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We consider a massive scalar field theory in anti—de Sitter space, in both minimally and non-minimally
coupled cases. We introduce a relevant double-trace perturbation at the boundary, by carefully identifying the
correct source and generating functional for the corresponding conformal operator. We show that such a
relevant double-trace perturbation introduces changes in the coefficients in the boundary terms of the action,
which in turn govern the existence of a bound state in the bulk. For instance, we show that the usual action,
containing no additional boundary terms, gives rise to a bound state, which can be avoided only through the
addition of a proper boundary term. Another notorious example is that of a conformally coupled scalar field,
supplemented by a Gibbons-Hawking term, for which there is no associated bound state. In general, in both
minimally and non-minimally coupled cases, we explicitly compute which boundary terms give rise to a bound
state, and which ones do not. In the non-minimally coupled case, and when the action is supplemented by a
Gibbons-Hawking term, this also fixes the allowed values of the coupling coefficient to the metric. We interpret
our results to indicate that the requirement to satisfy the Breitenlohner-Freedman bound does not suffice to
prevent tachyonic behavior from existing in the bulk, as it must be supplemented by additional conditions on
the coefficients in the boundary terms of the action.
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[. INTRODUCTION In any prescription describing this phenomenon, we
should take into account the existence of two normalizable
The AdS conformal field theoryCFT) correspondence modes for the scalar field on the AdS spft@,1] (see also

[1-3] (see[4,5] for reviews proposes the existence of a [12]), namely “regular” and “irregular” ones, which behave
duality between a field theory ond¢ 1)-dimensional close to the border agg~ €+ for regular modes, and,
anti—de Sitter (Ad$, ;) space, and a conformal field theory ~ €*~ for irregular ones. Here is a measure of the distance
living at its boundary, and since its formulation a largeto the boundary, and
amount of work has been devoted to exploring different as-

pects <_Jf this conjecture. A prescription for _mapping one A :9+V 3)
theory into the other was proposed[,3], and it reads =27
N N 2

qu_IAdS{¢O])E<eXF< f dxO(X) ¢ho(X) >, D = dz+m2' (4)

where ¢, is the boundary value of the bulk field, and it
couples to the boundary CFT operator Throughout this
paper, we will be concerned with a scalar field theory in AdS d?

space. In the minimally coupled case, the action reads m?= — 4 )

wherem satisfies the Breitenlohner-Freedman bound

1 ) ) .
o= — _j d* 1y Jg(g#"d,dd,d+m2¢?), (2)  Therangem“<—d*/4 corresponds to tachyons in AdS space
° 2 yNOg™o, 86, ¢ [10,11], and, in fact, if Eq.(5) is not satisfied, the energy is

neither conserved nor positive definif¢2]. It was also

wherem is the mass of the scalar field. The correspondingshown in[10,11] that irregular modes are normalizable only
equation of motion is of the formW{?—m?) ¢=0. for

One relevant aspect of the study of the AdS/CFT conjec-

ture is the analysis of perturbations of the boundary CFT by r<1. (6)

double-trace operators. It was proposed[&77] that they

give rise to a new perturbation expansion for string theory, In the AdS/CFT picture, the interpretation of the above

based on a non-local world-sheet. Later, it was suggested iresults was considered i3] (see also14] for previous

[8,9] that multi-trace interactions can be incorporated in theresults, which points out that we should find two different

AdS/CFT correspondence by generalizing the boundary corcFT’s at the boundary, corresponding to both possible quan-

ditions that are considered in the usual single-trace case. tizations in the bulk. However, the usual prescription g.
accounts for only the CFT with conformal dimensidn ,
corresponding to regular modes propagating in the bulk. In

*Electronic address: pablo@fma.if.usp.br order to also reproduce the missing conformal dimension
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A _, corresponding to irregular modes in the bulk, the pro-a careful analysis of the solution to the radial wave equation
posal in[13] was that its generating functional could be for a massive scalar field in AdS space. Calculations are
found by performing a Legendre transformation to the origi-performed in the representation of the Ad$ space in
nal one in the theory with conformal dimensidn (see also Lorentzian Poincareoordinates. The author 28] points
[15] for previous results involving group-theoretic analysis out the existence of a bound state having tachyonic behavior,
Thus, starting from the generating functional in the theoryin the spectrum of the radial equation, wherand g8 in Eq.
with conformal dimensior , , as considered if2,16,17, it  (7) satisfy
was explicitly shown in[13] that its Legendre transform
gives rise to the conformal dimensidn_, as expected. g<0 (12)
Note that, near the boundary, the scalar field behaves as B
(for v<1)
. . . But, on the other hand, we note from E1) that the above
P(€,X)= €+ a(x) + e~ B(x), (7)  condition is equivalent to sét<0, and this led the author of
R [28] to conclude that an unstable double-trace deformation in
wherex are coordinates in the boundary. One possibility is tothe boundary corresponds to the existence of a solution to the
impose the boundary conditiop(x)=0. In this circum- bulk wave equation with tachyonic behavior in a Minkowski
stance () is understood as the expectation value of a consSlice. Note that the tachyonic behavior appears even when
formal operato0; with dimensionA , [13,14. On the other the Breitenlohner-Freedman bound E§) is satisfied. This

hand, when we consider the boundary condition result adds a new entry to the AdS/CFT dictionary, and, as
pointed out in[28], could be relevant to the analysis of cau-
a(X)=0, (8)  sality and Lorentzian aspects of the AdS/CFT correspon-
dence.

then irregular modes, instead of regular ones, propagate in One of the purposes of this paper is to propose a deeper
the bulk. Now the boundary theory has a conformal operatomsight into the above detailed results. In particular, we will
O, of dimensionA _, whose expectation value is given by be concerned with the role of the action in the phenomenon
. . of the existence of bound states for the scalar field in AdS
BX)=(0,(x)). (9) space. Note that, as emphasized[28], a bulk theory is
. ) ] specified not only by the background geometry, but also by
In order to describe the way in which double-trace perturyhe poundary conditions that are imposed on the bulk field.
bations are _mcorporated in the AdS/CFT conjecture, we firsg ¢ boundary conditions are governed by the action, and this
note that, since 2_<d, a relevant double-trace deforma- gyggests that a careful analysis, in this context, of the action

tion should be of the fornig] of the bulk theory could shed some new light into the phe-
f nomenon of the existence of bound states.
W[O,]= 02 (10) There have been previous situations where a careful study

