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Near-horizon conformal symmetry and black hole entropy in any dimension
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Recently, Carlip proposed a derivation of the entropy of the two-dimensional dilatonic black hole by inves-
tigating the Virasoro algebra associated with a newly introduced near-horizon conformal symmetry. We point
out not only that the algebra of these conformal transformations is not well defined on the horizon, but also that
the correct use of the eigenvalue of the operatorL0 yields vanishing entropy. It has been shown that these
problems can be resolved by choosing a different basis of the conformal transformations which is regular even
at the horizon. We also show the generalization of Carlip’s derivation to any higher dimensional case in pure
Einstein gravity. The entropy obtained is proportional to the area of the event horizon, but it also depends
linearly on the product of the surface gravity and the parameter length of a horizon segment in consideration.
We finally point out that this derivation of black hole entropy is quite different from the ones proposed so far,
and several features of this method and some open issues are also discussed.
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I. INTRODUCTION

In the last several years, much attention has been pa
the challenging idea that the black hole entropy could
derived from some symmetry inherited in general relativ
classically, without knowing the details of quantum gravit
The essence of this idea is to construct an algebra of gen
tors associated with a certain symmetry inherited classic
in the gravity theory considered. If such algebra obtained
Virasoro algebra with a nonvanishing central charge, it mi
be true that the degeneracy of a black hole state in the q
tum theory of gravity is determined by the central char
appearing in the algebra as in the case of the conformal
theory through the Cardy formula. This idea was initiated
Strominger@1# and Birminghamet al. @2#. Based on the work
by Brown and Henneaux@3# that the algebra of diffeomor
phisms at spatial infinity for configurations of thre
dimensional asymptotically anti–de Sitter space (AdS3) in-
duces a pair of Virasoro algebras with nonvanishing cen
charge, they showed that the application of the Cardy
mula for an AdS3 black hole exactly yields the Bekenstei
Hawking entropy. Similarly, the entropy of a cosmologic
horizon in de Sitter spaces has also been reproduced in
context of de Sitter–conformal field theory corresponde
~dS/CFT correspondence! @4#. These results are obtained al
in the Chern-Simons formulation of the three-dimensio
gravity with a cosmological constant@5–7#.

Unfortunately, however, these successes described a
are still incomplete for the following reasons. First of a
they do not easily extend to black hole horizons in high
dimensional gravitational theories. It has been shown that
algebra of asymptotic symmetries at spatial infinity for a
ymptotically four-dimensional anti–de Sitter spaces
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SO(3,2) and does not admit a nontrivial central extens
@8#. In addition the Chern-Simons formulation of the gene
relativity in dimensions higher than three is not known. Se
ond, the conformal field theory found in Ref.@3# lives at
spatial infinity while black hole entropy is expected to
related to physics on the horizon. Recently, Carlip develo
the same idea of the algebra of diffeomorphisms, which
only is applicable to a black hole horizon directly but al
works in any higher dimensions@9,10#. He analyzed whethe
the Virasoro algebra with the desirable form of a classi
central charge could arise universally on an arbitrary Killi
horizon, and also whether the Bekenstein-Hawking entro
could be derived microscopically by the application of Car
formula.

Much work in this direction appeared subsequently@11–
13#. However, nothing is as yet fully satisfactory@14,15#. In
particular, in order to obtain the Virasoro algebra with t
desirable form of a central charge, which is homomorphic
Diff( S1) algebra up to the central term, one has to cho
one angular direction on the horizon as in Ref.@10#. Thus,
this method clearly violates spherical symmetry in dime
sions higher than three for instance, and requires unnat
reduction of the symmetry group on the horizon@15#. A
framework without choosing an angular direction is requir
in order to realize this idea in a satisfactory manner.

In two-dimensional spacetimes, the problem becom
more serious since there is no room for choosing such
angular direction. Recently, by focusing on two-dimensio
dilaton gravity, Carlip@16# suggested several new ingredien
that might lead to an improved description of the ne
horizon symmetries and possibly overcome the proble
mentioned above. He claimed that, in the presence of a b
hole with a momentarily stationary region near its horizo
the general relativity acquires a new conformal symme
Moreover, a new contribution from the horizon is added
the canonical symplectic form of general relativity so that t
central term includes an integration along the horizon. W
these new ingredients Carlip claimed that the correspond
©2004 The American Physical Society05-1
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Virasoro algebra acquires a nonvanishing central charge
that the Cardy formula yields the Bekenstein-Hawking e
tropy of a two-dimensional dilatonic black hole.

