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Fermionic and bosonic stabilizing effects for type I and type II dimension bubbles

J. R. Morris*
Physics Department, Indiana University Northwest, 3400 Broadway, Gary, Indiana 46408, USA

~Received 24 March 2004; published 23 July 2004!

We consider two types of ‘‘dimension bubbles,’’ which are viewed as 4D nontopological solitons that emerge
from a 5D theory with a compact extra dimension. The size of the extra dimension varies rapidly within the
domain wall of the soliton. We consider the cases of type I~II ! bubbles where the size of the extra dimension
inside the bubble is much larger~smaller! than outside. Type I bubbles with thin domain walls can be stabilized
by the entrapment of various particle modes whose masses become much smaller inside than outside the
bubble. This is demonstrated here for the cases of scalar bosons, fermions, and massive vector bosons,
including both Kaluza-Klein zero modes and Kaluza-Klein excitation modes. Type II bubbles expel massive
particle modes but both types can be stabilized by photons. Plasma filled bubbles containing a variety of
massless or nearly massless radiation modes may exist as long-lived metastable states. Furthermore, in contrast
to the case with a ‘‘gravitational bag,’’ the metric for a fluid-filled dimension bubble does not exhibit a naked
singularity at the bubble’s center.

DOI: 10.1103/PhysRevD.70.025007 PACS number~s!: 11.27.1d, 04.50.1h, 98.80.Cq
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I. INTRODUCTION

An inhomogeneous compactification of a higher dime
sional spacetime to four dimensions may result in the form
tion of ‘‘dimension bubbles,’’ where the sizes of the ext
dimensions inside such a bubble are much different t
those outside the bubble@1–3#. A dimension bubble, from a
four dimensional viewpoint, is a nontopological soliton co
sisting of a closed domain wall that entraps particles and
radiation, which help to stabilize the bubble against collap
Since the existence of dimension bubbles depends only u
a dramatic change in the sizes of extra dimensions inside
outside the bubble, the detections of such objects could
vide evidence for the existence of extra dimensions, reg
less of how large or small their ambient sizes. For simplic
and specificity, we will, as in Refs.@2,3#, consider the case
where there is one toroidally compactified extra space
mension, so that the 5D spacetime has the topology ofM4
3S1.

Attention is focused here on several new features of
mension bubbles. First, it is pointed out that two differe
types of dimension bubbles are possible, and the size of
extra dimension, while differing dramatically in the interio
and exterior regions of the bubble, may remain microsco
in both regions. Let us simply label these two bubble typ
as types I and II. A type I~II ! bubble is one for which the siz
of the extra dimension is larger~smaller! inside the bubble
than outside. A type I bubble can be stabilized by mass
particles that are trapped inside the bubble, where the par
masses become much smaller than on the outside of
bubble. This stabilization mechanism for type I bubbles w
demonstrated for the case of scalar bosons in Ref.@2#. Here
we extend these results to include scalar bosons, fermi
and massive vector bosons—both Kaluza-Klein~KK ! zero
modes and KK excitation modes. A type II bubble exp
such massive modes from its interior. The dependence o
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particle masses upon the extra dimensional scale fa

ug̃55u1/25B(x) for the 4D Einstein frame is obtained in eac
case, for both the KK zero modes and the KK excitatio
Both type I and II bubbles can be stabilized by photo
however, due to the high reflectivity of the bubble wall@3#.

Finally, we investigate the behavior of the 4D metric ne
the center of a dimension bubble and compare it with that
a ‘‘gravitational bag’’ @4,5#, which can be thought of as
static idealization of an empty type I dimension bubble.~The
gravitational bag solution is static, but the scalar field of t
bag exhibits a singular behavior at the bag’s center.! More
specifically, we view a fluid-filled dimension bubble as
cosmic balloon@6,7# and investigate the behavior of the in
terior metric near the bubble’s center. Although the inter
metric of a ‘‘gravitational bag’’ has a naked singularity ne
the geometric center@4,5#, it is seen that a fluid stabilized
dimension bubble has a well behaved, finite metric at
bubble’s center. Therefore the naked singularity of a grav
tional bag is avoided in a fluid-filled dimension bubble.

