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We continue with the program of papefRhys. Rev. D70, 025009(2004)] to implement open-closed string
duality on free gauge field theorin the largeN limit). In this paper we consider correlators such as
(II'_, TrdJi(x;)). The Schwinger parametrization of thigpoint function exhibits a partial gluing up into a set
of basic skeleton graphs. We argue that the moduli space of the planar skeleton graphs is exactly the same as
the moduli space of genus zero Riemann surfaces whbles. In other words, we can explicitly rewrite the
n-point (planay free-field correlator as an integral over the moduli space of a spherenvitthes. A prelimi-
nary study of the integrand also indicates compatibility with a string theory on AdS space. The details of our
argument are quite insensitive to the specific form of the operators and generalize to diagrams of a higher
genus as well. We take this as evidence of the field theory’s ability to reorganize itself into a string theory.
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[. INTRODUCTION theory point of view, makes it a natural starting pdinfhe
strategy in[11] was to consider a worldline representation

How exactly does a quantum field thediiy the largeN  (Schwinger parametrizationof the free-field correlators.

limit) reassemble itself into a closed string theory? This! his was motivated by the fact that these representations can

question lies at the heart of the gauge theory/geometry COI’Qe viewed as being directly inherited from the relevant open

q A . lity is fikel .~ _string theory in then’ — limit. A nice feature of this rep-
respondence. Answering it in its generality is likely t0 giVe rasantationis its correspondence with electrical networks.

us valuable clues regarding the string dual to QCD, for in-This correspondence suggested that carrying out the integra-
stance. tion over the internal loop moment@liminating internal
What we have learned in the years since Maldacena’surrentg should yield an equivalent network, now with a
breakthrough is that the answer to this question is tied ugreelike structure. In other words, the holes would have been
with open-closed string duality. The gauge theory arising inc/0Sed up. The idea was then, through a change of variables

; Lo ; n the Schwinger moduli space, to exhibit the integral as that
an open string description is related by worldsheet duality togf a closed string tree amplitude on AdS space.

a closed string description. The holes of the open strl_ng In [11] we restricted ourselves to bilinear operattssch
worldsheet get glued up, getting replaced by closed strings Td2). Then-point function of these operators is given by
Insertions. a one-loop diagram. For the case of two- and three-point
In the case of topological string dualities, it was possiblefunctions, the equivalent tree diagrams are the expected
[1,2] to make this intuition precise using a linear sigmaones. A simple change of variables on the Schwinger param-
model description of the worldsheéhe argument for the eters converted the integral to a tree amplitude in AdS space.

corresponding® terms in the superstring was made[8J). We further gave arguments for the four-point function that

Recently, a very nice illustration of open-closed string dual_the resulting tree structure is again in line with expectations,

. . o X though a detailed check was not carried out.
ity was given, again in a topological context, for the Kont- | “ihe present paper, we will consider a much more gen-

sevich matrix mode[4]. Here again, one could concretely eral class of operators and their correlators, such as
see the process of holes closing up and being replaced by
closed string insertions.

Nevertheless, the original AdS conformal field theory
(CF'I)lconjecture[S—?] has not yet been understood in such
terms. In [.ll] we gmparked on a_n eﬁf’”_ to implement open- 2See [12-21] for various investigations of the free/weakly
closed S_t”ng duality in the fre?ff'eld I'm't. Of. the'=4 supgr coupled theory with a view to understanding its stringy dual. An-
Yang-Mills theory. The tractability of the limit, from the field other approach starting from light cone field theory is that of Thomn

and collaborator$22] as well as that of Karch and collaborators
[23]. There is also a lot of literature on the connection between
*Email address: gopakumr@mri.ernet.in weakly coupledV=4 Yang-Mills theory and integrable spin chains,
The recent proposal8,9] (see alsd10]) that V=4 Yang-Mills since the work of 24].
theory arises as the target space theory of a topological sigma modePAs in [11] we will be considering a U{) Euclidean gauge field
might, perhaps, enable one to view it in a manner close to the othaheory. We will again be dropping factors which are “inessential” in
topological examples. all equations.

n

G{Ji}(xl,xz,...,xn)=<H Trd)Ji(xi)> . (1Y
=1

0556-2821/2004/7@)/02501112)/$22.50 70 025010-1 ©2004 The American Physical Society



RAJESH GOPAKUMAR PHYSICAL REVIEW D70, 025010(2004

o

FIG. 1. Gluing up of a planar six-point func-
tion into a skeleton graph.

