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Fermionic and bosonic stabilizing effects for type | and type Il dimension bubbles
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We consider two types of “dimension bubbles,” which are viewed as 4D nontopological solitons that emerge
from a 5D theory with a compact extra dimension. The size of the extra dimension varies rapidly within the
domain wall of the soliton. We consider the cases of typié)Ibubbles where the size of the extra dimension
inside the bubble is much largésmalley than outside. Type | bubbles with thin domain walls can be stabilized
by the entrapment of various particle modes whose masses become much smaller inside than outside the
bubble. This is demonstrated here for the cases of scalar bosons, fermions, and massive vector bosons,
including both Kaluza-Klein zero modes and Kaluza-Klein excitation modes. Type Il bubbles expel massive
particle modes but both types can be stabilized by photons. Plasma filled bubbles containing a variety of
massless or nearly massless radiation modes may exist as long-lived metastable states. Furthermore, in contrast
to the case with a “gravitational bag,” the metric for a fluid-filled dimension bubble does not exhibit a naked
singularity at the bubble’s center.
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[. INTRODUCTION particle masses upon the extra dimensional scale factor
|gs5 2=B(x) for the 4D Einstein frame is obtained in each

An inhomogeneous compactification of a higher dimen-case, for both the KK zero modes and the KK excitations.
sional spacetime to four dimensions may result in the formaggth type | and Il bubbles can be stabilized by photons,
tion of “dimension bubbles,” where the sizes of the extra however, due to the high reflectivity of the bubble wl.
dimensions inside such a bubble are much different than Fina|ly, we investigate the behavior of the 4D metric near
those outside the bubblé—3]. A dimension bubble, from a ¢ center of a dimension bubble and compare it with that for
four dimensional viewpoint, is a nontopological soliton con- “gravitational bag”[4,5], which can be thought of as a
LS . . . Ltatic idealization of an empty type | dimension bublflehe
radiation, which help to stabilize the bubble against collapse ravitational bag solution is gta)':i?:, but the scalar field of the

Since the existence of dimension bubbles depends only up exhibits a singular behavior at the bag’s centdore
a dramatic change in the sizes of extra dimensions inside anhJ iricall '9 fluid-filled di 9 bubbl
outside the bubble, the detections of such objects could pros-peCI Ically, we view a fiuid-filed dimension bubble as a

vide evidence for the existence of extra dimensions, regarcuc-os"mC balloor(6,7] and investigate the behavior of the in-

less of how large or small their ambient sizes. For simplicityterior metric near the bubble’s center. Although the interior

and specificity, we will, as in Ref$2,3], consider the case metric of a “gravitational pag" has a naked sir_1gu|arit_y near
where there is one toroidally compactified extra space difhe geometric centefd,5], it is seen that a fluid stabilized
mension, so that the 5D spacetime has the topologygf dimension bubble has a well behaved, finite metric at the
x &L, bubble’s center. Therefore the naked singularity of a gravita-
Attention is focused here on several new features of difional bag is avoided in a fluid-filled dimension bubble.

mension bubbles. First, it is pointed out that two different A brief summary of the dimension bubble model is pre-
types of dimension bubbles are possible, and the size of theented in Sec. Il and condmor_ls on th(_a 4D effective potential
extra dimension, while differing dramatically in the interior are presented for the formation of either type I or type I
and exterior regions of the bubble, may remain microscopi®ubbles. We can consider as an example the case where the
in both regions. Let us simply label these two bubble type€Xtra dimension is, say, TeV sizéce., | o~TeV™?) in one
as types | and II. Atype (Il ) bubble is one for which the size region of space and Planck sizelg{ M5 *) in another re-
of the extra dimension is largésmalle) inside the bubble gion of space, so that the size of the extra dimension may
than outside. A type | bubble can be stabilized by massivéhange by roughly 16 orders of magnitude between these
particles that are trapped inside the bubble, where the particlvo regions while remaining microscopic in both regions.
masses become much smaller than on the outside of thEhe mass dependence upon the extra dimensional scale fac-
bubble. This stabilization mechanism for type | bubbles wasor [gss *>=B for KK zero modes is exhibited in Sec. IIl for
demonstrated for the case of scalar bosons in Réf.Here  scalar bosons, fermions, and massive vector bosons. The re-
we extend these results to include scalar bosons, fermionsulting expressions make clear how these particles can help
and massive vector bosons—both Kaluza-KI&kK) zero  stabilize a type | bubble by getting trapped inside, as with an
modes and KK excitation modes. A type Il bubble expels‘ordinary” nontopological soliton of the type previously
such massive modes from its interior. The dependence of thetudied by Frieman, Gleiser, Gelmini, and K¢&], and how

