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From free fields to AdS space. II
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We continue with the program of paper I@Phys. Rev. D70, 025009~2004!# to implement open-closed string
duality on free gauge field theory~in the large-N limit !. In this paper we consider correlators such as
^) i 51

n TrFJi(xi)&. The Schwinger parametrization of thisn-point function exhibits a partial gluing up into a set
of basic skeleton graphs. We argue that the moduli space of the planar skeleton graphs is exactly the same as
the moduli space of genus zero Riemann surfaces withn holes. In other words, we can explicitly rewrite the
n-point ~planar! free-field correlator as an integral over the moduli space of a sphere withn holes. A prelimi-
nary study of the integrand also indicates compatibility with a string theory on AdS space. The details of our
argument are quite insensitive to the specific form of the operators and generalize to diagrams of a higher
genus as well. We take this as evidence of the field theory’s ability to reorganize itself into a string theory.

DOI: 10.1103/PhysRevD.70.025010 PACS number~s!: 11.15.Pg, 11.25.Tq
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I. INTRODUCTION

How exactly does a quantum field theory~in the large-N
limit ! reassemble itself into a closed string theory? T
question lies at the heart of the gauge theory/geometry
respondence. Answering it in its generality is likely to gi
us valuable clues regarding the string dual to QCD, for
stance.

What we have learned in the years since Maldacen
breakthrough is that the answer to this question is tied
with open-closed string duality. The gauge theory arising
an open string description is related by worldsheet duality
a closed string description. The holes of the open str
worldsheet get glued up, getting replaced by closed st
insertions.

In the case of topological string dualities, it was possi
@1,2# to make this intuition precise using a linear sigm
model description of the worldsheet~the argument for the
correspondingF terms in the superstring was made in@3#!.
Recently, a very nice illustration of open-closed string du
ity was given, again in a topological context, for the Kon
sevich matrix model@4#. Here again, one could concrete
see the process of holes closing up and being replace
closed string insertions.

Nevertheless, the original AdS conformal field theo
~CFT! conjecture@5–7# has not yet been understood in su
terms.1 In @11# we embarked on an effort to implement ope
closed string duality in the free-field limit of theN54 super
Yang-Mills theory. The tractability of the limit, from the field

*Email address: gopakumr@mri.ernet.in
1The recent proposals@8,9# ~see also@10#! that N54 Yang-Mills

theory arises as the target space theory of a topological sigma m
might, perhaps, enable one to view it in a manner close to the o
topological examples.
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theory point of view, makes it a natural starting point.2 The
strategy in@11# was to consider a worldline representatio
~Schwinger parametrization! of the free-field correlators
This was motivated by the fact that these representations
be viewed as being directly inherited from the relevant op
string theory in thea8→` limit. A nice feature of this rep-
resentation is its correspondence with electrical netwo
This correspondence suggested that carrying out the inte
tion over the internal loop momenta~eliminating internal
currents! should yield an equivalent network, now with
treelike structure. In other words, the holes would have b
closed up. The idea was then, through a change of varia
on the Schwinger moduli space, to exhibit the integral as t
of a closed string tree amplitude on AdS space.

In @11# we restricted ourselves to bilinear operators~such
as TrF2). Then-point function of these operators is given b
a one-loop diagram. For the case of two- and three-po
functions, the equivalent tree diagrams are the expec
ones. A simple change of variables on the Schwinger par
eters converted the integral to a tree amplitude in AdS sp
We further gave arguments for the four-point function th
the resulting tree structure is again in line with expectatio
though a detailed check was not carried out.

In the present paper, we will consider a much more g
eral class of operators and their correlators, such as3

G$Ji %~x1 ,x2 ,...,xn!5K )
i 51

n

TrFJi~xi !L
conn

. ~1.1!

del
er

2See @12–21# for various investigations of the free/weakl
coupled theory with a view to understanding its stringy dual. A
other approach starting from light cone field theory is that of Tho
and collaborators@22# as well as that of Karch and collaborato
@23#. There is also a lot of literature on the connection betwe
weakly coupledN54 Yang-Mills theory and integrable spin chain
since the work of@24#.

3As in @11# we will be considering a U(N) Euclidean gauge field
theory. We will again be dropping factors which are ‘‘inessential’’
all equations.
©2004 The American Physical Society10-1
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FIG. 1. Gluing up of a planar six-point func
tion into a skeleton graph.
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All possible free Wick contractions lead to a large class
diagrams contributing to such a correlator, even if one
stricts to planar graphs. These diagrams haven vertices with
Ji legs coming out of thei th vertex. We will argue, from the
Schwinger parametrized expressions for such diagrams,
they exhibit a~partial! gluing up into a skeleton diagram
~with n vertices! which captures the basic connectivity of th
original graph. This is illustrated in Fig. 1.

This gluing can be intuitively understood from the ele
trical analogy since it essentially involves replacing the va
ous parallel resistors~Schwinger parameters!, between a pair
of vertices, with a single effective resistor. Therefore, a
particular contribution to then-point function ~1.1! can be
expressed as an integral over a reduced Schwinger param
space, namely that of the corresponding skeleton graph.
information about theJi is captured through a specific de
pendence in the integrand.

However, planar graphs with different connectivities gi
rise to different skeleton diagrams. All these different sk
eton diagram contributions need to be summed over to ob
the complete answer for Eq.~1.1!. We will argue that this
space of skeleton graphs is in one-to-one correspond
with the familiar cell decomposition of the moduli spa
M0,n of a sphere withn holes. This basically follows from
considering the graphs which are dual~in the graph theory
sense! to the skeleton diagrams.

It is important to stress that this moduli space isdistinct
from that of the string diagrams underlying the original fie
theory Feynman diagrams. As is evident from the contri
tions to Eq.~1.1! shown in Fig. 1, these have a large numb
of loops ~the number depending onJi). In fact, even the
skeleton graphs themselves have~generically! 2(n22)
faces, whereas the moduli space that we are associating
namely alln-point correlators such as in Eq.~1.1!, is that of
a sphere with exactlyn holes. Moreover, field theory correla
tors typically get their contribution from corners of strin
moduli space, whereas here it is the full moduli spaceM0,n
which contributes. Thus this stringy representation of fi
theory is different from that studied by Bern, Kosower@25#,
and others.