A brief summary of the dimension bubble model is pr
sented in Sec. II and conditions on the 4D effective poten
are presented for the formation of either type I or type
bubbles. We can consider as an example the case wher
extra dimension is, say, TeV sized~i.e., l TeV;TeV21) in one
region of space and Planck sized (l P;M P

21) in another re-
gion of space, so that the size of the extra dimension m
change by roughly 16 orders of magnitude between th
two regions while remaining microscopic in both region
The mass dependence upon the extra dimensional scale
tor ug̃55u1/25B for KK zero modes is exhibited in Sec. III fo
scalar bosons, fermions, and massive vector bosons. Th
sulting expressions make clear how these particles can
stabilize a type I bubble by getting trapped inside, as with
‘‘ordinary’’ nontopological soliton of the type previously
studied by Frieman, Gleiser, Gelmini, and Kolb@8#, and how
they must be expelled from a type II bubble. These res
are then extended in Sec. IV to include Kaluza-Klein exci
tion modes. Radiation filled metastable bubbles are then c
©2004 The American Physical Society07-1
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templated in Sec. V, where estimates or rough bounds
obtained for bubble mass, radius, and lifetime. Finally, gra
tational aspects are addressed in Sec. VI, where it is poi
out that by viewing a fluid filled dimension bubble as acos-
mic balloon @6# and using the results for a cosmic balloo
metric @7#, the 4D metric of a fluid-filled dimension bubbl
exhibits a nonsingular behavior at the bubble’s center. T
suggests that the undesirable feature of a naked singula
which appears at the core of a ‘‘gravitational bag’’@4,5#, does
not appear at the center of a fluid filled dimension bubb
Section VII consists of a brief summary.

II. THE DIMENSION BUBBLE MODEL

A. Metric ansatz

A five-dimensional~5D! spacetime is assumed to be e
dowed with a metricg̃MN :

ds25g̃MNdxMdxN5g̃mndxmdxn2B2dy2 ~1!

wherexM5(xm,y), with M ,N50, . . .,3,5, m,n50, . . . ,3,

andB5A2g̃55 is the dimensionless scale factor for the ex
dimension. We assume an ansatz where the metricg̃MN is
independent of the extra dimensiony, i.e., g̃MN5g̃MN(xm),
]5g̃MN50, and the metric factorizes withg̃m550. The extra
dimension, characterized by the coordinatex55y, with 0
<y<2pR, is taken to be toroidally compact, so that the 5
spacetime has a topology ofM43S1. We allow for the pos-
sibility that the scale factorB has a spatial dependence, i.
B5B(xm). In the dimensionally reduced effective 4D theo
the scale factorB can be associated with a scalar fieldw
through the relation

w5
1

kN
A3

2
ln B, ~2!

where kN is related to the 4D Planck massM P by kN

5A8pG5A8pM P
21 , so that the scale factor can be writte

asB5eA2/3kNw. We further consider the situation wherein th
scalarw is governed by a 4D effective potentialU(w)>0,
which arises from a Rubin-Roth potential for bosonic a
fermionic degrees of freedom@9# ~see also Ref.@2#!, along
with a 5D cosmological constantL. WhenU(w) assumes a
‘‘semi-vacuumless’’ form characterized by the existence o
local minimum at some finite valuew5w0, a local maxi-
mum at some finite valuew5wmax.w0, and an asymptotic
form U(w)→U`5const asw→`, ‘‘dimension bubbles’’
can arise@2–4# as solutions of the 4D theory where the sc
lar w ~and therefore the scale factorB) can vary rapidly
across a region of space. It is this rapid variation ofw that is
associated with the domain wall bounding the soliton.
will be interested in the cases whereB differs dramatically in
the interior and exterior of the bubble. We note that ev
though the extra dimension may remain microscopic in b
regions, there can still be an enormous variation inB across
the domain wall. If, for example, the extra dimension var
across the bubble wall from a Planck size where (BR)P

;M P
21 , characteristic of a ‘‘small’’ extra dimension, to
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‘‘TeV size’’ where (BR)TeV;TeV21, which may be charac-
teristic of a ‘‘large’’ extra dimension,B can change by 16
orders of magnitude.

B. Dimensional reduction of the 5D action

We take the 5-dimensional action to include the 5D E
stein action, cosmological constantL, and a source Lagrang
ian L5:

S55
1

2kN(5)
2 E d5xAg̃5$R̃522L12kN(5)

2 L5% ~3!

where kN(5)
2 58pG55(2pR)kN

2 , g̃55udetg̃MNu and R̃5

5g̃MNR̃MN denotes the 5-dimensional Ricci scalar built fro
g̃MN . A 4D Einstein Frame metricgmn can be defined in
terms of the 4D Jordan Frame metricg̃mn by gmn5Bg̃mn

5eA2/3kNwg̃mn , and the line element in Eq.~1! then takes the
Kaluza-Klein form

ds25B21gmndxmdxn2B2dy2

5e2A2/3kNwgmndxmdxn2e2A2/3kNwdy2. ~4!