they must be expelled from a type Il bubble. These results

are then extended in Sec. IV to include Kaluza-Klein excita-

*Electronic address: jmorris@iun.edu tion modes. Radiation filled metastable bubbles are then con-
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templated in Sec. V, where estimates or rough bounds areTeV size” where (BR)tey~TeV 1, which may be charac-

obtained for bubble mass, radius, and lifetime. FinaIIy, graVi-teristic of a “|arge“ extra dimensionB can Change by 16
tational aspects are addressed in Sec. VI, where it is pointegtders of magnitude.

out that by viewing a fluid filled dimension bubble as@s-
mic balloon[6] and using the results for a cosmic balloon
metric[7], the 4D metric of a fluid-filled dimension bubble
exhibits a nonsingular behavior at the bubble’s center. This We take the 5-dimensional action to include the 5D Ein-
suggests that the undesirable feature of a naked singularit§tein action, cosmological constaht and a source Lagrang-
which appears at the core of a “gravitational bdg’5], does  1an Ls:
not appear at the center of a fluid filled dimension bubble.
Section VIl consists of a brief summary.

B. Dimensional reduction of the 5D action

- f d5VOs{Rs—2A +2: 35 L) (D)
KN 5
Il. THE DIMENSION BUBBLE MODEL ®

A. Metric ansatz where «{5=87Gs=(2mR)«y, Os=|detgyy| and Rs
=g"NR,,y denotes the 5-dimensional Ricci scalar built from

Oun- A 4D Einstein Frame metrlgw can be defined in

terms of the 4D Jordan Frame metlg(;w by 9,.,= ng

ds?=gyndx"dxV=7, ,dx*dx’— B>dy? (1) =e@Pw¢g ., and the line element in E¢L) then takes the
Kaluza-Klein form

A five-dimensional(5D) spacetime is assumed to be en-.
dowed with a metrigyy:

where xM= (x*y), with M,N=0,...,3,5, u,»v=0,...,3,
andB =/ —gss is the dimensionless scale factor for the extra ds*=B~'g,,dx*dx"—B?dy?
dimension. We assume an ansatz where the mgti¢ is
independent of the extra dimensigni.e. L OMN= Imn (XA,

dsgun=0, and the metric factorizes with,s=0. The extra Using Egs.(3) and (4), the 5D action is dimensionally

dimension, characterized by the coordinate- y, with 0 reduced to the effective 4D Einstein frame actj@:g]
<y<27R, is taken to be toroidally compact, so that the 5D

spacetime has a topology b,x S'. We allow for the pos- 1 1

sibility that the scale factoB has a spatial dependence, i.e., S:J d4x\/—_g[—2R+ §(V¢)2+ e Pne
B=B(x*). In the dimensionally reduced effective 4D theory 2Ky

the scale factoB can be associated with a scalar fietd )
through the relation

—e Brneg  dxtdx’—e? ZEnedy?, (4)

1
L—SA

KN

1 f3 whereR=g*"R,,, is the 4D Ricci scalar built from the 4D
_\[m B 2 Einstein frame metricg,, and g=detg,, and L
=(27R) Ls.

The 4D effective Lagrangian that is generated byis
L,=B1L£. The Lagrangianl,, the effective potential
U(¢), the ¢ kinetic term2(d¢)?, and the gravitational term
(1/2K§,)R produce a total 4D effective Lagrangian

where ky is related to the 4D Planck masd, by xy
=\87G=87My", so that the scale factor can be written
asB=e?3n¢_ We further consider the situation wherein the
scalarg is governed by a 4D effective potentidi(¢)=0,
which arises from a Rubin-Roth potential for bosonic and
fe_rmionic degrees o_f freedof®] (see also Ref{2]), along Ee”:iRJr l((?(p)z—U(QD)+£4. (6)
with a 5D cosmological constart. WhenU(¢) assumes a

