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Extension of PZ-symmetric quantum mechanics to quantum field theory with cubic interaction

Carl M. Bendef; Dorje C. Brody, and Hugh F. Jones
Blackett Laboratory, Imperial College, London SW7 2BZ, United Kingdom
(Received 24 February 2004; published 15 July 2004

It has recently been shown that a non-Hermitian Hamiltomiapossessing an unbroké?Z symmetry(i)
has a real spectrum that is bounded below, @ndiefines a unitary theory of quantum mechanics with positive
norm. The proof of unitarity requires a linear operathrwhich was originally defined as a sum over the
eigenfunctions oH. However, using this definition to calculafeis cumbersome in quantum mechanics and
impossible in quantum field theory. An alternative method is devised here for calcufadingctly in terms of
the operator dynamical variables of the quantum theory. This method is general and applies to a variety of
guantum mechanical systems having several degrees of freedom. More importantly, this method is used to
calculate theC operator in quantum field theory. Thé operator is a time-independent observable in
‘P7-symmetric quantum field theory.
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I. INTRODUCTION
(W)= [ a0 x00),
In 1998 numerical and perturbative methods were used to

establish the surprising result that the class of non-Hermitia CPT o\ — *(_ i .
Hamiltonians therezp (X)=[dyC(x,y) ¢* (—y), satisfies the require

ments for the theory defined Iy to have a Hilbert space
with a positive norm and to be a consistent unitary theory of
H=p?+x2(ix)¢ (e>0) (1)  quantum mechanics[The term unbroken P7 symmetry
means that every eigenfunctiondfis also an eigenfunction
of the P7 operator. This condition guarantees that the eigen-
values ofH are real. The Hamiltonian in Eq1) has an
%nbrokenPTsymmetry for all reale=0.]

We emphasize that in a conventional quantum theory the
inner product is formulated with respect to ordinary Dirac
Hermitian conjugation(complex conjugate and transppse
Unlike conventional quantum theory, the inner product for a
quantum theory defined by a non-Hermiti@y-symmetric
Hamiltonian depends on the Hamiltonian itself and is thus
determined dynamically. One can view this new kind of
quantum theory as a “bootstrap” theory because one must
T " . olve for the eigenstates bf before knowing what the Hil-
Hamiltonians are real and positive raised a fundamentalg nace and the associated inner product of the theory are.

question: Does a non-Hermitian Hamiltonian suchH® 14 Wilnert space and inner product are then determined by
Eqg. (1) define a consistent unitary theory of quantum me-

: . e .~ these eigenstates.
chanics, or is the positivity of the spectrum merely an in- 4 1oy preakthrough in understanding these novel non-

S Liowville ei | bl g hi ¥ermitian quantum theories was the discovery of the opera-
turm-Liouville eigenvalue problems? To answer this quesy,. - (9] This operator possesses three crucial properties.

tion It Is necessary to know whethgr the Hilbert SPace Ofkrot it commutes with the space-time reflection operator
which the Hamiltonian acts has an inner product associate

with a positive norm. Furthermore, it is necessary to deter-

mine whether the dynamical time evolution induced by such

a Hamiltonian is unitary; that is, whether the norm is pre-

served in time. )
Recently, a definitive answer to this question was foundthoughC does not commute wittP or 7 separately. Sec-

[8,9]. For a complex non-Hermitian Hamiltonian having an ©Nd: the square o is the identity,

unbrokenP7 symmetry, a linear operatat that commutes 5

with both H and P7 can be constructed. The inner product c=1, ©)

with respect taCP7 conjugation,

has a positive real spectrupi]. In Ref.[1] it was conjec-
tured that the spectral positivity was associated with th
space-time reflection symmetryP{ symmetry of the
Hamiltonian. The Hamiltoniai in Eq. (1) is P7 symmetric
because under parity reflectioR we have x— —x and
p— —p and under time revers&l we havex—Xx, p— —p,
andi— —i. OtherPZ-symmetric quantum mechanical mod-
els have been examingd-6], and a proof of the positivity
of the spectrum oH in Eq. (1) was subsequently given by
Doreyet al. [7].

The discovery that the spectra of mamZ-symmetric

[C,PT]=0, @

which allows us to interpref as a reflection operator. Third,
C commutes withH,

*Permanent address: Department of Physics, Washington Univer-
sity, St. Louis, MO 63130, USA. [C,H]=0, (4)
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and thus is time independent. To summarigeis a new which has three degrees of freed¢ih8].

time-independenPZ-symmetric reflection operator.
The question now is how to constructfor a givenH. In
Refs.[9,10] it was shown how to express tlieoperator in

Calculating the operatdt by direct evaluation of the sum
in Eq. (9) is difficult in quantum mechanics because it is
necessary to determine all the eigenfunctiongHofSuch a

coordinate space as a sum over the appropriately normalizgegtocedure cannot be used at all in quantum field theory be-

eigenfunctions¢,(x) of the HamiltonianH. These eigen-
functions satisfy

H én(X)=Endn(X), (5

cause there is no simple analogue of the Sdimger eigen-
value problem5) and its associated coordinate-space eigen-
functions.

In this paper we devise an elementary operator technique
for calculatingC for the important case of quantum theories

and, without loss of generality, their overall phases are chopging cubic interactions, and we demonstrate that our new

sen so that

PIdn(X)= bn(X). (6)

method readily generalizes from quantum mechanics to
quantum field theory. In Sec. Il we introduce a general op-
erator representation fatof the forme®™P)P, wherex and

With this choice of phase, the eigenfunctions are then norP aré the dynamical variables. This representation is espe-

malized according to

fcdx[sbn(x)]Z:(—l)"- ()

The contour of integratiof is described in detail in Ref9].

cially convenient for incorporating the three requirements
(2)—(4). In Sec. lll we calculat€ to seventh order in powers
of e for the Hamiltonian(10) using this operator technique.
Then, in Sec. IV we calculaté for the Hamiltonians(11)
and(12) to ordere®. In Sec. V we apply operator methods to
calculateC for the massless Hamiltoniad = 3p2+ix>. We

For the quantum mechanical theories discussed in this papdlerive recursion relations for the operator representatich of

all of which have a cubic interaction term, the cont@ucan
be taken to lie along the realaxis.

in Sec. VI. In Sec. VIl we calculat€ to order € for the
self-interacting scalar quantum field theory described by the

In terms of the eigenfunctions defined above, the stateHamiltonian

ment of completeness for a theory described by a non-

Hermitian P7-symmetric Hamiltonian read9]

2 (—1)"n(X) pn(y) = 8(X—y) (8)

for realx andy. The coordinate-space representatiort a$

[9]

C<x,y>=; Bn(X) bn(y). (9)

H:f de{%wz(x,t)nL%[ngp(x,t)]z

1
+ §ﬂ2¢2(x,t)+ie¢3(x,t) (13

in (D+1)-dimensional Minkowski spacetime. In Sec. VIl
we calculateC for cubic scalar quantum field theories with
interactions of the formeg?e, andiee; @ ¢3. An alterna-
tive perturbative calculation af for aniee® quantum field
theory using diagrammatic and combinatoric methods is

Only anon-HermitianP”Z-symmetric Hamiltonian possesses given in the Appendix. Some concluding remarks are in Sec.

a C operator distinct from the parity operat®:. Indeed, if
one evaluates the summati@®) for a PZ-symmetric Hamil-
tonian that is also Hermitian, the result which in coor-
dinate space i$(x+y).

The coordinate-space formalism using Ef) has been
applied successfully to

1 1
— Tp24 = 221 ex3
H S PO S XTI, (10
andC was constructed perturbatively to ordet [11]. This

formalism has also been applied to calcul@t® ordere for
the complex Heon-Heiles Hamiltoniaf12]

1 1
H=§(p§+ p§)+§(x2+y2)+iex2y, (11)

IX.

The principal accomplishment of this paper is the deriva-
tion in Secs. VIl and VIl and the Appendix of thitoperator
for cubic quantum field theories. Cubic quantum field theo-
ries, such as that in Eq13), are not just of mathematical
interest. Such theories emerge in the study of Reggeon field
theory[14] and in the analysis of the Lee-Yang edge singu-
larity [15]. For these quantum field theories the operétes
a new conserved quantity. Knowing how to calculate this
operator is crucial because it is necessary to ftaireorder
to construct observables and to evaluate matrix elements of
field operators. Our calculation @f is a major step in our
ongoing program to obtain new physical models by extend-
ing conventional quantum mechanics and quantum field
theory into the complex domain.