Using Eqs.~3! and ~4!, the 5D action is dimensionally
reduced to the effective 4D Einstein frame action@2,3#

S5E d4xA2gH 1

2kN
2

R1
1

2
~¹w!21e2A2/3kNwFL2

1

kN
2

LG J
~5!

whereR5gmnRmn is the 4D Ricci scalar built from the 4D
Einstein frame metric gmn and g5detgmn and L
5(2pR)L5.

The 4D effective Lagrangian that is generated byL is
L45B21L. The LagrangianL4, the effective potential
U(w), thew kinetic term1

2 (]w)2, and the gravitational term
(1/2kN

2 )R produce a total 4D effective Lagrangian

Le f f5
1

2kN
2

R1
1

2
~]w!22U~w!1L4 . ~6!

The ‘‘semi-vacuumless’’ potentialU(w) admits a domain
wall solution separating a region whereB becomes very
‘‘large’’ ~wherew assumes a valuew1.wmax) from a region
whereB is relatively ‘‘small’’ ~at the local minimum ofU,
wherew5w0). In general,U(w0)ÞU(w1) and the wall is
unstable against bending toward the region of higher ene
density @2#, and we expect the formation of a network
bubbles to result. A dimension bubble encloses a region
higher vacuum energy density and is surrounded by a reg
of lower vacuum energy density. For simplicity we consid
a spherical thin walled bubble of radiusRB , with wall thick-
nessd!RB , so that in a simplifying limit we may take the
inner radiusR2 and outer radiusR1 of the wall to coincide,
R2 , R1→RB . It is within the wall that the scale factorB(x)
7-2
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FERMIONIC AND BOSONIC STABILIZING EFFECTS . . . PHYSICAL REVIEW D 70, 025007 ~2004!
varies rapidly, and we are interested in the case wherB
takes on vastly different values in the interior and exter
regions.

C. Type I and type II dimension bubbles

We can envision two distinct possibilities, correspondi
to different sets of model parameters, which can result in
different types of bubbles. Either~i! U(w1).U(w0), giving
rise to what we will refer to as ‘‘type I’’ bubbles, or~ii !
U(w1),U(w0) associated with ‘‘type II’’ bubbles. In the
first case~type I! the bubble interior contains a ‘‘vacuum
characterized byw'w1, a vacuum energy densityU(w1),
and a relatively large scale factorB'B15eA2/3kNw1 and in
the bubble’s exterior region wherew5w0 there is a relatively
small scale factorB05eA2/3kNw0. In the second case~type II!
we have the opposite situation. Therefore, a type I bub
encloses a ‘‘large’’ extra dimension and is surrounded b
‘‘small’’ extra dimension. A type II bubble encloses
‘‘small’’ extra dimension and is surrounded by a ‘‘large’’ ex
tra dimension. Again, the extra dimension may remain
croscopic in all regions, but we entertain the possibility th
its size, characterized byBR, may be extremely differen
inside and outside of a bubble. For example, we might c
sider the rangeM P

21&BR&TeV21, in which case the value
of B inside and outside the bubble would be related
Bin /Bout;10616.

III. EFFECTS OF KALUZA-KLEIN ZERO MODES

In this section we consider contributions to the 4D effe
tive LagrangianL4 from Kaluza-Klein~KK ! zero modes of
scalar bosons, fermions, and vector bosons which acq
mass through the Higgs mechanism. Each type of zero m
particle field F is x5-independent, i.e.,F5F(xm), ]5F
50. We later consider Kaluza-Klein excitations where t
fields have ay-dependence from the cylinder condition. Th
difference in size of the extra dimensional scale factorB in
the interior and exterior regions of the bubble results in
difference in the effective particle mass in these regio
Specifically, the particle mass becomes smaller in a reg
where B is larger. This results in particles getting trapp
inside of type I bubbles and being expelled from type
bubbles. Therefore the KK zero modes have a stabiliz
influence on type I bubbles, where the particle pressure
help to support the bubble against collapse due to the
tension. The dependence of the particle massm upon B is
isolated for each type of particle.

A. Scalar bosons

Consider a contribution to the LagrangianL from a scalar
bosonf,

LS5 ]̃Mf* ]̃Mf2m0
2f* f5g̃mn]mf* ]nf2m0

2ufu2

5Bu]fu22m0
2ufu2 ~7!

where]5f50 andg̃mn5Bgmn and u]fu25]mf* ]mf. This
Lagrangian gives rise to the 4D effective Lagrangian
02500
r

o

le
a

i-
t

-

y

-

ire
de

a
s.
n

I
g
an
ll

L4,S5B21LS5u]fu22B21m0
2ufu2. ~8!

