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Extension ofPT-symmetric quantum mechanics to quantum field theory with cubic interaction
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~Received 24 February 2004; published 15 July 2004!

It has recently been shown that a non-Hermitian HamiltonianH possessing an unbrokenPT symmetry~i!
has a real spectrum that is bounded below, and~ii ! defines a unitary theory of quantum mechanics with positive
norm. The proof of unitarity requires a linear operatorC, which was originally defined as a sum over the
eigenfunctions ofH. However, using this definition to calculateC is cumbersome in quantum mechanics and
impossible in quantum field theory. An alternative method is devised here for calculatingC directly in terms of
the operator dynamical variables of the quantum theory. This method is general and applies to a variety of
quantum mechanical systems having several degrees of freedom. More importantly, this method is used to
calculate theC operator in quantum field theory. TheC operator is a time-independent observable in
PT-symmetric quantum field theory.

DOI: 10.1103/PhysRevD.70.025001 PACS number~s!: 11.30.Er, 02.30.Mv, 11.10.Lm, 12.38.Bx
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I. INTRODUCTION

In 1998 numerical and perturbative methods were use
establish the surprising result that the class of non-Hermi
Hamiltonians

H5p21x2~ ix !e ~e.0! ~1!

has a positive real spectrum@1#. In Ref. @1# it was conjec-
tured that the spectral positivity was associated with
space-time reflection symmetry (PT symmetry! of the
Hamiltonian. The HamiltonianH in Eq. ~1! is PT symmetric
because under parity reflectionP we have x→2x and
p→2p and under time reversalT we havex→x, p→2p,
and i→2 i . OtherPT-symmetric quantum mechanical mo
els have been examined@2–6#, and a proof of the positivity
of the spectrum ofH in Eq. ~1! was subsequently given b
Dorey et al. @7#.

The discovery that the spectra of manyPT-symmetric
Hamiltonians are real and positive raised a fundame
question: Does a non-Hermitian Hamiltonian such asH in
Eq. ~1! define a consistent unitary theory of quantum m
chanics, or is the positivity of the spectrum merely an
triguing mathematical property of special classes of comp
Sturm-Liouville eigenvalue problems? To answer this qu
tion it is necessary to know whether the Hilbert space
which the Hamiltonian acts has an inner product associa
with a positive norm. Furthermore, it is necessary to de
mine whether the dynamical time evolution induced by su
a Hamiltonian is unitary; that is, whether the norm is p
served in time.

Recently, a definitive answer to this question was fou
@8,9#. For a complex non-Hermitian Hamiltonian having a
unbrokenPT symmetry, a linear operatorC that commutes
with both H and PT can be constructed. The inner produ
with respect toCPT conjugation,

*Permanent address: Department of Physics, Washington Un
sity, St. Louis, MO 63130, USA.
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where cCPT(x)5*dyC(x,y)c* (2y), satisfies the require
ments for the theory defined byH to have a Hilbert space
with a positive norm and to be a consistent unitary theory
quantum mechanics.@The term unbroken PT symmetry
means that every eigenfunction ofH is also an eigenfunction
of thePT operator. This condition guarantees that the eig
values of H are real. The Hamiltonian in Eq.~1! has an
unbrokenPT symmetry for all reale>0.#

We emphasize that in a conventional quantum theory
inner product is formulated with respect to ordinary Dir
Hermitian conjugation~complex conjugate and transpose!.
Unlike conventional quantum theory, the inner product fo
quantum theory defined by a non-HermitianPT-symmetric
Hamiltonian depends on the Hamiltonian itself and is th
determined dynamically. One can view this new kind
quantum theory as a ‘‘bootstrap’’ theory because one m
solve for the eigenstates ofH before knowing what the Hil-
bert space and the associated inner product of the theory
The Hilbert space and inner product are then determined
these eigenstates.

The key breakthrough in understanding these novel n
Hermitian quantum theories was the discovery of the ope
tor C @9#. This operator possesses three crucial propert
First, it commutes with the space-time reflection opera
PT,

@C,PT#50, ~2!

althoughC does not commute withP or T separately. Sec-
ond, the square ofC is the identity,

C 251, ~3!

which allows us to interpretC as a reflection operator. Third
C commutes withH,

@C,H#50, ~4!
er-
©2004 The American Physical Society01-1
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and thus is time independent. To summarize,C is a new
time-independentPT-symmetric reflection operator.

The question now is how to constructC for a givenH. In
Refs. @9,10# it was shown how to express theC operator in
coordinate space as a sum over the appropriately norma
eigenfunctionsfn(x) of the HamiltonianH. These eigen-
functions satisfy

Hfn~x!5Enfn~x!, ~5!

and, without loss of generality, their overall phases are c
sen so that

PTfn~x!5fn~x!. ~6!

With this choice of phase, the eigenfunctions are then n
malized according to

E
C
dx@fn~x!#25~21!n. ~7!

The contour of integrationC is described in detail in Ref.@9#.
For the quantum mechanical theories discussed in this pa
all of which have a cubic interaction term, the contourC can
be taken to lie along the real-x axis.

In terms of the eigenfunctions defined above, the sta
ment of completeness for a theory described by a n
HermitianPT-symmetric Hamiltonian reads@9#

(
n

~21!nfn~x!fn~y!5d~x2y! ~8!

for real x andy. The coordinate-space representation ofC is
@9#

C~x,y!5(
n

fn~x!fn~y!. ~9!

Only a non-HermitianPT-symmetric Hamiltonian possesse
a C operator distinct from the parity operatorP. Indeed, if
one evaluates the summation~9! for a PT-symmetric Hamil-
tonian that is also Hermitian, the result isP, which in coor-
dinate space isd(x1y).

The coordinate-space formalism using Eq.~9! has been
applied successfully to

H5
1

2
p21

1

2
m2x21 i ex3, ~10!

and C was constructed perturbatively to ordere3 @11#. This
formalism has also been applied to calculateC to ordere for
the complex He´non-Heiles Hamiltonian@12#

H5
1

2
~px

21py
2!1

1

2
~x21y2!1 i ex2y, ~11!

which has two degrees of freedom, and for the Hamilton

H5
1

2
~px21py

21pz
2!1

1

2
~x21y21z2!1 i exyz, ~12!
02500
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which has three degrees of freedom@13#.
Calculating the operatorC by direct evaluation of the sum

in Eq. ~9! is difficult in quantum mechanics because it
necessary to determine all the eigenfunctions ofH. Such a
procedure cannot be used at all in quantum field theory
cause there is no simple analogue of the Schro¨dinger eigen-
value problem~5! and its associated coordinate-space eig
functions.

In this paper we devise an elementary operator techni
for calculatingC for the important case of quantum theori
havingcubic interactions, and we demonstrate that our n
method readily generalizes from quantum mechanics
quantum field theory. In Sec. II we introduce a general o
erator representation forC of the formeQ(x,p)P, wherex and
p are the dynamical variables. This representation is es
cially convenient for incorporating the three requireme
~2!–~4!. In Sec. III we calculateC to seventh order in power
of e for the Hamiltonian~10! using this operator technique
Then, in Sec. IV we calculateC for the Hamiltonians~11!
and~12! to ordere3. In Sec. V we apply operator methods
calculateC for the massless HamiltonianH5 1

2 p21 ix3. We
derive recursion relations for the operator representationC
in Sec. VI. In Sec. VII we calculateC to order e2 for the
self-interacting scalar quantum field theory described by
Hamiltonian

H5E dDxH 1

2
p2~x,t !1

1

2
@¹xw~x,t !#2

1
1

2
m2w2~x,t !1 i ew3~x,t !J ~13!

in (D11)-dimensional Minkowski spacetime. In Sec. VI
we calculateC for cubic scalar quantum field theories wit
interactions of the formi ew1

2w2 and i ew1w2w3. An alterna-
tive perturbative calculation ofC for an i ew3 quantum field
theory using diagrammatic and combinatoric methods
given in the Appendix. Some concluding remarks are in S
IX.

The principal accomplishment of this paper is the deriv
tion in Secs. VII and VIII and the Appendix of theC operator
for cubic quantum field theories. Cubic quantum field the
ries, such as that in Eq.~13!, are not just of mathematica
interest. Such theories emerge in the study of Reggeon
theory @14# and in the analysis of the Lee-Yang edge sing
larity @15#. For these quantum field theories the operatorC is
a new conserved quantity. Knowing how to calculate t
operator is crucial because it is necessary to haveC in order
to construct observables and to evaluate matrix element
field operators. Our calculation ofC is a major step in our
ongoing program to obtain new physical models by exte
ing conventional quantum mechanics and quantum fi
theory into the complex domain.

II. GENERAL FORM FOR THE OPERATOR C
To prepare for calculatingC we show in this section that i

is advantageous to representC as a product of the exponen
tial of a Hermitian operatorQ and the parity operatorP:
1-2
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C5eQ(x,p)P. ~14!

This representation was first noticed in Ref.@11#.