Il. GENERAL FORM FOR THE OPERATOR C

which has two degrees of freedom, and for the Hamiltonian

1 1
H= E(px2+ py+p2)+ §(X2+y2+ z%)+iexyz, (12

To prepare for calculating we show in this section that it
is advantageous to represéhas a product of the exponen-
tial of a Hermitian operato® and the parity operatdp:
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C=eQxp)p. (14) In this form the differential operatoi®, and Q3 are simply

This representation was first noticed in Rieif1]. 4
Qu=— 3p°~2xpx,
A. Previous work on calculating C

The objective of the investigation in Réfl1] was to use 128 3 > o
perturbative methods to calculagefor the HamiltonianH Qa= 75 P+ 3 XpXx+8x"px"—12p.
=1p?+ix2+iex®, wheree is treated as a small parameter. (20)

In Ref.[11] the operatof was obtained to third order iain

coorginate space. The procedure was as follows. First, the The main features of the exponential representatih

Schralinger equation are that only odd powers of appear in the exponent, the
coefficients are all real, and the derivative operators act on

1 1
— 5 Pn(¥)+ §x2¢n(x)+iex3¢n(x)= E.d(x) (15  the parity operatoB(x+y). Also, e“1*<*%s is Hermitian.

was solved for the energids, and for the wave functions B. A new approach to calculatingC
¢n(X) as Rayleigh-Schudinger perturbation series in powers  The perturbative calculation described above suggests that
of . The series foip,(x) has the form a simpler and more direct way to calculatds to seek an

operator representation of it in the foreR*PP, where
an Q(x,p) is a Hermitian function of the operatoxsandp. We
N will show thatQ(x,p) can be found by solving elementary
operator equations and that it is not necessary to find the
+iC, () e+ -], (16)  eigenfunctions to determin®. Thus, the technique intro-
) ) . duced in this paper immediately generalizes to quantum field
where Hy(x) is the nth Hermite polynomial andAn(x),  theory. To find the operator equations satisfiedJbwe sub-

Bn(x), and C,(x) are polynomials inx of degreen+3, N gtjtyte C=e*P into the three equation&)—(4). The details
+6, andn+9, respectively. These polynomials were ex- gre described in Sec. IlI.

pressed as linear combinations of Hermite polynomials. The \we claim that the representatidhe®P is general. Let

value ofa,, us illustrate this simple representation tiin two elemen-
tary cases: First, consider the shifted harmonic oscillator

ba(X)=i" e [ Hn(x) ~ iAg(X) e~ Bp(X) €

1
(2n+1)(82n°+82n+87)€’+ O(€%),

an=l+m 1

— 1 2 24

(17) H—Ep +§x +iex. (22)
ensures that the eigenfunctions are normalized according
J7 .dx@p2(x)=(—1)", as in Eq.(7). The factori" in Eq.
(16) is included to satisfy the requirement in E@) that
PIpn(X) = ¢n(X).

Finally, Eq.(16) was substituted into Eq9) and the sum-
mation overn was performed to obtain the operati(x,y)

tPhis Hamiltonian has an unbroké&?Z symmetry for all real
e. Its eigenvalue€,,=n+ 3%+ 1€ are all real. The opera-
tor for this theory is given exactly bg=e®P, where Q
= —ep. Note that in the limite— 0, where the Hamiltonian
becomes HermitiarG becomes identical withP.

As a second example, consider the non-Hermitian22

3.
to ordere™: matrix Hamiltonian
4 3 2 8 6 8 4 ig
= — — — —+ — —_ —
C(x,y)=11 e(3p 2xyp|+e gP —3Xyp |_|:(re sm)' 22
32 16 > e
2\,2 2 3 9 7
+(2xy -12)p } €lg1P " 9P which was discussed in RefL0]. This Hamiltonian isP7
symmetric, whereP is the Pauli matrixo;,=(} §) and 7 is
T §x2y2— 1_76) p°— (fxsy3_4gxy) p3 complex conjugation. This Hamiltonian has an unbrof&h
3 5 3 symmetry whers?=r2sin’6. TheC operator in the unbroken
region is
—(8x%y2—64)p|+O(e*) | S(x+Y), (18)
1 [isina 1
_ . o ) ) C= —( o ) (23
where p=—id/dx. This expression is complicated, but it cosa| 1 —Isina
was observed that it simplifies considerably when the expres-
sion in curly brackets is rewritten in exponential form: where sine=(r/s)sin 6. Our new way to express is to re-
. write it in the formC=e®P. Thus, the Hermitian operat@
C(x,y)=eQt et 5(x+y)+O(e). (199  has the form
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which implies thatQ(x,p)=—Q(—x,—p). Since we al-
' (24) ready know thaQQ(x,p) is an even function ok, we con-
clude that it is also awdd function of p.
where 0'2:(i0 —Oi)_ Again, observe that in the limig—0, The remaining cond'itior(4) to l?e imposeg()js)thgt the
where the Hamiltonian becomes Hermitian, (eperator ~OPeratorC commutes withH. SubstitutingC=e~**'P into
becomes identical Withp. Eq. (4), we geteR*P [P H]+[e*P) H]P=0. All of the
Note thatP, which is given in coordinate space & HamiltoniansH considered in this paper can be expressed in
+y), can be expressed in terms of the fundamental operatof€ formH=Ho+eH,, whereH, is a free field theoryhar-
x andp as monic oscillatoy Hamiltonian that commutes with the parity

operatorP, andH, represents the interaction. For example,
1

1
Q: E(Tzln

1-sina
1+sina

1 for the Hamiltonian H=3p?+ 1 u®x?+iex3, Hy=3p?
P(x,p)=exg 5 m(p?+x2—1)|. (259 +3u®x? andH,;=ix3. Then this condition reads
€eRXPP,H, ]+ [eRXP) H]P=0. (28)

To show that the parity operator satisfieg? ~*=—x and
PpP~“=—p, we define the operator-valued functiof¥)  Next, we observe that if the interactiondsbic thenH; is
andg(r) as oddunder parity reflection; that i$J; anticommutesvith P.
02 ) i 724 D) Hence, for quantum theories with cubic interaction Hamilto-
f(7)=€'"P " xe M, nians, Eq.(28) reduces to

g(T):eir(p2+x2)pe—ir(p2+x2)_ (26) 2eeQPIH, =[eQXP) H], (29)

We note that the structure in E(L.9) is quite general; for

Differentiating f(7) andg(r) once givesf’(7)=2g(7) and X at Hl .
g’ (7 =—2f(7). A second differentiation then leads to the gll cubic HamiltoniansQ(x,p) may be expanded as a series

differential equationd”(7)=4f(7) andg’(7)=4g(r). The N odd powers ofe:
solutions to these equations satisfying the initial conditions Q(x,p) = €Q1(x,p) + €Q3(X,p) + €Q5(X,p) + - - -

f(0)=x andg(0)=p are '(30)
f(r)=xcog27)—ip sin(27), In quantum field theory we will interpret the series coeffi-
cients Q,,., as interaction vertice¢form factorg of 2n

g(m)=pcog27)—ixsin(27). (270 +3 powers of the quantum fields.

_ . ) Substituting the expansion in EGRO) into the exponential
Settingr= 3, we getf(7)=—x andg(7)=—p, whiches-  Qxp e get

tablishes that the operat@ defined in Eq.(25) indeed has

the properties of a parity reflection operator. Specifically, — e**P)=R(x,p)=1+R;(X,p)e+Ry(X,p)e’+ Ra(x,p) €
is a unitary operator that generates a rotationzyn the 4

(x,p) plane. Another application @ gives a rotation by 2 tR4(X,p)e™+ - -, (31)
in the (x,p) plane. Hencé??=1. This procedure determines where

‘P up to an additive phase. It is conventional to choose the

phase to be- 37, as in Eq.(25). R,=0Q,,

ll. CUBIC OSCILLATOR WITH ONE DEGREE 1,
OF FREEDOM R,= §Q1,

Having shown that Eq(14) is a natural way to represent
the operato€, we now demonstrate how to use this ansatz to
calculateC for the Hamiltonian(10). The procedure is to
impose the three conditior®)—(4) in turn onC=eR*P)p
and thereby to determine the operator-valued function 1 1.,
Q(x,p). . . N R4= E{Q1,Q3}+ﬂQla

First, we substitute Eq14) into the condition(2) to ob-
tain

13
R3=Qs+ ng

1 1
Rs=Qs+ = ({Q3,Q4} + + 03,
(@) = PTeRUK P PT— 6@ %) 5=Qs+ 5 (1Q1,Qa}+ Q1QaQu) + 755Q1

from which we conclude tha®(x,p) is anevenfunction of _ } 2 i 3
x. Second, we substitute E€L4) into the condition(3) and Re=75(QaT{Qu,Qsh) + 55 ({Q1,Qs}
find that 1
6
Q) PRI P QX gQA-X~P) =1 {Q1,Q1QsQup) + 755Q1, (32
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and so on. Herg{X,Y}=XY+Y X denotes the anticommu- 4

tator.

