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Chern-Simons-like term generation in an extended model of QED under external conditions
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The possibility of a Chern-Simong$€S- like term generation in an extended model of QED, in which a
Lorentz andCPT non-covariant kinetic term for fermions is present, has been investigated at finite temperature
and in the presence of a background color magnetic field. To this end, the photon polarization operator in an
external constant axial-vector field has been considered. One-loop contributions to its antisymmetric compo-
nent due to fermions in the linear order of the axial-vector field have been obtained. Moreover, the first
nontrivial correction to the induced CS term due to the presence of a weak constant homogeneous color
magnetic field has been derived.
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INTRODUCTION suggested for models where Abelian gauge fields interact
with a pseudoscalar massless axion fie{a). It was shown
The Lorentz andCPT invariance of the physical laws has that in this case the vectoy, could be associated with the
been confirmed with high accuracy in numerous experimentgacuum expectation value of the gradient of the axion field
[1]. Nevertheless, one may make the assumption that thesg,~(d,60), [6]. At the same time, the pseudovector fiblg
symmetries, for some unknown reasons, are only approximight be related to some constant background torsion in the
mate. The modern quantum field theoretical viewpoint ad{arge scale UniverSEb,p8,M5T“‘S [7]. Moreover, such a
mits the possibility of Lorentz invariance breakitand, as a CPT-odd term could be generated by chiral fermi¢gs A
consequence, possib@PT invariance breaking in the local modification of QED resulting in the appearance of a Chern-
field theory through a spontaneous symmetry breakingSimons-(CS-) like term may predict the phenomenon known
mechanism. In other words, even though the underlying law@s birefringence of light2,3]. As it was mentioned above, a
of nature have Lorentz an@PT symmetries, the vacuum CPT-odd kinetic term for fermions is also possible in the

solution of the theory could spontaneously violate these symiamework of the SME, and, in this case, there arises a natu-

metries ral question about the possibility of generation of the CS-

The usual standard model does not have the dynamic!g(e term through radiative corrections from the fermionic

necessary to cause spontaneous LorentzGiRd violation. sector of the general theory. . L -
N . . There are many papers devoted to investigating this inter-
However, the violation mentioned above could occur in a__.. o ) ;
. . .“esting possibility when a constant pseudovector field is
more complicated theory, i.e., the standard model extensio

. . ) t in the th , €.0.[9-13)). It h that
(SME) [3]. A basic requirement of such an extended model i resent in the theorysee, e.g.| ). It was shown tha

. . the presence of the background vedtgrindeed leads to a
that it preserves fundamental properties, such as renormal'?édiatively induced Chern-Simons term. i.e.. to a modified

ability, unitarity, and gauge invariance. In contrast to they 5 e of the classical tree level vectgr, . However, there
usual electrodynamics with its vacuum state being invarianfyas an ambiguity in the definition of this correction, which
under Lorentz andCPT transformations, in the extended \yas supposed to be due to the choice of the regularization
model, this vacuum state appears to be filled up by “f'e|dsv”procedure[9]. But, as has been clearly shown in one of the
which have a certain orientation in space, and this is thgecent paperfl4], the magnitude of this effect does not de-
cause of Lorentz symmetry breaking. Technically, a realizapeng on the regularization scheme, but only on the require-
tion of this violation might be obtained through adding two ment that the maximal residual symmetry, being the small
different kinds of CPT-odd kinetic terms. The first of them group of the specific vectds,,, is realized at quantum level
represents a four dimensional analogue of the well knowryger py order in the pertarbation theory. This leads to a
Chern-Simons term 7, “*#7F ,,A,, with a constant vector ynigue and non-vanishing value of the radiatively induced
7, the second one is tHePT-odd kinetic term for fermions  cs coefficient. Yet another question, which also seems very
b, y*ysi with a constant vectab,, [3]. The latter kind of  interesting for investigation, is the temperature dependence
modification does not influence the gauge invariance of thef this generated term. In the present paper, we study the
action and equations of motion, but it does modify the dis-one-loop contributions to the antisymmetric component of
persion relations for Dirac spinof8,4]. The question of the the photon polarization operator in an external constant
possible dynamical origin of these constant vectgysand  axial-vector fieldb, at finite temperature. These contribu-
b, remains an interesting task to be solved. In particular, on¢ions, due to fermion loops, are obtained in the linear order in
of the possible ways for the Lorentz symmetry to be brokerthe pseudo vector field. As a result, we obtained an exact
through the Coleman-Weinberg mechanigghwas recently  analytical expression for a thermally induced Chern-Simons
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term. At the same time, in considering the influence of the J
background axial-vector field on photon propagation, one
should also take into account the influence of the color
vacuum fields on the quark loops. For this purpose, in the
second part of the paper, we calculate in the one-loop ap-
proximation the effective potential for this model, when both

