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Chern-Simons-like term generation in an extended model of QED under external conditions
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The possibility of a Chern-Simons-~CS-! like term generation in an extended model of QED, in which a
Lorentz andCPTnon-covariant kinetic term for fermions is present, has been investigated at finite temperature
and in the presence of a background color magnetic field. To this end, the photon polarization operator in an
external constant axial-vector field has been considered. One-loop contributions to its antisymmetric compo-
nent due to fermions in the linear order of the axial-vector field have been obtained. Moreover, the first
nontrivial correction to the induced CS term due to the presence of a weak constant homogeneous color
magnetic field has been derived.
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INTRODUCTION

The Lorentz andCPT invariance of the physical laws ha
been confirmed with high accuracy in numerous experime
@1#. Nevertheless, one may make the assumption that t
symmetries, for some unknown reasons, are only appr
mate. The modern quantum field theoretical viewpoint
mits the possibility of Lorentz invariance breaking~and, as a
consequence, possibleCPT invariance breaking in the loca
field theory! through a spontaneous symmetry break
mechanism. In other words, even though the underlying la
of nature have Lorentz andCPT symmetries, the vacuum
solution of the theory could spontaneously violate these s
metries.

The usual standard model does not have the dynam
necessary to cause spontaneous Lorentz andCPT violation.
However, the violation mentioned above could occur in
more complicated theory, i.e., the standard model exten
~SME! @3#. A basic requirement of such an extended mode
that it preserves fundamental properties, such as renorm
ability, unitarity, and gauge invariance. In contrast to t
usual electrodynamics with its vacuum state being invar
under Lorentz andCPT transformations, in the extende
model, this vacuum state appears to be filled up by ‘‘field
which have a certain orientation in space, and this is
cause of Lorentz symmetry breaking. Technically, a reali
tion of this violation might be obtained through adding tw
different kinds ofCPT-odd kinetic terms. The first of them
represents a four dimensional analogue of the well kno
Chern-Simons term1

2 hm«mabgFabAg with a constant vector
hm ; the second one is theCPT-odd kinetic term for fermions
c̄bmgmg5c with a constant vectorbm @3#. The latter kind of
modification does not influence the gauge invariance of
action and equations of motion, but it does modify the d
persion relations for Dirac spinors@3,4#. The question of the
possible dynamical origin of these constant vectorshm and
bm remains an interesting task to be solved. In particular,
of the possible ways for the Lorentz symmetry to be brok
through the Coleman-Weinberg mechanism@5# was recently
0556-2821/2004/70~2!/025003~8!/$22.50 70 0250
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suggested for models where Abelian gauge fields inte
with a pseudoscalar massless axion fieldu(x). It was shown
that in this case the vectorhm could be associated with th
vacuum expectation value of the gradient of the axion fi
hm;^]mu&0 @6#. At the same time, the pseudovector fieldbm
might be related to some constant background torsion in
large scale Universe,bm;«mnldTnld @7#. Moreover, such a
CPT-odd term could be generated by chiral fermions@8#. A
modification of QED resulting in the appearance of a Che
Simons-~CS-! like term may predict the phenomenon know
as birefringence of light@2,3#. As it was mentioned above,
CPT-odd kinetic term for fermions is also possible in th
framework of the SME, and, in this case, there arises a n
ral question about the possibility of generation of the C
like term through radiative corrections from the fermion
sector of the general theory.