Gluing

All possible free Wick contractions lead to a large class ofidentified with these closed string insertions. On integrating
diagrams contributing to such a correlator, even if one reover the moduli corresponding to the size of theseoles,
stricts to planar graphs. These diagrams havertices with ~ the holes should effectively pinch off giving rise toexter-
J; legs coming out of théth vertex. We will argue, from the nal closed string insertions at punctures. This is indeed the
Schwinger parametrized expressions for such diagrams, thaicture that is realized in the topological string dualities of
they exhibit a(partia) gluing up into a skeleton diagram [1,2,4]. The situation is depicted in Fig. 2. We will see evi-
(with n verticeg which captures the basic connectivity of the dence that this is realized in our case, both by looking at the
original graph. This is illustrated in Fig. 1. three-point function in detail as well as by studying the form
This gluing can be intuitively understood from the elec- of general stringy correlators in AdS space.
trical analogy since it essentially involves replacing the vari- It is mainly for the sake of simplicity that we make our
ous parallel resistoréSchwinger parametersbetween a pair arguments for then-point correlators of scalars. The
of vertices, with a single effective resistor. Therefore, anySchwinger parametrizations for otherpoint functions in
particular contribution to the-point function(1.1) can be free-field theory are very similar. In particular, the Feynman
expressed as an integral over a reduced Schwinger parametgaphs get glued up, for exactly the same reasons, into the
space, namely that of the corresponding skeleton graph. Treame skeleton diagrams. And hence replaying the arguments,
information about thel; is captured through a specific de- we can conclude that otherpoint correlators in the free
pendence in the integrand. theory can also be written in terms of an integral oy, .
However, planar graphs with different connectivities give  Moreover, the argument is not restricted to planar dia-
rise to different skeleton diagrams. All these different skel-grams alone. One can generalize to diagrams of arbitrary
eton diagram contributions need to be summed over to obtaigenus, which also get glued into skeleton diagrams. This
the complete answer for Eq1.1). We will argue that this time one makes a correspondence with the cell decomposi-
space of skeleton graphs is in one-to-one correspondend®n of the moduli spaceV, ,. Thus in all cases an-point
with the familiar cell decomposition of the moduli space function leads to a Riemann surface wittholes. This leads
Mo, of a sphere witm holes. This basically follows from us to believe that what we are seeing is a signature of the
considering the graphs which are dual the graph theory string dual of the free-field theory. In fact, an advantage of
sensg to the skeleton diagrams. this procedure is that it is quite likely generalizable to the
It is important to stress that this moduli spacedistinct  interacting theory as well.
from that of the string diagrams underlying the original field Having written the field theory expression as an integral
theory Feynman diagrams. As is evident from the contribu-over parameters which covev(, ,, the main task then re-
tions to Eq.(1.1) shown in Fig. 1, these have a large numbermains to see that the integrand corresponds to that of the
of loops (the number depending ofi). In fact, even the appropriate string theory on AdS space. In fact, it is tempting
skeleton graphs themselves havgenerically 2(n—2) to speculate that the theory owty ,, which we are seeing
faces, whereas the moduli space that we are associating withere, defines consistent open string theory on a zero size
namely alln-point correlators such as in E€lL.1), is that of AdS spaceThe n holes give the contributions of boundary
a sphere with exactly holes. Moreover, field theory correla- states in this open string theory. As in the picture of tachyon
tors typically get their contribution from corners of string
moduli space, whereas here it is the full moduli spadg,,
which contributes. Thus this stringy representation of field
theory is different from that studied by Bern, Kosow2b], o
and others. ~
In fact, the emergence of the moduli space of a sphere
with n holes is natural from the point of view of the gauge
theory/geometry correspondence. The scenario one expec
is that the loops of the original field theory planar diagram
get glued up to form a surface and one has insteathsed FIG. 2. Skeleton graphs sphere with holes: sphere with punc-
string insertions. Then holes that we see here are to be tures(as the holes go te).

A
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condensatiorisee, e.9.[26,27)) or the topological duality of space of all planar skeleton diagrams with the moduli space

[4],% integrating the boundary state over the size modulus oMy, . It also sketches the generalizations to other correla-

the hole would then give rise to a description in terms oftors as well as to higher genus. Section IV makes some gen-

closed string vertex operators in AdS space inserted an the eral remarks on the integrand in moduli space as given by

punctures. These issues are under investigation. At preseri€ld theory. Section V studies the three-point function in

we will just make a few disparate remarks in Support of theSome detail. It also gives some evidence for the relation be-

above scenario. tween the field theory integrand and the genergloint
First, as we will see in Sec. IV, in the “critical” dimension Stringy correlator on AdS space. Appendix A gives the details

d=4, the integrand can be written in a particularly nice form@associated with a change of variables in Sec. II.

as far as its dependence on the quantum numbeend

external moment#; go. This form is at least not obviously Il. SCHWINGER MODULI AND SKELETON GRAPHS

inconsistent with string theory and in fact shares many struc-

tural features consistent with it, as we will also see in Sec.

VB. An important check is that the integrand is continuous = The Schwinger parametric representation of field theory is

across the boundaries of the different components in the cell well-studied subject. Essentially, one reexpresses the de-

decomposition of the moduli space. nominator of all propagators in a Feynman diagram via the
Second, the factorization of field theory correlators fol-identity (appropriate for Euclidean space correlators

lowing from the spacetime OPE should translate into a fac- L

torization of the amplitudes in the closed string channel. It is I 2, o

plausible that the integrand in the Schwinger moduli space p’+m? J; drexp{—7(p"+m7)}. 2.1

should reflect this factorization and thus provide one of the

consistency checks for it to be a string amplitude. This has the advantage of converting all the momentum in-
Finally, we generalizdin Sec. \) the considerations of (aqrais into Gaussian integrals which are then easy to carry
[11] for planar three-point functions of bilinears to that for o, |t is a little intricate to keep track of the details of the
the more general operatorsdTt. We see in this case that the momentum flow. But the final expressions for an arbitrary
three Schwinger parameters that label, ; (corresponding  Feynman diagram can be compactly written in graph theo-
to the sizes of the three holesansmute into parameters for yetic terms. For the case of scalar fields, the expressions can
the external legs of AdS propagators. This happens via thge 10oked up in field theory textbooks such [@8] (Sec.
same change of variables as[iil]. In a sense, integration .53 The expressions involving spinors and gauge fields
over these moduli effectively puts the insertions at theare more involved. For a recent review containing the gen-
boundary of AdS space. We will also look at the generalg g expressions, ség9,30.
form of string correlators of scalars. in AdS space and argue  since we will be mostly looking at massless scalar fields,
that they can very naturally be cast in a form compatible withiet s consider the expression for an arbitrary Feynman dia-
the field theory expressions obtained in Sec. IV. Thereforegram contributing to the momentum space version of Eq.
together with the emergence of the stringy moduli space, thi .1). The result(in d dimension of carrying out the inte-

gives us confidence that we are implementing the expectegra| over the internal momenta is given in(deceptively
picture of open-closed string duality in this approach. compact forn?

There are other issues which we do not address directly in
this work. For instance, understanding the role of supersym- = 11.dr
metry, if any, will have to await a more detailed study of the G(Ky Ky, ... Ky) = j —mexp—P(r,k)}. (2.2
properties of the integrand. In any case, our firm belief in the o A(7)
AdS/CFT conjecture tells us that, at least in this case, we are
assured of the free-field theory having a closed string duakere the product overgoes over all the internal lines in the
But, in our arguments here, we do not really use any aspe@raph—there being one Schwinger parameter for each such
of N'=4 super Yang-Mills theory. The procedure thus far isline. The measure factoA(r) and the Gaussian exponent
quite general. Another related issue is that of the spacetimB(7,k) are given by(see, e.g.[28,29)
dimension. The main conclusion of this paper about the
emergence of the moduli spagdd , is valid for any dimen- [
siond. But the integrand seems to be particularly nice when A(r)=D ( IT +/. (2.3
d=4 (as might be expected of field theonies closer ex- T
amination of the integrand should reveal more.

