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Events in a noncommutative space-time
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We treat the events determined by a quantum physical state in a noncommutative space-time, generalizing
the analogous treatment in the usual Minkowski space-time based on positive-operator-valued measures
(POVMs). We consider in detail the model proposed by Snyder in 1947 and calculate the POVMs defined on
the real line that describe the measurement of a single coordinate. The approximate joint measurement of all
the four space-time coordinates is described in terms of a generalized Wigner function. We derive lower
bounds for the dispersion of the coordinate observables and discuss the covariance of the model under the
Poincaregroup. The unusual transformation law of the coordinates under space-time translations is interpreted
as a failure of the absolute character of the concept of space-time coincidence. The model shows that a minimal
length is compatible with Lorentz covariance.
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[. INTRODUCTION according to the second point of view. In many treatments
one justifies the properties assumed for the coordinates inter-
It was recognized a long time add] that there is no preted in the first way by means of physical arguments which
reason to believe that the usual space-time concepts maintaioncern the coordinates interpreted in the second way.
their validity at arbitrarily small scales of length and time. It  In the present paper we adopt the second approach,
has also been suggested that the interplay of quantum theoryamely, our aim is to locate physical events in space-time.
and general relativity does not permit the measurement By an event, we mean a physical phenomenon which indi-
distances smaller than the Planck Iength and time interval@ates, with some approximation, a time and three space co-
smaller than the Planck tinjf@—8|. However, in the absence ordinates. A typical example is the collision of two particles.
of a complete theory of quantum gravity, there is no agreetn the center-of-mass systefdisregarding for simplicity the
ment_about the e_xact form_of_the limits to the validity of the quantum effects one can identify the space coordinates of
classical space-time description. the event with the coordinates of the center of mass and the

A natural way to describe a space-time indeterminacy igime coordinate with the time at which the distance between
to consider the space-time coordinates as elements of a NOfie two particles takes its minimum value. In this way, the

cocommutative algebii®—17. This idea is suggested by the event is defined even in the absence of a close collision.

usual quantization procedure, which replaces the commuta- The definition of an event requires a well-defined physical
tive algebra of the functions defined on the phase space by a q phy

noncommutative algebra of operators in Hilbert space. It ha§¥3tem In a state degcrlbeq by a vect,brbelo.ngmg to a
also been shown that a noncommutative space-time can Ba!Pert spaceit. It admits a rigorous mathematical treatment
derived from a quantum deformation which replaces the en@nd @ clear physical interpretation.

veloping algebra of the Poincatge algebra by a noncom- A specific form for the space-time coordinate operators

mutative Hopf algebraquantum group[18—21. X% in a theory symmetric with respect to the conformal
There are two different approaches to the quantization ogroup has been given in Reff22,23. The mathematical

space-time. nature of the coordinate operators concerning an event in a

(i) One can build a mathematical structure, for instance &ommutative Minkowski space-time, within a quantum
noncommutative algebra, which replaces the space-timtheory symmetric with respect to an undeformed Poincare
manifold and the space-time coordinates. It is connected igroup, has been discussed in R¢®1,25. A problem arises
some way with the algebra of the quantum observables, but hecause the coordinate operatdfs as a consequence of the
is not contained in it, in the same way as the classical spac&upport properties of the energy-momentum, cannot be self-
time coordinates act as parameters, and not as observablesaitoint [26,27]. We shall find the same problem in the non-

a field theory. commutative case.

(ii) One can study the quantum observat{€snterpreted A completely satisfactory solution of this problem is ob-
as the space-time coordinates of an event defined by a physained by replacing the spectral measure corresponding to a
cal object. self-adjoint operator by a positive-operator-valued measure

Both points of view are important and deserve attention(POVM) [28—31]. The same idea permits a correct treatment
but one should carefully avoid any confusion between themof the time observable and of the “time of arrival” relevant
Note that in a theory based on the first point of view, onefor time of flight measurementsee, for instancd 32—34).
should still be able to define the coordinates of an event It has been shown in Ref[25] that the non-self-

adjointness of the coordinate operators gives rise to uncer-
tainty relations stronger than the ones that follow in the usual
*Electronic address: toller@iol.it way from the commutation relation85]. These effects have
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to be taken into account in a discussion of the properties of axtended to states with half-integral angular momentum by
noncommutative space-time. introducing the universal coveringL(2,C) of L.

It is important to remark that the ideas outlined above and The translation unitary operators have the spectral repre-
developed in the following sections have a provisional charsentation
acter, because the coordinates are measured with respect to a
classical frame of reference, which is an idealized concept. .
One should consider quantum reference fraf8és-39, de- T(a)= fgexmp -a)du(p), @
scribed by physical quantum objects. Then the velocity and
the angles that determine the orientation of these objeCtghere 9=7* is the four-momentum spaceye Q, and
come into play, together with the space-time coordinates ofy. 3—p%°—p.a is the relativistic scalar product of two

the origin, and have to be quantized. four-vectors. . is a spectral measure, which assigns to a

This program, which lies outside the scope of the presengg | setJC Q a projection operatop(J) in a numerably
paper, has two steps: first one has to quantize the paramete{gyitive way. One can show that

that determine the relation between a quantum frame and a

classical frame, and then one has to consider the relation V(A) (V- YA)= u(Ad), 3
between two quantum frames. One may say that the problem

is to quantize the Poincagroup, but it seem38] that the  whereA J is the set] transformed by the Lorentz matrik.
solution is not a quantum group in the usual sense, namely, According to Mackey[44—46, the unitary representation
Hopf algebra. V(A) and the spectral measugJ) satisfying the relation

In 'the next section, in order to present the necessary maths) form an imprimitivity system which we indicate by
ematical tools, we summarize the treatment of quantunpy ).

