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Hard-loop effective action for anisotropic plasmas
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We generalize the hard-thermal-loop effective action of the equilibrium quark-gluon plasma to a nonequi-
librium system which is space-time homogeneous but for which the parton momentum distribution is aniso-
tropic. We show that the manifestly gauge-invariant Braaten-Pisarski form of the effective action can be
straightforwardly generalized and we verify that it then generates-pdlint functions following from colli-
sionless gauge-covariant transport theory for a homogeneous anisotropic plasma. On the other hand, the
Taylor-Wong form of the hard-thermal-loop effective action has a more complicated generalization to the
anisotropic case. Already in the simplest case of anisotropic distribution functions, it involves an additional
term that is gauge invariant by itself, but nontrivial also in the static limit.
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[. INTRODUCTION summarizes the infinite set of hard-thermal-loogpoint
functions, was first derived by Taylor and Woh#l], see

The hard-thermal-loogHTL) approach1,2] has proved also[12,13, and then a very elegant form was found by
to be a crucial tool in describing the equilibrium quark-gluon Braaten and Pisarski4]. The HTL effective action was also
plasma. In particular it is absolutely necessary for computingederived within semiclassical transport thediy,15, see
equilibrium and near-equilibrium quantities in a manneralso[16]. The aim of this paper is to generalize the result to
which is systematic and gauge independent. However, we a@e nonequilibrium system which is space-time homogeneous
often interested in nonequilibrium plasmas as in the case dfut anisotropic in momentum spad@Ve call it the “hard-
relativistic heavy-ion collisions where a nonequilibrium par-loop action;” the word “thermal” is dropped as it refers to
ton system is expected to emerge during the early stages efjuilibrium)
the collision. To understand how the plasma evolves and We show that the HTL effective action as written down by
thermalizes one has to go beyond the equilibrium descripBraaten and PisarsklL4] generalizes naturally to the aniso-
tion. In this paper we focus on a specific nonequilibriumtropic case. We verify that this more general hard-loop effec-
configuration which igat least approximateljynomogeneous tive action is still equivalent to gauge-covariant semiclassical
and stationary but anisotropic in momentum space. Such amansport theory10]. On the other hand, the HTL effective
anisotropic quark-gluon plasma appears to be qualitativelyaction in the form of Taylor and Wond 1] has a more com-
different from the isotropic one as the quasiparticle collectiveplicated generalization for anisotropic plasmas. In addition to
modes can then be unstap&-7]. And the presence of these the structure which is present in the equilibrium case and
instabilities can dramatically influence the system’s evoluwhich has a “secret” Chern-Simons natuf&3], there are
tion leading, in particular, to its faster equilibration. additional manifestly gauge-invariant contributions which

The gluon polarization tensor of a homogeneous and staave a nontrivial static limit. Finally, we derive explicit ex-
tionary but anisotropic plasma. has been derived within Semipressions for the quark-g'uon’ trip|e_g|uon’ and four-g'uon
classical transport theof$,8| and diagrammaticallf8], fol-  yertices for an anisotropic system, verify that they satisfy the

lowing the formal rules of the HTL approach, and the two 4n5ropriate Ward-Takahashi identities, and compare their in-
approaches have been found to agree. The anisotropic quaflyra| representations with those of the isotropic case.
self-energy has been derived so far only diagrammatically

[8,9]. However, the derivation is also possible within trans-
port theory as it has been done [it0] for the equilibrium
plasma. The two-point functions—the gluon polarization and
quark self energy—are sufficient to obtain, in particular, the . i o
spectrum of quasiparticles and of unstable modes in the lin- T0 construct the effective action we will first find a form
ear regime. However, one often needs thgoint functions which can generate the anisotropic gluon polarization tensor
to, for example, go beyond the lowest order of perturbativeand quark self-energy which have been obtained in previous
expansion. In the presence of instabilities, sefioint func- ~ works [6—8]. We will then use the requirement of gauge
tions will be of importance to the nonlinear phenomenon ofinvariance to extend the result to the full effective action for
saturation of instabilities, if the latter is predominantly quarks and gluons.
through interactions among the soft modes. The anisotropic gluon polarization tensor derived6r8]

For the equilibrium plasma, the effective action, which can be written in momentum space as

Il. EFFECTIVE ACTION
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where u,v denote Lorentz indices aralb color indices in o) _
adjoint representationy is the coupling constant and L57(x)= fy\P(x)E(x—y)\P(y), (6)
f f where
@m*
Jy =]
The distribution functiorf(p) in Eq. (1) is the effective par- y

ton momentum distribution which describes partogsarks
and gluongwhich are on mass-shell. We assume that it onlya
depends on three-momentum and is independent of the spg-
tial coordinategyhomogeneoysand therefore has the form

nd the subscript “2” indicates that the effective actions
bove only generate two-point functions. These actions will
en be extended to generaterafboint functions by writing
them in a gauge invariant form.

