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Events in a noncommutative space-time

M. Toller*
via Malfatti n. 8, I-38100 Trento, Italy

~Received 10 July 2003; published 23 July 2004!

We treat the events determined by a quantum physical state in a noncommutative space-time, generalizing
the analogous treatment in the usual Minkowski space-time based on positive-operator-valued measures
~POVMs!. We consider in detail the model proposed by Snyder in 1947 and calculate the POVMs defined on
the real line that describe the measurement of a single coordinate. The approximate joint measurement of all
the four space-time coordinates is described in terms of a generalized Wigner function. We derive lower
bounds for the dispersion of the coordinate observables and discuss the covariance of the model under the
Poincare´ group. The unusual transformation law of the coordinates under space-time translations is interpreted
as a failure of the absolute character of the concept of space-time coincidence. The model shows that a minimal
length is compatible with Lorentz covariance.
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I. INTRODUCTION

It was recognized a long time ago@1# that there is no
reason to believe that the usual space-time concepts mai
their validity at arbitrarily small scales of length and time.
has also been suggested that the interplay of quantum th
and general relativity does not permit the measuremen
distances smaller than the Planck length and time inter
smaller than the Planck time@2–8#. However, in the absenc
of a complete theory of quantum gravity, there is no agr
ment about the exact form of the limits to the validity of th
classical space-time description.

A natural way to describe a space-time indeterminacy
to consider the space-time coordinates as elements of a
cocommutative algebra@9–17#. This idea is suggested by th
usual quantization procedure, which replaces the comm
tive algebra of the functions defined on the phase space
noncommutative algebra of operators in Hilbert space. It
also been shown that a noncommutative space-time ca
derived from a quantum deformation which replaces the
veloping algebra of the Poincare´ Lie algebra by a noncom
mutative Hopf algebra~quantum group! @18–21#.

There are two different approaches to the quantization
space-time.

~i! One can build a mathematical structure, for instanc
noncommutative algebra, which replaces the space-t
manifold and the space-time coordinates. It is connecte
some way with the algebra of the quantum observables, b
is not contained in it, in the same way as the classical sp
time coordinates act as parameters, and not as observabl
a field theory.

~ii ! One can study the quantum observablesXa interpreted
as the space-time coordinates of an event defined by a p
cal object.

Both points of view are important and deserve attenti
but one should carefully avoid any confusion between the
Note that in a theory based on the first point of view, o
should still be able to define the coordinates of an ev
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according to the second point of view. In many treatme
one justifies the properties assumed for the coordinates in
preted in the first way by means of physical arguments wh
concern the coordinates interpreted in the second way.

In the present paper we adopt the second appro
namely, our aim is to locate physical events in space-tim
By an event, we mean a physical phenomenon which in
cates, with some approximation, a time and three space
ordinates. A typical example is the collision of two particle
In the center-of-mass system~disregarding for simplicity the
quantum effects!, one can identify the space coordinates
the event with the coordinates of the center of mass and
time coordinate with the time at which the distance betwe
the two particles takes its minimum value. In this way, t
event is defined even in the absence of a close collision

The definition of an event requires a well-defined physi
system in a state described by a vectorc belonging to a
Hilbert spaceH. It admits a rigorous mathematical treatme
and a clear physical interpretation.

A specific form for the space-time coordinate operat
Xa in a theory symmetric with respect to the conform
group has been given in Refs.@22,23#. The mathematical
nature of the coordinate operators concerning an event
commutative Minkowski space-time, within a quantu
theory symmetric with respect to an undeformed Poinc´
group, has been discussed in Refs.@24,25#. A problem arises
because the coordinate operatorsXa, as a consequence of th
support properties of the energy-momentum, cannot be s
adjoint @26,27#. We shall find the same problem in the no
commutative case.

A completely satisfactory solution of this problem is o
tained by replacing the spectral measure corresponding
self-adjoint operator by a positive-operator-valued meas
~POVM! @28–31#. The same idea permits a correct treatme
of the time observable and of the ‘‘time of arrival’’ relevan
for time of flight measurements~see, for instance,@32–34#!.

It has been shown in Ref.@25# that the non-self-
adjointness of the coordinate operators gives rise to un
tainty relations stronger than the ones that follow in the us
way from the commutation relations@35#. These effects have
©2004 The American Physical Society06-1
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to be taken into account in a discussion of the properties
noncommutative space-time.

It is important to remark that the ideas outlined above a
developed in the following sections have a provisional ch
acter, because the coordinates are measured with respec
classical frame of reference, which is an idealized conc
One should consider quantum reference frames@36–39#, de-
scribed by physical quantum objects. Then the velocity a
the angles that determine the orientation of these obj
come into play, together with the space-time coordinates
the origin, and have to be quantized.

This program, which lies outside the scope of the pres
paper, has two steps: first one has to quantize the param
that determine the relation between a quantum frame an
classical frame, and then one has to consider the rela
between two quantum frames. One may say that the prob
is to quantize the Poincare´ group, but it seems@38# that the
solution is not a quantum group in the usual sense, name
Hopf algebra.

In the next section, in order to present the necessary m
ematical tools, we summarize the treatment of quant
events in commutative Minkowski space-time. In Sec. III w
introduce the Snyder model of noncommutative space-t
and define the coordinate observables in terms of POVMs
the real line and of a generalized Wigner function in t
classical space-time. In Secs. IV and V we develop the
malism, obtaining more explicit formulas.

In Sec. VI we discuss the symmetry under space-ti
translations, which, in the model we are considering, p
sents rather unusual features. In Sec. VII we calculate s
lower bounds to the variance of the coordinate observab
justifying the initial motivations of the model. In Sec. VII
we show how the approximate joint measurement of the f
coordinates can be treated by generalizing the Wigner fu
tion formalism used to treat the approximate joint measu
ment of the noncommuting coordinates of the phase sp
@40–42#. In Sec. IX we summarize the main results.

II. EVENTS IN A COMMUTATIVE MINKOWSKI
SPACE-TIME

In this section we summarize the treatment of quant
events in the ordinary Minkowski space-time, omitting u
necessary details and emphasizing the steps to be mod
when a noncommutative space-time is considered. Instea
the treatment of Ref.@24#, we follow the more elegant ap
proach given in Ref.@39#, based on the ideas of Ref.@30#.