M=—§,u_4 and N=-2u"2 (36)

We now substitute Eq.32) into Eq. (29), collect the co-
efficients of like powers o&" forn=1,2,3 ..., andobtain a

sequence of equations of the general form

It is straightforward, though somewhat tedious, to con-
tinue this process. In order to present the solutions for

€" [Ho,Ry]=—{H1,Ri_1} (n=1), (33)  Qu(x,p) (n>1), it is convenient to introduce the following

whereRy=1.

notation: LetS,, , represent théotally symmetrizegum over
all terms containingm factors ofp and n factors ofx. For

The equations it33) can be solved systematically for the gxample,
operator-valued function®,(x,p) (n=1,3,5...) subject
to the symmetry constraints that ensure the conditi@s

and (3). Note that the coefficients of even powerseofon- Soo=1,
tain no additional information because the equation arising

from the coefficient ok2" can be derived from the equations Sp =X,
arising from the coefficients a?"~1,e2"~3, .. . e. This ob- '

servation leads to a more effective way to express the con-

ditions in Eq.(33). The first four equations read

[Ho,Q1]=—2H4,

1
[Ho,Q3]=— E[Qli[QliHl]]v

1
[Ho,Qs]= ﬁ)[le[le[Ql![QlaHl]]]]

1
- 6([Q11[Q31Hl]]+[Q31[Q11H1]])1

1
[HO!Q7]: E()[Qla[Ql![Qli[er[Qll[Ql!Hl]]]]]]

1
- %([Ql![Ql![Qli[QS!HlJ]]]

+[Q1,[Q1[Q3.[Q1,H111]
+[Q11[Q37[Q11[Q11H1]]]]
+[Q3,[Q1[Q1.[Q1,H. 11D

1
+ g([Q1:[Q5vH1]]

1
Si11= E(Xp"' pXx),

S IE(XZ +Xpx+px?)
1,2~ 3 (XTPTXPXT PXT),

1
S3.= 7 (Xp*+ pxp*+ p?xp+px),

1
S, ;= = (P?X%+X2p2+ pXpx+ XpXp+ pX2p+Xp2X).

276
(37)
The properties of the operato®, , are summarized in Ref.

[17]. One useful property is the, , can be expressed in
Weyl-ordered form in two ways:

pkxnpmfk.

(38

m
n kamyn—k _ m
k)XpX ‘ngo k

We have solved the equations(84) and have found,,
Qsz, Qs, andQ in closed form. In terms of the symmetrized

Qs QuHID+ 5[Qs [QuHyll. (34  OPeralorsSy, the functionsQ, are

We now show how to solve these equations for the Hamil- 4

tonian in Eq.(10), for which Hy=3p?+ 3 u?x? and H;

Q1=— §M_4p3_2/1«_251,2:

=ix3. The procedure is to substitute the most general poly-

nomial form forQ,, using arbitrary coefficients and then to 128 40

solve for these coefficients. For example, to solve the firstof o —Z"" -1005, -85 18,65 ,— 12,8
the equations in34), [Hy,Q;]= —2ix3, we take as an an- TR T A
satz forQ, the most general Hermitian cubic polynomial that

is even inx and odd inp: 320 544 512

-, le7_ — -1 _ T -12
Ql(X,p):Mp3+NXp)(, (35) Q5 3 M p 3 M 485,2 3 M S3,4

whereM andN are undetermined coefficients. The operator ~10 24736 _, , 6368 |
. : PR - + + ,
equation forQ, is satisfied if 64 "Sigt g5 m TP 15 4 12
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553984 Cr g 97792 0 factors ofp andn factors ofx but we useT, , to represent a
Q7= 315 M p~+ 35 M S2 totally symmetric product ofn factors ofq andn factors of
y. For example,

377344 721024
105 # 4T Tgis Mo —
11= 5 (Ay+ya),
1792 2209024
e VS N
T3 S 105 “ P 1 )
Ti=3 +yqy+ =yqy,
2875648 . 390336 12= 3 (y"a+yay+ay’)=yay.
—— - S
105 “ S3.2 35 M 1,4
1
46 976 T31= 7 (YO +ay+a’ya+a’y),
+ 5 MoTP. (39
. ) . 1
Combining Egs.(14), (30), and(39), we obtain an explicit To1= §(q2y+ qyg+ya?)=qyaq. (40)

perturbative expansion @f in terms of the fundamental op-
eratorsx andp, correct to orde’. _ o

To summarize, using the ansdfiz) we are able to calcu- 10 SOIVe[Ho,Q1]=—2H,, the first equation in34), we
late theC operator to very high order in perturbation theory. S€€K @ Hermitian cubic polynomial in the variablesy, p,
We are able to perform this calculation because this ansal dq. This polyr_10m|al must be even n the coord|r_1ate varl-
obviates the necessity of calculating the wave function&P!es and odd in the momentum variables, and it must be
#.(x). The calculation bears a strong resemblance to WKgP!e to yieldH, when commuted witiH,. We therefore
theory. The ansatz used in performing a semiclassical calcdftroduce the ansatz
lation is also an exponential of a power series. The advantage ) )
of using WKB theory to calculate the energy eigenvalues is Q1(X,y,p,d)=Mpg+N;S; 1y + Nyx-q. (41)
thatto all ordersin powers off it is possible to construct a ) ) _ )
system of equations like those {84) that determine the We substitute this ansatz into the commutator and d.etermlne
energies, and it is never necessary to calculate the waJ/€ unknown constantd, N, andN, by solving three linear
function[18]. Furthermore, only the even terms in the WKB €quations. The result is
series are needed to determine the energy eigenvalues. The
odd terms in the series drop out of the calculation and pro- 4 2
vide no information about the eigenvalugs8]. The differ- 3’
ence between a conventional WKB series and the series rep-
resentation forQ is that the first term in a WKB series is Next, we turn to the second of the equations(8#),

proportional tozi ~* while the series expansion f@(x,p) [Ho,Q3]=—3%[Q;,[Q;,H,]], and evaluate its right side.
contains only positive powers af. Based on the results in The resulting equation fa®5 then reads

Ref. [11], however, we believe that for @7-symmetric

— ex* theory, the first term in the expansion @{(x,p) is 8

proportional to e . We plan to discuss quartic [HO,Q3]=i2—7(4x4y+4x2y3+ 8p?T,1— 4X?T,1+4S;
‘P7-symmetric theories in a future paper.

(42)

+85,1T12+85;10—3y). (43
IV. CUBIC OSCILLATORS WITH SEVERAL DEGREES
OF FREEDOM We now must construct the most general Hermitian fifth-
degree polynomial in the variablesy, p, andq that is even
In this section we extend the operator techniques used ifh the coordinate variables, odd in the momentum variables,

Sec. lIl to systems having two and three dynamical degreegnd has the terms needed to produce the right side of this
of freedom. Specifically, we generalize the perturbative procommutation relation:

cedure for calculating thé operator for the Hamiltonian in

Eqg.(10) and use it to calculaté for the Hamiltonians in Egs. Qs(X,Y,p,q) = a,p2q°+ a,p*q+asS; ;To 1+ a4p?T1 o

(11) and(12). 1l2, ,
Let us first consideH in Eq. (11), which has two degrees +a5S; 1Y+ a6S, A+ ar X203+ agx?Ty 5

of freedom. We write this Hamiltonian in the forl=H, 3 4

+eH,, where Ho=3p?+30%+3x2+3y? and H,=ix?y. T39Sy Y7+ 105 Y T A1X A+ g

For these operators we need to solve the system of equations (44)

in (34) for the unknown operatorQ;, Qs, and so on. To

simplify the calculation we generalize slightly the notation in Substituting this ansatz into E¢43), we obtain twelve si-
Eq. (37) for totally symmetric operators; to wit, we continue multaneous linear equations for the unknown coefficients
to useS;, , to represent a totally symmetric product mf  a,, whose solution is
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512 512 1088 To solve the second of the equations(8#), [Hy,Qz]=
= 205 27205 BT 205 —%[Q_l,[Ql,Hl]], we evaluate its right side. The resulting
equation forQ; then reads

256 512 288 8
=205 25Tg05 %208 [Ho.Qsl=i 5ol xyzx*+y*+2%) + (pz+rx)yqy

o 736 256 +(py+agx)zrz+(gqz+ry)xpx
&= 7405 72050 2T 405 — (PXPYZ+qQyqxztrzrxy)

+2(rqpxp+r +pqrzrn)]. 4

608 128 8 (rapxp+rpayq+pqrzrn] (47)

8107205 1T T g0y 227 T g The most general Hermitian fifth-degree polynomial in the

(45  variablesx, y, z, p, g, andr that is even in the coordinate
variables, odd in the momentum variables, and has the terms
This completes the calculation of the operafaio third or-  needed to produce the right side of this commutation relation

der ine for H in Eq. (11). is
The attractive feature of the calculational procedure de-
scribed here is that it is utterly routine and works in every Qs(X,y,z,p,q,r)
order of perturbation theory. In contrast, the technique used _ 3 3 3
in Ref.[13] to calculateC becomes hopelessly difficult be- =dy(p°qr+g°pr+r-gp)+dy[ pxp(yr+za)
yond first order in powers o because the technique used +qyq(Xr+zp)+rzr(xq+yp)]+ds(xpxqr
earlier requires that one calculate all of the energy eigen-
states ¢,(x,y) perturbatively for alln. These eigenstates +TYPYpPr+zrzpo) +ds(XpXyztyqyXxz+zrzxy)

must then be substituted directly into the summation in Eq.
(9) that defines the operatdt This calculation is difficult
because beyond leading orderdrone encounters the chal- +dg(plyz+ g®xz+r3xy). (48)
lenging problems associated with degenerate energy levels.