a color magnetic and an axial-vector background field are
present. Then, in the lowest order in the color magnetic field,
we calculate the first nontrivial correction to the result for the

Chern-Simons term obtained earl{dm]. X

I. THE MODEL !

FIG. 1. Photon polarization diagrams in a constant background

Consider fermions interacting with an electromagnetic__. _
axial-vector fieldb.

field A,(x) and a constant axial-vector fielg,=const. The

Lagrangian density of the model is as follows: . . :
grang y we can rewrite the expression for the propagd8)rin the

L=Lem* Lpir, form

where  Len=—5F,,F*",  Lpy=¢(1y*d,+eyA,—m S(p)=i(A+Bys+CHy,+D*y, ys+E*"y,7,75). (5
—b, v ys) . _ _ _

Our final objective is to calculate an induced Chern-Our goal is to calculate the antisymmetric part of the polar-
Simons-like term in the one-loop approximation, and henceization operatodl,, (1). Performing trace operations over
it is sufficient to calculate the antisymmetric part of the pho-the spinor indices in Eq(1), with the use of Eq(5), we

ton polarization operator obtain the required expression in the leading orddp:in
v in2 d4p v A B e2 4 ap af
m#*(k)=ie f (ZW)Atr[y“S(erk/Z)y S(p—k/2)]. HMV:_4|8MVQBWJ d*p[(ALEZ”—AET”)
(N 0B B
—(CyD§-DfCH)], ®)
Here, the fermion propagator, modified by the presence of
the axial-vector field,,, has the form where the indices 1 and 2 refer to expressiads for
A, ... E* with p replaced byp+k/2.
S(p)= =~ . (2)
p—m—bys Il. PHOTON POLARIZATION OPERATOR AT FINITE
TEMPERATURE
This expression can be transformed as follows: ) o .
In what follows, calculations at finite temperature will be
p+m+bys 2ys[bm—(bp)](p+m) performed in the framework of the imaginary time formal-
S(p)=i R RIS +0(b?), ism. Therefore, in order to consider finite temperature, we
pT—m-tie (p*—m+tie) @ have to make the following substitutions:
. + o0
where we have retained only the leading terms in the vector 1 f dho - D d°p
b. Following the remarks made in earlier publicatidrs, (2m)* Bne ) (2m)%

this appears to be sufficient to obtain the results needed, i.e.,
the antisymmetric part of the polarization operator, given by