From the viewpoint of universality, it is of great interest
see whether or not this new method is applicable to hig
dimensional cases. Thus, in this paper, we explore this
method and consider whether it works in higher dimensio
Einstein gravity, in particular. As will be shown below e
plicitly, however, the basis of functions Carlip used to d
scribe such conformal transformations is singular at the
rizon, and correspondingly the integral that gives t
generators of these conformal transformations and the ce
charge in the Virasoro algebra are not well defined. Mo
over, the correct use of the eigenvalue of the generator
the zero-mode transformation actually yields vanishing
tropy. Therefore it is interesting to check if there exists so
way to resolve the problems in Carlip’s new method, inclu
ing those mentioned above, while keeping the essential
tures of Carlip’s derivation.

In Sec. II, we briefly summarize Carlip’s new derivatio
for the entropy of the two-dimensional dilatonic black ho
and point out the problems mentioned above. By choosin
different basis which is regular even at the horizon, we sh
that these problems can be resolved. In Sec. III, the ge
alization of Carlip’s derivation to any higher dimension
pure Einstein gravity is given. In Sec. IV, it is shown that o
result for the two-dimensional dilatonic black hole entropy
consistent with that in the three-dimensional pure Einst
gravity through dimensional reduction. Open questions
some unsatisfactory features related to this work are fin
discussed.

II. THE TWO-DIMENSIONAL BLACK HOLE

In this section we briefly review Carlip’s new approach
the derivation of black hole entropy from symmetry for t
two-dimensional dilaton gravity@16#:

I 5
1

2GE d2xA2g@fR1V~f!#. ~1!

He observes that, for field configurations in which a ‘‘m
mentarily stationary’’ black hole with the Killing generato
xa is present, conformal transformations in the form
dgab5¹c( f xc)gab together withdf5¹c(hxc) leave the ac-
tion invariant for smooth functionsf andh having their sup-
port only in a small neighborhood of the horizon. Hence
claimed that this can be regarded as an asympt
symmetry.1 Then, by using the fact that the symplectic cu
rent density v associated with those transformations
closed he also suggests that the symplectic form of gen
relativity pick up a new contribution from the horizon itse
as

1Whether or not this is really a symmetry and so whether or nov
is closed subsequently will be discussed below.
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V̂@c;d1c,d2c#5E
C

v@c;d1c,d2c#1E
D

v@c;d1c,d2c#.

~2!

Here the first integral is the standard one integrated ove
~partial! Cauchy surfaceC and the second term is the ne
contribution introduced by Carlip, which is defined as
integral over the portionD of the horizon connecting a ref
erence cross sectionS and a horizon cross sectionH under
consideration~i.e., the intersection of the Cauchy surfaceC
with the horizon as shown in Fig. 1!.

Let l a be null normal to the stretched horizonD̃. Then the
value of the action of two-dimensional gravity with a dilato
field f is invariant under transformations

d fgab5¹c~ f l c!gab5~ l c¹cf 1k f !gab ,

dhf5¹c~hlc!5 l c¹ch1kh ~3!

in the asymptotic sense that the variation of the action can
made arbitrarily small by restricting smooth functionsf andh
to have their support only in a small neighborhoodN of the
horizon, when we focus only on configurations that poss
the horizon. Herek5¹cl

c. By rescaling the null vectorl a, he
takes furthermore

k

s
5const onD̃, ~4!

wheres[ l a¹af[uf. Thus, this gives thatk is proportional
to the ‘‘expansion’’u, which becomes zero as the stretch
horizon approaches the horizon.

Now the variation of the generatorL@ f ,h# associated with
the transformations given by Eq.~3! near the horizon is
given by2

dL@ f ,h#5V̂@d,d f ,h#52
1

GE
D̃
@df l a¹a~ l b¹bf 1k f !

2dk~ l b¹bh1kh!#ê, ~5!

2We obtain twice Carlip’s expression@16# as shown in the Appen-
dix.

FIG. 1. The Killing horizonD, a stretched horizonD̃, and a
Cauchy surfaceC are shown.
5-2
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whereê5n is the one-dimensional induced volume eleme
on D̃ and na is a null vector satisfyingl ana521. Carlip
showed that the above equation is integrable ifds is propor-
tional todk. This integrability condition is satisfied once E
~4! holds. In addition, Eq.~4! also implies that

h5
s

k
f . ~6!