There are many papers devoted to investigating this in
esting possibility when a constant pseudovector field
present in the theory~see, e.g.,@9–13#!. It was shown that
the presence of the background vectorbm indeed leads to a
radiatively induced Chern-Simons term, i.e., to a modifi
value of the classical tree level vectorhm . However, there
was an ambiguity in the definition of this correction, whic
was supposed to be due to the choice of the regulariza
procedure@9#. But, as has been clearly shown in one of t
recent papers@14#, the magnitude of this effect does not d
pend on the regularization scheme, but only on the requ
ment that the maximal residual symmetry, being the sm
group of the specific vectorbm , is realized at quantum leve
order by order in the perturbation theory. This leads to
unique and non-vanishing value of the radiatively induc
CS coefficient. Yet another question, which also seems v
interesting for investigation, is the temperature depende
of this generated term. In the present paper, we study
one-loop contributions to the antisymmetric component
the photon polarization operator in an external const
axial-vector fieldbm at finite temperature. These contribu
tions, due to fermion loops, are obtained in the linear orde
the pseudo vector field. As a result, we obtained an ex
analytical expression for a thermally induced Chern-Simo
©2004 The American Physical Society03-1
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term. At the same time, in considering the influence of
background axial-vector field on photon propagation, o
should also take into account the influence of the co
vacuum fields on the quark loops. For this purpose, in
second part of the paper, we calculate in the one-loop
proximation the effective potential for this model, when bo
a color magnetic and an axial-vector background field
present. Then, in the lowest order in the color magnetic fie
we calculate the first nontrivial correction to the result for t
Chern-Simons term obtained earlier@14#.

I. THE MODEL

Consider fermions interacting with an electromagne
field Am(x) and a constant axial-vector fieldbm5const. The
Lagrangian density of the model is as follows:

L5Lem1LDir ,

where Lem52 1
4 FmnFmn, LDir5c̄(ıgm]m1egmAm2m

2bmgmg5)c.
Our final objective is to calculate an induced Che

Simons-like term in the one-loop approximation, and hen
it is sufficient to calculate the antisymmetric part of the ph
ton polarization operator

Pmn~k!5 ie2E d4p

~2p!4
tr@gmS~p1k/2!gnS~p2k/2!#.

~1!

Here, the fermion propagator, modified by the presence
the axial-vector fieldbm , has the form

S~p!5
i

p̂2m2b̂g5

. ~2!

This expression can be transformed as follows:

S~p!5 i F p̂1m1b̂g5

p22m21 i«
2

2g5@ b̂m2~bp!#~ p̂1m!

~p22m21 i«!2 G1O~b2!,

~3!

where we have retained only the leading terms in the ve
b. Following the remarks made in earlier publications@3#,
this appears to be sufficient to obtain the results needed,
the antisymmetric part of the polarization operator, given
the Feynman diagrams represented in Fig. 1.

Introducing the notation

A5
m

p22m2
, B5

2m~bp!

~p22m2!2
, Cm5

pm

p22m2
,

Dm5
bm

p22m2
2

2pm~bp!

~p22m2!2
1

2m2bm

~p22m2!2
,

Emn52
2mpmbn

~p22m2!2
, ~4!
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we can rewrite the expression for the propagator~3! in the
form

S~p!5 i ~A1Bg51Cmgm1Dmgmg51Emngmgng5!. ~5!

Our goal is to calculate the antisymmetric part of the pol
ization operatorPmn ~1!. Performing trace operations ove
the spinor indices in Eq.~1!, with the use of Eq.~5!, we
obtain the required expression in the leading order inb:

Pmn
A 524i«mnab

e2

~2p!4E d4p@~A1E2
ab2A2E1

ab!

2~C1
aD2

b2D1
bC2

a!#, ~6!

where the indices 1 and 2 refer to expressions~4! for
A, . . . ,Eab with p replaced byp6k/2.

II. PHOTON POLARIZATION OPERATOR AT FINITE
TEMPERATURE

In what follows, calculations at finite temperature will b
performed in the framework of the imaginary time forma
ism. Therefore, in order to consider finite temperature,
have to make the following substitutions:

1

~2p!4E d4p→ i

b (
n52`

1` E d3p

~2p!3
,

p0→ iv05
ip~2n11!

b
, nPZ,

wherev0 is the Matsubara frequency for fermions withb
51/T as the inverse temperature. Taking this into accou
we rewrite the expression forPmn

A ~6!, using Eq.~4!, in the
form

Pmn
A,T54i«mnab

e2

~2p!3

1

b (
n52`

1` E
2`

1`

d3p(
i 51

3

I i
ab , ~7!

