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Hard-loop effective action for anisotropic plasmas
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We generalize the hard-thermal-loop effective action of the equilibrium quark-gluon plasma to a nonequi-
librium system which is space-time homogeneous but for which the parton momentum distribution is aniso-
tropic. We show that the manifestly gauge-invariant Braaten-Pisarski form of the effective action can be
straightforwardly generalized and we verify that it then generates alln-point functions following from colli-
sionless gauge-covariant transport theory for a homogeneous anisotropic plasma. On the other hand, the
Taylor-Wong form of the hard-thermal-loop effective action has a more complicated generalization to the
anisotropic case. Already in the simplest case of anisotropic distribution functions, it involves an additional
term that is gauge invariant by itself, but nontrivial also in the static limit.
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I. INTRODUCTION

The hard-thermal-loop~HTL! approach@1,2# has proved
to be a crucial tool in describing the equilibrium quark-glu
plasma. In particular it is absolutely necessary for comput
equilibrium and near-equilibrium quantities in a mann
which is systematic and gauge independent. However, we
often interested in nonequilibrium plasmas as in the cas
relativistic heavy-ion collisions where a nonequilibrium pa
ton system is expected to emerge during the early stage
the collision. To understand how the plasma evolves
thermalizes one has to go beyond the equilibrium desc
tion. In this paper we focus on a specific nonequilibriu
configuration which is~at least approximately! homogeneous
and stationary but anisotropic in momentum space. Such
anisotropic quark-gluon plasma appears to be qualitativ
different from the isotropic one as the quasiparticle collect
modes can then be unstable@3–7#. And the presence of thes
instabilities can dramatically influence the system’s evo
tion leading, in particular, to its faster equilibration.

The gluon polarization tensor of a homogeneous and
tionary but anisotropic plasma has been derived within se
classical transport theory@6,8# and diagrammatically@8#, fol-
lowing the formal rules of the HTL approach, and the tw
approaches have been found to agree. The anisotropic q
self-energy has been derived so far only diagrammatic
@8,9#. However, the derivation is also possible within tran
port theory as it has been done in@10# for the equilibrium
plasma. The two-point functions—the gluon polarization a
quark self energy—are sufficient to obtain, in particular,
spectrum of quasiparticles and of unstable modes in the
ear regime. However, one often needs then-point functions
to, for example, go beyond the lowest order of perturbat
expansion. In the presence of instabilities, softn-point func-
tions will be of importance to the nonlinear phenomenon
saturation of instabilities, if the latter is predominant
through interactions among the soft modes.

For the equilibrium plasma, the effective action, whi
0556-2821/2004/70~2!/025004~7!/$22.50 70 0250
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summarizes the infinite set of hard-thermal-loopn-point
functions, was first derived by Taylor and Wong@11#, see
also @12,13#, and then a very elegant form was found b
Braaten and Pisarski@14#. The HTL effective action was also
rederived within semiclassical transport theory@10,15#, see
also@16#. The aim of this paper is to generalize the result
a nonequilibrium system which is space-time homogene
but anisotropic in momentum space.~We call it the ‘‘hard-
loop action;’’ the word ‘‘thermal’’ is dropped as it refers t
equilibrium.!

We show that the HTL effective action as written down
Braaten and Pisarski@14# generalizes naturally to the aniso
tropic case. We verify that this more general hard-loop eff
tive action is still equivalent to gauge-covariant semiclass
transport theory@10#. On the other hand, the HTL effectiv
action in the form of Taylor and Wong@11# has a more com-
plicated generalization for anisotropic plasmas. In addition
the structure which is present in the equilibrium case a
which has a ‘‘secret’’ Chern-Simons nature@13#, there are
additional manifestly gauge-invariant contributions whi
have a nontrivial static limit. Finally, we derive explicit ex
pressions for the quark-gluon, triple-gluon, and four-glu
vertices for an anisotropic system, verify that they satisfy
appropriate Ward-Takahashi identities, and compare their
tegral representations with those of the isotropic case.

II. EFFECTIVE ACTION

To construct the effective action we will first find a form
which can generate the anisotropic gluon polarization ten
and quark self-energy which have been obtained in previ
works @6–8#. We will then use the requirement of gaug
invariance to extend the result to the full effective action
quarks and gluons.