The basis Carlip used is

f n52
f1

2ps
zn, z5e2p if/f1, ~7!

wheref1 is the value off on the horizon.3 Using ¹a¹bf
}gab on shell@17# and

l •¹zn5
2p in

f1
szn, l •¹s5ks ~8!

on the stretched horizon, we have from Eq.~5!

dnL@ f m#52
2p i

G
nm~n2m!

s

k

1

f1
E

D̃
szn1mê. ~9!

Note that the integrand of this integration is regular, a
vanishes asD̃→D. However, since the integration limits o
a portion of the stretched horizon are chosen fromf5f i on
S̃ to f5f f on H̃ keepingf f2f i5f1 , the relevant inte-
gration in Eq.~9! becomes

1

f1
E

D̃
szn1mê52

1

f1
E

f i

f f
e2p i (n1m)f/f1df

52
1

2p i R zn1m
dz

z
52dn1m,0 , ~10!

where ê52df/s and f is assumed to increase along t
stretched horizon in the future. Thus we have

d f n
L@ f m#5

4p i

G

s

k
m3dm1n,0 . ~11!

If the generators form an algebra, as is assumed by Ca
the central charge can be read off by comparing it with
Virasoro algebra

$L@ f m#,L@ f n#%5d f n
L@ f m#52 i ~m2n!L@ f m1n#

2 i
c

12
m3dm1n,0 , ~12!

resulting in

3The overall sign off n here is opposite from Carlip’s. Howeve
the above choice of the sign is necessary in order to obtain
standard sign of the first term in the right-hand side of the Viras
algebra Eq.~12!.
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By integratingdL in Eq. ~5!, Carlip also obtained separate
the eigenvalue of the operatorL as

L@ f n#52
1

GE
D̃
~2l •¹s2ks! f nê

5
1

2pG

k

s
f1E

D̃
sznê52

1

2pG

k

s
f1

2 dn,0 . ~14!

Finally, the Cardy formula corresponding to Eq.~12!,

r~D!;expF2pAcD

6 G , ~15!

yields the entropy

S5 logr~D!5
4pf1

G
, ~16!

whereD is the eigenvalue of the operatorL0[L@ f 0# given
from Eq. ~14! as

D52
1

2pG

k

s
f1

2 . ~17!

This entropy is twice the Bekenstein-Hawking entro
known for two-dimensional dilatonic black holes.

Here we point out several flaws in Carlip’s new approa
briefly summarized above. First of all, Carlip’s identificatio
of the eigenvalue of the operatorL0 is somewhat erroneous
namely, since theL0 operator is defined up to an arbitrar
additive constant in Eq.~5!, the direct identification of the
eigenvalue ofL0 operator as in Eq.~17! could be incorrect
when one applies Cardy’s formula. One way to avoid su
ambiguity would be to use the result obtained in Eq.~11!
based on the uniqueness of the central extension of the V
soro algebra. By comparing Eq.~11! with Eq. ~12!, we see
that the eigenvalueD of the operatorL0 vanishes. Then,
Cardy’s formula Eq.~15! indicates that the entropy actuall
vanishes as well.

Second, notice that the base functionf n in Eq. ~7! di-
verges as the horizon is being approached sinces→0, and
that z is constant on the horizon~i.e., z51) sincef is con-
stant there. It indicates that the integral in Eq.~5! is not well
defined on the horizon. Let us consider the derivat
l a¹af n , for instance. Although the value of this derivativ
cannot be computed directly on the horizon, it is clear t
this quantity is independent ofn sincef n does not depend on
n along the horizon. On the other hand, let us compute it
the stretched horizon first and take the limitD̃→D. We have

l a¹af n5S in2
f1

2p

k

sD zn→ in2
f1

2p

k

s
. ~18!

Thus, this limiting value depends onn on the horizon. Such
discrepancy implies that the derivative considered is not c

e
o

5-3
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tinuous at the horizon and so it is ill defined there. Similar
one can see that the integral in Eq.~5! is not continuous at
the horizon. Therefore, the algebra given by Eq.~11! is ac-
tually not well defined on the horizon. It is not convincing
all to expect that such an ill-defined algebra is respons
for physics on the horizon. All these problems describ
above are seemingly due to the specific choices of the
caling of l a ~i.e., k/s5const) and the base functionsf n ~i.e.,
the use of a bad coordinatef that does not distinguish point
along the event horizon!.