the Feynman diagrams represented in Fig. 1. poﬁiwozm, nez,
Introducing the notation B
m 2m(bp) p where wq is the Matsubara frequency for fermions wigh
A= ———, B=———5, Cl="7—7, =1/T as the inverse temperature. Taking this into account,
pT—m (p*—m°) pT—m we rewrite the expression fdi/, (6), using Eq.(4), in the
form
o b# 2p*(bp) . 2m?b*
T2 .2 2 202 2_ 22’ 2 +o0 3
ps—m"  (p*—m9)° (p*—m?) e” 1 e
A T=4i —_—— f d®p>, 1M, (7
2% 8/_1,1/51/,3(277_)3 B I"IZO@ e plgl i ( )
2mp“b”
Err=— s, 4
(p?—m?)2 where
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kbA
1§P=— ,
ALA_
62
I
IaB:2k“|0ﬁ{2(b|0)[|02+(|</2)2—mz]—(bk)(kD)}
2 AZ A2 ’
4m?kbP[p?+ (k/2)2—m?]
|g - 2 2 1
ATAZ
and we have introduced the notatigh, = —[(p=k/2)2
+ (wo+Ko/2)2+ m?]. In what follows, we discuss only the
so called static limit, whefk—0, ko=0. Other possibilities 0 T inﬁhity
of going to the limitk— O will not be considered in the
present publication. In the static limit, the expressian FIG. 2. Temperature dependence of the mOduMST)MZ of the
takes the form induced CS vector.
AT e? *o Therefore, integration over the space momentum in (2y.
Iy, =4ie 0K —— (2m)3 ,3 n_Zm B d p should be restricted by some constant, which represents

a threshold for such a nonphysical reaction. Its value can be
easily calculated using simple kinematic relati¢ag]. For

B(p2+ 3m?2 B
_ b(p”+3m )+4p (bp) , (8) pure time-likeb it turns out to be equal to\.=2m?/by.

A3 A3 Taking this into account, the integréd) can be written as
where we have taken into account that |¢; =A | 2
=A=p?—m?+ie. Notice that the vectdn is to be time-like 1= 208 4,00k 00— (AcB)°
(b2>0), which is essential for a theory with free fermions ™
interacting with the axial-vector field. Only in this case can +o
guantization of the Dirac field be performed in a consistent > 2 1 . (10
way [4]. For the sake of simplicity, though without loss of n==e [(2n+1)%+ (Bl 7)?(A2+m?)]?

generality, we choose the time-like vector in the folm

=(by,0,0,0), and také,>0. Such a restriction does not The series in the above expression can be easily summed up

influence the temperature dependence of the generatéd5] to yield

Chern-Simons term, on the one hand, and, on the other hand,

it simplifies all our calculations. 2
Taking the above mentioned considerations into account, HQ‘VT =1 4000k D’

let us rewrite Eq(8) in spherical coordinates

mTa
3wh+3m?— +2tan!{—”, 1D
HAJZZisﬂvaOkabo_ n J pp2 s p 2
. w2 B n== (03+p?+m?)%
(99 where the notationa=(BA./7)V1+(M/A)?~pBAlm
was introduced. The curve depicted in Fig. 2 represeuts
As mentioned in the Introduction, in order to avoid an am-an arpitrary scalethe modulus\/—"r of the radiatively in-

biguity in the definition of the radiatively induced CS vector, duced thermal Chern-Simons vect@ﬁ (6°,0,0,0) with
one should employ the physical requirement that the maxi-

ma)?
—qa+ matan 7

2

(2m)

mal residual symmetr{related to the small symmetry group 2 a2 ra
of the specific vectob,,) is to be realized at the quantum  g%(T)=p0 —ma+ma tanr(— +2 tan)’(—”
level order by order in perturbation theory. This physical (2m)? 2 2

requirement leads to a unigue non-vanishing value of the

radiatively induced CS coefficieit4]. The analysis of the as a function of temperature, obtained from expreséldn
dispersion relations for fermions in an external axial-vectort should be noticed that the obtained coefficient has reason-
field demonstrates that fermions exist which would achieveable limiting values both af =0 and afT —. The first one

the space-like four-momentup?<0 at very high energies, a isI1; (T=0)=ie% ,,,0k*b%27?, and it reproduces the re-
phenomenon that would violate the Lorentz kinematics insult obtained earlief14] for the case of vanishing tempera-
conventional scattering or decay processes. This means thatre. At T—o«, we haveHﬁ’VT—>0, which means that at high
such electrons interacting with photons would turn out to beéemperatures the Chern-Simons term generation is com-
unstable and decay into an electron of the same helicity angletely suppressed and, as a consequence, the Lorentz and
into a pair of electron and positron with opposite helicities.CPT symmetries are completely restored.
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Ill. THE EFFECTIVE POTENTIAL