The event is determined by a physical object described
a vector c belonging to the Hilbert spaceH in which a
unitary representation

U~a,L!5T~a!V~L!, aPT, LPL ~1!

of the proper orthochronous Poincare´ groupP operates@43#.
T is the space-time translation group,L is the proper ortho-
chronous Lorentz group,a is a four-vector, andL is a Lor-
entz 434 matrix. We consider only states with integral a
gular momentum, but all our arguments can easily
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extended to states with half-integral angular momentum
introducing the universal coveringSL(2,C) of L.

The translation unitary operators have the spectral re
sentation

T~a!5E
Q

exp~ ip•a!dm~p!, ~2!

where Q5T* is the four-momentum space,pPQ, and
p•a5p0a02p•a is the relativistic scalar product of two
four-vectors.m is a spectral measure, which assigns to
Borel setJ,Q a projection operatorm(J) in a numerably
additive way. One can show that

V~L!m~J!V21~L!5m~LJ!, ~3!

whereLJ is the setJ transformed by the Lorentz matrixL.
According to Mackey@44–46#, the unitary representation
V(L) and the spectral measurem(J) satisfying the relation
~3! form an imprimitivity system, which we indicate by
(V,m).

If the spectral measurem is concentrated in an orbi
O,Q, we say that the imprimitivity system istransitive. In
this case, according to Mackey’s imprimitivity theorem, t
representationV can be described explicitly as aninduced
representation, which is exactly the one obtained in Wigner
fundamental paper@43#. In this way one obtains all the irre
ducible unitary representations of the Poincare´ group, and
some of them describe the ‘‘elementary’’ particles.

We assume asymptotic completeness@47#, namely, that all
the physical states can be described in terms ofin or out
particle states. We consider the direct sum decomposi
H5HS% HC , whereHS contains states with a discrete ma
spectrum, namely, the vacuum and the one-particle sta
while HC contains the states with a continuous mass sp
trum, namely, the many-particle states. It is physically e
dent, and it follows from the formalism@24#, that the vacuum
and the one-particle states cannot define an event. They
too simple to be treated as a ‘‘clock’’ which determines t
time coordinate. Thus, in our treatment of the events,
consider only states belonging toHC and we writeH instead
of HC .

In order to describe many-particle states, we have to c
sider nontransitive imprimitivity systems. The supportV of
the measurem is composed of many orbits and is contain
in the closed future cone. It is given by

s5p•p>s05~2m0!2, p0>0, ~4!

where m0 is the smallest of the particle masses~possibly
vanishing!.

The Hilbert spaceH is decomposed into a direct integr
of spaces in which irreducible unitary representations~IURs!
of P operate. Of course, only positive-energy representati
appear in this decomposition. Since we are not conside
one-particle states, we can disregard zero-mass repres
tions and we consider only positive-mass IURs, which
labeled by the masss1/2 and the center-of-mass angular m
mentumj.
6-2
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EVENTS IN A NONCOMMUTATIVE SPACE-TIME PHYSICAL REVIEW D70, 024006 ~2004!
A vector cPH is described by a wave function of th
kind cs jm(p), where m52 j ,2 j 11, . . . ,j describes the
third component of the center-of-mass angular momen
and the indexs stands for all the other quantum numbe
For instance, in a two-particle states describes the center
of-mass helicities@48#. It is not necessary to specify the ma
s1/2, since it is a function ofp. The range of the indicesj ,s
may depend ons. For fixed s, s, and j, the groupP acts
according to the induced representation described by Wig
@43#.

The norm and the action of the translation group are gi
by

ici25E
V(s jm

ucs jm~p!u2d4p, ~5!

@T~a!c#s jm~p!5exp~ ip•a!cs jm~p!. ~6!

We choose in each orbit a representative elementp̂(s) and
for each four-momentumpPV an elementLpPL with the
property

p5Lpp̂~s!, p̂~s!5~s1/2,0,0,0!T, s5p•p. ~7!

The operatorV(L) is defined by

@V~L!c#s jm~p!5Rmm8
j

~Q!cs jm8~p8!, ~8!

where

p85L21p, Q5Lp
21LLp8PSO~3!, ~9!

andRmm8
j (Q) is the (2j 11)-dimensional IUR ofSO(3).

According to a naive application of the rules of quantu
mechanics, the commuting operatorsXa, which represent the
coordinates of an event, should have a joint spectral re
sentation

Xa5E
M

xadt~x!, ~10!

wheret is a spectral measure on the Minkowski space-ti
M, andxa are the~numerical! coordinates of this space. I
cPH with ici51 defines a state of the system, the quan
„c,t(I )c… is the probability that the results of a joint me
surement of the four coordinates define a point belonging
the Borel setI ,M.

A physical requirement is the Poincare´ covariance, given
by the condition

U~a,L!t~ I !U21~a,L!5t~LI 1a!. ~11!

This equation means that the representationU(a,L) of P
and the spectral measuret on M form a transitive imprimi-
tivity system, which we indicate by (U,t).

However, it is known that the equations given above le
to a contradiction with the properties of the energ
momentum spectrum@24,27#. In fact, the unitary operator
exp(2ib•X) describe translations in the spaceQ, which lead
to states with unphysical energy-momentum. This problem
02400
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avoided by assuming that the operatorst(I ) are not projec-
tion operators, but just positive bounded operators. In ot
words,t is a positive-operator-valued measure. The phys
meaning of„c,t(I )c… is unchanged, and the description
quantum observables in terms of POVMs is perfectly co
patible with the standard interpretation of quantum mech
ics @28–31#.

It was shown in Ref.@49# that the operatort(I ) cannot
represent a quasilocal observable@50#. In particular, this ob-
servable cannot be measured by means of operations
formed exclusively in the space-time regionI.

The coordinate operators~10! are Hermitian, but not self-
adjoint. The covariance equation~11! is still valid, but, in-
stead of an imprimitivity system, we have acovariance sys-
tem, still indicated by (U,t), and the imprimitivity theorem
cannot be applied.