of the action, and not only of its corresponding equation of
motion, has proven to be fruitful in the context of the AdS/
CFT correspondence. An example of this is the case of the
pinor field, whose action contains, at most, first order de-
ivatives, and vanishes on shell. Because of this, it was
pointed out in[31] that, in order to compute the generating
a=f8. (11) functional for the corresponding dual CFT, a boundary term
should be added to the bulk action. Such a boundary term
Note that, forf =0, the above boundary condition reduces towas later computed using the Hamiltonian formalig2]
Eq. (8), as expected. The above equation describes a renoand the variational principlE33]. Analogous situations were
malization group flow[8], starting from the UV fixed point found in the cases of the antisymmetric tensor f{&4d] and
atf=0, and having an end point at an IR fixed point whosethe self-dual modef35].
generating functional is related to the one of fke0 case by In the case of the scalar field theory, it was showfi3él
a Legendre transformation, as explained ab@ee[18—20  thata boundary CFT with conformal dimensian could be
for analyses on this subjgctAdditional references on the generated by adding a proper boundary term to the usual
topic of double-trace interactions in the AdS/CFT corresponaction. Later, this result was combined with the Legendre
dence ar¢21-30. transform prescription if13] in order to find a generalized
In particular, in this work we will be concerned with the AdS/CFT prescription which is able to map to the boundary
recent results ifi28], regarding unstable double-trace pertur-all constraints arising from the quantization in the bulk. In
bations. As pointed out if8], the stability of a double-trace order to illustrate this, we consider a non-minimally coupled
deformation is related to the sign of its coefficiéfisee Eq.  scalar field, where the action E) should be replaced by
(10)]. Specifically, stable perturbations correspond te0, L
whereas unstable ones exist fbx0. The author off 28] _ d+1 Y 2 2
asks how the bulk theory detects an unstable theory in the To=- Ef A"y \olg# 9, pdud + (mP+ 2RI 471,
boundary, and, in order to answer such a question, considers (13

wheref is a coupling constant, and, as pointed out bef6rg,
has dimensior\ _ . Then, the prescription if8] is that the
above double-trace perturbation is described by the gener
ized boundary condition
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Here R is the Ricci scalar corresponding to the AdS spacenonical energy to be conserved, positive and fjritiat come
[and it is a negative constarR=—d(d+1)] andg is an to replace Eq(18). Such constraints depend on the particular
arbitrary coupling coefficient. The equation of motion gener-boundary term that is added to the action, and many different
alizes to[ V2—(m?+ ¢R)]¢=0. In this situation, Eqst3),  examples were considered j87]. On the other hand, the
(4) should include a dependence @n and thus be replaced constraint Eq. (16), together with the Breitenlohner-
by Freedman bounfsee Eqs(5), (17)], remain unchanged, as
d expected.
A (o)===v(p), (14) From the AAS/CFT point of view, the proposal[ii7] was
2 to consider a modified prescription where the soufgein
Eq. (1) is replaced by a more general one, which depends on

_ /a- 2 the boundary conditions, or, equivalently, on the boundary
v(e) 4 +m+eR. (15 term that is added to the action, and could be a combination
) of both the field and its normal derivative. In addition, it was
As before, irregular modes propagate for considered a generalized Legendre transform prescription in
()<L, (16) which the Legendre transformation is performed on the

whole on-shell action, containing all local and non-local
Note that the Breitenlohner-Freedman bound ESj. now terms, instead of only on the leading non-local term, as in the

reads usual prescription. The generalized Legendre transformation
contains all the information about the constraints arising

) d? from the quantization in the bulk, and it was shown &7]
m°+oR=— 4 (A7) that it solves all the problems mentioned above regarding the

usual formulation. In particular, the main goal[8i7] was to

When performing the quantization of the non-minimally show, for many different boundary terms added to the action,
coupled scalar field in AdS space, the energy of such a theofjpat the constraints for which the irregular modes propagate
was defined if10,11] as the conserved charge arising fromin the bulk when the canonical energy is considered instead
the current which is obtained by contracting the stress-energgf the metrical one, are the same for which the divergent
tensor with the Killing vector corresponding to time transla-local terms of the on-shell action cancel out, and the gener-
tions. With this definition, the energy is conserved, positivealized Legendre transformation interpolates between differ-
and finite for irregular modes propagating in the bulk whenent conformal dimensions, namely, andA _.

the following constraint is satisfigld 0, 11]: Motivated by the above detailed results[8], regarding
the relation between unstable double-trace perturbations in
1 A (o) the boundary, and bound states in the bulk, the purpose of

(18) this paper is to show that the action of the bulk theory gov-

erns, via the addition of boundary terms, the existence of a
Now, the Legendre transformation i3] can be performed bound state in the bulk. We aim at computing, in both mini-
for any values o, so that the constraint E¢L8) should be  mally and non-minimally coupled cases, which boundary
imposed by hand. An additional difficulty was that such aterms give rise to the existence of a bound state in the bulk,
prescription, where the leading non-local term of the actiorand which ones do not. We would also like to incorporate
is selectedbefore performing the Legendre transformation, relevant double-trace perturbations, and the description of
does not work fow=0, due to the presence of a logarithmic bound states in the bulk and unstable theories at the bound-
term in the generating functiongB6. ary, into an extended formalism which is able to describe

In order to solve these problems, the proposdBiff was phenomena involving both the AdS/CFT duality and the

to introduce a modified formulation both in the bulk and in quantization of the theory in the bulk. In this respect, the
the AdS/CFT correspondence. From the bulk point of view, econstraints computed i87] for the propagation of irregular
modified quantization was performed where the “canonical’modes in the bulk will appear here again, this time in the role
energy, which is constructed out of the Noether current corof the points where the relevant double-trace perturbations
responding to time displacements, is employed instead of thieegin.
usual “metrical” one which is defined through the stress- In Sec. Il, we introduce the background formalism regard-
energy tensor, as ifl0,11]. The reason for this is that, as ing irregular modes, which will be the basis for the rest of
explained in[37], the canonical energy is sensitive to the this paper. With illustrative purposes, we will add to the ac-
addition of boundary terms to the action, a property inheritedion Eq. (2) the simplest possible boundary term, which is
from the Noether current, whereas the usual metrical one iguadratic in the field. We will consider the canonical energy
not! This modified quantization gives rise to new constraintsof the theory for irregular modes propagating in the bulk,
for the propagation of irregular modéshich make the ca- and, in the AAS/CFT context, we will analyze some subtle-

ties regarding the Legendre transformation. Then, we will

focus on a relevant double-trace perturbation at the border

Recently, another definition of the energy of the scalar fieldand, by also making use of the resultd 28], we will show

theory in AdS space, which is also sensitive to the boundary conthat the boundary term in the action governs the existence of
ditions, was introduced if38]. a bound state in the bulk, which will be related to an unstable