Using the explicit form of the quark self-energ¥), one

f(p)=2N¢[n(p)+n(p)]+4Ncng(p), 2) immediately rewrites the actiof®) as
wheren, n, and ng are the distribution functions of quarks, CF T(p)—
antiquarks and gluons. In equilibrium these distribution func- LM (x)=—i—g? Tl \P(x) ‘If(x) 7
tions reduce to the standard Fermi-Dirac and Bose-Einstein P
distributions where
1 1 e—IkX
n*(p)= , S =
p) expl(|p|—p)/T+1 0. S P(x)= |f p_k\lf(k).
o 1 Following Braaten and Pisarski4], we modify the action
n*{p)= exp(|p|+p)/T+1’ (7) to comply with the requirement of gauge invariance. We

simply replace the derivative* by the covariant derivative
D#=g*—igA* in the fundamental representation. Thus, we

e _ 1 H
ng{p)= exp(plim -1’ (3)  obtain

with T and . denoting the temperature and chemical poten- LW (x)=—i —g f (p) \[f(x) (8)
tial and both quarks and gluons are assumed to be massless. |
We note the gluon self-energy in the forth) is explicitly

Lorentz covariant, symmetric with respect to the Lorentz in-gIOte thattwhetr; expanding (;[het C’[O\I:anam d%rlv?t:\ée mdth_e
dices and transverspk,[1#"(k) = 0]. enominator above one needs to take care about the ordering

The quark self-energy for an anisotropic system has beeﬂ'c the fields and operators.

obtained previously8] and is given by

1 1 < 1\"
g oo VOO=075 2 [igp-AC) S W, ()
Ce ,(T(p) pry ' 710
s00-o | T 2T, @
p [Pl P so that, for example, the first and second order expansions
are
whereCg=(N2—1)/2N,, and N
—IKX

A(x
98P w0 = gp-aco [ S

T(p)=2[n(p)+n(p)]+4ng(p). V(k), (10

We now attempt to find an action which can generate theind
anisotropic gluon polarization tensdfi) and quark self-
energy(4). The corresponding terms in the action will have ig p-A(X)
the form p-d

f o0’

7|kx

) W (x)=2p- A(X)f

LP(x)= f A2 OTTEE(X—y)AN(Y), (5) Xp-A(x") f v(k). (1)
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In equilibrium, where the quark and gluon distribution In order to generate the higher-order vertices we invoke the
functions are given by Eqg3), the integrals over the mo- requirement of gauge invariance, replaciftA,— d*A% by
mentum length and over the angle factorize, and the actiothe field strength tensoF £¥= g*AL— 9" AL+ gfup ALAL

(8) reduces to the Braaten-Pisarski result and ¢ by the covariant derivative in the adjoint representa-
. tion D&, =0"S,,+0facpAL . Thus, we obtain the effective
q . action
£ (x)=—im <\If(x) qf(x)> ,
P f(p) p"p”
c(’“(x)———f —Fa(x )( F P4(x).
where [Pl (p: D)Z ab |
(14
C fe C 2
m§=Tngf |°(|p) = ?F 21 T2+ M—Z) In equilibrium, the gluon actiofil4) reduces, as the quark
p IP & action, to the respective Braaten-Pisarski result
and(- - ~>F3Ef(d29/477)~ -- denotes an average over the ori- b
entation of the unit vectop=p/|p| which defines the four- L 0= —m020< Fo.(0 = > pr"(x)> ,
vectorp=(1p). (P-D)7/ 5
Let us now discuss the gluon effective action. At first, we
look for an operatorM “*(x),, that satisfies the equation ~ where
1 f4p)
- a MV b 2_9
——[a 200 = 3,A%(X) IM 2500 3,AP(x) _Ne —0?T2+ — N g2 T2+i 2
p G 12 Pl
b
— A1, To summarize, the generalization of the HTL effective
o action of Braaten and Pisarski to the anisotropic case is sim-
giving ply given by
T4 (k)= = 2k> M Zh(K)P " (k), (12)
Sanise= ~ J f [f(p)F (X) ( ) ) Fp bM(X)
where ab
1 C _ .
Ppo'p,v(k) — _2[k2gpvg(r,u+ kpko’g,uu + | _Fﬂf'(p)\lf(x) uq;(x)
k 2 p-D
(15
—kPk?g7*—kk*gP"].
Since P_is the projection operatof PP7#*(k)P,, (k) !l EQUIVALENCE WITH GAUGE-COVARIANT KINETIC