“semi-vacuumless” form characterized by the existence of a

local minimum at some finite value= ¢y, a local maxi- The “semi-vacuumless” potentidl (¢) admits a domain
mum at some finite value= ¢ @, and an asymptotic wall solution separating a region whei becomes very
form U(¢)—U,=const asp—x, “dimension bubbles” “large” (where¢ assumes a valug;> ¢, from a region

can arisg 2—4] as solutions of the 4D theory where the sca-whereB is relatively “small” (at the local minimum olU,

lar ¢ (and therefore the scale fact@®) can vary rapidly where ¢=¢p). In general,U(¢g) #U(¢4) and the wall is
across a region of space. It is this rapid variatiorpdhat is  unstable against bending toward the region of higher energy
associated with the domain wall bounding the soliton. Wedensity [2], and we expect the formation of a network of
will be interested in the cases whaBaliffers dramatically in  bubbles to result. A dimension bubble encloses a region of
the interior and exterior of the bubble. We note that everhigher vacuum energy density and is surrounded by a region
though the extra dimension may remain microscopic in bothof lower vacuum energy density. For simplicity we consider
regions, there can still be an enormous variatioBiacross  a spherical thin walled bubble of radi&g , with wall thick-

the domain wall. If, for example, the extra dimension variesnessé<Rg, so that in a simplifying limit we may take the
across the bubble wall from a Planck size wheBR|p inner radiuskR_ and outer radiu®k, of the wall to coincide,
~M;1, characteristic of a “small” extra dimension, to a R_, R, —Rg. Itis within the wall that the scale fact@(x)
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varies rapidly, and we are interested in the case wiiere ﬁ4s=B_lﬁs=|3¢|2—B_1MS|¢|2- (8)

takes on vastly different values in the interior and exterior '

regions. The scalar boson mass in the effective 4D theory is therefore
identified as

C. Type | and type Il dimension bubbles -1/
Ms=B""“uo 9

We can envision two distinct possibilities, corresponding
to different sets of model parameters, which can result in twovhereu, is the mass parameter in the original 5D theory. We
different types of bubbles. Eithén U(¢,)>U(¢,), giving  see that since the value & inside of a type | bubble is
rise to what we will refer to as “type 1I” bubbles, ofi)  assumed to be much bigger than that outside the bubble, i.e.,
U(¢1)<U(go) associated with “type 1I” bubbles. In the Bin>Boy, the effective boson mass inside is relatively
first case(type |) the bubble interior contains a “vacuum” small,mg;,<mg,,:. The scalar boson is effectively trapped
characterized by~ ¢;, a vacuum energy density (¢,), inside the type | bubble since there is an enormous inward
and a relatively large scale fact&~B;=e"?>N¢1 and in  force F~—Vmg= — uoV(B~ "3 acting on the particle. The
the bubble’s exterior region whete= ¢, there is a relatively  kinetic energies of the light trapped particles exert an out-
small scale factoB,=e'?*n~¢0, In the second casgype Il)  ward pressure on the bubble wall to help stabilize it against
we have the opposite situation. Therefore, a type | bubbleollapse. However, for a type Il bubble the particle mass
encloses a “large” extra dimension and is surrounded by @ecomes much smaller outside the bubble, so that massive
“small” extra dimension. A type Il bubble encloses a particles that are initially present inside the bubble are ex-
“small” extra dimension and is surrounded by a “large” ex- pelled from it.
tra dimension. Again, the extra dimension may remain mi-
croscopic in all regions, but we entertain the possibility that B. Fermions
Its size, charaqterlzed bBR may be extremely dlf_ferent Now consider a fermionic contribution to the Lagrangian
inside and outside of a bubble. For example, we might CON~ i the form
sider the rang®! ,'<BR=<TeV !, in which case the values
gfm?Bszjio??g outside the bubble would be related by Le=0' (iTMay — po) h= J(iT 0, — o)y (10)

where = (Xx), dsy=0, andZ’=¢//TF°. The I’ matrices
IIl. EFFECTS OF KALUZA-KLEIN ZERO MODES are taken to be normalized according to

In this section we consider contributions to the 4D effec-
tive Lagrangian’, from Kaluza-Klein(KK) zero modes of
scalar bosons, fermions, and vector bosons which acqui
mass through the Higgs mechanism. Each type of zero mo
particle field ® is x*-independent, i.e.®=®(x*), ds®
=0. We later consider Kaluza-Klein excitations where the (B—lgw )

—B2/"

{TM TN} = —2gMN, (12)

"Phe 5D metricgy,y, Written in terms of the 4D Einstein
rame metricg,,, and the scale factds, is

fields have a-dependence from the cylinder condition. The gun=
difference in size of the extra dimensional scale fa@an
the interior and exterior regions of the bubble results in aEquation(ll) then implies tha{l'*,I'*} = — 2Bg"".