A. Previous work on calculatingC
The objective of the investigation in Ref.@11# was to use

perturbative methods to calculateC for the HamiltonianH
5 1

2 p21 1
2 x21 i ex3, wheree is treated as a small paramete

In Ref. @11# the operatorC was obtained to third order ine in
coordinate space. The procedure was as follows. First,
Schrödinger equation

2
1

2
fn9~x!1

1

2
x2fn~x!1 i ex3fn~x!5Enfn~x! ~15!

was solved for the energiesEn and for the wave functions
fn(x) as Rayleigh-Schro¨dinger perturbation series in powe
of e. The series forfn(x) has the form

fn~x!5 i n
an

p1/42n/2An!
e2x2/2@Hn~x!2 iAn~x!e2Bn~x!e2

1 iCn~x!e31•••#, ~16!

where Hn(x) is the nth Hermite polynomial andAn(x),
Bn(x), and Cn(x) are polynomials inx of degreen13, n
16, and n19, respectively. These polynomials were e
pressed as linear combinations of Hermite polynomials. T
value ofan ,

an511
1

144
~2n11!~82n2182n187!e21O~e4!,

~17!

ensures that the eigenfunctions are normalized accordin
*2`

` dxfn
2(x)5(21)n, as in Eq.~7!. The factor i n in Eq.

~16! is included to satisfy the requirement in Eq.~6! that
PTfn(x)5fn(x).

Finally, Eq.~16! was substituted into Eq.~9! and the sum-
mation overn was performed to obtain the operatorC(x,y)
to ordere3:

C~x,y!5H 12eS 4

3
p322xypD1e2F8

9
p62

8

3
xyp4

1~2x2y2212!p2G2e3F32

81
p92

16

9
xyp7

1S 8

3
x2y22

176

5 D p52S 4

3
x3y3248xyD p3

2~8x2y2264!pG1O~e4!J d~x1y!, ~18!

where p52 id/dx. This expression is complicated, but
was observed that it simplifies considerably when the exp
sion in curly brackets is rewritten in exponential form:

C~x,y!5eeQ11e3Q31•••d~x1y!1O~e5!. ~19!
02500
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In this form the differential operatorsQ1 andQ3 are simply

Q152
4

3
p322xpx,

Q35
128

15
p51

40

3
xp3x18x2px2212p.

~20!

The main features of the exponential representation~19!
are that only odd powers ofe appear in the exponent, th
coefficients are all real, and the derivative operators act
the parity operatord(x1y). Also, eeQ11e3Q3 is Hermitian.

B. A new approach to calculatingC
The perturbative calculation described above suggests

a simpler and more direct way to calculateC is to seek an
operator representation of it in the formeQ(x,p)P, where
Q(x,p) is a Hermitian function of the operatorsx andp. We
will show that Q(x,p) can be found by solving elementar
operator equations and that it is not necessary to find
eigenfunctions to determineQ. Thus, the technique intro
duced in this paper immediately generalizes to quantum fi
theory. To find the operator equations satisfied byQ we sub-
stituteC5eQP into the three equations~2!–~4!. The details
are described in Sec. III.

We claim that the representationC5eQP is general. Let
us illustrate this simple representation forC in two elemen-
tary cases: First, consider the shifted harmonic oscillator

H5
1

2
p21

1

2
x21 i ex. ~21!

This Hamiltonian has an unbrokenPT symmetry for all real
e. Its eigenvaluesEn5n1 1

2 1 1
2 e2 are all real. TheC opera-

tor for this theory is given exactly byC5eQP, where Q
52ep. Note that in the limite→0, where the Hamiltonian
becomes Hermitian,C becomes identical withP.

As a second example, consider the non-Hermitian 232
matrix Hamiltonian

H5S reiu s

s re2 iuD , ~22!

which was discussed in Ref.@10#. This Hamiltonian isPT
symmetric, whereP is the Pauli matrixs15(1

0
0
1) and T is

complex conjugation. This Hamiltonian has an unbrokenPT
symmetry whens2>r 2sin2u. TheC operator in the unbroken
region is

C5
1

cosa S i sina 1

1 2 i sina D , ~23!

where sina5(r/s)sinu. Our new way to expressC is to re-
write it in the formC5eQP. Thus, the Hermitian operatorQ
has the form
1-3
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Q5
1

2
s2lnS 12sina

11sina D , ~24!

where s25( i
0

0
2 i). Again, observe that in the limitu→0,

where the Hamiltonian becomes Hermitian, theC operator
becomes identical withP.

Note thatP, which is given in coordinate space asd(x
1y), can be expressed in terms of the fundamental opera
x andp as

P~x,p!5expF1

2
ip~p21x221!G . ~25!

To show that the parity operator satisfiesPxP 2152x and
PpP 2152p, we define the operator-valued functionsf (t)
andg(t) as

f ~t!5ei t(p21x2)xe2 i t(p21x2),

g~t!5ei t(p21x2)pe2 i t(p21x2). ~26!

Differentiating f (t) andg(t) once givesf 8(t)52g(t) and
g8(t)522 f (t). A second differentiation then leads to th
differential equationsf 9(t)54 f (t) andg9(t)54g(t). The
solutions to these equations satisfying the initial conditio
f (0)5x andg(0)5p are

f ~t!5x cos~2t!2 ip sin~2t!,

g~t!5p cos~2t!2 ix sin~2t!. ~27!

Settingt5 1
2 p, we getf (t)52x andg(t)52p, which es-

tablishes that the operatorP defined in Eq.~25! indeed has
the properties of a parity reflection operator. SpecificallyP
is a unitary operator that generates a rotation byp in the
(x,p) plane. Another application ofP gives a rotation by 2p
in the (x,p) plane. HenceP 251. This procedure determine
P up to an additive phase. It is conventional to choose
phase to be2 1

2 p, as in Eq.~25!.

III. CUBIC OSCILLATOR WITH ONE DEGREE
OF FREEDOM

Having shown that Eq.~14! is a natural way to represen
the operatorC, we now demonstrate how to use this ansatz
calculateC for the Hamiltonian~10!. The procedure is to
impose the three conditions~2!–~4! in turn on C5eQ(x,p)P
and thereby to determine the operator-valued funct
Q(x,p).

First, we substitute Eq.~14! into the condition~2! to ob-
tain

eQ(x,p)5PTeQ(x,p)PT5eQ(2x,p),

from which we conclude thatQ(x,p) is anevenfunction of
x. Second, we substitute Eq.~14! into the condition~3! and
find that

eQ(x,p)PeQ(x,p)P5eQ(x,p)eQ(2x,2p)51,
02500
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which implies thatQ(x,p)52Q(2x,2p). Since we al-
ready know thatQ(x,p) is an even function ofx, we con-
clude that it is also anodd function of p.

The remaining condition~4! to be imposed is that the
operatorC commutes withH. SubstitutingC5eQ(x,p)P into
Eq. ~4!, we geteQ(x,p)@P,H#1@eQ(x,p),H#P50. All of the
HamiltoniansH considered in this paper can be expressed
the formH5H01eH1, whereH0 is a free field theory~har-
monic oscillator! Hamiltonian that commutes with the parit
operatorP, andH1 represents the interaction. For examp
for the Hamiltonian H5 1

2 p21 1
2 m2x21 i ex3, H05 1

2 p2

1 1
2 m2x2 andH15 ix3. Then this condition reads

eeQ(x,p)@P,H1#1@eQ(x,p),H#P50. ~28!

Next, we observe that if the interaction iscubic, thenH1 is
oddunder parity reflection; that is,H1 anticommuteswith P.
Hence, for quantum theories with cubic interaction Hamil
nians, Eq.~28! reduces to

2eeQ(x,p)H15@eQ(x,p),H#. ~29!

We note that the structure in Eq.~19! is quite general; for
all cubic Hamiltonians,Q(x,p) may be expanded as a seri
in odd powers ofe:

Q~x,p!5eQ1~x,p!1e3Q3~x,p!1e5Q5~x,p!1•••.
~30!

In quantum field theory we will interpret the series coef
cients Q2n11 as interaction vertices~form factors! of 2n
13 powers of the quantum fields.

Substituting the expansion in Eq.~30! into the exponential
eQ(x,p), we get

eQ(x,p)[R~x,p!511R1~x,p!e1R2~x,p!e21R3~x,p!e3

1R4~x,p!e41•••, ~31!

where

R15Q1 ,

R25
1

2
Q1

2 ,

R35Q31
1

6
Q1

3 ,

R45
1

2
$Q1 ,Q3%1

1

24
Q1

4 ,

R55Q51
1

6
~$Q1

2 ,Q3%1Q1Q3Q1!1
1

120
Q1

5 ,

R65
1

2
~Q3

21$Q1 ,Q5%!1
1

24
~$Q1

3 ,Q3%

1$Q1 ,Q1Q3Q1%!1
1

720
Q1

6 , ~32!
1-4



-

e

in
s

o

i

ly
to
t o
-
at

to

n-
for

.

d

EXTENSION OFPT-SYMMETRIC QUANTUM . . . PHYSICAL REVIEW D70, 025001 ~2004!
and so on. Here,$X,Y%5XY1YX denotes the anticommu
tator.