The anisotropic gluon polarization tensor derived in@6,8#
can be written in momentum space as
©2004 The American Physical Society04-1
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wherem,n denote Lorentz indices anda,b color indices in
adjoint representation;g is the coupling constant and

E
p
•••[E d3p

~2p!3•••U
p05upu

.

The distribution functionf (p) in Eq. ~1! is the effective par-
ton momentum distribution which describes partons~quarks
and gluons! which are on mass-shell. We assume that it o
depends on three-momentum and is independent of the
tial coordinates~homogeneous! and therefore has the form

f ~p![2Nf@n~p!1n̄~p!#14Ncng~p!, ~2!

wheren, n̄, andng are the distribution functions of quarks
antiquarks and gluons. In equilibrium these distribution fun
tions reduce to the standard Fermi-Dirac and Bose-Eins
distributions

neq~p!5
1

exp~ upu2m!/T11
,

n̄eq~p!5
1

exp~ upu1m!/T11
,

ng
eq~p!5

1

exp~ upu/T!21
, ~3!

with T andm denoting the temperature and chemical pot
tial and both quarks and gluons are assumed to be mass
We note the gluon self-energy in the form~1! is explicitly
Lorentz covariant, symmetric with respect to the Lorentz
dices and transversal@kmPmn(k)50#.

The quark self-energy for an anisotropic system has b
obtained previously@8# and is given by

S~k!5
CF

4
g2E

p

f̃ ~p!

upu
p•g

p•k
, ~4!

whereCF[(Nc
221)/2Nc and

f̃ ~p![2@n~p!1n̄~p!#14ng~p!.

We now attempt to find an action which can generate
anisotropic gluon polarization tensor~1! and quark self-
energy~4!. The corresponding terms in the action will ha
the form

L 2
(A)~x!5

1

2Ey
Am

a ~x!Pab
mn~x2y!An

b~y!, ~5!
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L 2
(C)~x!5E

y
C̄~x!S~x2y!C~y!, ~6!

where

E
y
•••[E d4y•••;

and the subscript ‘‘2’’ indicates that the effective actio
above only generate two-point functions. These actions
then be extended to generate alln-point functions by writing
them in a gauge invariant form.

Using the explicit form of the quark self-energy~4!, one
immediately rewrites the action~6! as

L 2
(C)~x!52 i

CF

4
g2E

p

f̃ ~p!

upu
C̄~x!

p•g

p•]
C~x!, ~7!

where

1

p•]
C~x![ i E

k

e2 ikx

p•k
C~k!.

Following Braaten and Pisarski@14#, we modify the action
~7! to comply with the requirement of gauge invariance. W
simply replace the derivative]m by the covariant derivative
Dm5]m2 igAm in the fundamental representation. Thus, w
obtain

L (C)~x!52 i
CF

4
g2E

p

f̃ ~p!

upu
C̄~x!

p•g

p•D
C~x!. ~8!

Note that when expanding the covariant derivative in
denominator above one needs to take care about the ord
of the fields and operators.

1

p•D
C~x!5

1

p•] (
n50

` S igp•A~x!
1

p•] D n

C~x!, ~9!

so that, for example, the first and second order expans
are

igp•A~x!

p•]
C~x!52gp•A~x!E

k

e2 ikx

p•k
C~k!, ~10!

and

S ig p•A~x!

p•] D 2

C~x!52p•A~x!E
q

e2 iqx

p•q E
x8

eiqx8

3p•A~x8!E
k

e2 ikx8

p•k
C~k!. ~11!
4-2
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In equilibrium, where the quark and gluon distributio
functions are given by Eqs.~3!, the integrals over the mo
mentum length and over the angle factorize, and the ac
~8! reduces to the Braaten-Pisarski result

L HTL
(C) ~x!52 imq

2K C̄~x!
p̂•g

p̂•D
C~x!L

p̂

,

where

mq
25

CF

4
g2E

p

f̃ eq~p!

upu
5

CF

8
g2S T21

m2

p2D ,

and^•••& p̂[*(d2V/4p)••• denotes an average over the o
entation of the unit vectorp̂[p/upu which defines the four-
vector p̂[(1,p̂).