The scalar boson mass in the effective 4D theory is there
identified as

mS5B21/2m0 ~9!

wherem0 is the mass parameter in the original 5D theory. W
see that since the value ofB inside of a type I bubble is
assumed to be much bigger than that outside the bubble,
Bin@Bout , the effective boson mass inside is relative
small,mS,in!mS,out . The scalar boson is effectively trappe
inside the type I bubble since there is an enormous inw
forceFW '2¹mS52m0¹(B21/2) acting on the particle. The
kinetic energies of the light trapped particles exert an o
ward pressure on the bubble wall to help stabilize it aga
collapse. However, for a type II bubble the particle ma
becomes much smaller outside the bubble, so that mas
particles that are initially present inside the bubble are
pelled from it.

B. Fermions

Now consider a fermionic contribution to the Lagrangi
L in the form

LF5c̄8~ iGM]M2m0!c5c̄8~ iGm]m2m0!c ~10!

wherec5c(x), ]5c50, andc̄85c†G0. The GM matrices
are taken to be normalized according to

$GM,GN%522g̃MN. ~11!

The 5D metricg̃MN , written in terms of the 4D Einstein
frame metricgmn and the scale factorB, is

g̃MN5S B21gmn

2B2D . ~12!

Equation~11! then implies that$Gm,Gn%522Bgmn.
For the effective 4D Einstein frame theory we define t

new matricesgm related to the originalGm matrices by

Gm5B1/2gm, G55B21g5 ~13!

with a normalization given by

$gm,gn%522gmn, ~g5!251. ~14!

Upon defining c̄5c†g0 we have c̄85c†G05c†B1/2g0

5B1/2c̄, and the LagrangianLF can be rewritten as

LF5Bc̄~ igm]m2B21/2m0!c. ~15!

This Lagrangian gives rise to an effective 4D fermion L
grangian

L4,F5B21LF5c̄~ igm]m2B21/2m0!c. ~16!

The fermion mass in the effective 4D theory is therefo
identified as
7-3
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mF5B21/2m0 ~17!

which resembles the result obtained for scalar bosons.

C. Massive vector bosons

Let us consider the case of vector gauge bosons w
acquire mass by the Higgs mechanism, through the inte
tion with a scalar fieldx. There is then a contribution to th
Lagrangian given by

LG52
1

4
F̃8MNF̃MN8 1~D̃Mx!* ~D̃Mx!ux5h ~18!

where the tildes remind us that the metricg̃MN is used to
construct 5D scalars, so that, for instance, (D̃Mx)* (D̃Mx)
5g̃MN(DNx)* (DMx). The field strength and gauge cova
ant derivative terms are given by

FMN8 5]MAN8 2]NAM8 , DMx5~¹M1 ie0AM8 !x. ~19!

We chooseA5850 and a vacuum state characterized byx
5h5const. In the vacuum state we then have

~D̃Mx!* ~D̃Mx!ux5h5g̃MNe0
2h2AM8 AN8 5

1

2
Bm0

2A8mAm8

~20!

where we have definedm05A2e0h.
In order to obtain a canonical gauge field term in the

theory, we introduce the gauge fieldAm5B1/2Am8 . In terms
of the metricgmn and the gauge fieldAm , we can rewriteLG
in the form

LG52
1

4
BFmnFmn1

1

2
m0

2AmAm2
1

2
B3/2FmnHmn

2
1

4
B2HmnHmn ~21!

where

Hmn5An]m~B21/2!2Am]n~B21/2! ~22!

which becomes nonzero in regions where the scale factB
changes with position or time.~In the interior and exterior
regions of the bubbleB is taken to be approximately con
stant, butB varies rapidly with position within the bubbl
wall.! The effective 4D gauge field LagrangianL4,G
5B21LG is then given by

L4,G52
1

4
FmnFmn1

1

2
B21m0

2AmAm2
1

2
B1/2FmnHmn

2
1

4
BHmnHmn . ~23!

The gauge boson mass in the effective 4D theory is there
identified as

mG5B21/2m0 . ~24!
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D. Zero mode masses

For the cases of scalar bosons, spin 1/2 Dirac fermio
and massive vector bosons, it is found that the particle m
in the effective 4D theory is of the formm5B21/2m0, where
m0 is the mass parameter appearing in the LagrangianL of
the original 5D theory. Since the scale factor is assumed
be much larger inside a type I dimension bubble than o
side, i.e., Bin@Bout , we have thatmin!mout for the
x5-independent Kaluza-Klein zero modes. Particles exp
ence a strong, short ranged force within the~thin! wall of a
type I bubble toward the interior. Therefore, particles hav
nonzero mass tend to get trapped inside the type I bubble
the bubble adjusts its size during equilibration the outw
particle pressure on the bubble wall has a tendency to h
stabilize the bubble against total collapse. Just the oppo
holds for a type II bubble, for whichmin@mout . Particles
with nonzero mass are expelled from these bubbles.