The paper is organized as follows. Section Il displays the (|+1 ) 5
Schwinger parametrization of correlators such as @dl) _ -1 ( )
and exhibits their gluing up into skeleton graphs as in Fig. 1. Plrk)=4(" Tz2 H 7 E k) - 249
Section Il then makes the correspondence of the parameter

A. A review of the parametric representation

“4In fact, the authors of4] speculate on the existence of such an °Here we are suppressing the overall momentum-conserding
open string theory on AdS space, in analogy with their example. function.
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Here we are following the notation ¢29]: The sum is over B. Gluing into skeleton graphs
various 1-trees and 2-trees obtained from the original 100p | the free theory, the correlatofs.1) are given by a sum

\(/jvlietlr?ﬁ?é As t’g;‘; Itz crf;iglzdcgﬁr?;ggg"gzz O\Ivr?ilglzg;rpee Qver all possible connected Wick contractions. Let us start by
b ' éonsidering the leading lardé-contribution. They are given

o.bt.a|_ned by cuttlngfl I|ne§ of the loop so as to form two by planar diagrams such as those shown in FijWe have
disjoint trees. Equatiof2.3) indicates a sum over the SE{ . .
as many legs coming out of théh vertex as there are free

of all 1-trees, with the product over theSchwinger param- . :
b ger P fields inserted there, namely. These planar diagrams are

eters of all the cut lines. The sum ovEj in Eq. (2.4) simi- e : . .
larly indicates a sum over the set of all 2-trees, where thénoré easily visualized as spherical diagrams—drawn on a

product is over thers of the | +1 cut lines. And EK) is sphere. How do we organize the sum over all the different

understood to be the sum over all those external montenta POSSible contributions? _ _ ,
which flow into (eithe) one of the 2-trees(Note that be- First, for a planar graph with a given connectiiite., the

cause of overall momentum conservation, it does not mattef€t Of pairs of verticesij) which are linked by at least one

which set of external momenta one chooses. contraction compatible with planaritythere can be a multi-
A simple illustration of these expressions is for the one-PliCity M; in the number of lines between each pair. In fact,

loop diagram withn insertions. There ara Schwinger pa- ©ON€ can convince oneself that a planar graph, witertices,

rameters for each of thearc segments of this loop. Cutting that is maximally connected, hasrg{ 2) inequivalent con-
any of them leads to a 1-tree. Therefore nections, where theth connection is comprised ofi, lines.

m, is only constrained by the fact that there must be a total of
n J; lines entering théth vertex. Thesa constraints imply that
A(7) _ E - there are 2G— 3) undetermined numbers among the. For
(=D& n>3, there is thus a lot of multiplicity for a given connec-
tivity. Second, the above multiplicity was for a fixed connec-
Cutting any two distinct ones leads to two disjoint trees and!Vity; but it is clear that there are several inequivalent ways
(for n>4) to connect the vertices themselves, consistent
with planarity.
P(1.K) = =A(1 202 mimj(Kisat+e k)2, What we will show in this section is that the first set of
- =vg . contributions—from the multiplicity of lines—can all be
bunched up in a natural way. For a given connectivity, at first
where 7; is the parameter for the arc joining theand § it migh.t seem that the parametric represe.nta@ﬁ) i.mplies
+1)th insertion. These expressions naturally agree witY€ry different contributions for graphs with differing,'s,
those obtained from the worldline formalism of Polyakov, Since we would have to introduce Schwinger parameters for
Strassler, etd:31-33. In [11] we used these expressions to each internal line. However, we will argue that each of these
study the gluing up for bilinears in the free theory. contributions can be written in terms of a reduced set of
A beautiful feature of parametric representations is theSchwinger para_meterﬁ"f" , wherer runs over the edges in
correspondence with electrical networks, originally discov-the corresponding skeleton graph. This skeleton graph is
ered in Bjorken’s 1958 thesisee Chap. 18 of34)). If we what we term the graph that captures the connectivity of a
identify the externalas well as internalmomenta with cur- ~ given Feynman diagrarhin other words, we replace all the
rents flowing in the network corresponding to the Feynmar™; lines in a connection by a single edge. In Fig. 1 we have
diagram, then the Schwinger parameters play the role of rdllustrated this for our example. In other words, all contribu-
sistances. In fact, the Gaussian exponent, before carrying ofiens of a given connectivity are expressed in terms of an
the momentum integrals, has the interpretation as the powddtegral over parameters defined on the corresponding skel-
dissipated in the original circuitZ(,IrzR,). The process of
carrying out the integrals over internal or loop momenta is . . . . .
then equivalent to the standard procedure of elimination of N the figure, the maximal number of connections compatible
internal currents using Kirchoff's laws. The resulting Gauss-With planarity have been drawn. Adding a line between two vertices
ian in the external momenta, given in B&.4), then has the that are not already directly connected will destroy planarity.
interpretation as the power dissipated in the equivalent cir- "Caveat In order that the skeleton graph faithfully capture the
cuit after elimination of the internal loops. This gives us aS°!o" flow of the original diagram, we will only glue together adja-
nice source of intuition for the process by which loops Cancent strips of the underlying double line graph. Lines between the
. . . same pair of vertices, but which cannot be deformed into each other
get glued into trees. Iill] we exploited this to understand

th Ui f the t th d f int functi fwithout crossing a line between a different pair, witht be glued
1€ gluing or the two-, three-, and four-point functions Of o her Hence the skeleton graph could haeeeraledges be-
bilinears into trees.