Let us now discuss the gluon effective action. At first, w
look for an operatorM mn(x)ab that satisfies the equation

1

2Ey
Am

a ~x!Pab
mn~x2y!An

b~y!

5
1

4
@]mAn

a~x!2]nAm
a ~x!#M ab

nr~x!@]rAbm~x!

2]mAr
b~x!#,

giving

Pab
mn~k!522k2M ab

sr~k!Prs
mn~k!, ~12!

where

Prsmn~k!5
1

k2@k2grngsm1krksgmn

2krkngsm2kskmgrn#.

Since P is the projection operator@Prsmn(k)Pnm
dl(k)

52Prsdl(k)#, P21 does not exist. Therefore, there is n
unique solution of Eq.~12!; various solutions differ from
each other by the components parallel tok. Because
kmPrsmn(k)5knPrsmn(k)50, Eq. ~12! complies with the
transversality ofPmn(k).

Substituting the explicit form of the gluon self-energy~1!
in Eq. ~12!, one finds that the equation is satisfied by

M ab
mn~k!52dab

g2

2 E
p

f ~p!

upu
pmpn

~p•k!2 ,

which gives

L 2
(A)~x!52

g2

2 E
p

f ~p!

upu @]mAn
a~x!2]nAm

a ~x!#

3
pnpr

~p•]!2@]rAam~x!2]mAr
a~x!#. ~13!
02500
n

In order to generate the higher-order vertices we invoke
requirement of gauge invariance, replacing]mAa

n2]nAa
m by

the field strength tensorFa
mn[]mAa

n2]nAa
m1g fabcAb

mAc
n ,

and]m by the covariant derivative in the adjoint represen
tion Dab

m []mdab1g facbAc
m . Thus, we obtain the effective

action

L (A)~x!52
g2

2 E
p

f ~p!

upu
Fmn

a ~x!S pnpr

~p•D !2D
ab

Fr
bm~x!.

~14!

In equilibrium, the gluon action~14! reduces, as the quar
action, to the respective Braaten-Pisarski result

L HTL
(A) ~x!52m`

2 K Fmn
a ~x!S p̂np̂r

~ p̂•D !2D
ab

Fr
bm~x!L

p̂

,

where

m`
2 5

g2

2 E
p

f eq~p!

upu
,

5
Nc

6
g2T21

Nf

12
g2S T21

3

p2 m2D .

To summarize, the generalization of the HTL effecti
action of Braaten and Pisarski to the anisotropic case is s
ply given by

Saniso52
g2

2 E
x
E

p
H f ~p!Fmn

a ~x!S pnpr

~p•D !2D
ab

Fr
bm~x!

1 i
CF

2
f̃ ~p!C̄~x!

p•g

p•D
C~x!.

~15!

III. EQUIVALENCE WITH GAUGE-COVARIANT KINETIC
THEORY

The hard loop effective action~15! is manifestly gauge
invariant and it contains the two-point functions obtain
previously from gauge-covariant transport equations@8#.
Hence, it is a good candidate for generating all of the ha
loop vertex functions of a gauge-covariant kinetic theo
That this is indeed the case is not entirely obvious, at le
for the gauge-boson part of the effective action, since
latter contains higher powers of inverse gauge-covariant
derivatives than is suggested by the structure of the kin
equations. Fortunately, however, the proof of equivalen
that has been worked out in detail in Ref.@10#, can be shown
to carry over almost line by line as long as the distributi
functionsf and f̃ arex-independent.

Vertex functions containing external fermion lines a
generated by the fermionic currenth5dS/dC̄ and this is
indeed of the same form as the fermionic current one
define in gauge-covariant kinetic theory@10#. The generali-
4-3
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zation of this proof of equivalence to anisotropic distrib
tions functions f̃ in the fermionic effective action~8! is
trivial since f̃ (p) appears in undifferentiated form in eithe
formalism ~see the appendix of Ref.@10#!.

Vertex functions containing only external gauge-bos
fields can be obtained by expanding the induced cur
j m@A# in powers of the gauge fieldAm. Solving the gauge-
covariant transport equations in the isotropic@10# as well as
in the anisotropic case@8# yields an induced current of th
form

j m@A#52g2E d4p

~2p!3 d (1)~p!