events in commutative Minkowski space-time. In Sec. lllwe | the spectral measurg. is concentrated in an orbit
introduce the Snyder model of noncommutative space-time)c 9. we say that the imprimitivity system tsansitive In
and define the coordinate observables in terms of POVMs ofhjs case, according to Mackey’s imprimitivity theorem, the
the real line and of a generalized Wigner function in therepresentation/ can be described explicitly as anduced
classical space-time. In Secs. IV and V we develop the forrepresentationwhich is exactly the one obtained in Wigner's
malism, obtaining more explicit formulas. ~ fundamental papd#3]. In this way one obtains all the irre-

In Sec. VI we discuss the symmetry under space-timgyycible unitary representations of the Poincgreup, and
translations, which, in the model we are considering, presgome of them describe the “elementary” particles.
sents rather unusual features. In Sec. VIl we calculate some \we assume asymptotic completeng&d, namely, that all
lower bounds to the variance of the coordinate observablegye physical states can be described in termsnofr out
justifying the initial motivations of the model. In Sec. VIl particle states. We consider the direct sum decomposition
we show how the approximate joint measurement of the fOU'H=HSeB Hc, whereHs contains states with a discrete mass
coordinates can be treated by generalizing the Wigner fU”CSpectrum, namely, the vacuum and the one-particle states,
tion formalism used to treat the approximate joint measureypile Hc contains the states with a continuous mass spec-
ment of the noncommuting coordinates of the phase spaGgym, namely, the many-particle states. It is physically evi-
[40-42. In Sec. IX we summarize the main results. dent, and it follows from the formalisifi24], that the vacuum
and the one-particle states cannot define an event. They are
too simple to be treated as a “clock” which determines the
time coordinate. Thus, in our treatment of the events, we
consider only states belonging #- and we write} instead

In this section we summarize the treatment of quantunof Hc.
events in the ordinary Minkowski space-time, omitting un-  In order to describe many-particle states, we have to con-
necessary details and emphasizing the steps to be modifisitler nontransitive imprimitivity systems. The supprbf
when a noncommutative space-time is considered. Instead die measure. is composed of many orbits and is contained
the treatment of Ref.24], we follow the more elegant ap- in the closed future cone. It is given by
proach given in Ref[39], based on the ideas of R¢80].

II. EVENTS IN A COMMUTATIVE MINKOWSKI
SPACE-TIME

The event is determined by a physical object described by s=p-p=sy=(2my)?, p°=0, 4
a vector ¢y belonging to the Hilbert spacg{ in which a
unitary representation where mgy is the smallest of the particle massgmssibly
vanishing.

The Hilbert spacé+ is decomposed into a direct integral
of spaces in which irreducible unitary representatigbiRs)
of P operate. Of course, only positive-energy representations
of the proper orthochronous Poincayeup P operate$43]. appear in this decomposition. Since we are not considering
T is the space-time translation group,is the proper ortho- one-particle states, we can disregard zero-mass representa-
chronous Lorentz groum is a four-vector, and\ is a Lor-  tions and we consider only positive-mass IURs, which are
entz 4x 4 matrix. We consider only states with integral an- labeled by the mass'? and the center-of-mass angular mo-
gular momentum, but all our arguments can easily bementum;.

U(a,A)=T(a)V(A), ae7, AeLl (1)
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A vector ye H is described by a wave function of the avoided by assuming that the operate(t) are not projec-
kind ¢,m(p), wherem=—j,—j+1,... ] describes the tion operators, but just positive bounded operators. In other
third component of the center-of-mass angular momentumvords, 7 is a positive-operator-valued measure. The physical
and the indexo stands for all the other quantum numbers. meaning of(«, 7(1) ) is unchanged, and the description of
For instance, in a two-particle state describes the center- quantum observables in terms of POVMs is perfectly com-
of-mass helicitie$48]. It is not necessary to specify the mass patible with the standard interpretation of quantum mechan-
s2, since it is a function op. The range of the indiceso  ics [28—31.

may depend ors. For fixed o, s, andj, the groupP acts It was shown in Ref[49] that the operator(l) cannot

according to the induced representation described by Wigneepresent a quasilocal observaf@@]. In particular, this ob-
[43]. servable cannot be measured by means of operations per-

The norm and the action of the translation group are giveriormed exclusively in the space-time regibn

by The coordinate operatof40) are Hermitian, but not self-

adjoint. The covariance equatidfl) is still valid, but, in-

2_ . 2.4 stead of an imprimitivity system, we havecavariance sys-

Id*= fv% [¥im(P)d"p, © tem still indicated by {U,7), and the imprimitivity theorem

cannot be applied.
[T(@)¥]gjm(pP)=explip-a) gjm(P). (6) Great help comes from a theord80,51-53 that asserts
A that a covariance system can always be obtained from an
We choose in each orbit a representative elenpdsj and  imprimitivity system, which, under some conditions, is
for each four-momenturpe V an elementA ;e £ with the  unique up to isomorphisms. In our case, we can find an im-
property primitivity system, indicated byl, 7), formed by the repre-

- - tation &,A)—U(a,A)=T(a)V(A) of P and a spectral
— A,p(s), ~(s¥20,00T, s=p-p. (7 Sonauon
P=App(s), p(s)=(s 0 s=p-p @ measurer, on the space-tima, both acting in the auxiliary

The operatoV(A) is defined by Hilbert spacel{ and satisfying the covariance condition
[V(A) ¢ im(P) =Ry (@) hgjm (), tS) U(a,A)7(HU"Ya,A)=7(Al +a). (12)

where The connection with the covariance system is given by
p'=A"'p, O=A,*AA,eSQ3), (9

7(1)=AT7()A, AU(a,A)=U(a,A)A, (13

and anm,(G)) is the (2 + 1)-dimensional IUR ofSQ(3). . . . -

According to a naive application of the rules of quantumWwhereA is a bounded linear mapping frofd to . The last
mechaniCS, the Commuting Operatm%’ Wh|Ch represent the equat|0n means that It |S~antertW|n|ng Operatorbetween
coordinates of an event, should have a joint spectral reprehe representations and U. If we assume that the event
sentation necessarily takes place somewhere in space-time, we have