Great help comes from a theorem@30,51–53# that asserts
that a covariance system can always be obtained from
imprimitivity system, which, under some conditions,
unique up to isomorphisms. In our case, we can find an
primitivity system, indicated by (Ũ,t̃), formed by the repre-
sentation (a,L)→Ũ(a,L)5T̃(a)Ṽ(L) of P and a spectral
measuret̃, on the space-timeM, both acting in the auxiliary
Hilbert spaceH̃ and satisfying the covariance condition

Ũ~a,L!t̃~ I !Ũ21~a,L!5 t̃~LI 1a!. ~12!

The connection with the covariance system is given b

t~ I !5A†t̃~ I !A, AU~a,L!5Ũ~a,L!A, ~13!

whereA is a bounded linear mapping fromH to H̃. The last
equation means that it is anintertwining operatorbetween
the representationsU and Ũ. If we assume that the even
necessarily takes place somewhere in space-time, we
t(M)51, and it follows that

A†A51, ~14!

namely,H is mapped isometrically onto a subspace ofH̃.
The transitive imprimitivity system (Ũ,t̃) can be treated by
means of the imprimitivity theorem, and one finds the e
plicit forms of the representationŨ and of the auxiliary
spaceH̃. A complete treatment of the intertwining operatorA
and of the POVMt can be found in Refs.@24,25,39#.

If we introduce the self-adjoint operators

X̃a5E
M

xadt̃~x!, ~15!

the Hermitian coordinate operators are given by

Xa5A†X̃aA. ~16!

The commuting operatorsT̃(a) have the spectral repre
sentation
6-3
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M. TOLLER PHYSICAL REVIEW D 70, 024006 ~2004!
T̃~a!5E
Q

exp~ ip•a!dm̃~p!, ~17!

where the spectral measurem̃ is Lorentz covariant, namely
in analogy with Eq.~3!, we have

Ṽ~L!m̃~J!Ṽ21~L!5m̃~LJ!. ~18!

By comparing Eq.~17! with Eqs.~2! and ~13! we obtain

Am~J!5m̃~J!A, J,Q. ~19!

We can also consider the unphysical energy-momentum
erators

P̃a5E
Q

padm̃~p! ~20!

defined in the auxiliary spaceH̃.
We introduce the unitary operators

W̃~b!5E
M

exp~2 ib•x!dt̃~x! ~21!

and from Eq.~12! it follows that

T̃~a!W̃~b!T̃~2a!5exp~ ia•b!W̃~b!. ~22!

This equation shows that the operatorsT̃(a)5exp(ia•P̃) and
W̃(b)5exp(2ib•X̃) form a unitary representation of th
four-dimensional Weyl-Heisenberg group@54#, which is a
precise formulation of the canonical commutation relation

@ P̃a,X̃b#5 igab. ~23!

These operators, however, do not operate in the physical
bert spaceH, but in the auxiliary spaceH̃.

It follows from Eq. ~22! that

W̃~b!m̃~J!W̃~2b!5m̃~J1b!. ~24!

This covariance equation shows that the unitary opera
W̃(b) describe translations in the energy-momentum spa
It follows that the support ofm̃ is the whole energy-
momentum spaceQ, but there is no problem, because t
spectrum ofm̃ is not the physical energy-momentum spe
trum. The generators of these translations are the self-ad
operatorsX̃a.

In conclusion, we have studied a large group acting u
tarily on the auxiliary spaceH̃. It is the semidirect product o
the Lorentz groupL and the four-dimensional Weyl
Heisenberg group, which, in turn, contains the space-t
translation groupT and the translation groupT 8 of the
energy-momentum space. Of course,T 8 cannot act on the
physical Hilbert spaceH. We indicate byP8 the subgroup
generated byL andT 8. It is isomorphic to the usual Poin
carégroupP, but its meaning is different.
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The operatorsS(b,L)5W̃(b)Ṽ(L) defined inH̃ form a
unitary representation of the groupP8. From Eqs.~18! and
~24!, we see that this representation, together with the sp
tral measurem̃ defined onQ, forms an imprimitivity system
(S,m̃), which is the starting point of the next section.

III. THE SNYDER MODEL

Now we are ready to discuss the model of noncommu
tive space-time proposed a long time ago by Snyder@9–14#.
Actually, as we shall see, there are several options and
more correct to speak of a class of Snyder’s models.
cently it has been shown that some of them are related
models obtained from quantum Poincare´ groups @20,21#.
Note that, while the formalism summarized in the preced
section is derived in a univocal way from sound physic
principles, the modifications considered in the following a
just a provisional attempt, based on Snyder’s ideas and
the analogy with the commutative case.

The idea, reformulated in our language, is to replace
imprimitivity system (S,m̃) introduced at the end of the pre
ceding section by another imprimitivity system, denoted
the same way, where the groupP8 is replaced by anothe
groupG, containing the Lorentz groupL, andS is a unitary
representation ofG acting on the auxiliary Hilbert spaceH̃.
The action of the Poincare´ group P on the spaceH of the
physical states is still described by the unitary representa
U and by the imprimitivity system (V,m) introduced in the
preceding section.

The manifoldQ on which the spectral measurem̃ is de-
fined is a homogeneous space ofG and it has to be modified
with respect to the one introduced in Sec. II. It must cont
a Lorentz invariant setV, identified with the support of the
physical spectral measurem, in such a way that Eq.~19! is
still meaningful. We callQ the extended energy-momentu
space.

As in the preceding section, we indicate byX̃a the self-
adjoint generators of four suitably chosen one-param
subgroups ofG. Now, however, these operators do not ne
essarily commute. The operators that represent the coo
nate observables are defined by Eq.~16!. As in the commu-
tative case, and for the same reasons, it is not possible to
directly the operatorsX̃a, which do not operate in the phys
cal Hilbert space.

The natural choices for the groupG are the connected
components of the identity of the de Sitter groupSO(1,4) or
the anti–de Sitter groupSO(2,3), or their universal cover
ings. We shall treat the first choice in detail, but the oth
cases can be treated in a similar way. By considering
universal covering, one can also treat events defined by
tems with half-integral angular momentum.

We considerG as a group of real matrices operating on
five-dimensional vector space with coordinatesjm and a di-
agonal metric tensorgmn defined byg0051, g115g225g33
5g55521. Here and in the following, the indicesm,n,r,s
take the values 0, 1, 2, 3, 5, while the indicesa,b,g take the
values 0, 1, 2, 3. The matricesGPG satisfy the condition
6-4
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GTgG5g. ~25!