In fact, the emergence of the moduli space of a sph
with n holes is natural from the point of view of the gaug
theory/geometry correspondence. The scenario one exp
is that the loops of the original field theory planar diagra
get glued up to form a surface and one has insteadn closed
string insertions. Then holes that we see here are to
02501
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identified with these closed string insertions. On integrat
over the moduli corresponding to the size of thesen holes,
the holes should effectively pinch off giving rise ton exter-
nal closed string insertions at punctures. This is indeed
picture that is realized in the topological string dualities
@1,2,4#. The situation is depicted in Fig. 2. We will see ev
dence that this is realized in our case, both by looking at
three-point function in detail as well as by studying the fo
of general stringy correlators in AdS space.

It is mainly for the sake of simplicity that we make ou
arguments for then-point correlators of scalars. Th
Schwinger parametrizations for othern-point functions in
free-field theory are very similar. In particular, the Feynm
graphs get glued up, for exactly the same reasons, into
same skeleton diagrams. And hence replaying the argum
we can conclude that othern-point correlators in the free
theory can also be written in terms of an integral overM0,n .

Moreover, the argument is not restricted to planar d
grams alone. One can generalize to diagrams of arbit
genus, which also get glued into skeleton diagrams. T
time one makes a correspondence with the cell decomp
tion of the moduli spaceMg,n . Thus in all cases ann-point
function leads to a Riemann surface withn holes. This leads
us to believe that what we are seeing is a signature of
string dual of the free-field theory. In fact, an advantage
this procedure is that it is quite likely generalizable to t
interacting theory as well.

Having written the field theory expression as an integ
over parameters which coverMg,n , the main task then re
mains to see that the integrand corresponds to that of
appropriate string theory on AdS space. In fact, it is tempt
to speculate that the theory onMg,n , which we are seeing
here, definesa consistent open string theory on a zero s
AdS space. The n holes give the contributions of boundar
states in this open string theory. As in the picture of tachy

FIG. 2. Skeleton graphs→sphere with holes→sphere with punc-
tures~as the holes go tò !.
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FROM FREE FIELDS TO AdS SPACE. II PHYSICAL REVIEW D70, 025010 ~2004!
condensation~see, e.g.,@26,27#! or the topological duality of
@4#,4 integrating the boundary state over the size modulus
the hole would then give rise to a description in terms
closed string vertex operators in AdS space inserted at tn
punctures. These issues are under investigation. At pre
we will just make a few disparate remarks in support of
above scenario.

First, as we will see in Sec. IV, in the ‘‘critical’’ dimension
d54, the integrand can be written in a particularly nice fo
as far as its dependence on the quantum numbersJi and
external momentaki go. This form is at least not obviousl
inconsistent with string theory and in fact shares many str
tural features consistent with it, as we will also see in S
V B. An important check is that the integrand is continuo
across the boundaries of the different components in the
decomposition of the moduli space.

Second, the factorization of field theory correlators f
lowing from the spacetime OPE should translate into a f
torization of the amplitudes in the closed string channel. I
plausible that the integrand in the Schwinger moduli sp
should reflect this factorization and thus provide one of
consistency checks for it to be a string amplitude.

Finally, we generalize~in Sec. V! the considerations o
@11# for planar three-point functions of bilinears to that f
the more general operators TrFJi. We see in this case that th
three Schwinger parameters that labelM0,3 ~corresponding
to the sizes of the three holes! transmute into parameters fo
the external legs of AdS propagators. This happens via
same change of variables as in@11#. In a sense, integration
over these moduli effectively puts the insertions at
boundary of AdS space. We will also look at the gene
form of string correlators of scalars in AdS space and ar
that they can very naturally be cast in a form compatible w
the field theory expressions obtained in Sec. IV. Therefo
together with the emergence of the stringy moduli space,
gives us confidence that we are implementing the expe
picture of open-closed string duality in this approach.

There are other issues which we do not address direct
this work. For instance, understanding the role of supers
metry, if any, will have to await a more detailed study of t
properties of the integrand. In any case, our firm belief in
AdS/CFT conjecture tells us that, at least in this case, we
assured of the free-field theory having a closed string d
But, in our arguments here, we do not really use any as
of N54 super Yang-Mills theory. The procedure thus far
quite general. Another related issue is that of the space
dimension. The main conclusion of this paper about
emergence of the moduli spaceMg,n is valid for any dimen-
sion d. But the integrand seems to be particularly nice wh
d54 ~as might be expected of field theories!. A closer ex-
amination of the integrand should reveal more.

The paper is organized as follows. Section II displays
Schwinger parametrization of correlators such as Eq.~1.1!
and exhibits their gluing up into skeleton graphs as in Fig
Section III then makes the correspondence of the param

4In fact, the authors of@4# speculate on the existence of such
open string theory on AdS space, in analogy with their exampl
02501
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space of all planar skeleton diagrams with the moduli sp
M0,n . It also sketches the generalizations to other corre
tors as well as to higher genus. Section IV makes some g
eral remarks on the integrand in moduli space as given
field theory. Section V studies the three-point function
some detail. It also gives some evidence for the relation
tween the field theory integrand and the generaln-point
stringy correlator on AdS space. Appendix A gives the deta
associated with a change of variables in Sec. II.

II. SCHWINGER MODULI AND SKELETON GRAPHS

A. A review of the parametric representation

The Schwinger parametric representation of field theor
a well-studied subject. Essentially, one reexpresses the
nominator of all propagators in a Feynman diagram via
identity ~appropriate for Euclidean space correlators!

1

p21m2 5E
0

`

dt exp$2t~p21m2!%. ~2.1!

This has the advantage of converting all the momentum
tegrals into Gaussian integrals which are then easy to c
out. It is a little intricate to keep track of the details of th
momentum flow. But the final expressions for an arbitra
Feynman diagram can be compactly written in graph th
retic terms. For the case of scalar fields, the expressions
be looked up in field theory textbooks such as@28# ~Sec.
6-2-3!. The expressions involving spinors and gauge fie
are more involved. For a recent review containing the g
eral expressions, see@29,30#.

Since we will be mostly looking at massless scalar fiel
let us consider the expression for an arbitrary Feynman
gram contributing to the momentum space version of E
~1.1!. The result~in d dimensions! of carrying out the inte-
gral over the internal momenta is given in a~deceptively!
compact form,5

G~k1 ,k2 ,...,kn!5E
0

` ) rdt r

D~t!d/2 exp$2P~t,k!%. ~2.2!