In this section we shall consider the influence of a back-
ground non-Abelian gauge field on the quark loop in the
above model with an axial vector field. In order to calculate
the effective potential of the model under these conditions,
we shall use a method based on exact solutions of wave R
equations that can be obtained for certain simple configuravhere we have introduced the notati@?=p?+m?+bj
tions of background gauge fields. We adopt a model oft 3g°\—e&? andx=g\+by.
quarks in the fundamental representation of ®E(2)c Solving this equation, we obtain four branches of the
color group interacting with a non-Abelian gauge fieig spectrum,
=AZTa and also with an electromagnetic fiefd,, and an
axial-vector fieldb,, . Assuming slow variation of the color
field on the hadronic scale, let us consider, as a first approxi-
mation, a constant non-Abelian fiefd,,= const. We con-

. 1 2
( p2(g?\ +4b3) — a4+Zgz)\x2)

- 1 z
—-g2\ 4p2b0—a2x+§g\/xx2) =0, (19

2
+m?>0,

o1
o= 1250k -200)

sider the non-Abelian background field to be rotationally 2 /—»2+ 2)\+£( \/X+ 2by) 2+m2>0
symmetric(a configuration that is not possible in the Abelian €34~ | VP OTA=5 (0 0 '
case

The squared fermion energies are required to be positive as
the necessary condition for the theory to be free from having

any tachyonic modes. With the above values for the spectrum
it does not cause any problem now to perform the standard
kinematic considerationgl4], and obtain the value for the

We shall assume for later convenience that the followingeutoff constant from Eq(19) using Eq.(13):
inequality is valid for the fields introduced:

AL=8\N, AJ=0, Gi=geia\,

N=const>0. (12

2 2

A= 4m 4m . (19
bg<g®\<m?, (13 “gn-2b, g )
although, until we make special reference to this, we shalirhe one-loop effective action is defined as
not use this condition. In these fields, the modified Dirac
equation is d
a W<E1>=Tf2—?:2 In(q2+¢2), (20)
r

(v*H,—b,y*ys—m)¢=0, (14

a . where 7 is the time interval in Euclidian space-time, and
wherell,=p,—gA,T,. In order to find the spectrum of ,mmation over is assumed to run over all quantum num-
stationary states, it is convenient to consider the squareflers of quarks, including all spectrum branches, as well as
Dirac equation over the continuum of spatial components of the quark mo-

1 mentum. Using the formula
12— 2(I1b) y5— 2b ys[T— m?— b2+ Egawej‘wTa) =0,

>ds
(15) In(A/IB)=— fo ?[exp(—sA)—ex;x—sB)]
or in matrix form and performing the integration ovey, we get for the effec-
, - tive potentialV{y)=— W&/ 713,
(e°=K)y=0, (16)
N , m_ 11 =ds )
where the operatdk, according to Eq(12), has the follow- Vel =— —— 2 —-exp(—ser)—c.t, (2D
. . L3 2\/; T 0 S3/2
Ing structure:
o 3 1 . - where c.t. stands for the counterterm such th&} (b,
K=p?+m?+b§+ ZQZX—EQZK(ET)—Q\/X(F)T) =gA=0)=0. Taking into account that
- 2gvi| 5 S - [@nS = [
_2b07075 _Eg AT Y, (17) - - (277_)3 p - - (27T)3 0 pdp = ’

whereS =(§9), ando, 7 are Pauli matrices belonging to the Where the summatior®, runs only over the spectrum

spin and color spaces, respectively.

