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From free fields to AdS space. I

Rajesh Gopakumar*
Harish-Chandra Research Institute, Chhatnag Road, Jhusi, Allahabad 211019, India

~Received 14 March 2004; published 26 July 2004!

FreeN54 super Yang-Mills theory~in the large-N limit ! is dual to an, as yet, intractable closed string theory
on AdS53S5. We aim to implement open-closed string duality in this system and thereby recast the free-field
correlation functions as amplitudes in AdS space. The basic strategy is to implement this duality directly on
planar field theory correlation functions in the worldline~or first quantized! formulation. The worldline loops
~remnants of the worldsheet holes! close to form tree diagrams. These tree diagrams are then to be manifested
as tree amplitudes in AdS space by a change of variables on the worldline moduli space~i.e., Schwinger
parameter space!. Restricting to twist-2 operators, we are able to carry through this program for two- and
three-point functions. However, it appears that this strategy can be implemented for four- and higher-point
functions as well. An analogy to electrical networks is very useful in this regard.

DOI: 10.1103/PhysRevD.70.025009 PACS number~s!: 11.15.Pg, 11.25.Tq
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I. INTRODUCTION

Over the past few years we have grown used to the ide
large-N gauge theories having a dual description in terms
gravitational theories in higher dimensions@1–3#. However,
we need to remind ourselves that getting used to an ide
not the same as understanding it. It is fair to say that we
not really understand why or how~some! field theories reor-
ganize themselves into a higher-dimensional gravitatio
description.

Open-closed string duality, we believe, is the underly
mechanism that drives these dualities. But except in the c
text of topological string dualities@4,5#, we do not explicitly
understand how the holes in an open string description c
up to form closed string worldsheets. It is clearly importa
to understand the nuts and bolts of this mechanism bett
we hope to shed further light on the miracles of largeN
dualities.

A good idea is to begin with the simplest examples. Fr
the field theory point of view, a free theory is as simple a
gets. In particular,N54 super Yang-Mills theory at zero
coupling is believed to be dual to string theory on a high
curved AdS space~zero radius in string units! @6#. It is a
measure of our lack of understanding of large-N dualities
that we know so little even in this seemingly tractable lim
Interesting attempts to understand the closed string si
model, in this limit, have not yet yielded fruit@7–9#.

Therefore, as an alternative strategy, we might try to s
from the free-field theory, which is completely under contr
and try to reconstruct the closed string theory, using as
guide the underlying open-closed string equivalence.

A. Open-closed string duality

Let us take this opportunity to elaborate a bit on our vie
point on the general open-closed string equivalence.
leading large-N field theory correlation functions~planar dia-
grams with some number of loops! arise from planar~no
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handles! open string diagrams with some number of vert
insertions on its boundaries. Viewing this diagram in t
closed string channel corresponds to gluing up the ho
~while keeping the vertex insertions at finite separation!. This
is then interpreted as a closed string diagram1 with the same
number of closed string vertex insertions, but with the glui
process having modified the background. We will actua
make a stronger working assumption which seems to be
dicated by our analysis. We assume that this open-clo
string equivalence operates at the level of the worldsh
moduli space. An open string surface with particular loc
tions of insertions and shape gets associated with a partic
closed string surface.2 In other words, the gluing of the ope
string into the closed string is to be implemented on
integrand in moduli space. A change of variables on th
moduli space would then show this to be a closed str
amplitude.

Actually, this is probably too general a picture to be us
fully implemented. What we will exploit is the simplification
coming from the fact that we are working in the field theo
limit. Since theN54 Yang-Mills theory is obtained as a
a8→0 limit of open string theory, one should really view th
planar open string worldsheets as reducing to planar wo
lines. There is a precise sense in which this happens.
worldsheet moduli space integral reduces to a worldl
moduli space integral, more familiar as a Schwinger~or

1To visualize the geometry of the gluing, think of the open stri
surface as a rubber sheet pinned at the locations of the verte
sertions. We can then imagine bringing together the boundarie
the rubber sheet~keeping the locations of the pins intact! and gluing
them so as to obtain a genus zero surface with punctures a
locations of the pins.

2Of course, the usual counting of moduli for the open and clo
string gives different dimensions. In our case, the matching
moduli does not appear to be straightforward, especially since
we will see, some of the open string moduli turn into parameters
the additional dimension. Presumably, this complication is rela
to the fact that we do not have a CFT description for the clo
string on AdS space. It is important to understand this better.
©2004 The American Physical Society09-1
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RAJESH GOPAKUMAR PHYSICAL REVIEW D70, 025009 ~2004!
Feynman! parameter space integral for the Feynman d
grams~see, for instance,@10–12#!. The integrand reduces t
a correlation function of worldline vertex operators in a fi
quantized formalism@13,14#. The particular simplification of
the free-field theory limit is that we have a Gaussian fr
particle action in this first quantized language.

So what we will aim to implement is the process of glui
up of planar worldline loops. It may seem puzzling at fi
that we have any kind of open-closed equivalence when
worldsheets degenerate to lines. In fact, what we will see
the simplest class of field theory correlation functions is t
the glued up version of the worldline is also a degener
genus zero surface—namely, with the topology of a tree.
change of variables on the moduli space, mentioned abov
the one natural to the description of the tree. The new v
ables will have the interpretation as Schwinger parame
for the tree amplitude in AdS space. Thus, even though
theory might be expected to be very stringy, we find partic
like amplitudes at least for a class of states in AdS spac
appears that the contributions for these amplitudes see
come from degenerate Riemann surfaces. We will comm
on this further on. We will also make some speculations
the concluding section on the appearance of ‘‘fat’’ clos
string surfaces from the glued up worldline.

We could go ahead now and examine arbitrary correla
in the free theory in the worldline formalism, but free Yan
Mills ~or super Yang-Mills! theory, in the large-N limit, has
an exponentially large number of single-trace gau
invariant operators for a given dimension@15,16#. This is a
reflection of its stringinesss. Implementing our strategy
arbitrary correlation functions of these operators is challe
ing because the worldlines can have a very complicated
pology. Therefore, as a first step, it helps to focus on a s
class of simple operators for which the open-closed dua
will be easiest to carry out.

B. Twist-2 operators

A very natural choice is to consider operators which
bilinear in the fields of the theory~but with an arbitrary num-
ber of derivatives! transforming as symmetric traceless te
sors of arbitrary spin. These twist-2 operators have sev
nice features. One is that these operators form a set of hi
spin-conserved currents of the free theory. Another impor
feature is that they close among themselves under the
~Operator Product Expansion! of the free theory3 suggesting
some kind of consistent truncation to this subsector@17#.
Moreover, the leading order inN connectedn-point functions
of these operators are particularly simple in the free the
being given by a one-loop diagram. In an open string~or,
equivalently, double line! representation, these are annul
diagrams with some number of insertions of gauge-invar
operators~see Fig. 1!.

Thus topologically these are the simplest diagrams wh
we have just two holes~the inner and outer boundary! to

3Double trace operators like (TrF2)2 are also present, but the
correspond to multiparticle states of this sector.
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close. In the field theory limit, the worldsheet reduces to
circular worldline~with some number of insertions!. So we
just have to glue together a single worldline loop to obta
trees. This simplifies our technical task.

The twist-2 operators are also naturally singled out fro
the closed string point of view. These operators corresp
to the leading Regge trajectory of stringy excitations. In t
zero radius limit, these are massless higher spin states in
space, corresponding to the fact that the currents were
served in the free theory@15,18#. In fact, classical interacting
field theories of exactly these massless higher spin parti
in AdS5 have been studied by Vasiliev and others~see@19–
21#, for instance!. That such classical theories exist at all
some indication that perhaps there is a consistent trunca
of the full string theory on AdS53S5 to this massless Regg
trajectory@17#. This also goes with the previous observati
of the closure of the OPE in this sector of the gauge theo
It is also perhaps the explanation for why we find a desc
tion in terms of particle amplitudes upon implementin
open-closed duality on the twist-2 operators. We should
that, even if true, this kind of consistent truncation wou
probably only hold for classical string theory~i.e., in the
large-N limit !. In any case, all these facts taken together s
gest this sector of the theory is a natural starting point
implementing our strategy.