Here the product overr goes over all the internal lines in th
graph—there being one Schwinger parameter for each s
line. The measure factorD~t! and the Gaussian expone
P(t,k) are given by~see, e.g.,@28,29#!

D~t!5(
T1

S )l

t D . ~2.3!

P~t,k!5D~t!21(
T2

S )l 11

t D S ( kD 2

. ~2.4!

5Here we are suppressing the overall momentum-conservind
function.
0-3
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RAJESH GOPAKUMAR PHYSICAL REVIEW D70, 025010 ~2004!
Here we are following the notation of@29#: The sum is over
various 1-trees and 2-trees obtained from the original lo
diagram. A 1-tree is obtained by cuttingl lines of a diagram
with l loops so as to make a connected tree, while a 2-tre
obtained by cuttingl 11 lines of the loop so as to form tw
disjoint trees. Equation~2.3! indicates a sum over the setT1
of all 1-trees, with the product over thel Schwinger param-
eters of all the cut lines. The sum overT2 in Eq. ~2.4! simi-
larly indicates a sum over the set of all 2-trees, where
product is over thet’s of the l 11 cut lines. And ((k) is
understood to be the sum over all those external momenki
which flow into ~either! one of the 2-trees.~Note that be-
cause of overall momentum conservation, it does not ma
which set of external momenta one chooses.!

A simple illustration of these expressions is for the on
loop diagram withn insertions. There aren Schwinger pa-
rameters for each of then arc segments of this loop. Cuttin
any of them leads to a 1-tree. Therefore,

D~t!~ l 51!5(
i 51

n

t i .

Cutting any two distinct ones leads to two disjoint trees a

P~t,k!~ l 51!5D~t!~ l 51!
21 (

i , j
t it j~ki 111¯kj !

2,

where t i is the parameter for the arc joining thei and (i
11)th insertion. These expressions naturally agree w
those obtained from the worldline formalism of Polyako
Strassler, etc.@31–33#. In @11# we used these expressions
study the gluing up for bilinears in the free theory.

A beautiful feature of parametric representations is
correspondence with electrical networks, originally disco
ered in Bjorken’s 1958 thesis~see Chap. 18 of@34#!. If we
identify the external~as well as internal! momenta with cur-
rents flowing in the network corresponding to the Feynm
diagram, then the Schwinger parameters play the role of
sistances. In fact, the Gaussian exponent, before carrying
the momentum integrals, has the interpretation as the po
dissipated in the original circuit (( r I r

2Rr). The process of
carrying out the integrals over internal or loop momenta
then equivalent to the standard procedure of elimination
internal currents using Kirchoff’s laws. The resulting Gau
ian in the external momenta, given in Eq.~2.4!, then has the
interpretation as the power dissipated in the equivalent
cuit after elimination of the internal loops. This gives us
nice source of intuition for the process by which loops c
get glued into trees. In@11# we exploited this to understan
the gluing of the two-, three-, and four-point functions
bilinears into trees.

As we will now see, the correlatorŝ) i 51
n TrFJi(xi)&conn

will exhibit the gluing much more completely. In particula
considering these general correlators will allow us to see
the string moduli, something which was not possible w
bilinears alone, for reasons that will become clear as
proceed.
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B. Gluing into skeleton graphs

In the free theory, the correlators~1.1! are given by a sum
over all possible connected Wick contractions. Let us star
considering the leading large-N contribution. They are given
by planar diagrams such as those shown in Fig. 1.6 We have
as many legs coming out of thei th vertex as there are fre
fields inserted there, namelyJi . These planar diagrams ar
more easily visualized as spherical diagrams—drawn o
sphere. How do we organize the sum over all the differ
possible contributions?

First, for a planar graph with a given connectivity@i.e., the
set of pairs of vertices~ij ! which are linked by at least on
contraction compatible with planarity#, there can be a multi-
plicity mr in the number of lines between each pair. In fa
one can convince oneself that a planar graph, withn vertices,
that is maximally connected, has 3(n22) inequivalent con-
nections, where ther th connection is comprised ofmr lines.
mr is only constrained by the fact that there must be a tota
Ji lines entering thei th vertex. Thesen constraints imply that
there are 2(n23) undetermined numbers among themr . For
n.3, there is thus a lot of multiplicity for a given connec
tivity. Second, the above multiplicity was for a fixed conne
tivity, but it is clear that there are several inequivalent wa
~for n.4) to connect the vertices themselves, consist
with planarity.

What we will show in this section is that the first set
contributions—from the multiplicity of lines—can all b
bunched up in a natural way. For a given connectivity, at fi
it might seem that the parametric representation~2.2! implies
very different contributions for graphs with differingmr ’s,
since we would have to introduce Schwinger parameters
each internal line. However, we will argue that each of the
contributions can be written in terms of a reduced set
Schwinger parameterst r

eff , wherer runs over the edges in
the corresponding skeleton graph. This skeleton graph
what we term the graph that captures the connectivity o
given Feynman diagram.7 In other words, we replace all th
mr lines in a connection by a single edge. In Fig. 1 we ha
illustrated this for our example. In other words, all contrib
tions of a given connectivity are expressed in terms of
integral over parameters defined on the corresponding s

6In the figure, the maximal number of connections compati
with planarity have been drawn. Adding a line between two verti
that are not already directly connected will destroy planarity.

7Caveat: In order that the skeleton graph faithfully capture t
color flow of the original diagram, we will only glue together adj
cent strips of the underlying double line graph. Lines between
same pair of vertices, but which cannot be deformed into each o
without crossing a line between a different pair, willnot be glued
together. Hence the skeleton graph could haveseveraledges be-
tween a given pair of vertices. Each such edge comes with its
multiplicity. The simplest illustration of such instances is in th
four-point function where one can have two contractions along
of the diagonals~on opposite sides of the sphere, so to say!, while
having none on the other diagonal. Note that such a graph also
six edges just like the tetrahedron, where all pairs of vertices
singly connected.
0-4
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FROM FREE FIELDS TO AdS SPACE. II PHYSICAL REVIEW D70, 025010 ~2004!
eton graph. The dependence on the multiplicitiesmr is cap-
tured by the integrand in a fairly simple manner. The n
result is that the skeleton graph and its moduli capture all
contributions of a given connectivity.