diﬁergnce in the effgctive particle mass in thege regio‘?s- For the effective 4D Einstein frame theory we define the
Specmca_lly, the partlc_:le mass F’ecom?s smalle_r In a regiofyq,, matricesy* related to the original'# matrices by
where B is larger. This results in particles getting trapped

inside of type | bubbles and being expelled from type Il [#=BY2yr  T5=B 1,5 (13
bubbles. Therefore the KK zero modes have a stabilizing

influence on type | bubbles, where the particle pressure cawith a normalization given by

help to support the bubble against collapse due to the wall

tension. The dependence of the particle masapon B is {y*.y"}=-2g"", (¥°)*=1. (14
isolated for each type of particle.

(12

Upon defining ¢=¢"y° we have ¢’ = ¢'T0=y'B12,°

A. Scalar bosons =BY2y, and the Lagrangiay can be rewritten as
Consider a contribution to the Lagrangiérfrom a scalar Le=By(i Y49, ~ B~Y2u,) . (15)
bosondg,
. ) ~ - This Lagrangian gives rise to an effective 4D fermion La-
Ls=d"¢* Iud— o™ ¢=9""9,¢* 3,¢— gl 4| grangian
_ 2,2 412 _ —. ,
B|(9¢| IU'O|¢| (7) £4,F=B 11:':: lﬁ(' ’}/#(9#_8 1/2#0) w (16)

wheredsp=0 andg”’=Bg"" and|d¢|?= o ¢p* d,¢. This  The fermion mass in the effective 4D theory is therefore
Lagrangian gives rise to the 4D effective Lagrangian identified as
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me= B—IIZMO (17) D. Zero mode masses

For the cases of scalar bosons, spin 1/2 Dirac fermions,
and massive vector bosons, it is found that the particle mass
in the effective 4D theory is of the fornn= B2, where
Mo is the mass parameter appearing in the Lagrangiari

Let us consider the case of vector gauge bosons whicthe original 5D theory. Since the scale factor is assumed to
acquire mass by the Higgs mechanism, through the interade much larger inside a type | dimension bubble than out-
tion with a scalar fieldy. There is then a contribution to the side, i.e., Bj;>B,,, we have thatm;,<m,, for the
Lagrangian given by x>-independent Kaluza-Klein zero modes. Particles experi-
ence a strong, short ranged force within tki@n) wall of a
type | bubble toward the interior. Therefore, particles having
nonzero mass tend to get trapped inside the type | bubble. As
the bubble adjusts its size during equilibration the outward
where the tildes remind us that the metfjgN is used to particle pressure on the bubble wall has a tendency to help

construct 5D scalars, so that, for instanc®Mu)* (D x) stabilize the bubble against total collapse. Just the opposite

_ ~MN . , . holds for a type Il bubble, for whicim;,>m,. Particles
;ngt] de(rli?/gﬁ\)/e(t[gyrr)l(s) 'a-rreh(;ifllglr? bs;rength and gauge covari- | i onz6r0 mass are expelled from these bubbles.

which resembles the result obtained for scalar bosons.

C. Massive vector bosons

oo o =
EG:_ZF MNFMN+(DMX)*(DMX)|X=7/ (18

Fln= A= AL, Dux=(Vu+ieoAl)y. (19 IV. EFFECTS OF KALUZA-KLEIN EXCITATIONS

We chooseA.=0 and a vacuum state characterized oy A. Effective 4D Einstein frame Lagrangian

= p=const. In the vacuum state we then have Let us now consider the Kaluza-KleifiKK) excitation
L (n#0) modes of scalar bosons, fermions, and massive vec-
~ ~ ~ ;o Cn tor bosons. Each particle mode contributes a piece to the
(DMX)*(DMX)|X:":gMNegnzAMANZEBMSA AL original 5D Lagrangian of the form P
(20)
27R
where we have defined= \2ey7. SS:J dSX@ESZJ d“x\/—_gB’ljo dyLs (25