Now we show how these flaws mentioned above can
avoided. In Carlip’s case,k[¹al a vanishes at the horizon
since the rescaling freedom of the null vectorl a is used to
satisfy Eq.~4!. Let us not assume this condition forl a. In-
stead we choose the null vectorl a in such a way that, as th
horizon is being approached, it becomes the horizon Kill
generatorxa so that the quantityk becomes the surface grav
ity of the horizon,k, which is a nonvanishing constant4

Defining v as a nonaffine parameter describing the null t
jectory onD̃ such thatl a¹av51, we expand the transforma
tion function f in terms of mode functions given by

f n52
P

2p
zn, z5e2p iv/P, ~19!

where the periodicityP is assumed to be an arbitrary co
stant for the moment. Note that the coordinatev varies along
the horizon, and these base functions are not singular a
horizon, in contrast to Carlip’s basis function. Finally w
assume

h5a f , ~20!

wherea is constant onD̃. This relation guarantees the vari
tional equation Eq.~5! integrable anda5f1/2 as will be
shown from dimensional reduction below.

Here we assume thatP is the null distance between
reference cross sectionS̃ and a horizon cross sectionH̃ mea-
sured by the functionv on each stretched horizon so thatz

makes one full turn counterclockwise asv runs fromS̃ to H̃.
Note that the null distanceP is taken to be same asD̃→D.
With these modifications we find

d f n
L@ f m#52 i ~m2n!

~Pk!2

2pG

f1

2
dm1n,0

2 i
4p

G

f1

2
m3dm1n,0 . ~21!

Accordingly, by comparing it with the Virasoro algebra
Eq. ~12!, one can read off

c5
24pf1

G
, D5

pf1

G S Pk

2p D 2

. ~22!

4The explicit form of l a in the four-dimensional Schwarzschil
black hole case, for example, is given by Eq.~29!.
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S5Pk
2pf1

G
. ~23!

Notice that this entropy becomes the Bekenstein-Hawk
entropy known for the two-dimensional dilaton black ho
@17# if the periodicity could be adjusted toP5k21. Note
also that in our method the integration of Eq.~5! gives, up to
an additive constant,

L@ f n#5
1

GE
D̃
~2sl•¹ f n1ak2f n!ê5

~Pk!2

2pG

f1

2
dn,0 .

~24!

Hence one finds that the eigenvalue ofL0 above coincides
with the one obtained from Eq.~21!.

III. HIGHER DIMENSIONAL BLACK HOLES

In this section we extend the method described in
previous section to higher dimensional cases. Let us cons
the pure Einstein gravity with a cosmological constant in
arbitrary dimension given by

I 5
1

16pGE dDxA2g~R22L!. ~25!

The symplectic current (D21)-form for this theory may be
written as

v@c;d1c,d2c#5d1Q~c;d2c!2d2Q~c;d1c!, ~26!

whereQbcd•••5eabcd•••Q
a with

Qa5
1

16pG
~gbc¹

adgbc2¹bdgab!. ~27!

As in the previous section, we consider a symmetry variat
given by

d fgab5¹c~ f l c!gab . ~28!

Here l a is null normal to the stretched horizonD̃ that be-
comes the horizon Killing generatorxa as D̃→D. As shall
be shown below,k[¹al a approaches the surface gravityk
which is defined byxc¹cxb5kxb at the horizon. In the case
of the four-dimensional Schwarzschild black hole, for i
stance,l a is given by

l a5
1

2
@~] t!

a1~12r h /r !~] r !
a#. ~29!

And at the horizon the functionv coincides with the ingoing
null coordinate, i.e.,v;t1r * where r * 5r hln(r2rh) is the
usual ‘‘tortoise’’ coordinate. The variation of the generat
L@ f # is now given as
5-4
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dL@ f #52
~D21!~D22!

32pGD E
D̃
@gabdgabl

c¹c~ l d¹df 1k f !

2 l c¹c~gabdgab!~ l d¹df 1k f !#ê

52
~D21!~D22!

16pGD E
D̃
gabdgabl

c¹c~ l d¹df 1k f !ê,

~30!

where we have used the integration by parts andê is the
(D21)-dimensional induced volume element onD̃. One can
check that the variational form of the generatorL in Eq. ~30!
is actually integrable, when we focus on a narrow subsp
of the phase space and assume that all relevant variation
described by Eq.~28!; namely, when the variationd is
thought of as a derivative on the space of metric fields,
explicit calculation shows thatd1(d2L)2d2(d1L)50. Thus,
one does not require any further condition for the integra
ity.

