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FreeN'=4 super Yang-Mills theoryin the largeN limit) is dual to an, as yet, intractable closed string theory
on AdS;x S°. We aim to implement open-closed string duality in this system and thereby recast the free-field
correlation functions as amplitudes in AdS space. The basic strategy is to implement this duality directly on
planar field theory correlation functions in the worldlif@ first quantizeg formulation. The worldline loops
(remnants of the worldsheet holedose to form tree diagrams. These tree diagrams are then to be manifested
as tree amplitudes in AdS space by a change of variables on the worldline moduli(spac8chwinger
parameter spageRestricting to twist-2 operators, we are able to carry through this program for two- and
three-point functions. However, it appears that this strategy can be implemented for four- and higher-point
functions as well. An analogy to electrical networks is very useful in this regard.
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[. INTRODUCTION handle$ open string diagrams with some number of vertex
insertions on its boundaries. Viewing this diagram in the
Over the past few years we have grown used to the idea aflosed string channel corresponds to gluing up the holes
largeN gauge theories having a dual description in terms ofwhile keeping the vertex insertions at finite separatidinis
gravitational theories in higher dimensiofis-3]. However, s then interpreted as a closed string diagravith the same
we need to remind ourselves that getting used to an idea isumber of closed string vertex insertions, but with the gluing
not the same as understanding it. It is fair to say that we d@rocess having modified the background. We will actually
not really understand why or ho®ome field theories reor-  make a stronger working assumption which seems to be in-
ganizg Fhemselves into a higher-dimensional gravitationaljicated by our analysis. We assume that this open-closed
description. _ _ _ _ . string equivalence operates at the level of the worldsheet
Open-closed string duality, we believe, is the underlying,,4,ji space. An open string surface with particular loca-
mechanism that drives these dualities. But except in the COons of insertions and shape gets associated with a particular

text of topological string dualitiet,5], we do not explicitly closed string surfaceln other words, the gluing of the open

understand how the holes in an open string description Clossetrin into the closed string is to be imolemented on the
up to form closed string worldsheets. It is clearly important; 9 9 P

to understand the nuts and bolts of this mechanism better |ptegr§1nd in moduli space. A change of variables on the
we hope to shed further light on the miracles of lage- moduli space would then show this to be a closed string

dualities. amplitude. .

A good idea is to begin with the simplest examples. From Agtually, this is probably too generlall a picture tplbe use-
the field theory point of view, a free theory is as simple as itfully.|mplemented. What we wil epr0|t' IS t_he S|mpI|f|cat|on
gets. In particularA’=4 super Yang-Mills theory at zero S°MNY from the fact that we are working in the field theory
coupling is believed to be dual to string theory on a highly“rf"t' S'.nc.e the =4 Yang-MHIs iheory Is obiained as an
curved AdS spacézero radius in string uniis[6]. It is a ¢ —0 limit ofopen string theory, one sho'uld really view the
measure of our lack of understanding of laigedualities planar open string worldsheets as reducing to planar world-

that we know so little even in this seemingly tractable limit. lines. There is a Precise sense in which this happens. _The
Interesting attempts to understand the closed string Sigm\gorlds_heet mo_dull space mtegral_.reduces to a _worldlme
model, in this limit, have not yet yielded frui7—9]. moduli space integral, more familiar as a Schwinger
Therefore, as an alternative strategy, we might try to start
from the free-field theory, which is completely under control, , _ ) _
and try to reconstruct the closed string theory, using as our To visualize the geometry of the gluing, think of the open string

guide the underlying open-closed string equivalence surface as a rubber sheet pinned at the locations of the vertex in-
sertions. We can then imagine bringing together the boundaries of

the rubber shedkeeping the locations of the pins intaand gluing
A. Open-closed string duality them so as to obtain a genus zero surface with punctures at the

. . . . locations of the pins.
Let us take this opportunity to elaborate a bit on our view- %0f course, the usual counting of moduli for the open and closed

point on the general open-closed string equivalence. Theying gives different dimensions. In our case, the matching of
leading largeN field theory correlation function@lanar dia-  moduli does not appear to be straightforward, especially since, as
grams with some number of looparise from planafno e will see, some of the open string moduli turn into parameters of
the additional dimension. Presumably, this complication is related
to the fact that we do not have a CFT description for the closed

*Email address: gopakumr@mri.ernet.in string on AdS space. It is important to understand this better.
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Feynman parameter space integral for the Feynman dia-
grams(see, for instancg10—12). The integrand reduces to
a correlation function of worldline vertex operators in a first
guantized formalisni13,14]. The particular simplification of
the free-field theory limit is that we have a Gaussian free-
particle action in this first quantized language.

So what we will aim to implement is the process of gluing
up of planar worldline loops. It may seem puzzling at first - : ok
that we have any kind of open-closed equivalence when the
worldsheets degenerate to lines. In fact, what we will see for £1G. 1. One-loop open string diagram glued up into a closed
the simplest class of field theory correlation functions is thaktring diagram.
the glued up version of the worldline is also a degenerate
genus zero surface—namely, with the topology of a tree. Thelose. In the field theory limit, the worldsheet reduces to a
change of variables on the moduli space, mentioned above, @rcular worldline (with some number of insertionsSo we
the one natural to the description of the tree. The new varijust have to glue together a single worldline loop to obtain
ables will have the interpretation as Schwinger parameterees. This simplifies our technical task.
for the tree amplitude in AdS space. Thus, even though the The twist-2 operators are also naturally singled out from
theory might be expected to be very stringy, we find particlethe closed string point of view. These operators correspond
like amplitudes at least for a class of states in AdS space. i the leading Regge trajectory of stringy excitations. In the
appears that the contributions for these amplitudes seem #®ro radius limit, these are massless higher spin states in AdS
come from degenerate Riemann surfaces. We will commeriiPace, corresponding to the fact that the currents were con-
on this further on. We will also make some speculations inS€rved in the free theoij5,18. In fact, classical interacting
the concluding section on the appearance of “fat” closedfield theories of exactly these massless higher spin particles
string surfaces from the glued up worldline. in AdS; have been studied by Vasiliev and othésse[19—

We could go ahead now and examine arbitrary correlatorg1]: for instance. That such classical theories exist at all is
in the free theory in the worldline formalism, but free Yang- SOme indication that perhaps there is a consistent truncation
Mills (or super Yang-Mill3 theory, in the largeN limit, has  ©Of the full string theory on Ad$x S° to this massless Regge
an exponentia”y |arge number of Sing|e-trace gaugelrajectory[].?]. This also gO.eS Wlth the previous observation
invariant operators for a given dimensifts,16. This is a of_the closure of the OPE in thls sector of the gauge theqry.
reflection of its stringinesss. Implementing our strategy onit is also perhaps the explanation for why we find a descrip-
arbitrary correlation functions of these operators is challengtion in terms of particle amplitudes upon implementing
ing because the worldlines can have a very complicated to?Pen-closed duality on the twist-2 operators. We should add
pology. Therefore, as a first step, it helps to focus on a supthat, even if true, this kind of consistent truncation would

class of simple operators for which the open-closed dualityProbably only hold for classical string theokye., in the
will be easiest to carry out. largeN limit). In any case, all these facts taken together sug-

gest this sector of the theory is a natural starting point for
implementing our strategy.