) n I tween a given pair of vertices. Each such edge comes with its own
As we will now see, the correlatokdli_ ; Tr®i(X;) ) conn multiplicity. The simplest illustration of such instances is in the

will exhibit the gluing much more completely. In particular, four-point function where one can have two contractions along one

considering these general correlators will allow us to see albf the diagonalgon opposite sides of the sphere, so to)sahile

the string moduli, something which was not possible withhaving none on the other diagonal. Note that such a graph also has

bilinears alone, for reasons that will become clear as weix edges just like the tetrahedron, where all pairs of vertices are

proceed. singly connected.
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eton graph. The dependence on the multiplicitigsis cap- P(7.k)=P(" k), 2.7)
tured by the integrand in a fairly simple manner. The net

result is that the skeleton graph and its moduli capture all the

contributions of a given connectivity.

We will argue for this result from the explicit form of the
parametrization in Eq(2.2). However, experts might not
need much convincing about the truth of this assertion
[They are welcome to skip the technicalities and go to Eq .
(2.9.] In the Schwinger parameter representati¢h?2), the sum Oveefrf 2-trees s relgted by a factor of
which we are working with, the result can be understood 1. 7ru )17 to the corresponding sum over 2-trees of
from the electrical network intuition. In this language, all we the skeleton graph with®" for its edges. The reasoning is
are doing is to replace all the parallel resistors joining verti-completely analogous to that of the previous paragraph. Put-
ces(ij) (subject to the caveat in footnote By an effective  ting this together with the relatio(2.5 between the factors
resistance given by the usual expression for multiple parallebf A and A, we see that the factor Oﬂ_[(’,M,TrM,)/HrTrEﬁ

resistors. In that sense, we are partially gluing up the originatancels out and we are left with the relation stated in Eq.
Feynman diagram by bunching up various internal lines. (o

_ Let us now see how this is reflected in the actual expres-  ping both these results together, we have, for a diagram
sions. We start with am-vertex free-field diagram whose f fixed multiplicity and connectivity, the contribution
connectivity is specified by a skeleton graph having multi-

plicity m, for the rth edge. We will label the Schwinger
parameters for the internal lines by#r, wherer indexes the
edges of the skeleton graph=1,...,3(—2)] and u, their
multiplicity (u,=1,...m,).

Our first claim relates the term(7) of the original graph
to that of the skeleton graph,

where P(7°% k) is given by the same expression as in Eq.
(2.4), but now for the skeleton graph with its effective
Schwinger parameters for its edges. This follows from simi-
lar considerations as above. The term in Efj4) involving

exp—P(Tk)}. (2.9

dr2

ff
[ i, 11,(7E1) 2
0 r,u Trl/«r Z(Teff)dIZ

0 - The final step is to convert this into an integral over #iE.
A(r)= Dk r’u""A(Teﬁ)_ (2.5) Since the nontrivial dependence in the integrand is all on the
7% 7", the dependence on the,, can be factored out by a

r 7
change of variables. The details are worked out in Appendix
Here the effective Schwinger parameter is given by the forA. The end result is that the contributi¢®.8) to then-point
mula for parallel resistors, function (1.1) from a graph with fixed connectivity and mul-
tiplicity can be written as

1 1 06
T_Eﬁ_'urzl Trp‘r ’ ' m?’(ﬁZ) C(mr)dTr 1
- - exp—P(7,k)}.
- fO baie} Timr D[(d/2)—1] A(T)d/Z p{ (T )}
while A(7°) is given by the same expression as E43) but (2.9

now the sum over 1-trees is that of the skeleton graph with

the effective parameter$™ for the edges. Our claim follows

from the definition in Eq(2.3). We are instructed to take the HereC(™) is a constant, independent of this but depend-

product of the parameters on the cut lines of the originaing onm,, obtained from the change of variables in Appen-

graph. In therth bunch, we are forced to cut eithem( dix A. It is explicitly given by

—1) or allm, of the lines to get a 1-tree. Any fewer cut lines

would leave a loop. If we were to cut all of them, then we

would get a factor ofl, 7, for that bunch and in the skel- 1 M ~

eton h ld have ' C(mr):f IT dy,y®®251-> vy, |. (210
graph we would have thus cut the corresponding edge. 0y Skl < o

If we were to cutm,— 1 of them, then we would get a factor

(HMrTer)/Tfﬂ corresponding to all the possible ways of cut-

ting (m;—1) lines in that bunch. In the skeleton graph we Note that in the interesting case af=4, C(™=1/

would be leaving the'th edge uncut. Now it is clear, from (m —1)!.

the relative factor of°" between the two cases, that on sum-  We have also dropped the superscript onthes well as

ming over all possible 1-trees of the original graph we will the tildes. Hopefully this will not create any confusion, since

end up with a sum over 1-trees of the skeleton graph, obtairfrom now on only the effective Schwinger parameters will

ing the relation in Eq(2.5). play a role. Furthermore, all quantities such &&) and
The next claim is that the Gaussian exponent in@ad)  P(r,k) will refer to the skeleton graph.

of the original graph can be expressed entirely in terms of the Therefore, we can write the total planar contribution to

skeleton graph with parameterSff , the momentum space version of Ed.1) in the form

025010-5
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GUh(ky ky,... Ky sociate a dual edge which intersects the original one trans-
. versally. We will also associate a lengih=1/7, (“conduc-
_ H 5 H cm) tance”) to this edge. The length of individual dual edges can
M (i) Jids

then vary in an unconstrained manner from @tas we vary
7, . In this way, every face of the original graph gives rise to
dr, 1 a vertex for the dual and vice versa. The dual graph is thus
X fo r[[l A DA =1] A (7)972 expl—P(7.k)}. constrained to hava faces. And corresponding to the trian-
r gular faces are now trivalent vertices. But the topology re-
(2.1 mains that of a sphere. Therefore, as we sum over inequiva-
lent skeleton diagrams, we carry out a sum over the space of
Gual graphs, that is, over all discretizations of the sphere
with n faces formed from graphs with cubic vertices. As
mentioned earlier, the lengths, of the edges of the dual

skel graphs{m,}=1 i=1

_3(n-2)

The sum is over various inequivalent planar skeleton graph
with n vertices. The sum over multiplicities is constrained by
the fact that the net number of legs at il vertex isJ; .
[r(i) labels an edge which has thth vertex as one of its

graph vary from 0 toe.

end points} ; ) ; . .
Thus we see that the planaupoint correlator can be writ- .Th's. can w_nme@ate!y b? recognlzgd as the picture  of
tring interactions in Witten's open string field thedBs].

ten as an integral over the space of planar skeleton graph§. o X ) i
By this we mean that Eq2.11) includes both an integral Open_strlng fl_eld the_ory generate_s string dlagrams_descrlbed
over the length of the edgéas parametrized by thes) of a  PY Strips of fixed width but varying lengths, meeting at
given skeleton graph as well as a sum over the different Waygublc vertices. In fact, as shown first [86] and argued later

of joining the n vertices. In the next section, we will show in full generality by[37], such diagrams of arbitrary genus,
that this space is the same as that of the moduli space of %ith some number of boundaries as well as punctures, pre-

sphere withn holes. We will also look at various generaliza- Cisely generate a single cover of the corresponding moduli
tions. space of Riemann surfaces with boundaries and punctures.