€= 27142A (o)
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perturbation at the boundary. A particular notorious examplevheredQj is the angular element, apdand 7 are the radial
will be that of the usual action Ed2), which contains no and time coordinates respectively. They satisfy
additional boundary term. We will show that it has an asso-

ciated bound state. In general, in performing calculations we iy

will pay a careful attention to the fact that relevant double- O<p<7 (d=2), (20
trace perturbations begin at the special points where irregular

modes are allowed to propagate, as computd@ T o< <00, 21)

In Sec. lll, we will consider the case of a non-minimally

coupled scalar field, supplemented by a Gibbons-Hawking-he above equatiofwhich replaces— < r< ) indicates
boundary ternj39], plus an additional, optional mass term at y,5¢ e are considering the universal covering space CAdS.
the boundary. We will show the existence of allowed valuesrhiS is done in order to avoid closed timelike curvsse for

of o [see Eq.13)] for which there is no bound state in the instance[40]).

bulk. In particular, we will show that a conformally coupled  \va consider the AdS space as foliated dsgimensional
scalar field has no associated bound state. surfaces)M,, of fixed radial coordinate. Such surfaces are

In Sec. IV, we introduce, in both the minimally and non- homeomorphic to the boundasy\t at p— /2. We refer to

minimally coupled cases, all remaining boundary terms al—(}Mp as the boundary to the interior regiowt,,. The limit

Itowedfby thed\(/jiflat|c>|nal pr!nflple, Wﬁoske anal%asfallowlg US, . 7/2 is to be taken only at the end of the calculations. The
0 perform additional consistency checks on the formalisMy, , ¢, .o forming an outer normal vector 4@, is given by
In particular, we will reproduce, once again, the result that

the usual action Eq.2), containing no additional boundary 1
term, has an associated bound state. nﬂ:_(sif)_ (22)
Finally, in Sec. V, we reconsider the Breitenlohner- cosp

Freedman bound, and argue that the requirement for it to be ) o

satisfied does not suffice to prevent tachyonic behavior from, Ve first focus on the case of a minimally coupled scalar
existing in the bulk. It must be supplemented by additional€!d- The non-minimally coupled case will be analyzed in
conditions on the coefficients in the boundary terms of thdhe following section. For reasons_to be clarified Igter, it will
action, i.e., the ones computed in Secs. II, lil and IV, TheP€ relevant to our work to generalize the usual action(Ex.

reason for this is that the Breitenlohner-Freedman boun@y @dding a surface term to it. There are different possible
misses the part of the information in the action which ischoices for such a surface tertsee Sec. Y. The simplest

contained in the boundary terms. We also formulate our con@"€ IS as follows:
cluding remarks.

|1=|o—x1f dyhg?, (23)
II. IRREGULAR MODES AND BOUND STATES M,

In this paper, we will consider double-trace perturbationsyhere), is a coefficient, andh ,, is the induced metric. The
by a relevant operato®?, where O, has dimensiom_  anove action was not considered 87], but the calculations
(see the Introduction for notation and detpilBut such a are analogous to the ones involving other surface terms.
conformal operator is associated with irregular modes propasome results we will find were already considered2g],
gating in the bulk, and this suggests that, in order to get &ut here we will give a more detailed account of the calcu-
complete understanding of such relevant double-trace pertufations, as this will be useful for our present purposes.
bations, we should first carefully analyze the phenomenon of Following a procedure analogous to tha{&Y], we com-
the propagation of irregular modes. In order to do this, wepute the Noether current corresponding to time displace-
first introduce some background results which will be extenments(which are isometries of the background metriand
sively used throughout this paper. We will closely follow then, making use of the equation of motion, we find the
[37], and also write parts of the formalism developed in thatf0||owing expression for the canonical energy:
reference in a more refined manner, which will be useful for
our present purposes. In particular, we will focus on some
subtleties regarding the Legendre transformation, which Ei= —f dy\g[O, =\, V,(n“¢?)], (24)
were not considered if87]. Then, we will introduce a rel-

evant double-trace perturbation at the boundary, and shoynere the global minus sign is due to the “mostly plus”

that boundary terms in the action govern the existence of @jgnature of the metric, the integration is carried out over the
bound state in the bulk. The non-minimally coupled case willspatial coordinates, and

be analyzed in the following section.

We begin by considering global coordinates in a 1
(d+1)-dimensional AdS space. After setting the radius of 0,,=d,0d,6— ng(g“"&aqb&ﬁw m?¢?). (25
AdS;, ;1 equal to one, the metric reads

It can be shown thaE; is conserved, positive and finite for

ds?= (—d72+dp?+sirPpdQ3) (d=2), (19) irregular modes propagating in the bulk only when E&),
cogp together with the following constraif?2]:
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N=—, (26) Syly= f d%hyMse., (32)

is satisfied. This allows us to perform a quantization of thewhere the absence of a bulk contribution is due to the equa-
scalar field in AdS, in the manner described[Bv], and tion of motion. Hereyt" is defined through
which is analogous to the one considered 10,11]. How- (1)_
ever, the details of such calculations are not relevant for our Pr=dnd+2M¢,
present purposes. The constraint E86), which is inti- . R
mately related to the propagation of irregular modes in theWhereanqb is the normal derivative o,
bulk, will be of fundamental importance in what follows. i
ne . . h Inp=n"d, . (34)

The reason for this is that we will consider perturbations at
the border by relevant conformal operators, which correfrom Eq.(32), we conclude that the action is stationary un-
(S?S?nd to irregular modes in the bules 2A _<d; see Eq.  der a Dirichlet boundary condition at =,

Once we have shown how E(R6) arises when working 8¢ .=0. (35
in global coordinates and requiring the canonical energy to
be conserved, positive and finite for irregular modes, let ugntegrating by parts, and making use of the equation of mo-
show how the same constraint arises from AdS/CFT calculation, |, can be written as the following pure-surface term:
tions. This takes us to a consideration of the Euclidean rep-