In order to obtain a canonical gauge field term in the 4D

theory, we introduce the gauge fiefd,=B*?A},. In terms  \here nowLs=Ls(x,y) and the cylinder condition is im-
of the metricg,,,, and the gauge field,, we can rewriteCg posed upon the periodic field(x,y)=®(x,y+27R) al-

in the form lowing the mode expansion
Lom— TBFFF,,+ = u2ARA, — = BIZEAH S :
¢4 et PO e g w D(xy)= X Dy(x)eMR, (26)
n=-—ow
1 2y pv
B ZB H™H,, (21) Defining L= (27R) L5 as before, we can integrate out the
dependence and define
where
_y _12 1 27R 27R
H,,=A,d,(B"Y)—A,d,(B1) (22) (L)y= ﬁfo dyL= fo dyLs. (27)

which becomes nonzero in regions where the scale fator
changes with position or timdln the interior and exterior The effective 4D Einstein frame action then emerges as
regions of the bubbld is taken to be approximately con-
stant, butB varies rapidly with position within the bubble B
wall.) The effective 4D gauge field Lagrangias,g S= f d*x=gB XL)= f d*xV=gLs (28)
=B~ !Lg is then given by
where, as with the case of zero modes, we define the effec-

1 1 1 ; ; ; ;
— v -1,2 12wy tive 4D Einstein Frame Lagrangian
Log=—7F*"Fu+ 5B ugA A, — SBYFH,, grang
1 L,=B YL). (29
——=BH*'H ,,. (23
4 v . . .
From an expression for the effective 4D Lagrangian for a

. . _ field we can identify the effective 4D masses of the KK
The gauge boson mass in the effective 4D theory is therefore . . . ~ .
identified as excitation modes. We again take a zero mode mejfig

=gun(X) and examine the scale factBrdependence of the
me=B""u,. (240  masses of KK excitations of scalars, spinors, and vectors.
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B. Scalar bosons

Consider the scalar boson contribution to the Lagrangian

L given by
Ls=Mp* dyd—uid* ¢ (30)

with
¢(x,y>=; ba(x)em™R. (31)

The LagrangianCg can then be written in terms of the KK
modes as

Ls= mEn [ (0" ¢%) (3, ¢r)

mn )
—( e TR ¢:;¢n} ety (32
Using
1 27R . R
277_R 0 dyé(n—m)y = Omn (33
we obtain
n2
<£s>:; [B(ﬁ”ﬁ)(%(ﬁn)—(@Jng |¢’n|2]-
(34)

The effective 4D scalar Lagrangialy s=B (L) is then

o

(39

2 2
Mo
+_
B

B3R?

£4,s=; [(a%:)(mn)—(

and the mass of tha!" KK scalar boson excitation in the
effective 4D theory is

2 2 1/2
Mo, N
ms,n— E Bst) . (36)
C. Fermions
Consider the fermionic Lagrangian
Le=W'(iTMdy— po) ¥ (37

whereW =¥ (x,y), ¥/ =¥T° and thel matrices are nor-
malized according t¢I'™,I'N}= — 2gMN, so that

{FM,FV}: _ 25,(“/: _ ZBg;l,V7 (1"55)2: _ (655)2: B2
(39

PHYSICAL REVIEW D 70, 025007 (2004

-1 0
3’5:( ) (39

#=RY2,n
v 0 1

I5=B"1,5,

satisfying{ y*,y"} = —2g** and (y°)?>=1. In terms of they

matrices, the Lagrangian becomes
Le=BYA (BY% y#9,+B i y5d5— o)V

=BW(iy*d,+B 3% y%95— B~ Y2uy) W (40)

where W =¥T,0=B~Y2¥" |n the dimensionally reduced
4D theory the term proportional t& (i y°d5) W corresponds
to a mass term, so that we requiketo be an eigenfunction
of i y°ds.

The field ¥ must therefore satisfy the periodicity condi-
tion ¥(x,y)=¥(x,y+27R) and be an eigenfunction of
iv°ds. Let us introduce a chiral notation and write the field
¥ in the form

[

V(xy)= 2 Wn(xy)

gnL: eiaL|n\y/R
gnRz elaR‘nly/R

s

n=—ow

’an(X)gnL(y)) (
Iar(X)Enr(Y) )
(41)

whereq_ g each take a value of 1 in order to satisfy both
the periodicity and eigenvalue conditions. Using the form of
¥° given by Eq.(39), the eigenvalue condition

i')’S‘S’S\I’n:)\nq’n (42)

yields oy =—1, ag=+1, and\,=—|n|/R. We therefore
Y () IMVR
). (43

have
\Pn:( Ynr(X)el MR

We can perform the integration afr overy to obtain
(Lg). The orthogonality of th&,(y) functions can be used,
and for a specific representationpimatrices let us use, e.g.,

0 o*
k=]
iy 0
Then for the effective 4D Lagrangiaf,r=B"*(Lg), we
get

Lap=2 Ynli7#0,= M o) g (44)
where
’/’nL(X)

As before, in order to pass to the effective 4D theory weThe mass of thath KK excitation in the effective 4D theory

define a set ofy matrices by

IS
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#o Il
Bl/2 B3/2R :

(46)

Fn—

D. Massive vector bosons

PHYSICAL REVIEW D 70, 025007 (2004

2 \ 12

n
B3R?