7(M)=1, and it follows that

Xa= JandT<x), (10 ATA=1, (14

wherer is a spectral measure on the Minkowski space-timengmely, 7 is mapped isometrically onto a subspace?tf

M, andx® are the(numerica) coordinates of this space. If . T e
e H with | 4] =1 defines a state of the system, the quantityThe transitive imprimitivity system\,7) can be treated by

. i~ L means of the imprimitivity theorem, and one finds the ex-
(¢, 7(1) ¢) is the probability that the results of a joint mea- licit f ¢ th iof) and of th i
surement of the four coordinates define a point belonging t&'c't forms of the representatioh) and of the auxiliary

the Borel set C M. space{. A complete treatment of the intertwining operafor
A physical requirement is the Poincazevariance, given and of the POVMr can be found in Ref424,25,39.
by the condition If we introduce the self-adjoint operators
U(a,A)r(HU Ya,A)=1(Al +a). 11 < -
(a,A)r(HU~(a,A)=( ) (12) Xa:f Xd7(x), (15
M

This equation means that the representatitfa,A) of P
and the spectral measureon M form a transitive imprimi-
tivity system, which we indicate by, 7).

However, it is known that the equations given above lead

the Hermitian coordinate operators are given by

to a contradiction with the properties of the energy- X*=ATXA. (16)
momentum spectrurfi24,27]. In fact, the unitary operators 5
exp(—ib-X) describe translations in the spa@g which lead The commuting operators(a) have the spectral repre-

to states with unphysical energy-momentum. This problem isentation
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= _ ~ The operatorsS(b,A)=W(b)V(A) defined inH form a
T(@)= JQexp(lp-a)d/L(p), 17) unitary representation of the grod. From Eqgs.(18) and
(24), we see that this representation, together with the spec-

where the spectral measyteis Lorentz covariant, namely, tral measureu defined onQ, forms an imprimitivity system
in analogy with Eq(3), we have (S,u), which is the starting point of the next section.

V(A r(HVHA)=n(AJ). (19
IIl. THE SNYDER MODEL

By comparing Eq(17) with Egs.(2) and(13) we obtain Now we are ready to discuss the model of noncommuta-

_~ tive space-time proposed a long time ago by Sny8eil4).
Ap()=p(DA, JCQ. (19 Actually, as we shall see, there are several options and it is
We can also consider the unphysical energy-momentum ogl©re correct to speak of a class of Snyder's models. Re-
erators cently it has been shown that some Qf them are related to
models obtained from quantum Poincageoups [20,21].
- - Note that, while the formalism summarized in the preceding
Pa:f p*du(p) (200 section is derived in a univocal way from sound physical
Q principles, the modifications considered in the following are
just a provisional attempt, based on Snyder’s ideas and on
the analogy with the commutative case.
The idea, reformulated in our language, is to replace the

defined in the auxiliary spack.
We introduce the unitary operators

_ ~ imprimitivity system (S,,ﬂ) introduced at the end of the pre-
W(b)=f exp(—ib-x)d7(x) (21)  ceding section by another imprimitivity system, denoted in
M the same way, where the grod is replaced by another
and from Eq.(12) it follows that groupg, containing the Lorentz groug, andSis a unitgry
representation off acting on the auxiliary Hilbert spack.
T(a)W(b)T(—a)=expia-b)W(b). (220  The action of the Poincargroup P on the spacé{ of the

physical states is still described by the unitary representation
This equation shows that the operatd(s) =exp(a-P) and U and by the imprimitivity system\(,x) introduced in the

W(b)=exp(=ib-X) form a unitary representation of the preceding section. , -
four-dimensional Weyl-Heisenberg grodf4], which is a The manifoldQ on which the spectral measugeis de-

precise formulation of the canonical commutation relations fined is @ homogeneous spacecoand it has to be modified
with respect to the one introduced in Sec. Il. It must contain

[P, XA =ig”, (23) a Lorentz invariant sev, identified with the support of the
’ physical spectral measuge, in such a way that Eq19) is

These operators, however, do not operate in the physical Hiftill meaningful. We callQ the extended energy-momentum

bert spacéH, but in the auxiliary spacé{. space_ _ i o ~
It follows from Eq.(22) that As in the preceding section, we indicate Ky the self-
adjoint generators of four suitably chosen one-parameter
W(b) () W(—b)=(I+b). (24) subgroups ofj. Now, however, these operators do not nec-

essarily commute. The operators that represent the coordi-
This covariance equation shows that the unitary operatorgate observables are defined by Etf). As in the commu-

W(b) describe translations in the energy-momentum spacé‘."_‘t'Ve case, and for t~hae same reasons, itis not. possible t‘? use
It follows that the support of is the whole energy- directly the operator¥“, which do not operate in the physi-

momentum space, but there is no problem, because theCal Hilbert space.

=~ ) The natural choices for the group are the connected
spectrum ofu is not the physical energy-momentum SloeC'components of the identity of the de Sitter grdai(1,4) or
trum. The generators of these translations are the self-adjoi

~ e anti—de Sitter groupO(2,3), or their universal cover-
operatorsx*. ings. We shall treat the first choice in detail, but the other
In conclusion, we have~studied a large group acting unitases can be treated in a similar way. By considering the
tarily on the auxiliary space{. It is the semidirect product of universal covering, one can also treat events defined by sys-
the Lorentz group£ and the four-dimensional Weyl- tems with half-integral angular momentum.
Heisenberg group, which, in turn, contains the space-time We considerG as a group of real matrices operating on a
translation group7 and the translation grouf’ of the five-dimensional vector space with coordinatgsand a di-
energy-momentum space. Of cour§e, cannot act on the agonal metric tensog,,, defined bygo,=1, g11=02,= 033
physical Hilbert spacé{. We indicate byP’' the subgroup =gss=—1. Here and in the following, the indicgs,v,p,o
generated by and7 . It is isomorphic to the usual Poin- take the values 0, 1, 2, 3, 5, while the indice®, y take the
caregroupP, but its meaning is different. values 0, 1, 2, 3. The matricdse G satisfy the condition
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I'gr=g. (25) X'=I(M®+M™0), r=123, (36)

The matrices that do not affect the coordingfeform the  and we have the commutation relations

Lorentz subgroupl. In the following, we indicate by the

same symbol a %4 Lorentz matrix and the corresponding [X",X5]=0, [X°X=-ilX", (37)
5X5 matrix belonging taj.