(33

resentation of Ad$, ; (with radius equal to onen Poincare R 1
coordinates described by the half spage-0, x; e R, with Il_Ef d X‘/ﬁd’f‘/’(f : (36)
metric
We will make use of the solution to the equation of motion
1 4 which is regular ak,—oc. It reads[16]
ds?== >, dx“dx~. (27
Xg »=0

d% - .

po0= [ e kK o), (@D

The space will be considered as foliated by a family of sur- (2m)°

facesx,= e where we will formulate a boundary-value prob- R .

lem for the scalar field. As pointed out [16], the limit e ~ wherex=(x%, ... x9), k=|k|, K, is the modified Bessel

—0 is to be taken only at the end of calculations. Note thatfunction, andv is given by Eq.(4).

in these coordinates, the outward pointing unit normal vector We have just seen that, in the particular case of the action

is given by I,, we are in the presence of a Dirichlet boundary-value
problem which fixesp, at the boundarysee Eq(35)]. This

n,=(—e140). (28)  means that we should writ¢') in terms of the boundary

data¢,.. We find

In the Euclidean coordinates E(R7), the action Eq.(23)

reads K, 1(ke)

K, (ke)

.

. d
YOk = =] 5+ v=2h ke k), (39)

|1=|0+>\1f dixhe?, (29)

where g, (K) is the Fourier transform aop (). Inserting the

) ] above equation into Eq36), we arrive at
where ¢, is the value of the field aty=e¢, and

L 6= ay o 08) [ o
=75 X eX) P,
e S i G M G ] el V] Gy
, . ik e d K,+1(ke)
Here a Wick rotation has been performed. x g~ ik (x=y) §+v—2)\1—kem .
We wish to consider a boundary-value problem on the ARE
scalar field. Note that under an infinitesimal variation (39
d— P+ 8¢, (31) In order to get the full information about the boundary CFT,
we still need to compute the Legendre transform ofWe
the action Eq(29) transforms as follows: should follow a procedure analogous to that[8¥], and

perform the generalized Legendre transformation on the ex-
pression Eq(39). Even when such a procedure is correct, a
2Note thatn® is not a true vector, as its variation under an infini- More illuminating point of view will arise by performing the
tesimal diffeomorphism includes an extra deviation term. See fol-egendre transformatiobeforewriting ") in terms of the
instance the Appendix d#1]. boundary datap,, i.e. on Eq.(36), instead of Eq(39).
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We begin by writing Eq(36) as Legendre transformation on E(9) instead of Eq(40), i.e.
1 by following a procedure analogous to the one considered in
_ 37]. But in this case we should follow an indirect path, by
| E——fddxhe W[ p.]), a9 L Ic
il o] 2 Vhe(y oD o) first computing the relation betweep, and ¢., and then

verifying that it is identical to that betwee™ and ¢, [see

Eg. (38)]. Summarizing, both procedures contain exactly the
same information, as expected, but the above considered one
is more compact and illuminating, as it contains &) as

where the notation"[ ¢.] explicitly indicates that the
boundary data are, , and thaty{") must be written in terms
of it. Note from Eq.(38) the identity

5¢(1) lp(l) a necessary intermediate result. Due to the relevance of Eq.
€ _re (41) (44) for our present purposes, the above detailed procedure is
0p. P the one that we will employ in this paper, in the context of
~ ) double-trace perturbations.
So leté, stand for the Legendre conjugate #f. The gen- Now, introducing Eq(44) into Eq.(42), we find the Leg-

eralized Legendre transformation, including all local andgngre transform of, [see Eq(40)], which reads
non-local terms in the on-shell action, is performed in mo-

mentum space for convenience. It reads

Ta[y®]=- % f dxvh(e Ly, 45

d
~ k . .
Jilbe. b= Ef (Zw)dd)e(k)(v[/(sl)(_k) where we explicitly indicate through the notatigh[ "]
that, unlike the original functional Eq40), now it is ¢,
ddk . _ which must be written in terms af?) . Introducing Eq(38)
—f (27 P(K)p(—K). (42)  into the above equation, we find
a
i i1 = S [ gy Wy [ 2K
Note _that the above generalized Legendre tra_msfor_matlonlwf ]zzf dd y\/ﬁwe (X) & (y)f -
contains all local and non-local terms of the action, via Eq. (2m)
(38). Now, setting G=9.7,/d¢, (for fixed ¢.), we find o 1
—ik-(x-y)
Lo 1 e a2+ v— 20, KeK, 1 (Ke)IK (Ke)
and using Eq(41) we arrive at which, together with Eq(39), contains the information about
the boundary dual theory.
b=y, (44) We consider here the case ofa not integer value satis-

fying Eq. (6), which is the relevant one for our present pur-
This is the demonstration that, and zp(el) are Legendre poses, as we are interested in analyzing situations when both
conjugates, a result to which we will come back later. Noteregular and irregular modes are allowed to propagate in the
that we could have arrived at E@i4) also by performing the bulk2 Expanding Eqs(39), (46) in powers ofe, we find

1 . . de .. I(1-v)
—_ = d d —d —ik-(x—y) _ _nl-2v 2v .
l1[b] Zf d%d% @ (x)p(y)€e f (2w)de y[(A_ 2N\y)—2 T (ke)="+ , (47)
- 1 - R d% - . - 1
(1) I d d (1) (1) —d —ik-(x—y)
h[ye] zf dxdy () (Y € f (2w)de (A oy 2 P T k2T (49)

where the ellipses stand for higher orders. Note that here th@modes are allowed to propagate in the bulk. Then, integrat-
constraint Eq(26) arises again, this time in a different con- ing overk we get

text, as this is precisely the situation for which the divergent

local term in Eqs.(47), (48) vanishes. Let us first consider

the case when E@26) is not satisfied, i.e. when only regular  *Other values ob, such as>1, integer or not, ané=0, can be
considered following procedures analogous to the on¢37h but
we will not analyze them here.
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1 b ]=di tlocal t v [(4+)
.]=divergent local terms ——
1 9 742 T(v)

E*ZA_

xfddxddygbf(i)gbf(;)—a = +oe,
|x—y[?4+
(49
~I1[<,/;(€1)] =divergent local terms

I A
72 (A_—2x;)% T'(v)

R . E*ZA_
X f d®%d%y D) pY) ==+,
|x—y[*2+
(50

where the ellipses stand for higher orders. The non-loc

term in Eq.(49) was analyzed if16,17), and the one in Eq.

