculations. T
surface forming an outer normal vector to]Mr is given by

nm5
1

cosr
dm

(r) . ~22!

We first focus on the case of a minimally coupled sca
field. The non-minimally coupled case will be analyzed
the following section. For reasons to be clarified later, it w
be relevant to our work to generalize the usual action Eq.~2!
by adding a surface term to it. There are different possi
choices for such a surface term~see Sec. IV!. The simplest
one is as follows:

I 15I 02l1E
]M r

ddyAhf2, ~23!

wherel1 is a coefficient, andhmn is the induced metric. The
above action was not considered in@37#, but the calculations
are analogous to the ones involving other surface ter
Some results we will find were already considered in@22#,
but here we will give a more detailed account of the calc
lations, as this will be useful for our present purposes.

Following a procedure analogous to that in@37#, we com-
pute the Noether current corresponding to time displa
ments~which are isometries of the background metric!, and
then, making use of the equation of motion, we find t
following expression for the canonical energy:

E152E ddyAg@Qt
t2l1¹m~nmf2!#, ~24!

where the global minus sign is due to the ‘‘mostly plu
signature of the metric, the integration is carried out over
spatial coordinates, and

Qmn5]mf]nf2
1

2
gmn~gab]af]bf1m2f2!. ~25!

It can be shown thatE1 is conserved, positive and finite fo
irregular modes propagating in the bulk only when Eq.~6!,
together with the following constraint@22#:
1-4
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l15
D2

2
, ~26!

is satisfied. This allows us to perform a quantization of
scalar field in AdS, in the manner described in@37#, and
which is analogous to the one considered in@10,11#. How-
ever, the details of such calculations are not relevant for
present purposes. The constraint Eq.~26!, which is inti-
mately related to the propagation of irregular modes in
bulk, will be of fundamental importance in what follow
The reason for this is that we will consider perturbations
the border by relevant conformal operators, which cor
spond to irregular modes in the bulk@as 2D2<d; see Eq.
~3!#.

Once we have shown how Eq.~26! arises when working
in global coordinates and requiring the canonical energy
be conserved, positive and finite for irregular modes, let
show how the same constraint arises from AdS/CFT calc
tions. This takes us to a consideration of the Euclidean r
resentation of AdSd11 ~with radius equal to one! in Poincare´
coordinates described by the half spacex0.0, xiPR, with
metric

ds25
1

x0
2 (

m50

d

dxmdxm. ~27!

The space will be considered as foliated by a family of s
facesx05e where we will formulate a boundary-value pro
lem for the scalar field. As pointed out in@16#, the limit e
→0 is to be taken only at the end of calculations. Note th
in these coordinates, the outward pointing unit normal vec
is given by2

nm5~2e21,0!. ~28!

In the Euclidean coordinates Eq.~27!, the action Eq.~23!
reads

I 15I 01l1E ddxAhfe
2 , ~29!

wherefe is the value of the field atx05e, and

I 05
1

2E dd11xAg~gmn]mf]nf1m2f2!. ~30!

Here a Wick rotation has been performed.
We wish to consider a boundary-value problem on

scalar field. Note that under an infinitesimal variation

f→f1df, ~31!

the action Eq.~29! transforms as follows:

2Note thatnm is not a true vector, as its variation under an infin
tesimal diffeomorphism includes an extra deviation term. See
instance the Appendix of@41#.
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dfI 15E ddxAhce
(1)dfe , ~32!

where the absence of a bulk contribution is due to the eq
tion of motion. Herec (1) is defined through

c (1)5]nf12l1f, ~33!

where]nf is the normal derivative off,

]nf5nm]mf. ~34!

From Eq.~32!, we conclude that the action is stationary u
der a Dirichlet boundary condition atx05e,

dfe50. ~35!

Integrating by parts, and making use of the equation of m
tion, I 1 can be written as the following pure-surface term

I 15
1

2E ddxAhfece
(1) . ~36!

We will make use of the solution to the equation of moti
which is regular atx0→`. It reads@16#

f~x!5E ddk

~2p!d
e2 ikW•xWx0

d/2a~kW !Kn~kx0!, ~37!

where xW5(x1, . . . ,xd), k5ukW u, Kn is the modified Besse
function, andn is given by Eq.~4!.

We have just seen that, in the particular case of the ac
I 1, we are in the presence of a Dirichlet boundary-va
problem which fixesfe at the boundary@see Eq.~35!#. This
means that we should writece

(1) in terms of the boundary
datafe . We find

ce
(1)~kW !52Fd

2
1n22l12ke

Kn11~ke!