=—Pr°NK)], P~ does not exist. Therefore, there is no THEORY
unique solution of Eq(12); various solutions differ from The hard loop effective actiofil5) is manifestly gauge

eachU other by t(f)ey components parallel ko Because ipyariant and it contains the two-point functions obtained
k,PPorr(k)=k,PP7#"(k)=0, Eq.(12) complies with the previously from gauge-covariant transport equatidBs

transversality of 1#*(k). Hence, it is a good candidate for generating all of the hard-
~ Substituting the explicit form of the gluon self-enerdy  |oop vertex functions of a gauge-covariant kinetic theory.
in Eq. (12), one finds that the equation is satisfied by That this is indeed the case is not entirely obvious, at least
) e for the gauge-boson part of the effective action, since the
M (K)=—§ 9 @ PP latter contains higher powers of inverse gauge-covariant line
ab a2 o lpl (p-k)?’ derivatives than is suggested by the structure of the kinetic

equations. Fortunately, however, the proof of equivalence

which gives that has been worked out in detail in REfQ], can be shown
to carry over almost line by line as long as the distribution
A f(p) a functionsf andf arex-independent.
5( ()=~ 2 p| | [9uA (X)_&VAM(X)] Vertex functions containing external fermion lines are

generated by the fermionic curremt= 65/8¥ and this is
p "p? BB o A (x)— &”“Aa(x)] (13) indeed of the same form as the fermionic current one can
(p 9)° define in gauge-covariant kinetic thedi0]. The generali-
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zation of this proof of equivalence to anisotropic distribu-  [(p-D)%,D#],,={(p-D) }D”,p-D](p-D) }ap
tions functionsT in the fermionic effective action(8) is —(p.D)-1af.. EBY D)L
trivial sincef(p) appears in undifferentiated form in either =(P-D)acOfced e Py(P-Dlan

formalism (see the appendix of Reff10]). in terms of gauge-covariant parallel transporters. The essen-
~ Vertex functions containing only external gauge-bosonja| noint to notice is that oncg[A] is expressed in terms of
fields can be obtained by expanding the induced current, yndifferentiated distribution function, the remaining steps
J“[A] in powers of the gauge field”. Solving the gauge- 4re independent of the forf(p) as long as it is homoge-
covariant transport equations in the isotropi®] as well as  1o0us inx-space.
in the anisotropic casg8] yields an induced current of the  Apqther point that should be noted is that the equivalence
form of the effective action with the kinetic equations strictly
speaking holds true only on the space of fiekisvhere all
A= — 2 d*p 54 gauge-covariant line derivativep-D(A) have vanishing
I“IAl=—9 (2m)° (p) kernel and can be inverted without regard of boundary con-
ditions [10]. For unrestricted fields it is only at the level of
vertex functions or kinetic equations that the formal expres-
sions become well-defined, because only then can one im-
pose specific boundary conditions.

af(p)
&pﬂ

X p* [p-D(A)] 'Fp,(A)p”,  (16)

where for emphasis we have written ofif as a four-
dimensional ~ momentum integral  with &7)(p) IV. TAYLOR-WONG FORM

— 2
=0(po) o(p°). Originally, the HTL effective action was obtained by Tay-

nvolves an undifierentated distrbuton funciote), o as 7 219 WONGLLL in a form which is not manifesty gauge
P), invariant, but involves only a single power of inverse gauge-

a first step we should partially integrate the derivative W'thcovariant line derivatives. The Taylor-Wong form has also

ibations from e integration measure. bevause differontia(1e advantage of making it evident that il higher-point HTL
9 ’ ertex functions vanish in the static limit, and that the two-