This “cell (or simplicia) decomposition” of the moduli

space was also worked out independently by mathematicians

[38].1° Thus the sum over inequivalent skeleton graphs is the

A. Skeleton graphs and the cell decomposition of moduli sum over different cells in this decomposition of the moduli
space space.

To see the string theory emerge from the field theory, we An important aspect of the cell decomposition is the way

need to have the space of string diagrams arise from the fiefdT€"ent components in this decomposition of the moduli
theory Feynman graphs. By making a correspondence of th%paci connect to e.aCh other across _boundarles of these
above space of planar skeleton graphs whthy , (and more cells™ It can be ver!fled that the mapping to dual graphs
generallyM, ), we will accomplish precisely that. preserves §h|s beha\{lor. For example, in the case of the four-
The correépondence is made by observing first that thgoint function, consider an 0“9”?6" skeleton graph in the
space ofn-vertex planar skeleton graphs, which we haveShape of a tetrahedr(_)n W|t_h all six legs of nonzero length.
been considering, is merely the space of all triangulations Opne can go to a codimension-1 boundary of the cell Whe.fe
the sphere witm vertices. When we say triangulations, we the lengtho (?f one of Fhe dual edges goes to zero. This
mean that the maximum number of edges, consistent Witﬁorrgsponds In t'he original graph to removing an edge and
planarity, namely 3f—2), arises when all the faces of the getting a quadrllateral_face._ From this bound‘?‘ry one can
skeleton graph are triangles. If one of the faces of the dismoVve to a component in which the e_dge opposite @t
cretized sphere were not a triangle, we could always add J}avmg no vertex in common W|th)|td<a_velops a second
least one extra edge without destroying planarity. In othelStrand but now traversing the opposite side of the spfeee

words, the region of parameter space where quadrilatera@OtnOte 4. Mapping this onto the dual graphs, one exactly

and other polygons appear in the faces is codimension 1 or
higher in the parameter space. More precisely, quadrilaterals,, he field th | _ I tak b
etc. arise only when one or more of thego to «. That is The field theory correlators in Eq1.1) are usually taken to be

because the corresponding edges are effectively removélaose of normal ordered operators. In such a case there are no
since the resistance in those edges is goingetdn sum self-contraction diagrams. In the correspondence to dual graphs,

associated uniauelv. to everv discretization of the s herself-contractions lead to tadpole subgraphs. Presumably there exists
quely, Y PRETE edefinition on the AdS side which corresponds to the normal

with n vertices there is a planar skeleton graph arising from %rdering prescription on the field theory side. This would then take

Feynman diagram and .vice yersa. . care of the tadpole diagram contributions in the cell decomposition
Now, to each such discretization of the sphere waitrer- ¢ ihe moduli space.

tices we can uniquely associate a dual graph in the standardoye would like to thank P. Windey and S. Govindarajan for
mannef Namely, to each edge of the original graph we aS-suggesting early on a possible connection between the approach of
[11] and the work of Penndi38]. For a nice introduction to Pen-
ner’'s work, see the recent artidia9.
8We would like to thank S. Wadia for a helpful remark about the 'We would like to thank A. Sen for helpful discussions on this
relation between graph duality and open-closed string duality. point.

lll. FROM SKELETON GRAPHS TO STRING DIAGRAMS
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gets the matching up of the different codimension-1 composponding to higher genus Feynman diagrams are then glued
nents of the cell decomposition ¢, 4. Similarly, one can  up into skeleton graphs which are discretizations of Riemann
go to codimension-2 boundaries of this codimension-1 celburfaces with more handles. Similarly, the mapping to dual
and see that they also patch together smoothly. In all caseglaphs gives rise to string diagrams that cover the moduli
graph duality faithfully implements the required behavior. spaceMg . As we remarked earlier, the cell decomposition
Thus, we can conclude that the space of planar skeletof [36—38 holds for any genug Riemann surfaces with
graphs withn vertices is isomorphic to the moduli space holes.
Mo, of a sphere withn boundaries(faces. Seen in this Finally, we should also r_emark that once we have com-
light, the lengths of the 3(—2)=n+2(n—3) edges of the pletely understood the free-field thedat least in the case of

original graph(and thus of the dual grapleorrespond to the N=4 Y"?‘”g"\’””s theory as a S”"?g theor.y, we can hope to
number of moduli of a sphere with holes. In conformal generalize our approach to the interacting theory. At least,

field theory language, one associatesf these to the radii of or_der by order in perturba’uo_n th_eory n the_Yang_-MnIs cou-
the hol d T(—3) to th it f t As d pling, the effect of the coupling is through insertions of ad-

€ holes an a(=3) 0 the posilions oF centers. AS 0e- qjiqng) operators in correlators. Since the parametric repre-
scribed in the Introduction and illustrated in Fig. 2, the ap-

is wh oh ¢ losed sentation is applicable to the corresponding Feynman
sﬁglri?;ce oMy, is what one might expect from open-close diagrams of the interacting theory, we can write it again in