IV. EFFECTS OF KALUZA-KLEIN EXCITATIONS

A. Effective 4D Einstein frame Lagrangian

Let us now consider the Kaluza-Klein~KK ! excitation
(nÞ0) modes of scalar bosons, fermions, and massive v
tor bosons. Each particle mode contributes a piece to
original 5D Lagrangian of the form

S55E d5xAg̃5L55E d4xA2gB21E
0

2pR

dyL5 ~25!

where nowL55L5(x,y) and the cylinder condition is im-
posed upon the periodic fieldF(x,y)5F(x,y12pR) al-
lowing the mode expansion

F~x,y!5 (
n52`

`

Fn~x!einy/R. ~26!

Defining L5(2pR)L5 as before, we can integrate out they
dependence and define

^L&5
1

2pRE0

2pR

dyL5E
0

2pR

dyL5 . ~27!

The effective 4D Einstein frame action then emerges as

S5E d4xA2gB21^L&5E d4xA2gL4 ~28!

where, as with the case of zero modes, we define the ef
tive 4D Einstein Frame Lagrangian

L45B21^L&. ~29!

From an expression for the effective 4D Lagrangian fo
field we can identify the effective 4D masses of the K
excitation modes. We again take a zero mode metricg̃MN

5g̃MN(x) and examine the scale factorB dependence of the
masses of KK excitations of scalars, spinors, and vector
7-4
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B. Scalar bosons

Consider the scalar boson contribution to the Lagrang
L given by

LS5 ]̃Mf* ]̃Mf2m0
2f* f ~30!

with

f~x,y!5(
n

fn~x!einy/R. ~31!

The LagrangianLS can then be written in terms of the KK
modes as

LS5(
m,n

H ~ ]̃mfm* !~ ]̃mfn!

2S mn

B2R2
1m0

2D fm* fnJ ei (n2m)y/R. ~32!

Using

1

2pRE0

2pR

dyei (n2m)y/R5dmn ~33!

we obtain

^LS&5(
n

H B~]mfn* !~]mfn!2S n2

B2R2
1m0

2D ufnu2J .

~34!

The effective 4D scalar LagrangianL4,S5B21^LS& is then

L4,S5(
n

H ~]mfn* !~]mfn!2S n2

B3R2
1

m0
2

B D ufnu2J
~35!

and the mass of thenth KK scalar boson excitation in the
effective 4D theory is

mS,n5S m0
2

B
1

n2

B3R2D 1/2

. ~36!

C. Fermions

Consider the fermionic Lagrangian

LF5C̄8~ iGM]M2m0!C ~37!

whereC5C(x,y), C̄85C†G0, and theG matrices are nor-
malized according to$GM,GN%522g̃MN, so that

$Gm,Gn%522g̃mn522Bgmn, ~G55!252~ g̃55!25B22.
~38!

As before, in order to pass to the effective 4D theory
define a set ofg matrices by
02500
n

e

Gm5B1/2gm, G55B21g5, g55S 21 0

0 1D ~39!

satisfying$gm,gn%522gmn and (g5)251. In terms of theg
matrices, the Lagrangian becomes

LF5B1/2C̄~B1/2igm]m1B21ig5]52m0!C

5BC̄~ igm]m1B23/2ig5]52B21/2m0!C ~40!

where C̄5C†g05B21/2C̄8. In the dimensionally reduced
4D theory the term proportional toC̄( ig5]5)C corresponds
to a mass term, so that we requireC to be an eigenfunction
of ig5]5.

The fieldC must therefore satisfy the periodicity cond
tion C(x,y)5C(x,y12pR) and be an eigenfunction o
ig5]5. Let us introduce a chiral notation and write the fie
C in the form

C~x,y!5 (
n52`

`

Cn~x,y!

5 (
n52`

` S cnL~x!jnL~y!

cnR~x!jnR~y!
D , S jnL5eiaLunuy/R

jnR5eiaRunuy/RD
~41!

whereaL,R each take a value of61 in order to satisfy both
the periodicity and eigenvalue conditions. Using the form
g5 given by Eq.~39!, the eigenvalue condition

ig5]5Cn5lnCn ~42!

yields aL521, aR511, andln52unu/R. We therefore
have

Cn5S cnL~x!e2 i unuy/R

cnR~x!ei unuy/R D . ~43!

We can perform the integration ofLF over y to obtain
^LF&. The orthogonality of thejn(y) functions can be used
and for a specific representation ofg matrices let us use, e.g

2 igm5S 0 sm

s̄m 0 D .