(50) differs from it only by a normalization coefficient. The

limit e—0 is taken through

lim €™ 2= $(X) = po(X), (51)
e—0
which is the usual limit, and
lim e 2~ yD(x) = P (%), (52

e—0

which has the same form as H§1). Both fields¢, and g

PHYSICAL REVIEWTD, 025011 (2004

lim e~ 2+ M) = y(x).

e—0

(59

Note that, as expected, E¢p4) gives rise to a conformal
operator® with dimensionA _, corresponding to irregular
modes propagating in the bulk. The regular modes are ac-
counted for byl 4[ ¢.].

It will be useful for our present purposes to further elabo-
rate on Eq.(38). Note that, expanding in powers ef we
have

yBP=—(A_ =2\ + - ), (56)

where the ellipses stand for higher orders. Using Eg$),
(52), and taking the limit— 0, we get

YD =—(A_—2)\y) o (57)

We will come back to the above equation later in this section.
At this point, it is interesting to note the analogy between
gs.(51), (55 and Eq.(7). It suggests that, in this formula-
ion, ¢ and 4" encode the information op and «, re-
spectively. We have just shown that. and ") are Leg-
endre conjugatelsee Eq(44)], just as happens {6 and «.
Note that, for regular modegh, acts as the sourdsee Eg.
(53], as happens t@ in Eqg. (7). On the other hand, for
irregular modes, it is//gl) that acts as the sourdeee Eq.
(54)], a role played by in Eq. (7). A precise description of
some aspects of Eq7) is perhaps more clearly seen in glo-
bal coordinates Eq19), when the quantization is performed
(see, for instance, the discussion on regular and irregular
modes in Sec. 3 of Ref37], and references thergirBut we
have just shown that, in the present formulation, the infor-
mation on the propagation of regular and irregular modes in

exhibit the same behavior, due to the fact that only regulathe bulk is encoded in the Legendre conjugatesand yM,
modes propagate, as E@6) is not satisfied. Note that both and we will make great use of this result in what follows.

functionals Eqs(49), (50) give rise to a boundary conformal

operator with dimension | , as expected.
A different picture emerges when E@6) is satisfied, and
irregular modes are allowed to propagate as yved empha-

Now, we are led to analyze how to describe the perturba-
tion at the boundary CFT by a relevant double-trace pertur-
bation. The first thing to notice is that it should involve a
conformal operator of dimensioA _, as 2A_<d. But we

size that, in this analysis, we are considering the case whemote from Eq.(54) that it corresponds to the conformal op-

Eq. (6) is also satisfied, which is the relevant one for ourerator®, having#{" as its source. The double-trace pertur-
present purposésin such a situation, the locally divergent bation reads

terms in Eqs(47), (48) vanish. Note that; still gives rise to
the conformal dimensiod , , as it reads

v F(A+) —2A_

- - €
|1[¢e]=—7TT,2 T(») dddey¢e(X)¢e(Y)m

+oe (53
On the other hand, Eq48) is written

- 1 TI'(AD)
I4[ lﬁ(el)]z - a2 mf dddeyt//(El)

—2A,

X (X) w‘”(i)%Jr - (54)
C kvl

and, instead of Eq52), we find the behavior

. f
W[ O]= 5(92, (58
which is analogous to Eq10). Heref is a coupling coeffi-

cient. But, as we have just pointed out, the sourcétis
y§, and this means thap, should be understood as its
expectation value; namely

$o=(0),

which is analogous to Eq9). From Egs.(58), (59), we can
write

(59

f 2
W[ ¢o]= > bo- (60)

In this process, we have carefully identified the correct
source for the conformal operator of dimensian . But
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there is still another crucial observation to be made, which is
that we have to consider the case when @6) is satisfied,

and irregular modes, which correspond to the conformal di-
mensionA _, are allowed to propagate. Note, also, that weHere is where we should include the sign of the coefficfent
should focus on the function&l, which is the one that gives in our analysis. We know that positif&orresponds to stable

A_
M=o M=

A f
+ —

- t3 (70)

rise to the conformal operatd@® of dimensionA _ [see Eq.
(54)]. This means that the starting point[see Eq.(45)]
~ 1 1
l=— EJ dxvhe , (61)
Ny=A_[2

where we have indicated that we are evaluating at the critic
point Eqg. (26) where irregular modes propagate, and from

Eq. (33) we have
PO\ =a p=dnd+A_¢. (62)

We come back to the Legendre transformation ER),
which is schematically written as

o)

d% (1
(2m)° (Egbel/l(el)

N=A 12T ¢J>e)- (63)

From Eq.(44), ¢. and V|, _, p, are Legendre conjugates

= ‘//(el)|)\1=A_/2- (64)

perturbations, whereas negatifecorresponds to unstable
ones[8]. On the other hand, the results[ip8] indicate that

the bulk theory detects an unstable theory in the boundary
through the existence of a bound state. As pointed out in the
Introduction, the results if28] are based on a careful analy-
sis of the spectrum of the radial wave equation in Lorentzian
al?oincafecoordinates, and show the existence of a bound
state with tachyonic behavior in a Minkowski slice when Eq.
(12) is satisfied. Note that this relates the existence of a
bound state to negativievia Eq. (11). Thus, the author of
[28] concludes that negativkindicates the presence of a
bound state in the bulk. But we note in E@0) that negative

f is equivalent to the condition

)\1<_7

5 (71)

In other words, given an action such Bsin Eq. (23), we
conclude that it will be associated with a bound state, which
is detected in a Minkowski slice in Lorentzian Poincame
ordinates, provided that E¢r1) is satisfied. A notorious par-
ticular case is that of;=0, which satisfies the condition
Eqg. (71), and thus has an associated bound state. It corre-

Now we perturb the boundary CFT by the relevantsponds to the usual actidg in Eq. (2), containing no addi-

double-trace perturbation E:8). From Eqs(60), (63), this
takesJ; to
dk

1 ~
o) ¢E[§<¢£1>|M_A_,z+f¢s>— m},

(65

Ji— T = J
which can be writterisee Eq(33)]

di (1
(f) — _ (1)
J¢ —f (Zw)d<2¢ew£

Ny=A_2+f27 ¢>£<?>E> , (66)

where
PN\ 2a_pri2=dnd+(A_+1)g. (67)

Setting 0=0.7"/9¢. (for fixed ¢.), and using Eq(41), we
get
b= w(el)|)\1=A_/2+f/21 (68)

and inserting the above equation into E66), we find
T 1 d (1)
li’=-5/d TRV NS (69)

From the comparison between E§4) and Eq.(68), or

between Eq(61) and Eq.(69), we note that the effect of the

relevant double-trace perturbation Ef8) has been to intro-
duce the replacement

tional surface term. Allowed values af, for which there is
no associated bound state in the bulk, are the ones which do
not satisfy Eq(71), i.e.