Klebanov and Polyakov@22# have, in fact, attempted to
isolate the dynamics of this sector by pointing out that
‘‘single-trace’’ singlet operators in the O(N) vector model
are all bilinears which have similar features to the gau
theory bilinears above and can thus be placed in exact
respondence with the massless higher spin states menti
above. They therefore conjectured that the large-N limit of
the vector model was exactly dual to the classical Vasil
theory.4 Many of our statements, therefore, can be carr
over to the vector model at its UV fixed point. But as me
tioned earlier, our strategy should enable us to go beyond
bilinears once we have understood sufficiently well t
mechanism of the open-closed equivalence in this lead
Regge trajectory case. We leave this for the future.

4Actually, their conjecture was that the O(N) model in three di-
mensions, at its interacting~IR! fixed point, is dual to the Vasiliev
theory on AdS4 ~see @23–30# for further work!. The free-field
theory, or the UV fixed point, was also conjectured to be dual to
Vasiliev theory on AdS4 , but with an inequivalent quantization o
the spin-0 field, something that is possible ind53 @22#.

FIG. 1. One-loop open string diagram glued up into a clos
string diagram.
9-2
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C. The organization of the paper

Let us now chart out the flow of the paper. In the ne
section we review the first quantized or worldline formalis
For reasons mentioned above, we will concentrate on
case where the worldline has the topology of a circle. T
expressions for a generaln-point function on the circle are
well known and very similar to those in string theory. A
mentioned above, they take the form of an integral o
‘‘moduli space’’ with an integrand which is the result o
evaluating the correlation function of vertex operators. S
tion III specializes to the case of three-point functions a
shows how the integrand can be viewed as the circle gl
into a three-pronged tree. A similar thing happens trivia
for the two-point function as well. Section IV connects th
tree structure, which emerges from the worldline, to tree a
plitudes in AdS space. To that end, we first recast the u
bulk-to-boundary propagators in AdSd11 in a Schwinger rep-
resentation. The key property that we want to exhibit is
close relationship to thed-dimensional heat kernel. Usin
this representation, the three-point function in AdS spac
seen to be simply related to the three-pronged tree ampli
of Sec. III through a change of variables between the t
Schwinger parametrizations. This change of variables isin-
dependentof the external states and momenta. One inter
ing feature is that it is essentially the overall proper tim
modulus that plays the role of the additional dimension
AdSd11 .

Before proceeding further, we devote Sec. V to an
analogy between the Schwinger parametrization of Feynm
diagrams and electrical networks. Roughly speaking, for
ery Feynman graph the Schwinger parameters play the
of resistors while the external momenta play the role of c
rents. We exploit this analogy to understand how and w
the loop got glued into a tree for the case of the one-lo
three-point function. It also provides intuition as to why w
should expect a generalization of this process to higher-p
functions. In fact, these considerations are not special to o
loop correlators. Using the expressions for an arbitrary Fe
man diagram in Schwinger parametrization, one might h
to implement the open-closed duality for arbitrary corre
tors. The intuition behind the gluing of loops into trees
much the same. The expressions themselves are also su
tive in their treelike structure. However, we do not purs
this at the moment. In Sec. VI we look at the four-po
function. Guided by the electrical analogy, we describe
equivalent tree diagram. This tree structure turns out to h
the right form to be the four-point function in AdS spa
with a sum over the different channels, including as interm
diate states all the particles in the leading Regge traject
We have the detailed verification of this for the future. Se
tion VII concludes with a summary, unfinished tasks, a
speculations. Appendix A deals with the two-point functio
Appendix B gives a convenient Schwinger representation
the scalar bulk-to-bulk propagator in AdS space. Appendi
touches on the relation to the heat kernel expansion and
UV/IR connection.

Finally, a word about our formulas. In order to focus a
tention on the key physics aspects of various expressions
have avoided cluttering them with overall factors which a
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irrelevant to the considerations. Thus the reader would
well to remember that the equality signs in equations are
to various such factors.

II. THE WORLDLINE FORMALISM

Let us consider a Euclidean free-field theory in arbitra
dimensiond ~though we will mostly have in mindd54 for
application toN54 Yang-Mills theory!. For concreteness
take a real scalar fieldF in the adjoint of SU(N). This will
suffice to illustrate the basic procedure. We will remark la
on the generalization to the full free super Yang-Mills theo

Let us consider the connected contribution to ann-point
function of the gauge-invariant operator TrF 2,

G~x1 ,x2 ,...,xn!

5
1

N2 ^Tr F2~x1!Tr F2~x2!¯Tr F2~xn!&conn.

~2.1!

The corresponding momentum space correla
G(k1 ,k2 ,...,kn) is given by the double line Feynman dia
gram in Fig. 1 together with all other possible permutatio
~of the indices 1,2,...,n) in the external leg insertions. One o
the nice things about the worldline formalism is that all the
diagrams are captured by a single worldline diagram o
circle with n insertions where the location of each inserti
is independent of the others leading to all possible orderin

The locations~or proper times! t i of the insertions are
worldline moduli. There is, in addition, an overall modulu
the proper timet associated with the invariant length of th
circle. From the perspective of the first quantized action o
free particle,t is the remnant of the world line diffeomor
phism and plays a similar role to that of the conformal
Liouville mode in a worldsheet action~for a recent discus-
sion, see@31#!.

Then, the field theory correlation function takes a for
very analogous to that of a string amplitude@13,14#,

G~k1 ,k2 ,...,kn!

5E @dM#^eik1•X~t1!eik2•X~t2!
¯eikn•X~tn!&

[E
0

` dt

t E
0

t

)
i 51

n

dt i^e
ik1•X~t1!eik2•X~t2!

¯eikn•X~tn!&.

~2.2!

The measure fort is consistent with the U~1! invariance
along the circle. The correlator of the worldline vertex o
erators is evaluated with respect to the free-particle actio

^¯&5E @DXm#¯expS 2
1

4 E0

t

dt~] tX!2D . ~2.3!

A correlation function involving more general twist-2 sc
lar operators is again given by a one-loop diagram as in F
2. However, the additional derivatives at each vertex are
flected in the fact that the corresponding vertex opera
will be linear combinations~depending on the source mo
9-3
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RAJESH GOPAKUMAR PHYSICAL REVIEW D70, 025009 ~2004!
mentumki) of ] tX
m1
¯] tX

ms(t i)e
iki•X(t i ).5 Unlike the infi-

nitely many oscillators of the string, here the point-partic
equation of motion] t

2Xm50 leads to a restricted class o
vertex operators—those of a single Regge trajectory.

In evaluating an arbitrary correlator of bilinears, it is on
the vertex operators that are modified as above. The o
aspects of the worldline expression remain the same. In
ticular, we have the same integral over worldline modu
Though the details of the tensor structure of the more gen
vertex operators will be important for detailed matching w
amplitudes in AdS space, the primary feature of gluing up
the loop will arise from the worldline correlators ofeiki•X(t i ).
Therefore, we will mostly concentrate on then-point func-
tion in Eq. ~2.2!.

The correlation function of vertex operators appearing
Eq. ~2.2! is easily evaluated by performing the Gaussian
tegral of Eq.~2.3!. The result is that the integrand in modu
space takes the explicit form~see@13# for instance!

^eik1•X~t1!eik2•X~t2!
¯eikn•X~tn!&

5d~d!S (
i

ki D 1

t~d/2! expS 2
1

2 (
iÞ j

n

ki•kjG~t i ,t j !D ,

~2.4!

where

5For a given symmetric traceless tensor, one way to obtain
corresponding vertex operator is to add a source term (}eikix) to
the free-field Lagrangian, coupling to this operator. Integrating
the fields in this, still quadratic, Lagrangian leads to a determin
which can be written as a proper time Hamiltonian. In obtaining
determinant, one integrates by parts the derivatives, which ac
the eiki•x and give factors of the momentumki . The proper time
Hamiltonian now involves a higher power of the derivatives, i.
proper time momentapm, as well as the factor ofeiki•x, in a definite
ordering. The first quantized description involves going to the
grangian description. To first order in the source, the additional t
in the free-particle Lagrangian is given by replacing thepm by
] tX

m. This term, linear in the source, is then the vertex opera
corresponding to our original symmetric traceless tensor.