Kn~ke! Gfe~kW !, ~38!

wherefe(kW ) is the Fourier transform offe(xW ). Inserting the
above equation into Eq.~36!, we arrive at

I 1@fe#52
1

2E ddxddyAhfe~xW !fe~yW !E ddk

~2p!d

3e2 ikW•(xW2yW )Fd

2
1n22l12ke

Kn11~ke!

Kn~ke! G .
~39!

In order to get the full information about the boundary CF
we still need to compute the Legendre transform ofI 1. We
should follow a procedure analogous to that in@37#, and
perform the generalized Legendre transformation on the
pression Eq.~39!. Even when such a procedure is correct
more illuminating point of view will arise by performing th
Legendre transformationbeforewriting ce

(1) in terms of the
boundary datafe , i.e. on Eq.~36!, instead of Eq.~39!.
r

1-5
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We begin by writing Eq.~36! as

I 1@fe#5
1

2E ddxAhfe~ce
(1)@fe#!, ~40!

where the notationce
(1)@fe# explicitly indicates that the

boundary data arefe , and thatce
(1) must be written in terms

of it. Note from Eq.~38! the identity

dce
(1)

dfe
5

ce
(1)

fe
. ~41!

So letf̃e stand for the Legendre conjugate offe . The gen-
eralized Legendre transformation, including all local a
non-local terms in the on-shell action, is performed in m
mentum space for convenience. It reads

J1@fe ,f̃e#5
1

2E ddk

~2p!d
fe~kW !ce

(1)~2kW !

2E ddk

~2p!d
fe~kW !f̃e~2kW !. ~42!

Note that the above generalized Legendre transforma
contains all local and non-local terms of the action, via E
~38!. Now, setting 05]J1 /]fe ~for fixed f̃e), we find

05
1

2
ce

(1)1
1

2
fe

dce
(1)

dfe
2f̃e , ~43!

and using Eq.~41! we arrive at

f̃e5ce
(1) . ~44!

This is the demonstration thatfe and ce
(1) are Legendre

conjugates, a result to which we will come back later. N
that we could have arrived at Eq.~44! also by performing the
t
-

en
r
r
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e

Legendre transformation on Eq.~39! instead of Eq.~40!, i.e.
by following a procedure analogous to the one considere
@37#. But in this case we should follow an indirect path, b
first computing the relation betweenf̃e and fe , and then
verifying that it is identical to that betweence

(1) andfe @see
Eq. ~38!#. Summarizing, both procedures contain exactly
same information, as expected, but the above considered
is more compact and illuminating, as it contains Eq.~44! as
a necessary intermediate result. Due to the relevance of
~44! for our present purposes, the above detailed procedu
the one that we will employ in this paper, in the context
double-trace perturbations.

Now, introducing Eq.~44! into Eq. ~42!, we find the Leg-
endre transform ofI 1 @see Eq.~40!#, which reads

Ĩ 1@ce
(1)#52

1

2E ddxAh~fe@ce
(1)# !ce

(1) , ~45!

where we explicitly indicate through the notationfe@ce
(1)#

that, unlike the original functional Eq.~40!, now it is fe

which must be written in terms ofce
(1) . Introducing Eq.~38!

into the above equation, we find

Ĩ 1@ce
(1)#5

1

2E ddxddyAhce
(1)~xW !ce

(1)~yW !E ddk

~2p!d

3e2 ikW•(xW2yW )
1

d/21n22l12keKn11~ke!/Kn~ke!
,

~46!

which, together with Eq.~39!, contains the information abou
the boundary dual theory.

We consider here the case ofn a not integer value satis
fying Eq. ~6!, which is the relevant one for our present pu
poses, as we are interested in analyzing situations when
regular and irregular modes are allowed to propagate in
bulk.3 Expanding Eqs.~39!, ~46! in powers ofe, we find
I 1@fe#52
1

2E ddxddyfe~xW !fe~yW !e2dE ddk

~2p!d
e2 ikW•(xW2yW )F ~D222l1!22122n

G~12n!

G~n!
~ke!2n1•••G , ~47!

Ĩ 1@ce
(1)#5

1

2E ddxddyce
(1)~xW !ce

(1)~yW !e2dE ddk

~2p!d
e2 ikW•(xW2yW )

1

~D222l1!22122n@G~12n!/G~n!#~ke!2n1•••

, ~48!
rat-
where the ellipses stand for higher orders. Note that here
constraint Eq.~26! arises again, this time in a different con
text, as this is precisely the situation for which the diverg
local term in Eqs.~47!, ~48! vanishes. Let us first conside
the case when Eq.~26! is not satisfied, i.e. when only regula
he

t

modes are allowed to propagate in the bulk. Then, integ
ing overkW we get

3Other values ofn, such asn.1, integer or not, andn50, can be
considered following procedures analogous to the ones in@37#, but
we will not analyze them here.
1-6
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I 1@fe#5divergent local terms2
n

pd/2

G~D1!