We will argue for this result from the explicit form of th
parametrization in Eq.~2.2!. However, experts might no
need much convincing about the truth of this asserti
@They are welcome to skip the technicalities and go to
~2.9!.# In the Schwinger parameter representation~2.2!,
which we are working with, the result can be understo
from the electrical network intuition. In this language, all w
are doing is to replace all the parallel resistors joining ve
ces~ij ! ~subject to the caveat in footnote 7! by an effective
resistance given by the usual expression for multiple para
resistors. In that sense, we are partially gluing up the orig
Feynman diagram by bunching up various internal lines.

Let us now see how this is reflected in the actual expr
sions. We start with ann-vertex free-field diagram whos
connectivity is specified by a skeleton graph having mu
plicity mr for the r th edge. We will label the Schwinge
parameters for the internal lines byt rmr

, wherer indexes the

edges of the skeleton graph@r 51,...,3(n22)# andm r their
multiplicity (m r51,...,mr).

Our first claim relates the termD~t! of the original graph
to that of the skeleton graph,

D~t!5
) r ,mr

t rmr

) rt r
eff D̃~teff!. ~2.5!

Here the effective Schwinger parameter is given by the
mula for parallel resistors,

1

t r
eff 5 (

mr51

mr 1

t rmr

, ~2.6!

while D̃(teff) is given by the same expression as Eq.~2.3! but
now the sum over 1-trees is that of the skeleton graph w
the effective parameterst r

eff for the edges. Our claim follows
from the definition in Eq.~2.3!. We are instructed to take th
product of the parameters on the cut lines of the origi
graph. In ther th bunch, we are forced to cut either (mr
21) or all mr of the lines to get a 1-tree. Any fewer cut line
would leave a loop. If we were to cut all of them, then w
would get a factor of)mr

t rmr
for that bunch and in the skel

eton graph we would have thus cut the corresponding e
If we were to cutmr21 of them, then we would get a facto
()mr

t rmr
)/t r

eff corresponding to all the possible ways of cu

ting (mr21) lines in that bunch. In the skeleton graph w
would be leaving ther th edge uncut. Now it is clear, from
the relative factor oft r

eff between the two cases, that on su
ming over all possible 1-trees of the original graph we w
end up with a sum over 1-trees of the skeleton graph, obt
ing the relation in Eq.~2.5!.

The next claim is that the Gaussian exponent in Eq.~2.4!
of the original graph can be expressed entirely in terms of
skeleton graph with parameterst r

eff ,
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P~t,k!5 P̃~teff,k!, ~2.7!

where P̃(teff,k) is given by the same expression as in E
~2.4!, but now for the skeleton graph with its effectiv
Schwinger parameters for its edges. This follows from sim
lar considerations as above. The term in Eq.~2.4! involving
the sum over 2-trees is related by a factor
() r ,mr

t rmr
)/) rt r

eff to the corresponding sum over 2-trees

the skeleton graph witht r
eff for its edges. The reasoning i

completely analogous to that of the previous paragraph. P
ting this together with the relation~2.5! between the factors
of D and D̃, we see that the factor of () r ,mr

t rmr
)/) rt r

eff

cancels out and we are left with the relation stated in E
~2.7!.

Putting both these results together, we have, for a diag
of fixed multiplicity and connectivity, the contribution

E
0

`

)
r ,mr

dt rmr

t rmr

d/2

) r~t r
eff!d/2

D̃~teff!d/2
exp$2 P̃~teff,k!%. ~2.8!

The final step is to convert this into an integral over thet r
eff .

Since the nontrivial dependence in the integrand is all on
t r

eff , the dependence on thet rmr
can be factored out by a

change of variables. The details are worked out in Appen
A. The end result is that the contribution~2.8! to then-point
function ~1.1! from a graph with fixed connectivity and mu
tiplicity can be written as

E
0

`

)
r 51

3~n22!
C~mr !dt r

t r
~mr21!@~d/2!21#

1

D~t!d/2 exp$2P~t,k!%.

~2.9!

HereC(mr ) is a constant, independent of thet’s but depend-
ing onmr , obtained from the change of variables in Appe
dix A. It is explicitly given by

C~mr !5E
0

1

)
mr51

mr

dymr
ymr

~d/2!22dS 12(
mr

ymr D . ~2.10!

Note that in the interesting case ofd54, C(mr )51/
(mr21)!.

We have also dropped the superscript on thet’s as well as
the tildes. Hopefully this will not create any confusion, sin
from now on only the effective Schwinger parameters w
play a role. Furthermore, all quantities such asD~t! and
P(t,k) will refer to the skeleton graph.

Therefore, we can write the total planar contribution
the momentum space version of Eq.~1.1! in the form
0-5
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G$J1%~k1 ,k2 ,...,kn!

5 (
skel graphs

(
$mr %51

`

)
i 51

n

d(mr ~ i ! ,Ji)r
C~mr !

3E
0

`

)
r 51

3~n22!
dt r

t r
~mr21!@~d/2!21#

1

D~t!d/2 exp$2P~t,k!%.

~2.11!

The sum is over various inequivalent planar skeleton gra
with n vertices. The sum over multiplicities is constrained
the fact that the net number of legs at thei th vertex isJi .
@r ( i ) labels an edge which has thei th vertex as one of its
end points.#

Thus we see that the planarn-point correlator can be writ-
ten as an integral over the space of planar skeleton gra
By this we mean that Eq.~2.11! includes both an integra
over the length of the edges~as parametrized by thet’s! of a
given skeleton graph as well as a sum over the different w
of joining the n vertices. In the next section, we will sho
that this space is the same as that of the moduli space
sphere withn holes. We will also look at various generaliz
tions.

III. FROM SKELETON GRAPHS TO STRING DIAGRAMS

A. Skeleton graphs and the cell decomposition of moduli
space

To see the string theory emerge from the field theory,
need to have the space of string diagrams arise from the
theory Feynman graphs. By making a correspondence o
above space of planar skeleton graphs withM0,n ~and more
generallyMg,n), we will accomplish precisely that.