where

FIG. 1. Photon polarization diagrams in a constant backgro
axial-vector fieldb.
3-2
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I 1
ab52

kabb

D1D2
,

I 2
ab5

2kapb$2~bp!@p21~k/2!22m2#2~bk!~kp!%

D1
2 D2

2
,

I 3
ab52

4m2kabb@p21~k/2!22m2#

D1
2 D2

2
,

and we have introduced the notationD652@(pW 6kW /2)2

1(v06k0/2)21m2#. In what follows, we discuss only th
so called static limit, whenkW→0, k050. Other possibilities
of going to the limit k→0 will not be considered in the
present publication. In the static limit, the expression~7!
takes the form

Pmn
A,T54i«mnabka

e2

~2p!3

1

b (
n52`

1` E
2`

1`

d3p

3F2
bb~p213m2!

D3
1

4pb~bp!

D3 G , ~8!

where we have taken into account thatD1ust.l .5D2ust.l .
5D5p22m21 i«. Notice that the vectorb is to be time-like
(b2.0), which is essential for a theory with free fermion
interacting with the axial-vector field. Only in this case c
quantization of the Dirac field be performed in a consist
way @4#. For the sake of simplicity, though without loss
generality, we choose the time-like vector in the formb
5(b0,0,0,0), and takeb0.0. Such a restriction does no
influence the temperature dependence of the gener
Chern-Simons term, on the one hand, and, on the other h
it simplifies all our calculations.

Taking the above mentioned considerations into acco
let us rewrite Eq.~8! in spherical coordinates

Pmn
A,T52i«mna0kab0

e2

p2

1

b (
n52`

1` E
0

`

dpp2
3v0

213m22p2

~v0
21p21m2!3

.

~9!

As mentioned in the Introduction, in order to avoid an a
biguity in the definition of the radiatively induced CS vecto
one should employ the physical requirement that the m
mal residual symmetry~related to the small symmetry grou
of the specific vectorbm) is to be realized at the quantum
level order by order in perturbation theory. This physic
requirement leads to a unique non-vanishing value of
radiatively induced CS coefficient@14#. The analysis of the
dispersion relations for fermions in an external axial-vec
field demonstrates that fermions exist which would achie
the space-like four-momentump2,0 at very high energies, a
phenomenon that would violate the Lorentz kinematics
conventional scattering or decay processes. This means
such electrons interacting with photons would turn out to
unstable and decay into an electron of the same helicity
into a pair of electron and positron with opposite helicitie
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Therefore, integration over the space momentum in Eq.~9!
should be restricted by some constantLc , which represents
a threshold for such a nonphysical reaction. Its value can
easily calculated using simple kinematic relations@14#. For
pure time-likeb it turns out to be equal toLc52m2/b0.
Taking this into account, the integral~9! can be written as

Pmn
A,T52i«mna0kab0

e2

p6
~Lcb!3

3 (
n52`

1`
1

@~2n11!21~b/p!2~Lc
21m2!#2

. ~10!

The series in the above expression can be easily summe
@15# to yield

Pmn
A,T5 i«mna0kab0

e2

~2p!2 F2pa1pa tanhS pa

2 D 2

12 tanhS pa

2 D G , ~11!

where the notationa5(bLc /p)A11(m/Lc)
2'bLc /p

was introduced. The curve depicted in Fig. 2 represents~on
an arbitrary scale! the modulusAum

2 of the radiatively in-
duced thermal Chern-Simons vectorum5(u0,0,0,0) with

u0~T!5b0
e2

~2p!2 F2pa1pa tanhS pa

2 D 2

12 tanhS pa

2 D G
as a function of temperature, obtained from expression~11!.
It should be noticed that the obtained coefficient has reas
able limiting values both atT50 and atT→`. The first one
is Pmn

A (T50)5 ie2«mna0kab0/2p2, and it reproduces the re
sult obtained earlier@14# for the case of vanishing tempera
ture. At T→`, we havePmn

A,T→0, which means that at high
temperatures the Chern-Simons term generation is c
pletely suppressed and, as a consequence, the Lorentz
CPT symmetries are completely restored.