; 2 B B =
ng 6(p_) \.NOUId prqducep ’ bu_tp_ pyFﬁg(A) 0. Also, point functions then reduce to a simple momentum-
differentiating 6(p,) is harmless if limy_op independent mass term

f(p)=0, since
itinvolves Explicit calculations of the two-point functions have
shown that this simplicity of the static limit does not carry
N 2 Nirn -1 (AVAI over to the anisotropic ca$é,17]. However, it is instructive
J dQ”Jo dipla(IphIpI*f(p){p'Lp- D(A)] Foi(AJP'}- to see explicitly where anisotropic distributions functions
spoil the equivalence of the Braaten-Pisarski fofuwhich
We can therefore write does easily generalize to the anisotropic gaséth the
Taylor-Wong form(which evidently does n@t To this end,
we start by rewriting the induced current in the form of Eq.

d
J"[A]=ngpf(p) a—pﬁ{p”[p- D(A)] *F 4, (A)p”}. (16) as

1 Jf(p) 1 )
0 (9:)2 p_—D(Fﬁopo+Fﬁip')- (18)

iA1=~ p*
From this form one can immediately infer that this induced

current is covariantly conserved, In the isotropic case one hatf(p)/dpgx8fp!, so the
second term in the parentheses vanishes bedayse anti-

symmetric, whereas in the first one can use tka
. By—
LA J(A] * | 1(pIF 5, (AIg"=0. D 7oA AN w0 50 that
L . . . . . p* 1
This implies that an effective action from which this induced li'“sLO[A]=—ngmf’(|p|) Ao—p—Dao(p-A) , (19
o :

current can be derived according j6=6S/6A, must be

gauge invariant, since gauge invariance is equivalent to

D[A]5S/6A=0 (which further differentiated gives all the which is exactly the first functional derivative of the Taylor-
Ward identitie$ g Wong effective action.

In the form (17), the induced current is indeed exactly Ionln the anisotropic case, these manipulations are clearly no

analogous to the HTL case for which R¢L0] has shown . ger possible. S;_)emahzmg to th? case wHedepends on
equivalence with the first functional derivative of the Just .the .e”efgy'?o—m' and a projection ofp on a fixed
Braaten-Pisarski effective action. The corresponding proof igpaual directiorfi, one can write

somewhat lengthysee Eqs(C.15—(C.27) of Ref.[10]) and

] j

we shall not repeat it here. It involves representing formal M: 58 Bzf1_|_ n_fz ]
ions li g '\pg T P
relations like B 0 0
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The induced current for the anisotropic case can then bwith
decomposed according to

M 1
jgniS({A]:_gszrﬂ+fl< 0" 5.p% do(P- A))

1
+f2p_—Dn'Fj,,p”].

cF2 Tp py

———p4, (23
o 1Pl poay -

(q11q21k)

whereq; andq, are outgoing quark momentum akds the
(20) outgoing gluon momentum. The matriR is in the funda-
mental representation of tH@U(N,) algebra with the stan-
dard normalization ttft°) =} 52°. To verify that this vertex
In this form one has one contributionf, which is exactly  function (23) obeys the Ward-Takahashi identity we contract
analogous to the Taylor-Wong effective action. This part isit with the external gluon momentum to obtain
gauge invariant by itself, although its gauge invariance is not
manifest, and it reduces to a simg®nstant mass term for K A%(d1,92,K)=2(q1) +2(02), (24
Ao in the static limit. On the other hand, the second part,
which is specific to the anisotropic casé0) is mani- which is just the Ward-Takahashi identity.
festly gauge invariant, but it has nontrivial momentum-

dependence even in the static limit, and correspondingly gen- B. Triple-gluon vertex
erates nontrivial higher-point functions also in the static | order to obtain the triple-gluon coupling or gluon three-
limit. point vertex we have to expand the actidd) to orderA® to

obtain all terms of the form

. . . FMV}\(va!Z)AM(X)Av(y)A)\(Z)l
In this section we collect expressions for the quark-gluon,
triple-gluon, and four-gluon vertex functions for an aniso-whereI'*"*(x,y,z) is the triple-gluon vertex function.
tropic system. We also show explicitly that these vertex func- At this order there are two types of contributions. One
tions satisfy the appropriate Ward-Takahashi identities. Agomes from terms which are of the forrdA)AA coming
we have discussed previously the effective acti@b) is  from the leading-order expansion of the kernel contracted
gauge invariant by construction so that these identities ar@ith the non-Abelian part of the field strength tensor and the
guaranteed to be satisfied; however, due to the complexity ajthers are of the form dA)?A coming from the next-to-
the resulting vertex functions the explicit checks provideleading order expansion of the covariant derivative in the
confidence that the vertex functions derived are correct.  kernel contracted against the Abelian part of the field
strength tensor. The first type are given by