Klebanov and Polyakoy22] have, in fact, attempted to

A very natural choice is to consider operators which argsplate the dynamics of this sector by pointing out that the
bilinear in the fields of the theor§put with an arbitrary num- “single-trace” singlet operators in the ® vector model
ber of derivativestransforming as symmetric traceless ten-are all bilinears which have similar features to the gauge
sors of arbitrary spin. These twist-2 operators have severqheory bilinears above and can thus be placed in exact cor-
nice features. One is that these operators form a set of highggspondence with the massless higher spin states mentioned
spin-conserved currents of the free theory. Another importanipove. They therefore conjectured that the laxgkmit of
feature is that they close among themselves under the OPfse vector model was exactly dual to the classical Vasiliev
(Operator Product Expansipof the free theorysuggesting theory* Many of our statements, therefore, can be carried
some kind of consistent truncation to this subse¢of].  over to the vector model at its UV fixed point. But as men-
Moreover, the leading order N connectedh-point functions  tioned earlier, our strategy should enable us to go beyond the
of these operators are particularly simple in the free theorypjlinears once we have understood sufficiently well the
being given by a one-loop diagram. In an open stiog  mechanism of the open-closed equivalence in this leading

equivalently, double linerepresentation, these are annulusregge trajectory case. We leave this for the future.
diagrams with some number of insertions of gauge-invariant

operatorgsee Fig. 1 e
Thus topologically these are the simplest diagrams where4acqally, their conjecture was that the B model in three di-
we have just two holegthe inner and outer boundaryo  mensions, at its interactingR) fixed point, is dual to the Vasiliev
theory on AdS (see[23-3(Q for further work. The free-field
theory, or the UV fixed point, was also conjectured to be dual to the
3Double trace operators like (r?)? are also present, but they Vasiliev theory on Adg, but with an inequivalent quantization of
correspond to multiparticle states of this sector. the spin-0 field, something that is possibleds 3 [22].

k,

K

B. Twist-2 operators
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C. The organization of the paper irrelevant to the considerations. Thus the reader would do
well to remember that the equality signs in equations are up

Let us now chart out the flow of the paper. In the next X
to various such factors.

section we review the first quantized or worldline formalism.
For reasons mentioned above, we will concentrate on the
case where the worldline has the topology of a circle. The Il. THE WORLDLINE FORMALISM

expressions for a generatpoint function on the circle are | et ys consider a Euclidean free-field theory in arbitrary
well known and very similar to those in string theory. As dimensiond (though we will mostly have in mind=4 for
mentioned above, they take the form of an integral ovempplication toA’=4 Yang-Mills theory. For concreteness,
“moduli space” with an integrand which is the result of take a real scalar fiel® in the adjoint of SUN). This will
evaluating the correlation function of vertex operators. Secsuffice to illustrate the basic procedure. We will remark later
tion 1l specializes to the case of three-point functions andon the generalization to the full free super Yang-Mills theory.
shows how the integrand can be viewed as the circle glued Let us consider the connected contribution torapoint
into a three-pronged tree. A similar thing happens triviallyfunction of the gauge-invariant operatordi¢,

for the two-point function as well. Section IV connects this

tree structure, which emerges from the worldline, to tree am- F(X1,X2,00+Xn)

plitudes in AdS space. To that end, we first recast the usual 1

bulk-to-boundary propagators in AglS, in a Schwinger rep- = W(Tr D2(X) Tr d2(xp) - Tr P2(X,) ) conn-
resentation. The key property that we want to exhibit is the

close relationship to the-dimensional heat kernel. Using 2.1

this representation, the three-point function in AdS space is
seen to be simply related to the three-pronged tree amplitud S : .
of Sec. Ill through a change of variables between the tw (kl’kz'“_"kn) IS given b_y the double Img Feynman d_|a-

Schwinger parametrizations. This change of variabldgs-is gram in Fig. 1 together with all other possible permutations

dependenof the external states and momenta. One interest(f the indices 1,2,.n) in the external leg insertions. One of
ing feature is that it is essentially the overall proper timethe nice things about the worldline formalism is that all these

modulus that plays the role of the additional dimension indidgrams are captured by a single worldline diagram of a
AdSy, ;. circle with n insertions where the location of each insertion

Before proceeding further, we devote Sec. V to an oldS independent of the others leading to all possible orderings.

analogy between the Schwinger parametrization of Feynman 1he locations(or proper times 7 of the insertions are
diagrams and electrical networks. Roughly speaking, for evWvorldline moduli. There is, in addition, an overall modulus,
ery Feynman graph the Schwinger parameters play the roI@e proper timer assouatgd with the_ invariant length _of the
of resistors while the external momenta play the role of curCircle. From the perspective of the first quantized action of a
rents. We exploit this analogy to understand how and whyf€€ particle, is the remnant of the world line diffeomor-
the loop got glued into a tree for the case of the one-loog?NiSM and plays a similar role to that of the conformal or
three-point function. It also provides intuition as to why we Liouville mode in a worldsheet actiotior a recent discus-
should expect a generalization of this process to higher-poiritin: Se€31). _ ,

functions. In fact, these considerations are not special to one- ' n€n, the field theory correlation function takes a form
loop correlators. Using the expressions for an arbitrary FeynY€"Y @nalogous to that of a string amplituides, 14,
man diagram in Schwinger parametrization, one might hope (g, k... k,)

to implement the open-closed duality for arbitrary correla-
tors. The intuition behind the gluing of loops into trees is
much the same. The expressions themselves are also sugges-
tive in their treelike structure. However, we do not pursue g .
this at the moment. In Sec. VI we look at the four-point *ar (7 0 0 0
function. Guided by the electrical analogy, we describe the - fo T fo [ dri(eaX(wekeX(72). gl X)),
equivalent tree diagram. This tree structure turns out to have

the right form to be the four-point function in AdS space 2.2

with a sum over the different channels, including as intermetne measure forr is consistent with the () invariance

diate states all the particles in the leading Regge trajectonyigng the circle. The correlator of the worldline vertex op-
We have the detailed verification of this for the future. Sec-gators is evaluated with respect to the free-particle action,

tion VII concludes with a summary, unfinished tasks, and

speculations. Appendix A deals with the two-point function. 17 )

Appendix B gives a convenient Schwinger representation of <"'>:j [DX#]---exp — 4 Jo dt(9iX)

the scalar bulk-to-bulk propagator in AdS space. Appendix C

touches on the relation to the heat kernel expansion and the A correlation function involving more general twist-2 sca-

UV/IR connection. lar operators is again given by a one-loop diagram as in Fig.
Finally, a word about our formulas. In order to focus at- 2. However, the additional derivatives at each vertex are re-

tention on the key physics aspects of various expressions, wikected in the fact that the corresponding vertex operators

have avoided cluttering them with overall factors which arewill be linear combinationgdepending on the source mo-

he corresponding momentum  space  correlator

:f [d./\/l]<eikl'X(Tl)eiKZ'X(TZ)---eikn'x(fn)>

=1

. (23
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7ii (7~ 7ij)

G(7j,1j)=— (rij=|r—7l) (259

.
is the appropriate Green'’s function on the circle. Bfenc-

tion enforcing momentum conservation comes from the zero-
mode integral over th&’s. The factor of 1#d/2 is from the
determinant of the nonzero modes.

To evaluate the correlation function of the more general
vertex operators, mentioned above, is equally straightfor-
ward, involving just keeping track of more indices. As usual,
an efficient way to obtain them is to introduce a source term
j-dX in the worldline action and carry out the Gaussian
FIG. 2. One-loop worldline diagram with insertions. integral and take the required number of functional deriva-
tives. All that essentially changes in Eg.4) is that one has
iKi-X(7) 5 . - polynomial factors in the external momenta, together with
mentumk;) of g, X" -3, X*s(r)e™ .% Unlike the infi- 4o derivatives of the Green's function, multiplying the
mtely.many osulllatozrs#oi the string, here thg pomt—parucleGaussian factor in Eq(2.4). |
equation of motiond; X#=0 leads to a restricted class of Going back to Eq(2.2), the complete expression for the
vertex operators—those of a single Regge trajectory. n-point function is

In evaluating an arbitrary correlator of bilinears, it is only
the vertex operators that are modified as above. The oth%r(k K k=59 S k fw dr
aspects of the worldline expression remain the same. In par- +'"2’"""""n = )y AL
ticular, we have the same integral over worldline moduli.