The infinitesimal transformations are represented by th&vhich were derived irj18] from the quantum group formal-
matrices= ,,= — =, defined by ism. In the following we shall adopt the definitig81), but a

model based on Ed36) can be treated in a similar way.
e N 1 5 As we anticipated above, the physical coordinates of the
I#,=0,+ €, +0(e) =0, + 575 ,,", + O(e), event are described by the operat¥fsdefined in the physi-
(26)  cal Hilbert spaceft by Eq.(16), where the intertwining op-
eratorA:H—H has the propertie€l4), (19), and
EPU”V: 5;?91;0—_ 5Iggvp . (27)

They satisfy the commutation relations

AV(A)=V(A)A, AeL. (38)

L _ _ _ _ The condition(19) is related to the translational symmetry of
[:',u,v 1:p0]:gvp:’,u0'_gup:’ VU_gVU:‘Mp+g;LU': vp the OperatorA. This delicate prObIem will be discussed in
28) Secs. V and VI.
of the Lie algebrao(1,4). Ir_w _order to get a detailed_ physical interpretation, it is not

. ~ . sufficient to know the Hermitian operatoxs’, because they
It follows that the self-adjoint generatok8 ,, of the uni- 45 ot determine uniquely the corresponding POVMs de-
tary representatio8(I") defined by fined on the real lin®. It is also interesting to consider more

1 pom 1 oo general observables of the kind
S(exp(2 te”E,,))=exp(—2 tierM,,) (29

X= a— AT X
satisfy the commutation relations k-X=kX“=ATk-XA. (39
Since the operatdk- X is the generator of a one-parameter

M, .M =i M,o—9.,M,0—9,.M,,+9,.M,.).
(M s Mo =1(80pM s = oMo = GuoM g’“’M””%O) subgroup ofg, it is self-adjoint and it has the spectral repre-

sentation
We put
- k-X= | Nd7(N), 40
%= IS, (31) L 7N 40
wherel is a fundamental length, and we obtain which defines the spectral measugeimplicitly. The statis-
~ o~ oo tics of the results of a measurementlofX is completely
[Xa: Xp]=i1"Myg, (32 described by the POVM
[Map.X,]=1(95yXa— GayXp). (33 n(D=A"7(DA, ICR. (41)
The last formula shows that the operatdté transform as We have, as usual,
the components of a four-vector under the action of the Lor-
entz group. If, in agreement with the preceding section, we (k-x>=(1//,ATf )\d;k()\)Az,b> = (k- Xp). (42
put R
V(A)=S(A), AeCL, (34  However, for the square and higher powers of the coordi-
nates, we obtain a more complicated expression, namely,
we obtain the following transformation property ¥f under
finite Lorentz transformations: ((k-x)2>= ‘ﬂ’ATJ )\2d~rk()\)A¢)
R
V(A HXV(A)=ApXE. (35)

= (P, AT(k-X)2AP) = (g, (k- X)%9). (43

Note that, since the operatoxs' do not commute, one can- From these formulas we obtain the variances

not write for them a joint spectral representation of the kind
(15). Ax=({(x9)%) = (x)H) 12 (44)
If we abandon the Lorentz covariance, still maintaining
the rotational covariance, we have more freedom and, fofhe corresponding uncertainty relations are discussed
instance, as suggested in Rdf20,21], we can replace the in Sec. VII.
space components of E(B1) by the expressions More generally, we may consider the average value

024006-5



M. TOLLER

<f(k.x>>=(¢,j f(h)drk(w)

:f?(exexp(—iak-x»do, (45)

where

"f'(e):(zw)—lf f(\)exp(i 6N )dX,

f(x)zf“f(e)exq—iax)do, (46)

<exp(—iek-x)>=(¢,ATJ exp(—iON)d7 (M)A

=(V,exp —i6k-X)¥)
= (W, Sexp(— 0Ik“E .5)]V),

¥ =Ay. (47)

If we introduce the real function

p(x)z(zw)*“f explik-x) (¥, [ exp — K2 ) [¥)d*,
(48)

we obtain

(f(k-x)):f f(k-x)p(x)d*x. (49
Note, however, thgt(x) cannot be interpreted as a probabil-
ity density in the Minkowski space-tim#1, because it may
take negative values. It plays the same role as the Wign
function in the phase spa¢d0] and we call it the general-
ized Wigner functionGWEF). It is the Fourier transform of a

PHYSICAL REVIEW D 70, 024006 (2004

is a Hermitian-operator-valued distribution on the Minkow-
ski space-time, which replaces the POViMn the noncom-
mutative case. The Hermiticity follows from the unitarity of
S It is the Fourier transform of a bounded continuous
operator-valued function.