As in Eq. ~19!, we choose a basis of functions as

f n52
P

pD
zn, z5e2p iv/P, ~31!

where the normalization is chosen such that the base func
f n satisfies the commutation relations isomorphic to
Diff( S1) algebra,

$ f m , f n%5 i ~n2m! f m1n , ~32!

with the brackets between the basis functions defi
through

@d f m
,d f n

#gab[d$ f m , f n%gab . ~33!

Now one can explicitly obtain from Eq.~30! that

d f m
L@ f n#52

~D21!~D22!

16pG E
D̃
~ l c¹cf m1k fm!l c¹c

3~ l d¹df n1k fn!ê

52
~D21!~D22!

D2

1

4pGE
D̃
F2mn21nS Pk

2p D 2

1
Pki

2p
n~m1n!1

P2

4p2 S m2
Pki

2p D l c¹ckG
3zm1n21dzdS. ~34!

Here dS is the infinitesimal volume element of the spat
cross section of the stretched horizonD̃, and dv
5Pdz/2p iz.

The integrand above is not constant in general. As
stretched horizon approaches the horizon~i.e., D̃→D), how-
ever, one can see that the quantityk5¹cl c becomes the sur
face gravityk. Let the null vectorna be tangent to the ingo
ing null trajectory and be scaled such thatncl c521, and let
02400
ce
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sab be the induced metric on the spatial cross section of
stretched horizon assab[gab1 l anb1 l bna . Then

k5gab¹al b5~sab2 l anb2 l bna!¹al b

5u2nbl a¹al b→k. ~35!

Here we used thatl bna¹al b5na¹a( l bl b)/250, that the ex-
pansion of the congruence of null geodesicsu5sab¹akb
5sab¹al b , whereka is the geodesic tangent, vanishes at t
horizon, and thatl a→xa andl a¹al b→xa¹axb asD̃→D. The
surface gravity of a stationary event horizon may be defin
as xc¹cxb5kxb , which is constant along the horizon pro
vided that the dominant energy condition is satisfied. Th
the integrand becomes constant as the stretched horizon
proaches the event horizon. Finally, from the same calc
tion as in the previous section, we have at the horizon

d f n
L@ f m#5

~D21!~D22!

D2

A

4G

3F2 i ~m2n!S Pk

2p D 2

dm1n,022im3dm1n,0G ,
~36!

where A5rdS is the surface area of th
(D22)-dimensional horizon cross section.

By comparing it with Eq.~12!, therefore, we obtain the
nonvanishing central charge given by

c5
24~D21!~D22!

D2

A

4G
, ~37!

and the eigenvalue of theL0 operator given by

D5S Pk

2p D 2 ~D21!~D22!

D2

A

4G
5S Pk

2p D 2 c

24
. ~38!

By applying the Cardy formula for the density of states
Eq. ~15!, the entropy becomes

S5 logr~D!5
2~D21!~D22!Pk

D2

A

4G
. ~39!

This can be adjusted to the Bekenstein-Hawking entrop
the periodicity can be chosen such that

P5
D2

2~D21!~D22!
k21. ~40!

IV. DIMENSIONAL REDUCTION

Since the two-dimensional dilaton gravity can be obtain
from a dimensional reduction of a higher dimensional pu
Einstein gravity, it is interesting to see whether our resu
for the entropies obtained above are consistent in this c
text. If we consider three-dimensional black holes for si
plicity, the entropy is given by
5-5
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S5
4

9
Pk

A

4G
~41!

from Eq.~39!. We ‘‘211’’ decompose the three-dimension
metric gab as

gab5hab1mamb , ~42!

where the unit normalma to 2D subspace is given by

ma5r¹aw, ~43!

in terms of the radiusr and the angular coordinatew of the
circles in the third dimension, andhab is the induced metric
of the two-dimensional subspace. Sincer plays the role of
the ‘‘lapse’’ function for the ‘‘evolution’’ in thew direction,
we can write as

A2g (3)R5A2hr~ (2)R1L!, ~44!

whereL5KabK
ab2K2 denotes terms consisting of the e

trinsic curvature of aw5const surface. We rewrite the radiu
r in terms of the dilaton fieldf as r 5f. Then the terms of
the extrinsic curvature can be considered as matter parts
has been shown in the No¨ther charge method of black hol
entropy @18,19#, this matter action does not change the e
tropy result. Accordingly we ignore the terms of the extrins
curvature and see if this is consistent with the entropies
tained in the previous sections.