Though the details of the tensor structure of the more general 70 1

vertex operators will be important for detailed matching with i o iHl drexp — 521. ki-kjG(7i,7) |
amplitudes in AdS space, the primary feature of gluing up of

the loop will arise from the worldline correlators efi-X(7). (2.6)
'I_'her_efore, we will mostly concentrate on thepoint func- is this expression that will be our main focus of attention.
tion in Eq. (2.2). We will examine it more closely for the three- arith a

The correlation function of vertex operators appearing inggser extentthe four-point function. In these cases, we will
Eq. (2.2 is easily evaluated by performing the Gaussian in-gaa how this integral over moduli space for a loop can be
tegral of Eq.(2.3). Thg result is that the i'ntegrand in moduli \ie\wed in terms of contributions from tree graphs.
space takes the explicit forfsee[13] for instance Finally, a word about further generalizations. First, when

there are several species of scalar fields; then the only Wick
contractions that survive are ones where the flavor indices
(elkX(r)gika X(m). ... gikn X(7n)y contract. This means that only a subset of permutations of
the external legs gives a nonzero answer. This effectively

4 1 1 translates into a truncation of the regime of integration of the
=0 (Z Ki | —arzr €xp| — ng. ki-KiG(7i,7)) |, moduli 7,. This issue only arises for four- and higher-point
. functions.
(2.9 Fermionic and gauge bilinears can also be incorporated

into the worldline formalisn{32]. This is best done by in-
cluding a worldline Grassmann superpartgt to the X*
where and appropriately supersymmetrizing the free worldline ac-
tion. The natural description for the action and vertex opera-
tors is in terms of a worldline superfield which is integrated
°For a given symmetric traceless tensor, one way to obtain thever a supermoduli space. The expressions for the one-loop
corresponding vertex operator is to add a source ter@“(X) to  correlation functions are reductions of analogous superstring
the free-field Lagrangian, coupling to this operator. Integrating oufones. Once again the essential features are captured by Eq.
the fields in this, still quadratic, Lagrangian leads to a determinant2.6). We refer the reader tpl4] and the review[33] for
which can be written as a proper time Hamiltonian. In obtaining themgre details and references.
determinant, one integrates by parts the derivatives, which act on

the e’%i"* and give factors of the momentuky. The proper time Il. THE THREE-POINT FUNCTION
Hamiltonian now involves a higher power of the derivatives, i.e., i ) i .
proper time momentp*, as well as the factor af*i %, in a definite Having set up the worldline formalism for the-point

ordering. The first quantized description involves going to the La-function of bilinears, we will now see how the worldline
grangian description. To first order in the source, the additional terngluing process takes us from the one-loop diagram to a tree-
in the free-particle Lagrangian is given by replacing ¢ by  like structure, in the particular case of the three-point func-
dX*. This term, linear in the source, is then the vertex operatoition. Logically, one should start with the two-point function.
corresponding to our original symmetric traceless tensor. But the gluing process is somewhat trivial there and we shall
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3
F(Xl,X2,X3)=J iﬂl d¥%;e™"kiNT (ky ,Kp,K3)

gluing «
:f (d/2)+17' J’ H da;é
x| > 1 !
3 2
FIG. 3. One-loop three-point function glued up into a three- % | d% exp — 12 (Xi—2)
pronged tree. The relation between the Schwinger parameters of the 4i=1 Tajay

sides of the loop and the legs of the tree is also shown.

relegate its discussion to Appendix A. :f “"2”1 T f H de 5( z “~ )
Once again, to keep things uncluttered we will begin with

the n=3 case of Eq(2.1), or rather its momentum space q
version in Eq.(2.2), which was evaluated in Eq2.6), Xf d Ziﬂl (xilexd rajaD]2). (3.4
o The last line exhibits the position space heat kernel represen-
F(kl,k2,k3)=5(d)(z ki)J d/2)+1j H dr; tation clearly as a tree amplitude—the product of free-
' particle amplitudes to propagate from eaghto a common
13 vertexz (which is then integrated ove? Recall that the heat
xex;{ - 5; Ki-k;G( ,Tj)). (3.2 kernel or propagator in position space is given by
17)

1 2
The momentum-conserving function helps in simplify- (xlely)= (4mt)a2€ b, 3.9
ing the kinematic invariants appearing in the exponent, in
Eq. (3.1). Thus X, -k,=k3—ki—k3, etc. Making the
Change Of VariableS'12= T3, Ty3= Ty, T31— Ty (W|th
3;a;=1) yields the simpler form

Pictorially, we may depict the process of gluing as in Fig. 3.
In the next section, we will see that this tree is precisely a
tree amplitude in Ad$, ; once we make a change of vari-
ables in Eq(3.4) into Schwinger parameters for the tree. But
o before we proceed, let us comment on the three-point corre-
I'(kq,ky,kg) =8 (E Ki ) f (d,z)ﬂ T f H da;o lation function of arbitrary bilinears. As mentioned in the last
section, the only changes are multiplicative factors consist-

ing of polynomials in the external momentand «;). Since
X E aj— 1)exp[— m(K2ayaz+kKiaga, the crucial Gaussian factor is unchanged, we see that in po-
: sition space, we continue to have the tree structure of
+KCayay)l. (3.2 Hi3=l<xi|exp:m,-akD]|z). The additional terms are multipli-

cative polynomials in thex;—z)#. Similar, slightly general-

ized remarks apply to the case of fermionic and gauge bilin-
We recognize the integrand to be ears. Thus the property of gluing depicted in Fig. 3 is
universal to all the one-loop correlation functions. We will
better understand the underlying reason for this in Sec. V.

3
exp{ 2 k2 aja ]:H (kilexd ra;jad]lki),
N IV. THE THREE-POINT TREE AMPLITUDE

3.3 IN AdS SPACE

where the indicegj,k are a cyclic permutation df.,2,3 and A. The bulk to boundary propagator in AdS space

(0 is the d-dimensional Laplacian whose eigenkets are de- To compare the tree of the previous section with the tree

noted by|k). amplitudes in AdS space, we will find it useful to write the
That this heat kernel representation is already a glued upulk-to-boundary propagators for various fields in a some-

version of the original loop diagram can be most clearlywhat unconventional manner. We have mostly focused atten-

exhibited by going to position space. We can easily do the

Gaussian integral over momenturfafter introducing a

center-of-mass variable as Lagrange multiplier for thé 5That the one-loop three-point function can be viewed as a tree in

function), this way was noticed bj34].
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tion on correlation functions of ¥b2. The dimension of this B. The three-point function

operator is —2) in the d-dimensional free theory. The  Let us write down the tree amplitude for the three-point
AdS/CFT dictionary[2,3] then tells us that it couples to a function of the above scalar in this Schwinger representation.
scalar field in AdS space witin®=—2(d—2). Hence let us If there are no derivatives in the cubic couplings of scalars
start with the bulk-to-boundary propagator of such a scalatsomething that can presumably be achieved by a field re-
field. This is a solution of the wave equation for a scalar indefinition [35]), the point-particle amplitude ifusing Egs.
AdSy,; (where we set the radius of AdS t9, 1 (4.5 and(4.4)]

3

©

—2720%2 +(d—1)zy9, —Z200—2(d—2)]K=0, (4.1 d
[ 0%z, ( ) 09z, 0 ( )] ( ) F(XlaX21X3):f ddZ . ;’%II_[:L K(Xi,Z;ZO)
gL

which is proportional to & function when the position in the

3
bulk approaches the boundary. Here we are working with [ dt 3 ”H do: @2 -3,
Euclidean AdS, ; in the natural Poincare coordinates =, t@Ft [ AL HPip €
d2+d k
dSZZTZ‘ZJ (4.2) Xf ddzHl (x;| 40| z), (4.6)
0 =