FIG. 2. One-loop worldline diagram withn insertions.
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G~t i ,t j !52
t i j ~t2t i j !

t
~t i j 5ut i2t j u! ~2.5!

is the appropriate Green’s function on the circle. Thed func-
tion enforcing momentum conservation comes from the ze
mode integral over theX’s. The factor of 1/td/2 is from the
determinant of the nonzero modes.

To evaluate the correlation function of the more gene
vertex operators, mentioned above, is equally straight
ward, involving just keeping track of more indices. As usu
an efficient way to obtain them is to introduce a source te
j •] tX in the worldline action and carry out the Gaussi
integral and take the required number of functional deri
tives. All that essentially changes in Eq.~2.4! is that one has
polynomial factors in the external momenta, together w
time derivatives of the Green’s function, multiplying th
Gaussian factor in Eq.~2.4!.

Going back to Eq.~2.2!, the complete expression for th
n-point function is

G~k1 ,k2 ,...,kn!5d~d!S (
i

ki D E
0

` dt

t~d/2!11

3E
0

t

)
i 51

n

dt i expS 2
1

2 (
iÞ j

n

ki•kjG~t i ,t j !D .

~2.6!

It is this expression that will be our main focus of attentio
We will examine it more closely for the three- and~to a
lesser extent! the four-point function. In these cases, we w
see how this integral over moduli space for a loop can
viewed in terms of contributions from tree graphs.

Finally, a word about further generalizations. First, wh
there are several species of scalar fields; then the only W
contractions that survive are ones where the flavor indi
contract. This means that only a subset of permutations
the external legs gives a nonzero answer. This effectiv
translates into a truncation of the regime of integration of
moduli t i . This issue only arises for four- and higher-poi
functions.

Fermionic and gauge bilinears can also be incorpora
into the worldline formalism@32#. This is best done by in-
cluding a worldline Grassmann superpartnercm to the Xm

and appropriately supersymmetrizing the free worldline
tion. The natural description for the action and vertex ope
tors is in terms of a worldline superfield which is integrat
over a supermoduli space. The expressions for the one-
correlation functions are reductions of analogous superst
ones. Once again the essential features are captured by
~2.6!. We refer the reader to@14# and the review@33# for
more details and references.

III. THE THREE-POINT FUNCTION

Having set up the worldline formalism for then-point
function of bilinears, we will now see how the worldlin
gluing process takes us from the one-loop diagram to a t
like structure, in the particular case of the three-point fun
tion. Logically, one should start with the two-point functio
But the gluing process is somewhat trivial there and we s
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relegate its discussion to Appendix A.
Once again, to keep things uncluttered we will begin w

the n53 case of Eq.~2.1!, or rather its momentum spac
version in Eq.~2.2!, which was evaluated in Eq.~2.6!,

G~k1 ,k2 ,k3!5d~d!S (
i

ki D E
0

` dt

t~d/2!11 E
0

t

)
i 51

3

dt i

3expS 2
1

2 (
iÞ j

3

ki•kjG~t i ,t j !D . ~3.1!

The momentum-conservingd function helps in simplify-
ing the kinematic invariants appearing in the exponent,
Eq. ~3.1!. Thus 2k1•k25k3

22k1
22k2

2, etc. Making the
change of variablest125ta3 , t235ta1 , t315ta2 ~with
S ia i51) yields the simpler form

G~k1 ,k2 ,k3!5d~d!S (
i

ki D E
0

` dt

t~d/2!11 t3E
0

1

)
i 51

3

da id

3S (
i

a i21Dexp$2t~k1
2a2a31k2

2a3a1

1k3
2a1a2!%. ~3.2!

We recognize the integrand to be

expH 2(
i

tki
2a jakJ 5)

i 51

3

^ki uexp@ta jakh#uki&,

~3.3!

where the indicesi,j,k are a cyclic permutation of$1,2,3% and
h is the d-dimensional Laplacian whose eigenkets are
noted byuk&.

That this heat kernel representation is already a glued
version of the original loop diagram can be most clea
exhibited by going to position space. We can easily do
Gaussian integral over momentum~after introducing a
center-of-mass variablez as Lagrange multiplier for thed
function!,

FIG. 3. One-loop three-point function glued up into a thre
pronged tree. The relation between the Schwinger parameters o
sides of the loop and the legs of the tree is also shown.
02500
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G~x1 ,x2 ,x3!5E )
i 51

3

ddkie
2 iki•xiG~k1 ,k2 ,k3!

5E
0

` dt

t~d/2!11 t3E
0

1

)
i 51

3

da id

3S (
i

a i21D 1

t3d/2~)a i !
d

3E ddz expH 2
1

4 (
i 51

3
~xi2z!2

ta jak
J

5E
0

` dt

t~d/2!11 t3E
0

1

)
i 51

3

da idS (
i

a i21D
3E ddz)

i 51

3

^xi uexp@ta jakh#uz&. ~3.4!

The last line exhibits the position space heat kernel repre
tation clearly as a tree amplitude—the product of fre
particle amplitudes to propagate from eachxi to a common
vertexz ~which is then integrated over!.6 Recall that the hea
kernel or propagator in position space is given by

^xuethuy&5
1

~4pt !d/2 e2~x2y!2/4t. ~3.5!

Pictorially, we may depict the process of gluing as in Fig.
In the next section, we will see that this tree is precisel

tree amplitude in AdSd11 once we make a change of var
ables in Eq.~3.4! into Schwinger parameters for the tree. B
before we proceed, let us comment on the three-point co
lation function of arbitrary bilinears. As mentioned in the la
section, the only changes are multiplicative factors cons
ing of polynomials in the external momenta~anda i). Since
the crucial Gaussian factor is unchanged, we see that in
sition space, we continue to have the tree structure
P i 51

3 ^xi uexp@tajakh#uz&. The additional terms are multipli
cative polynomials in the (xi2z)m. Similar, slightly general-
ized remarks apply to the case of fermionic and gauge bi
ears. Thus the property of gluing depicted in Fig. 3
universal to all the one-loop correlation functions. We w
better understand the underlying reason for this in Sec. V

IV. THE THREE-POINT TREE AMPLITUDE
IN AdS SPACE

A. The bulk to boundary propagator in AdS space

To compare the tree of the previous section with the t
amplitudes in AdS space, we will find it useful to write th
bulk-to-boundary propagators for various fields in a som
what unconventional manner. We have mostly focused at

6That the one-loop three-point function can be viewed as a tre
this way was noticed by@34#.
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RAJESH GOPAKUMAR PHYSICAL REVIEW D70, 025009 ~2004!
tion on correlation functions of TrF2. The dimension of this
operator is (d22) in the d-dimensional free theory. The
AdS/CFT dictionary@2,3# then tells us that it couples to
scalar field in AdS space withm2522(d22). Hence let us
start with the bulk-to-boundary propagator of such a sca
field. This is a solution of the wave equation for a scalar
AdSd11 ~where we set the radius of AdS to 1!,

@2z0
2]z0

2 1~d21!z0]z0
2z0

2h22~d22!#K50, ~4.1!

which is proportional to ad function when the position in the
bulk approaches the boundary. Here we are working w
Euclidean AdSd11 in the natural Poincare coordinates

ds25
dzW21dz0

2

z0
2 ~4.2!

andh is thed-dimensional Laplacian in the directionszW ~or
simply z when there is no risk of confusion! that parametrize
the boundary on which the dual field theory resides.

In terms of the coordinatet5z0
2 and K5tK̃, Eq. ~4.1!

takes the form

S 2~d26!
]K̃

]t
2hK̃24t

]2K̃

]t2 D 50. ~4.3!

If the last term were absent, this would have been the h
equation and the solution would have simply been the h
kerneleth. However, solutions to Eq.~4.3! can also be ex-
pressed in terms of the heat kernel. Thus the usual bulk
boundary propagator is given by a solution of the form

K̃~ t !5E
0

`

dr r~d/2!23e2re~ t/r!h. ~4.4!

Thus, K(t)5tK̃(t) is expressed in terms of a convolutio
over a heat kernel in terms of the parameterr. It is easy to
verify that this is just a Schwinger parametrization of t
familiar bulk-to-boundary propagator~with D5d22) @3#,

K~x,z;z05t1/2!5S t1/2

t1~x2z!2D d22

5^xuK~ t !uz&.

~4.5!