G~n!

3E ddxddyfe~xW !fe~yW !
e22D2

uxW2yW u2D1
1•••,

~49!

Ĩ 1@ce
(1)#5divergent local terms

2
n

pd/2

1

~D222l1!2

G~D1!

G~n!

3E ddxddyce
(1)~xW !ce

(1)~yW !
e22D2

uxW2yW u2D1
1•••,

~50!

where the ellipses stand for higher orders. The non-lo
term in Eq.~49! was analyzed in@16,17#, and the one in Eq
~50! differs from it only by a normalization coefficient. Th
limit e→0 is taken through

lim
e→0

e2D2fe~xW !5f0~xW !, ~51!

which is the usual limit, and

lim
e→0

e2D2ce
(1)~xW !5c0

(1)~xW !, ~52!

which has the same form as Eq.~51!. Both fieldsfe andce
(1)

exhibit the same behavior, due to the fact that only regu
modes propagate, as Eq.~26! is not satisfied. Note that bot
functionals Eqs.~49!, ~50! give rise to a boundary conforma
operator with dimensionD1 , as expected.

A different picture emerges when Eq.~26! is satisfied, and
irregular modes are allowed to propagate as well@we empha-
size that, in this analysis, we are considering the case w
Eq. ~6! is also satisfied, which is the relevant one for o
present purposes#. In such a situation, the locally divergen
terms in Eqs.~47!, ~48! vanish. Note thatI 1 still gives rise to
the conformal dimensionD1 , as it reads

I 1@fe#52
n

pd/2

G~D1!

G~n!
E ddxddyfe~xW !fe~yW !

e22D2

uxW2yW u2D1

1•••. ~53!

On the other hand, Eq.~48! is written

Ĩ 1@ce
(1)#52

1

4pd/2

G~D2!

G~12n!
E ddxddyce

(1)

3~xW !ce
(1)~yW !

e22D1

uxW2yW u2D2
1•••, ~54!

and, instead of Eq.~52!, we find the behavior
02501
al

r

en
r

lim
e→0

e2D1ce
(1)~xW !5c0

(1)~xW !. ~55!

Note that, as expected, Eq.~54! gives rise to a conforma
operatorÕ with dimensionD2 , corresponding to irregula
modes propagating in the bulk. The regular modes are
counted for byI 1@fe#.

It will be useful for our present purposes to further elab
rate on Eq.~38!. Note that, expanding in powers ofe, we
have

ce
(1)52~D222l11••• !fe , ~56!

where the ellipses stand for higher orders. Using Eqs.~51!,
~52!, and taking the limite→0, we get

c0
(1)52~D222l1!f0 . ~57!

We will come back to the above equation later in this secti
At this point, it is interesting to note the analogy betwe

Eqs.~51!, ~55! and Eq.~7!. It suggests that, in this formula
tion, f0 and c0

(1) encode the information onb and a, re-
spectively. We have just shown thatfe and ce

(1) are Leg-
endre conjugates@see Eq.~44!#, just as happens tob anda.
Note that, for regular modes,f0 acts as the source@see Eq.
~53!#, as happens tob in Eq. ~7!. On the other hand, for
irregular modes, it isc0

(1) that acts as the source@see Eq.
~54!#, a role played bya in Eq. ~7!. A precise description of
some aspects of Eq.~7! is perhaps more clearly seen in glo
bal coordinates Eq.~19!, when the quantization is performe
~see, for instance, the discussion on regular and irreg
modes in Sec. 3 of Ref.@37#, and references therein!. But we
have just shown that, in the present formulation, the inf
mation on the propagation of regular and irregular modes
the bulk is encoded in the Legendre conjugatesfe andce

(1) ,
and we will make great use of this result in what follows.

Now, we are led to analyze how to describe the pertur
tion at the boundary CFT by a relevant double-trace per
bation. The first thing to notice is that it should involve
conformal operator of dimensionD2 , as 2D2,d. But we
note from Eq.~54! that it corresponds to the conformal op
eratorÕ, havingc0

(1) as its source. The double-trace pertu
bation reads

W@Õ#5
f

2
Õ2, ~58!

which is analogous to Eq.~10!. Here f is a coupling coeffi-
cient. But, as we have just pointed out, the source toÕ is
c0

(1) , and this means thatf0 should be understood as it
expectation value; namely

f0[^Õ&, ~59!

which is analogous to Eq.~9!. From Eqs.~58!, ~59!, we can
write

W@f0#[
f

2
f0

2 . ~60!