Note the close similarity with the integrand of the worldline

. ) . . . expression Eq(3.4), particularly the striking closeness be-
simply zwhen there is no risk of confusipthat parametrize twgen the rad?al cczor%inateand);he proper ti?ne. However,

the boundary on which the dual 1;ie|d theoreresides. here instead of integrating over the worldline moduli of the
In terms of the coordinaté=z; and K=tK, Eqg. (4.1)  |oop, we have an integral over Schwinger parameters for the

and[d is thed-dimensional Laplacian in the directiodor

takes the form tree. There is a simple change of variables between the two
which makes the two integrals identical. This is suggested by
K 92K the relations in Fig. 3 between the loop and the tree. We

2(d—6) E_DK_MW =0. (4.3  simply have to sep;=pa;, wherep=3p;, which we can

implement by introducing’; 8pd(p—ip;)=1 into the in-
tegral and changing to variableg . Finally, we make the

If the last term were absent, this would have been the he ange

equation and the solution would have simply been the heat
kernele'™. However, solutions to Eq4.3) can also be ex- 3
pressed in terms of the heat kernel. Thus the usual bulk-to- t=4TP( I1 ai)1 (4.7)
boundary propagator is given by a solution of the form =1
which relates the proper timeto the AdS radial coordinate
t. The integral overp decouples, only contributing to the
overall constant which we have dropped all along, and Eqg.
(4.6) becomes Eq(3.4).
~ _ ) . A number of comments are in order here. The change of
Thus, K(t) =tK(t) is expressed in terms of a convolution rigples that we made was independent of the external mo-
over a heat kernel in terms of the parameieft is easy 0  menta or positions and even of the number of spacetime
verify that this is just a Schwinger parametrization of thedimensions. It is the kind of change of variables one might
familiar bulk-to-boundary propagatéwith A=d—2) [3], expect in going between a parametrization of open string
moduli space and one of the closed string. In fact, in gener-
alizing to the three-point function of arbitrary bilinears, we
expect that the same change of variables will be sufficient.
(4.5  This is essentially because both the exponent and the mea-
sure on moduli space continue to be the same for the general
In momentum spacg?], Eq. (4.4) is merely an integral rep- three-point function. Of course, it is not guaranteed that the
resentation of the Bessel function that the bulk-to-boundarynultiplicative tensor structures will work out right.
propagator is proportional to. This is where, we believe, the supersymmetry and the
This close relation to thd-dimensional heat kernel is the special field content ofl=4, N'=4 Yang-Mills theory will
main reason why the glued up tree of the previous sectioplay a special role. After all, what we have done so far works
can be related to a tree amplitude in AdS space. Though wr any free scalar theory in any dimension. It is likely that it
have shown this for the scalar and also for its bulk-to-is only in the case afV=4 Yang-Mills theory that the tensor
boundary propagator, it is clear that wave equations fostructure encoded in the multiplicative factors would also
higher spin particles in AdS space can also be put into anatch with that from the bulk-to-boundary propagators for
similar form as Eq(4.3), which exhibits the close relation to massless higher spin particles.
the heat kernel. Similarly, bulk-to-bulk propagators will also  There is some evidence for this contention. Indeed, in the
be expressed in terms dfdimensional heat kernels, as we early days of the AdS/CFT correspondence, a free-field com-
will see explicitly in Sec. VI. putation of the(two- and three-point function oR currents

K(t)= f wdp pld2=3g=petp)0, (4.9
0

1/2 d-2

=(X[K(1)[2).

K(X,Z;ZOZtllz) = t+(X——Z)2
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(which are bilinears in the fielglsn A'=4 Yang-Mills theory V. THE ELECTRICAL NETWORK ANALOGY
was compared to supergraviige]. The authors of36] em- At this stage, it might seem that the results of the previous

ployed a Schwinger parametrization of the one-loop diagram ection are due to the special naturdtaio- ang three-point

and matched the resulting integral expression with that of th ; , .
supergravity integral, again in a parametrized representationdnctions which are largely constrained by conformal

Making a change of variables, essentially equivalent to thathvariance:® What we would like to put forward in this sec-
above, they found an explicit agreement of the tensoftion is that the basic mechanism which is operating is indeed
structures. It was important for them that the contribution open-closed dualityin the limit where the Riemann surfaces
from both scalars and fermions to tiecurrent correlators on both sides have degenerated to graphsd that this
was taken into account to get the exact matching. We takemechanism can generalize to arbitrary diagrams.

this as evidence that the special properties\6f 4 Yang- We recall that there were two main steps in the process of
Mills theory are likely to play a role in ensuring a detailed 4oing from the field theory three-point function to the AdS
matching of tensor structures. A related observation is re;jiryde. The first was to argue that the worldline formula-

garding the conformal anomalySimilar considerations ap- 1t the field theory loop could be seen in terms of trees
ply to the two- and three-point functions of the stress tensor. . .
volving free-particle heat kernels. The second was to show

The detailed matching of these tensor structures in the bullﬂ . . )
and the boundary was carried out [i87].) The conformal that these trees were indeed tree diagrams in AdS space. The

anomaly ind =4, for example, is a linear combination of two latter turned out to be true essentially because the wave equa-

independent curvature invariants. The particular combinatio#on in AdS space implied a close connection between propa-
depends on the field content of the theory. An Ad8lcula- ~ gators in Adg. ; and free-particle heat kernels éhdimen-
tion, on the other hand, gives a definite combination of theséions. A change of variables on the moduli then
two invariants[38]. One needs the full-field content ¢  demonstrated the identity of the two tree amplitudes. The
=4 Yang-Mills theory to get this particular combination. first step of gluing loops into trees is the one where the
Thus the bosonic vector model in four dimensions, for ex-geometric mechanism of open-closed duality seems to be
ample, cannot possibly arise from an Ad&ilculation since operating. To better understand how this operates, and gen-
a different linear combination of the curvature invariantseralizes to arbitrary correlation functions, it will be very use-
arises in the two computatiofis. ful to revive an old analogy between Feynman diagrams and
One of the very interesting features in making the connecelectrical networks.
tion between the worldline picture and amplitudes in AdAS The first indication that such an analogy might be present,
space is that the proper time on the worldline is more or lesand important for us, is the observation that the loop-tree
directly related to the radial direction in AdS space, as seeduality in Fig. 3 is similar to the standard “staf-equiva-
in Eq. (4.7) or in the measures of Eq&.4) and(4.6). Thisis  lence in electrical networks. In fact, there is a precise con-
not altogether unexpected. The proper tirrie a measure of nection. If one views the 8" (loop) diagram in Fig. 3 as an
the energy scale in the field theory and it has been seen iglectrical network with resistancd®; in each of the sides,
various circumstances that the radial coordinate in AdS spad#en this network is exactly equivalent to that of the “star”
plays a very similar role. For instance, a UV cutoff in the or tree diagram with resistanceR;R,/=R;) on the legs as
field theory can be implemented by cutting off the modulusshown in the figuré? This may be verified using elementary
integral at small. From Eq.(4.7), this effectively translates considerations of Kirchoff’'s laws. The essential idea in-
into an IR cutoff in the radial coordinatén AdS space. This volves eliminating the current flowing in the loop from the
is also apparent from the fact thatis the remnant of the equations so that we are reduced to an equivalent tree dia-
modulus of the open string annulus, and the smeadigime is  gram without that loogsee, for instancg45]).
where the annulus captures the long-distafiBe propaga- This is not just a coincidence. There is an analogy be-
tion in the closed string channel. Another source of our intutween Feynman diagrams and electrical networks going back
ition for why the proper time should play the role of the extrato the 1960gsee, for instance, Chap. 18 [f6]). An arbi-
dimension comes from the observation thaepresents the trary Feynman diagram, expressed in Schwinger Feyn-
worldline conformal factor, and so in a loose sense it is anan) parametrization, has a natural interpretation in electri-
Liouville mode? Therefore, it fits in with the idea of the cal network terms. The Schwinger moduli can be identified
Liouville mode being the origin of the extra dimension in the with resistances, and the external, as well as internal, mo-
AdS/CFT correspondend89,40. (Note that the idea of the menta with currents flowing in the respective legs. The pro-
Liouville direction playing the role of an additional space- cess of carrying out the integrals over loop momenta is then
time dimension in noncritical string theory goes back4t—  equivalent to elimination of the internal currents using Kir-
43].) It will be very interesting to flesh this connection out
further.
1% or correlators of higher spin operators there are a finite number
of tensor structures consistent with conformal invariance. The rela-
"We would like to thank K. Schalm for drawing our attention to tive coefficients are undetermined.