From Eqgs(35) and(38) we obtain the Lorentz covariance

property

V(A) 7(X)V " HA)=7(AX). (52)

IV. THE INDUCED REPRESENTATION S

Now we have to enter into the details of the formalism
proposed in the preceding section. The extended energy-
momentum space€ is an orbit inR® defined by the condi-
tion

9., 8= (92— 1€~ (&)%=—1, (53
where £ is a vector with component&!, £€2,£3. We indicate
by p a generic element of. The quantitiest* form a re-
dundant system of coordinates in the manif@] which
have no particular physical meaning. An invariant measure
on this manifold is given by

duv(p)=21"*8(£,&"+1)d>¢

=174 71 d®E= 1710 THded®E (54
In order to write the induced representation corresponding
to the transitive imprimitivity systemS, ), we choose the
elementpe Q with coordinatesé=0, £&=0, &=1. The
corresponding stability group is the Lorentz grodp con-
sidered as a subgroup ¢f The inducing representatioh
—D(A) is a unitary representation d@f, and we indicate by

e’f# the Hilbert space in which it operates. We choose the

elementd’, e G with the property

continuous bounded function and since, at the present stage, p=Tpp. peQ. (59

we do not know if this function decreases sufficiently fast at . ~ .

infinity, p may be a generalized function in the sense of Ref. The H|Ibe_rt spacet _'5 composed of fuﬂnctlonﬁf_(p) de-

[55], namely, a distribution. fined onQ with values in the Hilbert spackK and with norm
The GWFp(x) is completely determined by the average diven by

values{f(k-x)); namely, it can be measured with any re-

quired accuracy by performing many coordinate measure- ||\;[I||sz ¥ (p)||?dw(p). (56)
ments on many states prepared in the same way. It describes Q
the statistical properties of the observabk$ completely _ ) _ ]
and provides a useful tool independently of the model conThe induced representati®(I’) is defined by
sidered.
We can also write [S(F)q,](p): D(A)\I’(p,)! (57)
P9 = (W, 7(X) ), (50 ~ Wwhere
where p'=T"p, A=T,'IT,eL. (58)

The inducing unitary representati@n(A) can be repre-
sented as a direct integral of IURs, as explained in 2.
The matrix elements of these IURs, indicated by
D;v'mcj,m,(A), are described in Ref$55—57. The possible
values of the indices are

T(x)z(zw)—“f exp(ik - x)ATS exp( — 1k“E ,5) JAd*k
=(2w)*4f exp(ik - x)ATexp(—ik-X)Ad*k  (51)
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M=0,+1,+2,..., c?<1,

i=IMLIM[+1,..., m=—],—j+1,...,.

(59

If M+0, c must be imaginary. The representatid¥¢ and

D M-~¢ are unitarily equivalent. Moreover, there is the

PHYSICAL REVIEW D70, 024006 (2004

[W”f]=i<§“ ’ —fvi)f. 67
’ g, > 9&,
In particular, we have
[X f]——il<§5i— « )y (68)
' B aga (955 .

trivial one-dimensional representation, which we indicate by

DL The restriction of these representations to the rotation

subgroup is given by

Mc _ j
Djmj’m’(®)_ 5“/R

mm'(

0), 0SQ3). (60)

In order to simplify the formalism, avoiding integrals over
the parametet, we assume thdd is a direct sum of IURs of
the kind described above, labeled by the ingexX his means

that the elements of{ are described by the wave function
W ,im(p) with the norm given by

iz [ S W melane), 6
Qyjm
and the induced representati(Bv) takes the form
[S(T)¥],m(P)=De,  (A)W i (p'), (62

where the sum over the indicgsm’ is understood and the
guantitiesM,c depend on the index.
The GWF(48) takes the more explicit form

p(x)=(2w)‘4f exXplik- X)W 5m(P)Djor  (A)

X\If,}/jrm/(p’)dV(p)d4k, (63)
wherep’ and A are given by Eq(58) and
F=exp —Ik*E ,5). (64)

V. THE INTERTWINING OPERATOR

First we have to define the s¥tC Q, which contains the
physical values of the energy-momentymlit is a union of
orbits of @ with respect to the action of, which are iso-
morphic, as homogeneous spaces, to the mass shell of a mas-
sive particle. On these orbits we must hayg®>0 andé&®
has a constant valug®|>1. In order to have a connected
set, we also requiré®>0 and&°>1.

OnV one can use the coordinaté$, which have simple
transformation properties under the gra@pbut, in order to
describe the space-time translations by means of@gone
has to introduce the coordinate$. Since both the coordi-
nates transform as four-vectors under the Lorentz group, we
must have

[(65)2_ 1] 71/2511: s~ 1/2pa, (69)
and the relation between the two coordinate systems is de-
termined by the increasing functigi(s). In the absence of
massless particles, we hag®(s)=£%(s,)>1. The measure
v, restricted toV, can be written in the form

v(p)=J(s)d*p,

de°

J(s)=21"%s7Y(£°)%-1] a5l (70)

Note that different choices of the functiaf?(s) define
different observableX“ on the same system, described by a
given Hilbert spacé{ and a given unitary representatioh

The generator$l ,, defined by Eq(29) can be decom- ©f the Poincaregroup. . _
posed into a part that acts on the angular momentum indices Each of the orbits we have chosen contains a rotation
j,m and a part that acts on the dependence of the waviavariant pointp(s) with coordinates
function onp; in particular, we can write

£=0, &=coshy, &=sinhy, >0, (71
Y a _7va a
[XWTim(P)=Z ] (PYW 3 (P) YW (P, and we can write
(65)
where the matriﬂfrﬁj,m,(p) is Hermitian and P(s)=exp7=50)P, (72
P P wherep is the point introduced in the preceding section. In
Yaz_i|(§5__ a_)_ (66) agreement with Eq(7), we write the other points of the

9€a 9€s orbits in the form

These derivatives act on an arbitrary smooth extension of a
function in a neighborhood of in R®.