The matrices that do not affect the coordinatej5 form the
Lorentz subgroupL. In the following, we indicate by the
same symbol a 434 Lorentz matrix and the correspondin
535 matrix belonging toG.

The infinitesimal transformations are represented by
matricesJrs52Jsr defined by

Gm
n5dn

m1em
n1O~e2!5dn

m1
1

2
ersJrs

m
n1O~e2!,

~26!

Jrs
m

n5dr
mgns2ds

mgnr . ~27!

They satisfy the commutation relations

@Jmn ,Jrs#5gnrJms2gmrJns2gnsJmr1gmsJnr
~28!

of the Lie algebrao(1,4).
It follows that the self-adjoint generatorsM̃ rs of the uni-

tary representationS(G) defined by

S~exp~221ersJrs!!5exp~2221i ersM̃ rs! ~29!

satisfy the commutation relations

@M̃mn ,M̃ rs#5 i ~gnrM̃ms2gmrM̃ ns2gnsM̃mr1gmsM̃ nr!.
~30!

We put

X̃a5 lM̃ a5, ~31!

wherel is a fundamental length, and we obtain

@X̃a ,X̃b#5 i l 2M̃ab , ~32!

@M̃ab ,X̃g#5 i ~gbgX̃a2gagX̃b!. ~33!

The last formula shows that the operatorsX̃a transform as
the components of a four-vector under the action of the L
entz group. If, in agreement with the preceding section,
put

Ṽ~L!5S~L!, LPL, ~34!

we obtain the following transformation property ofX̃a under
finite Lorentz transformations:

Ṽ~L21!X̃aṼ~L!5La
bX̃b. ~35!

Note that, since the operatorsX̃a do not commute, one can
not write for them a joint spectral representation of the k
~15!.

If we abandon the Lorentz covariance, still maintaini
the rotational covariance, we have more freedom and,
instance, as suggested in Refs.@20,21#, we can replace the
space components of Eq.~31! by the expressions
02400
e
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X̃r5 l ~M̃ r51M̃ r0!, r 51,2,3, ~36!

and we have the commutation relations

@X̃r ,X̃s#50, @X̃0,X̃r #52 i lX̃ r , ~37!

which were derived in@18# from the quantum group formal
ism. In the following we shall adopt the definition~31!, but a
model based on Eq.~36! can be treated in a similar way.

As we anticipated above, the physical coordinates of
event are described by the operatorsXa defined in the physi-
cal Hilbert spaceH by Eq. ~16!, where the intertwining op-
eratorA:H→H̃ has the properties~14!, ~19!, and

AV~L!5Ṽ~L!A, LPL. ~38!

The condition~19! is related to the translational symmetry
the operatorA. This delicate problem will be discussed
Secs. V and VI.

In order to get a detailed physical interpretation, it is n
sufficient to know the Hermitian operatorsXa, because they
do not determine uniquely the corresponding POVMs
fined on the real lineR. It is also interesting to consider mor
general observables of the kind

k•X5kaXa5A†k•X̃A. ~39!

Since the operatork•X̃ is the generator of a one-paramet
subgroup ofG, it is self-adjoint and it has the spectral repr
sentation

k•X̃5E
R
ldt̃k~l!, ~40!

which defines the spectral measuret̃k implicitly. The statis-
tics of the results of a measurement ofk•X is completely
described by the POVM

tk~ I !5A†t̃k~ I !A, I ,R. ~41!

We have, as usual,

^k•x&5S c,A†E
R
ldt̃k~l!Ac D 5~c,k•Xc!. ~42!

However, for the square and higher powers of the coo
nates, we obtain a more complicated expression, namely

^~k•x!2&5S c,A†E
R
l2dt̃k~l!Ac D

5~c,A†~k•X̃!2Ac!>~c,~k•X!2c!. ~43!

From these formulas we obtain the variances

Dxa5~^~xa!2&2^xa&2!1/2. ~44!

The corresponding uncertainty relations are discus
in Sec. VII.

More generally, we may consider the average value
6-5
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^ f ~k•x!&5S c,E f ~l!dtk~l!c D
5E f̃ ~u!^exp~2 iuk•x!&du, ~45!

where

f̃ ~u!5~2p!21E f ~l!exp~ iul!dl,

f ~l!5E f̃ ~u!exp~2 iul!du, ~46!

^exp~2 iuk•x!&5S c,A†E exp~2 iul!dt̃k~l!Ac D
5~C,exp~2 iuk•X̃!C!

5~C,S@exp~2u lkaJa5!#C!,

C5Ac. ~47!

If we introduce the real function

r~x!5~2p!24E exp~ ik•x!~C,S@exp~2 lkaJa5!#C!d4k,

~48!

we obtain

^ f ~k•x!&5E f ~k•x!r~x!d4x. ~49!

Note, however, thatr(x) cannot be interpreted as a probab
ity density in the Minkowski space-timeM, because it may
take negative values. It plays the same role as the Wig
function in the phase space@40# and we call it the general
ized Wigner function~GWF!. It is the Fourier transform of a
continuous bounded function and since, at the present s
we do not know if this function decreases sufficiently fast
infinity, r may be a generalized function in the sense of R
@55#, namely, a distribution.

The GWFr(x) is completely determined by the avera
values^ f (k•x)&; namely, it can be measured with any r
quired accuracy by performing many coordinate measu
ments on many states prepared in the same way. It desc
the statistical properties of the observablesXa completely
and provides a useful tool independently of the model c
sidered.

We can also write

r~x!5„c,t~x!c…, ~50!

where

t~x!5~2p!24E exp~ ik•x!A†S@exp~2 lkaJa5!#Ad4k

5~2p!24E exp~ ik•x!A†exp~2 ik•X̃!Ad4k ~51!
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is a Hermitian-operator-valued distribution on the Minkow
ski space-time, which replaces the POVMt in the noncom-
mutative case. The Hermiticity follows from the unitarity o
S. It is the Fourier transform of a bounded continuo
operator-valued function.

From Eqs.~35! and~38! we obtain the Lorentz covarianc
property

V~L!t~x!V21~L!5t~Lx!. ~52!