[36]. e thank Justin David for this observation which was instru-
8We would like to thank I. Klebanov and K. Skenderis for discus- mental in our pursuing this line of thought.

sions on this point. 12star-triangle relations crop up very often in physics and math-
SWe thank S. Wadia for pointing this out. ematics. In a related context, se&f].
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choff's laws™® The result is a generalization of our one-loop gluing up of loops into trees is not particular to two-or three-
worldline expressions—an integral over Schwinger modulipoint functions. What we are seeing is an implementation of
space of an integrand that depends on the external momentapen-closed string duality, in the limit of degenerate world-
In particular, the crucial piece is a Gaussian exponent as isheets, and the electrical analogy gives us useful intuition for
Eq. (2.4), which is proportional to the power consumed in visualizing this process.
the equivalent circuit. This is clearly visible in E¢3.2), When there are multiple loops, it is likely that the glued
where the exponential factor is the power consumed in thep tree is effectively a thick or “fat” worldsheet, at least in
equivalent tree circuit of Fig. 3. For a recent review(ahd  the limit where a large number of loops are present. The
earlier references jahe expressions for a general Feynmanlatter would be true for correlation functions of, say,drt
diagram as well as their electrical interpretation, g&8. for large J. It would be nice to make a connection with the
What is of interest to us is the tree structure obtained afteBMN picture [48] of a closed-string worldsheet emerging
elimination of the loop momenta/currents. In the language ofrom operators like this carrying a large number of bits.
circuits, it is intuitively plausible that this process of elimi-
nation of loop currents results in an equivalent tree structure.
The external currents in various linear combinations would V1. THE FOUR-POINT FUNCTION
flow through the various legs of this tree. For instance, the
expression for the power in the equivalent circuit, which ap- Armed with the intuition from electrical networks, we
pears as the Gaussian exponent in the integral, can be writtavill take a first look at the four-point function. Here we will
down explicitly. For a generdlloop diagram, it is given in only try to convince the reader that the worldline diagram
graph theoretic termg7], does glue up in the right way as expected from the duality to
AdS space. A detailed check will be postponed to the future.
1 , _Asfusua_ll, Wef _\I/_vrgzrestrlictbo_u:cl co_nj_ider_atior;] to the folyr-
oint function o , only briefly indicating the generali-
P(ak)=A(a) ITEZ (H “) (z k) : (5.9) gations. The worldline exp);essior)]/ is given ?rom 5?21..2) to
be

Here, a; are the Schwinger parameters for the various inter- cdr (ol

nal legs of the loop. The sum is over various 1-trees and r(k11k2|k3:k4)=f — H dr(ekiX(2)glke X(r2)

2-trees obtained from the original loop diagram. A 1-tree is o 7 Joi=1

obtained by cutting theloop diagram at lines so as to make

a connected tree, while a 2-tree is obtained by cutting the x glka-X(7a)glka- X(72)) (6.2

loop atl+1 lines so as to form two disjoint treed(a) is

then given by a sum, over the s&{ of all 1-trees, of the

product of thea; of all the cut lines. In the case of a one-loop The integral over moduli space can be broken into six cycli-

diagram, this is simpl\Z«;. The sum ovelT, indicates a cally inequivalent orderings of the four insertions. Of these,

sum over the set of all 2-trees, where the product is over théhree are related to the others by a worldline reflectten

a; of thel+1 cut lines. And Ek) is understood to be the — 7. The three inequivalent orderings correspond to three

sum over all those external momerikawhich flow into (ei-  inequivalent Feynman diagrams that can contribute to this

then one of the 2-trees. It is easy to verify, for example, thatamplitude. As mentioned in Sec. Il, when there are several

in the case of the three-point function, this tallies with theflavors of scalarg¢as in /=4 super Yang-Mills theory then

exponent in Eq(3.2). some of these diagrams might be absent due to the structure
This expression can be interpreted as the power dissipaterf the flavor indices. This can easily be incorporated into the

in an equivalent tree circuit in which currentsK) flow in considerations below.

legs whose resistances ax¢a) ~*(II' **a). The topology of Let us look at a specific time orderind234 of the in-

this tree circuit seems somewhat intricate in general. We wilkertions around the circle. The worldline expression is given

examine the case of the one-loop four-point function someby Eg. (2.6) with the caveat that the integral over is re-

what more in the next section. However, we will postpone astricted to the above time-ordered domain. The all-important

more general analysis to future work. But hopefully, whatGaussian factor in the integrand can be rewritten using the

should be clear from the above considerations is that thé-function constraint on the momentum as

o~ (2], ki KG(7; 1)) = @ = agarki + agaghl+ apaghl+ agagky+ apag(ky +kp)?araz(ky +ky)?] (6.2

13This can be seen in the Schwinger parametrization, where one is performing Gaussian integrals over the internal momenta. The exponent
has the interpretation as being the power consumed in the Feynman diagram. The Gaussian saddle points are precisely the Kirchoff equations
for voltages.
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viewed this diagram in thechannel; thes-t symmetry would

o % & K H"\ a0, oo, b imply an infinite summation in this channel too. There are
_r," N two other inequivalent orderings of insertions, namely
L R -2 i S ::;;:--""n (1324 and (1243, which havet-u and s-u symmetries, re-

P o S " £, spectively. The sum has compleset-u symmetry. We can

expand each of these inequivalent diagrams twiamce in
each of the respective channels, and sum over all these or-
derings. We then rearrange the final answer as a sum over all
channelgieach channel getting infinite summation contribu-

FIG. 4. One-loop four-point function and the equivalenttree. Iny; o't 1o different orderingsAs mentioned above, the
the language of the electrical network, the thick lines are the

equivalent resistors of the tree. The dotted lines complete the rest &ower? appedé_lrltng Itn ;[he [rrWEnlt?[hsum alrdel_suggestlve .(.)f higher
the circuit. The whole diagram is best thought of as drawn on afSpm '?\ ermﬁ ""? (—:;]S ates. Thus the wor bllm'a exlrf)r_espr(ma d
sphere with the dotted lines going behind. acie has the right structure to assemble itself into an AdS

amplitude with different channels, each involving higher spin

Here 74,= 7a,, o= Tay, etc. The exponent on the right- intermediate states. We must emphasize again that it is be-
hand side tallies with the general Schwinger parametrizatiogause we are viewing the AdS amplitude in a point-particle
expression quoted in Eq5.1). As we saw in the previous language that we obtain a sum over different channels, each
section, this exponent has the interpretation as the electricafith an infinite number of intermediate states. This is more
power dissipated in the equivalent circuit obtained aftedike a closed string field theory representation which pieces
eliminating the loop current. together different regions of moduli space to achieve a dual