FIG. 2. Temperature dependence of the modulusAu(T)m
2 of the

induced CS vector.
3-3
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III. THE EFFECTIVE POTENTIAL

In this section we shall consider the influence of a ba
ground non-Abelian gauge field on the quark loop in t
above model with an axial vector field. In order to calcula
the effective potential of the model under these conditio
we shall use a method based on exact solutions of w
equations that can be obtained for certain simple config
tions of background gauge fields. We adopt a model
quarks in the fundamental representation of theSU(2)C
color group interacting with a non-Abelian gauge fieldAm

5Am
a Ta and also with an electromagnetic fieldFmn and an

axial-vector fieldbm . Assuming slow variation of the colo
field on the hadronic scale, let us consider, as a first appr
mation, a constant non-Abelian fieldGmn5const. We con-
sider the non-Abelian background field to be rotationa
symmetric~a configuration that is not possible in the Abelia
case!

Aa
i 5da

i Al, Aa
050, Gik

a 5g« ikal,

l5const.0. ~12!

We shall assume for later convenience that the follow
inequality is valid for the fields introduced:

b0
2!g2l!m2, ~13!

although, until we make special reference to this, we s
not use this condition. In these fields, the modified Dir
equation is

~gmPm2bmgmg52m!c50, ~14!

where Pm5pm2gAm
a Ta . In order to find the spectrum o

stationary states, it is convenient to consider the squa
Dirac equation

S P222~Pb!g522b̂g5P̂2m22b21
1

2
gsmnGmn

a TaDc50,

~15!

or in matrix form

~«22K̂ !c50, ~16!

where the operatorK̂, according to Eq.~12!, has the follow-
ing structure:

K̂5pW 21m21b0
21

3

4
g2l2

1

2
g2l~SW tW !2gAl~pW tW !

22b0g0g5S pW 2
1

2
gAltW DgW , ~17!

whereSW 5(0 sW
sW 0), andsW ,tW are Pauli matrices belonging to th

spin and color spaces, respectively.
Hence, it is simple to obtain the following equation f

the quark spectrum in the background color field:
02500
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S pW 2~g2l14b0
2!2a41

1

4
g2lx2D 2

2g2lS 4pW 2b02a2x1
1

2
gAlx2D 2

50, ~18!

where we have introduced the notationa25pW 21m21b0
2

1 3
4 g2l2«2 andx5gAl1b0.
Solving this equation, we obtain four branches of t

spectrum,

«1,2
2 5S upW u6

1

2
~gAl22b0! D 2

1m2.0,

«3,4
2 5SApW 21g2l6

1

2
~gAl12b0! D 2

1m2.0.

The squared fermion energies are required to be positiv
the necessary condition for the theory to be free from hav
any tachyonic modes. With the above values for the spect
it does not cause any problem now to perform the stand
kinematic considerations@14#, and obtain the value for the
cutoff constant from Eq.~19! using Eq.~13!:

Lc5
4m2

gAl22b0

'
4m2

gAl
@m. ~19!

The one-loop effective action is defined as

WE
(1)5tE dq4

2p (
r

ln~q4
21« r

2!, ~20!

where t is the time interval in Euclidian space-time, an
summation overr is assumed to run over all quantum num
bers of quarks, including all spectrum branches, as wel
over the continuum of spatial components of the quark m
mentum. Using the formula

ln~A/B!52E
0

`ds

s
@exp~2sA!2exp~2sB!#

and performing the integration overq4, we get for the effec-
tive potentialVeff

(1)52WE
(1)/tL3,

Veff
(1)5

1

L3

1

2Ap
(

r
E

0

` ds

s3/2
exp~2s« r

2!2c.t., ~21!

where c.t. stands for the counterterm such thatVeff
(1)(b0

5gAl50)50. Taking into account that

(
r

5
L3

~2p!3E d3p(
n

5
4pL3

~2p!3E0

`

p2dp(
n

,

where the summation(n runs only over the spectrum
branches, and introducing the notationz5sm2, x5upW u/m,
f25g2l/m2 andc25b0

2/m2, we rewrite the effective poten
tial ~21! in the form
3-4
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Veff
(1)5

m4

4p5/2E0

` dz

z3/2E0

`

dxx2

3 (
n561

e2z(11x2)@e2z[1/4f22fc1c21n(f22c)x]

1e2z[5/4f21fc1c21n(f12c)Ax21f2]22#. ~22!