We consider the operatofsacting on the spacé{ by
multiplying the wave function by a functiofi(p). We as-  choice of the elementg,, introduced in Eq(55).
sume thaf (p) is bounded and infinitely differentiable, butit ~ The intertwining operatoA is not uniquely determined,
may be useful to assume that it has different properties. Thbecause the same system can define different events. For
operatorf satisfies the commutation relations instance, a many-particle system defines several events cor-

p=Ap(s)=Cpp, T,=ApexpnEsp). (79

In this way, we have partially determined, fpre V, the
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responding to the collision of different pairs of particles. Im- namely, the GWF and the corresponding POVM are covari-
portant constraints are the Lorentz and the translation symant under the translation group in agreement with &d).
metries given by Eqs(38) and (19). The second equation

implies thatA is diagonal with respect to the variabfe VI. TRANSLATIONS
Since the wave functiog/(p) is not defined outsid®’, we
have It is known that the Snyder model has some problems
with covariance under space-time translations. In the present
Y(p)=[Ay](p)=0, pe&, paper we assume the existence of the unitary representation
U(a,A) of the Poincargroup acting on the physical Hilbert
V(p)=J"YAs)A(p)¢(p), peV, (74)  spaceH. According to Wigner’s treatment of symmetry op-

. . erations[43,58,59, this follows from the general rules of
where the bounded linear opera®{p) is represented by @ ¢;antum mechanics and from the existence of equivalent

matrix which acts on the indices of the wave functid(p)  jassical reference frames. If we realize that only quantum

(not written explicitly. _ _ reference frames exi§86—39, the situation may be differ-
From Eqgs.(8), (38), and(57), using the conventioi73)  gnt byt a complete consistent treatment of quantum frames
for I'y, we obtain is not yet available. We have already discussed the Lorentz

transformations properties of the coordinate operakts

-1 _ -1 ’
APIR(Ap “AAp)=D(A; AN AP, and of the corresponding GWF. Now we deal with the trans-

A1 lations.
AeLl, p'=A""p. (75) We indicate byf a function of the variable§” defined on
VY and the corresponding multiplication operator acting on
For A=A,, we havep’=p(s), A, =1, and the space{. From Eq.(68) and the properties of the opera-
P . tor A we obtain
A(p)=A(p(s))=A(s). (76) s
a i1 ¢S5
Then we obtain the condition [Xf]=—ilg 9E," (84)
A(S)R{(®)=D(0)A(s), ©eSO3), (77 In particular, we have
which implies that the matrix which represents the operator apP
A(s) is diagonal with respect to the indicgsn and does not [X* pPl=—il & (85)
depend orm. In conclusion, we have IEa
¥ — 3 Y2 A ()i _ 78 and the following relation between the coordinates measured
yin(P) (9)A5(8) Yoim(P) 79 in a given frame and in another translated frame:
Equation(14) gives the condition ) ]
T(—a)X*T(a)=exp(—ia-p)X“expia-p)
A ()AL (S)=5,, (79
o (o oo J
, ’ . :x“+|aﬁg5ﬁ. (86)
(no sum over the indek). I
Under certain conditions, namely, when the wave function i .
¥ vanishes outside a region whé| <1, we must recover || We adopt Eq.(80), we obtain the simpler formula
the results of Ref[24]. In fact, if we put, in the relevant T(—a)XeT(a) =X+ (12s+1)"2a2. 87
region,
gr=1p®, £5=(12s+1)2 (80) We see that the new coordinates depend on the old coor-
' ’ dinates and on the energy-momentum of the object that de-
we have fines the eventmore precisely, one should speak of the
" quantum averages of these quantjtiésthe averages of the
J(s)=~1, n=Is™ coordinates of two events, defined by two objects with dif-
e o tw . ferent energy-momenta, coincide when observed by a given
p'i~p—k* A=A AL, (81 frame, in general they do not coincide when observed by a

translated frame. In other words, the space-time coincidence
of events is not an absolute concept, in the same way as time
coincidencegsimultaneity is not an absolute concept in spe-
cial relativity. Einstein60] stressed that the absolute charac-

and Eq.(63) takes the form derived in Reff24].
In this approximation, the GWF is positive and it defines
a POVM on the space-time. If in E¢63) we substitute

_ . ter of space-time coincidence is one of the fundamental prin-
Y(p)=[T(@)yl(p)=expia-p)u(p), 82 ciples of general relativity. However, it should not be
we obtain considered as a dogma.
It is easy to see that, for any choice of the functiSgs),
p(X)—p(x—a); (83 Eq. (86) is experimentally wrong when applied to a macro-
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scopic object for which?s is not negligible compared to 1. tistical properties of this observable, however, requires
A related ambiguity appears if we consider a system comknowledge of the corresponding POVM defined by E).
posed of two noninteracting subsystems and only the firstVe may expect a covariance property of the kind
subsystem is used to determine the coordinates of the event.
Then it is not clear if the quantities that appear on the right
hand side of Eq.(86) concern the first subsystem or the ) ) )
whole system. Clarifying this ambiguity is preliminary for a but this equation does not follow from E@9). In faci, if the
treatment of macroscopic objects. four-vectork is spacelike, the self-adjoint operatorX gen-

In order to avoid these problems, while waiting for someerates a rotation and has a discrete spectrum. This means that
improvement of the formalism, one can restrict one’s attenthe support of the spectral measusg, and also of the
tion to events defined by few-particle systems. These diffiPOVM n,, is a discrete subset of the real line, in contradic-
culties are also present in other theories, like the “doublytion with Eq. (96). This remark shows how delicate is the

special relativity” and related mode[$1]. treatment of observables not described by self-adjoint opera-
It is useful to remark that, if we consider a single coordi-tors.

nate or a linear combination of the kikd X=k_X“, we can
always find an operatoF, depending ork, defined by a
function F(p) with the properties

exp —inNF) u(h)exp(inF) = u (1 =N), (96)

VIl. VARIANCE OF THE COORDINATE OBSERVABLES

Now we derive some lower bounds for the variances

[F.k-X]=1, (88 given by Eq.(44). These bounds must hold for any choice of
] ] the physical wave functionye H and of the intertwining
exp( —iINF)k-Xexp(inF)=k-X+X. (89 operatorA, and we may more simply require that they hold

Since the formalism is Lorentz symmetric, we may considef©r @ny choice of the wave functioW 7, provided that it

in detail only the coordinateX® and X*.
In the first case we choose dhthe coordinateg and «
defined by

a=In(+ ) >In(1+4) = (90)

and we have

=11

[Fo,.X%]=i, Fy a. (91)

In the other case, we choose brthe coordinateg®, £,
£, and B defined by
&=y sing,

H=vcosB, v=(1+w???

| 8| <arccogv ~!)=arctarw= g, 92
where
W2=(£9)2—(£2)7— (&) (93
and we obtain
[F1.XY=i, F;=—1"18. (99)

A similar treatment can be given if we choose the expres
sion (36) for the space coordinates. In this case, however, w

also find

[Fo.X']=0, r=1,23, (95

whereF is given by Eq(91), namely, one can define a time

vanishes outside the regian We also assums,=(2m)?
=0. It follows that our results do not depend on the choice
of the intertwining operatoA and on the relation between
ands introduced in Sec. V.