IV. THE INDUCED REPRESENTATION S

Now we have to enter into the details of the formalis
proposed in the preceding section. The extended ene
momentum spaceQ is an orbit inR5 defined by the condi-
tion

gmnjmjn5~j0!22iji22~j5!2521, ~53!

wherej is a vector with componentsj1,j2,j3. We indicate
by p a generic element ofQ. The quantitiesjm form a re-
dundant system of coordinates in the manifoldQ, which
have no particular physical meaning. An invariant meas
on this manifold is given by

dn~p!52l 24d~jmjm11!d5j

5 l 24uj5u21dj0d3j5 l 24uj0u21dj5d3j. ~54!

In order to write the induced representation correspond
to the transitive imprimitivity system (S,m̃), we choose the
element p̂PQ with coordinatesj50, j050, j551. The
corresponding stability group is the Lorentz groupL, con-
sidered as a subgroup ofG. The inducing representationL
→D(L) is a unitary representation ofL, and we indicate by
Ĥ the Hilbert space in which it operates. We choose
elementsGpPG with the property

p5Gpp̂, pPQ. ~55!

The Hilbert spaceH̃ is composed of functionsC(p) de-
fined onQ with values in the Hilbert spaceĤ and with norm
given by

iCi25E
Q

iC~p!i2dn~p!. ~56!

The induced representationS(G) is defined by

@S~G!C#~p!5D~L!C~p8!, ~57!

where

p85G21p, L5Gp
21GGp8PL. ~58!

The inducing unitary representationD(L) can be repre-
sented as a direct integral of IURs, as explained in Ref.@24#.
The matrix elements of these IURs, indicated
D jm j8m8

Mc (L), are described in Refs.@55–57#. The possible
values of the indices are
6-6
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M50,61,62, . . . , c2,1,

j 5uM u,uM u11, . . . , m52 j ,2 j 11, . . . ,j .
~59!

If MÞ0, c must be imaginary. The representationsDMc and
D2M ,2c are unitarily equivalent. Moreover, there is th
trivial one-dimensional representation, which we indicate
D01. The restriction of these representations to the rota
subgroup is given by

D jm j8m8
Mc

~Q!5d j j 8Rmm8
j

~Q!, QPSO~3!. ~60!

In order to simplify the formalism, avoiding integrals ov
the parameterc, we assume thatD is a direct sum of IURs of
the kind described above, labeled by the indexg. This means
that the elements ofH̃ are described by the wave functio
Cg jm(p) with the norm given by

iCi25E
Q(

g jm
uCg jm~p!u2dn~p!, ~61!

and the induced representation~57! takes the form

@S~G!C#g jm~p!5D jm j8m8
Mc

~L!Cg j 8m8~p8!, ~62!

where the sum over the indicesj 8,m8 is understood and the
quantitiesM ,c depend on the indexg.

The GWF~48! takes the more explicit form

r~x!5~2p!24E exp~ ik•x!Cg jm~p!D jm j8m8
Mc

~L!

3Cg j 8m8~p8!dn~p!d4k, ~63!

wherep8 andL are given by Eq.~58! and

G5exp~2 lkaJa5!. ~64!

The generatorsM̃ rs defined by Eq.~29! can be decom-
posed into a part that acts on the angular momentum ind
j ,m and a part that acts on the dependence of the w
function onp; in particular, we can write

@X̃aC#g jm~p!5Zjm j8m8
ga

~p!Cg j 8m8~p!1YaCg jm~p!,
~65!

where the matrixZjm j8m8
ga (p) is Hermitian and

Ya52 i l S j5
]

]ja
2ja

]

]j5
D . ~66!

These derivatives act on an arbitrary smooth extension
function in a neighborhood ofQ in R5.

We consider the operatorsf acting on the spaceH̃ by
multiplying the wave function by a functionf (p). We as-
sume thatf (p) is bounded and infinitely differentiable, but
may be useful to assume that it has different properties.
operatorf satisfies the commutation relations
02400
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@M̃mn, f #5 i S jm
]

]jn
2jn

]

]jm
D f . ~67!

In particular, we have

@X̃a, f #52 i l S j5
]

]ja
2ja

]

]j5
D f . ~68!

V. THE INTERTWINING OPERATOR

First we have to define the setV,Q, which contains the
physical values of the energy-momentump. It is a union of
orbits of Q with respect to the action ofL, which are iso-
morphic, as homogeneous spaces, to the mass shell of a
sive particle. On these orbits we must havejaja.0 andj5

has a constant valueuj5u.1. In order to have a connecte
set, we also requirej0.0 andj5.1.

On V one can use the coordinatesja, which have simple
transformation properties under the groupG, but, in order to
describe the space-time translations by means of Eq.~6!, one
has to introduce the coordinatespa. Since both the coordi-
nates transform as four-vectors under the Lorentz group,
must have

@~j5!221#21/2ja5s21/2pa, ~69!

and the relation between the two coordinate systems is
termined by the increasing functionj5(s). In the absence of
massless particles, we havej5(s)>j5(s0).1. The measure
n, restricted toV, can be written in the form

n~p!5J~s!d4p,

J~s!52l 24s21u~j5!221uUdj5

dsU. ~70!

Note that different choices of the functionj5(s) define
different observablesXa on the same system, described by
given Hilbert spaceH and a given unitary representationU
of the Poincare´ group.

Each of the orbits we have chosen contains a rota
invariant pointp̂(s) with coordinates

j50, j55coshh, j05sinhh, h.0, ~71!

and we can write

p̂~s!5exp~hJ50! p̂, ~72!

where p̂ is the point introduced in the preceding section.
agreement with Eq.~7!, we write the other points of the
orbits in the form

p5Lpp̂~s!5Gpp̂, Gp5Lpexp~hJ50!. ~73!

In this way, we have partially determined, forpPV, the
choice of the elementsGp introduced in Eq.~55!.

The intertwining operatorA is not uniquely determined
because the same system can define different events.
instance, a many-particle system defines several events
6-7
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responding to the collision of different pairs of particles. Im
portant constraints are the Lorentz and the translation s
metries given by Eqs.~38! and ~19!. The second equation
implies that A is diagonal with respect to the variablep.
Since the wave functionc(p) is not defined outsideV, we
have

C~p!5@Ac#~p!50, p¹V,

C~p!5J21/2~s!A~p!c~p!, pPV, ~74!

where the bounded linear operatorA(p) is represented by a
matrix which acts on the indices of the wave functionc(p)
~not written explicitly!.