(There are no degenerate energy levels for Hamiltonians haGubstituting this ansatz into E¢3), we obtain six simulta-

ing just one degree of freedoynOf course, for any givem,  neous equations for the unknown coefficiedts whose so-
there is a well-defined procedure for calculating the eigentytion is

state to any order in powers ef However, this procedure

depends on the value of and, as a result, the calculation 128 136 64

becomes extremely complicated. The method of calculation d1=4—05, d2:4—05, ds=— 205’

presented here works because it is no longer necessary to

calculate the eigenfunctions. Thus, the difficulties associated

with degeneracy are circumvented. dy=-—,
We turn next to the case of a cubic oscillator having three 405

degrees of freedom. We express the Hamiltonian in(E2).

in the form H=Hy+eH;, where Ho=3%p?+3qg?+3r?2  This completes the calculation of the operafoto third or-

+3x%+ 3y?+ 172 represents a harmonic oscillator Hamil- der in e for H in Eq. (12). This calculation is simpler than

tonian having three degrees of freedom amg=ixyz is a  that for the Hamiltonian in E¢(11) because there is symme-

non-HermitianPZ-symmetric interaction term. try under the interchange of pairs of dynamical variables,
To solve[Hy,Q,]=—2H,, the first of the equations in such as X,p)«<(y,q).

(34), we must construct the most general Hermitian cubic

polynomial in the variableg, y, z, p, g, andr thatis even in v REPRESENTATION OF C FOR THE MASSLESS CASE

the coordinate variables, odd in the momentum variables,

and has the terms needed to yielg on the right side of this ~ In this section we examine the massléstsong-coupling
commutation relation: limit of the operatorC for H in Eq. (10). The massless limit

n—0 of the massive theory is especially interesting because
(46) this limiting case issingular. We will see that as the mass

parameternu tends to zero, the perturbation series represen-
tation for Q in C=e%P ceases to exist and an entirely non-
epiolynomial representation fd@ emerges.

Negative powers ofc in Eq. (39) are required for dimen-
sional consistency. As a result, each of the terms in these
perturbation series coefficients becomes singular in the mass-
M= — f and N=— E less limit u—0. (Note that the dimensionless perturbation

3 3’ expansion parameter isu %2 and thus the massless limit

+ds[x3(yr+zq) +y3(xr+zp) +23(xq+yp)]

184 32 8

d5:—4—05, d6:_4T.5' (49)

We then substitute this ansatz into the commutator and d
termine the unknown constantdd and N by solving two
linear equations. The result is
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of the theory is equivalent to the strong-coupling linsit whereg is a new arbitrary constant. Again, observe that this
—00,) solution exhibits the required symmetry properties.

To find theC operator for the massless theory it is neces- A notable feature of the solutions f@, andQ; in Egs.
sary to return to the sequence of operator equationi84n  (52) and(593) is that they arenot unique. Each of these so-
and to look for solutions for the special case in whidg  lutions contains an arbitrary constant multiplying a negative

=1p?. The first of these equations reads odd-integer power op. There is no obvious way to deter-
1 mine the values of the constantsand 8. These terms arise
[Epz,Ql =—2ix3. (50)  because in the massless case the Hamiltohigis a func-

tion of p only. In general, one can add an arbitrary multiple
However, an examination of Eq50) reveals that it is no ©f P~ "™ ° to the solution forQ,,,, because it is odd i
longer possible to find a solution in the form of a polynomial @nd is dimensionally consistent. In the massive case, where
in the operatorg andx. The situation here is quite similar to Ho=2p*+ zu?x, there is no such ambiguity because add-
that considered in Ref17], in which the objective was to Ing an arbitrary function oH, to Q, would violate the sym-
calculate the time operator in quantum mechanics. In théetry requirement tha®, be odd inp.

case of the time operator it was shown that one must gener-

alize the symmetric operato8, ,, from the positive integers VI. PRODUCT REPRESENTATION OF C
to the negative integers. Specifically, rif is nonnegative, AND DERIVATION OF RECURSION RELATIONS
thenn may be negative, and if is nonnegative, them may
be negative(lt is not possible foboth mandn to be nega- In this section we investigate tipoductrepresentation of
tive.) We can display these generalized symmetric operatorfe operatolC that was defined in E¢31); namelyC(x,p)
in Weyl-ordered forn{see Eq(38)]. For example, =R(x,p)P. At first, it may not seem worthwhile to recon-
sider the product representation because it lacks the advan-
S, = } XEJF Ex) tages of theexponentiakepresentatiod=e®P introduced in
S 20 p p Eq. (14). Recall that we argued in Sec. Il that the exponential

representation is convenient because it incorporates the re-

S_s0= i quirements(2) and (3) as elementary symmetry conditions
’ p on Q(va): Q(X,p):Q(_X,p) and Q(X,D)Z—Q(X,—p).
Furthermore, we showed that the exponential representation
S .= 1 ix2+2xix+x2— of C in Egs.(19) and(20) is much simpler than the product
T2 4 p2 p2 p2/’ representatiorC(x,p) =R(x,p)P in Eq. (18). However, as

we demonstrate here, the product representation has the ad-
1 vantage that it can be used to construct a recursive formula
for the perturbation coefficients.

The function R(x,p) in the product representation
C(x,p) =R(x,p) P incorporates the requirement in EQ) as
An exact, dimensionally consistent operator solution to

(51)

Eq. (50 is R(x,p)=R(—x,p). (54)
— 1 — 1 4 1 3 2 2
Q1=5S-14+ aS_50=35( X 5+4X 5X+6X 0% Thus,R(x,p) is an even function of. However, the require-
ment in Eq.(3) translates into a complicatetnlinearcon-
1 1 1 dition onR:
+4x5x3+ —x4)+a—5, (52
P R(X,P)R(X,~p)=1. (55

where « is an arbitrary number. This solution has the re-
quired symmetry properties; to wit, it is odd jnand even in  We will return to this condition later.

X. Also, it has the same dimensions@s in Eq. (39). The advantage of the product representation is that it
The solution to the second operator equation(34), translates the requirement in Eg) into alinear difference
[$p%Qs]=—i[Q;.[Q1.ix%]], is equation. To obtain this difference equation we use the op-

eratorsSy, , in Eq. (37). (Recall thatS, , is a totally sym-

metric combination of products ah factors ofp andn fac-
Q3:I)S—5’10_ 3_28—7’8 tors ofx.) It was shown in Ref[17] that the operator§,, ,

are completein the sense that any operator may be repre-

7 305 sented as a linear combination of these symmetric operators.
l1e™ 20“) S-eet|zp " ?a) S-114 This allows us to represeR(x,p) as the infinite linear com-
bination
135 5773 75 ,
BRI Ta+ 12¢ S_132+BS-150,

53 R(x,p>=§ g @mnSmn (56)
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wherea, , are numerical coefficients to be determined. Sub-where subscripts indicate partial differentiation. A Fourier
stituting C(x,p) = R(x,p) P into Eq. (4) then gives the con- transform from thes variable to ther variable converts this

dition differential equation into th&oursat problem(recall that a
Goursat problem involves a wave equation written in light-
[R,Ho]=€{R,H4}. (57)  cone variables
We now substitutér in Eq. (56) into the condition(57) and ~ [ -, 3l~
use the commutation and anticommutation relatidng Or=| purt+ §|er t+2iet|g. (63
[Smn,X2]=—=2iMSy-1n11, This is an extremely interesting equation that merits further
study. We plan to give a detailed analysis of this partial dif-
[Sm,pz]:ZinSmﬂ,n_l, ferential equation and of the partial difference equati®9)

in a future paper.