What is the equivalent circuit in this case? It is as showranswer:® In this context, we should mention that there could
on the right side of Fig. 4* Elementary circuit analysis also be a four-point contact term, in principle. A more careful
shows that this is the equivalent circuit. One quick way toe€xamination of the amplitude will be necessary to disen-
verify this is to see that the exponent in E§.2) is propor-  tangle such a contribution.
tional to the power dissipated in the thick lines on the right. Another related viewpoint also indicates an infinite tower
Note that the topology is now more complicated than in theof intermediate states in each channel. Since we have taken
case of the three-point function. In fact, the set of equivalenthe ordering (1234, the vertex operatore’1X("1) and
resistors, shown with thick lines, is no longer fully con- %2 X("2 are adjacently inserted. Remembering that these
nected. The horizontal resistpwhich has currentk;+k,)  vertex operators are normal ordered, we can write the exact
flowing through i is disconnected from the others. Of worldline operator product,
course, we have drawn the equivalent circuit in ttsechan-
nel.” This is an arbitrary choice. One could equally well i ) ke X(7 e X(79) 4 iKo - X(79) ~— Ko -kaG (71 7
have drawn it in the t ch):annel," in which case tr?e ve);tical ela(nlgleX(n) = glaX(n2) e X(mlglaaCin, 2).6 3
line would have been the disconnected one. 6.3

We would like to claim that this tree structure, which the
loop is glued into, is what is needed for the AdS/CFT duality.|f we expand the nonlocal vertex operagf X(70) *ikz:X(72)
If we consider the four-point amplitude in AdS space in ain powers of the separation,, one obtains vertex operators
point-particle limit, it is given by a set of tree diagraniSee  of the formag,X*1 - -9, X*s(7,) ' (k1 k2 X(70)  wherer, is the
[49] and references therein to the large literature on AdSmidpoint of 7, and 7,. We have again used the equation of
four-point functions. In particular, the four-point functions of yotion 92X#=0. This indicates that as intermediate states in
the lowest twist-2 operators have been studied in detalil, bOtlfheschannel, we will have all the higher spin particles of the

perturbatively and at strong coupling, i0].) In the point-  |6a4ing Regge trajectory. In fact, this actually suggests that
particle limit (unlike in a worldsheet descriptiorone sepa- e do not have particles from other Regge trajectories ap-
rately sums over diagrams #jt,uchannels built from three-  yearing as intermediate states. This is in line with the com-
point vertices. These diagrams are as in the tree of Fig. fhents in the Introduction about the possibility of a consistent
(minus the horizontal line In a given channel, sag, there  {,ncation to the leading Regge trajectory.

can be an infinite set of intermediate states. We will now try g4, four-point functions of more general twist-2 opera-

to argue tha_t the horizontal line in Fig. 4 captures an infinitetors, the logic is very similar since we have the same Gauss-
summation in thes channel. _ _ . _ian factor. There is, in addition, a multiplicative factor in the
To interpret the horizontal resistor as a sum over infinitely,omenta which contributes to the spin of the exchanged
many states, let us go back to E@.2). If we expand the  giate. The intermediate states are still in the leading Regge
corresponding exponential pie@*1*s(17k)" we get an  trajectory following the arguments of the previous paragraph.
infinite series in powers df=(k;+k4)2. Aterm ~t’ imme-
diately suggests a contribution from a state of spin the
intermediate channel. But we could have equally well SNote that by our reckoning, each ordering appears twice, once in
cyclic and again in anticyclic order. So we do not introduce any
new factors of 2 in expanding each diagram in two ways.
This figure is actually adapted from a textbook on electrical ®We thank L. Rastelli, A. Sen, and E. Witten for useful discus-
networks(see p. 136 of45]). sions in this regard.
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The AdS four-point function the glued up worldline answer in position space and exhibit
the closeness to AdS amplitudes. Using E@s6) and(6.2),
Though we will not make a detailed comparison with thethe full worldline expression for the four-point function, in
four-point function in AdS space at present, we will look at the external orderingl234), is

dr

) 1 4

@~ aaarki + agagks +apaghd+ agask +agay(ky +ho)? +agag(ky Hhg)?] (6.9

We will expand the factor ok~ ruaskitke)® gnd take the essentially because the AdS bulk-to-boundary propagators
Fourier transform term by term. bore a close relation to thé-dimensional heat kernel. To
Let us look at the leading term in this expansion. We carfhatch terms as in E¢6.6) to a contribution to the-channel

do the Gaussian integral over the momenta after introducin§ur-point amplitude in AdS space, the bulk-to-bulk propa-
a Lagrange multiplier as in the case of the three-point funcdator in AdS space will also have to make an appearance.
tion. The presence of the term proportional fq £ k,)2 in ~ Since it too is a solution to the wave equation in AdS space
the exponent of Eq.(6.4) suggests introducing another (albeit with as-function sourcg it is not surprising that it
Lagrange multiplier. That is, we rewrite the momentum-Ccan also be naturally written in terms of the heat kernel. For

conservings function as instance, the scalar bulk-to-bulk propagator in position space
can be written in the Schwinger representatisae Appen-
dix B),
5“”( E. ki) = f d¥ks 8D (ky + ko —ke) 8@ (kg + Kyt Kg)
* 1 4t t [(d=2)/2]+n
- - G(zW;ty,tp)= > (Hito) (d2)—2+2n
= | d9%.d9z dfw e (kaitka—ks)-zgi(ka+ks+ks) - w =0 d—2 (t1+15)
s ' n'r T+n

(6.9

We now carry out the Fourier transform with respect to the
momentek; and also perform the integral oviey. Following
steps similar to that in Sec. Ill, we readily get the position 6.7
space expression,

« fwdp p(d/2)73+2nefp<z| e[(t1+t2)/p]D|W>,
0

where, as before, we have redefirtger z3,t,=wj.
< dr 1.4 This representation is a generalization of Ef4) and is
F(Xl,XZ,Xg,X4):f Wr“f H dai5< 2 ai—l) already in a suggestive form in relation to the worldline ex-
o7 0i=1 ! pressions. Note that the=0 term in Eq.(6.7) dominates as

one of the bulk points approaches the boundary, and is pro-
X f d¥z dw(x,|e™1H]|Z) portional to the bulk-to-boundary propagator in Hg.4).
This is identified with the contribution of the conformal pri-
X (x,|e™1%25| z) X (z| @245 |w) mary Tr®2. The higher powers ofi can be identified with

o] e the contribution of spin zero conformal descend&nfgrd?
X(w|e™23" |xg)(w|e™3*|x,). (6.6)  of this operato51,52.17 Similar representations exist for

. ) N higher spin particles. So all the right ingredients are present
Note that there are two intermediate positians that have  for 5 match with the field theory.

to be integrated over. In this form we have clearly exhibited \what remains to be seen is that all these ingredients can
the s-channel tree structure of Fig. 4, in p025|t|on space.pe put together and an appropriate change of variables be
Higher powers in the expansion ef "123(k1*ka)” can also  made on the Schwinger parameter space so that the worldline
be Fourier transformed in a similar way. Since the integralsexpression goes over into an AdS amplitude. Moreover, the
are still Gaussian, the basic structure of Eg.6) persists. intermediate states exchanged in any channel have to be in
There are now multiplicative tensor structuresxjh,z#,w*  the leading Regge trajectory. We hope to verify this conjec-
which are necessary for the description of the exchange dfire in detail in future work. Our intention here has merely
higher spin states, as well as conformal descendants.