From Eqs.~8!, ~38!, and ~57!, using the convention~73!
for Gp , we obtain

A~p!Rs~Lp
21LLp8!5D~Lp

21LLp8!A~p8!,

LPL, p85L21p.
~75!

For L5Lp , we havep85 p̂(s), Lp851, and

A~p!5A„p̂~s!…5A~s!. ~76!

Then we obtain the condition

A~s!Rs~Q!5D~Q!A~s!, QPSO~3!, ~77!

which implies that the matrix which represents the opera
A(s) is diagonal with respect to the indicesj ,m and does not
depend onm. In conclusion, we have

Cg jm~p!5J21/2~s!Ags
j ~s!cs jm~p!. ~78!

Equation~14! gives the condition

Ags8
j

~s!Ags
j ~s!5dss8 ~79!

~no sum over the indexj ).
Under certain conditions, namely, when the wave funct

c vanishes outside a region whereujau!1, we must recover
the results of Ref.@24#. In fact, if we put, in the relevan
region,

ja5 lpa, j55~ l 2s11!1/2, ~80!

we have

J~s!'1, h' ls1/2,

p8a'pa2ka, L'Lp
21Lp8 , ~81!

and Eq.~63! takes the form derived in Ref.@24#.
In this approximation, the GWF is positive and it defin

a POVM on the space-time. If in Eq.~63! we substitute

c~p!→@T~a!c#~p!5exp~ ia•p!c~p!, ~82!

we obtain

r~x!→r~x2a!; ~83!
02400
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namely, the GWF and the corresponding POVM are cov
ant under the translation group in agreement with Eq.~11!.

VI. TRANSLATIONS

It is known that the Snyder model has some proble
with covariance under space-time translations. In the pre
paper we assume the existence of the unitary represent
U(a,L) of the Poincare´ group acting on the physical Hilber
spaceH. According to Wigner’s treatment of symmetry op
erations@43,58,59#, this follows from the general rules o
quantum mechanics and from the existence of equiva
classical reference frames. If we realize that only quant
reference frames exist@36–39#, the situation may be differ-
ent, but a complete consistent treatment of quantum fra
is not yet available. We have already discussed the Lore
transformations properties of the coordinate operatorsXa

and of the corresponding GWF. Now we deal with the tra
lations.

We indicate byf a function of the variablesja defined on
V and the corresponding multiplication operator acting
the spaceH. From Eq.~68! and the properties of the opera
tor A we obtain

@Xa, f #52 i l j5
] f

]ja
. ~84!

In particular, we have

@Xa,pb#52 i l j5
]pb

]ja
~85!

and the following relation between the coordinates measu
in a given frame and in another translated frame:

T~2a!XaT~a!5exp~2 ia•p!Xaexp~ ia•p!

5Xa1 labj5
]pb

]ja
. ~86!

If we adopt Eq.~80!, we obtain the simpler formula

T~2a!XaT~a!5Xa1~ l 2s11!1/2aa. ~87!

We see that the new coordinates depend on the old c
dinates and on the energy-momentum of the object that
fines the event~more precisely, one should speak of th
quantum averages of these quantities!. If the averages of the
coordinates of two events, defined by two objects with d
ferent energy-momenta, coincide when observed by a gi
frame, in general they do not coincide when observed b
translated frame. In other words, the space-time coincide
of events is not an absolute concept, in the same way as
coincidence~simultaneity! is not an absolute concept in sp
cial relativity. Einstein@60# stressed that the absolute chara
ter of space-time coincidence is one of the fundamental p
ciples of general relativity. However, it should not b
considered as a dogma.

It is easy to see that, for any choice of the functionj5(s),
Eq. ~86! is experimentally wrong when applied to a macr
6-8
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EVENTS IN A NONCOMMUTATIVE SPACE-TIME PHYSICAL REVIEW D70, 024006 ~2004!
scopic object for whichl 2s is not negligible compared to 1
A related ambiguity appears if we consider a system co
posed of two noninteracting subsystems and only the
subsystem is used to determine the coordinates of the e
Then it is not clear if the quantities that appear on the ri
hand side of Eq.~86! concern the first subsystem or th
whole system. Clarifying this ambiguity is preliminary for
treatment of macroscopic objects.

In order to avoid these problems, while waiting for som
improvement of the formalism, one can restrict one’s att
tion to events defined by few-particle systems. These d
culties are also present in other theories, like the ‘‘dou
special relativity’’ and related models@61#.

It is useful to remark that, if we consider a single coor
nate or a linear combination of the kindk•X5kaXa, we can
always find an operatorF, depending onk, defined by a
function F(p) with the properties

@F,k•X#5 i , ~88!

exp~2 ilF !k•X exp~ ilF !5k•X1l. ~89!

Since the formalism is Lorentz symmetric, we may consi
in detail only the coordinatesX0 andX1.

In the first case we choose onV the coordinatesj anda
defined by

a5 ln~j01j5!. ln~11iji !5â ~90!

and we have

@F0 ,X0#5 i , F05 l 21a. ~91!

In the other case, we choose onV the coordinatesj0, j2,
j3, andb defined by

j15v sinb, j55v cosb, v5~11w2!1/2,

ubu,arccos~v21!5arctanw5b̂, ~92!

where

w25~j0!22~j2!22~j3!2 ~93!

and we obtain

@F1 ,X1#5 i , F152 l 21b. ~94!

A similar treatment can be given if we choose the expr
sion ~36! for the space coordinates. In this case, however,
also find

@F0 ,Xr #50, r 51,2,3, ~95!

whereF0 is given by Eq.~91!, namely, one can define a tim
translation which acts in the usual way on all the four co
dinates. However, one cannot define space translations
the same property. The better behavior under time tran
tions is paid for by a worse behavior under Lorentz boos

Note that Eq.~89! gives a transformation property of th
non-self-adjoint operatork•X and of the average value of th
corresponding observable. A complete description of the
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tistical properties of this observable, however, requi
knowledge of the corresponding POVM defined by Eq.~41!.
We may expect a covariance property of the kind

exp~2 ilF !mk~ I !exp~ ilF !5mk~ I 2l!, ~96!

but this equation does not follow from Eq.~89!. In fact, if the
four-vectork is spacelike, the self-adjoint operatork•X̃ gen-
erates a rotation and has a discrete spectrum. This mean
the support of the spectral measurem̃k , and also of the
POVM mk , is a discrete subset of the real line, in contrad
tion with Eq. ~96!. This remark shows how delicate is th
treatment of observables not described by self-adjoint op
tors.