We now substitute Eq.~32! into Eq. ~29!, collect the co-
efficients of like powers ofen for n51,2,3, . . . , andobtain a
sequence of equations of the general form

en: @H0 ,Rn#52$H1 ,Rn21% ~n>1!, ~33!

whereR0[1.
The equations in~33! can be solved systematically for th

operator-valued functionsQn(x,p) (n51,3,5, . . . ) subject
to the symmetry constraints that ensure the conditions~2!
and ~3!. Note that the coefficients of even powers ofe con-
tain no additional information because the equation aris
from the coefficient ofe2n can be derived from the equation
arising from the coefficients ofe2n21,e2n23, . . . ,e. This ob-
servation leads to a more effective way to express the c
ditions in Eq.~33!. The first four equations read

@H0 ,Q1#522H1 ,

@H0 ,Q3#52
1

6
†Q1 ,@Q1 ,H1#‡,

@H0 ,Q5#5
1

360
†Q1 ,@Q1 ,†Q1 ,@Q1 ,H1#‡#‡

2
1

6
~†Q1 ,@Q3 ,H1#‡1†Q3 ,@Q1 ,H1#‡!,

@H0 ,Q7#5
1

15120
†Q1 ,@Q1 ,†Q1 ,@Q1 ,†Q1 ,@Q1 ,H1#‡#‡#‡

2
1

360
~†Q1 ,@Q1 ,†Q1 ,@Q3 ,H1#‡#‡

1†Q1 ,@Q1†Q3 ,@Q1 ,H1#‡#‡

1†Q1 ,@Q3 ,†Q1 ,@Q1 ,H1#‡#‡

1†Q3 ,@Q1†Q1 ,@Q1 ,H1#‡#‡!

1
1

6
~†Q1 ,@Q5 ,H1#‡

1†Q5 ,@Q1 ,H1#‡!1
1

6
†Q3 ,@Q3 ,H1#‡. ~34!

We now show how to solve these equations for the Ham
tonian in Eq. ~10!, for which H05 1

2 p21 1
2 m2x2 and H1

5 ix3. The procedure is to substitute the most general po
nomial form for Qn using arbitrary coefficients and then
solve for these coefficients. For example, to solve the firs
the equations in~34!, @H0 ,Q1#522ix3, we take as an an
satz forQ1 the most general Hermitian cubic polynomial th
is even inx and odd inp:

Q1~x,p!5Mp31Nxpx, ~35!

whereM andN are undetermined coefficients. The opera
equation forQ1 is satisfied if
02500
g
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M52
4

3
m24 and N522m22. ~36!

It is straightforward, though somewhat tedious, to co
tinue this process. In order to present the solutions
Qn(x,p) (n.1), it is convenient to introduce the following
notation: LetSm,n represent thetotally symmetrizedsum over
all terms containingm factors ofp and n factors ofx. For
example,

S0,051,

S0,35x3,

S1,15
1

2
~xp1px!,

S1,25
1

3
~x2p1xpx1px2!,

S3,15
1

4
~xp31pxp21p2xp1p3x!,

S2,25
1

6
~p2x21x2p21pxpx1xpxp1px2p1xp2x!.

~37!

The properties of the operatorsSm,n are summarized in Ref
@17#. One useful property is thatSm,n can be expressed in
Weyl-ordered form in two ways:

Sm,n5
1

2n (
k50

n S n
kD xkpmxn2k5

1

2m (
k50

m S m
k D pkxnpm2k.

~38!

We have solved the equations in~34! and have foundQ1 ,
Q3 , Q5, andQ7 in closed form. In terms of the symmetrize
operatorsSm,n the functionsQn are

Q152
4

3
m24p322m22S1,2,

Q35
128

15
m210p51

40

3
m28S3,218m26S1,4212m28p,

Q552
320

3
m216p72

544

3
m214S5,22

512

3
m212S3,4

264m210S1,61
24 736

45
m214p31

6 368

15
m212S1,2,
1-5
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Q75
553 984

315
m222p91

97 792

35
m220S7,2

1
377 344

105
m218S5,41

721 024

315
m216S3,6

1
1792

3
m214S1,82

2 209 024

105
m220p5

2
2 875 648

105
m218S3,22

390 336

35
m216S1,4

1
46 976

5
m218p. ~39!

Combining Eqs.~14!, ~30!, and ~39!, we obtain an explicit
perturbative expansion ofC in terms of the fundamental op
eratorsx andp, correct to ordere7.

To summarize, using the ansatz~14! we are able to calcu
late theC operator to very high order in perturbation theo
We are able to perform this calculation because this an
obviates the necessity of calculating the wave functio
fn(x). The calculation bears a strong resemblance to W
theory. The ansatz used in performing a semiclassical ca
lation is also an exponential of a power series. The advan
of using WKB theory to calculate the energy eigenvalues
that to all orders in powers of\ it is possible to construct a
system of equations like those in~34! that determine the
energies, and it is never necessary to calculate the w
function @18#. Furthermore, only the even terms in the WK
series are needed to determine the energy eigenvalues
odd terms in the series drop out of the calculation and p
vide no information about the eigenvalues@18#. The differ-
ence between a conventional WKB series and the series
resentation forQ is that the first term in a WKB series i
proportional to\21 while the series expansion forQ(x,p)
contains only positive powers ofe. Based on the results in
Ref. @11#, however, we believe that for aPT-symmetric
2ex4 theory, the first term in the expansion ofQ(x,p) is
proportional to e21. We plan to discuss quarti
PT-symmetric theories in a future paper.

IV. CUBIC OSCILLATORS WITH SEVERAL DEGREES
OF FREEDOM

In this section we extend the operator techniques use
Sec. III to systems having two and three dynamical degr
of freedom. Specifically, we generalize the perturbative p
cedure for calculating theC operator for the Hamiltonian in
Eq. ~10! and use it to calculateC for the Hamiltonians in Eqs
~11! and ~12!.

Let us first considerH in Eq. ~11!, which has two degree
of freedom. We write this Hamiltonian in the formH5H0
1eH1, where H05 1

2 p21 1
2 q21 1

2 x21 1
2 y2 and H15 ix2y.

For these operators we need to solve the system of equa
in ~34! for the unknown operatorsQ1 , Q3, and so on. To
simplify the calculation we generalize slightly the notation
Eq. ~37! for totally symmetric operators; to wit, we continu
to useSm,n to represent a totally symmetric product ofm
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factors ofp andn factors ofx but we useTm,n to represent a
totally symmetric product ofm factors ofq andn factors of
y. For example,

T1,15
1

2
~qy1yq!,

T1,25
1

3
~y2q1yqy1qy2!5yqy,

T3,15
1

4
~yq31qyq21q2yq1q3y!,

T2,15
1

3
~q2y1qyq1yq2!5qyq. ~40!

To solve@H0 ,Q1#522H1, the first equation in~34!, we
seek a Hermitian cubic polynomial in the variablesx, y, p,
andq. This polynomial must be even in the coordinate va
ables and odd in the momentum variables, and it must
able to yield H1 when commuted withH0. We therefore
introduce the ansatz

Q1~x,y,p,q!5Mp2q1N1S1,1y1N2x2q. ~41!

We substitute this ansatz into the commutator and determ
the unknown constantsM, N1, andN2 by solving three linear
equations. The result is

M52
4

3
, N152

2

3
, N252

2

3
. ~42!

Next, we turn to the second of the equations in~34!,
@H0 ,Q3#52 1

6 †Q1 ,@Q1 ,H1#‡, and evaluate its right side
The resulting equation forQ3 then reads

@H0 ,Q3#5 i
8

27
~4x4y14x2y318p2T2,124x2T2,114S1,3q

18S1,1T1,218S3,1q23y!. ~43!

We now must construct the most general Hermitian fif
degree polynomial in the variablesx, y, p, andq that is even
in the coordinate variables, odd in the momentum variab
and has the terms needed to produce the right side of
commutation relation:

Q3~x,y,p,q!5a1p2q31a2p4q1a3S1,1T2,11a4p2T1,2

1a5S3,1y1a6S2,2q1a7x2q31a8x2T1,2

1a9S1,1y
31a10S1,3y1a11x

4q1a12q.

~44!

Substituting this ansatz into Eq.~43!, we obtain twelve si-
multaneous linear equations for the unknown coefficie
an , whose solution is
1-6
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a15
512

405
, a25

512

405
, a35

1088

405
,

a452
256

405
, a55

512

405
, a65

288

405
,

a752
32

405
, a85

736

405
, a952

256

405
,

a105
608

405
, a1152

128

405
, a1252

8

9
.

~45!

This completes the calculation of the operatorC to third or-
der in e for H in Eq. ~11!.

The attractive feature of the calculational procedure
scribed here is that it is utterly routine and works in eve
order of perturbation theory. In contrast, the technique u
in Ref. @13# to calculateC becomes hopelessly difficult be
yond first order in powers ofe because the technique use
earlier requires that one calculate all of the energy eig
statesfn(x,y) perturbatively for alln. These eigenstate
must then be substituted directly into the summation in
~9! that defines the operatorC. This calculation is difficult
because beyond leading order ine one encounters the cha
lenging problems associated with degenerate energy le
~There are no degenerate energy levels for Hamiltonians
ing just one degree of freedom.! Of course, for any givenn,
there is a well-defined procedure for calculating the eig
state to any order in powers ofe. However, this procedure
depends on the value ofn and, as a result, the calculatio
becomes extremely complicated. The method of calcula
presented here works because it is no longer necessa
calculate the eigenfunctions. Thus, the difficulties associa
with degeneracy are circumvented.

We turn next to the case of a cubic oscillator having th
degrees of freedom. We express the Hamiltonian in Eq.~12!
in the form H5H01eH1, where H05 1

2 p21 1
2 q21 1

2 r 2

1 1
2 x21 1

2 y21 1
2 z2 represents a harmonic oscillator Ham

tonian having three degrees of freedom andH15 ixyz is a
non-HermitianPT-symmetric interaction term.