H_ 2

{Smn Xt =—5m(M=1)Sy-1n+1- (58 \jI. SCALAR QUANTUM FIELD THEORY WITH CUBIC
SELF-INTERACTION

For the Hamiltonian in Eq(10) we obtain the linear recur-

sion relation This section extends the operator techniques introduced

in Sec. Ill to quantum field theory. Consider the quantum
field theory described by the Hamiltoniarfl3) in
(D+1)-dimensional Minkowski space-time. This Hamil-
tonian has the fornd=Hg+ eH,, where

2
Namon= L Mayn-2

3
=€ _Em(m+ 1)am+1,n—2+2am—l,n—4}'
D 1 2 1 2 1 2 2
(59  Ho=| d%| 5 m(xt)+ S[Vep(x. )]+ 5 ue? (1),

The boundary conditions on this partial difference equa-
tion must be chosen so that the nonlinear constr@&sk is Hl:if dPxe3(x,t1). (64)
satisfied. In the massive casg =1 anday, , vanishes if

either m<0 or n<0. In the massless case we again haverpg integrals above are performed in the spatial variable
ago=1, but nowap, , vanishes if eithem>0 orn<0. which lies inRP. In the following we usefdx=[dPx to
One approach to solving this equation is to introduce gepresent the integration itP. The field variables satisfy the
generating functiog(s,t): equal-time canonical commutation relatipa(x,t), w(y,t)]
=id(x—vy).
g(s,t)=> > ST (60) The parity operator is given formally by?P
mon =exp{3i7fdx[ 2(x,t) + 72(x,t)—1]}. As in quantum me-
chanics, where the operatorsandp change sign under par-
ity reflection, we assume that the fields grgeudoscalars
and that they also change sign under

For the massive cagehe Hamiltonian in Eq(10) with u
#0] the summation is taken over nonnegative valuesnof
andn. However, for the massless case=0) the summa-

tion must be taken over nonpositive valuesnond nonne- Po(x,t)P=—o(—x,t), Pm(x,t)P=—m(—xt).

gative values of. (65)
We then multiply Eq.(59) by s™ 1t™"! and rewrite the

result in the form Following the approach in Sec. Ill, we expregsn the

form =g+ Qs P whereQ,y., (N=0,1,2...) are
real functionals of the field variables(x,t) and m(x,t). To

find Q4 it is necessary to solve the first of the operator equa-
tions in (34):

J m—2:n 2,7 min—2
Sﬁ(amfz,ns t)—nun t(9_S(a'm,n725 ")

3 9 -
=€ —gtg(amﬂ,mzsm“tn 2)

fdlz t+£22 t—l t)VZ2p(x,t
X 277 (X! ) 21“’ (P (X! ) 2(P(X! ) X¢(X’ ) ’Ql

+2t3am_1,n_4smlt”41- (61) =—2i f dxe3(x,1), (66)

Summing overm and n and using Eq(60), we obtain the Where we have integrated by partsfdx(Vye)?=
partal diferental equation — [dx¢VZe. We define the inverse Green’s functiGy,' by
Gy =(u?=V3)d(x—y), so that Gy =(u?-V5) *(x

3 _ -1 — _
.3 5 y) and [dzG,, G,= d(x—y). Thus, the commutator con-
Sg— utgs 6( ztgss+ 2t 9)7 (62) dition (66) reads
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T, =[dxf,.eP*. Fourier transformation is effective here be-
2 p X
{ j dxar™(x,1) + f dxdye(x,1) Gy ¢(y,1), Q1 cause it converts the differential equatiai@d) and(72) into
algebraic equations:

=—2if dxe3(x,t). (67) 1 1 1
=N+ =Ngpn+ =Nrpg=—6(2m)Ps(p+g+r),
Equation (67) states that when the operat@ is com- Gp P Gq g, e ( (Pra
muted with quadratic structures of the fora?(x,t) and (73)
o(x,t)e(y,t), it must produce the cubic term®(x,t). Fur-
thermore, the symmetry requirements @n that arise from N 4R :il\~/| (74)
Egs. (2) and (3) imply that Q, is an even functional of p(an) * Ta(pr) = T (par) »

¢(x,t) and an odd functional ofr(x,t). These observations '

allow us to deduce an ansatz 1Qy that has the same struc- whereépz (p%+ ud) L.

ture as that in Eq(35): Note that the right side of Eq(73) contains the factor
8(p+q+r), which implies that the two three-point functions
lej f f dxdydzM () Ty, M and N conserve momentum. We thus introduegluced
representations of these vertex functions in which we have

factored off the delta function:
+f f deddeNX(yZ)@yWX¢Z, (68)

where we have suppressed the time varidhie the fields ~ ~

and for brevity have indicated spatial dependences with sub- Np(an = (27) N S(p+q-+1). (79
scripts. In Eq.(68) the unknown functiongv and N have _ _

three arguments each. The functidris totally symmetric in ~ The functionsm andn satisfy the following algebraic equa-
its three arguments, and to emphasize this symmetry we ug®ns:

the notationM (,,,) ; N is symmetric under the interchange of

'\7' (par) =~ (277)D’r\h(pqr)5(p+ g+ r),

the second and third arguments, and to emphasize this sym- 1. 1. 1~ _
metry we writeN,, . The functionsM andN are like form & Mot Z Naen * Z M = -6, (76)
factors because they describe the spatial distribution of the P q '

three-point interactions of the fields @;. We will see that
the interaction of the fields is spatially nonlocal; this nonlo- (77)
cality is an intrinsic property of the operat6r

We now proceed to determiri andN. We substitute the There are two ways to solve these equations. A physically
ansatz(68) into the commutator67) and find after some transparent but longer procedure making use of tree graphs is

Eér?‘p(qr) + érﬁq(pr): 3ﬁ‘(pqr) :

algebra that two operator identities must hold: given in the Appendix. A shorter analytical approach is pre-

sented here. We begin by noting that the right side of Eq.

f f f f dxdyddeNx(yz)GV_vxlc,quoWgof _zf dwed, (77) is totally symmetric in its indices. Thus, we can obtain
two new equations by permuting the indices:

(69

GqNpar) T GaNr(pa) = 3M(par) »

f ffdXddeNX(yZ)(’ﬂX’JTy(pZ-F(pZ7TX’7Ty) o o _
GpNa(pr) T GpNr (pa) = 3M(pqr) - (78)

=3J f J’ dedyddeM (xyz)G;\Nlrry@sz. (700  We now have a sufficient number of algebraic equations,
namely(76)—(78), to solve form andn. The final results for

By commuting Eq.(69) three times withzr, and Eq.(70) M andN are
once with7 and twice withe, we translate these two opera-

tor identities into two coupled partial differential equations -~ _ 4(3565(3,2
for M andN: P G262+ G262+ G267 — 26,55/ (Gp+ G+ Gr)
(12 = VN2 T (12 = V9 Ny + (42— V) Ny X (2m)P8(p+q+r), (79
=—-645(Xx—Yy)8(x—2), (71 — e
- R 6G GG, (G G 1+ GpGq—GyGy)
Ny + Nyy = 3(1° = V2) My (72 PO B262+ G262+ G262 - 25,545 (Gp+ Gy + Gy)
To solve the system of coupled differential equatiénb X (2m)PS(p+q+r). (80)

and(72), we Fourier transform to momentum space, denot-
ing the D-dimensional Fourier transform of a functidpby  As a check of these results we compare E@S) and (80)
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with Eq. (36), which describes the cag=0 (quantum me-
chanicg. WhenD =0, we have jusG,=u 2 Substituting

this expression fofs into Egs.(79) and (80), we find that
these equations reduce exactly to E3f).

PHYSICAL REVIEW D70, 025001 (2004

Next, we substituté5,=(p>+ x?) ! into Egs.(79) and
(800 and wuse the inverse Fourier transfornf,
=(277)‘Dfdp7pe‘ip'x to expressM and N in coordinate
space:

dpdqdr 4e P~V a-1z1(2 D S(p+q+r)

]I |

(277)3D

D(p.ar) : ®1)

dpdqdr 6e X P=IY-a71Z1( 2P 5(p+q+r1)(gP+r2—p2+ u?)