(72)

In this way, we have just demonstrated that the boundary
terms in the action govern the existence of a bound state in
the bulk, which is detected in a Minkowski slice in Lorent-
zian Poincarecoordinates, in the manner described 28].
Such a bound state is present even when the Breitenlohner-
Freedman bound E¢5) is satisfied, which suggests that the
last must be supplemented by E@2). We will come back to
this topic in Sec. V. Notice that, in cases where a bound state
is present, the addition of a proper boundary term to the
action, as above described, should be required.

As a last observation to be made, we point out that, by
replacingh; in Eq. (57) by the right-hand side of Eq70)
(i.e.N\q=A_/2+1/2), we find

%1): o,
which is the analogue of Eql1).

(73

[ll. THE NON-MINIMALLY COUPLED CASE

In this section, we focus on the non-minimally coupled
case, where we will show the existence of allowed values of
the coupling coefficienp [see Eq.(13)] for which there is
no bound state in the bulk. Notice that, in this situation, we
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should employ Eq(14) instead of Eq(3). ized Legendre transformation to interpolate between differ-
We begin by considering the following action in global ent conformal dimensions , (¢) andA _(¢) [see Eq(14)].
coordinates Eq(19): This result is straightforwardly extended to arbitraryNote

that, in Euclidean Poincareoordinates Eq(27), Z, reads

Il=:fo+ef ddy%chz—af dyhe?, (74
oM, oM, Ilzzo—gf dixhK ¢+ o‘f dixVhe?, (79

whereZ, is given by Eq.(13), K is the trace of the extrinsic

curvature, andr is a coefficient. The first boundary term is Where

the natural extension of the Gibbons-Hawking tef&®], 1

which is needed in order to have a well-defined variational Ioz—f dd+lX\/§[g"”&,‘¢0v¢+(m2+QR)d)Z]. (80)

principle under variations of the metfcThe last term in Eq. 2

(74) has the form of a mass term which is added at the

boundary. We include it for completeness, as it does not spoip!"c€ in Euclidean Eqincimnordinates the trace of the ex-
the property of having a well-defined variational principle tfiNSIC curvature satisfiels = —d, we note that the AdS/CFT

under variations of the metric. In the particular case o calculations forZ, are analogous to the ones performed in
—0, and wherp satisfies the previous section in the minimally coupled case. All we

need to do is to perform the replacements—od+o, v

d—1 —v(e) andA.—A. (o) [see Eqgs(14), (15]. We find that
=g (79 the analogue to Eq71) reads
both the bulk and boundary terms in EG4) are Weyl in- + z<_A*(9) (81)
variant(see for instanc@4?2] for a recent treatmeht d 2d °’

The canonical energy of the theory E4) was com- L . __
puted in[37] in the particular case=0. Here we extend the which is the condition for a bound state to exist in the bulk,

results in[37] to arbitraryo. It can be shown that the ca- and is related to the presence of an unstable double-trace

nonical energy is conserved, positive and finite for irregulafPeriurbation at the boundary. _ _
modes propagating in the bulk only when the following con-  But the above condition, together with E(L6), stil

straint is satisfied: needs to be solved far, a further step that was not needed
in the minimally coupled case. We first note that the solution
o A_(p) to Eqg. (16) reads
et q4T oq (76)
> d+2)(d—2)+4m?], 82
which comes to replace the usual constraint @). It has ¢ 4d(d+1) L¢ ) ) | ®2)

the solutions

d-1 8o 4 \?
Qi=—[l——i \/1+(d_—l) [m?+(d+1)o]

which, together with the reality condition E¢78), should
always be required, as the case ELp) is the relevant one
for our analysis. In fact, it will be useful to consider the
following condition:

(77)
>————[4(d+2)(d—2)—(d— 1)~ 16d+1)a],
which should be supplemented by the reality condition °~ T6d(d+ 1)[ ( ) )= )18 )(Z] )
83

(78 which is obtained from Eqgs(78), (82). Now, solving Eg.
(81) and using Eq(83), we find that, fod=3, a bound state
Note that, whenm=o0=0, ¢~ vanishes, whereag" re- exists in the bulk only when the following conditions are

duces to the conformal value E5). This could be consid- Simultaneously satisfied:
ered as a check on the formalism. d 1 &

In the caser=0, it was shown ir{37] that, as expected, m?+(d+1)o<- and p*<p<=—— (d=3). (84)
the constraint Eq(76) arises again from AdS/CFT calcula- 4 4 d
tions, this time in the role of the condition for the divergent
local terms in the on-shell action to vanish, and the general

d—1\2

m?+(d+1)o=—

IAllowed values ofg for which there is no associated bound
state are the ones that do not satisfy the above conditions, i.e.

) o ] o ) d N 1 o
“When performing a variation of the metric, the actifnin Eq. m-+(d+ 1)0<Z: o=p or o= 17 q
(13) turns out to be stationary only after the metric and certain of its
normal derivatives are fixed at the boundary. It can be shown that d
the adQ|t|9n of the (.3|.bbons-.l-|av.vk|ng term accoynts for the terms of m2+ (d+1)o=-: any e (d=3). (85)
the variation containing derivatives of the metric. 4

025011-9



PABLO MINCES PHYSICAL REVIEW D70, 025011 (2004

We emphasize that the above conditions should be required g 5 g
simultaneously with Eq(82), together with the reality con- 3=lo+ >\3J' d X\/ﬁ¢e—f d%Vhpdnd., (89
dition Eq. (78), and the Breitenlohner-Freedman bound Eq.
(17). The remarkable result that Eg5) supplement the . - .
Breitenlohner-Freedman bound is far from trivial, and WeWhere}‘25""“d)‘3 are arbitrary coefficients, arlg is given by
will come back to this topic in Sec. V. Eq. (30).° Under the variation Eq(31) we havé

It is interesting to note that, in the notorious example of a
conformally coupled scalar field, supplemented by a _ d @ _ d 3)
Gibbons-Hawking term, there is no associated bound state,5¢>|2_ d X‘/ﬁ‘9f1¢f5‘/’f Syls=—| d X‘/ﬁd’f&‘r/’f '
as in this cas@* equals the conformal value E(f5), and (90)
we have just seen that™ is in the range of allowed values
for o [see Eqs(85)]. In fact, as pointed out before, the case yhere
m=c=0,0=0" corresponds to an unperturbed situation,
where irregular modes are allowed to propagate. 2)_ (3)_ B

To close this section, we extend the conditions E§4) PU= T 2N0nd, = nd= 2034 (91)
for a bound state to exist in the bulk, which hold ¢ 3, to _ _ .
the cased=2, where a bound state exists in the bulk only Sol, andl; are stationary under the mixed boundary condi-

when the following conditions are satisfied: tions
1 1
m2+30<-: o< or pt<o< ——, sy?)=0 (92
2 4 2
1 and
m2+30>§: o<pe~ (d=2). (86)
sy3=0, (93

Allowed values ofp for which there is no associated bound
state are the ones that do not satisfy Eg§), i.e.