To solve @H0 ,Q1#522H1, the first of the equations in
~34!, we must construct the most general Hermitian cu
polynomial in the variablesx, y, z, p, q, andr that is even in
the coordinate variables, odd in the momentum variab
and has the terms needed to yieldH1 on the right side of this
commutation relation:

Q1~x,y,z,p,q,r !5Mpqr1N~yzp1xzq1xyr!. ~46!

We then substitute this ansatz into the commutator and
termine the unknown constantsM and N by solving two
linear equations. The result is

M52
4

3
and N52

2

3
.
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To solve the second of the equations in~34!, @H0 ,Q3#5
2 1

6 †Q1 ,@Q1 ,H1#‡, we evaluate its right side. The resultin
equation forQ3 then reads

@H0 ,Q3#5 i
8

27
@xyz~x21y21z2!1~pz1rx !yqy

1~py1qx!zrz1~qz1ry !xpx

2~pxpyz1qyqxz1rzrxy!

12~rqpxp1rpqyq1pqrzr!#. ~47!

The most general Hermitian fifth-degree polynomial in t
variablesx, y, z, p, q, and r that is even in the coordinat
variables, odd in the momentum variables, and has the te
needed to produce the right side of this commutation rela
is

Q3~x,y,z,p,q,r !

5d1~p3qr1q3pr1r 3qp!1d2@pxp~yr1zq!

1qyq~xr1zp!1rzr~xq1yp!#1d3~xpxqr

1ypypr1zrzpq!1d4~xpxyz1yqyxz1zrzxy!

1d5@x3~yr1zq!1y3~xr1zp!1z3~xq1yp!#

1d6~p3yz1q3xz1r 3xy!. ~48!

Substituting this ansatz into Eq.~43!, we obtain six simulta-
neous equations for the unknown coefficientsdn , whose so-
lution is

d15
128

405
, d25

136

405
, d352

64

405
,

d45
184

405
, d552

32

405
, d652

8

405
. ~49!

This completes the calculation of the operatorC to third or-
der in e for H in Eq. ~12!. This calculation is simpler than
that for the Hamiltonian in Eq.~11! because there is symme
try under the interchange of pairs of dynamical variabl
such as (x,p)↔(y,q).

V. REPRESENTATION OF C FOR THE MASSLESS CASE

In this section we examine the massless~strong-coupling!
limit of the operatorC for H in Eq. ~10!. The massless limit
m→0 of the massive theory is especially interesting beca
this limiting case issingular. We will see that as the mas
parameterm tends to zero, the perturbation series repres
tation for Q in C5eQP ceases to exist and an entirely no
polynomial representation forQ emerges.

Negative powers ofm in Eq. ~39! are required for dimen-
sional consistency. As a result, each of the terms in th
perturbation series coefficients becomes singular in the m
less limit m→0. ~Note that the dimensionless perturbatio
expansion parameter isem25/2, and thus the massless lim
1-7
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of the theory is equivalent to the strong-coupling limite
→`.!

To find theC operator for the massless theory it is nec
sary to return to the sequence of operator equations in~34!
and to look for solutions for the special case in whichH0
5 1

2 p2. The first of these equations reads

F1

2
p2,Q1G522ix3. ~50!

However, an examination of Eq.~50! reveals that it is no
longer possible to find a solution in the form of a polynom
in the operatorsp andx. The situation here is quite similar t
that considered in Ref.@17#, in which the objective was to
calculate the time operator in quantum mechanics. In
case of the time operator it was shown that one must ge
alize the symmetric operatorsSm,n from the positive integers
to the negative integers. Specifically, ifm is nonnegative,
thenn may be negative, and ifn is nonnegative, thenm may
be negative.~It is not possible forboth mandn to be nega-
tive.! We can display these generalized symmetric opera
in Weyl-ordered form@see Eq.~38!#. For example,

S21,15
1

2 S x
1

p
1

1

p
xD ,

S23,05
1

p3
,

S22,25
1

4 S 1

p2
x212x

1

p2
x1x2

1

p2D ,

S22,35
1

8 S x3
1

p2
13x2

1

p2
x13x

1

p2
x21

1

p2
x3D .

~51!

An exact, dimensionally consistent operator solution
Eq. ~50! is

Q15
1

2
S21,41aS25,05

1

32S x4
1

p
14x3

1

p
x16x2

1

p
x2

14x
1

p
x31

1

p
x4D1a

1

p5
, ~52!

where a is an arbitrary number. This solution has the r
quired symmetry properties; to wit, it is odd inp and even in
x. Also, it has the same dimensions asQ1 in Eq. ~39!.

The solution to the second operator equation in~34!,

@ 1
2 p2,Q3#52 1

6 †Q1 ,@Q1 ,ix3#‡, is

Q35
1

40
S25,102

3

32
S27,8

1S 7

16
120a DS29,61S 3

32
1

305

8
a DS211,4

1S 2
135

16
2

5773

8
a1

75

12
a2DS213,21bS215,0,

~53!
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whereb is a new arbitrary constant. Again, observe that t
solution exhibits the required symmetry properties.

A notable feature of the solutions forQ1 andQ3 in Eqs.
~52! and ~53! is that they arenot unique. Each of these so
lutions contains an arbitrary constant multiplying a negat
odd-integer power ofp. There is no obvious way to dete
mine the values of the constantsa andb. These terms arise
because in the massless case the HamiltonianH0 is a func-
tion of p only. In general, one can add an arbitrary multip
of p210n25 to the solution forQ2n11 because it is odd inp
and is dimensionally consistent. In the massive case, wh
H05 1

2 p21 1
2 m2x2, there is no such ambiguity because ad

ing an arbitrary function ofH0 to Qn would violate the sym-
metry requirement thatQn be odd inp.

VI. PRODUCT REPRESENTATION OF C
AND DERIVATION OF RECURSION RELATIONS

In this section we investigate theproductrepresentation of
the operatorC that was defined in Eq.~31!; namelyC(x,p)
5R(x,p)P. At first, it may not seem worthwhile to recon
sider the product representation because it lacks the ad
tages of theexponentialrepresentationC5eQP introduced in
Eq. ~14!. Recall that we argued in Sec. II that the exponen
representation is convenient because it incorporates the
quirements~2! and ~3! as elementary symmetry condition
on Q(x,p): Q(x,p)5Q(2x,p) and Q(x,p)52Q(x,2p).
Furthermore, we showed that the exponential representa
of C in Eqs.~19! and ~20! is much simpler than the produc
representationC(x,p)5R(x,p)P in Eq. ~18!. However, as
we demonstrate here, the product representation has the
vantage that it can be used to construct a recursive form
for the perturbation coefficients.

The function R(x,p) in the product representatio
C(x,p)5R(x,p)P incorporates the requirement in Eq.~2! as

R~x,p!5R~2x,p!. ~54!

Thus,R(x,p) is an even function ofx. However, the require-
ment in Eq.~3! translates into a complicatednonlinearcon-
dition on R:

R~x,p!R~x,2p!51. ~55!

We will return to this condition later.
The advantage of the product representation is tha

translates the requirement in Eq.~4! into a linear difference
equation. To obtain this difference equation we use the
eratorsSm,n in Eq. ~37!. ~Recall thatSm,n is a totally sym-
metric combination of products ofm factors ofp andn fac-
tors of x.! It was shown in Ref.@17# that the operatorsSm,n
are completein the sense that any operator may be rep
sented as a linear combination of these symmetric opera
This allows us to representR(x,p) as the infinite linear com-
bination

R~x,p!5(
m

(
n

am,nSm,n , ~56!
1-8
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wheream,n are numerical coefficients to be determined. Su
stituting C(x,p)5R(x,p)P into Eq. ~4! then gives the con-
dition

@R,H0#5e$R,H1%. ~57!

We now substituteR in Eq. ~56! into the condition~57! and
use the commutation and anticommutation relations@17#

@Sm,n ,x2#522imSm21,n11 ,

@Sm,n ,p2#52inSm11,n21 ,

$Sm,n ,x3%52
3

2
m~m21!Sm21,n11 . ~58!

For the Hamiltonian in Eq.~10! we obtain the linear recur
sion relation

nam22,n2m2mam,n22

5eF2
3

2
m~m11!am11,n2212am21,n24G .

~59!

The boundary conditions on this partial difference eq
tion must be chosen so that the nonlinear constraint~55! is
satisfied. In the massive casea0,051 andam,n vanishes if
either m,0 or n,0. In the massless case we again ha
a0,051, but nowam,n vanishes if eitherm.0 or n,0.

One approach to solving this equation is to introduce
generating functiong(s,t):

g~s,t ![(
m

(
n

am,nsmtn. ~60!

For the massive case@the Hamiltonian in Eq.~10! with m
Þ0] the summation is taken over nonnegative values om
and n. However, for the massless case (m50) the summa-
tion must be taken over nonpositive values ofm and nonne-
gative values ofn.

We then multiply Eq.~59! by sm21tm21 and rewrite the
result in the form

s
]

]t
~am22,nsm22tn!2m2t

]

]s
~am,n22smtn22!

5eF2
3

2
t

]2

]s2
~am11,n22sm11tn22!

12t3am21,n24sm21tn24G . ~61!