In this process, we have carefully identified the corre
source for the conformal operator of dimensionD2 . But
1-7



h

d
we

ic
m

s

n

t

e

ary
the
-
ian
nd
q.
f a

a

ich

-

rre-

h do

ary
e in
t-

ner-
e

tate
the

by

d
of

we

PABLO MINCES PHYSICAL REVIEW D70, 025011 ~2004!
there is still another crucial observation to be made, whic
that we have to consider the case when Eq.~26! is satisfied,
and irregular modes, which correspond to the conformal
mensionD2 , are allowed to propagate. Note, also, that
should focus on the functionalĨ 1, which is the one that gives
rise to the conformal operatorÕ of dimensionD2 @see Eq.
~54!#. This means that the starting point is@see Eq.~45!#

Ĩ 152
1

2E ddxAhfece
(1)U

l15D2/2

, ~61!

where we have indicated that we are evaluating at the crit
point Eq. ~26! where irregular modes propagate, and fro
Eq. ~33! we have

c (1)ul15D2/25]nf1D2f. ~62!

We come back to the Legendre transformation Eq.~42!,
which is schematically written as

J15E ddk

~2p!d S 1

2
fece

(1)Ul15D2/22fef̃eD . ~63!

From Eq.~44!, fe andce
(1)ul15D2/2 are Legendre conjugate

f̃e5ce
(1)ul15D2/2 . ~64!

Now we perturb the boundary CFT by the releva
double-trace perturbation Eq.~58!. From Eqs.~60!, ~63!, this
takesJ1 to

J1→J 1
( f )5E ddk

~2p!d
feF1

2
~ce

(1)ul15D2/21 f fe!2f̃eG ,
~65!

which can be written@see Eq.~33!#

J 1
( f )5E ddk

~2p!d S 1

2
fece

(1)Ul15D2/21 f /22fef̃eD , ~66!

where

c (1)ul15D2/21 f /25]nf1~D21 f !f. ~67!

Setting 05]J 1
( f )/]fe ~for fixed f̃e), and using Eq.~41!, we

get

f̃e5ce
(1)ul15D2/21 f /2 , ~68!

and inserting the above equation into Eq.~66!, we find

Ĩ 1
( f )52

1

2E ddxAhfece
(1)ul15D2/21 f /2 . ~69!

From the comparison between Eq.~64! and Eq.~68!, or
between Eq.~61! and Eq.~69!, we note that the effect of the
relevant double-trace perturbation Eq.~58! has been to intro-
duce the replacement
02501
is

i-

al

t

l15
D2

2
→l15

D2

2
1

f

2
. ~70!

Here is where we should include the sign of the coefficienf
in our analysis. We know that positivef corresponds to stable
perturbations, whereas negativef corresponds to unstabl
ones@8#. On the other hand, the results in@28# indicate that
the bulk theory detects an unstable theory in the bound
through the existence of a bound state. As pointed out in
Introduction, the results in@28# are based on a careful analy
sis of the spectrum of the radial wave equation in Lorentz
Poincare´ coordinates, and show the existence of a bou
state with tachyonic behavior in a Minkowski slice when E
~12! is satisfied. Note that this relates the existence o
bound state to negativef via Eq. ~11!. Thus, the author of
@28# concludes that negativef indicates the presence of
bound state in the bulk. But we note in Eq.~70! that negative
f is equivalent to the condition

l1,
D2

2
. ~71!

In other words, given an action such asI 1 in Eq. ~23!, we
conclude that it will be associated with a bound state, wh
is detected in a Minkowski slice in Lorentzian Poincare´ co-
ordinates, provided that Eq.~71! is satisfied. A notorious par
ticular case is that ofl150, which satisfies the condition
Eq. ~71!, and thus has an associated bound state. It co
sponds to the usual actionI 0 in Eq. ~2!, containing no addi-
tional surface term. Allowed values ofl1, for which there is
no associated bound state in the bulk, are the ones whic
not satisfy Eq.~71!, i.e.

l1>
D2

2
. ~72!

In this way, we have just demonstrated that the bound
terms in the action govern the existence of a bound stat
the bulk, which is detected in a Minkowski slice in Loren
zian Poincare´ coordinates, in the manner described in@28#.
Such a bound state is present even when the Breitenloh
Freedman bound Eq.~5! is satisfied, which suggests that th
last must be supplemented by Eq.~72!. We will come back to
this topic in Sec. V. Notice that, in cases where a bound s
is present, the addition of a proper boundary term to
action, as above described, should be required.

As a last observation to be made, we point out that,
replacingl1 in Eq. ~57! by the right-hand side of Eq.~70!
~i.e. l15D2/21 f /2), we find

c0
(1)5 f f0 , ~73!

which is the analogue of Eq.~11!.