branches, and introducing the notatiarsn?, x=|p|/m,

Hence, it is simple to obtain the following equation for ¢?=g?\/m? andy?=b3/m?, we rewrite the effective poten-

the quark spectrum in the background color field:

tial (21) in the form
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x> e—z(1+x2)[e—z[1/4¢2— b+ 9P+ (- 29)X]

v==*1

4 @~ UBIAS*+ byt P+ v(pt2) X+ 7] _ 2]. (22)

The last item in the brackets is the counterterm. To calculate
the integral(22), we make an expansion of the integrand in
powers of the small parameteys y<1. It is important to
mention that, in the general case, the result depends on th

order in which the integrations are performed, i.e.,
FIG. 3. The effective potentialg}f) as a function of chromomag-

2%
J 3/2 fdxxze f(z,x)
netic and axial-vector field dimensionless parametehns
or =(gVA\/m)x 10"2 andb=(by/m)x 10~3.

o 10

© dz
j dxx ¢ z(Hx)f(z X), =4 L—In(M—}— M251) | y?

o 2% W T
wheref(z,x) is the integrand after expansion. The reason for 1 1—2M?2 . 6
this is that both expressions, generally speaking, are diver- +3M (1+—I\/I2)5’2¢ +0(y°),

gent. This ambiguity can be eliminated when we apply a
certain regularization procedure, for instance the physical
cutoff regularization. This means the integration over

=|p|/m should be limited from above by the cutdff9), Lo M3 ¢¢3_§ M3 e
2 (1+M2)3/2 2 (1+M2)5/2
4m
M=A./m=——=. +0(303).
c iy (¢°9°)

Further calculations are made with the help of the relation The plot of the effective potentidh) as a function of the

- dz 1 chromomagnetic and axial-vector fields is depicted in Fig. 3,
f — M2 (1 4 x2)(V2- ”)F( n— _)_ where the effective potential is measured in unitenbf4m?,
o %2 2 and the dimensionless parametbrandb for the color field
and axial-vector field are defined s (g\A/m)x 102 and
Thus, eventually, for the one-loop effective potential, wep=(b,/m)x 10 3, respectively. Analysis of this plot dem-
obtain onstrates that with increasing strength of the color field the
contribution of the axial-vector component decreases.
@_ m Let us address the part of E@4) that corresponds to the
Vet —ﬁ(l o1yt gy, (23 pure chromomagnetic field contributioh,. Despite the
presence of terms of the order 6f ¢?) and O(¢*) in the
expression, the real contribution of the color field to the ef-

4

where fective potential is provided only by the term of order
M3 O(¢%). This happens because the formal limit of the first
| )= — ———= ¢+ | 24In(M+ M7+ 1) term —M?2¢? at M—o is a pure number, and its contribu-
Ji+m2" 48 tion disappears when one considers the limit of the whole
5 5 expression23) [this corresponds to the poinh,(b)=(0,0)
_ 24M+35M7+14M°) in Fig. 3, where the effective potential vanishes, according to
(1+M?2)572 our choice of the countertefimAs for the termO(¢?), its
leading contribution with M—o~ has the form
1

L 183+408|\/I2+312M4+80M6)¢6 (1/872) In(M)n*¢*~In(mP/gH) (gH)?, whereH = \/3gX is the
384

(1+M2)972 field strength, defining, thereby, the renormalized values of
the field and the charge. Thus, the first nontrivial finite con-
+0(¢?), (24)  tribution looks like | y6=—(5/24)(@H/m?\/3)3, which ex-
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actly coincides with the result obtained|ib7] [actually, this  powers of ¢G) and keep only the linear term. Then,
is true for the termO(¢®) as well. This result differs from
the case of Abelian fields, where the lowest term in the ex-
pansion of the one-loop effective potential is of the order of . " ik "
the fourth power of the field streng(gH)*, whereas, in S(p)=i[A+Bys+C,y*+D iy 0"+ Eyo

the nchn—Abellan theory, |n_ add_ltlon to quadratic parameters +Fik70750'lk+|7075+JM"}’M75+KM')"M')’075
like Fi,, andF ,,F“*, new invariant parameters, such as the
cubic oneFiVFKbFé“sabc, are possible, and they may form
the lowest correction of the type obtained above. (29