The last item in the brackets is the counterterm. To calcu
the integral~22!, we make an expansion of the integrand
powers of the small parametersf,c!1. It is important to
mention that, in the general case, the result depends on
order in which the integrations are performed, i.e.,

E
0

` dz

z3/2
e2zE

0

`

dxx2e2zx2
f ~z,x!

or

E
0

`

dxx2E
0

` dz

z3/2
e2z(11x2) f ~z,x!,

wheref (z,x) is the integrand after expansion. The reason
this is that both expressions, generally speaking, are di
gent. This ambiguity can be eliminated when we apply
certain regularization procedure, for instance the phys
cutoff regularization. This means the integration overx

5upW u/m should be limited from above by the cutoff~19!,

M5Lc /m5
4m

gAl
.

Further calculations are made with the help of the relatio

E
0

` dz

z3/2
e2z(11x2)zn5~11x2!(1/22n)GS n2

1

2D .

Thus, eventually, for the one-loop effective potential, w
obtain

Veff
(1)5

m4

4p2
~ I f1I c1I fc!, ~23!

where

I f52
M3

A11M2
f21

1

48S 24 ln~M1AM211!

2
24M135M3114M5

~11M2!5/2 D f4

2
1

384
M3S 1831408M21312M4180M6

~11M2!9/2 D f6

1O~f8!, ~24!
02500
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I c54S M

A11M2
2 ln~M1AM211!D c2

1
1

3
M3

122M2

~11M2!5/2
c41O~c6!,

I cf5
M3

~11M2!3/2
cf32

3

2

M3

~11M2!5/2
c2f2

1O~f3c3!.

The plot of the effective potentialVeff
(1) as a function of the

chromomagnetic and axial-vector fields is depicted in Fig
where the effective potential is measured in units ofm4/4p2,
and the dimensionless parametersh andb for the color field
and axial-vector field are defined ash5(gAl/m)31022 and
b5(b0 /m)31023, respectively. Analysis of this plot dem
onstrates that with increasing strength of the color field
contribution of the axial-vector component decreases.

Let us address the part of Eq.~24! that corresponds to the
pure chromomagnetic field contributionI f . Despite the
presence of terms of the order ofO(f2) and O(f4) in the
expression, the real contribution of the color field to the
fective potential is provided only by the term of ord
O(f6). This happens because the formal limit of the fi
term 2M2f2 at M→` is a pure number, and its contribu
tion disappears when one considers the limit of the wh
expression~23! @this corresponds to the point (h,b)5(0,0)
in Fig. 3, where the effective potential vanishes, according
our choice of the counterterm#. As for the termO(f4), its
leading contribution with M→` has the form
(1/8p2)ln(M)m4f4;ln(m2/gH)(gH)2, whereH5A3gl is the
field strength, defining, thereby, the renormalized values
the field and the charge. Thus, the first nontrivial finite co
tribution looks like I f652(5/24)(gH/m2A3)3, which ex-

FIG. 3. The effective potentialVeff
(1) as a function of chromomag

netic and axial-vector field dimensionless parametersh
5(gAl/m)31022 andb5(b0 /m)31023.
3-5
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actly coincides with the result obtained in@17# @actually, this
is true for the termO(f8) as well#. This result differs from
the case of Abelian fields, where the lowest term in the
pansion of the one-loop effective potential is of the order
the fourth power of the field strengthO(gH)4, whereas, in
the non-Abelian theory, in addition to quadratic paramet
like Fmn

2 andFmnFmñ, new invariant parameters, such as t
cubic oneFmn

a Fl
nbFc

lm«abc , are possible, and they may form
the lowest correction of the type obtained above.

IV. RADIATIVE CORRECTION TO THE CS COEFFICIENT
IN THE PRESENCE OF A WEAK COLOR MAGNETIC

FIELD

In this section, we shall demonstrate how the presenc
a color magnetic field corrects the value of the induc
Chern-Simons vector@14#. To this end, we calculate the an
tisymmetric part of the polarization operator, when bo
chromomagnetic and axial-vector fields are present in
background. The modified fermion propagator, in this ca
takes the form

S~p!5
i

P̂2m2b̂g5

, ~25!

where, as before,Pm5pm2gAm
a Ta . This expression may be

rewritten as

S~p!5 i
P̂1m1b̂g5

P212~Pb!g522mb̂g52m21b21
1

2
g~sG!