. terms of an integral over a string moduli space, but now with
He_re we should make a remark r_egardmg dhehat ap- o qgitional holes for the coupling constant insertions. It
pear in Eq.(1.1). For ann-point function, unless thg; are g5 14 then be possible to view these additional insertions as
greater than a minimum valuset byn), the Feynman graph  oanqing, for instance, the radius of the AdS space. In this
will not have all the possible contractions. In other words, ay, this procedure may be useful in tackling the AdS/CFT
the corresponding skeleton graph will not have the maxim '

onjecture beyond the free limit as well.
number of edges, i.e., 8(-2). One concludes that such an : y

; X S , i It is satisfying that our arguments are not too tied up
amplitude gets its contribution from a lower-dimensional gjther with the specifics of the correlators or of the planar

component of the cells oM, . In particular, we see thatthe |;it (or even too much with the free limitlt suggests a
bilinear operators do not get contributions from the whole of i ersality that behooves the phenomenon of field theory/
the string moduli space. For example, the Feynman graph fQtiing theory duality. Also, the fact that the spacetime dimen-
the four-point function of bilinears has only four edges. Thusgin 'qoes not play a crucial role at this level is also not such
it gets its support only from a codimension-2 slice/ofos. 4 had thing. It is a feature which we expect will mostly affect
the integrand over moduli space. The integrand holds the key
B. Generalizations to the real dynamics of the string theory which we see

We should also remark that the argument of the preserfRmerging from the field theory. In the next two sections, we
section only relied on the existence of skeleton graphs. Th@ill make some preliminary attempts at the integrand, leav-
procedure by which the skeleton graphs themselves arodBd @ detailed study for later.
from the underlying field theory diagrams also appears to
generalize to operators other than the scala®’TrThe IV. REMARKS ON THE INTEGRAND
parametric representation for diagrams involving more gen-
eral operators only differs in having additiof@aomentum-
and spin-dependenpolynomial prefactors multiplying the
same Gaussian factdt(7,k) of Eq. (2.4). General expres-
sions for these prefactors are given[2B,30 [see, in par- Gl (ky Ky, ... Ky)
ticular, Egs.(11)—(15) of [29]]. When one takes into account Tern
the fermions, gauge fields, and global quantum numbers that J

The primary result of this papéspecializing to the con-
crete example of scalargs that we can rewrite field theory
correlators, schematically, as

a theory likeNV'=4 Yang-Mills possesses, the explicit expres- =

sions for general operators become quite cumbersome. How- Mg

ever, an examination of the general parametric forn2i (4.1

reveals that the gluing arguments of Sec. Il generalize for

such diagrams as well. In fact, this is to be expected from th&lere we are denoting the coordinates on the moduli space

correspondence with electrical networks, which holds veryMg n collectively byo. Recall thato; = 1/7; were the natural

generally. The only difference is that the information aboutcoordinates in the cell decomposition #fly ,. p'%i(0) is

the spins and field content of operators now modifies the firsthe momentum-independent prefactor which captures the de-

term in Eq.(2.9). Therefore, it appears that genefplanay ~ pendence on thg;, whereay;;(o) in the exponent is inde-

n-point correlators in free-field theory can also be expressegendent of thel; . We can write dowpit(o) andg;;(o) in

as integrals oveM, . each cell of the moduli space from the expressions at the end
Again, the restriction to planar graphs was also not veryof Sec. Il.

essential to the whole argument. The gluing into skeleton Thus, for instance in the interesting casedsf4, in a

graphs makes no reference to the underlying genus. It iparticular cell labeled by a given skeleton graph, we can

important, however, that the gluing be carried out compatibleewrite the contribution in Eq(2.11 in several equivalent

with the color flow as outlined in footnote 7. Graphs corre-ways,

[dU]P{J‘}(U)eXF{ —_21 gij(ff)ki'kj>-
n L=

025010-7
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- do,amf_l 1 integrand on moduli space, since it is a consequence of the
{Jﬁ Z H Ssm f H ! worldsheet OPE and its associativity. Now, in the AdS/CFT
M=t i= ‘W o T (M=) A(q)2 conjecture, the factorizability of AdS amplitudes is reflected
A in the spacetime OPE relations for the corresponding corre-
xXexp{—P(o,k)} lation functions. Associativity of the OPE means that we can

. factorize it in different channels yielding the same answer.
B f da; TT déeiéEma -3 We believe that the above Schwinger parametric representa-
mre1 Jo ot (m—1)! Jo i=1 tion should reflect the spacetime OPE of the field theory and
hence translate into a factorizability of the integrand in the

1 . closed string channel. It should be very possible to make this
X——exp—P(o.k)} statement precise.
A(o) Ultimately, one wants to also demonstrate that the inte-
grand is specifically that of an appropriate string theory on
_ J“’H do exp{ - P(o, k)} H do, AdS space. We expect that the details of the string theory
0°r ' A(0)? 0 will depend on the matter content of the field theory. How-

ever, any string theory that is dual to a frend thus con-
. formal) gauge theory should have a background which con-
p( > o '(”i“’i>)e'zi—19i“i'\‘i>. (4.2)  tains at least an AdS part.
rap In [11] we pointed out that the appearance of Adg
from a free theory ird dimensions could naturally take place
in the Schwinger representation that we have been employ-
ing. Essentially, propagators in AglS; can be parametri-
cally expressed in terms dfdimensional proper time propa-
R gators for free fields. We used this fact, together with the
Ao)=2 (H 0) = ( 11 Ur)A(T: lo)  (4.3)  geometric gluing into trees, to argue that the two- and three-
T ' point functions of bilinears can be rewritten as tree ampli-
tudes on AdS space. This was accomplished by a simple
change of variables on the Schwinger parameter space.
2 In Sec. V we generalize this to the planar three-point
P(o,k)= _z (H U) ( > k) =P(7=1/7 k). function of Tidi. What will be clear from the details of that
A(o) T2 calculation is that(as in[11]) the three Schwinger moduli
(4.9 transmute into parameters for the propagators on the external
legs of the AdS amplitude. Integrating over these parameters
The sum, as before, is over the 1-trees and 2-trees of thg |ntegrat|ng over the size of the holes M03 It effec-
skeleton graph but the product in both these definitions isively gives rise to punctures in that one gets bulk-to-
over the lines that araot cut. boundary AdS propagators as a result. This is in line with the
In the second line of E¢4.2) we introduced a Lagrange intuition, mentioned in the Introduction, of holes closing up
multiplier for the constraints on the multiplicities. This en- as one integrates over their size modulus. Together with the
ables us to carry out the sum over muItipIiCities in an Unconappearance of the String moduli space, this gives us confi-
strained way and obtain the third line. Het@j) is an edge  dence that we are indeed seeing the AdS space emerge from
that joins vertices andj; N; is the number of legs joining at the field theory.
theith vertex of the skeleton graph. In this last line the cell From the form of correlators in AdS spafdiscussed in
contribution is clearly in the fornt4.1). From Eq.(4.2)itis  Sec. \J we expect this to continue to happen for theoint
also not difficult to verify that the integrand is continuous function. Namely, one can isolate size moduli out of the
across boundaries of the cellshere at least one of the  6g+3(n—2) moduli. And these will simply parametrize the
—0). This is crucial if one wants to interpret the integrandn external legs of the corresponding AdS amplitude. The rest
as that of a string theory. of the integral over the moduli space would then give a
We also notice that the schematic fofth1) is similar in  closed stringn-point amplitude on AdS space.
structure to the expressions for string amplitudes that one is
familiar with, such as in flat space. Namely, a prefactor con-