Summing overm and n and using Eq.~60!, we obtain the
partial differential equation

sgt2m2tgs5eS 2
3

2
tgss12t3gD , ~62!
02500
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where subscripts indicate partial differentiation. A Four
transform from thes variable to ther variable converts this
differential equation into theGoursat problem~recall that a
Goursat problem involves a wave equation written in lig
cone variables!

g̃rt5S m2rt 1
3

2
i er 2t12i et3D g̃. ~63!

This is an extremely interesting equation that merits furt
study. We plan to give a detailed analysis of this partial d
ferential equation and of the partial difference equation~59!
in a future paper.

VII. SCALAR QUANTUM FIELD THEORY WITH CUBIC
SELF-INTERACTION

This section extends the operator techniques introdu
in Sec. III to quantum field theory. Consider the quantu
field theory described by the Hamiltonian~13! in
(D11)-dimensional Minkowski space-time. This Hami
tonian has the formH5H01eH1, where

H05E dDxH 1

2
p2~x,t !1

1

2
@¹xw~x,t !#21

1

2
m2w2~x,t !J ,

H15 i E dDxw3~x,t !. ~64!

The integrals above are performed in the spatial variablex,
which lies in RD. In the following we use*dx5*dDx to
represent the integration inRD. The field variables satisfy the
equal-time canonical commutation relation@w(x,t),p(y,t)#
5 id(x2y).

The parity operator is given formally by P
5exp$1

2ip*dx@w2(x,t)1p2(x,t)21#%. As in quantum me-
chanics, where the operatorsx andp change sign under par
ity reflection, we assume that the fields arepseudoscalars
and that they also change sign underP:

Pw~x,t !P52w~2x,t !, Pp~x,t !P52p~2x,t !.
~65!

Following the approach in Sec. III, we expressC in the
form C5eeQ11e3Q31•••P, whereQ2n11 (n50,1,2, . . . ) are
real functionals of the field variablesw(x,t) andp(x,t). To
find Q1 it is necessary to solve the first of the operator eq
tions in ~34!:

F E dxS 1

2
p2~x,t !1

1

2
m2w2~x,t !2

1

2
w~x,t !¹x

2w~x,t ! D ,Q1G
522i E dxw3~x,t !, ~66!

where we have integrated by parts:*dx(¹xw)25
2*dxw¹x

2w. We define the inverse Green’s functionGxy
21 by

Gxy
21[(m22¹x

2)d(x2y), so that Gxy5(m22¹x
2)21d(x

2y) and*dzGxz
21Gzy5d(x2y). Thus, the commutator con

dition ~66! reads
1-9



s
-

u

u
of
y

th

lo

-
ns

o

e-

s

ave

-

ally
hs is
re-
Eq.
in

ns,

BENDER, BRODY, AND JONES PHYSICAL REVIEW D70, 025001 ~2004!
F1

2E dxp2~x,t !1
1

2E dxdyw~x,t !Gxy
21w~y,t !,Q1G

522i E dxw3~x,t !. ~67!

Equation~67! states that when the operatorQ1 is com-
muted with quadratic structures of the formp2(x,t) and
w(x,t)w(y,t), it must produce the cubic termw3(x,t). Fur-
thermore, the symmetry requirements onQ1 that arise from
Eqs. ~2! and ~3! imply that Q1 is an even functional of
w(x,t) and an odd functional ofp(x,t). These observation
allow us to deduce an ansatz forQ1 that has the same struc
ture as that in Eq.~35!:

Q15E E E dxdydzM (xyz)pxpypz

1E E E dxdydzNx(yz)wypxwz , ~68!

where we have suppressed the time variablet in the fields
and for brevity have indicated spatial dependences with s
scripts. In Eq.~68! the unknown functionsM and N have
three arguments each. The functionM is totally symmetric in
its three arguments, and to emphasize this symmetry we
the notationM (xyz) ; N is symmetric under the interchange
the second and third arguments, and to emphasize this s
metry we writeNx(yz) . The functionsM andN are like form
factors because they describe the spatial distribution of
three-point interactions of the fields inQ1. We will see that
the interaction of the fields is spatially nonlocal; this non
cality is an intrinsic property of the operatorC.

We now proceed to determineM andN. We substitute the
ansatz~68! into the commutator~67! and find after some
algebra that two operator identities must hold:

E E E E dxdydzdwNx(yz)Gwx
21wywwwz522E dwww

3 ,

~69!

E E E dxdydzNx(yz)~pxpywz1wzpxpy!

53E E E E dxdydzdwM (xyz)Gxw
21pywwpz . ~70!

By commuting Eq.~69! three times withp, and Eq.~70!
once withp and twice withw, we translate these two opera
tor identities into two coupled partial differential equatio
for M andN:

~m22¹x
2!Nx(yz)1~m22¹y

2!Ny(xz)1~m22¹z
2!Nz(xy)

526d~x2y!d~x2z!, ~71!

Nx(yz)1Ny(xz)53~m22¹z
2!M (xyz) . ~72!

To solve the system of coupled differential equations~71!
and ~72!, we Fourier transform to momentum space, den
ing theD-dimensional Fourier transform of a functionf x by
02500
b-

se

m-

e

-

t-

f̃ p[*dxf xe
ip•x. Fourier transformation is effective here b

cause it converts the differential equations~71! and~72! into
algebraic equations:

1

G̃p

Ñp(qr )1
1

G̃q

Ñq(pr )1
1

G̃r

Ñr (pq)526~2p!Dd~p1q1r !,

~73!

Ñp(qr )1Ñq(pr )5
3

G̃r

M̃ (pqr ) , ~74!

whereG̃p5(p21m2)21.
Note that the right side of Eq.~73! contains the factor

d(p1q1r ), which implies that the two three-point function
M and N conserve momentum. We thus introducereduced
representations of these vertex functions in which we h
factored off the delta function:

M̃ (pqr )5~2p!Dm̃(pqr )d~p1q1r !,

Ñp(qr )5~2p!Dñp(qr )d~p1q1r !. ~75!

The functionsm̃ and ñ satisfy the following algebraic equa
tions:

1

G̃p

ñp(qr )1
1

G̃q

ñq(pr )1
1

G̃r

ñr (pq)526, ~76!

G̃rñp(qr )1G̃rñq(pr )53m̃(pqr ) .
~77!

There are two ways to solve these equations. A physic
transparent but longer procedure making use of tree grap
given in the Appendix. A shorter analytical approach is p
sented here. We begin by noting that the right side of
~77! is totally symmetric in its indices. Thus, we can obta
two new equations by permuting the indices:

G̃qñp(qr )1G̃qñr (pq)53m̃(pqr ) ,

G̃pñq(pr )1G̃pñr (pq)53m̃(pqr ) . ~78!

We now have a sufficient number of algebraic equatio
namely~76!–~78!, to solve form̃ andñ. The final results for
M andN are

M̃ (pqr )5
4G̃p

2G̃q
2G̃r

2

G̃p
2G̃q

21G̃p
2G̃r

21G̃q
2G̃r

222G̃pG̃qG̃r~G̃p1G̃q1G̃r !

3~2p!Dd~p1q1r !, ~79!

Ñp(qr )5
6G̃pG̃qG̃r~G̃pG̃r1G̃pG̃q2G̃qG̃r !

G̃p
2G̃q

21G̃p
2G̃r

21G̃q
2G̃r

222G̃pG̃qG̃r~G̃p1G̃q1G̃r !

3~2p!Dd~p1q1r !. ~80!

As a check of these results we compare Eqs.~79! and ~80!
1-10
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with Eq. ~36!, which describes the caseD50 ~quantum me-
chanics!. WhenD50, we have justG̃p5m22. Substituting
this expression forG̃ into Eqs.~79! and ~80!, we find that
these equations reduce exactly to Eq.~36!.
l

e

o

i

02500
Next, we substituteG̃p5(p21m2)21 into Eqs.~79! and
~80! and use the inverse Fourier transformf x

5(2p)2D*dp f̃ pe
2 ip•x to expressM and N in coordinate

space:
M (xyz)5E E E dpdqdr

~2p!3D

4e2 ix•p2 iy•q2 iz•r~2p!Dd~p1q1r !

D~p,q,r !
, ~81!

Nx(yz)5E E E dpdqdr

~2p!3D

6e2 ix•p2 iy•q2 iz•r~2p!Dd~p1q1r !~q21r22p21m2!

D~p,q,r !
, ~82!
-

where D(p,q,r )5p41q41r422(p2q21q2r21r2p2)
22m2(p21q21r2)23m4. We perform ther integral in Eqs.
~81! and ~82! using the delta function and obtain

M (xyz)52
4

~2p!2DE E dpdq
ei (x2y)•p1 i (x2z)•q

D~p,q!
, ~83!

where D(p,q)54@p2q22(p•q)2#14m2(p21p•q1q2)
13m4 is positive, and

Nx(yz)53S ¹y•¹z1
1

2
m2D M (xyz) . ~84!

A. The „1¿1…-dimensional case

For generalD it is difficult to evaluate the double integra
~83! in closed form. However, when D51
@(111)-dimensional quantum field theory# we can evaluate
the integral because the quartic terms inD(p,q) cancel. The
evaluation procedure exploits the strict positivity of the d
nominatorD(p,q),

D~p,q!54m2~p21pq1q2!13m4

52m2@p21q21~p1q!2#13m4.0,

to construct the one-dimensional integral identityD 21

5*0
`dte2Dt (D.0). This identity allows us to rewrite

M (xyz) as the triple integral

M (xyz)52
4

m2~2p!2E E dpdqE
t50

`

dte23m2t

3ei (x2y)p1 i (x2z)q24t(p21pq1q2). ~85!