III. THE NON-MINIMALLY COUPLED CASE

In this section, we focus on the non-minimally couple
case, where we will show the existence of allowed values
the coupling coefficient% @see Eq.~13!# for which there is
no bound state in the bulk. Notice that, in this situation,
1-8
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should employ Eq.~14! instead of Eq.~3!.
We begin by considering the following action in glob

coordinates Eq.~19!:

I15I01%E
]Mr

ddyAhKf22sE
]Mr

ddyAhf2, ~74!

whereI0 is given by Eq.~13!, K is the trace of the extrinsic
curvature, ands is a coefficient. The first boundary term
the natural extension of the Gibbons-Hawking term@39#,
which is needed in order to have a well-defined variatio
principle under variations of the metric.4 The last term in Eq.
~74! has the form of a mass term which is added at
boundary. We include it for completeness, as it does not s
the property of having a well-defined variational princip
under variations of the metric. In the particular casem5s
50, and when% satisfies

%5
d21

4d
, ~75!

both the bulk and boundary terms in Eq.~74! are Weyl in-
variant ~see for instance@42# for a recent treatment!.

The canonical energy of the theory Eq.~74! was com-
puted in@37# in the particular cases50. Here we extend the
results in@37# to arbitrarys. It can be shown that the ca
nonical energy is conserved, positive and finite for irregu
modes propagating in the bulk only when the following co
straint is satisfied:

%1
s

d
5

D2~% !

2d
, ~76!

which comes to replace the usual constraint Eq.~18!. It has
the solutions

%65
d21

8d
F12

8s

d21
6A11S 4

d21
D 2

@m21~d11!s#G ,

~77!

which should be supplemented by the reality condition

m21~d11!s>2S d21

4 D 2

. ~78!

Note that, whenm5s50, %2 vanishes, whereas%1 re-
duces to the conformal value Eq.~75!. This could be consid-
ered as a check on the formalism.

In the cases50, it was shown in@37# that, as expected
the constraint Eq.~76! arises again from AdS/CFT calcula
tions, this time in the role of the condition for the diverge
local terms in the on-shell action to vanish, and the gene

4When performing a variation of the metric, the actionI0 in Eq.
~13! turns out to be stationary only after the metric and certain of
normal derivatives are fixed at the boundary. It can be shown
the addition of the Gibbons-Hawking term accounts for the term
the variation containing derivatives of the metric.
02501
l

e
il

r
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t
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ized Legendre transformation to interpolate between diff
ent conformal dimensionsD1(%) andD2(%) @see Eq.~14!#.
This result is straightforwardly extended to arbitrarys. Note
that, in Euclidean Poincare´ coordinates Eq.~27!, I1 reads

I15I02%E ddxAhKefe
21sE ddxAhfe

2 , ~79!

where

I05
1

2E dd11xAg@gmn]mf]nf1~m21%R!f2#. ~80!

Since in Euclidean Poincare´ coordinates the trace of the ex
trinsic curvature satisfiesK52d, we note that the AdS/CFT
calculations forI1 are analogous to the ones performed
the previous section in the minimally coupled case. All w
need to do is to perform the replacementsl1→%d1s, n
→n(%) andD6→D6(%) @see Eqs.~14!, ~15!#. We find that
the analogue to Eq.~71! reads

%1
s

d
,

D2~% !

2d
, ~81!

which is the condition for a bound state to exist in the bu
and is related to the presence of an unstable double-t
perturbation at the boundary.

But the above condition, together with Eq.~16!, still
needs to be solved for%, a further step that was not neede
in the minimally coupled case. We first note that the solut
to Eq. ~16! reads

%.
1

4d~d11!
@~d12!~d22!14m2#, ~82!

which, together with the reality condition Eq.~78!, should
always be required, as the case Eq.~16! is the relevant one
for our analysis. In fact, it will be useful to consider th
following condition:

%.
1

16d~d11!
@4~d12!~d22!2~d21!2216~d11!s#,

~83!

which is obtained from Eqs.~78!, ~82!. Now, solving Eq.
~81! and using Eq.~83!, we find that, ford>3, a bound state
exists in the bulk only when the following conditions a
simultaneously satisfied:

m21~d11!s,
d

4
and %1,%,

1

4
2

s

d
~d>3!. ~84!

Allowed values of% for which there is no associated boun
state are the ones that do not satisfy the above conditions

m21~d11!s,
d

4
: %<%1 or %>

1

4
2

s

d
,

m21~d11!s>
d

4
: any % ~d>3!. ~85!

s
at
f

1-9
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We emphasize that the above conditions should be requ
simultaneously with Eq.~82!, together with the reality con
dition Eq. ~78!, and the Breitenlohner-Freedman bound E
~17!. The remarkable result that Eqs.~85! supplement the
Breitenlohner-Freedman bound is far from trivial, and w
will come back to this topic in Sec. V.