Mg n= (52

Fo,
B

E. Kaluza-Klein excitation masses

As in the zero mode description, the contribution to the

Lagrangian from a (1) gauge fieldA}, that acquires a mass

described by the parametgy, in the 5D theory is

1‘"" =7 L ’ ’
Le=— ZF MNE Nt EQMNMSAMAN (47)
where nowA}, =Ay,(x,y). As before, we sef;=0 and in-

troduce the fieldA,=BY?A’ , with the periodic fieldA,

We see from the above that the mass ofilte KK exci-
tation has the form

2 2 1/2
n
a , bosons
B B®R?
m,= (53
n
Mo In , fermions
Bl/Z B3/2R

satisfying the periodicity requirement with a mode expansion

Auxy)= 2 ARx)e™R, (48)

Upon rewriting the Lagrangian in terms of the 4D metig,
and the fieldA ,, £; assumes the form

1 wv -2 1 1 3/2 A%
Lo=—7BF*F,,+B 2F oF/— =B F

1 2 v L 2
~ ZBPHLH S udA A (@9

4

whereH ,, is defined in Eq(22). Inserting the mode expan-
sion and integrating out thg dependence leaves

2

1
(ny — _ *NEenuy 2 *NaN
(£8)=—7BFLIF™"+ 5 e THO|ALTA
1 1
— 5B — 2 BZH TR (50)
where F} =d,AT—d,A}, AL"=A.", etc, and(Lg)
=3 <£(”5L) The effect|ve 4D Lagrang|a134G B Y Lg) is
therefore given byC,c=3,(L{%), with
L4g=B7HLE)
1 1/ n?  ud
— *Nenpy - *Nanu
=—JFiF +2<83R2+ 5 |ALTA
1 1
— 5B IR — 2 BHY HY, (51)

From this we identify the mass of theh KK vector boson
mode appearing in the effective 4D theory as

where uq is the mass parameter appearing in the 5D theory,
andmy= uq/B? is the zero mode mass. If the zero mode
mass vanishes, them,=|n|/B®°R, and, in this case,

My out/Mnin=(Bin/Bou) % For a type | bubble where
Bin/Bou=>1, KK modes which may be too massive to be
produced outside the bubble may be produced in the bubble’s
interior and can therefore help to stabilize the bubble against
collapse. However, for a type Il bubble wheBg, /B,

<1, the KK modes would be expelled from the bubble’s
interior.

V. RADIATION STABILIZED BUBBLES

Let us consider a type | bubble with a high temperature
interior that contains radiation modes comprised of photons

as well as particles with masses,,<|p|. For a type Il
bubble, we take the limit where there are only photons in-
side.(In a type | bubble, there may be nonrelativistic heavy
KK states as well, for example, but the energy density is
assumed to be negligible in comparison to that of the rela-
tivistic species. The mass of a particle outside of the type |
bubble is my,&>m;, for B,,<B;,, but particles in the
bubble interior having energyw=m,,; can escape the
bubble. The relative number of particles that escape over the
lifetime of the bubble depends upan,,/T=pBmy,:, as-
suming a thermal distribution of energiésor Bm,,>1 the
fractional number of particles escaping the bubble will be
small) Let us assume that there is an effective number of
spin degrees of freedog=gg+ £gr associated with radia-
tion modes inside the bubble that tend to stabilize the bubble
without quickly escaping, i.efm,, 1. The photons inside
the bubble escape at a very low rate as W& due to the
high photon opacity of the bubble wallThe transmission
coefficient for photond3] is roughly 7~0O(B_./B.)<1,
whereB_ (B-) is the smaller(largen of B;, or By,:.] We
therefore expect a bubble with a variety of radiation modes
to be a metastable state with a lifetimethat is at least as
long as that of a photon stabilized bubb]8], i.e., 7
=Rg o/7, whereRg g is the initial radius of the bubble.
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We can estimate the equilibrium radius and mass of a | 4
stabilized bubble with an interior temperatiifeWe take the 7] <T<Te. (58
radiation energy density inside to‘he