3pm
] f ~p!

]pb
@p•D~A!#21Fbg~A!pg, ~16!

where for emphasis we have written out*p as a four-
dimensional momentum integral with d (1)(p)
[u(p0)d(p2).

The hard-loop effective action~15!, on the other hand
involves an undifferentiated distribution functionf (p), so as
a first step we should partially integrate the derivative w
respect top. This is in fact possible without picking up con
tributions from the integration measure, because differen
ing d(p2) would producepb, but pbpgFbg(A)50. Also,
differentiatingu(p0) is harmless if limp→0p2f (p)50, since
it involves

E dV p̂E
0

`

dupud~ upu!upu2f ~p!$ p̂i@ p̂•D~A!#21F0 j~A!p̂j%.

We can therefore write

j m@A#5g2E
p
f ~p!

]

]pb
$pm@p•D~A!#21Fbg~A!pg%.

~17!

From this form one can immediately infer that this induc
current is covariantly conserved,

D@A#•J@A# }E
p
f ~p!Fbg~A!gbg50.

This implies that an effective action from which this induc
current can be derived according toj m5dS/dAm must be
gauge invariant, since gauge invariance is equivalen
D@A#dS/dA[0 ~which further differentiated gives all th
Ward identities!.

In the form ~17!, the induced current is indeed exact
analogous to the HTL case for which Ref.@10# has shown
equivalence with the first functional derivative of th
Braaten-Pisarski effective action. The corresponding proo
somewhat lengthy~see Eqs.~C.15!–~C.27! of Ref. @10#! and
we shall not repeat it here. It involves representing form
relations like
02500
n
nt
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@~p•D !21,Db#ab5$~p•D !21@Db,p•D#~p•D !21%ab

5~p•D !ac
21g fcedFe

bgpg~p•D !db
21

in terms of gauge-covariant parallel transporters. The es
tial point to notice is that oncej m@A# is expressed in terms o
an undifferentiated distribution function, the remaining ste
are independent of the formf (p) as long as it is homoge
neous inx-space.

Another point that should be noted is that the equivale
of the effective action with the kinetic equations strict
speaking holds true only on the space of fieldsR where all
gauge-covariant line derivativesp•D(A) have vanishing
kernel and can be inverted without regard of boundary c
ditions @10#. For unrestricted fields it is only at the level o
vertex functions or kinetic equations that the formal expr
sions become well-defined, because only then can one
pose specific boundary conditions.

IV. TAYLOR-WONG FORM

Originally, the HTL effective action was obtained by Ta
lor and Wong@11# in a form which is not manifestly gaug
invariant, but involves only a single power of inverse gaug
covariant line derivatives. The Taylor-Wong form has al
the advantage of making it evident that all higher-point HT
vertex functions vanish in the static limit, and that the tw
point functions then reduce to a simple momentu
independent mass term.

Explicit calculations of the two-point functions hav
shown that this simplicity of the static limit does not car
over to the anisotropic case@6,17#. However, it is instructive
to see explicitly where anisotropic distributions functio
spoil the equivalence of the Braaten-Pisarski form~which
does easily generalize to the anisotropic case! with the
Taylor-Wong form~which evidently does not!. To this end,
we start by rewriting the induced current in the form of E
~16! as

j m@A#52g2E
p
pm

] f ~p!

]pb

1

p•D
~Fb0p01Fb i p

i !. ~18!

In the isotropic case one has] f (p)/]pb}d j
bpj , so the

second term in the parentheses vanishes becauseFi j is anti-
symmetric, whereas in the first one can use thatFb0
5DbA02]0Ab andF00[0 so that

j iso
m @A#52g2E

p

pm

upu
f 8~ upu!S A02

1

p•D
]0~p•A! D , ~19!

which is exactly the first functional derivative of the Taylo
Wong effective action.

In the anisotropic case, these manipulations are clearly
longer possible. Specializing to the case wheref depends on
just the energyp05upu and a projection ofp on a fixed
spatial directionn̂, one can write

] f ~p!