Note that whenD51 the variablesx, y, z, p, q, and so on, are
scalars and not vectors, so we no longer use boldface n
tion.

To evaluate this integral we first complete the square
the q variable in the exponent and translate theq integration
variable byq→q2p/21 i (x2z)/8t. We then complete the
-

ta-

n

square in thep integration variable and translatep by p
→p2 i (x2z)/12t1 i (x2y)/6t. This gives

M (xyz)52
4

m2~2p!2E E dpdqE
t50

`

dt

3e23m2t23tp224tq22r2/(12t), ~86!

where r, which is totally symmetric inx, y, and z, is the
positive square root of

r25
1

2
@~x2y!21~y2z!21~z2x!2#. ~87!

We now perform the scalingsp→p/A3t andq→q/A4t.
The result is that the integral~86! representingM (xyz) factors
into three one-dimensional integrals:

M (xyz)524m22~2p!221221/2I 2J, ~88!

where I is the Gaussian integralI 5*dqe2q2
5Ap and J

5* t50
` dtt21e23m2t2r2/(12t). Finally, we use the integral rep

resentation@19#

E
t50

`

dte2t2a2/tt2152K0~2a!,

where K0 is the associated Bessel function. Thus,J
52K0(mr). Combining the factors in Eq.~88!, we find that
for a (111)-dimensional quantum field theory Eq.~83!
evaluates to

M (xyz)52
1

pA3m2
K0~mr!. ~89!

Next we calculateN using Eq.~84!. The result is
1-11



t,

n

ha

e

er

n
c

o

-

f

ions
ree

x-
ree

um

r

that

s,

BENDER, BRODY, AND JONES PHYSICAL REVIEW D70, 025001 ~2004!
Nx(yz)52
3A3

4p F12
~y2z!2

r2 GK0~mr!

1
A3

p F12
3~y2z!2

2r2 G K08~mr!

mr

1
1

m2 F12
3~y2z!2

r2 Gd~x2y!d~x2z!. ~90!

The mathematics underlying the solutions in Eqs.~89!
and~90! is rather subtle and bears further discussion. Firs
is important to mention that while we have expressedM and
N as functions of the three variablesx, y, andz, translation
invariance implies that these functions really depend on o
two variables, say, the differencesx2y andx2z. We there-
fore define the two variablesh andz by

h5x2
1

2
~y1z! and z5

A3

2
~y2z!. ~91!

In terms of these new variables we have

r25h21z2,

]x
21]y

21]z
25

3

2
~]h

21]z
2!5

3

2
¹h,z

2 ,

2

A3
d~x2y!d~x2z!5d~h!d~z!5

1

2pr
d~r!.

~92!

The reason for introducing new variables and for emp
sizing that we are working in the two-dimensional (h,z)
space is that intwo-dimensionalspace the associated Bess

function
1

2p
K0(mr) is the Green’s function:

~m22¹h,z
2 !

1

2p
K0~mr!5d~h!d~z!5

1

2pr
d~r!. ~93!

This equation explains the appearance of the contact t
~delta-function term! in the expression forN in Eq. ~90!. The
delta function is rotationally symmetric because the Gree
function is rotationally symmetric and thus we can repla
¹h,z

2 in Eq. ~93! by d2/dr21d/dr. Hence, we see that tw
derivatives of K0(mr) give rise to a delta function:

K09~mr!5K0~mr!2
1

mr
K08~mr!2

1

m2r
d~r!. ~94!

We have checked thatM and N in Eqs. ~89! and ~90!
satisfy the partial differential equations~71! and~72!. We can
verify Eq. ~72! by direct differentiation. To verify Eq.~71!
we use the variablesh andz and take the indicated deriva
tives. The result is a combination of K0(mr), K08(mr),
d(r), d8(r), and d9(r) terms. The coefficients of all o
02500
it

ly

-

l

m

’s
e

these terms vanish except for the coefficientd(r) term, and
this coefficient reproduces exactly the right side of Eq.~71!.

Because our formulas forM and N involve Bessel func-
tions, we see clearly thatQ1 represents anonlocalinteraction
of three fields. However, as the associated Bessel funct
decrease exponentially rapidly for large argument, the deg
of nonlocality is small.

VIII. QUANTUM FIELD THEORY WITH SEVERAL
INTERACTING FIELDS

The field theoretic calculations in Sec. VII can be e
tended to cubic quantum field theories having two and th
interacting scalar fields.

A. w1w2
2 theory

We consider first the case of two scalar fieldswx
(1) and

wx
(2) whose dynamics is described by the HamiltonianH

5H0
(1)1H0

(2)1eH1, where

H0
( j )5

1

2E dx~px
( j )!21

1

2E E dxdy~Gxy
( j )!21wx

( j )wy
( j )

~ j 51,2! ~95!

andH15 i *dx(wx
(1))2wx

(2) . The Green’s functionGxy
( j ) is the

solution to the equation

~m j
22¹x

2!Gxy
( j )5d~x2y! ~ j 51,2!.

This quantum field theory is the analogue of the quant
mechanical theory in Eq.~11!.

To determineC to ordere we need to solve the operato
equation

@H0
(1)1H0

(2) ,Q1#522H1 , ~96!

which is the two-field generalization of Eq.~66!. To find the
solution to this equation we make an ansatz analogous to
in Eq. ~41! for the operatorQ1:

Q15E E E dxdydz@M x(yz)px
(2)py

(1)pz
(1)1Nxyz

(1)~pz
(1)wy

(1)

1wy
(1)pz

(1)!wx
(2)1Nx(yz)

(2) px
(2)wy

(1)wz
(1)#,

where M x(yz) , Nxyz
(1) , and Nx(yz)

(2) are unknown functions of
three arguments each. As indicated by the parentheseM
andN(2) are symmetric in their last two arguments.

We then substituteQ1 into Eq.~96! and use the following
identities to perform the algebra:
1-12
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@H0
(1) ,Q1#52 i E E E dxdydz@2Nxyz

(1)py
(1)pz

(1)wx
(2)1Nx(yz)

(2) px
(2)~wy

(1)pz
(1)1pz

(1)wy
(1)!#

1 i E E E E dwdxdydz~Gwy
(1)!21M x(yz)px

(2)~ww
(1)pz

(1)1pz
(1)ww

(1)!

12i E E E E dwdxdydz~Gwz
(1)!21Nxyz

(1)wx
(2)ww

(1)wy
(1) ,

@H0
(2) ,Q1#52 i E E E dxdydzNxyz

(1)~pz
(1)wy

(1)1wy
(1)pz

(1)!px
(2)1 i E E E E dwdxdydz~Gwx

(2)!21Nx(yz)
(2) wy

(1)wz
(1)ww

(2)

1 i E E E E dwdxdydz~Gwx
(2)!21M x(yz)py

(1)pz
(1)ww

(2) . ~97!
n

re
ith

e

ns

re

e
als

.

Substituting Eq.~97! into Eq.~96! gives an operator equatio
involving the unknown functionsM, N(1), andN(2). We then
convert these operator equations into a system of th
coupled partial differential equations by commuting w
products of three fields:

~m1
22¹z

2!Nxyz
(1)1~m1

22¹y
2!Nxyz

(1)1~m2
22¹x

2!Nx(yz)
(2)

522d~x2y!d~x2z!,

~m1
22¹y

2!M x(yz)5Nxyz
(1)1Nx(yz)

(2) ,

~m2
22¹x

2!M x(yz)5Nxyz
(1)1Nxzy

(1) . ~98!

To solve this system of partial differential equations w
perform Fourier transforms in the variablesx, y, andz and
obtain

1

G̃r
(1)

Ñpqr
(1) 1

1

G̃q
(1)

Ñprq
(1)1

1

G̃p
(2)

Ñp(qr )
(2) 522~2p!Dd~p1q1r !,

1

G̃q
(1)

M̃p(qr )5Ñpqr
(1) 1Ñp(qr )

(2) ,

1

G̃p
(2)

M̃p(qr )5Ñpqr
(1) 1Ñprq

(1) . ~99!

Note that in Eq.~99! we have three linear algebraic equatio
in the four unknownsMp(qr ) , Npqr

(1) , Nprq
(1) , andNp(qr )

(2) . Thus,
we construct another equation from the second of the th
equations in~99! by interchanging the momentaq and r :

1

G̃r
(1)

M̃p(qr )5Ñprq
(1)1Ñp(qr )

(2) . ~100!

Solving the algebraic equations~99! and~100!, we obtain
the following expressions forM̃ , Ñ(1), andÑ(2):
02500
e

e

M̃p(qr )5
4

D~p,q,r !
~2p!Dd~p1q1r !,

Ñpqr
(1) 5

2~p21q22r21m2
2!

D~p,q,r !
~2p!Dd~p1q1r !,

Ñp(qr )
(2) 5

2@q21r22p212m1
22m2

2#

D~p,q,r !
~2p!Dd~p1q1r !,

~101!

where the denominatorD(p,q,r ) is given by

D~p,q,r !5p41q41r422~p2q21p2r21q2r2!

12m2
2~p22q22r2!24m1

2p21m2
424m1

2m2
2 .

Observe that if we setm15m251 and take the quantum
mechanical limitD→0, Eq. ~101! reduces to Eq.~42!.