S |

(2’7T)3D

where D(p,q,r)=p*+g*+rt—2(p?g®+g*r?+r?p?)
—2u?(p?+q?+r?)—3u*. We perform the integral in Egs.
(81) and (82) using the delta function and obtain

o] | e

where  D(p,q)=4[p?q>— (p-q)?]+4u?(p*+p-q+q?)
+3u* is positive, and

el (x=y)-pti(x=2)-q

XTI

M (xyz) =

1
Ny(yz)= 3( Vy Vot 5 ,/,2) M (xy2) - (84)

A. The (1+1)-dimensional case

For generaD it is difficult to evaluate the double integral

(83 in closed form. However, when D=1
[(1+1)-dimensional quantum field thedrwe can evaluate
the integral because the quartic term<li(p,q) cancel. The

evaluation procedure exploits the strict positivity of the de-

nominatorD(p,q),

D(p,q)=4p?(p*+pg+g®) +3u’
=2p*[p*+ 0%+ (p+09)?]+3u">0,

to construct the one-dimensional integral identify !

=[sdte"™ (D>0). This identity allows us to rewrite

M (xy2 as the triple integral

M =—Lf fdpdq ) dte—3x™
(xy2) MZ(ZW)Z =0

x @l (x=Y)p+i(x=2)q—4t(p*+pa+9?) (85)

Note that wheD =1 the variables, y, z, p, g, and so on, are

scalars and not vectors, so we no longer use boldface nota-

tion.

To evaluate this integral we first complete the square in

the g variable in the exponent and translate thmtegration

variable byg—q—p/2+i(x—2)/8t. We then complete the

D(par) . ®2

square in thep integration variable and translage by p
—p—i(x—2)/12t+i(x—y)/6t. This gives

- dpd dt
2(2 JJ'pqto

Xe~ 3u2t—3tp?-4tq? —p2/(12t),

M (xy9=
(86)

where p, which is totally symmetric inx, y, andz, is the
positive square root of

1
P2=§[(X—Y)2+(y—2)2+(Z—X)2]- (87)

We now perform the scalings— p/+/3t and q— q//4t.
The resultis that the integré6) representindM ., factors
into three one-dimensional integrals:
—4p%(2m) 212712,

M (xy2d — (89)

where | is the Gaussian integralzque*qzz\/; and J
— [ dttLe 3+ =012 Finally, we use the integral rep-
resentatior] 19]

f dte"t-a%t~1=2K(2a),
t=0

where Ky is the associated Bessel function. Thusk,
=2Ky(up). Combining the factors in E488), we find that
for a (1+1)-dimensional quantum field theory E¢893)
evaluates to

1
Ivl(xyz): \/— ZKO(MP) (89)

3

Next we calculateN using Eq.(84). The result is
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3\/§ (y— 2)2 thgse terms vanish except for the coefficié@b_) term, and
Nyyn=— yp= Ko(p) this coefficient reproduces exactly the right side of &d).

Because our formulas fdvl and N involve Bessel func-

J3 3(y—2)2| Ki(up) tions, we see clearly th&, represents aonlocalinteraction

R i y olKp of three fields. However, as the associated Bessel functions

™ 2p? mp decrease exponentially rapidly for large argument, the degree

of nonlocality is small.
+i2 1—(—) S(X—y)8(x—2z). (90
z p?

VIIl. QUANTUM FIELD THEORY WITH SEVERAL

The mathematics underlying the solutions in E¢R9) INTERACTING FIELDS
and(90) is rather subtle and bears further discussion. First, it The field theoretic calculations in Sec. VIl can be ex-
is important to mention that while we have expressédnd  (onqeq to cubic quantum field theories having two and three
N as functions of the three variablesy, andz, translation interacting scalar fields.
invariance implies that these functions really depend on only
two variables, say, the differencgs-y andx—z. We there-
fore define the two variableg and/ by A. @165 theory

We consider first the case of two scalar fields’ and
©? whose dynamics is described by the Hamiltonidn

—x—(y+ 0 2 91
m=x—olytz)and (=ry=2). O Taa) L@ el where

In terms of these new variables we have L1
e HO) = 2f dx(m )2+ ffdxdy(e(n) 160 )
pr=mt+ e, .
(j=1,2) (95)
(9+f72+a——(a +a§)— 2

andH;=ifdx(¢{")2¢{?). The Green’s functioiG) is the
2 1 solution to the equat|on
—=8(X=y)8(x=2)= (1) 8({)= 55(13)-

V3

(92) (uf=VOGH=38(x-y) (j=1.2.

The reason for introducing new variables and for empha-

sizing that we are working in the two-dimensiona},{)  This quantum field theory is the analogue of the quantum
space is that inwo-dimensionaspace the associated Bessel echanical theory in Eq11).
To determineC to ordere we need to solve the operator

1
function =—K is the Green'’s function: .
o(kp) equation

21

1 1
(MZ_Vi) KO(MP) o(n)o(d)= _5(P) (93 [H(()l)-f—H(()Z),Ql]:—ZHl, (96)

This equation explains the appearance of the contact term

(delta-function termin the expression foN in Eq.(90). The ~ which is the two-field generalization of E(66). To find the
delta function is rotationally symmetric because the Green’'solution to this equation we make an ansatz analogous to that
function is rotationally symmetric and thus we can replacen Eq. (41) for the operatoQ;:

V2 . in Eq. (93) by d%/dp?+d/dp. Hence, we see that two

denvatlves of k(up) give rise to a delta function:

Ql_f f fdXdde[MX(VZ)W(Z)W(l)W(1)+N(yz( (1) §,1)

1 1
Ko(rp)=Ko(pp) = —Ko(up) = ——06(p). (94
T o) o NGy 2 )

We have checked tha?l and N in Egs. (89) and (90)
satisfy the partial differential equatioisl) and(72). We can ~ where My, , inz, and Nx(yz) are unknown functions of
verify Eq. (72) by direct differentiation. To verify Eq(71)  three arguments each. As indicated by the parenthéses,
we use the variableg and{ and take the indicated deriva- andN(?) are symmetric in their last two arguments.
tives. The result is a combination of,Kup), Kg(up), We then substitut€, into Eq.(96) and use the following
8(p), 8'(p), and &"(p) terms. The coefficients of all of identities to perform the algebra:
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[HE,Qi1=—i f f J dxdydz[ 2NN D@+ NG, P (oD a+ mHe) ]
+i f f f f dwdxdydz(G{)) My TP (@{P aD+ 7ol
+2i f J J f dwdxdydz(G{) NP e,
1P Qu1=—i [ [ [ axayamnGa®ed+ o®atm@i [ [ [ [ awardyda6E) NGy ool e

+iJJJfdwdxdydz(G\(Nzx))flMX(yz)w)(/l)wgl)q)\(,vz)_ -

Substituting Eq(97) into Eq.(96) gives an operator equation ~ _ 4
involving the unknown functionM, N®), andN(?). We then Moo= D(—r)(ZW)D5(p+q+r),
convert these operator equations into a system of three P9,

coupled partial differential equations by commuting with s o o
products of three fields: =~y 2(PTHATr )

par— D(p,q,r)

(2m)Ps(p+a+r),
(43~ VAONG (12~ VINGL+ (3 - VANG),
B - 2[q?+r2=p?+2ui—uj]
— —25(x—y)8(x~2), @) = ——(2m)°
Np(ar) D(p,q,r) (2m)7o(p+a+r),
(101

2 2 _ 1 2
(pu1— Vy) M x(y2) = NE(y;—’_ NS(())/z) )

by s (D) 4 (D) where the denominatd®(p,q,r) is given by
(/"’2_ Vx) Mx(yZ): nyz+ Nxzy' (99
D(p,q,r)=p*+q*+r*=2(p*q’+p*r?+q’r?)
To solve this system of partial differential equations we 2 5 o o 2o 4 ) o
perform Fourier transforms in the variablesy, andz and +2u5(p =g —r9) —4uip+us—4uiu;.
obtain
Observe that if we seu;=pu,=1 and take the quantum
1 1 1 mechanical limitD—0, Eq.(101) reduces to Eq(42).
=—NO 4+ N+ N2 =—2(27)Ps(p+q+r), Finally, we transform Eq(101) back to coordinate space
g Par T E(@)PE T E(2) p(qr) b . . . .
r q p y calculating the inverse Fourier transforms. The integrals
to be performed are tripl®-dimensional integrals, but we

1o ~ (1) L m2) can perform the integral over by using the delta function.
“G'(l)Mp(qr): Npqr+ Np(qr) , We get
q
M 4 dad ei(xfy)-qui(xfz)»r
o =R+ = ) | 00—
=M ptan =Ny + NG - (99) (2m) (a.n)
GE)Z) p(ar) par prq 102

Note that in Eq(99) we have three linear algebraic equationswhere  D(q,r)=4[q?r?—(q-r)2]+4ui(q+r)2—4usq-r
in the four unknowns gy, N§U, NEU andNG) ). Thus,  — us+4ufus, and

we construct another equation from the second of the three
equations in(99) by interchanging the momentpandr: " 5 1,

nyz: _Vy_Vy' V,+ E:U“Z Mx(yz) )