By assuming configurations independent ofw, we have

I 5
1

16pGE d3xA2g~ (3)R22L! ~45!

5
1

16pGE dwd2xA2hf~ (2)R22L1L@f#!

5
1

8GE d2xA2hf~ (2)R22L!. ~46!

Notice that Eq.~46! is one-quarter of Eq.~1!, and so are the
values ofc and D. Then, from the two-dimensional resu
Eq. ~23! the entropy is given by

S5Pk
pf1

2G
~47!

if l a is null and approaches the Killing vector also in t
two-dimensional subspace. Now we expect that this sho
be equivalent to the entropy of the three-dimensional bl
hole. By substitutingf15r 1 , Eq. ~47! becomes

S5Pk
pr 1

2G
5Pk

A

4G
, ~48!

where A52pr 1 is the ‘‘area’’ ~i.e., circumference! of the
horizon in three dimensions. One can see that this coinc
with the full three-dimensional result in Eq.~41! since the
difference by a numerical factor 4/9 simply comes from t
dimension dependent normalization of the mode functionf n
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in Eq. ~31!. Therefore, our method gives a consistent res
under dimensional reduction. Since the additional matter
tion resulting from the dimensionally reduced theory is
nored, our result also indicates that the matter action does
contribute to the entropy as happens in the usual cases.

Carlip @16# imposed the relationship betweenf and h
given by Eq.~6! in order to make the conformal transform
tions integrable. In the context of dimensional reduction e
plained above, it is expected that the variation of the dila
field f in the two-dimensional theory can be deduced fro
that of the metric field in the three-dimensional theory. B
requiring that the normalization conditionmambgab51 is
preserved under the variations, we first find from Eq.~28!
and the variation of Eq.~43! that

¹c~ f l c!52
dhf

f
, ~49!

where the variation induced onf is denoted asdhf, andr
5f as well as a relation betweenf and h, which is to be
determined, are understood. On the other hand, from the
that l a is null in both three dimensions and two dimension
we see thatl a should reside in the two-dimensional subspa
asmal a50, and then we can show by using it that

¹c~ f l c!5
1

f
Dc~f f l c!, ~50!

whereDc is the covariant derivative associated with the
duced metrichab . Sincedhf given by Eq.~3! is written as
dhf5Dc(hlc), we thus find

h5
f

2
f , ~51!

which is consistent with the integrability condition in th
two-dimensional case.5

V. DISCUSSION

To conclude, we have analyzed whether the entropy
black holes for the pure Einstein gravity in any dimensio
can be derived from a Virasoro algebra associated wit
specific class of near-horizon conformal transformatio
given in Eq. ~28!. We simply extended Carlip’s derivatio
developed for two-dimensional dilaton black holes in R
@16#. However, there are some important modifications
choices of the null vectorl a and the base functionf n as in
Eqs. ~29! and ~31!. As can be seen in Eq.~39!, the entropy
obtained is proportional to the area of the event horizon,
it also depends linearly on the product of the surface gra
and the parameter length of a horizon segment in consi
ation ~i.e., ;Pk).

The entropy derivation explained above does not dep
on the details of black hole solutions. What we actually ne

5With this relationship one can see thatds5fdk/21s¹c( f l c).
Thus, ds becomes proportional todk as the horizon is being ap
proached sinces→0 and¹c( f l c) is regular.
5-6
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is simply the neighborhood of a Killing horizon; namely, th
horizon is a null hypersurface which is generated by a K
ing vector field. Therefore it is straightforward to apply th
same method to other types of horizons such as a Rin
horizon or a de Sitter horizon. Recently, a generalization
the black hole thermodynamics to any ‘‘causal horizon’’ h
been argued in Ref.@20#.

Another feature of this derivation is that, as can be see
Eqs.~30! and ~34!, the central charge is given by

K@ f 1 , f 2#;E dvdS~D f 1D2f 22D f 2D2f 1!, ~52!

whereD5 l •¹5]v . This becomes the standard form of th
central term for 2D conformal field theory. Note that it co
tains an integration over the ‘‘time’’ parameterv explicitly,
in contrast to other approaches as in Refs.@9,10#. In particu-
lar, in Ref.@10# an orthogonality condition for base function
was used to recover a conventional Virasoro algebra.
though fixing the average surface gravity on the horiz
cross section can naturally lead to such an orthogonality
lation, the physical origin of such a boundary condition s
remains unclear. The orthogonality relations in Refs.@9,10#
were realized by adding extra angular dependence to ther -t
diffeomorphisms. As mentioned above, however, this p
scription not only requires an unnatural reduction of the sy
metry group, but also cannot work for two-dimension
cases. The new entropy derivation described in the pre
work is free from the problem of adding extra angular d
pendence. This new feature is essentially because the n
added contribution to the symplectic form in Eq.~2! has an
integration along the horizon from the beginning.