It is interesting to note that, in the notorious example o
conformally coupled scalar field, supplemented by
Gibbons-Hawking term, there is no associated bound s
as in this case%1 equals the conformal value Eq.~75!, and
we have just seen that%1 is in the range of allowed value
for % @see Eqs.~85!#. In fact, as pointed out before, the ca
m5s50,%5%1 corresponds to an unperturbed situatio
where irregular modes are allowed to propagate.

To close this section, we extend the conditions Eqs.~84!
for a bound state to exist in the bulk, which hold ford>3, to
the cased52, where a bound state exists in the bulk on
when the following conditions are satisfied:

m213s,
1

2
: %,%2 or %1,%,

1

4
2

s

2
,

m213s>
1

2
: %,%2 ~d52!. ~86!

Allowed values of% for which there is no associated boun
state are the ones that do not satisfy Eqs.~86!, i.e.

m213s,
1

2
: %2<%<%1 or %>

1

4
2

s

2
,

m213s>
1

2
: %>%2 ~d52!. ~87!

As in the cased>3, the above conditions must be supp
mented by Eqs.~17!, ~78!, ~82!.

IV. OTHER BOUNDARY TERMS

In the previous sections, we have illustrated our propo
that boundary terms in the action govern the existence
bound states in the bulk, by considering the examples in E
~29!, ~79! ~in Euclidean coordinates!. Now, we would like to
analyze how the previous results are modified when o
boundary terms are considered. This will also allow us
perform additional checks on the formalism.

We should first notice that it is not possible to add a
arbitrary boundary term to the actions Eqs.~30!, ~80!. The
reason for this is that we should consider only situatio
where the variational principle is well defined. In the min
mally coupled case, it is possible to verify, by direct inspe
tion, that, apart from Eq.~29!, we are left with only two
additional possibilities, which in Euclidean coordinates E
~27! read@22,37#

I 25I 01l2E ddxAh~]nfe!
2 ~88!

and
02501
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I 35I 01l3E ddxAhfe
22E ddxAhfe]nfe , ~89!

wherel2 andl3 are arbitrary coefficients, andI 0 is given by
Eq. ~30!.5 Under the variation Eq.~31! we have6

dfI 25E ddxAh]nfedce
(2) dfI 352E ddxAhfedce

(3) ,

~90!

where

c (2)5f12l2]nf, c (3)5]nf22l3f. ~91!

So I 2 andI 3 are stationary under the mixed boundary con
tions

dce
(2)50 ~92!

and

dce
(3)50, ~93!

5There is a curious feature about Eqs.~88!, ~89!, shown in@37#,
which is the fact that, whereas the on-shell actionI 1 gives rise to
the boundary CFT of conformal dimensionD1 , and its Legendre

transformĨ 1 corresponds toD2 @see Eqs.~53!, ~54!#, when consid-
ering I 2 and I 3 we find an ‘‘inverted’’ situation, where the origina
generating functional corresponds to the conformal dimensionD2 ,
and the Legendre transformed one is associated toD1 ~this ‘‘inver-
sion’’ phenomenon is also found in the non-minimally coupled ca
@37#!. At this point, we do not know if such an ‘‘inversion’’ phe
nomenon is, or is not, associated with any property of the bound
CFT.

6For illustrative purposes, we give here an example of a o
parameter family of boundary terms which is not allowed. Consi
the actionI 85I 01g*ddxAhfe]nfe , whereg is an arbitrary coef-
ficient, andI 0 is given by Eq.~30!. Then, under the variation Eq
~31! we have dfI 85*ddxAh@(11g)]nfedfe1gfed(]nfe)#.
This result is to be contrasted with Eqs.~32!, ~90!. Notice that, in
order for the action to be stationary, we should fix bothfe and]nfe

at the border,dfe5d(]nfe)50. From the AdS/CFT point of view,
the source for the boundary conformal operator is ill defined, un
what happens to Eqs.~32!, ~90!, where the sources arefe , ce

(2) and
ce

(3) respectively@22,37#. This situation is analogous to the on
found in the case of the Einstein-Hilbert action, whose variat
requires both the metric and its derivatives to be fixed at the bor
In this case, the requirement to have a well-defined variational p
ciple is satisfied through the addition of the Gibbons-Hawki
boundary term@39#, which accounts for the derivatives of the me
ric. Notice that, in the above case, the only possible choice for
coefficient g is g521, where the variation reduces todfI 85

2*ddxAhfed(]nfe). Here the action is stationary under a Ne
mann boundary condition which fixes]nfe at the boundary,
d(]nfe)50. Note that the allowed Neumann situationg521 is a
particular case of Eq.~89! with l350.
1-10
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respectively. In particular, this means that, after taking
limit e→0 through a proper rescaling,ce

(2) andce
(3) become

the sources for the corresponding boundary conformal op
tors @22,37#.