The lifetime of the bubble depends upon the rate at which
photons and other high energy particles inside the bubble
escape. This, in turn, depends upon the interactions of the
particles inside the bubble and the rates at which lighter par-
In addition, there may be a volume teﬁv: %WRE)\, where ticles Withw>m0ut are prOduced, and the ra-tes- at which they
the value of the effective potential in the bubble’s interior, €Scape. However, we can reason that the lifetime of a bubble
U(@)=\, is taken to be a constant. Using this approxima-Will be at least as long as that of a bubble stabilized by
tion, along with a thin wall approximation for the bubble Photons alone, in  which case[3] =Rgo/7

wall, the expression for the bubble mass becomes ~O(B=/B)Rgp. . o
If a bubble continues to shrink and the interior tempera-

4 ture increases above the critical temperaflyécorrespond-
M =ERragt Evt 5Wa”=§7-rR§(pRad+ \)+47R50 ing to the temperature at which the domain wall foyntee
(55 wall disappears, i.e., the bubble explodes. When the bubble
explodes, its radiative contents consisting of high tempera-
ture photons, bosons, and fermions are suddenly released.

2
R,
Prac=AT'=gz5T". (54)

whereao is the surface energy density of the wall. We further
assume that the bubble, after it forms, will adjust its radius to
reach an equilibrium state with an approximately adiabatic
(isentropig¢ expansion or contraction. The radiation entropy \We now turn attention to consider 4D gravitational as-
density iss~T?, so that if the bubble reaches equilibrium on pects of dimension bubbles and argue that, under rather mild
a relatively small time scale, we can taRgT=const during  assumptions, the interior metric of a dimension bubble shows
the equilibration process. With these assumptions we obtaithat its geometrical center is singularity free. This is in con-
approximate expressions for an equilibrium radRgsand an  trast to the situation found for a “gravitational bag2],

VI. 4D GRAVITATIONAL ASPECTS

equilibrium masaM given by which is basically an “empty,” static idealization of a type |
dimension bubble. In particular, the gravitational bag pos-
60 60 sesses a naked singularity at its cef#&b]. [The gravita-
Rg= (56)  tional bag considered in Re#] arises from a Freund-Rubin

4— - — g . .
(AT*=3\)  (Prad=3M) compactification of a 6D theory, but has the same essential

aspects that we have in our 5D model. Téseactsolution
and obtained for the gravitational bag metric assumes that the
effective potential vanishes in the bag’s interior, correspond-
1 ing to the extra dimension becoming infinitely large,B
Prad™ 57‘ —o0) there] The gravitational bag contains only the scalar
field ¢ that gives rise to the bubble wall, without any en-
(57) trapped particles in the bubble’s interior. We argue that, un-
like a gravitational bag, the fluidic interior of a dimension
nPubble does not exhibit a naked singularity at its center.

1
_ 3 N 2
M —ZWRB(pRad 3)\) 12m0Rg praa— 3\

For a bubble that rapidly adjusts its size to reach equilibriu SUES Y X
in an adiabatic manner so that, approximat&T = const The interior 4D geometry of the gravitational bag is de-
during this adjustment period, a collapsing bubble rapidlyScrIbGd by4,5]

heats up and an expanding bubble rapidly cools down, but 2p
the final temperature of the stabilized bubble must satisfyy2_ ~ [ 2/ ~1 2 (dr2+r2d02)
prag=AT*>3\. On the other hand, it is assumed that the ar+1 a*r* (ar—1)%kr-1

bubble’s domain wall forms at some temperatlige(which (59

will depend upon model parametgrshere a barrier forms in

the effective potential to separate the two low energy stategvherer is an isotropic radial coordinate ai, C,, a, and

so that a bubble at equilibrium should have an interior temP are constants, witf] 3 <p<1. The center of geometry is
peratureT<T.. In summary, for a stabilized bubble with located at =1/a, where the coefficient ad2? goes to zero
radius and mass given by Eq&6) and (57), respectively, asr—1/a from above, and the metric spawns a singularity

the interior temperature must lie within the range there, corresponding to a naked singularity of the exact so-
lution [4]. (See also Ref[5].) In Ref. [4] it is found that

although there is a singularity at the bag’s center, the mass of

Uit is assumed here, for simplicity, that not too many Kaluza-Kleinthe gravitational bag is finite.
modes are excited, so that we can use the familiar 4D expressions NOW, instead of a gravitational bag, consider a dimension
for radiation energy densities, etc. This condition is satisfied if, forbubble that is filled with particles trapped in the interior. We
instance, T<(BR) %, whereR is the radius parameter associated assume that the stress-energy of ¢héeld in the interior is
with the extra dimensionSee, e.g.[10,11].) negligible in comparison to that associated with the particles,