In momentum space@2#, Eq. ~4.4! is merely an integral rep
resentation of the Bessel function that the bulk-to-bound
propagator is proportional to.

This close relation to thed-dimensional heat kernel is th
main reason why the glued up tree of the previous sec
can be related to a tree amplitude in AdS space. Though
have shown this for the scalar and also for its bulk-
boundary propagator, it is clear that wave equations
higher spin particles in AdS space can also be put int
similar form as Eq.~4.3!, which exhibits the close relation t
the heat kernel. Similarly, bulk-to-bulk propagators will al
be expressed in terms ofd-dimensional heat kernels, as w
will see explicitly in Sec. VI.
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B. The three-point function

Let us write down the tree amplitude for the three-po
function of the above scalar in this Schwinger representat
If there are no derivatives in the cubic couplings of scal
~something that can presumably be achieved by a field
definition @35#!, the point-particle amplitude is@using Eqs.
~4.5! and ~4.4!#

G~x1 ,x2 ,x3!5E ddzE
0

` dz0

z0
d11 )

i 51

3

K~xi ,z;z0!

5E
0

` dt

t ~d/2!11 t3E
0

`

)
i 51

3

dr ir i
~d/2!23e2r i

3E ddz)
i 51

3

^xi ue~ t/4r i !huz&. ~4.6!

Note the close similarity with the integrand of the worldlin
expression Eq.~3.4!, particularly the striking closeness be
tween the radial coordinatet and the proper timet. However,
here instead of integrating over the worldline moduli of t
loop, we have an integral over Schwinger parameters for
tree. There is a simple change of variables between the
which makes the two integrals identical. This is suggested
the relations in Fig. 3 between the loop and the tree.
simply have to setr i5ra i , wherer5S ir i , which we can
implement by introducing*0

`drd(r2S ir i)51 into the in-
tegral and changing to variablesa i . Finally, we make the
change

t54trS )
i 51

3

a i D , ~4.7!

which relates the proper timet to the AdS radial coordinate
t. The integral overr decouples, only contributing to th
overall constant which we have dropped all along, and
~4.6! becomes Eq.~3.4!.

A number of comments are in order here. The change
variables that we made was independent of the external
menta or positions and even of the number of spacet
dimensions. It is the kind of change of variables one mig
expect in going between a parametrization of open str
moduli space and one of the closed string. In fact, in gen
alizing to the three-point function of arbitrary bilinears, w
expect that the same change of variables will be sufficie
This is essentially because both the exponent and the m
sure on moduli space continue to be the same for the gen
three-point function. Of course, it is not guaranteed that
multiplicative tensor structures will work out right.

This is where, we believe, the supersymmetry and
special field content ofd54, N54 Yang-Mills theory will
play a special role. After all, what we have done so far wo
for any free scalar theory in any dimension. It is likely that
is only in the case ofN54 Yang-Mills theory that the tenso
structure encoded in the multiplicative factors would a
match with that from the bulk-to-boundary propagators
massless higher spin particles.

There is some evidence for this contention. Indeed, in
early days of the AdS/CFT correspondence, a free-field co
putation of the~two- and! three-point function ofR currents
9-6
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FROM FREE FIELDS TO AdS SPACE. I PHYSICAL REVIEW D70, 025009 ~2004!
~which are bilinears in the fields! in N54 Yang-Mills theory
was compared to supergravity@36#. The authors of@36# em-
ployed a Schwinger parametrization of the one-loop diagr
and matched the resulting integral expression with that of
supergravity integral, again in a parametrized representa
Making a change of variables, essentially equivalent to t
above, they found an explicit agreement of the ten
structures.7 It was important for them that the contributio
from both scalars and fermions to theR-current correlators
was taken into account to get the exact matching. We t
this as evidence that the special properties ofN54 Yang-
Mills theory are likely to play a role in ensuring a detaile
matching of tensor structures. A related observation is
garding the conformal anomaly.~Similar considerations ap
ply to the two- and three-point functions of the stress ten
The detailed matching of these tensor structures in the b
and the boundary was carried out in@37#.! The conformal
anomaly ind54, for example, is a linear combination of tw
independent curvature invariants. The particular combina
depends on the field content of the theory. An AdS5 calcula-
tion, on the other hand, gives a definite combination of th
two invariants@38#. One needs the full-field content ofN
54 Yang-Mills theory to get this particular combinatio
Thus the bosonic vector model in four dimensions, for e
ample, cannot possibly arise from an AdS5 calculation since
a different linear combination of the curvature invarian
arises in the two computations.8

One of the very interesting features in making the conn
tion between the worldline picture and amplitudes in A
space is that the proper time on the worldline is more or l
directly related to the radial direction in AdS space, as s
in Eq. ~4.7! or in the measures of Eqs.~3.4! and~4.6!. This is
not altogether unexpected. The proper timet is a measure of
the energy scale in the field theory and it has been see
various circumstances that the radial coordinate in AdS sp
plays a very similar role. For instance, a UV cutoff in th
field theory can be implemented by cutting off the modu
integral at smallt. From Eq.~4.7!, this effectively translates
into an IR cutoff in the radial coordinatet in AdS space. This
is also apparent from the fact thatt is the remnant of the
modulus of the open string annulus, and the smallt regime is
where the annulus captures the long-distance~IR! propaga-
tion in the closed string channel. Another source of our in
ition for why the proper time should play the role of the ex
dimension comes from the observation thatt represents the
worldline conformal factor, and so in a loose sense it i
Liouville mode.9 Therefore, it fits in with the idea of the
Liouville mode being the origin of the extra dimension in t
AdS/CFT correspondence@39,40#. ~Note that the idea of the
Liouville direction playing the role of an additional spac
time dimension in noncritical string theory goes back to@41–
43#.! It will be very interesting to flesh this connection o
further.

7We would like to thank K. Schalm for drawing our attention
@36#.

8We would like to thank I. Klebanov and K. Skenderis for discu
sions on this point.

9We thank S. Wadia for pointing this out.
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V. THE ELECTRICAL NETWORK ANALOGY

At this stage, it might seem that the results of the previo
section are due to the special nature of~two- and! three-point
functions which are largely constrained by conform
invariance.10 What we would like to put forward in this sec
tion is that the basic mechanism which is operating is ind
open-closed duality~in the limit where the Riemann surface
on both sides have degenerated to graphs!, and that this
mechanism can generalize to arbitrary diagrams.

We recall that there were two main steps in the proces
going from the field theory three-point function to the Ad
amplitude. The first was to argue that the worldline formu
tion of the field theory loop could be seen in terms of tre
involving free-particle heat kernels. The second was to sh
that these trees were indeed tree diagrams in AdS space
latter turned out to be true essentially because the wave e
tion in AdS space implied a close connection between pro
gators in AdSd11 and free-particle heat kernels ind dimen-
sions. A change of variables on the moduli th
demonstrated the identity of the two tree amplitudes. T
first step of gluing loops into trees is the one where
geometric mechanism of open-closed duality seems to
operating. To better understand how this operates, and
eralizes to arbitrary correlation functions, it will be very us
ful to revive an old analogy between Feynman diagrams
electrical networks.

The first indication that such an analogy might be prese
and important for us, is the observation that the loop-t
duality in Fig. 3 is similar to the standard ‘‘star-d’’ equiva-
lence in electrical networks.11 In fact, there is a precise con
nection. If one views the ‘‘d’’ ~loop! diagram in Fig. 3 as an
electrical network with resistancesRi in each of the sides
then this network is exactly equivalent to that of the ‘‘sta
or tree diagram with resistances (RjRk /(Ri) on the legs as
shown in the figure.12 This may be verified using elementar
considerations of Kirchoff’s laws. The essential idea
volves eliminating the current flowing in the loop from th
equations so that we are reduced to an equivalent tree
gram without that loop~see, for instance,@45#!.

This is not just a coincidence. There is an analogy
tween Feynman diagrams and electrical networks going b
to the 1960s~see, for instance, Chap. 18 of@46#!. An arbi-
trary Feynman diagram, expressed in Schwinger~or Feyn-
man! parametrization, has a natural interpretation in elec
cal network terms. The Schwinger moduli can be identifi
with resistances, and the external, as well as internal,
menta with currents flowing in the respective legs. The p
cess of carrying out the integrals over loop momenta is t
equivalent to elimination of the internal currents using K

-

10For correlators of higher spin operators there are a finite num
of tensor structures consistent with conformal invariance. The r
tive coefficients are undetermined.