However, it is important to note that the conformal tran
formations we considered cannot be described by diffeom
phisms. One way to see this is the following. Suppose
the transformations are indeed described by diffeom
phisms. Then the integrability condition derived by Wald a
Zoupas@21# for the generatorL should be satisfied. The con
dition is

E
]S

j•v50, ~53!

wherej is a vector field generating diffeomorphisms andS
is the union ofC and a portion of the horizon. Since the pa
defined over the horizonD in Eq. ~2! was shown to be inte
grable separately, this condition becomes equivalent to* Ĥj

•v50 whereĤ is a horizon cross section which is the inn
boundary ofC. Hence the contribution to the variation of th
generatorL arising from the integral along the null directio
on the horizon should vanish since

dLj5E
D

v;E
S

H

dvE
Ĥ

j•v. ~54!

However, the explicit calculation of the variation ofL shows
that it does not vanish as in Eq.~36!. Thus the conformal
transformations considered in this paper cannot be rega
as diffeomorphisms such as ‘‘conformal isometries’’ gen
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ated by conformal Killing vectors in the vicinity of the hor
zon. Therefore, the algebra appeared in the present form
tion is quite different from those associated wi
diffeomorphisms in the literature so far.

Since the near-horizon conformal transformations cons
ered in this paper are not diffeomorphisms as argued ab
the standard covariant phase space method@18,22# that we
have adopted in this paper might not work. For example,
linearized field equations fordgab are not ensured to hold in
general. Consequently the symplectic currentv is not nec-
essarily closed. The new idea to add the integral along
null direction to the variation ofL as in Eq.~2! might then be
unjustifiable. As a related issue, we should point out t
there does not exist any convincing reasoning to cons
that the transformations proposed by Carlip and us are N¨th-
er’s symmetry transformations. Although No¨ther’s symmetry
transformations make the action invariant for arbitrary ba
ground configurations, i.e., No¨ther’s symmetry is a symme
try of the action itself without depending on configuration
neither Carlip’s nor our transformation possesses this pr
erty. ~See Ref.@16# for Carlip’s argument, where ‘‘invariance
of action’’ is shown only for configurations that have a sp
cial property, not for arbitrary configurations.! Then the gen-
erators of these transformations are not ensured to be clo
and are hence not ensured to form an algebra as we assu
Therefore, we should explore the reasoning further to jus
the method proposed by Carlip and extended by us in
paper, as Carlip himself mentioned in Ref.@16#. In addition,
when we show the integrability of the operatorL, we as-
sumed that all variations are described by the conform
transformations given by Eq.~28!. Thus, the subspace of th
phase space we considered is quite narrow, compared to
covariant phase space in Ref.@22#. It should be clarified
whether quantization, or defining eigenstates at least, in
narrow subspace can be carried out in a manner similar to
standard Dirac method.

It should be pointed out that, in addition to the usu
Bekenstein-Hawking entropy, the entropy result Eq.~39! ob-
tained in our method has a multiplication factor that is
function of the periodicityP, the surface gravityk, and the
spacetime dimensionD. Recall thatP is the parameter length
between a reference horizon cross sectionS and the horizon
cross sectionH in consideration. Since the horizon cross se
tion can be chosen arbitrarily on the horizon, such expliciP
dependence in the entropy derivation is highly unsatisfact
In Carlip’s method@16#, the parameter length between an
two points on the horizon vanishes when measured inf,
sincef is constant on the horizon. Then, in order to ke
P5f f2f i5f1 fixed in Eq. ~10! the position of the refer-
ence horizon cross section must move toward the past as
limiting processD̃→D is taken. In other words, in Carlip’s
method@16# it is likely that the reference horizon cross se
tion should be located somewhere in the past ‘‘infinity’’~or
in the future ‘‘infinity’’ ! on the horizon, while a ‘‘momen-
tarily stationary’’ region, i.e., a finite segment of the horizo
is considered. Note that the smoothness of the Euclid
sector of near-horizon geometry naturally requires a peri
icity of ;k21. Thus, one might expect that it will be pos
sible to choose a specific value of the periodicityP such that
5-7
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the multiplication factor becomes unity as in Eq.~40!. It
implies that for a given black hole the Bekenstein-Hawki
entropy is reproduced in our derivation only when a spec
length of the horizon segment, which depends on the sur
gravity and the spacetime dimension through Eq.~40!, is
taken. There is no clear physical explanation at the mom
for why such specific value should be chosen for the peri
icity though.