SThere is a curious feature about E¢R9), (89), shown in[37],

1 1 o ich i - i i
m?+30<=: o =p=po" or o=-—-, which is the fact that, whereas thg on ;hell acti@rglves rise to
2 4 2 the boundary CFT of conformal dimensidn, , and its Legendre
transformi ; corresponds ta _ [see Eqs(53), (54)], when consid-
1 eringl, andl; we find an “inverted” situation, where the original

2 . - _
m°+30= 2" =0 (d=2). (87) generating functional corresponds to the conformal dimen&ion
and the Legendre transformed one is associated,tdthis “inver-

As in the cased=3, the above conditions must be supple- sion” phenomenon is also found in the non-minimally coupled case

mented by Eqs(17), (78), (82). [37]). At this point, we do not know if such an “inversion” phe-
’ ' nomenon is, or is not, associated with any property of the boundary
CFT.

IV. OTHER BOUNDARY TERMS SFor illustrative purposes, we give here an example of a one-

In the previous sections, we have illustrated our propOsat‘parameter family of boundary terms which is not allowed. Consider
. ! . X . I d K ) 5
that boundary terms in the action govern the existence oft€ actionl’ =lo+y[d?xVhé dng., wherey is an arbitrary coef
bound states in the bulk, by considering the examples in Eq{¢ient andlo is given by Eq.(30). Then, under the variation Eg.
(29), (79) (in Euclidean coordinatesNow, we would like to (30 We have 8y’ =Jd)\N[(1+9)drdedbet yhed(dnde) -
analyze how the previous results are modified when othe-Fh'S result is to be contrasted with Eq82), (90). Notice that, in

boundary terms are considered. This will also allow us toorder for the action to be stationary, we should fix béthandd, .

perform additional checks on the formalism at the borderg¢ .= 5(d,,¢.) =0. From the AdS/CFT point of view,
. . o " h for th i | is ill defined, unlik
We should first notice that it is not possible to add anyt e source for the boundary conformal operator is ill defined, unlike

; . hat h to Eqé32), (90), where th , 42 and
arbitrary boundary term to the actions E¢30), (80). The what happens to Eqe32), (90), where the sources atg; , /- an

e - 1S 3 respectively[22,37]. This situation is analogous to the one
reason for this is that we should consider only S'tuat'o_n%und in the case of the Einstein-Hilbert action, whose variation

where the variational principle is well defined. In the mini- g ires both the metric and its derivatives to be fixed at the border.
mally coupled case, it is possible to verify, by direct inspec-i this case, the requirement to have a well-defined variational prin-
tion, that, apart from Eq(29), we are left with only two  ¢jple is satisfied through the addition of the Gibbons-Hawking
additional possibilities, which in Euclidean coordinates Eq.houndary ternf39], which accounts for the derivatives of the met-
(27) read[22,37] ric. Notice that, in the above case, the only possible choice for the
coefficient y is y=—1, where the variation reduces ®,|'=
—[d%%\he 5(9,4.). Here the action is stationary under a Neu-
mann boundary condition which fixes,¢,. at the boundary,
8(d,¢.) =0. Note that the allowed Neumann situatips —1 is a

and particular case of Eq89) with A\3=0.

|2:|0‘H\zf d¥%/h(dnee)? (88)
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respectively. In particular, this means that, after taking the A

limit e— 0 through a proper rescaling!? and 4*) become A== (100
the sources for the corresponding boundary conformal opera-

tors 22,37, It can be shown that{® and — ¢, are Legendre conjugates,

In the case of,, it can be shown that the corresponding; o
canonical energy is conserved, positive and finite for irregu-
lar modes propagating in the bulk, or equivalently, that the
divergent local terms of the on-shell action cancel out and
the Legendre transformation interpolates between conform
dimensionsA , andA_, only when Eq.(6), together with
the constrain{37]

P=—¢.. (100)

f1‘-I|ere #® and — ¢, are sources for the conformal operators
of dimensionsA _ and A, respectively, so that a relevant
double-trace perturbation is of the form

1

N=oN

(94) f ,
WL = dol= 5 (~ bo)?, (102

is satisfied. Performing calculations analogous to those pre-
viously detailed in the case of, we find thaty!® andg,¢.  and performs the replacement
are Legendre conjugates, i.e.

Y=g, (95)

Here y*) andd, ¢ are the sources for the conformal opera-Bound states exist in the bulk only far, satisfying
tors of dimensionsA = and A, respectively, so that a rel-

A A f
7\3:—7—>)\3=—7+§. (103

evant double-trace perturbation at the boundary can be writ- A_
W[ dnbol= ;(f%(;”o)zy (96)  Allowed values ofx 5 for which there is no bound state in the
bulk are the ones in the range
and introduces the replacement A
Ng=— —. 10
- 1 . 1 . 3 5 (105
278 MTox o ©7

Finally, in the non-minimally coupled case, we should
Bound states exist in the bulk only when the following con-take into account that, in order to have a well-defined varia-
dition is satisfied: tional principle under variations of the metric, any expres-
sion for the action should contain a Gibbons-Hawking term,
as in Eq.(79). It can be verified that, apart from E.9), we

)\2<2A, : (98 are left with only one additional possibility, namely
Allowed values of\ , for which there is no bound state in the o d 2 d 2
bulk are the ones in the range T2=1o QJ d X\/HKE¢G+UJ d’xhe?
1
o= K (99 _f ddX\/ﬁ(ﬁEﬁn(ﬁE, (106)