.

~26!

Taking into consideration the relation@g5 ,s ik#
5@g0g5 ,s ik#50 for i ,k51,3, one can perform, for the a
lowed background field configuration~12!, a correct expan-
sion of the propagator in powers ofb restricting oneself, as
before, to the term linear inb0. This results in

S~p!5 i ~P̂1m1b̂g5!F 1

P22m211/2g~sG!

2
2~Pb!g522mb̂g5

@P22m211/2g~sG!#2G . ~27!

Further, taking into account that the antisymmetric part
the polarization operator~PO! appears as a structure propo
tional to an antisymmetric tensor, we expand Eq.~27! in
02500
-
f

s

of
d

e
e,

f

powers of (sG) and keep only the linear term. Then,

S~p!5 i @A1Bg51Cmgm1Dm ikgms ik1Eiks ik

1Fikg0g5s ik1Ig0g51Jmgmg51Kmgmg0g5

1Lm ikgms ikg51Mm ikgms ikg0g51Niks ikg5#,

~28!

where we have introduced new notation

A5
m

D
, B52

2mb0p0

D2
, Cm5

Pm

D
,

Dm ik52
PmgGik

2D2
, Eik52

mgGik

2D2
,

Fik52
b0gGik

2D2 S 11
2m2

D D ,

I 5
b0

D S 11
2m2

D D , Jm52
2p0b0Pm

D2
,

Km5
2mb0Pm

D2
, Lm ik5

2p0b0PmgGik

D3
,

Mm ik52
2mPmgGikb0

D3
,

Nik5
2mp0b0gGik

D3
~29!

with D5P22m2.
The polarization operator is defined as before@see Eq.

~1!#, where the trace operation now should be perform
over color indices as well. In order to obtain the antisymm
ric part of the PO, we have to calculate the trace over spi
indices. Excluding from the resulting expression the ter
that refer to the pure color magnetic field, we obtain
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Prs
A 52 ie2trcE d4p

~2p!4
$4i«rsm0~K1

mA22K2
mA1!14~grdgsm2grmgsd!« ik0d~M1

m ikA22A1M2
m ik!14«rs ik~A1N2

ik

2N1
ikA2!14i«rsm0~C1

mI 22I 1C2
m!14i«rsmn~C1

mJ2
n2C2

mJ1
n!14«rsmd~gingkd2gkngid!~C1

mL2
n ik2L1

n ikC2
m!

24i« ikmd« lm0a«rsad~D1
m ikF2

lm2F1
lmD2

m ik!14«rsd0~gimgkd2gkmgid!~D1
m ikI 22I 1D2

m ik!14«rsdn~gimgkd2gkmgid!

3~D1
m ikJ2

n2J1
nD2

m ik!14i«rsad@~gimgkd2gkmgid!~glngma2gmngla!2« ikmd« lmna#~D1
m ikL2

n lm2L1
n lmD2

m ik!

1E1
ikK2

m@4« ikrd~gdsgm02gdmgs01gd0gsm!24«dsm0~girgkd2gkrgid!#1E2
ikK1

m~r↔s!

1E1
ikM2

n lm@4i« ikrd« lm0a«dasn14i« lm0a~girgkd2gkrgid!~gdsgna2gdngsa1gdagsn!#1E2
ikM1

n lm~r↔s!%, ~30!
ne
r

y

o

tr

tic
he

i

ld
ir

by

ds,
gth

ld
CS

to
in

ing
m-
s to

lar,
van-

ry

ant
rn-
oxi-
his

a
in-
he
es.
S

ive
d.
an
m-
the
the
where the indices 1 and 2 mean that we use Eq.~28! for
A, . . . ,Nik, with p replaced byp6k/2, the symbol (r↔s)
is used to denote the same expression as the previous o
to permutation ofr ands, and trc stands for the trace ove
color indices.