We should mention that the method presented in this
per yields vanishing entropy in 2D pure Einstein gravity,
we can see from Eq.~39!. Since the field equation is trivially
satisfied in this case, it may indicate that thermodynam
entropy in this theory is not well defined. Then it might ma
no sense to consider the horizon entropy in 2D pure Eins
gravity. On the other hand, however, a horizon is shown
be a thermal object even in 2D Einstein gravity without u
ing the field equation of gravity, and hence vanishing sta
tical entropy looks inconsistent with this fact since it impli
a frozen object. Actually, we considered a sort of statisti
entropy in this paper, which has not been shown to coinc
with the thermodynamic entropy. The ill-defined classic
dynamics may be simply a problem of the thermodynam
entropy, not of the statistical entropy. From this point
view, the vanishing entropy result in the 2D pure Einste
gravity seems to signal failure of the method proposed
Carlip and extended in this paper.

From the physical point of view, it is also of interest
consider what ‘‘microscopic states’’ are responsible for bla
hole entropy. We see that the zero mode of the confor
transformations, which is generated byL0, rescales the met
ric by a constant. Since the entropy derived above is defi
as the logarithm of the number of the eigenstates ofL0, this
indicates that the ‘‘microscopic states’’ responsible for bla
hole entropy are the eigenstates of ‘‘rescaling of the me
by a constant.’’ It does not seem to have something to
with properties of a black hole horizon, such as energy
angular momentum.

Therefore, the method analyzed in this paper posse
some unsatisfactory features, and further investigation is n
essary in the future to understand whether this metho
really correct or not.
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APPENDIX: GENERATOR IN 2D DILATON GRAVITY

Here we explicitly derive Eq.~5!, i.e., the variation of the
generatorsL@ f ,h# in 2D dilaton gravity. From the action in
Eq. ~1! Qb(c;dc) is calculated as
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Qb~c;dc!5
1

4G
@¹af~dd

adc
b1dd

bdc
a22gabgcd!dgcd

2f~dd
adc

b1dd
bdc

a22gabgcd!¹adgcd#.

~A1!

The symplectic current densityva defined in Eq.~26! can be
obtained by usingQa5«baQ

b and its variation. Now the
substitution of Eq.~3! gives

va~c;d1c,d2c!5
1

2G
«ba@¹c~ f 2l c!¹bd1f2d1f¹b¹c~ f 2l c!

2¹c~ f 1l c!¹bd2f1d2f¹b¹c~ f 1l c!#,

~A2!

where«ba is the volume element expressed as

«ba52 l bna1 l anb ~A3!

with na being a null vector satisfyingl cnc521.
Sincel a is normal to the stretched horizonD̃, its pullback

to D̃ vanishes, and henceva above becomes, onD̃,

va~c;d1c,d2c!

52
1

2G
na@¹c~ f 2l c!l b¹bd1f2d1f l b¹b¹c~ f 2l c!

2¹c~ f 1l c!l b¹bd2f1d2f l b¹b¹c~ f 1l c!#,

52
1

2G
na$22d1f l b¹b¹c~ f 2l c!12d2f l b¹b¹c~ f 1l c!

1 l b¹b@¹c~ f 2l c!d1f2¹c~ f 1l c!d2f#%. ~A4!

The fact thatl a is normal to D̃ gives alsonal b¹b5(nal b

1 l anb)¹b52da
b¹b52¹a on D̃, and hence the last term i

the above equation is totally divergent, which we discard
Now by choosing the same direction of integration~the

orientation ofD̃) as Carlip@16#, relabelingd1 asd andd2 as
d f ,h , and making use of Eq.~3! and the relation

dk5 l b¹b¹c~ f l c!5 l b¹b~ l c¹cf 1k f !, ~A5!

we finally obtain Eq.~5! given by

V̂@d,d f ,h#5E
D̃
va~c;dc,d f ,hc!

52
1

GE
D̃
na@df l b¹b~ l c¹cf 1k f !

2dk~ l c¹ch1kh!#. ~A6!
5-8
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