We consider first a particular class of events defined by
the head-on collision of two spinless particles, even if it is
physically rather difficult to prepare a high-energy state of
this kind. Then we extend the results to arbitrary events. In
this simple case, the center-of-mass angular momentum is
=0 and the indexo, which represents the center-of-mass
helicities, takes only one value. We also assumelhat Eq.

(57) is the trivial one-dimensional representation. It is shown
in Ref. [24] that, in a commutative space-time, this means
that the event igjuasibaricentric namely, it defines a point
that is as near as possible to the world line of the center of
mass of the object, compatibly with the quantum uncertainty
relations.

The wave functions have no indices and we can write Eq.
(63) in the simpler form

p(X)=(27T)74j exp(ik-x)W(p)W(p")dw(p)d*k.
97)

From Eq.(65) we see thaX“=Y®, whereY“ is given by Eq.

?66) and from the results of Sec. Il we obtain

(AX“)2=<(X“—C“)2>=f [L(Ye=c)WI(p)|2dw(p),

c¥=(x%). (98)

translation which acts in the usual way on all the four coor-
dinates. However, one cannot define space translations with
the same property. The better behavior under time transla- First we considerAx®. Introducing the variables de-
tions is paid for by a worse behavior under Lorentz boosts.scribed in Eq(90), we have

Note that Eq(89) gives a transformation property of the
non-self-adjoint operatde- X and of the average value of the

0_
corresponding observable. A complete description of the sta- Y

(99

~il o~ dv(p)=d’&da.

024006-9



M. TOLLER PHYSICAL REVIEW D 70, 024006 (2004

We use the following family of wave functions parametrized andf is negligible unlessv>1. Similar inequalities hold for
by the variablex>0: the other space coordinates and we obtain

W, (&a)=C explil tca)f(EN(a—a)), (100 Ax"™>1, r=1,23. (111

wheref is a smooth function with compact support vanishing Now we have to show that one cannot obtain smaller
for negative values of its second argument. We have, afte¥ariances by using objects of a more general kind. We start
the change of variable=\ «, from the formula

1=f |\If(p)|2dv(p)=|CA|2)ClJ'|f(§,t—)\&)|2d3§dt, <(x1—0)2>=f me 1Z) i (P ()

101
ov +(Yi=0)W,in(p)?dr(p). (112

((xo—c)2>=|CA|2I2)\j|f’(§,t—)\&)|2d3§dt, (102  We put

— i -1 ST
where f’ is the derivative off with respect to its second W im(P)=exp( =il 2CB) U (D)W 5 (D),
argument. It follows immediately that 113
lim ((x°—¢)2)=0, (103 whereujymj,m,(p) is a unitary matrix with the property
A—0
itrari ’ v =il -1z u’, 114
namely, thatAx® can take arbitrarily small values. 8 jmjrm (P)=I imirmr(PIU e (P). (114)
Then we consideAx! and use the variables described Eq.
(92). We have We obtain
o d ~
vi=ilZg, dv(p)=dedgdeds. (109 ((x'=0)%)= f me YW im(p)%dp(p) (119

If f(B) is a continuous piecewise differentiable function and we can use the inequalit¥05) as in the simple case to
which vanishes fof8|= 3, one can prove, by means of the get the required result
standard methods of variational calculus, the inequality

A (=027 [ 3 [T, (p)2(2B) 2du(p)>12
[ 1tBlap=r2p) [ 11plap.  aos ’ 16

The equality holds for If we take into account the Lorentz symmetry of the for-
malism, we can write the result in the form

f(ﬁ)=CCOS%- (106 A(k-x)>1]k-k|Y20(—k-k), (117

whered is the step function. Note that the right hand side is

If we put continuous when the four-vectde crosses the light cone.
W (p)=exp —il “1cB) (2,626, B), (107 Thi_s formula dgscribes cor_npletely the possible values of the
variance of a single coordinate.
from this inequality we obtain One may ask how an observable that has a discrete spec-

trum, for instancek- X with k spacelike, has a lower bound
, for the dispersion. This happens because the probability
<(Xl—C)2>=|2f [f/(£%,6%,6%,B)|*dv(p) (¢, 7 ({\}) ¥), where\ is a point of the spectrum, cannot
approach the value 1. In fact, the vectors in the range of the
27T2|2J |W(p)|2(2B) 2dv(p). (108  Pprojection operatorr({\}) have an unphysical energy-
momentum spectrum. In other words, we hw¢{\})| <1
and the POVMr corresponding to the observalieX does
not possess the “norm-1 property” discussed in R6£].
There are also inequalities that involve the dispersions of
(xt=c)?)>12. (109 two or more coordinates, measured separately on systems in
the same state, namely, prepared in the same way. We give
One approaches this lower bound if the wave function ha§nly two simple examples concerning head-on collisions and
the form we assume that*=(x“)=0. We consider first a wave func-
tion of the kind(110), which permits((x*)?) to approach its
P(p)=exp —il 1cB)f(£° 2,63 cosB (110 lower boundl?, and we compute the quantity

The quantityB approaches its upper bount2 whenw is
very large and we obtain
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<(X0)2>=f YO (&9, €2, %) coslcln(p) provided by the Weyl rul¢54]

of 2 F=(2w)*1f?((r,7)exq—iap+iTQ)dodT, (122
=I2j a—gov(cos{j)%fv‘lgo(sinﬁ)2
x d&%dg2deddB 'f(a,r)=(2w)‘1f f(p,a)expliop—irg)dpdg,
—129-3 Jf ’ 2 2 —27 £0\2 (122)
- Wf (3 a_go oS0 (D _1]) whereP and Q are the quantum operators corresponding to

O e2 A3 m112 the canonical coordinatgsandg. The operatoF obtained in
Xd&tderdem>271%. (118 this way is not necessarily positive and, in fact, the classical
tests that determine a point of the phase space with too high
a precision have no corresponding quantum test.