1 _

gV =N+ N (100 1
' NE )= Yy Vot i — > 15| My - (103
Solving the algebraic equatioit89) and(100), we obtain
the following expressions for, N™), andN(?): We mention that for the special caBe=1 [quantum field
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theory in (1+1)-dimensional space-timethe quartic terms (x—2)(y—2)

in the denominatoD(q,r) again drop out and it is possible X| Ap2—2us— (4pd— u3) 5

to evaluate the integral in EG102) in terms of Bessel func- P

tions using the integration techniques described in Sec. VII. X S(X—y) S(x—2) (105

For this special case we obtain

B. theor
(104) ©1902¢03 y

Myyy=— —F====Ko(12p),
X2 7-r,u2\/4,u§—,u§ o2 We now consider the case thfreeinteracting scalar fields
2o o ) y ) whose dynamics is described by the Hamiltonian
where 4udp?=u3(2x—y—2)>+(4ui - ud)(y—2)% The

result in Eq.(104) reduces to that in E¢89) in the equal- H=H"+HP+HP + eHy, (106)
mass casgu;=u,=u. Also, our results irD=1 for N{},
andN$) , are whereH{ is given in Eq.(95) andH;=idxeDe{® e

This quantum field theory has the interesting property that its

N — CNApi e (X=2)(y—2) (p) perturbative solution is finite fob <3; there are no diver-
xyz 477,u2 p? Kol wzp gent graphs in less than three space-time dimensions.

To find the operato€ to leading order ire, we need to

1 (42— ) solve the operator equation
- M= (4™ Mo
2mpuiAu’— ul
preNTRL [HO+HP+HP,Q,]= —2H, . (107)
><(x—Z)(y—Z) (tip) 1
o\M2P) i
p? M§(4M5—M§) We introduce the ansatz
(x=2)(y—2)

x| 22 (ap2- ) "2V 2 kg six-2), Qu= | [ [ dxayamnglao
o VR 22 + [ ] | axayaaN@a@ed o
x(y2) — Ay P Ko(2p)

J f j dxdydzNE P2

o 23~ w3~ (4ui— i)
2mpudNaui—u3
avm + f f f dxdydzM,, 7V rP#® . (108
><(><—Z)(y—2) ' Canp)
=T T K (wap) —
p? M2(4M§_M§) We then establish the following three results:

[HEM,Q =i f f f dxdydz(N&) 7D 7P e+ NS 7N 7P e@) +i f f f f dwdxdydz(G{;)) " INGelPelP el

+i f f f f dwdxdydz(G§)) M, m D 7P (D,

[HE,Qi]=~i f f f dxdydz(N (P Dol + NGl P a2 o) +i f f f f dwdxdydz(GE) ~INGel e e

[ [ [ [ w2 g0

[HY ,Qu]=—i f j f dxdydz(NE 07?4 NZ 7D 7D plD) + f f f j dwdxdydz(GE) NGl

+i J J J f dwdxdydz(G§)) "My, mDm{P el (109
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From these equations we deduce the following system ofiemonstrated the perturbative derivationCoboth in quan-

differential equations:

VONZA (13- VONE

yzX zXy

(W= VONGI+ (u3—
=—28(x—y)d(x~2),
(/’Lg_ V;)Mxyz_ Ng%"’ N%))(v
(/Uvi_ V)%)Mxyz_ N§/§>)(+ NS(?H

(15~ V) My, = NS+ NG (110

The solutions for the unknown functions are as follows:

M,y is given by the |ntegra(83) with the more general

forn;ula D(p, q) 4[p*q*— (p- q)2]+4[;2L Ch +p2qg
+M2(2p22+ p'gl) lzsp q]+m?* with 3m*=2uius+2uius
T2uouz— o
as derivatives acting oN:

Ng;_[vy'vz+%(Mg—’—ﬂg_ﬂ'%)]Mxyz'
NG =[ =V V,= VZ+ 5 (i + ud— u3) My,

NG ==V V,= Vot 3(ui+ 5= u3) My, .
(112

For the casé®® =1 we have

1
M(xyy=— \/§ 2KO( mp), (112

where  %p?=(ui+ ud— ud)(x—y)2+ (us+pu5—ui)(y
—2)%+ (us+ ui— u3)(z—x)2. We also have

N Boy(x=2) T Hot mE—pi
Xyz 477'02 Ko(mp 27pm \/§m2
V3(x—y)(x—2) 2 | ud+ps—pi
- |Ko(mp) — |
p? m? 3m?
X— X—Z
- ey a2, @3
p

and analogous expressions {2, andN{Y).

IX. FINAL REMARKS

ﬂg. The N coefficients are expressed

tum mechanics and in quantum field theory for the case of
cubic interactions.

In the case of quantum field theory we point out that all of
the field theories discussed in this paper are Lorentz covari-
ant: They are expressed in terms of covariant fields, which
transform as pseudoscalars. For each of these field theories
the conventional construction of the generators of the Poin-
caregroup can be carried out, and these generators satisfy
the usual commutation relations. Furthermore,dtuperator
is a Lorentz scalar. By constructio@,does not depend on
the spatial coordinate, which is integrated ¢see, for ex-
ample, Eq.(68)] and it does not depend on time becadse
commutes with the Hamiltonian. Thus, is like a scalar
charge operatorf dxJ°(x,t), which is the spatial integral of
a locally conserved current satisfyirdgJ*=0.

We hope to generalize the breakthrough reported in this
paper to noncubicPZ-symmetric quantum field theories,
such as a—g¢* theory. A —ge* quantum field theory in
four-dimensional space-time is a remarkable model because
it has a positive spectrum, is renormalizable, is asymptoti-
cally free[16], and has a nonzero one-point Green’s function
G,={(¢). Consequently, this theory may ultimately be useful
in elucidating the dynamics of the Higgs sector of the stan-
dard model.
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APPENDIX: GRAPHICAL SOLUTION TO EQUATIONS (76)
AND (77)
Graphical methods can be used to solve the simultaneous
equations(76) and (77) for Mgy andnyq, . We begin by
defining the unknown functioﬁp(qr) by

ﬁp(qf): ép(ﬁp(qr)_ 2). (A1)
In terms ofF, Eq. (76) becomes
Foant Faent Frpg=0 (A2)

We have introduced an algebraic technique for constructand Eq.(77) becomes

ing the operatoC, which is required to define the positive- e I — —
definite inner product of the Hilbert space RZ-symmetric GpGaFpiar) T GaGrFrpg) — GpGiFpiary = GoGrFg(on)
guantum theories. Unlike the previously used analytical pro-
cedure for constructing, which relies on the determination

of all the energy eigenstates, the algebraic approach intro- 5
duced here allows us to determi@elirectly from the opera- where we have made use of E@4) to eliminatem.

tor form of the Hamiltonian. As a consequence, the approach We can find an exact solution to Eq#2) and (A3) by
extends naturally to quantum field theory. We have explicitlyusing an iterative method. First, we construct a function that
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—eo--o —=e--o —=e --o =2 =2 2 2 =2 &2
P q r q p r q r p ~(2):_QE G, G Gq&
04 0, 04 Fotan =B éz+éz + B2 ~2+E;2 + B3 (~32+~2
r q q r p p
—e--o —eo--o —eo--o
P r g rop q r a 5 3 G? ief
_ tBaz T Bs| = a x|t Be g
FIG. 1. Representation dt{{),, in Eq. (A4) in terms of tree GyGy GG GGy Gp
graphs. The solid lines represent factorsGofind the dashed lines reXe ke
represent factors o& ~!. The dots indicate points where momen- + B 32 94 fzr , (A7)
tum is flowing into the graph. The momentum in the graph is con- Gy Gq

served and obeys the constrgnt g+r=0. The numerical coeffi-

cientsay, ap, andas multiply the graphs as shown in EGA\). where the coefficient,,,, . .. ,B3; must be determined.
The twelve terms in EqA7) are represented graphically in

we call F{),,, which exactly solves Eq(A2) and repro-  Fig. 2.

duces the structure on the right side of E43). An ansatz To determine the coefficients i(® we require that the
that works is right side of Eq.(A2) vanish. This gives the three conditions
G. G G. G G, G + B,+ B3=0,
Flon=a1 a, S +a, Se, S +ag Sy : Prrbaths
Gr q Gy G p Gp -
(A4) Bat+2B5=0,
where the coefficienta, a,, andasy are numerical param- Be+2B,=0. (A8)

eters to be determined.
The six terms in Eq(A4) have a graphical representation |n addition, we require that the terms arising on the right side

(see Fig. 1 'n_ W~h'Ch we use a S_Ol'd line: to repn_ase_nt the o Eq. (A3) as a result of the ansak£®) must be eliminated.
Green'’s functiorG, and a dashed line to represent its inverseThjs requirement gives the equations

G,*. The dots indicate momentum flowing into the graph.