V. VERTEX FUNCTIONS

A. Quark-gluon vertex function b

_ , , _ L1~2(3,A5—9,A5) T*F(9) ALARTS, (25)
When the effective actiofil5) is expanded in powers of H
the quark and gluon fields there appears a term of the formyng the second type are given by

| [Foorsxy.avma,. L2~2(0,K= 0. A) T AYT(9) (A A
yJz

where A#(x,y,z) is the quark-gluon vertex function. To ob- Wherefabc are theSU(N,) structure constants and we have
tain this term we need only expand the acti8hto leading introduced then-tensor

order in the gluon field strength N

- Trkz k() =(p-a) "2, pH, (27)
(V) CF 2 f(p)_ p-vy =
L) == Z7¢ | V00 S5V,
P which in momentum-space is defined by
ICF (T — p-y "
= TPl -—¥(x) 0 TMlMZ"'#n(k):(p.k)_nizzl pHi. (28)
igp-A(x) nq}(x) 21) Note that these tensors are totally symmetric in all Lorentz
A=0 p-d ’ indices and that products of these tensors are also symmetric
in the resulting indices, e.gZ*(k)77(q)=7"(k)7*(q).
After Fourier transformation thé(g®) contribution above We then Fourier transform the resulting expressions and
gives relabel indices so that all contributions are of the form of a
three tensor contracted Witl'B\f‘L(k)AE(q)A}C\(r)f"’lbc where
A(Qy,02,K) =igt?(2m)*6W(q,+ g+ k) A“(q1,05,K), k,q,r are the incoming gluon momentum which satigfy

(22 +qg-+r=0. This gives
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ThR(k,a,1)=ig(2m)* 0Dk + g+ DT (k1)
(29

From here we must sum over all permutations of the sets

(k,u,a), (q,v,b), and ¢,\,c) taking into account the mi-

nus signs coming froni2’© whenever appropriate. Defining we obtain

X[T’”(r)T“(Q)—T’”(Q)TA(F)]—T"(f)TV(Q)quT“(k)

=T (K)TM(r)r“+7"(q) 7" (k) g~}

Note thatl'***(k,q,r) is totally symmetric in its three indi-
ces and traceless in any pair of indices, m.,,T““zO,
and that it is oddeven under oddeven permutations of the

momentak, g, andr. To verify that this vertex obeys the

Ward-Takahashi identity we contract it wikh), to obtain

g° [ f(p)
kLM k,a,r) = J Tl [TNa)g"+T"(q)q
—Q* TN Q) — g™ = TN(r)r'=T"(r)r*
+r27Mr)+g"]. (3D
When expressed in terms of thEtensors the gluon self-

energy(1) is

)
" (q)= 2f |(p [TN@) "+ T (g —g*T™ () —g™],
(32
thus we can see that
k, T#"™(k,q,r)=

17 (q) = IT"(r), (33

which is simply the Ward-Takahashi identity.

Note also that it is possible to simplify EG30) by inte-
grating by parts to obtain

f(p).

ek r)= & f o @)

—kBT“(k)T“(Q)],

(D) s nmy ré &
L e B
ap p-qpr p-kpq

(39

(349

which is explicitly

2
r“™k,q,r)= g_f
1 1 2 p

on the length of the three-momentuip|=p,, so that de-
rivative of the distribution function becomes

DLT#(K)TNr) =T (N TNK) 1+ (- KL T*(@) TN (k) = T*(K) TN (a)]+(q-T)

(0K =TH(K) TN Q)K"+ TH(q) T(r)r”
(30)

t(p) _af(po) af(po)

—— 5P, = 36
pP Po 6P (36)