Finally, we transform Eq.~101! back to coordinate spac
by calculating the inverse Fourier transforms. The integr
to be performed are tripleD-dimensional integrals, but we
can perform the integral overp by using the delta function
We get

M x(yz)52
4

~2p!2DE E dqdr
ei (x2y)•q1 i (x2z)•r

D~q,r !
,

~102!

where D(q,r )54@q2r22(q•r )2#14m1
2(q1r )224m2

2q•r
2m2

414m1
2m2

2, and

Nxyz
(1)5F2¹y

22¹y•¹z1
1

2
m2

2GM x(yz) ,

Nx(yz)
(2) 5F¹y•¹z1m1

22
1

2
m2

2GM x(yz) . ~103!

We mention that for the special caseD51 @quantum field
1-13
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theory in ~111!-dimensional space-time#, the quartic terms
in the denominatorD(q,r ) again drop out and it is possibl
to evaluate the integral in Eq.~102! in terms of Bessel func-
tions using the integration techniques described in Sec.
For this special case we obtain

Mx(yz)52
1

pm2A4m1
22m2

2
K0~m2r!, ~104!

where 4m2
2r25m2

2(2x2y2z)21(4m1
22m2

2)(y2z)2. The
result in Eq.~104! reduces to that in Eq.~89! in the equal-
mass casem15m25m. Also, our results inD51 for Nxyz

(1)

andNx(yz)
(2) are

Nxyz
(1) 52

A4m1
22m2

2

4pm2

~x2z!~y2z!

r2
K0~m2r!

2
1

2prm2
2A4m1

22m2
2 Fm2

22~4m1
22m2

2!

3
~x2z!~y2z!

r2 GK08~m2r!2
1

m2
2~4m1

22m2
2!

3F2m2
22~4m1

22m2
2!

~x2z!~y2z!

r2 Gd~x2y!d~x2z!,

Nx(yz)
(2) 5

A4m1
22m2

2

4pm2

~x2z!~y2z!

r2
K0~m2r!

2
1

2prm2
2A4m1

22m2
2 F2m1

22m2
22~4m1

22m2
2!

3
~x2z!~y2z!

r2 GK08~m2r!2
1

m2
2~4m1

22m2
2!
02500
I.

3F4m1
222m2

22~4m1
22m2

2!
~x2z!~y2z!

r2 G
3d~x2y!d~x2z!. ~105!

B. w1w2w3 theory

We now consider the case ofthreeinteracting scalar fields
whose dynamics is described by the Hamiltonian

H5H0
(1)1H0

(2)1H0
(3)1eH1 , ~106!

whereH0
( j ) is given in Eq.~95! andH15 i *dxwx

(1)wx
(2)wx

(3) .
This quantum field theory has the interesting property tha
perturbative solution is finite forD,3; there are no diver-
gent graphs in less than three space-time dimensions.

To find the operatorC to leading order ine, we need to
solve the operator equation

@H0
(1)1H0

(2)1H0
(3) ,Q1#522H1 . ~107!

We introduce the ansatz

Q15E E E dxdydzNxyz
(1)px

(1)wy
(2)wz

(3)

1E E E dxdydzNxyz
(2)px

(2)wy
(3)wz

(1)

1E E E dxdydzNxyz
(3)px

(3)wy
(1)wz

(2)

1E E E dxdydzM xyzpx
(1)py

(2)pz
(3) . ~108!

We then establish the following three results:
@H0
(1) ,Q1#52 i E E E dxdydz~Nxyz

(2)pz
(1)px

(2)wy
(3)1Nxyz

(3)py
(1)px

(3)wz
(2)!1 i E E E E dwdxdydz~Gwx

(1)!21Nxyz
(1)ww

(1)wy
(2)wz

(3)

1 i E E E E dwdxdydz~Gwx
(1)!21M xyzpy

(2)pz
(3)ww

(1) ,

@H0
(2) ,Q1#52 i E E E dxdydz~Nxyz

(1)py
(2)px

(1)wz
(3)1Nxyz

(3)px
(3)pz

(2)wy
(1)!1 i E E E E dwdxdydz~Gwx

(2)!21Nxyz
(2)ww

(2)wy
(3)wz

(1)

1 i E E E E dwdxdydz~Gwy
(2)!21M xyzpx

(1)pz
(3)ww

(2) ,

@H0
(3) ,Q1#52 i E E E dxdydz~Nxyz

(1)px
(1)pz

(3)wy
(2)1Nxyz

(2)px
(2)py

(3)wz
(1)!1 i E E E E dwdxdydz~Gwx

(3)!21Nxyz
(3)wy

(1)wz
(2)ww

(3)

1 i E E E E dwdxdydz~Gwz
(3)!21M xyzpx

(1)py
(2)ww

(3) . ~109!
1-14
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From these equations we deduce the following system
differential equations:

~m1
22¹x

2!Nxyz
(1)1~m2

22¹y
2!Nyzx

(2)1~m3
22¹z

2!Nzxy
(3)

522d~x2y!d~x2z!,

~m3
22¹z

2!M xyz5Nxyz
(1)1Nyzx

(2) ,

~m1
22¹x

2!M xyz5Nyzx
(2)1Nzxy

(3) ,

~m2
22¹y

2!M xyz5Nzxy
(3)1Nxyz

(1) . ~110!

The solutions for the unknown functions are as follow
M xyz is given by the integral~83! with the more genera
formula D(p,q)54@p2q22(p•q)2#14@m1

2(q21p•q)
1m2

2(p21p•q)2m3
2p•q#1m4 with 3m452m1

2m2
212m1

2m3
2

12m2
2m3

22m1
42m2

42m3
4. The N coefficients are expresse

as derivatives acting onM:

Nxyz
(1)5@¹y•¹z1

1
2 ~m2

21m3
22m1

2!#M xyz ,

Nxyz
(2)5@2¹y•¹z2¹z

21 1
2 ~m1

21m3
22m2

2!#M xyz ,

Nxyz
(3)5@2¹y•¹z2¹y

21 1
2 ~m1

21m2
22m3

2!#M xyz .
~111!

For the caseD51 we have

M (xyz)52
1

pA3m2
K0~mr!, ~112!

where 2m2r25(m1
21m2

22m3
2)(x2y)21(m2

21m3
22m1

2)(y
2z)21(m3

21m1
22m2

2)(z2x)2. We also have

Nxyz
(1) 52

A3~x2y!~x2z!

4pr2
K0~mr!2

1

2prmFm2
21m3

22m1
2

A3m2

2
A3~x2y!~x2z!

r2 GK08~mr!2
2

m2 Fm2
21m3

22m1
2

3m2

2
~x2y!~x2z!

2r2 Gd~x2y!d~x2z!, ~113!

and analogous expressions forNxyz
(2) andNxyz

(3) .

IX. FINAL REMARKS

We have introduced an algebraic technique for constr
ing the operatorC, which is required to define the positive
definite inner product of the Hilbert space inPT-symmetric
quantum theories. Unlike the previously used analytical p
cedure for constructingC, which relies on the determinatio
of all the energy eigenstates, the algebraic approach in
duced here allows us to determineC directly from the opera-
tor form of the Hamiltonian. As a consequence, the appro
extends naturally to quantum field theory. We have explic
02500
of

:

t-
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h
y

demonstrated the perturbative derivation ofC both in quan-
tum mechanics and in quantum field theory for the case
cubic interactions.

In the case of quantum field theory we point out that all
the field theories discussed in this paper are Lorentz cov
ant: They are expressed in terms of covariant fields, wh
transform as pseudoscalars. For each of these field the
the conventional construction of the generators of the Po
carégroup can be carried out, and these generators sa
the usual commutation relations. Furthermore, theC operator
is a Lorentz scalar. By construction,C does not depend on
the spatial coordinate, which is integrated out@see, for ex-
ample, Eq.~68!# and it does not depend on time becauseC
commutes with the Hamiltonian. Thus,C is like a scalar
charge operator,*dxJ0(x,t), which is the spatial integral o
a locally conserved current satisfying]mJm50.

We hope to generalize the breakthrough reported in
paper to noncubicPT-symmetric quantum field theories
such as a2gw4 theory. A 2gw4 quantum field theory in
four-dimensional space-time is a remarkable model beca
it has a positive spectrum, is renormalizable, is asympt
cally free@16#, and has a nonzero one-point Green’s functi
G15^w&. Consequently, this theory may ultimately be use
in elucidating the dynamics of the Higgs sector of the st
dard model.
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APPENDIX: GRAPHICAL SOLUTION TO EQUATIONS „76…
AND „77…

Graphical methods can be used to solve the simultane
equations~76! and ~77! for m̃(pqr ) and ñp(qr ) . We begin by
defining the unknown functionF̃p(qr ) by

ñp(qr )5G̃p~ F̃p(qr )22!. ~A1!

In terms ofF̃, Eq. ~76! becomes

F̃p(qr )1F̃q(pr )1F̃ r (pq)50 ~A2!

and Eq.~77! becomes

G̃pG̃qF̃p(qr )1G̃qG̃rF̃ r (pq)2G̃pG̃rF̃p(qr )2G̃qG̃rF̃q(pr )

52G̃p~G̃q2G̃r !, ~A3!

where we have made use of Eq.~74! to eliminatem̃.
We can find an exact solution to Eqs.~A2! and ~A3! by

using an iterative method. First, we construct a function t
1-15
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we call F̃p(qr )
(1) , which exactly solves Eq.~A2! and repro-

duces the structure on the right side of Eq.~A3!. An ansatz
that works is

F̃p(qr )
(1) 5a1S G̃q

G̃r

1
G̃r

G̃q
D 1a2S G̃p

G̃q

1
G̃p

G̃r
D 1a3S G̃r

G̃p

1
G̃q

G̃p
D ,

~A4!

where the coefficientsa1 , a2, anda3 are numerical param
eters to be determined.