11We thank Justin David for this observation which was inst
mental in our pursuing this line of thought.

12Star-triangle relations crop up very often in physics and ma
ematics. In a related context, see@44#.
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RAJESH GOPAKUMAR PHYSICAL REVIEW D70, 025009 ~2004!
choff’s laws.13 The result is a generalization of our one-loo
worldline expressions—an integral over Schwinger mod
space of an integrand that depends on the external mom
In particular, the crucial piece is a Gaussian exponent a
Eq. ~2.4!, which is proportional to the power consumed
the equivalent circuit. This is clearly visible in Eq.~3.2!,
where the exponential factor is the power consumed in
equivalent tree circuit of Fig. 3. For a recent review of~and
earlier references to! the expressions for a general Feynm
diagram as well as their electrical interpretation, see@47#.

What is of interest to us is the tree structure obtained a
elimination of the loop momenta/currents. In the language
circuits, it is intuitively plausible that this process of elim
nation of loop currents results in an equivalent tree struct
The external currents in various linear combinations wo
flow through the various legs of this tree. For instance,
expression for the power in the equivalent circuit, which a
pears as the Gaussian exponent in the integral, can be wr
down explicitly. For a generall loop diagram, it is given in
graph theoretic terms@47#,

P~a,k!5D~a!21(
T2

S )l 11

a D S ( kD 2

. ~5.1!

Here,a i are the Schwinger parameters for the various in
nal legs of the loop. The sum is over various 1-trees a
2-trees obtained from the original loop diagram. A 1-tree
obtained by cutting thel loop diagram atl lines so as to make
a connected tree, while a 2-tree is obtained by cutting
loop at l 11 lines so as to form two disjoint trees.D~a! is
then given by a sum, over the setT1 of all 1-trees, of the
product of thea i of all the cut lines. In the case of a one-loo
diagram, this is simply(a i . The sum overT2 indicates a
sum over the set of all 2-trees, where the product is over
a i of the l 11 cut lines. And ((k) is understood to be the
sum over all those external momentaki which flow into ~ei-
ther! one of the 2-trees. It is easy to verify, for example, th
in the case of the three-point function, this tallies with t
exponent in Eq.~3.2!.

This expression can be interpreted as the power dissip
in an equivalent tree circuit in which currents ((k) flow in
legs whose resistances areD(a)21() l 11a). The topology of
this tree circuit seems somewhat intricate in general. We
examine the case of the one-loop four-point function som
what more in the next section. However, we will postpon
more general analysis to future work. But hopefully, wh
should be clear from the above considerations is that
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gluing up of loops into trees is not particular to two-or thre
point functions. What we are seeing is an implementation
open-closed string duality, in the limit of degenerate wor
sheets, and the electrical analogy gives us useful intuition
visualizing this process.

When there are multiple loops, it is likely that the glue
up tree is effectively a thick or ‘‘fat’’ worldsheet, at least i
the limit where a large number of loops are present. T
latter would be true for correlation functions of, say, TrFJ

for largeJ. It would be nice to make a connection with th
BMN picture @48# of a closed-string worldsheet emergin
from operators like this carrying a large number of bits.

VI. THE FOUR-POINT FUNCTION

Armed with the intuition from electrical networks, w
will take a first look at the four-point function. Here we wi
only try to convince the reader that the worldline diagra
does glue up in the right way as expected from the duality
AdS space. A detailed check will be postponed to the futu

As usual, we will restrict our consideration to the fou
point function of TrF2, only briefly indicating the generali-
zations. The worldline expression is given from Eq.~2.2! to
be

G~k1 ,k2 ,k3 ,k4!5E
0

` dt

t E
0

t

)
i 51

4

dt i^e
ik1•X~t2!eik2•X~t2!

3eik3•X~t4!eik4•X~t4!&. ~6.1!

The integral over moduli space can be broken into six cy
cally inequivalent orderings of the four insertions. Of the
three are related to the others by a worldline reflectiont→
2t. The three inequivalent orderings correspond to th
inequivalent Feynman diagrams that can contribute to
amplitude. As mentioned in Sec. II, when there are seve
flavors of scalars~as inN54 super Yang-Mills theory!, then
some of these diagrams might be absent due to the struc
of the flavor indices. This can easily be incorporated into
considerations below.

Let us look at a specific time ordering~1234! of the in-
sertions around the circle. The worldline expression is giv
by Eq. ~2.6! with the caveat that the integral overt i is re-
stricted to the above time-ordered domain. The all-import
Gaussian factor in the integrand can be rewritten using
d-function constraint on the momentum as
exponent
ff equations
e2~1/2!( iÞ j
4 ki•kjG~t i ,t j !5e2t@a4a1k1

2
1a1a2k2

2
1a2a3k3

2
1a3a4k4

2
1a2a4~k11k2!2a1a3~k11k4!2#. ~6.2!

13This can be seen in the Schwinger parametrization, where one is performing Gaussian integrals over the internal momenta. The
has the interpretation as being the power consumed in the Feynman diagram. The Gaussian saddle points are precisely the Kircho
for voltages.
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FROM FREE FIELDS TO AdS SPACE. I PHYSICAL REVIEW D70, 025009 ~2004!
Here t415ta4 , t125ta1 , etc. The exponent on the righ
hand side tallies with the general Schwinger parametriza
expression quoted in Eq.~5.1!. As we saw in the previous
section, this exponent has the interpretation as the elect
power dissipated in the equivalent circuit obtained af
eliminating the loop current.

What is the equivalent circuit in this case? It is as sho
on the right side of Fig. 4.14 Elementary circuit analysis
shows that this is the equivalent circuit. One quick way
verify this is to see that the exponent in Eq.~6.2! is propor-
tional to the power dissipated in the thick lines on the rig
Note that the topology is now more complicated than in
case of the three-point function. In fact, the set of equival
resistors, shown with thick lines, is no longer fully co
nected. The horizontal resistor@which has current (k11k4)
flowing through it# is disconnected from the others. O
course, we have drawn the equivalent circuit in the ‘‘s chan-
nel.’’ This is an arbitrary choice. One could equally we
have drawn it in the ‘‘t channel,’’ in which case the vertica
line would have been the disconnected one.

We would like to claim that this tree structure, which th
loop is glued into, is what is needed for the AdS/CFT dual
If we consider the four-point amplitude in AdS space in
point-particle limit, it is given by a set of tree diagrams.~See
@49# and references therein to the large literature on A
four-point functions. In particular, the four-point functions
the lowest twist-2 operators have been studied in detail, b
perturbatively and at strong coupling, in@50#.! In the point-
particle limit ~unlike in a worldsheet description! one sepa-
rately sums over diagrams ins,t,uchannels built from three
point vertices. These diagrams are as in the tree of Fig
~minus the horizontal line!. In a given channel, says, there
can be an infinite set of intermediate states. We will now
to argue that the horizontal line in Fig. 4 captures an infin
summation in thes channel.

To interpret the horizontal resistor as a sum over infinit
many states, let us go back to Eq.~6.2!. If we expand the
corresponding exponential pieceeta1a3(k11k4)2

, we get an
infinite series in powers oft5(k11k4)2. A term ;tJ imme-
diately suggests a contribution from a state of spinJ in the
intermediate channel. But we could have equally w

14This figure is actually adapted from a textbook on electri
networks~see p. 136 of@45#!.

FIG. 4. One-loop four-point function and the equivalent tree.
the language of the electrical network, the thick lines are
equivalent resistors of the tree. The dotted lines complete the re
the circuit. The whole diagram is best thought of as drawn o
sphere with the dotted lines going behind.
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viewed this diagram in thet channel; thes-t symmetry would
imply an infinite summation in this channel too. There a
two other inequivalent orderings of insertions, name
~1324! and ~1243!, which havet-u and s-u symmetries, re-
spectively. The sum has completes-t-u symmetry. We can
expand each of these inequivalent diagrams twice,15 once in
each of the respective channels, and sum over all these
derings. We then rearrange the final answer as a sum ove
channels~each channel getting infinite summation contrib
tions from two different orderings!. As mentioned above, the
powers appearing in the infinite sum are suggestive of hig
spin intermediate states. Thus the worldline expressionprima
facie has the right structure to assemble itself into an A
amplitude with different channels, each involving higher sp
intermediate states. We must emphasize again that it is
cause we are viewing the AdS amplitude in a point-parti
language that we obtain a sum over different channels, e
with an infinite number of intermediate states. This is mo
like a closed string field theory representation which pie
together different regions of moduli space to achieve a d
answer.16 In this context, we should mention that there cou
also be a four-point contact term, in principle. A more care
examination of the amplitude will be necessary to dise
tangle such a contribution.