VII. VARIANCE OF THE COORDINATE OBSERVABLES

Now we derive some lower bounds for the varianc
given by Eq.~44!. These bounds must hold for any choice
the physical wave functioncPH and of the intertwining
operatorA, and we may more simply require that they ho
for any choice of the wave functionCPH̃, provided that it
vanishes outside the regionV. We also assumes05(2m0)2

50. It follows that our results do not depend on the cho
of the intertwining operatorA and on the relation betweenj5

ands introduced in Sec. V.
We consider first a particular class of events defined

the head-on collision of two spinless particles, even if it
physically rather difficult to prepare a high-energy state
this kind. Then we extend the results to arbitrary events
this simple case, the center-of-mass angular momentumj
50 and the indexs, which represents the center-of-ma
helicities, takes only one value. We also assume thatD in Eq.
~57! is the trivial one-dimensional representation. It is sho
in Ref. @24# that, in a commutative space-time, this mea
that the event isquasibaricentric, namely, it defines a poin
that is as near as possible to the world line of the cente
mass of the object, compatibly with the quantum uncertai
relations.

The wave functions have no indices and we can write
~63! in the simpler form

r~x!5~2p!24E exp~ ik•x!C~p!C~p8!dn~p!d4k.

~97!

From Eq.~65! we see thatX̃a5Ya, whereYa is given by Eq.
~66! and from the results of Sec. III we obtain

~Dxa!25^~xa2ca!2&5E u@~Ya2ca!C#~p!u2dn~p!,

ca5^xa&. ~98!

First we considerDx0. Introducing the variables de
scribed in Eq.~90!, we have

Y052 i l
]

]a
, dn~p!5d3jda. ~99!
6-9
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M. TOLLER PHYSICAL REVIEW D 70, 024006 ~2004!
We use the following family of wave functions parametriz
by the variablel.0:

Cl~j,a!5Clexp~ i l 21ca! f „j,l~a2â !…, ~100!

wheref is a smooth function with compact support vanishi
for negative values of its second argument. We have, a
the change of variablet5la,

15E uC~p!u2dn~p!5uClu2l21E u f ~j,t2lâ!u2d3jdt,

~101!

^~x02c!2&5uClu2l 2lE u f 8~j,t2lâ!u2d3jdt, ~102!

where f 8 is the derivative off with respect to its second
argument. It follows immediately that

lim
l→0

^~x02c!2&50, ~103!

namely, thatDx0 can take arbitrarily small values.
Then we considerDx1 and use the variables described E

~92!. We have

Y15 i l
]

]b
, dn~p!5dj0dj2dj3db. ~104!

If f (b) is a continuous piecewise differentiable functio
which vanishes forubu>b̂, one can prove, by means of th
standard methods of variational calculus, the inequality

E u f 8~b!u2db>p2~2b̂ !22E u f ~b!u2db. ~105!

The equality holds for

f ~b!5C cos
pb

2b̂
. ~106!

If we put

C~p!5exp~2 i l 21cb! f ~j0,j2,j3,b!, ~107!

from this inequality we obtain

^~x12c!2&5 l 2E u f 8~j0,j2,j3,b!u2dn~p!

>p2l 2E uC~p!u2~2b̂ !22dn~p!. ~108!

The quantityb̂ approaches its upper boundp/2 whenw is
very large and we obtain

^~x12c!2&. l 2. ~109!

One approaches this lower bound if the wave function
the form

C~p!5exp~2 i l 21cb! f ~j0,j2,j3!cosb ~110!
02400
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andf is negligible unlessw@1. Similar inequalities hold for
the other space coordinates and we obtain

Dxr. l , r 51,2,3. ~111!

Now we have to show that one cannot obtain sma
variances by using objects of a more general kind. We s
from the formula

^~x12c!2&5E (
g jm

uZjm j8m8
g1

~p!Cg j 8m8~p!

1~Y12c!Cg jm~p!u2dn~p!. ~112!

We put

Cg jm~p!5exp~2 i l 21cb!U jm j8m8
g

~p!C̃g j 8m8~p!,
~113!

whereU jm j8m8
g (p) is a unitary matrix with the property

]

]b
U jm j8m8

g
~p!5 i l 21Zjm j9m9

g1
~p!U j 9m9 j 8m8

g
~p!. ~114!

We obtain

^~x12c!2&5E (
g jm

uY1C̃g jm~p!u2dn~p! ~115!

and we can use the inequality~105! as in the simple case to
get the required result

^~x12c!2&>p2l 2E (
g jm

uC̃g jm~p!u2~2b̂ !22dn~p!. l 2.

~116!

If we take into account the Lorentz symmetry of the fo
malism, we can write the result in the form

D~k•x!. l uk•ku1/2u~2k•k!, ~117!

whereu is the step function. Note that the right hand side
continuous when the four-vectork crosses the light cone
This formula describes completely the possible values of
variance of a single coordinate.

One may ask how an observable that has a discrete s
trum, for instance,k•X with k spacelike, has a lower boun
for the dispersion. This happens because the probab
(c,tk($l%)c), wherel is a point of the spectrum, canno
approach the value 1. In fact, the vectors in the range of
projection operatort̃($l%) have an unphysical energy
momentum spectrum. In other words, we haveit($l%)i,1
and the POVMt corresponding to the observablek•X does
not possess the ‘‘norm-1 property’’ discussed in Ref.@62#.

There are also inequalities that involve the dispersions
two or more coordinates, measured separately on system
the same state, namely, prepared in the same way. We
only two simple examples concerning head-on collisions a
we assume thatca5^xa&50. We consider first a wave func
tion of the kind~110!, which permitŝ (x1)2& to approach its
lower boundl 2, and we compute the quantity
6-10
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EVENTS IN A NONCOMMUTATIVE SPACE-TIME PHYSICAL REVIEW D70, 024006 ~2004!
^~x0!2&5E uY0f ~j0,j2,j3!cosbu2dn~p!