The six terms in Eq.~A4! have a graphical representatio
~see Fig. 1! in which we use a solid line to represent th
Green’s functionG̃p and a dashed line to represent its inve
G̃p

21 . The dots indicate momentum flowing into the grap
Note that the three momentap, q, andr must satisfy a mo-
mentum conservation equationp1q1r50.

The functionF̃ (1) exactly solves Eq.~A2! if

a11a21a350, ~A5!

and F̃ (1) exactly reproduces the right side of Eq.~A3! if

a322a252. ~A6!

However, this choice forF̃ (1) also creates new terms on th
right side of Eq.~A3! that must be eliminated. To eliminat
these additional terms we add toF̃ (1) a new ansatz, desig
natedF̃ (2). The form ofF̃ (2) is

FIG. 1. Representation ofF̃p(qr )
(1) in Eq. ~A4! in terms of tree

graphs. The solid lines represent factors ofG̃ and the dashed line

represent factors ofG̃21. The dots indicate points where mome
tum is flowing into the graph. The momentum in the graph is c
served and obeys the constraintp1q1r50. The numerical coeffi-
cientsa1 , a2, anda3 multiply the graphs as shown in Eq.~A4!.
02500
e
.

F̃p(qr )
(2) 5b1S G̃q

2

G̃r
2

1
G̃r

2

G̃q
2D 1b2S G̃p

2

G̃q
2

1
G̃p

2

G̃r
2D 1b3S G̃q

2

G̃p
2

1
G̃r

2

G̃p
2D

1b4

G̃p
2

G̃qG̃r

1b5S G̃q
2

G̃pG̃r

1
G̃r

2

G̃pG̃q
D 1b6

G̃qG̃r

G̃p
2

1b7S G̃pG̃q

G̃r
2

1
G̃pG̃r

G̃q
2 D , ~A7!

where the coefficientsb1 ,b2 , . . . ,b7 must be determined
The twelve terms in Eq.~A7! are represented graphically i
Fig. 2.

To determine the coefficients inF̃ (2) we require that the
right side of Eq.~A2! vanish. This gives the three condition

b11b21b350,

b412b550,

b612b750. ~A8!

In addition, we require that the terms arising on the right s
of Eq. ~A3! as a result of the ansatzF̃ (1) must be eliminated.
This requirement gives the equations

2a32a12b550,

a12b21b32b750,

a22b21b62b750,

a12a21b32b650. ~A9!

One of these equations is redundant because if we sub
the third equation from the second, we obtain the fourth.

We now continue the process. It is necessary to introd
a third ansatz in order to eliminate the new terms that app
on the right side of Eq.~A3! as a consequence of the ansa

-

n
ig.
ich
.

FIG. 2. Representation of the ansatzF̃p(qr )
(2) in

Eq. ~A7! in terms of tree graphs. The notatio
used in this figure is the same as that used in F
1. The crosses in the graphs are vertices at wh
no momentum is flowing into or out of the graph
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FIG. 3. Representation of the

ansatzF̃p(qr )
(3) in Eq. ~A10! in terms

of tree graphs. The notation use
in this figure is the same as tha
used in Fig. 2.
o

ract
b-

re
ew
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ree-
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s.

r

F̃p(qr )
(3) 5g1S G̃q

3

G̃r
3

1
G̃r

3

G̃q
3D 1g2S G̃p

3

G̃q
3

1
G̃p

3

G̃r
3D 1g3S G̃q

3

G̃p
3

1
G̃r

3

G̃p
3D

1g4S G̃q
3

G̃p
2G̃r

1
G̃r

3

G̃p
2G̃q

D 1g5S G̃q
3

G̃pG̃r
2

1
G̃r

3

G̃pG̃q
2D

1g6S G̃p
3

G̃rG̃q
2

1
G̃p

3

G̃qG̃r
2D 1g7S G̃qG̃r

2

G̃p
3

1
G̃rG̃q

2

G̃p
3 D

1g8S G̃pG̃r
2

G̃q
3

1
G̃pG̃q

2

G̃r
3 D 1g9S G̃p

2G̃r

G̃q
3

1
G̃p

2G̃q

G̃r
3 D

~A10!

and it is represented graphically in Fig. 3.
To determine the nine numerical coefficients inF̃ (3) we

require that the right side of Eq.~A2! vanish. This gives the
three conditions

g11g21g350,

g41g51g650,

g71g81g950. ~A11!

Also, we require that the terms arising on the right side
Eq. ~A3! as a result of the ansatzF̃ (2) must be eliminated.
This requirement gives the equations

b12b41g52g650,

b32b41b52g650,

b31b52b12g550,

b12b21g32g750,
02500
f

b12g21g32g950,

b22g21g72g950,

b71g722g850. ~A12!

Note that two of these equations are redundant; if we subt
the first from the second we obtain the third, and if we su
tract the fourth from the fifth we obtain the sixth.

It is clear that if we continue this process, we obtain mo
and more linear equations to solve. However, with each n
ansatz the number of unknowns always exceeds the num
of equations by one. For example, there are threea ’s but
only two equations~A5! and ~A6!; there are sevenb ’s but
only six independent equations~A8! and~A9!; there are nine
g ’s but only eight independent equations~A11! and ~A12!.
Hence, with each new ansatz we have a kind of gauge f
dom and we find it convenient to use this freedom to elim
nate all graphs having split legs consisting of solid line
That is, we chooseb65b750, g75g85g950, and so on.
We can also choosea150. Thus, for the next iteration ou
ansatz reads

F̃p(qr )
(4) 5d1S G̃q

4
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4

1
G̃r

4

G̃q
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4

G̃r
4D 1d3S G̃q

4

G̃p
4

1
G̃r

4

G̃p
4D

1d4S G̃q
4
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3G̃r

1
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4

G̃p
3G̃q

D 1d5S G̃q
4

G̃pG̃r
3

1
G̃r

4

G̃pG̃q
3D

1d6S G̃p
4

G̃rG̃q
3

1
G̃p

4

G̃qG̃r
3D 1d7S G̃q

4

G̃p
2G̃r

2
1

G̃r
4

G̃p
2G̃q

2D
1d8

G̃p
4

G̃q
2G̃r

2
. ~A13!
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FIG. 4. Representation of the

ansatzF̃p(qr )
(4) in Eq. ~A13! in terms

of tree graphs. The notation use
in this figure is the same as tha
used in Fig. 2. Note that the num
ber of linear equations that dete
mine the numerical coefficients i
less than the number of coeffi
cients. This allows us the freedom
to excludea priori all graphs hav-
ing split legs consisting of solid
lines.
q

ra
b
in
-

e
ua
nd

se
on

in

this
that
nt
es.

f all
The graphical representation ofF̃ (4) is shown in Fig. 4.
Requiring that the right side of Eq.~A2! continue to van-

ish gives the three conditions

d11d21d350,

d41d51d650,

2d71d850. ~A14!

Also, to eliminate the terms arising on the right side of E
~A3! as a result of the ansatzF̃ (3) we must require that

g22g62d41d550,

g31g52g62d450,

g31g52g22d550,

g622g41d750,

g12g22d350,

g12d150,

g22d11d350. ~A15!

Note that two of these equations are redundant; if we subt
the first from the second we obtain the third, and if we su
tract the fifth from the sixth we obtain the seventh. Thus,
total there are eightd ’s to be determined by eight indepen
dent equations.

Let us now examine the solutions for the undetermin
numerical coefficients. Solving the system of linear eq
tions for the first five groups of these coefficients, we fi
that

a150, a2522, a352,
02500
.

ct
-

d
-

b150, b2522, b352, b456, b55212,

g150, g2522, g352, g4520,

g5510, g65230,

d150, d2522, d352, d4542, d5514,

d65256, d7570, d852140,

e150, e2522, e352, e4572, e5518,

e65290, e75252, e85168,e952420.
~A16!

A brief examination of these coefficients shows that the
numbers are all binomial coefficients. In fact, by inspecti
we can now write down explicitly all terms inF̃ (1), F̃ (2),
F̃ (3), and so on, as the following double sum:

F̃p(qr )524(
n51

` G̃p
n

G̃r
n (

k50

n S 2n
2kD G̃r

k

G̃q
k

14(
n50

` G̃r
n11

G̃p
n11 (

k50

n S 2n11
2n1122kD G̃p

k

G̃q
k
. ~A17!

It is easy to perform these sums, and the result forÑ is given
in Eq. ~80!. It is remarkable that the solution forÑ is unique
despite the arbitrary choice of ‘‘gauge’’ that we have made
solving the systems of algebraic equations.

We emphasize that all of the tree graphs that appear in
analysis have three external lines. This reflects the fact
the form factorsM and N that we are calculating represe
the contribution of tree graphs to the three-point vertic
The next order in perturbation theory is proportional toe3,
and the graphical representation of the result consists o
tree graphs having five external legs.
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