The quantum probability of obtaining the result 1 if the
state is defined by the vectaris given by

We have performed a partial integration with respectto
and the integration with respect 1. We see thaf(x°)?)
and{(x1)?) cannot both approach their lower bounds in the

same state.
We also consider the wave function
(w,Fw)=J f(p,a)p(p,q)dpdq, (123
V(p)=f(£%¢, (119
wheref is negligible unlesg®>1. With some calculations, where
we obtain
(x)2=12, r=1,2,3, ((x)%)=~212 (120 p(p,a)=(2m) 2 f expliop—irq)
We see that all three quantitiééx')?) can approach their X (g, exp —ioP+imQ)y)dodr (124
lower bounds in the same state, but in this c4sé)?) can-
not be too small. is the Wigner function.
The analogy with Eq(48) is evident: the representati@
VIll. JOINT MEASUREMENT OF THE COORDINATES of G is replaced by the representation exp§P+i7Q) of the

Weyl-Heisenberg group, which can also be considered as a
Erojective(ray) representation of the translation group of the
phase spacgb4]. The analogy can be carried further. A clas-

In the preceding sections we always treat measuremen
of a single coordinate or of a linear combination of them,

K-X. When we consider the uncertainty relations InVOIV'ngsical test which describes approximate measurements of the

two coordinates, it is understood that they refer to measureg) | space-time coordinates is represented by a continuous

ments performed on o different systems, prepared in th. nction O<f(x)<1 defined in the classical Minkowski

same way. However, for a complete physical interpretation, i ace-time. The corresponding quantum test, if it exists, is

iS necessary to consider approximate joint measurements Abscribed by a positive operatBrdefined by
different coordinates on the same system.

The same problem appears when we consider the joint
measurement of the canonical coordinapeand q in the (zﬁ,Fz,b):J f(x)p(x)d*x, (125
phase space. This problem was treated in REf] by using
essentially the Wigner functiofdQ], which unfortunately o ) . )
was not called by name there. A related treatment, with §here the GWhp is given by Eq.(48). It is positive only if
deeper discussion of the physical motivations, is given irfh€ functionf has suitable properties. _
Ref. [42]. If we cons!der a test Qescrlbw_]g an appr(_mmate measure-
The approach of Ref41] starts from a formulation of the ment _of the single co_o_rdlnate X, in the class_lcal theory itis
correspondence principle in terms of observables with twdlescribed by the positive functidifk-x) and in the quantum
possible outputs, calleeffects63] or tests[64]. They can be theory by the positive operator
considered as POVMs defined on a set composed of only
two points, say{1,0}, the corresponding positive operators _
beingF and 1-F. In a classicalnonquantumtheory a test F_J' F)dmdh), (126
is described by a continuous functios=0(p,q)=<1 defined
on the phase space, which gives the probability of obtainingn agreement with the statistical meaning of the POW¥M
the result 1 if the state is represented by the pogmg) of  introduced in Sec. IV. In this case, E@L25 follows from
the phase space. We are considering for simplicity a systertine treatment of Sec. IV, and the operafois automatically
with one degree of freedom. positive. The complete characterization of the functibpg
The problem is to find the positive operatérthat corre-  which correspond to positive operatdtds a difficult prob-
sponds to the positive functiofh and a natural solution is lem.
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IX. CONCLUSIONS erator of a representatiddof a groupg containing the Lor-
. ) . entz group.

We have examined _Snyders_ mode] of noncommutative (3)gThepusuaI covariance property of the coordinates with
space-time from a particular point of view, namely, by con-respect to space-time translations has to be modified. We
sidering the space-time coordinates as ordinary quantum obyonase 1o interpret this feature as a breakdown of the abso-
servables describing measurements on the physical objefjte character of the concept of space-time coincidence,
which determines an event. The final aim is an approximatyhich is one of the foundations of classical general relativity.
description of some of the effects of quantum gravity, when (4) From the algebraic properties of the model and the
the average value of the gravitational field is negligible. properties of the energy-momentum spectrum, one can de-

There are several alternative models and we do not claimive lower bounds to the variance of the coordinate observ-
to have chosen the best one. However, we think that some @fbles. These inequalities are strongly model dependent.
the following ideas, developed in the preceding sections, can (5) The model confirms that there is no contradiction be-
be applied to a large class of models. tween Lorentz symmetry and limitations to the accuracy of

] . . length measurements or a discrete spectrum of the coordinate

(1) The quel does not directly require any deformat'onobservablesﬁ(ss].
of the Poincarggroup and of its Lie algebra, although it is (6) The model provides an example of a POVM that does
not excluded. The only deformed objects are the operatorgqt possess the “norm-1 property” discussed in R62].

X* which describe the space-time coordinates. - (7) Several different definitions of the coordinate observ-

(2) As in the commutative theory, the spectral condition ghles may coexist in the same quantum theory, if we do not
requires that the operatoXs* cannot be self-adjoint and their jntroduce any limitation on the positive bounded operators
statistical properties must be described by means of a POVithat can describe physical observables, in particular, the tests
acting on the physical Hilbert spadé. It is obtained, by 7, (1). In a satisfactory formalism, the choice of the physi-
means of an intertwining operator, from a spectral measurga|ly correct model of noncommutative space-time should
acting on an auxiliary Hilbert spac¥. In the class of mod- follow from an accurate definition of the observables of the
els we are considering, it is the spectral measure of a genheory.
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