Another related viewpoint also indicates an infinite tow
of intermediate states in each channel. Since we have ta
the ordering ~1234!, the vertex operatorseik1•X(t1) and
eik2•X(t2) are adjacently inserted. Remembering that th
vertex operators are normal ordered, we can write the e
worldline operator product,

eik1•X~t1!eik2•X~t2!5eik1•X~t2!1 ik2•X~t2!e2k1•k2G~t1 ,t2!.
~6.3!

If we expand the nonlocal vertex operatoreik1•X(t1)1 ik2•X(t2)

in powers of the separationt12, one obtains vertex operator
of the form] tX

m1
¯] tX

ms(t0)ei (k11k2)•X(t0), wheret0 is the
midpoint of t1 andt2 . We have again used the equation
motion] t

2Xm50. This indicates that as intermediate states
thes channel, we will have all the higher spin particles of t
leading Regge trajectory. In fact, this actually suggests
we do not have particles from other Regge trajectories
pearing as intermediate states. This is in line with the co
ments in the Introduction about the possibility of a consist
truncation to the leading Regge trajectory.

For four-point functions of more general twist-2 oper
tors, the logic is very similar since we have the same Gau
ian factor. There is, in addition, a multiplicative factor in th
momenta which contributes to the spin of the exchang
state. The intermediate states are still in the leading Re
trajectory following the arguments of the previous paragra

l

15Note that by our reckoning, each ordering appears twice, onc
cyclic and again in anticyclic order. So we do not introduce a
new factors of 2 in expanding each diagram in two ways.

16We thank L. Rastelli, A. Sen, and E. Witten for useful discu
sions in this regard.
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The AdS four-point function

Though we will not make a detailed comparison with t
four-point function in AdS space at present, we will look
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the glued up worldline answer in position space and exh
the closeness to AdS amplitudes. Using Eqs.~2.6! and~6.2!,
the full worldline expression for the four-point function, i
the external ordering~1234!, is
G~k1 ,k2 ,k3 ,k4!5d~d!S (
i

ki D E
0

` dt

t~d/2!11 t4E
0

1

)
i 51

4

da idS (
i

a i21D
3e2t@a4a1k1

2
1a1a2k2

2
1a2a3k3

2
1a3a4k4

2
1a2a4~k11k2!21a1a3~k11k4!2#. ~6.4!
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We will expand the factor ofe2ta1a3(k11k4)2
and take the

Fourier transform term by term.
Let us look at the leading term in this expansion. We c

do the Gaussian integral over the momenta after introduc
a Lagrange multiplier as in the case of the three-point fu
tion. The presence of the term proportional to (k11k2)2 in
the exponent of Eq.~6.4! suggests introducing anothe
Lagrange multiplier. That is, we rewrite the momentu
conservingd function as

d~d!S (
i

ki D 5E ddksd
~d!~k11k22ks!d

~d!~k31k41ks!

5E ddksd
dz ddw ei ~k11k22ks!•zei ~k31k41ks!•w.

~6.5!

We now carry out the Fourier transform with respect to
momentaki and also perform the integral overks . Following
steps similar to that in Sec. III, we readily get the positi
space expression,

G~x1 ,x2 ,x3 ,x4!5E
0

` dt

t~d/2!11 t4E
0

1

)
i 51

4

da idS (
i

a i21D
3E ddz ddw^x1ueta4a1huz&

3^x2ueta1a2huz&3^zueta2a4huw&

3^wueta2a3hux3&^wueta3a4hux4&. ~6.6!

Note that there are two intermediate positionsz,w that have
to be integrated over. In this form we have clearly exhibit
the s-channel tree structure of Fig. 4, in position spa
Higher powers in the expansion ofe2ta1a3(k11k4)2

can also
be Fourier transformed in a similar way. Since the integr
are still Gaussian, the basic structure of Eq.~6.6! persists.
There are now multiplicative tensor structures inxi

m ,zm,wm

which are necessary for the description of the exchang
higher spin states, as well as conformal descendants.

As we saw in the case of the three-point function, t
above heat kernel structure of the tree was important
transforming the integrand into an AdS amplitude. This w
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essentially because the AdS bulk-to-boundary propaga
bore a close relation to thed-dimensional heat kernel. To
match terms as in Eq.~6.6! to a contribution to thes-channel
four-point amplitude in AdS space, the bulk-to-bulk prop
gator in AdS space will also have to make an appearan
Since it too is a solution to the wave equation in AdS spa
~albeit with ad-function source!, it is not surprising that it
can also be naturally written in terms of the heat kernel. F
instance, the scalar bulk-to-bulk propagator in position sp
can be written in the Schwinger representation~see Appen-
dix B!,

G~z,w;t1 ,t2!5 (
n50

`
1

n!GS d22

2
1nD

~4t1t2!@~d22!/2#1n

~ t11t2!~d/2!2212n

3E
0

`

dr r~d/2!2312ne2r^zue@~ t11t2!/r#huw&,

~6.7!

where, as before, we have redefinedt15z0
2,t25w0

2.
This representation is a generalization of Eq.~4.4! and is

already in a suggestive form in relation to the worldline e
pressions. Note that then50 term in Eq.~6.7! dominates as
one of the bulk points approaches the boundary, and is
portional to the bulk-to-boundary propagator in Eq.~4.4!.
This is identified with the contribution of the conformal pr
mary Tr F2. The higher powers ofn can be identified with
the contribution of spin zero conformal descendantshnTrF2

of this operator@51,52#.17 Similar representations exist fo
higher spin particles. So all the right ingredients are pres
for a match with the field theory.

What remains to be seen is that all these ingredients
be put together and an appropriate change of variables
made on the Schwinger parameter space so that the world
expression goes over into an AdS amplitude. Moreover,
intermediate states exchanged in any channel have to b
the leading Regge trajectory. We hope to verify this conj
ture in detail in future work. Our intention here has mere

17There are, however, subtleties here involving logarith
@51,52#.
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been to make it plausible to the reader that our consid
ations for the three-point function generalize nontrivially
the four-point function.

VII. FINAL REMARKS

We have taken some small steps here in trying to und
stand how free-field theory could reorganize itself into
theory of closed string modes on a higher-dimensional A
space. Essentially, we have sought to carry through the l
of open-closed string duality. We hope to have made the c
that the worldline representation of the field theory is a na
ral framework within which this can be done. This was, p
haps, to be expected because it is the appropriate limit of
open string. But, in addition, as we saw in Sec. V, the
seems to be a systematic way in which the gluing of loo
into tree structures takes place in this Schwinger par
etrized representation. The analogy to electrical netwo
gives us the intuition as to how this happens.

Of course, associating tree structures to loops is just
geometrical aspect of the open-closed string duality. The
namical aspect consists of understanding how, in this p
cess, the background also changes from flat space to
space. Here, we do not yet have any systematic underst
ing. Nevertheless, the worldline formalism has given so
important clues in this direction. The close relation betwe
propagators in AdS space and proper time propagators in
boundary theory is crucial for the transmutation of the fie
theory amplitude into one on AdS space. As we saw in
case of the two- and three-point functions, a fairly simp
change of variables on the Schwinger parameters take
from one to the other. Though we have not yet worked
such a change of variables for the four-point function,
believe it exists. Relatedly, the close identification of t
overall proper time with the radial coordinate appears to
some kind of realization of ideas on the Liouville mode a
the extra dimension. Therefore, the worldline formalis
seems to also have the power to manifest the change of b
ground in the process of gluing loops into trees. We, ho
ever, need to go beyond a case-by-case change of varia
and find a way to understand this in more generality. T
will require some more insight into the relation between
open and closed string parameters. Rather than working
some particular coordinatization, as we have been doing
perhaps need a more invariant characterization of the res
tive moduli spaces.