As we saw in the case of the three-point function, the
above heat kernel structure of the tree was important for 1"There are, however, subtleties here involving logarithms
transforming the integrand into an AdS amplitude. This wag51,52.
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been to make it plausible to the reader that our considertheory of the massless higher spin fields, there is another
ations for the three-point function generalize nontrivially to source of intuition for this guess. All attempts that have been
the four-point function. made to study closed strings on AdS space in the zero radius
limit have found evidence for some kind of bit picture
emerging from the closed string worldshge+9]. These bits
or partons are to be identified with the Yang-Mills fields. The
We have taken some small steps here in trying to undemilinear operators are then those with the smallest allowed
stand how free-field theory could reorganize itself into anumber of bits, namely two. We therefore expect this case to
theory of closed string modes on a higher-dimensional Ad®e one where the worldsheet is slimmest and thus closest to
space. Essentially, we have sought to carry through the logithat of a point particle. To fatten the worldsheet, we would
of open-closed string duality. We hope to have made the cageeed a large number of bits, as is familiar from usual light-
that the worldline representation of the field theory is a natucone considerations or, more pertinently, in the BMN picture
ral framework within which this can be done. This was, per-[48]. In any case, our computations, to their limited extent,
haps, to be expected because it is the appropriate limit of theeem to bear out this working hypothesis for the leading
open string. But, in addition, as we saw in Sec. V, thereRegge trajectory.
seems to be a systematic way in which the gluing of loops But even here it is clear that, even if the amplitudes can
into tree structures takes place in this Schwinger parambe viewed as those of point particles in AdS space, it is a
etrized representation. The analogy to electrical networksery cumbersome way of doing things. For instance, in the
gives us the intuition as to how this happens. four-point function, all the infinite number of particles in the
Of course, associating tree structures to loops is just theeading Regge trajectory should appear as intermediate
geometrical aspect of the open-closed string duality. The dystates. A sum over individual bulk-to-bulk AdS propagators
namical aspect consists of understanding how, in this profor all these states is not only technically demanding but also
cess, the background also changes from flat space to Ad®Jly. A look at Eq.(6.4) shows that expanding in threchan-
space. Here, we do not yet have any systematic understandel (i.e., in powers ot) multilates a nices-t symmetric ex-
ing. Nevertheless, the worldline formalism has given somepression. It is the analogue of expanding the Veneziano am-
important clues in this direction. The close relation betweerplitude in thes channel which leads to messy individual
propagators in AdS space and proper time propagators in tHerms. Since the worldline expressions are in duality sym-
boundary theory is crucial for the transmutation of the fieldmetric form, it should be possible to recast them directly into
theory amplitude into one on AdS space. As we saw in thea duality symmetric closed string description. Perhaps the
case of the two- and three-point functions, a fairly simpleunbroken infinite-dimensional higher spin symmetry on AdS
change of variables on the Schwinger parameters takes @pacd19-21,16,18,1]should give us a hint on how to for-
from one to the other. Though we have not yet worked outmulate such a description. After all, the free-field Laplacian
such a change of variables for the four-point function, weentering in the worldline formalism also has such a symme-
believe it exists. Relatedly, the close identification of thetry [55] (see alsd56]).
overall proper time with the radial coordinate appears to be Another clue should come from the generalization to op-
some kind of realization of ideas on the Liouville mode anderators with more bits. As mentioned at the end of Sec. V,
the extra dimension. Therefore, the worldline formalismcorrelation functions of operators like ®° for large J will
seems to also have the power to manifest the change of backave many worldlinegand loops. It should be possible to
ground in the process of gluing loops into trees. We, how-examine the Schwinger parametrization of these correlators
ever, need to go beyond a case-by-case change of variablesd see an effective thickening of the worldsheet. It has re-
and find a way to understand this in more generality. Thiscently been proposdd7] that there is a huge Yangian sym-
will require some more insight into the relation between themetry that acts on the set of all free partons which is related
open and closed string parameters. Rather than working witto the nonlocal symmetries of the sigma model on AdS space
some particular coordinatization, as we have been doing, w8—60. This would be a generalization of the higher spin
perhaps need a more invariant characterization of the respesymmetries of the bilinears.
tive moduli spaces. The idea of seeing an infinite number of unbroken sym-
Actually, the entire discussion of the last paragraph is unimetries in string theory in the limit ok’ —° goes back to
avoidably tied up with the issue of the closed string descripGross[61,62. Some of the features found [62], such as
tion of AdS spacé53,54.1 We have been trying all along in the contribution only of special kinds of worldsheets in high-
this paper to bypass this issue by restricting ourselves to thenergy amplitudes, seem to reappear in our considerations.
twist-2 operators. The idea, as mentioned in the Introduction, At nonzero couplingor finite @’), we expect these sym-
is that the dual description of this sector might conceivablymetries to be Higgseldl.8,24,63. The open-closed string du-
only involve a point-particle-like limit of the string on AdS ality would, nevertheless, continue to hold. We note, in this
space. Apart from the existence of a consistent classicalontext, that the electrical analogy holds for arbitrary Feyn-

VII. FINAL REMARKS

8t is understood that whenever we talk of a closed-string theory °In the zero coupling limit, keeping the radius of AdS fixed, like
on AdS space, we mainly have in mind the maximally supersym-we have, is equivalent to taking' — .
metric theory on AdSx S°. 20we thank David Gross for discussions on these matters.
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man diagrams, including that of an interacting gauge theonthis is just the elementary fact that two parallel resisfans
Hence we expect the gluing of loops into trees to be implethis case proportional to the parametersind (1- «)] can
mented in the worldline formalism even at nonzero couplingbe replaced by a single equivalent residtoroportional to
The generality of the worldline formalism might also be use-a(1— «) for us|. This is evident from the exponent in Eq.
ful in trying to extend the open-closed string duality to non-(A2).

supersymmetric gauge theories. Perhaps this will also enable As before, the position space expression corresponding to
us to tie these gauge string dualities with the “other” kind of Egs. (A1) and (A2) is

open-closed duality that takes place in the process of tachyon
condensatiorisee[64,65 for recent discussions

]

dr 1
F(xq,%x2)= Jo GRS 7'2J ddzjo da<X1|em(lia)ﬁD|z>

It is a pleasure to acknowledge the various helpful con- X(z]er A )
versations | have had over the months with A. Adams, O. % dr 1
Aharony, S. Cherkis, A. Dhar, S. Das, J. R. David, M. Dou- f WTZJ da(x,|e™1@H|x,).  (A3)
glas, E. Gimon, D. Ghoshal, D. J. Gross, S. Govindarajan, F. T 0
Hassan, D. Jatkar, S. D. Joglekar, S. Kachru, H. Liu, J. Mal-
dacena, G. Mandal, E. Martinec, S. Minwalla, L. Motl, H. As in the case of the three-point function, the position space
Neuberger, A. Petkou, M. Rangamani, S-J. Rey, K. Schalmexpression clearly exhibits the glued up form of the loop. We
A. Sen, E. Silverstein, K. Skenderis, A. Strominger, S. Pwill relate Eq.(A3) to the two-point amplitude in AdS space.
Trivedi, C. Vafa, P. Windey, K. P. Yogendran, and M. Zamak-  The latter is essentially proportional to the convolution of
lar. | must especially extend my thanks to I. Klebanov, L.two bulk-to-boundary propagatdfsso that just as in Eq.
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_ d * dt 2 ” d=5,—p !
F(Xl,XZ)— d’z Wt dpp e dIB
APPENDIX A: THE TWO-POINT FUNCTION 0 0 0
The two-point function is a simple illustration of the ideas % flda[ﬁ(l_ﬁ)](d/Z)—3X<Xl|e[t/4p(1—5)]D|Z>

0

in the main body of the paper. The worldline expression for
the two-point correlator is given from E@2.6) to be, after

14pB)0]
some obvious change of variables, X(z] e P x,). (AS)
= dr We can now relate to the proper timer through
P(ks k)= 590k, o) |y 7 Prop |
t=47pB(1-B)a(l—a). (AB)

1
Xj da e~ me(1- Bk +(1-AK3] (A1)
0

Note the similarity to Eq.(4.7). The integral overp de-
where g is arbitrary since the integrand is actually indepen-couples and we are left with
dent of it. This is more conventionally written in terms of the
reduced form

B « dr 1 , _21We are bein_g a little cavalier here. Actually, there are contribL_J-
(k)= f —@TT Tzf da e (1= a)k® (A2) tions frpm gradient terms as well. However, because of_ the equ_atlon
0T 0 of motion, these are related to each other and one is left with a
boundary term which needs to be treated carefif§]. Since our
Equation(A2) is a straightforward example of the gluing up interest is not in reproducing the right normalization factors, but
process and its interpretation in terms of the electrical analrather in seeing how loops glue into AdS trees, it suffices to con-
ogy. The loop with two insertions is glued up into a treesider the product of two bulk-to-boundary propagators. The price
which is just a line segment in this case. In electrical termsywe will pay is that some expressions will be formally divergent.
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! dB * dr d ! da Ta(l-a)p0 ra(l—a)(1-8)0
F(Xl,XZ):foﬁ(l_B) o T(d/2)+l7'2jd ZJOW<X1|E ( )B |Z><Z|e ( )(1=p) |X2>

1 dg = d 1 d i
:Joﬁ(l_ﬁ) 0 T(d/2?+172f0[a(1—a6)l](d’2)2<Xl|em(1 xz). (A7)

Modulo the overall divergent factor from the decoupj@dntegral, Eq.(A7) coincides with Eq(A3) for d=4, the case of
interest. The overall divergence is not unexpected given the comments in the previous footnote.