The correspondence is made by observing first that
space ofn-vertex planar skeleton graphs, which we ha
been considering, is merely the space of all triangulation
the sphere withn vertices. When we say triangulations, w
mean that the maximum number of edges, consistent w
planarity, namely 3(n22), arises when all the faces of th
skeleton graph are triangles. If one of the faces of the
cretized sphere were not a triangle, we could always ad
least one extra edge without destroying planarity. In ot
words, the region of parameter space where quadrilate
and other polygons appear in the faces is codimension
higher in the parameter space. More precisely, quadrilate
etc. arise only when one or more of thet r go to `. That is
because the corresponding edges are effectively remo
since the resistance in those edges is going to`. In sum,
associated uniquely, to every discretization of the sph
with n vertices there is a planar skeleton graph arising from
Feynman diagram and vice versa.

Now, to each such discretization of the sphere withn ver-
tices we can uniquely associate a dual graph in the stan
manner.8 Namely, to each edge of the original graph we a

8We would like to thank S. Wadia for a helpful remark about t
relation between graph duality and open-closed string duality.
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sociate a dual edge which intersects the original one tra
versally. We will also associate a lengths r[1/t r ~‘‘conduc-
tance’’! to this edge. The length of individual dual edges c
then vary in an unconstrained manner from 0 to` as we vary
t r . In this way, every face of the original graph gives rise
a vertex for the dual and vice versa. The dual graph is t
constrained to haven faces. And corresponding to the trian
gular faces are now trivalent vertices. But the topology
mains that of a sphere. Therefore, as we sum over inequ
lent skeleton diagrams, we carry out a sum over the spac
dual graphs,9 that is, over all discretizations of the sphe
with n faces formed from graphs with cubic vertices. A
mentioned earlier, the lengthss r of the edges of the dua
graph vary from 0 tò .

This can immediately be recognized as the picture
string interactions in Witten’s open string field theory@35#.
Open string field theory generates string diagrams descr
by strips of fixed width but varying lengthss, meeting at
cubic vertices. In fact, as shown first by@36# and argued later
in full generality by@37#, such diagrams of arbitrary genu
with some number of boundaries as well as punctures,
cisely generate a single cover of the corresponding mo
space of Riemann surfaces with boundaries and punctu
This ‘‘cell ~or simplicial! decomposition’’ of the moduli
space was also worked out independently by mathematic
@38#.10 Thus the sum over inequivalent skeleton graphs is
sum over different cells in this decomposition of the mod
space.

An important aspect of the cell decomposition is the w
different components in this decomposition of the mod
space connect to each other across boundaries of t
cells.11 It can be verified that the mapping to dual grap
preserves this behavior. For example, in the case of the f
point function, consider an original skeleton graph in t
shape of a tetrahedron with all six legs of nonzero leng
One can go to a codimension-1 boundary of the cell wh
the lengths of one of the dual edges goes to zero. Th
corresponds in the original graph to removing an edge
getting a quadrilateral face. From this boundary one c
move to a component in which the edge opposite to it~i.e.,
having no vertex in common with it! develops a second
strand but now traversing the opposite side of the sphere~see
footnote 7!. Mapping this onto the dual graphs, one exac

9The field theory correlators in Eq.~1.1! are usually taken to be
those of normal ordered operators. In such a case there ar
self-contraction diagrams. In the correspondence to dual gra
self-contractions lead to tadpole subgraphs. Presumably there e
a redefinition on the AdS side which corresponds to the nor
ordering prescription on the field theory side. This would then ta
care of the tadpole diagram contributions in the cell decomposi
of the moduli space.

10We would like to thank P. Windey and S. Govindarajan f
suggesting early on a possible connection between the approa
@11# and the work of Penner@38#. For a nice introduction to Pen
ner’s work, see the recent article@39#.

11We would like to thank A. Sen for helpful discussions on th
point.
0-6
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gets the matching up of the different codimension-1 com
nents of the cell decomposition ofM0,4. Similarly, one can
go to codimension-2 boundaries of this codimension-1
and see that they also patch together smoothly. In all ca
graph duality faithfully implements the required behavior.

Thus, we can conclude that the space of planar skele
graphs withn vertices is isomorphic to the moduli spac
M0,n of a sphere withn boundaries~faces!. Seen in this
light, the lengths of the 3(n22)5n12(n23) edges of the
original graph~and thus of the dual graph! correspond to the
number of moduli of a sphere withn holes. In conformal
field theory language, one associatesn of these to the radii of
the holes and 2(n23) to the positions of centers. As de
scribed in the Introduction and illustrated in Fig. 2, the a
pearance ofM0,n is what one might expect from open-close
duality.

Here we should make a remark regarding theJi that ap-
pear in Eq.~1.1!. For ann-point function, unless theJi are
greater than a minimum value~set byn!, the Feynman graph
will not have all the possible contractions. In other word
the corresponding skeleton graph will not have the maxim
number of edges, i.e., 3(n22). One concludes that such a
amplitude gets its contribution from a lower-dimension
component of the cells ofM0,n . In particular, we see that th
bilinear operators do not get contributions from the whole
the string moduli space. For example, the Feynman graph
the four-point function of bilinears has only four edges. Th
it gets its support only from a codimension-2 slice ofM0,4.

B. Generalizations

We should also remark that the argument of the pres
section only relied on the existence of skeleton graphs.
procedure by which the skeleton graphs themselves a
from the underlying field theory diagrams also appears
generalize to operators other than the scalars TrFJ. The
parametric representation for diagrams involving more g
eral operators only differs in having additional~momentum-
and spin-dependent! polynomial prefactors multiplying the
same Gaussian factorP(t,k) of Eq. ~2.4!. General expres-
sions for these prefactors are given in@29,30# @see, in par-
ticular, Eqs.~11!–~15! of @29##. When one takes into accoun
the fermions, gauge fields, and global quantum numbers
a theory likeN54 Yang-Mills possesses, the explicit expre
sions for general operators become quite cumbersome. H
ever, an examination of the general parametric form in@29#
reveals that the gluing arguments of Sec. II generalize
such diagrams as well. In fact, this is to be expected from
correspondence with electrical networks, which holds v
generally. The only difference is that the information abo
the spins and field content of operators now modifies the
term in Eq.~2.9!. Therefore, it appears that general~planar!
n-point correlators in free-field theory can also be expres
as integrals overM0,n .