In the case ofI 2, it can be shown that the correspondin
canonical energy is conserved, positive and finite for irre
lar modes propagating in the bulk, or equivalently, that
divergent local terms of the on-shell action cancel out a
the Legendre transformation interpolates between confor
dimensionsD1 and D2 , only when Eq.~6!, together with
the constraint@37#

l25
1

2D2
, ~94!

is satisfied. Performing calculations analogous to those
viously detailed in the case ofI 1, we find thatce

(2) and]nfe

are Legendre conjugates, i.e.

c̃e
(2)5]nfe . ~95!

Herece
(2) and]nfe are the sources for the conformal oper

tors of dimensionsD2 and D1 respectively, so that a rel
evant double-trace perturbation at the boundary can be w
ten

W@]nf0#[
f

2
~]nf0!2, ~96!

and introduces the replacement

l25
1

2D2
→l25

1

2D2
1

f

2
. ~97!

Bound states exist in the bulk only when the following co
dition is satisfied:

l2,
1

2D2
. ~98!

Allowed values ofl2 for which there is no bound state in th
bulk are the ones in the range

l2>
1

2D2
. ~99!

A notorious example is that of the usual actionI 0 in Eq. ~2!,
containing no additional surface term, which corresponds
the casel250 @see Eq.~88!#, so that it is not in the range
Eq. ~99!, and has an associated bound state. The same r
has already been found when consideringI 1, and the fact
that both analyses, involvingI 1 or I 2, give rise to the same
result, could be considered as a consistency check on
formalism.

Now, in the case ofI 3, the constraint for which the ca
nonical energy is conserved, positive and finite for irregu
modes propagating in the bulk, and the divergent local te
in the on-shell action cancel out, causing the Legendre tra
formation to interpolate between conformal dimensionsD1

andD2 , is given by@22#
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l352
D2

2
. ~100!

It can be shown thatce
(3) and2fe are Legendre conjugates

i.e.

c̃e
(3)52fe . ~101!

Herece
(3) and2fe are sources for the conformal operato

of dimensionsD2 and D1 respectively, so that a relevan
double-trace perturbation is of the form

W@2f0#[
f

2
~2f0!2, ~102!

and performs the replacement

l352
D2

2
→l352

D2

2
1

f

2
. ~103!

Bound states exist in the bulk only forl3 satisfying

l3,2
D2

2
. ~104!

Allowed values ofl3 for which there is no bound state in th
bulk are the ones in the range

l3>2
D2

2
. ~105!

Finally, in the non-minimally coupled case, we shou
take into account that, in order to have a well-defined va
tional principle under variations of the metric, any expre
sion for the action should contain a Gibbons-Hawking ter
as in Eq.~79!. It can be verified that, apart from Eq.~79!, we
are left with only one additional possibility, namely

I25I02%E ddxAhKefe
21sE ddxAhfe

2

2E ddxAhfe]nfe , ~106!

whereI0 is given by Eq.~80!, and the first two boundary
terms are as in Eq.~79!. It can be shown that the last surfac
term does not spoil the property of having a well-defin
variational principle under variations of the metric.

The cases50 was considered in@37#, but here we will
extend such results to the case of arbitrarys. It can be
shown that the canonical energy is conserved, positive
finite for irregular modes propagating in the bulk only wh
the following constraint is satisfied

%1
s

d
52

D2~% !

2d
, ~107!

which is to be contrasted with Eq.~76!. It has the solutions
1-11
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%̃65
3d11

8d F212
8s

3d11

6A11S 4

3d11D 2

@m21~d11!s#G . ~108!

Notice the reality condition

m21~d11!s>2S 3d11

4 D 2

, ~109!

which should always be required, together with Eq.~82!. As
expected, the constraint Eq.~107! arises again from AdS
CFT calculations, in the role of the condition for the dive
gent local terms in the on-shell action to vanish, and
Legendre transformation to interpolate between differ
conformal dimensionsD1(%) andD2(%).

By performing calculations analogous to the ones in
previous cases, we find that the condition

%1
s

d
,2

D2~% !

2d
, ~110!

corresponds to the existence of a bound state in the bulk
the sense of@28#. Such condition is related to the presence
an unstable double-trace perturbation at the boundary. S
ing for %, we find the following solution:

m21~d11!s,2
1

16
@~3d11!22~d15!2#: %,%̃1,

m21~d11!s>2
1

16
@~3d11!22~d15!2#:

%,2
d22

4d
2

s

d
. ~111!

Allowed values of% for which there is no associated boun
state are the ones that do not satisfy the above conditi
This gives

m21~d11!s,2
1

16
@~3d11!22~d15!2#: %>%̃1,

m21~d11!s>2
1

16
@~3d11!22~d15!2#:

%>2
d22

4d
2

s

d
. ~112!