Then for the effective 4D LagrangianL4,F5B21^LF&, we
get

L4,F5(
n

c̄n~ igm]m2mF,n!cn ~44!

where

cn~x!5S cnL~x!

cnR~x!
D . ~45!

The mass of thenth KK excitation in the effective 4D theory
is
7-5
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mF,n5
m0

B1/2
1

unu

B3/2R
. ~46!

D. Massive vector bosons

As in the zero mode description, the contribution to t
Lagrangian from a U~1! gauge fieldAM8 that acquires a mas
described by the parameterm0 in the 5D theory is

LG52
1

4
F̃8MNF̃MN8 1

1

2
g̃MNm0

2AM8 AN8 ~47!

where nowAM8 5AM8 (x,y). As before, we setA5850 and in-
troduce the fieldAm5B1/2Am8 , with the periodic fieldAm

satisfying the periodicity requirement with a mode expans

Am~x,y!5 (
n52`

`

Am
n ~x!einy/R. ~48!

Upon rewriting the Lagrangian in terms of the 4D metricgmn

and the fieldAm , LG assumes the form

LG52
1

4
BFmnFmn1B22Fm5F 5

m 2
1

2
B3/2HmnFmn

2
1

4
B2HmnHmn1

1

2
m0

2AmAm ~49!

whereHmn is defined in Eq.~22!. Inserting the mode expan
sion and integrating out they dependence leaves

^L G
(n)&52

1

4
BFmn* nFnmn1

1

2 S n2

B2R2
1m0

2D Am*
nAnm

2
1

2
B3/2Hmn* nFnmn2

1

4
B2Hmn* nHnmn ~50!

where Fmn
n 5]mAn

n2]nAm
n , Am*

n5Am
2n , etc., and ^LG&

5(n^L G
(n)&. The effective 4D LagrangianL4,G5B21^LG& is

therefore given byL4,G5(n^L4,G
(n) &, with

L4,G
(n) 5B21^L G

(n)&

52
1

4
Fmn* nFnmn1

1

2 S n2

B3R2
1

m0
2

B D Am*
nAnm

2
1

2
B1/2Hmn* nFnmn2

1

4
BHmn* nHnmn. ~51!

From this we identify the mass of thenth KK vector boson
mode appearing in the effective 4D theory as
02500
n

mG,n5S m0
2

B
1

n2

B3R2D 1/2

. ~52!

E. Kaluza-Klein excitation masses

We see from the above that the mass of thenth KK exci-
tation has the form

mn55 S m0
2

B
1

n2

B3R2D 1/2

, bosons

m0

B1/2
1

unu

B3/2R
, fermions6 ~53!

wherem0 is the mass parameter appearing in the 5D theo
and m05m0 /B1/2 is the zero mode mass. If the zero mo
mass vanishes, thenmn5unu/B3/2R, and, in this case,
mn,out /mn,in5(Bin /Bout)

3/2. For a type I bubble where
Bin /Bout@1, KK modes which may be too massive to b
produced outside the bubble may be produced in the bubb
interior and can therefore help to stabilize the bubble aga
collapse. However, for a type II bubble whereBin /Bout

!1, the KK modes would be expelled from the bubble
interior.

V. RADIATION STABILIZED BUBBLES

Let us consider a type I bubble with a high temperatu
interior that contains radiation modes comprised of phot

as well as particles with massesmin!upW u. For a type II
bubble, we take the limit where there are only photons
side.~In a type I bubble, there may be nonrelativistic hea
KK states as well, for example, but the energy density
assumed to be negligible in comparison to that of the re
tivistic species.! The mass of a particle outside of the type
bubble is mout@min for Bout!Bin , but particles in the
bubble interior having energyv>mout can escape the
bubble. The relative number of particles that escape over
lifetime of the bubble depends uponmout /T5bmout , as-
suming a thermal distribution of energies.~For bmout@1 the
fractional number of particles escaping the bubble will
small.! Let us assume that there is an effective number
spin degrees of freedomḡ5ḡB1 7

8 ḡF associated with radia
tion modes inside the bubble that tend to stabilize the bub
without quickly escaping, i.e.,bmout@1. The photons inside
the bubble escape at a very low rate as well@3#, due to the
high photon opacity of the bubble wall.@The transmission
coefficient for photons@3# is roughly T;O(B, /B.)!1,
whereB, (B.) is the smaller~larger! of Bin or Bout .] We
therefore expect a bubble with a variety of radiation mod
to be a metastable state with a lifetimet that is at least as
long as that of a photon stabilized bubble@3#, i.e., t
*RB,0 /T, whereRB,0 is the initial radius of the bubble.
7-6
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We can estimate the equilibrium radius and mass o
stabilized bubble with an interior temperatureT. We take the
radiation energy density inside to be1

rRad5AT45ḡ
p2

30
T4. ~54!

In addition, there may be a volume termEV5 4
3 pRB

3l, where
the value of the effective potential in the bubble’s interi
U(w)5l, is taken to be a constant. Using this approxim
tion, along with a thin wall approximation for the bubb
wall, the expression for the bubble mass becomes