To obtain the first line, we have changed variables in Eq.
(2.11) to o,= 1/7, and reexpressed botk(7) andP(7,k) in
terms of theo’s. In the process, we have defined

and

tains the info_rmatio_n about the masses/dimens(ansl more V. THE THREE-POINT EUNCTION AND AdS
generally sping while the Gaussian factor is independent of CORRELATORS

these details and captures tfiveorldsheex correlators of the

vertex operatorg'**(¥). We will see in the next section that A. From delta to star

one can plausibly argue that this is also the structure one we will consider then=3 case of Eq(1.1) (in the planar
would expect from stringy correlation functions in AdS gectoy,

space.
An important feature of string amplitudes is their factor-  GUil(ky,kp,kg) = (Trd1(k,) TrdI2(k,) TrdI3(k3) ) conn-
izability in different channels. This holds at the level of the (5.1

025010-8



FROM FREE FIELDS TO AdS SPACE. I PHYSICAL REVIEW B0, 025010(2004

The analysis is a generalization of that[ihl] but will be  tances of a5 or triangle network, such as the one we have,
done in a somewhat different way to make things clerer. thenp; are the conductances of the equivalent three-pronged
The first thing to note, in this case, is that the number oftree or star networksee[44] for example. It can be checked
legsm, in therth edge is determined completely by the that the Jacobian for this transformation is given by

In fact, we have three equatioffsom the three verticgs

doi\  p1p2ps3
Mo+ mMys=J 5.2 de( —) = . 5.8
12 13 1 ( ) (?Pj (Ekpk)s ( )
and cyclic permutations of it. Here we are labeling the edges
r by the pair of vertices they connect. Equati¢B<) deter- We also see that
mine them;; to be
N P1P2P3 o 5K
13 A(o)= Eopr) Po,k)=2 —. (5.9
m12:§E J— 33 (5.3 kPk i=1 pi
i=1

) ) . ) We can now rewrite the integral in E¢b.4), after gathering
and cyclic permutations. Thus there is a unique graph CONgether various terms

tributing to Eq.(5.1) with a fixed number of legs between

each pair of vertices. We do not have to carry out any sum G Ky Ky, ka)
over multiplicities. bh2ms
Now, by the arguments of Sec. Il, this graph can be glued 3

up into a skeleton graph, which is just a triangle in this case.
And the expression for the amplitude in terms of the effec-
tive Schwinger parameters is given by Ef.9). [Since the 1

[~ (Seme—m)[(d/2)— 11— (d/2)— 1

skeleton graph is uniqug, up to reflection, this is the same as X(E I CEERR e (=K h)]
Eqg. (2.11).] Actually, as in Eq.(4.2), we will work with the kPk
natural conductance variables= 1/7, and rewrite Eq(2.9), w 3
using Egs(4.3) and(4.4), as = 11 dpipiAi_(dlz)_l
0i=1
3
Gtk Ko Ka)= do O_(mr—l)[(d/Z)—l]+(d/2)—2 1 Cd a2,
(ks kz k) 0 rljl o X(Ekpk)gk(Ak/Z)*(dIZ)e izl (5.10
- exp{— ﬁ(g,k)}_ (5.4) In the second line, we have used E(s2) and(5.3) as well
A(o)9? as the fact that the operatorsdi¥ have canonical dimen-
sionsA;=J;[(d/2)—1] in the free theory.

Here we have relabeled the edges so that o3, etc. and This last line is close to what one might expect from a
dropped the overall factors &™), Also, using the expres- string theory on AdS space, as we will shortly see. In any
sions(4.3) and(4.4) we have case, it is a short step now to write E§.10 in terms of the

~ expected bulk-to-boundary propagators in AdS space,

A(o)=010+ 0903+ 0301 (5.5

3
. ) dt 0
and GUil(ky, ko ka) = fo (@271 fo il;[l dpi
~ 1
P(o,k)= A—[O'lki‘F (rzk%-l- 0'3k:23]. (5.6 ><piAi7(d/2)71tAi/Ze*tPie*ki2/Pi_
A(o)
(5.1)
We will now reexpress this in terms of new moduli, more

appropriate for the tree, Here we have used the identity

1 T 1 1 ®

—— i So= P1P2P3 . (57) _S:F_J' dt tsflefat, (512)

pPi A(o) (ZkpK)pi a (s) Jo

This change of variables is motivated by the stdransfor-  to rewrite the denominator term in E¢p.10.
mation of electrical networks. Namely, if, are the conduc- Either in this form or after a Fourier transform to position
space, we can recognize this to be the product of three bulk-
to-boundary propagators in AgS; for the appropriate sca-
125ee[40—-43, etc. for studies of three-point functions of such lar fields. Thus, for instance in position spageaking into
scalars(chiral primary operators in th&’=4 theory in the context ~account the overall momentum-conservidgunction), we
of AdS/CFT. can write Eq.(5.11) as