Note that the three momenpa g, andr must satisfy a mo- 2a3—a;— B5=0,
mentum conservation equatigr-q+r=0.
The functionF ") exactly solves Eq(A2) if @1 Bo+ Ba— B,=0,
a1+a2+a’3=0, (AS)

ar;— B+ Be—B7=0,

E® ight si i
andF'*) exactly reproduces the right side of H&3) if a1 apt Ba— B=0. (A9)

az=2a=2. (A6) One of these equations is redundant because if we subtract
) ) - the third equation from the second, we obtain the fourth.
However, this choice foF ) also creates new terms on the  we now continue the process. It is necessary to introduce
right side of Eq.(A3) that must be eliminated. To eliminate a third ansatz in order to eliminate the new terms that appear
these additional terms we add E8Y) a new ansatz, desig- on the right side of Eq(A3) as a consequence of the ansatz

natedF (). The form ofF® is F@. This ansatz is given by
o—x—& - X—- 0 O——O& —xX—-9 O—x—& —x— 0
q P r P q r q r P
B B2 Ps
o—— - A—- 9 o——@ —-A-9 o—F—0—- - -9
r P q P r q r q P

FIG. 2. Representation of the ans&g), in
Eqg. (A7) in terms of tree graphs. The notation

- - - used in this figure is the same as that used in Fig.
Byo———x - Ps @———x - s @——x—x_ . 1. The crosses in the graphs are vertices at which
a or r ®q a ®r no momentum is flowing into or out of the graph.

il i
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O———@ —x— % -0 O——*—@ —x— % -0 H—X—*—@ —x — % -0
Y1 4 P N O 4 N r P
—F—*—@ — X —% @ O—H—*—@ — % — % -0 U—F—x—@& —%x—x -0
r P q P r q r q p
_ 2 p _ or P 2 q
_x” _x” _x”
Y4.—u—u—x YSQ—x—x—x( 'Yﬁ.—u—u—x:/
q ~ q ~ P ~
or ° er ° er or FIG. 3. Representation of the
Pl e e ansatz ), in Eq. (A10) in terms
Yy o< - Vs ok ” - 7 o< - of tree graphs. The notation used
r Tegq r “ep P Tegq in this figure is the same as that
used in Fig. 2.
q q p
y7.-—x-—x-— 'yso-—x-—x-— ’y9.-—x-—x-—
P r r p q r
r r p
V7@ —x - % - Vg @ —x —x - Vo @ x- =
p q P r q
23 A3 =3 &3 23 &3 — Vot Yo Vo=
TP B I Y = pr et 72070
p(ar) =3 =3 =3 =3 =3 &3
G Gy Gy Gy G, Gp ot yoe a0
B2— Y2t v7=v9=0,
~3 ~3 ~3 ~3
+y G, &), 5| =5 + i
4 mom T mox Sl 2T ®m =2 +y;—2v=0. (A12)
G, GiGq G,G? G,G; Brtvi=2vs
Gy G GGf GG Note that two of these equations are redundant; if we subtract
+ e a2 + g2 +y7 &3 +—=3 the first from the second we obtain the third, and if we sub-
r=aq a=r P P tract the fourth from the fifth we obtain the sixth.
= R2 = =2 =22 =2 It is clear that if we continue this process, we obtain more
nGr Gy oGr »Gq . ) :
+yg| =+ = | el =+ =3 and more linear equations to solve. However, with each new
Gq G; Gq G, ansatz the number of unknowns always exceeds the number

and it is represented graphically in Fig. 3.

To determine the nine numerical coefficientsff®) we
require that the right side of EGA2) vanish. This gives the

three conditions
Y1t y2t+v3=0,
Yat ys+ v6=0,

7+ v+ v9=0.

Also, we require that the terms arising on the right side of
Eq. (A3) as a result of the ansaf? must be eliminated.

This requirement gives the equations
B1= Bat vs— =0,
Bz— Bat Bs— v6=0,
Bzt Bs—B1—vs=0,

B1— Bzt y3—y7=0,

(A10) of equations by one. For example, there are theée but
only two equationgA5) and (A6); there are sevep’s but

only six independent equatioa8) and(A9); there are nine

v's but only eight independent equatiofs11) and (A12).

Hence, with each new ansatz we have a kind of gauge free-

dom and we find it convenient to use this freedom to elimi-

nate all graphs having split legs consisting of solid lines.

That is, we choos@g= B7,=0, v7=yg= y9=0, and so on.

We can also choose;=0. Thus, for the next iteration our

ansatz reads

(A1) (é“ G? Gt Gt Gt G*
FW =68 oot = | + 8| =2t =2 | + 83 =+ —
par) — 91l =4 " =1 2l =4 " =4 3l x4 " =4
G G G G G G
&4 G4 =4 &4
+ 04|z = |+ 08| Tt s
pGr GpGq GpGr GGy
=4 =4 =4 =4
G,
+ 36| ms + =5 | + 0| s T =
GG GG 252 G232
Gy
58~§<~3r2' (A13)
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O—F—¥—¥—@ X— X% X—-0@ O ——¥—¥—@ X— ¥ X—-@ O—X—¥—¥—@ X— ¥ X-0
o, ¢ p r o, P q r O3 4 r P
@————@— ¥ —X— % @ O ——H—¥—@ X— ¥ X—-0@ O——H—X—@ X— X X-0
r P q P r q r q P FIG. 4. Representation of the
ansatz (), in Eq.(A13) in terms
%P o x4 of tree graphs. The notation used
x 7 x 7 x” in this figure is the same as that
Oy o—x—x—x—x - O5 @—x—x—x—x< - O @—x—x—x—x< - used in Fig. 2. Note that the num-
q Ter 4 Tep p Ter ber of linear equations that deter-
Lo x-2a o mine the numerical coefficients is
7 ¥ 7 less than the number of coeffi-
Oy @——x—x—x< " 35 @———x—x< _ O O—*—x—x—x< cients. This allows us the freedom
r Tegq r ~ep P Tegq to excludea priori all graphs hav-
ing split legs consisting of solid
lines.
--%p --®p --9q
87.—)(—)(—)(—*1:: 67.—)(—"—)(—*’:: 88.—)‘—“—’(—*:::
4 TTer r TTegq p Ter
The graphical representation Bf*) is shown in Fig. 4. B1=0, B,=—2, B3=2, B,=6, Ps=-12,
Requiring that the right side of E¢A2) continue to van-
ish gives the three conditions 11=0, 72=-2, v3=2, 7,=20,
81+ 8+ 63=0, ¥s=10, v=—30,
54+ 55+ 56:01 51:0, 52:_2, 53:2, 54:42, 55:14,
257+68:0 (A14) 56__561 57—70, 68—_140,

Also, to eliminate the terms arising on the right side of Eq. €=0, ©=-2, &=2, =72, &=18
(A3) as a result of the ansaE®) we must require that €6=—90, €;,=252, eg=168€4=—1420.
(Al6)
Y2~ Y6~ 64+ 65=0, . - -
A brief examination of these coefficients shows that these

Y3t ¥5— Y6~ 64=0, numbers are all binomial coefficients. In fact, by inspection
we can now write down explicitly all terms ik, F(?),
Y3t s~ ¥2~ 35=0, F®), and so on, as the following double sum:
Y6~ 274+ 67=0, - ” ég " (2n| Gk
Fp(qr):_42 =n Z 2k | &k
Y1i— Y2~ 63=0, n=1 Gr k=0 Gq
) ~n+1 n ~k
Y1—01=0, G/ 2n+1 |G,
+4n§:‘,O Znii kzo 2n+1- 2k Zk: (A17)
Yo — 51+ 5320 (A15) p a

Note that two of these equations are redundant; if we subtra& is easy to perform these sums, and the reSlile given

the first from the second we obtain the third, and if we subin Eg. (80). It is remarkable that the solution fdt is unique
tract the fifth from the sixth we obtain the seventh. Thus, indespite the arbitrary choice of “gauge” that we have made in
total there are eigh#'s to be determined by eight indepen- Solving the systems of algebraic equations.

dent equations. We emphasize that all of the tree graphs that appear in this
numerical coefficients. Solving the system of linear equathe form factorsM and N that we are calculating represent

tions for the first five groups of these coefficients, we findthe contribution of tree graphs to the three-point vertices.
that The next order in perturbation theory is proportionalefo

and the graphical representation of the result consists of all
a1=0, a,=—-2, a3z=2, tree graphs having five external legs.
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