+L iy o ys+ M iy o™  yoys+ Nigo ™  ys],

where we have introduced new notation
IV. RADIATIVE CORRECTION TO THE CS COEFFICIENT

IN THE PRESENCE OF A WEAK COLOR MAGNETIC

FIELD
m 2mbgypo IT
. . — — _n
In this section, we shall demonstrate how the presence of A=~ B=— > Cu=
o ; A A A
a color magnetic field corrects the value of the induced
Chern-Simons vectdr4]. To this end, we calculate the an-
tisymmetric part of the polarization operator, when both
chromomagnetic and axial-vector fields are present in the T aG. mgG
background. The modified fermion propagator, in this case, D,ix=— 19 "‘, == 9 k,
takes the form a 2A2 2A2
S(p) | (25) bogG 2m?
P)==———""=— D96k m
H—m—b75 Fik__ A2 (1+T),

where, as beford] = p#—gAZTa. This expression may be

rewritten as
=21, 2_mZ) _ _ ZPoboll,
A AT TR A2
, I1+m+bys
S(p) =i I .
124 2(11b) y5— 2mbys—m?+ b?+ = g(0G
( )yS Vs 29(0- ) Zmbol_[ 2p0b0H gGik
K =0 "# | ZP0Y0 T pY ik
(26) M A2 uik A3 ’
Taking into consideration the relation[ ys, o]
=[v0vs5,09]=0 for i,k=1,3, one can perform, for the al- _
lowed background field configuratiod2), a correct expan- k= _ZmH“gG'kbo,
sion of the propagator in powers bfrestricting oneself, as A3
before, to the term linear iby. This results in
R R 1 _ 2mpyhbog Gik 29
=i(Il+m+b kT s
Sp) =it 7S 12—+ 1/29(0G) A

2(T1b) ys— 2mbys

[T12—m?+1/29(¢G) ]3] (27)  with A=T1—m?,

The polarization operator is defined as beffsee Eq.
(1)], where the trace operation now should be performed
over color indices as well. In order to obtain the antisymmet-

Further, taking into account that the antisymmetric part ofric part of the PO, we have to calculate the trace over spinor
the polarization operatqPO) appears as a structure propor- indices. Excluding from the resulting expression the terms
tional to an antisymmetric tensor, we expand E2j7) in  that refer to the pure color magnetic field, we obtain
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. dp - - :
Hﬁa: - |e2trcf @Tyl{4|8poﬂo(KfA2_ KQLAl)+4(gp59¢m_gpﬂgaa)sikoa(M’flkAz_AlMQL'k)+48poik(A1N'2k

—N¥Ay) +4i €pouo(Cll2—11CY) +4ie,q,,(C1I;—C5IT) +4e 6, 5(0i,Oks— k.01 5) (CHLE*—LTCh)

—4i Sikﬂaslmoaspaaa(DTikFlzm_ Fllngik) +4€ pe50(9i ks~ gkﬂgiﬁ)(DiLikl 2~ | 1D§ik) +4¢€,660(9i ks~ Ikuis)
X(D§™* 35— J1D5™) + 4i € poad (9i9ks~ 9ku9i8) (91, 9me— Imibia) — 8ikM58Imva](DfikL]2}|m_ Ly™D4™)

+ Eileg[48ikp5(gaagMo_ 951900 95090,) — 48 550(9i p9ks— 9kpTis) 1+ EXKi(p—o)