M5ERad1EV1EWall5
4

3
pRB

3~rRad1l!14pRB
2s

~55!

wheres is the surface energy density of the wall. We furth
assume that the bubble, after it forms, will adjust its radius
reach an equilibrium state with an approximately adiaba
~isentropic! expansion or contraction. The radiation entro
density iss;T3, so that if the bubble reaches equilibrium o
a relatively small time scale, we can takeRBT5const during
the equilibration process. With these assumptions we ob
approximate expressions for an equilibrium radiusRB and an
equilibrium massM given by

RB5
6s

~AT423l!
5

6s

~rRad23l!
~56!

and

M52pRB
3 S rRad2

1

3
l D512psRB

2S rRad2
1

3
l

rRad23l
D .

~57!

For a bubble that rapidly adjusts its size to reach equilibri
in an adiabatic manner so that, approximately,RBT5const
during this adjustment period, a collapsing bubble rapi
heats up and an expanding bubble rapidly cools down,
the final temperature of the stabilized bubble must sat
rRad5AT4.3l. On the other hand, it is assumed that t
bubble’s domain wall forms at some temperatureTc ~which
will depend upon model parameters! where a barrier forms in
the effective potential to separate the two low energy sta
so that a bubble at equilibrium should have an interior te
peratureT,Tc . In summary, for a stabilized bubble wit
radius and mass given by Eqs.~56! and ~57!, respectively,
the interior temperature must lie within the range

1It is assumed here, for simplicity, that not too many Kaluza-Kle
modes are excited, so that we can use the familiar 4D express
for radiation energy densities, etc. This condition is satisfied if,
instance,T,(BR)21, whereR is the radius parameter associat
with the extra dimension.~See, e.g.,@10,11#.!
02500
a

,
-

r
o
c

in

y
ut
y

s,
-

S 3l

A D 1/4

,T,Tc . ~58!

The lifetime of the bubble depends upon the rate at wh
photons and other high energy particles inside the bub
escape. This, in turn, depends upon the interactions of
particles inside the bubble and the rates at which lighter p
ticles withv.mout are produced, and the rates at which th
escape. However, we can reason that the lifetime of a bu
will be at least as long as that of a bubble stabilized
photons alone, in which case @3# t*RB,0 /T
;O(B. /B,)RB,0 .

If a bubble continues to shrink and the interior tempe
ture increases above the critical temperatureTc ~correspond-
ing to the temperature at which the domain wall forms!, the
wall disappears, i.e., the bubble explodes. When the bub
explodes, its radiative contents consisting of high tempe
ture photons, bosons, and fermions are suddenly release

VI. 4D GRAVITATIONAL ASPECTS

We now turn attention to consider 4D gravitational a
pects of dimension bubbles and argue that, under rather
assumptions, the interior metric of a dimension bubble sho
that its geometrical center is singularity free. This is in co
trast to the situation found for a ‘‘gravitational bag’’@4#,
which is basically an ‘‘empty,’’ static idealization of a type
dimension bubble. In particular, the gravitational bag p
sesses a naked singularity at its center@4,5#. @The gravita-
tional bag considered in Ref.@4# arises from a Freund-Rubin
compactification of a 6D theory, but has the same essen
aspects that we have in our 5D model. Theexact solution
obtained for the gravitational bag metric assumes that
effective potential vanishes in the bag’s interior, correspo
ing to the extra dimension becoming infinitely large (w,B
→`) there.# The gravitational bag contains only the sca
field w that gives rise to the bubble wall, without any e
trapped particles in the bubble’s interior. We argue that,
like a gravitational bag, the fluidic interior of a dimensio
bubble does not exhibit a naked singularity at its center.

The interior 4D geometry of the gravitational bag is d
scribed by@4,5#

ds25C1S ar21

ar11D 2p

dt22
C2

a4r 4

~ar11!2(p11)

~ar21!2(p21)
~dr21r 2dV2!

~59!

wherer is an isotropic radial coordinate andC1 , C2 , a, and
p are constants, with@4# 1

2 ,p,1. The center of geometry is
located atr 51/a, where the coefficient ofdV2 goes to zero
as r→1/a from above, and the metric spawns a singular
there, corresponding to a naked singularity of the exact
lution @4#. ~See also Ref.@5#.! In Ref. @4# it is found that
although there is a singularity at the bag’s center, the mas
the gravitational bag is finite.