Actually, the entire discussion of the last paragraph is
avoidably tied up with the issue of the closed string desc
tion of AdS space@53,54#.18 We have been trying all along in
this paper to bypass this issue by restricting ourselves to
twist-2 operators. The idea, as mentioned in the Introduct
is that the dual description of this sector might conceiva
only involve a point-particle-like limit of the string on AdS
space. Apart from the existence of a consistent class

18It is understood that whenever we talk of a closed-string the
on AdS space, we mainly have in mind the maximally supersy
metric theory on AdS53S5.
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theory of the massless higher spin fields, there is ano
source of intuition for this guess. All attempts that have be
made to study closed strings on AdS space in the zero ra
limit have found evidence for some kind of bit pictur
emerging from the closed string worldsheet@7–9#. These bits
or partons are to be identified with the Yang-Mills fields. T
bilinear operators are then those with the smallest allow
number of bits, namely two. We therefore expect this cas
be one where the worldsheet is slimmest and thus close
that of a point particle. To fatten the worldsheet, we wou
need a large number of bits, as is familiar from usual lig
cone considerations or, more pertinently, in the BMN pictu
@48#. In any case, our computations, to their limited exte
seem to bear out this working hypothesis for the lead
Regge trajectory.

But even here it is clear that, even if the amplitudes c
be viewed as those of point particles in AdS space, it i
very cumbersome way of doing things. For instance, in
four-point function, all the infinite number of particles in th
leading Regge trajectory should appear as intermed
states. A sum over individual bulk-to-bulk AdS propagato
for all these states is not only technically demanding but a
ugly. A look at Eq.~6.4! shows that expanding in thes chan-
nel ~i.e., in powers oft! multilates a nices-t symmetric ex-
pression. It is the analogue of expanding the Veneziano
plitude in the s channel which leads to messy individu
terms. Since the worldline expressions are in duality sy
metric form, it should be possible to recast them directly in
a duality symmetric closed string description. Perhaps
unbroken infinite-dimensional higher spin symmetry on A
space@19–21,16,18,17# should give us a hint on how to for
mulate such a description. After all, the free-field Laplaci
entering in the worldline formalism also has such a symm
try @55# ~see also@56#!.

Another clue should come from the generalization to o
erators with more bits. As mentioned at the end of Sec
correlation functions of operators like TrFJ for largeJ will
have many worldlines~and loops!. It should be possible to
examine the Schwinger parametrization of these correla
and see an effective thickening of the worldsheet. It has
cently been proposed@57# that there is a huge Yangian sym
metry that acts on the set of all free partons which is rela
to the nonlocal symmetries of the sigma model on AdS sp
@58–60#. This would be a generalization of the higher sp
symmetries of the bilinears.

The idea of seeing an infinite number of unbroken sy
metries in string theory in the limit ofa8→`19 goes back to
Gross@61,62#. Some of the features found in@62#, such as
the contribution only of special kinds of worldsheets in hig
energy amplitudes, seem to reappear in our consideratio20

At nonzero coupling~or finite a8), we expect these sym
metries to be Higgsed@18,24,63#. The open-closed string du
ality would, nevertheless, continue to hold. We note, in t
context, that the electrical analogy holds for arbitrary Fey

y
-

19In the zero coupling limit, keeping the radius of AdS fixed, lik
we have, is equivalent to takinga8→`.

20We thank David Gross for discussions on these matters.
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RAJESH GOPAKUMAR PHYSICAL REVIEW D70, 025009 ~2004!
man diagrams, including that of an interacting gauge the
Hence we expect the gluing of loops into trees to be imp
mented in the worldline formalism even at nonzero coupli
The generality of the worldline formalism might also be us
ful in trying to extend the open-closed string duality to no
supersymmetric gauge theories. Perhaps this will also en
us to tie these gauge string dualities with the ‘‘other’’ kind
open-closed duality that takes place in the process of tach
condensation~see@64,65# for recent discussions!.

ACKNOWLEDGMENTS

It is a pleasure to acknowledge the various helpful c
versations I have had over the months with A. Adams,
Aharony, S. Cherkis, A. Dhar, S. Das, J. R. David, M. Do
glas, E. Gimon, D. Ghoshal, D. J. Gross, S. Govindarajan
Hassan, D. Jatkar, S. D. Joglekar, S. Kachru, H. Liu, J. M
dacena, G. Mandal, E. Martinec, S. Minwalla, L. Motl, H
Neuberger, A. Petkou, M. Rangamani, S-J. Rey, K. Scha
A. Sen, E. Silverstein, K. Skenderis, A. Strominger, S.
Trivedi, C. Vafa, P. Windey, K. P. Yogendran, and M. Zama
lar. I must especially extend my thanks to I. Klebanov,
Rastelli, S. Wadia, and E. Witten for several discussio
remarks, and general encouragement, which helped shap
course of this investigation. I am also grateful to A. Sen a
S. Wadia for comments on the manuscript. A large part
this work was carried out while being a visiting member
the Institute for Advanced Study, where the author’s wo
was supported by DOE Grant No. DE-FG02-90ER405
The hospitality of the physics departments at Harvard U
versity, Rutgers University, and I.I.T. Kanpur is also gra
fully acknowledged, as is that of the organizers of the A
sterdam Workshop on String Theory and the Crete Regio
Meeting in String Theory, where preliminary versions of th
work were presented.

APPENDIX A: THE TWO-POINT FUNCTION

The two-point function is a simple illustration of the ide
in the main body of the paper. The worldline expression
the two-point correlator is given from Eq.~2.6! to be, after
some obvious change of variables,

G~k1 ,k2!5d~d!~k11k2!E
0

` dt

t~d/2!11 t2

3E
0

1

da e2ta~12a!@bk1
2
1~12b!k2

2
#, ~A1!

whereb is arbitrary since the integrand is actually indepe
dent of it. This is more conventionally written in terms of th
reduced form

G̃~k!5E
0

` dt

t~d/2!11 t2E
0

1

da e2ta~12a!k2
. ~A2!

Equation~A2! is a straightforward example of the gluing u
process and its interpretation in terms of the electrical a
ogy. The loop with two insertions is glued up into a tr
which is just a line segment in this case. In electrical term
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this is just the elementary fact that two parallel resistors@in
this case proportional to the parametersa and (12a)] can
be replaced by a single equivalent resistor@proportional to
a(12a) for us#. This is evident from the exponent in Eq
~A2!.

As before, the position space expression correspondin
Eqs.~A1! and ~A2! is

G~x1 ,x2!5E
0

` dt

t~d/2!11 t2E ddzE
0

1

da^x1ueta~12a!bhuz&

3^zueta~12a!~12b!hux2&

5E
0

` dt

t~d/2!11 t2E
0

1

da^x1ueta~12a!hux2&. ~A3!

As in the case of the three-point function, the position sp
expression clearly exhibits the glued up form of the loop. W
will relate Eq.~A3! to the two-point amplitude in AdS space

The latter is essentially proportional to the convolution
two bulk-to-boundary propagators21 so that just as in Eq.
~4.6! we have

G~x1 ,x2!5E ddzE
0

` dt

t ~d/2!11 t2E
0

`

dr1dr2~r1r2!~d/2!23

3e2r12r2^x1ue~ t/4r1!huz&^zue~ t/4r2!hux2&.

~A4!

A change of variables tor15r(12b), r25rb and intro-
ducing a trivial integral overa makes this take the form

G~x1 ,x2!5E ddzE
0

` dt

t ~d/2!11 t2E
0

`

dr rd25e2rE
0

1

db

3E
0

1

da@b~12b!#~d/2!233^x1ue@ t/4r~12b!#huz&

3^zue~ t/4rb!hux2&. ~A5!

We can now relatet to the proper timet through

t54trb~12b!a~12a!. ~A6!

Note the similarity to Eq.~4.7!. The integral overr de-
couples and we are left with

21We are being a little cavalier here. Actually, there are contrib
tions from gradient terms as well. However, because of the equa
of motion, these are related to each other and one is left wit
boundary term which needs to be treated carefully@66#. Since our
interest is not in reproducing the right normalization factors, b
rather in seeing how loops glue into AdS trees, it suffices to c
sider the product of two bulk-to-boundary propagators. The pr
we will pay is that some expressions will be formally divergent.
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G~x1 ,x2!5E
0

1 db

b~12b!
E

0

` dt

t~d/2!11 t2E ddzE
0

1 da

@a~12a!#~d/2!22 ^x1ueta~12a!bhuz&^zueta~12a!~12b!hux2&

5E
0

1 db

b~12b!
E

0

` dt

t~d/2!11 t2E
0

1 da

@a~12a!#~d/2!22 ^x1ueta~12a!hux2&. ~A7!