C, (ar+1)2(P+D

1
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and, furthermore, that we can approximate the bubble’s coris type | or type Il depends upon the form of the effective

tents by an isothermal fluid with pressysend energy den-
sity p connected byp=wp, with w a constant(For the case
of radiation,w=1/3.) In this case, the 4D fluid-filled domain
wall bubble can be viewed as@smic balloon[6,7]. The
geometry inside the cosmic balloon is described by

ds®=B(r)dt?— A(r)dr>—r2dQ? (60)

where the coordinate is now a nonisotropic radial coordi-
nate[the metric coefficienB(r) used here is not to be con-

fused with[gsd*/4. The fluid in the bubble’s interior has the

potentialU(¢) controlling the size of the extra dimension.
We can therefore have the situation where a type | dimension
bubble encloses a “large” extra dimension and is surrounded
by a “small” extra dimension, with the opposite holding true
for a type Il bubble. For example, if the size of an extra
dimensionBR varies between a Planck size and a TeV size,
the extra dimensional scale fact®rcan change by 16 orders
of magnitude. As a result of a dramatic variation of the size
of the extra dimension across the bubble wall, the masses of
various particle modes can vary dramatically between the
inside and outside of the bubble, leading to an enhanced

important effect of removing the singularity at the bubble’s stapjlization of a type | bubble by the entrapment of lighter

center,r =0, provided that the fluid density(r) remains

particles inside or the expulsion of heavier particles from

finite at the bubble’s center. This can be seen by borrowingnside a type Il bubble. The dependence of the particle mass

some of the results obtained by Wa(sge[ 7] and references
therein. Specifically, near the center we have

-1

8
A(N)=[1—x(r)] = 1—§7TGp(0)r2 (61)

where p(0) is the central density ank(r)~27Gp(0)r2.
For p(0) finite, we therefore havé\(0)=1, and a naked
singularity at the center is avoided. The coefficiBiit) can
be obtained from the equilibrium condition

2w )p'

1+w ?

B’ 2p’

E B p+p B
ﬂhere " denotes differentiation with respect L to Defining
t=[87Gp(0)]¥%>, we have (1B)(dB/dt)~[4w/(1
+w)]t for t<1. Integration gives

(62

2w )
B(r)~B(0)ex (m)(SwGp(O)r) ) (63)

Fluid-filled dimension bubbles, including radiation stabi-

lized bubbles, therefore seem to have interior gravitationa
fields that are better behaved near the centers than those &I

gravitational bags.

VIl. SUMMARY

An inhomogeneous compactification of a higher dimen
sional spacetime to 4D may result in the formation of “di-

mension bubbles.” The sizes of the extra dimensions inside

the bubble can be either largéor type ) or smaller(for

type Il) than outside the bubble. Whether a dimension bubble

upon the extra dimensional scale facBbhas been demon-
strated for bosons and fermions, including both Kaluza-Klein
(KK) zero modes and KK excitation modé¢See Eq.(53).]

Both types of bubbles can be stabilized by photons, due to
the high reflectivity of the bubble wall, and either type of
dimension bubble may exist as a long-lived metastable state.
Some basic features of plasma-filled bubbles have been ex-
amined and estimates obtained for the equilibrium radius and
mass. The lifetime of a bubble with an initial radiRg g is
roughly estimated to be= O(B.. /B.)Rg o, whereB.(B.)
is the larger(smalle) value of B on the inside or outside of
the bubble.

Finally, we have considered the 4D gravitational aspects
of dimension bubbles to argue that, unlike the case for a
“gravitational bag” [4,5] (which may be thought of as an
empty, static idealization of a type | dimension bubhiee
center of a fluid-filled dimension bubble is singularity free.
This is seen by treating the dimension bubble asoamic
balloon[6] and borrowing the results for the interior metric
of a cosmic balloori7]. Fluid-filled dimension bubbles are
therefore seen to have better behaved interior gravitational
ﬁields than those of gravitational bags.

Since the existence of dimension bubbles depends upon a
amaticchangein the sizes of extra dimensions across the
bubble wall rather than upon the actual size of an extra di-
mension in any region, the detections of such solitons could
provide evidence for the existence of extra dimensions, re-
gardless of their sizes.
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