We emphasize that the above conditions should be requ
simultaneously with Eqs.~17!, ~82!, ~109!.

Note that, in the notorious particular case of a conf
mally coupled scalar field, wherem5s50 and% is given
by Eq. ~75!, the conditions Eqs.~112! show that there is no
bound state in the bulk, as it happened in the case ofI1 @see
Eq. ~79!#. However, there is a fundamental difference, b
cause, whereas forI1 the conformally coupled case corre
sponds to an unperturbed situation where irregular modes
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allowed to propagate in the bulk, in the case ofI2 it is
associated to a~stable! non-zero double-trace perturbation
the boundary. This result is not surprising when we note t
the last boundary term in Eq.~106! breaks the Weyl invari-
ance of Eq.~79!.

V. BREITENLOHNER-FREEDMAN BOUND
RECONSIDERED

In this work, we have argued that coefficients in t
boundary terms in the action are sensitive to the perturba
at the boundary CFT by a relevant double-trace operator@see
for instance Eqs.~70!, ~97!, ~103!#, and govern the existenc
of a bound state in the bulk. The relation was made prec
by using the proposal in@28# that unstable theories at th
boundary are detected by the presence of such a bound
in the bulk. In all calculations, we have also made strong
of the formalism in@8,37#. In particular, we have paid a
careful attention to the fact that relevant double-trace per
bations are constructed out of a conformal operator of
mensionD2 . This means that we have to identify the corre
source and generating functional for the conformal opera
and introduce the perturbations at the special points at wh
irregular modes are allowed to propagate@see Eqs.~26!, ~76!,
~94!, ~100!, ~107!#. From the bulk point of view, such specia
points arise from the requirement for the canonical energ
be conserved, positive and finite for irregular modes pro
gating in the bulk@37#. From AdS/CFT calculations, the
play the role of the conditions for the divergent local terms
the on-shell action to vanish, and the generalized Legen
transform to interpolate between different conformal dime
sionsD1 andD2 @37#.

Throughout this paper, we have considered many differ
allowed boundary terms in the action@see Eqs.~29!, ~79!,
~88!, ~89!, ~106!#. By proposing such boundary terms to b
the objects involved in the connection between unsta
double-trace perturbations at the boundary and bound s
in the bulk, we were able to compute explicit conditions
the coefficients of the boundary terms in the action for wh
we expect a bound state to exist in the bulk@see Eqs.~71!,
~98!, ~104!#. In the non-minimally coupled case, and whe
the action is supplemented by a Gibbons-Hawking term,
also gave rise to ‘‘forbidden’’ values of the coupling coef
cient to the metric@see Eqs.~84!, ~86!, ~111!#.

Notorious particular examples were also considered.
instance, we have shown that the usual action Eq.~2!, con-
taining no additional boundary terms, is associated with
existence of a bound state in the bulk. This result was fou
by considering independent analyses involving either acti
I 1 or I 2 @see Eqs.~29!, ~88!#. This could be considered as
consistency check on the formalism. Another notorious
ample has been that of a conformally coupled scalar fie
supplemented by a Gibbons-Hawking term, to which
have shown that there is no associated bound state.

To close this paper, we come back to the result in@28# that
tachyonic behavior in the bulk exists even when t
Breitenlohner-Freedman bound@see Eqs.~5!, ~17!# is satis-
fied. We argue here that this happens so, because
Breitenlohner-Freedman bound should be supplemented
1-12



e
t
n

rm
Eq

fy
ve
se
ha
th

zed
unt
Eq.

r-
be

the

nu-

BOUND STATES IN THE AdS/CFT CORRESPONDENCE PHYSICAL REVIEW D70, 025011 ~2004!
additional conditions involving the coefficients on th
boundary terms in the action. Such conditions depend on
particular boundary term which is added to the action, a
are given by Eqs.~72!, ~99!, ~105! ~in the minimally coupled
case!, and Eqs. ~85!, ~87!, ~112! @in the non-minimally
coupled case, supplemented by a Gibbons-Hawking te
where we should simultaneously require the condition
~82!, together with the reality conditions Eq.~78! for I1 or
Eq. ~109! for I2]. The reason why the requirement to satis
the Breitenlohner-Freedman bound is not enough to pre
tachyonic behavior from existing is that such a bound mis
a part of the information contained in the action, namely t
included in the boundary terms, and which is related to
boundary conditions on the field.
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The fact that some results are modified or generali
when the boundary terms in the action are taken into acco
is not surprising. See, for instance, the replacement of
~18! by Eq. ~76! or Eq. ~107!.

It would be interesting to investigate if any further info
mation arising from the boundary terms in the action can
obtained by performing additional related calculations in
Lorentzian Poincare´ metric.
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