Modulo the overall divergent factor from the decoupledb integral, Eq.~A7! coincides with Eq.~A3! for d54, the case of
interest. The overall divergence is not unexpected given the comments in the previous footnote.
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APPENDIX B: THE SCALAR BULK-TO-BULK
PROPAGATOR

The position space bulk-to-bulk propagator in AdS spa
for a scalar field corresponding to an operator of dimens
D is usually put in the form~see, e.g.,@51#!

G~z,w;z0 ,w0!5j2DFS D11

2
,
D

2
,D2

d

2
11;

1

j2D ,

~B1!

where

j5
z0

21w0
21uz2wu2

2z0w0
. ~B2!

In the case of the free-field operator TrF2 with D5d22, the
hypergeometric function in Eq.~B1! simplifies and

G~z,w;z0 ,w0!5j2D
1

S 12
1

j2D ~d21!/2 . ~B3!

Using the expansion

1

~12z!a 5 (
n50

`
G~n1a!

G~a!

zn

n!
~B4!

and redefiningz0
25t1 , w0

25t2 , we can write the bulk-to-bulk
propagator in a Schwinger parameter expansion very sim
to Eq. ~4.4!,

G~z,w;t1 ,t2!5 (
n50

` GS n1
d21

2 D
n!G~d12n22!

~4t1t2!@~d22!/2#1n

~ t11t2!d2212n

3E
0

`

dr rd2312ne2re2r@ uz2wu2/~ t11t2!#

5 (
n50

`
1

n!GS d22

2
1nD

~ t1t2!@~d22!/2#1n

~ t11t2!~d/2!2212n

3E
0

`

dr r~d/2!2312ne2r^zue@~ t11t2!/4r#huw&.

~B5!
02500
e
n

ar

Here we have used the Schwinger representation

1

jl 5
1

G~l!
E

0

`

dr rl21e2rj ~B6!

as well as the identity

G~D12n!5
1

2p1/22D12nGS D11

2
1nDGS D

2
1nD .

~B7!

APPENDIX C: DIVERGENCES AND THE UV-IR
RELATION

Let us consider the free-field theory in an arbitrary curv
background~or more generally one in which some of th
higher spin fields also have an expectation value!. The action
is still quadratic but the effective action is now a complicat
nonlocal functional of the metric~and other fields!. There are
some UV divergences in this effective action, but they a
local in the background fields. This is familiar from the stu
of quantum fields in curved space. The conventional way
isolate these divergences is, in fact, the heat kernel or pro
time expansion. This involves studying the proper time re
resentation of the effective action in the background and p
ting a UV cutoff e at small proper times to regularize th
expression. We then make a small time expansion and iso
the leading divergent pieces.

What we would like to remark here is that the same str
ture of divergences is present in the effective action on A
space as a functional of the boundary values of the me
~and other fields!. The difference is that these divergences a
now in the IR and can be regularized by an IR cutoffe8 in
the radial coordinate of AdS space. This fits in well with o
picture where the proper time essentially transmutes it
into the radial coordinate of AdS space.

1. The heat kernel expansion

The effective action for, say, the free adjoint scalar field
a curved backgroundhmn is given in a heat kernel represen
tation,

1

N2 G~hmn!5 1
2 ln det~2hh!5

1

2 Ee

` dt

t
Tr@ethh#,

~C1!
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RAJESH GOPAKUMAR PHYSICAL REVIEW D70, 025009 ~2004!
where we have put in the UV cutoffe and indicated the
curved background in the subscript for the Laplacian. For
fermions and gauge fields, there are analogous repres
tions of the corresponding kinetic operators. For small pro
times, the trace of the heat kernel has the well-kno
Schwinger-DeWitt expansion in terms of local functiona
~see@67# for instance!,

Tr@ethh#;E ddzAh

td/2 S (
j 50

@d/2#

aj~z!t j1¯ D , ~C2!

where the ellipsis indicates terms which give UV finite co
tributions. The sum overj is a derivative expansion. Th
aj (z) are the familiar Schwinger-DeWitt coefficents whic
are curvature invariants built fromhmn and having a total of
2 j derivatives of the metric. Thus~with the appropriate nor-
malization which we have omitted! a051, a1(x)5 1

6 R, etc.
Therefore, the effective action has the expansion

1

N2 G~hmn!5E
e

` dt

t~d/2!11 E ddzAh

3S 11
t

6
R1t2O~R2!1¯ D . ~C3!

Not accidentally, this is like the worldline expressions w
had for correlation functions. In even dimensions the te
with j 5d/2 in Eq. ~C2! has a logarithmic dependence ont
and gives rise to a logarithmically divergent term which
responsible for the conformal anomaly.

2. Comparison to AdS space

The measure in Eq.~C3! has the right structure to be tha
of AdSd11 . In fact, the form of the integrand is also wh
one would have for a classical action on AdS space evalu
on-shell. When we speak here of a classical action on A
space, we do not have in mind some kind of Einstein-Hilb
action or supergravity variant. It could be more like a stri
field action involving an infinite number of derivatives as
the Vasiliev theories.

But already at the level of the Einstein-Hilbert action, o
sees a very similar structure, on-shell, to Eq.~C3!. One
solves Einstein’s equations on AdSd11 with an asymptotic
boundary metrichmn(z) by parametrizing the bulk metric to
be

ds25
dt2

t2 1
hmn~z,t !dzmdzn

t
, ~C4!
tt

02500
e
ta-
r

n

-

ed
S

rt

where, ast→0,

hmn~z,t !→hmn
~0!~z!1thmn

~2!~z!1t2hmn
~4!~z!1¯1t @d/2#hmn

~d!~z!

1t @d/2# ln th̃mn
~d!~z!1¯ . ~C5!

Here hmn
(0)(z)5hmn(z). The observation of Fefferman an

Graham @68# was that one can solve forhmn
(2)(z),

hmn
(4)(z),...,h̃mn

(d)(z) @but nothmn
(d)(z)] algebraically in terms of

hmn
(0)(z). Putting this back into Einstein’s equations gives@38#

1

N2 G~hmn!5E
e8

` dt

t ~d/2!11 E ddzAhS (
j 50

@d/2#

ã j~z!t j1¯ D .

~C6!

Here ã j (z) are local curvature invariants of dimension 2j
built from hmn(x) just asaj (z) in Eq. ~C2!. In general,ã j (z)
andaj (z) are distinct linear combinations of the finite num
ber of curvature invariants of dimension 2j . But Henningson
and Skenderis@38# could compare the conformal anomaly
the field theory@ j 5d/2 piece of Eq.~C2!# with the similarly
logarithmically divergent (j 5d/2) piece of Eq.~C6!. For the
full N54 Yang-Mills multiplet, they found precise agree
ment. See also@69#.

Our purpose here is just to point out that the similar
between Eqs.~C2! and ~C6! is another signature of the rol
of the proper time representation of the field theory in rec
structing the bulk description. The connection between
radial coordinate and the proper time shows up clearly o
here.22 In the examples that we have seen, such as Eqs.~4.7!
and~A6!, the two have been multiplicatively related to ea
other. Thus, though the cutoffse and e8 cannot be directly
identified with each other, because of their multiplicative
lation the logarithmically divergent pieces can be compar
This is also related to the fact that the power-law-diverg
terms for j ,d/2 are prescription-dependent in the fie
theory whereas the logarithmically divergent one is not.

Similar calculations including backgrounds for sca
fields in AdS space have been carried out in@70,71# with
very similar results to the corresponding heat kernel exp
sion in field theory. Perhaps utilizing the higher spin symm
tries of the free Laplacian@55# one might be able to relate th
heat kernel in an arbitrary quadratic background to on-s
actions of the Vasiliev type, generalizing the remarks in t
section.

22It is interesting that the natural parametrization for the AdS m
ric ~C4! in @68,38# employst rather than the more commonz0

25t.
D
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