A notorious example is that of the usual actignin Eq.(2), ~ WhereZ, is given by Eq.(80), and the first two boundary

containing no additional surface term, which corresponds téerms are as in Eq79). It can be shown that the last surface

the case\,=0 [see Eq.(88)], so that it is not in the range term does not spoil the property of having a well-defined

Eq. (99), and has an associated bound state. The same resdariational principle under variations of the metric.

has already been found when considerlag and the fact The caser=0 was considered if37], but here we will

that both analyses, involviny or I,, give rise to the same extend such results to the case of arbitraty It can be

result, could be considered as a consistency check on tH&own that the canonical energy is conserved, positive and

formalism. finite for irregular modes propagating in the bulk only when
Now, in the case of3, the constraint for which the ca- the following constraint is satisfied

nonical energy is conserved, positive and finite for irregular

modes propagating in the bulk, and the divergent local terms Lo A_(e) (107
in the on-shell action cancel out, causing the Legendre trans- @ d 2d

formation to interpolate between conformal dimensidns

andA_, is given by[22] which is to be contrasted with E¢76). It has the solutions
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~, 3d+1 8o
© T78d | 7 3d+1
VRS,
2
+ 1+(3d+1 [m*+(d+1)o]|. (108
Notice the reality condition
3d+1)2
m?+(d+1)o=— 2 , (109

which should always be required, together with ER). As
expected, the constraint E¢L07) arises again from AdS/

PHYSICAL REVIEW D70, 025011 (2004

allowed to propagate in the bulk, in the case &f it is
associated to éstable non-zero double-trace perturbation at
the boundary. This result is not surprising when we note that
the last boundary term in Eq106) breaks the Weyl invari-
ance of Eq(79).

V. BREITENLOHNER-FREEDMAN BOUND
RECONSIDERED

In this work, we have argued that coefficients in the
boundary terms in the action are sensitive to the perturbation
at the boundary CFT by a relevant double-trace opefats
for instance Eqs(70), (97), (103)], and govern the existence

CFT CalCUlationS, in the role of the condition for the diver- of a bound state in the bulk. The relation was made precise
gent local terms in the on-shell action to vanish, and theyy using the proposal ifi28] that unstable theories at the
Legendre transformation to interpolate between differenpoundary are detected by the presence of such a bound state

conformal dimensiona , (¢) andA _(p).

in the bulk. In all calculations, we have also made strong use

By performing calculations analogous to the ones in thesf the formalism in[8,37). In particular, we have paid a

previous cases, we find that the condition

A_

d 2d (110

corresponds to the existence of a bound state in the bulk,
the sense df28]. Such condition is related to the presence of
an unstable double-trace perturbation at the boundary. Sol

ing for ¢, we find the following solution:

1 ~
m?+(d+1)o<— Tel(3d+ 1)2—(d+5)?]: e<p™,

1
m?+(d+1)o=— 1—6[(3d+1)2—(d+5)2]:

d—-2 o

Q<—H—a. (111)

careful attention to the fact that relevant double-trace pertur-
bations are constructed out of a conformal operator of di-
mensionA _ . This means that we have to identify the correct
source and generating functional for the conformal operator,
.and introduce the perturbations at the special points at which
Mregular modes are allowed to propagktee Egs(26), (76),
94), (100, (107)]. From the bulk point of view, such special
yoints arise from the requirement for the canonical energy to
be conserved, positive and finite for irregular modes propa-
gating in the bulk[37]. From AdS/CFT calculations, they
play the role of the conditions for the divergent local terms in
the on-shell action to vanish, and the generalized Legendre
transform to interpolate between different conformal dimen-
sionsA, andA_ [37].

Throughout this paper, we have considered many different
allowed boundary terms in the actijpee Eqs(29), (79),
(88), (89), (106)]. By proposing such boundary terms to be
the objects involved in the connection between unstable
double-trace perturbations at the boundary and bound states

Allowed values ofg for which there is no associated bound i the bulk, we were able to compute explicit conditions on
state are the ones that do not satisfy the above conditionge coefficients of the boundary terms in the action for which

This gives

1 -
m2+ (d+1)o< — Tel(3d+ 1)2-(d+5)?]: e=p",

m?+(d+1)o=— 1 (3d+1)?>—(d+5)?]:

16
_ d—-2 o 1
0=~ 3 " a (112

we expect a bound state to exist in the bldke Eqs(71),
(99), (104)]. In the non-minimally coupled case, and when
the action is supplemented by a Gibbons-Hawking term, this
also gave rise to “forbidden” values of the coupling coeffi-
cient to the metridsee Eqs(84), (86), (111)].

Notorious particular examples were also considered. For
instance, we have shown that the usual action (Bg.con-
taining no additional boundary terms, is associated with the
existence of a bound state in the bulk. This result was found
by considering independent analyses involving either actions
I, orl, [see Egs(29), (88)]. This could be considered as a

We emphasize that the above conditions should be requirecbnsistency check on the formalism. Another notorious ex-

simultaneously with Eq917), (82), (109).

ample has been that of a conformally coupled scalar field,

Note that, in the notorious particular case of a confor-supplemented by a Gibbons-Hawking term, to which we

mally coupled scalar field, whema=o0=0 andp is given
by Eg.(75), the conditions Eq9112) show that there is no
bound state in the bulk, as it happened in the casg ¢see

have shown that there is no associated bound state.
To close this paper, we come back to the resu[2Bi that
tachyonic behavior in the bulk exists even when the

Eqg. (79)]. However, there is a fundamental difference, be-Breitenlohner-Freedman bouridee Eqs(5), (17)] is satis-
cause, whereas fdf; the conformally coupled case corre- fied. We argue here that this happens so, because the
sponds to an unperturbed situation where irregular modes aireitenlohner-Freedman bound should be supplemented by
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additional conditions involving the coefficients on the The fact that some results are modified or generalized
boundary terms in the action. Such conditions depend on thehen the boundary terms in the action are taken into account
particular boundary term which is added to the action, ands not surprising. See, for instance, the replacement of Eq.
are given by Eqs(72), (99), (105 (in the minimally coupled (18) by Eq. (76) or Eq. (107).

casg, and Egs.(85), (87), (112 [in the non-minimally It would be interesting to investigate if any further infor-
coupled case, supplemented by a Gibbons-Hawking termmation arising from the boundary terms in the action can be
where we should simultaneously require the condition Eqobtained by performing additional related calculations in the
(82), together with the reality conditions E¢Z8) for Z, or  Lorentzian Poincarenetric.

Eq. (109 for Z,]. The reason why the requirement to satisfy
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