5 l 2E U ] f

]j0
v~cosb!21 f v21j0~sinb!2U2

3dj0dj2dj3db

5 l 2223pE S 3U ] f

]j0U2

v21u f u2@3v22~j0!221# D
3dj0dj2dj3.221l 2. ~118!

We have performed a partial integration with respect toj0

and the integration with respect tob. We see that̂ (x0)2&
and ^(x1)2& cannot both approach their lower bounds in t
same state.

We also consider the wave function

C~p!5 f ~j0!j5, ~119!

wheref is negligible unlessj0@1. With some calculations
we obtain

^~xr !2&' l 2, r 51,2,3, ^~x0!2&'2l 2. ~120!

We see that all three quantities^(xr)2& can approach thei
lower bounds in the same state, but in this case^(x0)2& can-
not be too small.

VIII. JOINT MEASUREMENT OF THE COORDINATES

In the preceding sections we always treat measurem
of a single coordinate or of a linear combination of the
k•X. When we consider the uncertainty relations involvi
two coordinates, it is understood that they refer to meas
ments performed on two different systems, prepared in
same way. However, for a complete physical interpretation
is necessary to consider approximate joint measuremen
different coordinates on the same system.

The same problem appears when we consider the j
measurement of the canonical coordinatesp and q in the
phase space. This problem was treated in Ref.@41# by using
essentially the Wigner function@40#, which unfortunately
was not called by name there. A related treatment, wit
deeper discussion of the physical motivations, is given
Ref. @42#.

The approach of Ref.@41# starts from a formulation of the
correspondence principle in terms of observables with
possible outputs, calledeffects@63# or tests@64#. They can be
considered as POVMs defined on a set composed of
two points, say$1,0%, the corresponding positive operato
beingF and 12F. In a classical~nonquantum! theory a test
is described by a continuous function 0< f (p,q)<1 defined
on the phase space, which gives the probability of obtain
the result 1 if the state is represented by the point (p,q) of
the phase space. We are considering for simplicity a sys
with one degree of freedom.

The problem is to find the positive operatorF that corre-
sponds to the positive functionf, and a natural solution is
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provided by the Weyl rule@54#

F5~2p!21E f̃ ~s,t!exp~2 isP1 i tQ!dsdt, ~121!

f̃ ~s,t!5~2p!21E f ~p,q!exp~ isp2 i tq!dpdq,

~122!

whereP andQ are the quantum operators corresponding
the canonical coordinatesp andq. The operatorF obtained in
this way is not necessarily positive and, in fact, the class
tests that determine a point of the phase space with too
a precision have no corresponding quantum test.

The quantum probability of obtaining the result 1 if th
state is defined by the vectorc is given by

~c,Fc!5E f ~p,q!r~p,q!dpdq, ~123!

where

r~p,q!5~2p!22E exp~ isp2 i tq!

3„c,exp~2 isP1 i tQ!c…dsdt ~124!

is the Wigner function.
The analogy with Eq.~48! is evident: the representationS

of G is replaced by the representation exp(2isP1itQ) of the
Weyl-Heisenberg group, which can also be considered a
projective~ray! representation of the translation group of t
phase space@54#. The analogy can be carried further. A cla
sical test which describes approximate measurements o
four space-time coordinates is represented by a continu
function 0< f (x)<1 defined in the classical Minkowsk
space-time. The corresponding quantum test, if it exists
described by a positive operatorF defined by

~c,Fc!5E f ~x!r~x!d4x, ~125!

where the GWFr is given by Eq.~48!. It is positive only if
the functionf has suitable properties.

If we consider a test describing an approximate meas
ment of the single coordinatek•x, in the classical theory it is
described by the positive functionf (k•x) and in the quantum
theory by the positive operator

F5E f ~l!dtk~l!, ~126!

in agreement with the statistical meaning of the POVMtk
introduced in Sec. IV. In this case, Eq.~125! follows from
the treatment of Sec. IV, and the operatorF is automatically
positive. The complete characterization of the functionsf (x)
which correspond to positive operatorsF is a difficult prob-
lem.
6-11
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IX. CONCLUSIONS

We have examined Snyder’s model of noncommutat
space-time from a particular point of view, namely, by co
sidering the space-time coordinates as ordinary quantum
servables describing measurements on the physical o
which determines an event. The final aim is an approxim
description of some of the effects of quantum gravity, wh
the average value of the gravitational field is negligible.

There are several alternative models and we do not cl
to have chosen the best one. However, we think that som
the following ideas, developed in the preceding sections,
be applied to a large class of models.

~1! The model does not directly require any deformati
of the Poincare´ group and of its Lie algebra, although it
not excluded. The only deformed objects are the opera
Xa which describe the space-time coordinates.

~2! As in the commutative theory, the spectral conditi
requires that the operatorsXa cannot be self-adjoint and the
statistical properties must be described by means of a PO
acting on the physical Hilbert spaceH. It is obtained, by
means of an intertwining operator, from a spectral meas
acting on an auxiliary Hilbert spaceH̃. In the class of mod-
els we are considering, it is the spectral measure of a g
tt.

u

s
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ct
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erator of a representationS of a groupG containing the Lor-
entz group.

~3! The usual covariance property of the coordinates w
respect to space-time translations has to be modified.
propose to interpret this feature as a breakdown of the a
lute character of the concept of space-time coinciden
which is one of the foundations of classical general relativ

~4! From the algebraic properties of the model and
properties of the energy-momentum spectrum, one can
rive lower bounds to the variance of the coordinate obse
ables. These inequalities are strongly model dependent.

~5! The model confirms that there is no contradiction b
tween Lorentz symmetry and limitations to the accuracy
length measurements or a discrete spectrum of the coord
observables@65#.

~6! The model provides an example of a POVM that do
not possess the ‘‘norm-1 property’’ discussed in Ref.@62#.

~7! Several different definitions of the coordinate obse
ables may coexist in the same quantum theory, if we do
introduce any limitation on the positive bounded operat
that can describe physical observables, in particular, the t
tk(I ). In a satisfactory formalism, the choice of the phy
cally correct model of noncommutative space-time sho
follow from an accurate definition of the observables of t
theory.
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