Again, the restriction to planar graphs was also not v
essential to the whole argument. The gluing into skele
graphs makes no reference to the underlying genus.
important, however, that the gluing be carried out compat
with the color flow as outlined in footnote 7. Graphs corr
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sponding to higher genus Feynman diagrams are then g
up into skeleton graphs which are discretizations of Riem
surfaces with more handles. Similarly, the mapping to d
graphs gives rise to string diagrams that cover the mo
spaceMg,n . As we remarked earlier, the cell decompositi
of @36–38# holds for any genusg Riemann surfaces withn
holes.

Finally, we should also remark that once we have co
pletely understood the free-field theory~at least in the case o
N54 Yang-Mills theory! as a string theory, we can hope
generalize our approach to the interacting theory. At le
order by order in perturbation theory in the Yang-Mills co
pling, the effect of the coupling is through insertions of a
ditional operators in correlators. Since the parametric rep
sentation is applicable to the corresponding Feynm
diagrams of the interacting theory, we can write it again
terms of an integral over a string moduli space, but now w
additional holes for the coupling constant insertions.
should then be possible to view these additional insertion
changing, for instance, the radius of the AdS space. In
way, this procedure may be useful in tackling the AdS/C
conjecture beyond the free limit as well.

It is satisfying that our arguments are not too tied
either with the specifics of the correlators or of the plan
limit ~or even too much with the free limit!. It suggests a
universality that behooves the phenomenon of field theo
string theory duality. Also, the fact that the spacetime dim
sion does not play a crucial role at this level is also not su
a bad thing. It is a feature which we expect will mostly affe
the integrand over moduli space. The integrand holds the
to the real dynamics of the string theory which we s
emerging from the field theory. In the next two sections,
will make some preliminary attempts at the integrand, le
ing a detailed study for later.

IV. REMARKS ON THE INTEGRAND

The primary result of this paper~specializing to the con-
crete example of scalars! is that we can rewrite field theory
correlators, schematically, as

G$Ji %~k1 ,k2 ,...,kn!

5E
Mg,n

@ds#r$Ji %~s!expS 2 (
i , j 51

n

gi j ~s!ki•kj D .

~4.1!

Here we are denoting the coordinates on the moduli sp
Mg,n collectively bys. Recall thats i51/t i were the natural
coordinates in the cell decomposition ofMg,n . r$Ji %(s) is
the momentum-independent prefactor which captures the
pendence on theJi , whereasgi j (s) in the exponent is inde-
pendent of theJi . We can write downr$Ji %(s) andgi j (s) in
each cell of the moduli space from the expressions at the
of Sec. II.

Thus, for instance in the interesting case ofd54, in a
particular cell labeled by a given skeleton graph, we c
rewrite the contribution in Eq.~2.11! in several equivalent
ways,
0-7
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Gcell
$Ji %5 (

$mr %51

`

)
i 51

n

d(mr ~ i ! ,Ji
E

0

`

)
r

ds rs r
mr21

~mr21!!

1

D̂~s!2

3exp$2 P̂~s,k!%

5 (
$mr %51

` E
0

`

)
r

ds rs r
mr21

~mr21!!
E

0

2p

)
i 51

n

du ie
iu i ~(mr ~ i !2Ji !

3
1

D̂~s!2
exp$2 P̂~s,k!%

5E
0

`

)
r

ds r

exp$2 P̂~s,k!%

D̂~s!2
E

0

2p

)
i 51

n

du i

3expS (
r ~ i j !

s r ~ i j !e
i ~u i1u j !D e2 i ( i 51

n u i ~Ji2Ni !. ~4.2!

To obtain the first line, we have changed variables in
~2.11! to s r51/t r and reexpressed bothD~t! andP(t,k) in
terms of thes’s. In the process, we have defined

D̂~s!5(
T1

S) s D5S)
r

s r DD~t51/s! ~4.3!

and

P̂~s,k![
1

D̂~s!
(
T2

S ) s D S ( kD 2

5P~t51/s,k!.

~4.4!

The sum, as before, is over the 1-trees and 2-trees of
skeleton graph but the product in both these definitions
over the lines that arenot cut.

In the second line of Eq.~4.2! we introduced a Lagrang
multiplier for the constraints on the multiplicities. This e
ables us to carry out the sum over multiplicities in an unc
strained way and obtain the third line. Herer ( i j ) is an edge
that joins verticesi and j; Ni is the number of legs joining a
the i th vertex of the skeleton graph. In this last line the c
contribution is clearly in the form~4.1!. From Eq.~4.2! it is
also not difficult to verify that the integrand is continuo
across boundaries of the cells~where at least one of thes
→0). This is crucial if one wants to interpret the integra
as that of a string theory.

We also notice that the schematic form~4.1! is similar in
structure to the expressions for string amplitudes that on
familiar with, such as in flat space. Namely, a prefactor c
tains the information about the masses/dimensions~and more
generally spins!, while the Gaussian factor is independent
these details and captures the~worldsheet! correlators of the
vertex operatorseikX(j). We will see in the next section tha
one can plausibly argue that this is also the structure
would expect from stringy correlation functions in Ad
space.

An important feature of string amplitudes is their facto
izability in different channels. This holds at the level of th
02501
.

he
is

-

l

is
-

f

e

integrand on moduli space, since it is a consequence of
worldsheet OPE and its associativity. Now, in the AdS/C
conjecture, the factorizability of AdS amplitudes is reflect
in the spacetime OPE relations for the corresponding co
lation functions. Associativity of the OPE means that we c
factorize it in different channels yielding the same answ
We believe that the above Schwinger parametric represe
tion should reflect the spacetime OPE of the field theory a
hence translate into a factorizability of the integrand in t
closed string channel. It should be very possible to make
statement precise.

Ultimately, one wants to also demonstrate that the in
grand is specifically that of an appropriate string theory
AdS space. We expect that the details of the string the
will depend on the matter content of the field theory. Ho
ever, any string theory that is dual to a free~and thus con-
formal! gauge theory should have a background which c
tains at least an AdS part.

In @11# we pointed out that the appearance of AdSd11
from a free theory ind dimensions could naturally take plac
in the Schwinger representation that we have been emp
ing. Essentially, propagators in AdSd11 can be parametri-
cally expressed in terms ofd-dimensional proper time propa
gators for free fields. We used this fact, together with
geometric gluing into trees, to argue that the two- and thr
point functions of bilinears can be rewritten as tree amp
tudes on AdS space. This was accomplished by a sim
change of variables on the Schwinger parameter space.