]pb
5d j

bS pj

p0
2 f 11

nj

p0
f 2D .
4-4
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The induced current for the anisotropic case can then
decomposed according to

j aniso
m @A#52g2E

p

pm

upu H f 1S A02
1

p•D
]0~p•A! D

1 f 2

1

p•D
njF j npnJ . ~20!

In this form one has one contribution} f 1 which is exactly
analogous to the Taylor-Wong effective action. This part
gauge invariant by itself, although its gauge invariance is
manifest, and it reduces to a simple~constant! mass term for
A0 in the static limit. On the other hand, the second pa
which is specific to the anisotropic case (f 2Þ0) is mani-
festly gauge invariant, but it has nontrivial momentum
dependence even in the static limit, and correspondingly g
erates nontrivial higher-point functions also in the sta
limit.

V. VERTEX FUNCTIONS

In this section we collect expressions for the quark-glu
triple-gluon, and four-gluon vertex functions for an anis
tropic system. We also show explicitly that these vertex fu
tions satisfy the appropriate Ward-Takahashi identities.
we have discussed previously the effective action~15! is
gauge invariant by construction so that these identities
guaranteed to be satisfied; however, due to the complexit
the resulting vertex functions the explicit checks provi
confidence that the vertex functions derived are correct.

A. Quark-gluon vertex function

When the effective action~15! is expanded in powers o
the quark and gluon fields there appears a term of the fo

E
y
E

z
C̄~x!Lm~x,y,z!C~y!Am~z!,

whereLm(x,y,z) is the quark-gluon vertex function. To ob
tain this term we need only expand the action~8! to leading
order in the gluon field strength

L (C)~x!52
iCF

4
g2E

p

f̃ ~p!

upu
C̄~x!

p•g

p•D
C~x!,

52
iCF

4
g2E

p

f̃ ~p!

upu
C̄~x!

p•g

p•]
,

3 (
n50

` S igp•A~x!

p•] D n

C~x!. ~21!

After Fourier transformation theO(g3) contribution above
gives

La
m~q1 ,q2 ,k!5 igta~2p!4d (4)~q11q21k!Lm~q1 ,q2 ,k!,

~22!
02500
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Lm~q1 ,q2 ,k!5
CF

4
g2E

p

f̃ ~p!

upu
p̂•g

p̂•q1 p̂•q2

p̂m, ~23!

whereq1 andq2 are outgoing quark momentum andk is the
outgoing gluon momentum. The matrixta is in the funda-
mental representation of theSU(Nc) algebra with the stan-
dard normalization tr(tatb)5 1

2 dab. To verify that this vertex
function ~23! obeys the Ward-Takahashi identity we contra
it with the external gluon momentum to obtain

kmLm~q1 ,q2 ,k!5S~q1!1S~q2!, ~24!

which is just the Ward-Takahashi identity.

B. Triple-gluon vertex

In order to obtain the triple-gluon coupling or gluon thre
point vertex we have to expand the action~14! to orderA3 to
obtain all terms of the form

Gmnl~x,y,z!Am~x!An~y!Al~z!,

whereGmnl(x,y,z) is the triple-gluon vertex function.
At this order there are two types of contributions. O

comes from terms which are of the form (]A)AA coming
from the leading-order expansion of the kernel contrac
with the non-Abelian part of the field strength tensor and
others are of the form (]A)2A coming from the next-to-
leading order expansion of the covariant derivative in
kernel contracted against the Abelian part of the fie
strength tensor. The first type are given by

L1;2~]mAa
c 2]aAm

c !T ab~]!Aa
mAb

b f abc, ~25!

and the second type are given by

L2;2~]mAa
a2]aAm

a !T ab~]!Ag
bT g~]!~]mAb

c 2]bAc
m! f abc,

~26!

where f abc are theSU(Nc) structure constants and we hav
introduced then-tensor

T m1m2•••mn~]!5~p•]!2n(
i 51

n

pm i, ~27!

which in momentum-space is defined by

T m1m2•••mn~k!5~p•k!2n(
i 51

n

pm i. ~28!

Note that these tensors are totally symmetric in all Lore
indices and that products of these tensors are also symm
in the resulting indices, e.g.,T m(k)T n(q)5T n(k)T m(q).