Now, instead of a gravitational bag, consider a dimens
bubble that is filled with particles trapped in the interior. W
assume that the stress-energy of thew field in the interior is
negligible in comparison to that associated with the partic

ns
r

7-7
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and, furthermore, that we can approximate the bubble’s c
tents by an isothermal fluid with pressurep and energy den-
sity r connected byp5wr, with w a constant.~For the case
of radiation,w51/3.! In this case, the 4D fluid-filled domain
wall bubble can be viewed as acosmic balloon@6,7#. The
geometry inside the cosmic balloon is described by

ds25B~r !dt22A~r !dr22r 2dV2 ~60!

where the coordinater is now a nonisotropic radial coordi
nate@the metric coefficientB(r ) used here is not to be con
fused withug̃55u1/2]. The fluid in the bubble’s interior has th
important effect of removing the singularity at the bubble
center,r 50, provided that the fluid densityr(r ) remains
finite at the bubble’s center. This can be seen by borrow
some of the results obtained by Wang~see@7# and references
therein!. Specifically, near the center we have

A~r !5@12x~r !#21'F12
8

3
pGr~0!r 2G21

~61!

where r(0) is the central density andx(r )' 8
3 pGr(0)r 2.

For r(0) finite, we therefore haveA(0)51, and a naked
singularity at the center is avoided. The coefficientB(r ) can
be obtained from the equilibrium condition

B8

B
52

2p8

p1r
52S 2w

11wD r8

r
~62!

where 8 denotes differentiation with respect tor. Defining
t̄ 5@8pGr(0)#1/2r , we have (1/B)(dB/d t̄)'@4w/(1
1w)# t̄ for t̄ !1. Integration gives

B~r !'B~0!expH S 2w

11wD ~8pGr~0!r 2!J . ~63!

Fluid-filled dimension bubbles, including radiation stab
lized bubbles, therefore seem to have interior gravitatio
fields that are better behaved near the centers than tho
gravitational bags.

VII. SUMMARY

An inhomogeneous compactification of a higher dime
sional spacetime to 4D may result in the formation of ‘‘d
mension bubbles.’’ The sizes of the extra dimensions ins
the bubble can be either larger~for type I! or smaller~for
type II! than outside the bubble. Whether a dimension bub
02500
n-

g

al
of

-

e

le

is type I or type II depends upon the form of the effecti
potentialU(w) controlling the size of the extra dimension
We can therefore have the situation where a type I dimens
bubble encloses a ‘‘large’’ extra dimension and is surround
by a ‘‘small’’ extra dimension, with the opposite holding tru
for a type II bubble. For example, if the size of an ext
dimensionBR varies between a Planck size and a TeV si
the extra dimensional scale factorB can change by 16 order
of magnitude. As a result of a dramatic variation of the s
of the extra dimension across the bubble wall, the masse
various particle modes can vary dramatically between
inside and outside of the bubble, leading to an enhan
stabilization of a type I bubble by the entrapment of ligh
particles inside or the expulsion of heavier particles fro
inside a type II bubble. The dependence of the particle m
upon the extra dimensional scale factorB has been demon
strated for bosons and fermions, including both Kaluza-Kl
~KK ! zero modes and KK excitation modes.@See Eq.~53!.#

Both types of bubbles can be stabilized by photons, du
the high reflectivity of the bubble wall, and either type
dimension bubble may exist as a long-lived metastable st
Some basic features of plasma-filled bubbles have been
amined and estimates obtained for the equilibrium radius
mass. The lifetime of a bubble with an initial radiusRB,0 is
roughly estimated to bet*O(B. /B,)RB,0 , whereB.(B,)
is the larger~smaller! value ofB on the inside or outside o
the bubble.

Finally, we have considered the 4D gravitational aspe
of dimension bubbles to argue that, unlike the case fo
‘‘gravitational bag’’ @4,5# ~which may be thought of as a
empty, static idealization of a type I dimension bubble! the
center of a fluid-filled dimension bubble is singularity fre
This is seen by treating the dimension bubble as acosmic
balloon @6# and borrowing the results for the interior metr
of a cosmic balloon@7#. Fluid-filled dimension bubbles are
therefore seen to have better behaved interior gravitatio
fields than those of gravitational bags.

Since the existence of dimension bubbles depends up
dramaticchangein the sizes of extra dimensions across t
bubble wall rather than upon the actual size of an extra
mension in any region, the detections of such solitons co
provide evidence for the existence of extra dimensions,
gardless of their sizes.
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