In Sec. V we generalize this to the planar three-po
function of TrFJi. What will be clear from the details of tha
calculation is that~as in @11#! the three Schwinger modul
transmute into parameters for the propagators on the exte
legs of the AdS amplitude. Integrating over these parame
is integrating over the size of the holes ofM0,3. It effec-
tively gives rise to punctures in that one gets bulk-
boundary AdS propagators as a result. This is in line with
intuition, mentioned in the Introduction, of holes closing u
as one integrates over their size modulus. Together with
appearance of the string moduli space, this gives us co
dence that we are indeed seeing the AdS space emerge
the field theory.

From the form of correlators in AdS space~discussed in
Sec. V! we expect this to continue to happen for then-point
function. Namely, one can isolaten size moduli out of the
6g13(n22) moduli. And these will simply parametrize th
n external legs of the corresponding AdS amplitude. The r
of the integral over the moduli space would then give
closed stringn-point amplitude on AdS space.

V. THE THREE-POINT FUNCTION AND AdS
CORRELATORS

A. From delta to star

We will consider then53 case of Eq.~1.1! ~in the planar
sector!,

G$Ji %~k1 ,k2 ,k3!5^TrFJ1~k1!TrFJ2~k2!TrFJ3~k3!&conn.
~5.1!
0-8
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FROM FREE FIELDS TO AdS SPACE. II PHYSICAL REVIEW D70, 025010 ~2004!
The analysis is a generalization of that in@11# but will be
done in a somewhat different way to make things cleare12

The first thing to note, in this case, is that the number
legsmr in the r th edge is determined completely by theJi .
In fact, we have three equations~from the three vertices!,

m121m135J1 ~5.2!

and cyclic permutations of it. Here we are labeling the ed
r by the pair of vertices they connect. Equations~5.2! deter-
mine themi j to be

m125
1

2 (
i 51

3

Jk2J3 ~5.3!

and cyclic permutations. Thus there is a unique graph c
tributing to Eq.~5.1! with a fixed number of legs betwee
each pair of vertices. We do not have to carry out any s
over multiplicities.

Now, by the arguments of Sec. II, this graph can be glu
up into a skeleton graph, which is just a triangle in this ca
And the expression for the amplitude in terms of the eff
tive Schwinger parameters is given by Eq.~2.9!. @Since the
skeleton graph is unique, up to reflection, this is the sam
Eq. ~2.11!.# Actually, as in Eq.~4.2!, we will work with the
natural conductance variabless r51/t r and rewrite Eq.~2.9!,
using Eqs.~4.3! and ~4.4!, as

G$Ji %~k1 ,k2 ,k3!5E
0

`

)
r 51

3

ds rs r
~mr21!@~d/2!21#1~d/2!22

3
1

D̂~s!d/2
exp$2 P̂~s,k!%. ~5.4!

Here we have relabeled the edges so thats1[s23, etc. and
dropped the overall factors ofC(mr ). Also, using the expres
sions~4.3! and ~4.4! we have

D̂~s!5s1s21s2s31s3s1 ~5.5!

and

P̂~s,k!5
1

D̂~s!
@s1k1

21s2k2
21s3k3

2#. ~5.6!

We will now reexpress this in terms of new moduli, mo
appropriate for the tree,

1

r i

5
s i

D̂~s!
⇒s i5

r1r2r3

~(krk!r i

. ~5.7!

This change of variables is motivated by the star-d transfor-
mation of electrical networks. Namely, ifs i are the conduc-

12See @40–43#, etc. for studies of three-point functions of suc
scalars~chiral primary operators in theN54 theory! in the context
of AdS/CFT.
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tances of ad or triangle network, such as the one we hav
thenr i are the conductances of the equivalent three-pron
tree or star network~see@44# for example!. It can be checked
that the Jacobian for this transformation is given by

detS ]s i

]r j
D5

r1r2r3

~(krk!
3 . ~5.8!

We also see that

D̂~s!5
r1r2r3

~(krk!
, P̂~s,k!5(

i 51

3 ki
2

r i
. ~5.9!

We can now rewrite the integral in Eq.~5.4!, after gathering
together various terms,

G$Ji %~k1 ,k2 ,k3!

5E
0

`

)
i 51

3

dr ir i
~(kmk2mi !@~d/2!21#2~d/2!21

3
1

~(krk!
(kmk@~d/2!21#2~d/2! e2@( i 51

3
~ki

2/r i !#

5E
0

`

)
i 51

3

dr ir i
D i2~d/2!21

3
1

~(krk!
(k~Dk/2!2~d/2! e2@( i 51

3
~ki

2/r i !#. ~5.10!

In the second line, we have used Eqs.~5.2! and~5.3! as well
as the fact that the operators TrFJi have canonical dimen
sionsD i5Ji@(d/2)21# in the free theory.

This last line is close to what one might expect from
string theory on AdS space, as we will shortly see. In a
case, it is a short step now to write Eq.~5.10! in terms of the
expected bulk-to-boundary propagators in AdS space,

G$Ji %~k1 ,k2 ,k3!5E
0

` dt

t ~d/2!11 E
0

`

)
i 51

3

dr i

3r i
D i2~d/2!21tD i /2e2tr ie2ki

2/r i.

~5.11!

Here we have used the identity

1

as 5
1

G~s!
E

0

`

dt ts21e2at, ~5.12!

to rewrite the denominator term in Eq.~5.10!.
Either in this form or after a Fourier transform to positio

space, we can recognize this to be the product of three b
to-boundary propagators in AdSd11 for the appropriate sca
lar fields. Thus, for instance in position space~taking into
account the overall momentum-conservingd function!, we
can write Eq.~5.11! as
0-9
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G$Ji %~x1 ,x2 ,x3!