We then Fourier transform the resulting expressions
relabel indices so that all contributions are of the form o
three tensor contracted withAm

a (k)An
b(q)Al

c(r ) f abc where
k,q,r are the incoming gluon momentum which satisfyk
1q1r 50. This gives
4-5
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2@~q•r !T mn~r !T l~q!2T m~r !T n~q!ql#.

From here we must sum over all permutations of the s
(k,m,a), (q,n,b), and (r ,l,c) taking into account the mi-
nus signs coming fromf abc whenever appropriate. Definin
e

-

d

02500
ts

Gabc
mnl~k,q,r !5 ig~2p!4d (4)~k1q1r ! f abcGmnl~k,q,r !

~29!

we obtain
Gmnl~k,q,r !5
g2

2 E
p

f ~p!

upu $~k•r !@T mn~k!T l~r !2T mn~r !T l~k!#1~q•k!@T mn~q!T l~k!2T mn~k!T l~q!#1~q•r !

3@T mn~r !T l~q!2T mn~q!T l~r !#2T m~r !T n~q!ql1T m~k!T n~r !kl2T m~k!T l~q!kn1T m~q!T l~r !r n

2T n~k!T l~r !r m1T n~q!T l~k!qm%. ~30!
ex

pic
ns

e-
Note thatGmnl(k,q,r ) is totally symmetric in its three indi-
ces and traceless in any pair of indices, e.g.,gmnT mnl50,
and that it is odd~even! under odd~even! permutations of the
momentak, q, and r. To verify that this vertex obeys th
Ward-Takahashi identity we contract it withkm to obtain

kmGmnl~k,q,r !5
g2

2 E
p

f ~p!

upu @T l~q!qn1T n~q!ql

2q2T nl~q!2gnl2T l~r !r n2T n~r !r l

1r 2T nl~r !1gnl#. ~31!

When expressed in terms of theT tensors the gluon self
energy~1! is

Pnl~q!5
g2

2 E
p

f ~p!

upu @T l~q!qn1T n~q!ql2q2T nl~q!2gnl#,

~32!

thus we can see that

kmGmnl~k,q,r !5Pnl~q!2Pnl~r !, ~33!

which is simply the Ward-Takahashi identity.
Note also that it is possible to simplify Eq.~30! by inte-

grating by parts to obtain

Gmnl~k,q,r !5
g2

2 E
p

] f ~p!

]pb
p̂m@r bT n~r !T l~q!

2kbT n~k!T l~q!#, ~34!

which is explicitly

Gmnl~k,q,r !5
g2

2 E
p

] f ~p!

]pb
p̂mp̂np̂lS r b

p̂•q p̂•r
2

kb

p̂•k p̂•q
D .

~35!

For isotropic systems the distribution function only depen
on the length of the three-momentum,upu5p0, so that de-
rivative of the distribution function becomes
s

] f ~p!

]pb
5

] f ~p0!

]p0
db i p̂

i , 5
] f ~p0!

]p0
~db02 p̂b!, ~36!

so that this reduces to the well-known isotropic HTL vert

GHTL
mnl~k,q,r !52m`

2 K p̂mp̂np̂lS r 0

p̂•q p̂•r
2

k0

p̂•k p̂•q
D L

p̂

.

~37!

C. Four-gluon vertex

Similar methods can be used to determine the anisotro
four-gluon vertex. The resulting four-gluon vertex for gluo
with outgoing momentak, q, r, ands, Lorentz indicesm, n,
l, ands, and color indicesa, b, c, andd is

Gabcd
mnls~k,q,r ,s!52ig2~2p!4d (4)~k1q1r 1s!

3tr@ ta~ tbtctd1tdtctb!#Gmnls~k,q,r ,s!

12 cyclic permutations, ~38!

where the cyclic permutations are of (q,n,b), (r ,l,c), and
(s,s,d). The tensorGmnls(k,q,r ,s) is defined only fork
1q1r 1s50,

Gmnls~k,q,r ,s!

5g2E
p

] f ~p!

]pb
p̂mp̂np̂lp̂sS kb

p̂•k p̂•q p̂•~q1r !

1
~k1q!b

p̂•q p̂•r p̂•~r 1s!
1

~k1q1r !b

p̂•r p̂•s p̂•~k1s!
D . ~39!