025010-9
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GUil(xq,%5,X3) GV (xq,... X,)
© dt © 3 o n
0 0i=1 0i=1
= dt S (5.16
= J;) WJ ddzi[[]_ KAi(Xi ,Z;1), (5.13
To make a connection with the field theory expressions we
where go to momentum space, where Ef.16 becomes
{2
Ka(X,zit) = c————>x (5.14 o "
[t+(x—2)7] G{Ji}(klv---akn):f 11 dpipiAi*(dIZ)*l
0i=1

is the usual position space bulk-to-boundary propagator for a xXe~ ki2’9i<t(gi)Ai’ze*t‘fﬁpieiki‘X(§i)>ws.
scalar field corresponding to an operator of dimenaiofhe (5.17)
only slight difference is that we have parametrized the AdS '
radial coordinate b;zgzt as in[11]. . : . . .
What we have thus seen here is that the integral over thce:or\r/yearti)setl;rfvgf Eﬁé&;g;sn_th;nrt'%:tn;tizrr?r;g Kggtsfoécz
moduli spaceM, 3, which the parametric representation of with F;he field theory ex ressFi)or(Q 11), etc. But we caE al-
field theory provided us, is really an integral over AdS space, d h Y exp f h f’ ‘ h
The original Schwinger parametess can be traded for the reha y see over e:e man;r/]_oh the Eat%rest.ft. ?; wteh ?;](peCt'
o . ere aren parametergp; which can be identified wi e
fr']ewglgg pc%rra;gz:grz.el;T:g?;ct)iazg?)t\?errs I?;;thsvﬁ?éﬁrg?)lrigs 0i—ize moduli of holes, as we argued at the end of the last

spond to the size of the holes, propagates the AdS scalar ﬁel?élbsectmn. Then there are the usuag ¢&n—6) moduli

all the way from infinity (the boundary. This corresponds r the n-point function. As in the case of the three-point
y nity (th S P function, we need to find the appropriate change of variables
very much to the picture in the Introduction of the holes

. : . -10 go from these parameters to theg(63n—6) o; of the
being replaced by punctures. We will see below how this I%ielg theory. But i'f)is clear that qug(ﬂ) fits i)navlvith the
likely to be more general than that for the three-point func- : . =

general schematic form of E4.1).

tion. In the particular case of the three-point function that we
studied above, since E(.17) should be independent of the
& (i=1,...,3) from conformal invariance, it is plausible that
) only the zero mode of the fieldg¢),X (&) effectively con-
We can also understand how E§.4) or equivalently Ed.  triputes in the worldsheet path integr@fter including the
(5.10 could arise from a vertex operator calculation in AdS ¢gntribution of appropriate ghost insertionghe zero mode
space. Though we do not have a good handle yet on thgy t gives the corresponding integral in B&.11, and that
string theory, we can guess that thepoint correlators are for X just gives the overall momentum-conserviagunc-
given in terms of vertex operator computations in the world-ion. Thus it is not surprising from this point of view that we
sheet(WS) theory for AdS space. Thus for scalars we would coy|d relate the field theory three-point function to the point-

B. Vertex operators in AdS space

guess, following 15,49, particle amplitudg5.13—only the zero modes contribute. It
n also suggests that we will really see the stringy structure in
GU (X, ... x)= Ky (X X(E):t(E the four- and higher-point functions.
(X ) <.1;[1 3,04 X (&) (f'))>ws Going by the arguments presented in this paper, the field

theory expressions such as E2.11) or Eq.(4.2) are just Eq.
. t(&)Ai"? (5.17) written in different variables. So we can use this to

= I];[l (&) +[x— X(&) 55 e turn _things around and write down the AES correlators from
the field theory(certainly in the case aV=4 super Yang-

(5.15 Mills theory). We would then have reconstructed the string

theory on AdS space via all its correlators.
Anyhow, the task now is obviously to make various of

Here X(£),t(&) denote worldsheet fields for the AdS target these surmises precise and in the process learn about the

space. The averaging, as the subscript indicates, is over theorldsheet theory for AdS space. In some sense we are in a

worldsheet action for these and other fiel@iscluding  situation very similar to that in the early days of dual theory

ghosts. An integral over the moduli space of the Riemannwhen people reconstructed the string picture from the form

surface withn punctures is also implicit. We can write Eq. of the Veneziano-Koba-Nielsen and Virasoro-Shapiro ampli-

(5.15 in the parametric form tudes.
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APPENDIX A: A CHANGE OF VARIABLES
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dTr r,ur
m (A2 —1]72 H N 5 1- E "
I’ My r,u me=1 [y
o dr, Mo
= m,[(d2)—1]+1 H d/2 E X .
07, My r,u ar=1Arp,

(A3)

Thus we have factored the integral ovel, into an integral

Here we will see how to effect the change of variables ofwhere

integration from ther,, in Eq. (2.8) to the effective

Schwinger parameters in Eq. (2.9). First, the relation be-
tweenr, and Trp, is given by Eq.(2.6). This can be imple-
mented by inserting into the integré?.8) the identity

=dr, (1 & 1
— 8 —— =1.
fo Ty (Tr ,uzl Tr,ur)

The nontrivial dependence on,, in Eq. (2.8) comes from

(A1)

over 7, times a factorC(™) which depends only om,,
H i

( 5 1 )
My r,u =1 Xr,ur

mf
=f H Ay Yis2 25(1— 2 yw,)- (Ad)
My =

In the second line, we have made the substitutjq;)r
:1/Xrur' In this form, we can do the integral explicitly for

generald. But the case ofl=4 is particularly simple. Thé
function over one of the, u, CaN be carried out and we are

left with an integral over the othersni— 1) over the region

C(mr) =

the first term. So using the above identity, we can write suchwhere their sum is less than 1. This is justd/¢-1)!. In

a contribution as

dr, m, |
|5 1 S ( -3 ) (A2)

Tr 0wy TrM Ty p=1 TrM

Now definexmr= rmrlrr and change variables fromMr to
X;4,- Then Eq.(A2) reads

general dimensions, the answel’is
=
r-—1
(mr) 2

Bwe would like to thank E. Schreiber for providing us with this
expression.
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