Each integral in Eq.~30! has a general structure that ma
be represented in the form

E d4p

~2p!4

Frs~p,gAaTa ,m!

~D1D2!n
.

Here D1,25P1,2
2 2m2, and n52,3 for different integrals. It

should be mentioned that in the static limit~the rest frame of
reference! (kW→0,k050), the denominator is equal t
(D1D2)n5@p0

22(pW 2gAW ata/2)22m2#2n. Thus, expanding
the integrand up to terms of the orderO(gAt)4 and calcu-
lating the trace over color indices, we integrate overp with
the upper limit equal to the constantLc , as prescribed in the
previous section. As a result, we obtain for the antisymme
part of the PO

Prs
A 52 ie2

2

p2
«rsm0kmb0F2

1

2
1

15

32S gAl

m D 2

1OS gAl

m D 4G .
~31!

We recall that the contribution of a pure color magne
field to the antisymmetric part of the PO is given by t
formula @16#

Prs
A ~b050,lÞ0!5 ie2

5

24p2
«rsmkm

g3l3/2

m2
. ~32!

The first term in the brackets of our result~31! refers to
the induced Chern-Simons termPA(b0Þ0,l50), when
only the axial-vector field is present in the theory, and this
in complete agreement with the result obtained in@14#. The
second term gives the correction calculated with both fie
presentDPA(b0Þ0,lÞ0), and its value depends on the
relative strength

DPA~b0Þ0,lÞ0!

PA~b050,lÞ0!
;

b0

gAl
!1.
02500
up

ic

s

s

At the same time, the ratio of the contributions induced
the axial vector and the color fields separately,

PA~b0Þ0,l50!

PA~b050,lÞ0!
;

b0

gAl
S m

gAl
D 2

,

depends substantially not only on the relation of the fiel
but also on the ratio of the fermionic mass and the stren
of the color field. Therefore, under the condition~13!, when
this ratio is large, the color field and the axial vector fie
may provide comparable contributions to the induced
vector.

CONCLUSIONS

We have calculated the one-loop fermion contribution
the antisymmetric part of the photon polarization operator
an external constant axial-vector fieldbm . The result was
obtained in the linear order in the pseudo vector field, us
a physical cutoff regularization scheme. Analysis of the te
perature dependence of the obtained expression allows u
conclude that generation of a Lorentz- andCPT-odd term
may occur at any physical value of temperature. In particu
we have reproduced the standard result for the case of
ishing temperature,T50 @14#. Moreover, we have shown
that this effect is completely suppressed in the limit of ve
high temperature,T→`, when the Lorentz andCPT sym-
metries of the theory are restored.

The influence of the vacuum field, modeled by a const
non-Abelian color magnetic field, on generation of a Che
Simons term has been considered in the one-loop appr
mation. We have constructed the effective potential for t
model with consideration of both the axial-vector field and
non-Abelian color field. We have demonstrated that with
creasing strength of the color field the contribution of t
axial-vector component to the effective potential decreas
The first nontrivial correction to the induced topological C
vector due to the presence of a weak~with respect to fermion
mass! color magnetic field has been obtained and its relat
contribution to the total CS coefficient has been estimate

It is important to notice that the possible presence of
antisymmetric part of the photon polarization operator de
onstrates spatial anisotropy. This may provide one of
physical mechanisms for possible unusual phenomena in
3-7
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propagation of light through the universe, i.e., rotation of
plane of polarization of electromagnetic radiation propag
ing over cosmological distances~an effect, different from the
usual Faraday rotation, which was discussed in recent pu
cations@3#!.

In the present work, as in the series of papers mentio
in the Introduction, we have used the extended mode
QED, where the Lorentz andCPTnon-covariant kinetic term
for fermions~a constant axial-vector field! is present. Inter-
actions of photons with fermion loops in this backgrou
field lead to the phenomena mentioned above. Howeve
should be mentioned that the dynamical origin of th
,

02500
e
t-

li-

d
f

it

pseudovector field, in spite of numerous efforts, still rema
to be explained@6–8#.
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