This tensor is totally symmetric in its four indices and trac
less in any pair of indices, e.g.,gmnGmnls50. It is even
under cyclic or anticyclic permutations of the momentak, q,
r, ands. It satisfies the ‘‘Ward identity’’
4-6
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HARD-LOOP EFFECTIVE ACTION FOR ANISOTROPIC . . . PHYSICAL REVIEW D70, 025004 ~2004!
qmGmnls~k,q,r ,s!5Gnls~k1q,r ,s!2Gnls~k,r 1q,s!.
~40!

It also reduces to the standard HTL result in the isotro
limit.

VI. CONCLUSIONS AND DISCUSSIONS

In this paper we have shown that the Braaten-Pisa
form of the HTL effective action can be straightforward
extended to systems in which the parton distribution fu
tions depend on the direction of the three-momentum but
homogeneous in space. We have also verified that the s
result is obtained using collisionless gauge-covariant tra
port theory. The resulting ‘‘hard-loop’’~HL! effective action
given by Eq.~15! is manifestly gauge invariant and allows u
to easily construct all of then-point functions for soft quarks
and gluons. We have derived explicit expressions for the
quark-gluon vertex~23!, the triple-gluon vertex~35!, and the
four-gluon vertex~39!. By construction these vertices obe
the appropriate Ward-Takahashi identities and reduce to
standard HTL results in the isotropic limit.

We have also discussed the extension of the Taylor-W
form of the HTL effective action to anisotropic systems.
this case the extension does not seem to be as straightfor
because of the presence of terms which are nontrivial als
the static limit. This can also be seen from the explicit e
pressions for the vertices resulting from the expansion of
HL effective action. In the isotropic limit the HTL vertice
are all proportional to the 0-components of the fou
momentum flowing through the vertex so that in the sta
limit these vertices vanish. This means that the static ef
tive potential for isotropic QCD contains only bare vertic
ys

s.

02500
c
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-
re
me
s-

L

he

g

ard
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-
e

-
c
c-

plus electric screening of longitudinal modes coming fro
the static limit ofP00. In the anisotropic case, however, eve
the gluon two-point function has a highly nontrivial stat
limit involving three mass scales some of which are ima
nary @6#. The static limit of the higher gluonn-point func-
tions, Eqs.~35! and ~39!, also appears to be nontrivial sinc
the resultingn-point functions are no longer simply propo
tional to the 0-components of the four-momentum flowi
through them.

The results contained in this paper are relevant to de
mining the time scales associated with the possible satura
of soft gluonic instabilities. At the level of the two-poin
function the static effective potential contains terms with
negative curvature due to the presence of electric and m
netic instabilities. Depending on the sign of the contributio
from the highern-point functions these terms could eith
increase the instability or provide for an additional no
Abelian saturation of the instabilities at some nonvanish
vector potential. It is interesting to note that in relativistica
hot QED plasmas the Weibel instability@18# saturates to a
quasisteady state magnetic Bernstein-Greene-Kruskal w
@19,20# which causes a strong residual anisotropy to
maintained over rather long time scales compared to the
lisional time scale@21,22#. It will be interesting to see if an
analogous state exists for anisotropic QCD plasmas. Answ
ing this question will require a detailed study of the sta
and quasistatic limits of the effective action and associa
vertex functions derived in this paper.
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~2003!.
@17# M.C. Birse, C.W. Kao, and G.C. Nayak, Phys. Lett. B570, 171

~2003!.
@18# E.S. Weibel, Phys. Rev. Lett.2, 83 ~1959!.
@19# I.B. Bernstein, J.M. Greene, and M.D. Kruskal, Phys. R

108, 546 ~1957!.
@20# R.L. Berger and R.C. Davidson, Phys. Fluids15, 2327~1972!.
@21# R.C. Davidson, D.A. Hammer, I. Haber, and C.E. Wagn

Phys. Fluids15, 317 ~1972!.
@22# T.-Y.B. Yang, Y. Gallant, J. Arons, and A.B. Langdon, Phy

Fluids B 5, 3369 ~1993!; T.-Y.B. Yang, J. Arons, and A.B.
Langdon, Phys. Plasmas1, 3059~1994!.
4-7