+ EIlkM Zlm[4| €ikps€Im0a® ﬁa(rv+ 4i 8|m0a(gipgk5_ gkpgi 5)(gﬁo'gva_ g&vg()'a+ g&ag(rv)] + EIZkM ilm(pH U)}l (30)

where the indices 1 and 2 mean that we use @§) for At the same time, the ratio of the contributions induced by
A, ... N* with p replaced byp+k/2, the symbol p— o) the axial vector and the color fields separately,

is used to denote the same expression as the previous one up

to permutation ofp and o, and tg stands for the trace over I%(by#0A=0) by ( m )2

color indices. A
Each integral in Eq(30) has a general structure that may I1%(by=0A#0) g\/x g\/x
depends substantially not only on the relation of the fields,

be represented in the form
4 a but also on the ratio of the fermionic mass and the strength
f dp @,,(p,gA T4, m) of the color field. Therefore, under the condititt8), when
(2m)* (ALA)" ' this ratio is large, the color field and the axial vector field
may provide comparable contributions to the induced CS
Here A1’2=Hiz— m?, andn=2,3 for different integrals. It vector.
should be mentioned that in the static lirttihe rest frame of

referencg (k—0Kk,=0), the denominator is equal to CONCLUSIONS

N_Th2_ (A ~2/9\2__ 272N H . . .
(A142)"=[po— (P~ gA/2)"—m7]™". Th“S;l expanding We have calculated the one-loop fermion contribution to
the integrand up to terms of the ord®(gA7)” and calcu-  he antisymmetric part of the photon polarization operator in
lating the trace over color indices, we integrate opemith 5 external constant axial-vector fiehg,. The result was
the upper limit equal to the constafit, as prescribed inthe optained in the linear order in the pseudo vector field, using
previous section. As a result, we obtain for the antisymmetrig, physical cutoff regularization scheme. Analysis of the tem-
part of the PO perature dependence of the obtained expression allows us to

) 4 conclude that generation of a Lorentz- aG&#T-odd term
1 E)(g\/X) O( g\/X) } may occur at any physical value of temperature. In particular,
- |

2732 Tm we have reproduced the standard result for the case of van-
(31  ishing temperatureT=0 [14]. Moreover, we have shown
that this effect is completely suppressed in the limit of very
We recall that the contribution of a pure color magnetichigh temperatureT —«, when the Lorentz an€PT sym-
field to the antisymmetric part of the PO is given by the metries of the theory are restored.

A _ _ .2 7
HpO'_ e 7728po.ﬂok#b0

formula[16] The influence of the vacuum field, modeled by a constant
non-Abelian color magnetic field, on generation of a Chern-
A ., g3\%2 Simons term has been considered in the one-loop approxi-

I, (bo=0A#0)=ie 247728,,(,Mk“ TR (32 mation. We have constructed the effective potential for this

model with consideration of both the axial-vector field and a
The first term in the brackets of our res(®l) refers to non-Abelian color field. We have demonstrated that with in-
the induced Chern-Simons terdi*(b,# 0\ =0), when creasing strength of the color field the contribution of the
= 0 [T ) H I i
only the axial-vector field is present in the theory, and this is?_mal-_vector cqrr_]ponent tq the effec_tlve potential de'creases.
in complete agreement with the result obtainedlid]. The he first nontrivial correction to the |_nduced topologlcgl CS
second term gives the correction calculated with both fieldd SCtor due to the presence of @ weakith respect to f_ermlon_
presentATTA(b,# 0\ #0), and its value depends on their mass} colpr magnetic field has be.e.n obtained and its relative
relative streng?h ' ' contribution to the total CS coefficient has been estimated.
It is important to notice that the possible presence of an
A antisymmetric part of the photon polarization operator dem-
AlTR(De#0A#0) - bo <1. onstrates spatial anisotropy. This may provide one of the
II4(by=0\#0) g\/X physical mechanisms for possible unusual phenomena in the
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propagation of light through the universe, i.e., rotation of thepseudovector field, in spite of numerous efforts, still remains
plane of polarization of electromagnetic radiation propagatio be explained6-8J.

ing over cosmological distancéan effect, different from the

usual Faraday rotation, which was discussed in recent publi- ACKNOWLEDGMENTS
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