(550 pﬁ)

so that this reduces to the well-known isotropic HTL vertex

Thn(k,q,r)= 2m<6”6"ﬁ*(A — )>
p-apr p-kpal/f,

C. Four-gluon vertex

Similar methods can be used to determine the anisotropic
four-gluon vertex. The resulting four-gluon vertex for gluons

with outgoing moment#, q, r, ands, Lorentz indicesu, v,
\, ando, and color indices, b, ¢, andd is

TEN(K,Q,r,8) = 2ig2(2m)* 6D (k+q+1 +5)
Xt t3(tPttd+ t9%Ct?) )T+ (k,q,r,S)

+2 cyclic permutations, (39

where the cyclic permutations are df,,b), (r,\,c), and

(s,0,d). The tensol #"*’(k,q,r,s) is defined only fork
+q+r+s=0,

r#"e(k,q,r,s)

o M|
p-k p-g p-(q+r)
(k+q)? (k+qg+r)?

(39

p-qprp-(r+s) p-rp-sp(k+s))

This tensor is totally symmetric in its four indices and trace-
For isotropic systems the distribution function only dependdess in any pair of indices, e.gg,

JAM=0 It is even
under cyclic or anticyclic permutatlons of the momektal,
r, ands. It satisfies the “Ward identity”
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qMF’”""(k,q,r,s)=F“"(k+q,r,s)—l“”“’(k,rJrq,S)- plus electric screening of longitudinal modes coming from
(40)  the static limit off1%. In the anisotropic case, however, even
the gluon two-point function has a highly nontrivial static
It also reduces to the standard HTL result in the isotropigimit involving three mass scales some of which are imagi-
limit. nary [6]. The static limit of the higher gluon-point func-
tions, Egs.(35) and(39), also appears to be nontrivial since
VI. CONCLUSIONS AND DISCUSSIONS the resultingn-point functions are no longer simply propor-

In this paper we have shown that the Braaten—Pisarsl{ﬁﬁgilgaot;g?no'componems of the four-momentum flowing
form of the HTL effective action can be straightforwardly The results contained in this paper are relevant to deter-

gxtended to systems.m Wh'Ch the parton distribution funC'mining the time scales associated with the possible saturation
tions depend on the direction of the three-momentum but ar

. o of soft gluonic instabilities. At the level of the two-point
homogeneous in space. We have also verified that the same ™ . : . . .
) ; . . . unction the static effective potential contains terms with a
result is obtained using collisionless gauge-covariant trans-

port theory. The resulting “hard-loopfHL) effective action negative curvature due to the presence of electric and mag-

given by Eq.(15) is manifestly gauge invariant and allows us netic instabilities. Depending on the sign of the contributions

to easily construct all of the-point functions for soft quarks from the highem-point functions these terms could either
y P q increase the instability or provide for an additional non-

aﬂg,ﬁl_u?un;; \\//\(/eertzzgie%)dg:evter? Iee)fpllﬁcl)tne\)/(eprrtee s)gg)nsa:%r :Eg HI73\belian saturation of the instabilities at some nonvanishing
9 g ' pe-g ' vector potential. It is interesting to note that in relativistically

four-gluon vertex(39). By construction these vertices obey hot QED plasmas the Weibel instabilift8] saturates to a

the appropriate Ward-Takahashi identities and reduce to th&uasisteady state magnetic Bernstein-Greene-Kruskal wave
standard HTL results in the isotropic limit.

. . 19,200 which causes a strong residual anisotropy to be
We have also dlscugsed th_e extension of the Taylor-Won aintained over rather long time scales compared to the col-
form of the HTL effective action to anisotropic systems. In . . . X ; . .
. ) . lisional time scalg21,22. It will be interesting to see if an
this case the extension does not seem to be as straightforway . . .
: o -ahalogous state exists for anisotropic QCD plasmas. Answer-
because of the presence of terms which are nontrivial also in

the static limit. This can also be seen from the explicit ex- 19 this question will require a detailed study of the static

) X . . and quasistatic limits of the effective action and associated
pressions for the vertices resulting from the expansion of the

HL effective action. In the isotropic limit the HTL vertices vertex functions derived in this paper.
are all proportional to the 0O-components of the four-
momentum flowing through the vertex so that in the static
limit these vertices vanish. This means that the static effec- M.S. was supported by the Austrian Science Fund Project
tive potential for isotropic QCD contains only bare verticesNo. M689.
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