5E
0

` dt

t ~d/2!11 E ddzE
0

`

)
i 51

3

dr ir i
D i21tD i /2e2r i @ t1~xi2z!2#

5E
0

` dt

t ~d/2!11 E ddz)
i 51

3

KD i
~xi ,z;t !, ~5.13!

where

KD~x,z;t !5
tD/2

@ t1~x2z!2#D ~5.14!

is the usual position space bulk-to-boundary propagator f
scalar field corresponding to an operator of dimensionD. The
only slight difference is that we have parametrized the A
radial coordinate byz0

25t as in @11#.
What we have thus seen here is that the integral over

moduli spaceM0,3, which the parametric representation
field theory provided us, is really an integral over AdS spa
The original Schwinger parameterss i can be traded for the
r i which parametrize the propagators for the external leg
the AdS correlator. Integrating over ther i , which corre-
spond to the size of the holes, propagates the AdS scalar
all the way from infinity ~the boundary!. This corresponds
very much to the picture in the Introduction of the hol
being replaced by punctures. We will see below how this
likely to be more general than that for the three-point fun
tion.

B. Vertex operators in AdS space

We can also understand how Eq.~5.4! or equivalently Eq.
~5.10! could arise from a vertex operator calculation in Ad
space. Though we do not have a good handle yet on
string theory, we can guess that then-point correlators are
given in terms of vertex operator computations in the wor
sheet~WS! theory for AdS space. Thus for scalars we wou
guess, following@15,45#,

G$Ji %~x1 ,...,xn!5K )
i 51

n

KD i
„xi ,X~j i !;t~j i !…L

WS

5K )
i 51

n
t~j i !

D i /2

$t~j i !1@xi2X~j i !#
2%D iL

WS

.

~5.15!

Here X(j),t(j) denote worldsheet fields for the AdS targ
space. The averaging, as the subscript indicates, is ove
worldsheet action for these and other fields~including
ghosts!. An integral over the moduli space of the Riema
surface withn punctures is also implicit. We can write Eq
~5.15! in the parametric form
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G$Ji %~x1 ,...,xn!

5E
0

`

)
i 51

n

dr ir i
D i21

^t~j i !
D i /2e2t~j i !r i2r i @xi2X~j i !#

2
&WS.

~5.16!

To make a connection with the field theory expressions
go to momentum space, where Eq.~5.16! becomes

G$Ji %~k1 ,...,kn!5E
0

`

)
i 51

n

dr ir i
D i2~d/2!21

3e2ki
2/r i^t~j i !

D i /2e2t~j i !r ieiki•X~j i !&WS.

~5.17!

We believe Eq.~5.17! is the right starting point for a
comparison of the~scalar! n-point function in AdS space
with the field theory expressions~2.11!, etc. But we can al-
ready see over here many of the features that we exp
There aren parametersr i which can be identified with the
size moduli of holes, as we argued at the end of the
subsection. Then there are the usual (6g12n26) moduli
for the n-point function. As in the case of the three-poi
function, we need to find the appropriate change of variab
to go from these parameters to the (6g13n26) s i of the
field theory. But it is clear that Eq.~5.17! fits in with the
general schematic form of Eq.~4.1!.

In the particular case of the three-point function that
studied above, since Eq.~5.17! should be independent of th
j i ( i 51,...,3) from conformal invariance, it is plausible th
only the zero mode of the fieldst(j),X(j) effectively con-
tributes in the worldsheet path integral~after including the
contribution of appropriate ghost insertions!. The zero mode
for t gives the corresponding integral in Eq.~5.11!, and that
for X just gives the overall momentum-conservingd func-
tion. Thus it is not surprising from this point of view that w
could relate the field theory three-point function to the poi
particle amplitude~5.13!—only the zero modes contribute.
also suggests that we will really see the stringy structure
the four- and higher-point functions.

Going by the arguments presented in this paper, the fi
theory expressions such as Eq.~2.11! or Eq.~4.2! are just Eq.
~5.17! written in different variables. So we can use this
turn things around and write down the AdS correlators fro
the field theory~certainly in the case ofN54 super Yang-
Mills theory!. We would then have reconstructed the stri
theory on AdS space via all its correlators.

Anyhow, the task now is obviously to make various
these surmises precise and in the process learn abou
worldsheet theory for AdS space. In some sense we are
situation very similar to that in the early days of dual theo
when people reconstructed the string picture from the fo
of the Veneziano-Koba-Nielsen and Virasoro-Shapiro am
tudes.
0-10
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APPENDIX A: A CHANGE OF VARIABLES

Here we will see how to effect the change of variables
integration from thet rmr

in Eq. ~2.8! to the effective

Schwinger parameterst r in Eq. ~2.9!. First, the relation be-
tweent r andt rmr

is given by Eq.~2.6!. This can be imple-
mented by inserting into the integral~2.8! the identity

E
0

` dt r

t r
2 dS 1

t r
2 (

mr51

mr 1

t rmr

D 51. ~A1!

The nontrivial dependence ont rmr
in Eq. ~2.8! comes from

the first term. So using the above identity, we can write s
a contribution as

E
0

` dt r

t r
2 E

0

`

)
mr

dt rmr

t rmr

d/2 dS 1

t r
2 (

mr51

mr 1

t rmr

D . ~A2!

Now definexrmr
5t rmr

/t r and change variables fromt rmr
to

xrmr
. Then Eq.~A2! reads
tt

s

02501
n

l

f

h

E
0

` dt r

t r
mr @~d/2!21#12 E

1

`

)
mr

dxrmr

xrmr

d/2 dF 1

t r
S 12 (

mr51

mr 1

xrmr

D G
5E

0

` dt r

t r
mr @~d/2!21#11 E

1

`

)
mr

dxrmr

xrmr

d/2 dS 12 (
mr51

mr 1

xrmr

D .

~A3!

Thus we have factored the integral overt rmr
into an integral

over t r times a factorC(mr ) which depends only onmr ,
where

C~mr !5E
1

`

)
mr

dxrmr

xrmr

d/2 dS 12 (
mr51

mr 1

xrmr

D
5E

0

1

)
mr51

mr

dyrmr
yrmr

~d/2!22dS 12 (
mr51

mr

yrmr D . ~A4!

In the second line, we have made the substitutionyrmr

51/xrmr
. In this form, we can do the integral explicitly fo

generald. But the case ofd54 is particularly simple. Thed
function over one of theyrmr

can be carried out and we ar
left with an integral over the others (mr21) over the region
where their sum is less than 1. This is just 1/(mr21)!. In
general dimensions, the answer is13

C~mr !5

GS d

2
21D mr

GFmr S d

2
21D G . ~A5!

13We would like to thank E. Schreiber for providing us with th
expression.
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