APPENDIX B: THE SCALAR BULK-TO-BULK Here we have used the Schwinger representation
PROPAGATOR
The position space bulk-to-bulk propagator in AdS space i: 1 fxd N—lg—pé (B6)
for a scalar field corresponding to an operator of dimension E TN Jo PP

A is usually put in the formsee, e.g.[51])

A+l A d 1 as well as the identity
G(Z,W;Z9,Wp)=¢& “F| ——,=,A— = +1;—]|,
2 2R 2T hE
(B1) F(A+2n)=—,21 2A+2np ﬂm r é+n
27t 2 2 )
where (B7)
Z2+ Wi+ |z—w|?
= 2— (B2) APPENDIX C: DIVERGENCES AND THE UV-IR
ZoWo RELATION
In the case of the free-field operatordFf with A=d—2, the Let us consider the free-field theory in an arbitrary curved
hypergeometric function in EqB1) simplifies and background(or more generally one in which some of the

higher spin fields also have an expectation vallibe action
(B3) is still quadratic but the effective action is now a complicated
nonlocal functional of the metri@nd other fields There are
some UV divergences in this effective action, but they are
local in the background fields. This is familiar from the study
Using the expansion of quantum fields in curved space. The conventional way to
isolate these divergences is, in fact, the heat kernel or proper
I'(n+a) 2 time expansion. This involves studying the proper time rep-
(B4) resentation of the effective action in the background and put-
ting a UV cutoff € at small proper times to regularize the

d redefining?— 2 ite the bulk-to-bulk expression. We then make a small time expansion and isolate
and redefiningg=t;, wy=t,, we can write the bulk-to-bulk o leading divergent pieces.

propagator in a Schwinger parameter expansion very similar \ynat we would like to remark here is that the same struc-

7A l
G(z,w;z9,Wg)=§ (1—)(d—1)/2

to Eq. (4.4, ture of divergences is present in the effective action on AdS
B space as a functional of the boundary values of the metric
~ Tln+ —= (and other fields The difference is that these divergences are
2 (4t t )[(d*Z)/Z]Jrn . . .
GZW:ty 1) = 2 1l2 now in the IR and can be regularized by an IR cutgffin
PRI A T (d+2n—2)  (ty+ty)972Tn the radial coordinate of AdS space. This fits in well with our
picture where the proper time essentially transmutes itself
% fwdp pd—3+2ne—pe_p[\z_w|2/(t1+t2)] into the radial coordinate of AdS space.
0
® 1 (t,t,)[@- 272+ 1. The heat kernel expansion
1t2
= nz_:o d—2 (t,+1ty)@2-272n The effective action for, say, the free adjoint scalar field in
- n!I‘(— 12 a curved background,,, is given in a heat kernel represen-
tation,

“ o (@2)-3+2ng— | ol (ty + tp)/4p]00 1 1 (=dr

(B5) (CD
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where we have put in the UV cuto¥ and indicated the where, ag—0,
curved background in the subscript for the Laplacian. For the 0) 2) 20 (4)

. . v ooy tldI2]RH(d)
fermions and gauge fields, there are analogous representalu(Z)—h,,(2) +th 5(2) +t°h (2) +- -+ 1750, (2)
tions of the corresponding kinetic operators. For small proper [d12] [ T2 () o
times, the trace of the heat kernel has the well-known tt Inthw(z)+ : (CH

Schwinger-DeWitt expansion in terms of local functionals ygre h(o)(z)=h (2). The observation of Fefferman and
(see[67] for instance, v v

Graham [68] was that one can solve forhify)(z),
hﬁfy)(z),...ﬁﬁfv)(z) [but nothﬁfV)(z)] algebraically in terms of
. (€2 hl¥)(2). Putting this back into Einstein’s equations giy8s]

[d/2]

diz\h .
Tr[eTDh]~f —TETJ—( 120 aj(z)r+--

. . 1 = dt ' .
where the ellipsis indicates terms which give UV finite con- _—_ :f _j d ( B2t -
tributions. The sum ovej is a derivative expansion. The Nzr(h’w) o2l d'zyh JZO B2

aj(z) are the familiar Schwinger-DeWitt coefficents which (Co)
are curvature invariants built froim,, and having a total of
2j derivatives of the metric. Thusvith the appropriate nor-
malization which we have omittéd,=1, a;(x) = 3R, etc.

Therefore, the effective action has the expansion

Hered;(z) are local curvature invariants of dimension 2
built from h ,,(x) just asa;(z) in Eq.(C2). In generalz;(2)
anda;(z) are distinct linear combinations of the finite num-
ber of curvature invariants of dimensiof.2But Henningson
1 - dr and Skenderif38] could compare the conformal anomaly of
ﬁzl"(h,w)=f WJ’ diz\h the field theoryf j = d/2 piece of Eq(C2)] with the similarly

7 logarithmically divergent = d/2) piece of Eq(C6). For the
- full N=4 Yang-Mills multiplet, they found precise agree-
- . (C3  ment. See als{69].
6 Our purpose here is just to point out that the similarity
Not accidentally, this is like the worldline expressions Webetween EqS(QZ) and(C6) is another S|gnature of the role
had for correlation functions. In even dimensions the termOf the_proper time represfer?tatlon of the fleld_theory In recon-
with j=d/2 in Eq.(C2) has a logarithmic dependence on structing thg bulk description. Thg connection between the
and gives rise to a logarithmically divergent term which is"adial coordinate and the proper time shows up clearly over

- here?? In the examples that we have seen, such as @od.
le for th nformal anomaly. AR
responsible for the conformal anomaly and (A6), the two have been multiplicatively related to each

other. Thus, though the cutofisand €’ cannot be directly
identified with each other, because of their multiplicative re-

The measure in EC3) has the right structure to be that lation the logarithmically divergent pieces can be compared.
of AdSy, 1. In fact, the form of the integrand is also what This is also related to the fact that the power-law-divergent
one would have for a classical action on AdS space evaluate@rms for j<d/2 are prescription-dependent in the field
on-shell. When we speak here of a classical action on Ad$heory whereas the logarithmically divergent one is not.
space, we do not have in mind some kind of Einstein-Hilbert Similar calculations including backgrounds for scalar
action or supergravity variant. It could be more like a stringfields in AdS space have been carried ouf 7®,71] with
field action involving an infinite number of derivatives as in very similar results to the corresponding heat kernel expan-
the Vasiliev theories. sion in field theory. Perhaps utilizing the higher spin symme-

But already at the level of the Einstein-Hilbert action, onetries of the free Laplaciafb5] one might be able to relate the
sees a very similar structure, on-shell, to EG3). One heat kernel in an arbitrary quadratic background to on-shell
solves Einstein's equations on AgS with an asymptotic actions of the Vasiliev type, generalizing the remarks in this
boundary metric,,(z) by parametrizing the bulk metric to section.

X| 1+ zR+7°0(R?)+---

2. Comparison to AdS space

be
dszzd—tz h..(z,1)dz*dZ" (c4) 22t is interesting that the natural parametrization for the AdS met-
t? t ' ric (C4) in [68,38 employst rather than the more commaﬁ=t.
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