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Near-horizon conformal symmetry and black hole entropy in any dimension
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Recently, Carlip proposed a derivation of the entropy of the two-dimensional dilatonic black hole by inves-
tigating the Virasoro algebra associated with a newly introduced near-horizon conformal symmetry. We point
out not only that the algebra of these conformal transformations is not well defined on the horizon, but also that
the correct use of the eigenvalue of the operatgiyields vanishing entropy. It has been shown that these
problems can be resolved by choosing a different basis of the conformal transformations which is regular even
at the horizon. We also show the generalization of Carlip’s derivation to any higher dimensional case in pure
Einstein gravity. The entropy obtained is proportional to the area of the event horizon, but it also depends
linearly on the product of the surface gravity and the parameter length of a horizon segment in consideration.
We finally point out that this derivation of black hole entropy is quite different from the ones proposed so far,
and several features of this method and some open issues are also discussed.
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I. INTRODUCTION S0O(3,2) and does not admit a nontrivial central extension
[8]. In addition the Chern-Simons formulation of the general
In the last several years, much attention has been paid t@lativity in dimensions higher than three is not known. Sec-
the challenging idea that the black hole entropy could beond, the conformal field theory found in Rdf3] lives at
derived from some symmetry inherited in general relativityspatial infinity while black hole entropy is expected to be
classically without knowing the details of quantum gravity. related to physics on the horizon. Recently, Carlip developed
The essence of this idea is to construct an algebra of generthe same idea of the algebra of diffeomorphisms, which not
tors associated with a certain symmetry inherited classicallpnly is applicable to a black hole horizon directly but also
in the gravity theory considered. If such algebra obtained is avorks in any higher dimension8,10]. He analyzed whether
Virasoro algebra with a nonvanishing central charge, it mighthe Virasoro algebra with the desirable form of a classical
be true that the degeneracy of a black hole state in the quarentral charge could arise universally on an arbitrary Killing
tum theory of gravity is determined by the central chargehorizon, and also whether the Bekenstein-Hawking entropy
appearing in the algebra as in the case of the conformal fieldould be derived microscopically by the application of Cardy
theory through the Cardy formula. This idea was initiated byformula.
Stromingef 1] and Birminghanet al.[2]. Based on the work Much work in this direction appeared subsequehtly—
by Brown and HenneaupB] that the algebra of diffeomor- 13]. However, nothing is as yet fully satisfactdry4,15. In
phisms at spatial infinity for configurations of three- particular, in order to obtain the Virasoro algebra with the
dimensional asymptotically anti—de Sitter space (§di8-  desirable form of a central charge, which is homomorphic to
duces a pair of Virasoro algebras with nonvanishing centrabiff( S*) algebra up to the central term, one has to choose
charge, they showed that the application of the Cardy forone angular direction on the horizon as in R@f0]. Thus,
mula for an Adg black hole exactly yields the Bekenstein- this method clearly violates spherical symmetry in dimen-
Hawking entropy. Similarly, the entropy of a cosmological sions higher than three for instance, and requires unnatural
horizon in de Sitter spaces has also been reproduced in theduction of the symmetry group on the horizfts]. A
context of de Sitter—conformal field theory correspondencdramework without choosing an angular direction is required
(dS/CFT correspondenck4]. These results are obtained also in order to realize this idea in a satisfactory manner.
in the Chern-Simons formulation of the three-dimensional In two-dimensional spacetimes, the problem becomes
gravity with a cosmological constaf—7]. more serious since there is no room for choosing such an
Unfortunately, however, these successes described abowagular direction. Recently, by focusing on two-dimensional
are still incomplete for the following reasons. First of all, dilaton gravity, Carlid 16] suggested several new ingredients
they do not easily extend to black hole horizons in higherthat might lead to an improved description of the near-
dimensional gravitational theories. It has been shown that theorizon symmetries and possibly overcome the problems
algebra of asymptotic symmetries at spatial infinity for as-mentioned above. He claimed that, in the presence of a black
ymptotically four-dimensional anti—de Sitter spaces ishole with a momentarily stationary region near its horizon,
the general relativity acquires a new conformal symmetry.
Moreover, a new contribution from the horizon is added to

*Email address: gwkang@kias.re.kr the canonical symplectic form of general relativity so that the
"Email address: koga@gravity.phys.waseda.ac.jp central term includes an integration along the horizon. With
*Email address: muinpark@yahoo.com these new ingredients Carlip claimed that the corresponding
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Virasoro algebra acquires a nonvanishing central charge ar
that the Cardy formula yields the Bekenstein-Hawking en-
tropy of a two-dimensional dilatonic black hole.

From the viewpoint of universality, it is of great interest to
see whether or not this new method is applicable to highe
dimensional cases. Thus, in this paper, we explore this ne
method and consider whether it works in higher dimensiona
Einstein gravity, in particular. As will be shown below ex-
plicitly, however, the basis of functions Carlip used to de- |
scribe such conformal transformations is singular at the hoV -
rizon, and correspondingly the integral that gives the . ) o~
generators of these conformal transformations and the central FIG- 1. The Killing horizon, a stretched horizod, and a
charge in the Virasoro algebra are not well defined. MoreCauchy surfac€ are shown.
over, the correct use of the eigenvalue of the generator for
the zero-mode transformation actually yields vanishing en- o
tropy. Therefore it is interesting to check if there exists some

(soun5,01= | _lvions 501+ [ oo o0

way to resolve the problems in Carlip’s new method, includ- 2
ing those mentioned above, while keeping the essential fea-
tures of Carlip’s derivation. Here the first integral is the standard one integrated over a

In Sec. II, we briefly sum.marizg Carlip’s new derivation (partia) Cauchy surface&C and the second term is the new
for the entropy of the two-dimensional dilatonic black hole contribution introduced by Carlip, which is defined as an
and point out the problems mentioned above. By choosing #tegral over the portior\ of the horizon connecting a ref-
different basis which is regular even at the horizon, we shoverence cross sectio® and a horizon cross sectidth under
that these problems can be resolved. In Sec. Ill, the genetonsideratior(i.e., the intersection of the Cauchy surface
alization of Carlip’s derivation to any higher dimensional with the horizon as shown in Fig).1
pure Einstein gravity is given. In Sec. IV, itis shown that our | ot|2 pe null normal to the stretched horizan Then the

result for the two-dimensional dilatonic black hole entropy isyajye of the action of two-dimensional gravity with a dilaton
consistent with that in the three-dimensional pure Einstein;gq & is invariant under transformations

gravity through dimensional reduction. Open questions and
Z?Srgssggzatlsfactory features related to this work are finally 8:Gap="Ve(f1°)gup= (1°V.f + kf)Gap,

Shp=V(hI®)=1°V,h+kh (3)
Il. THE TWO-DIMENSIONAL BLACK HOLE

in the asymptotic sense that the variation of the action can be

In this section we briefly review Carlip’s new approach to made arbitrarily small by restricting smooth functidrendh

the derivation of black hole entropy from Symmetry for the to have their Support 0n|y in a small ne|ghborh0’§fmf the
two-dimensional dilaton gravity16]: horizon, when we focus only on configurations that possess

the horizon. Herd= V,I°. By rescaling the null vectd?, he

takes furthermore

1
I=55 | @xV=0l¢R+V(4)]. (1)

k ~
s~ const onA, (4)

He observes that, for field configurations in which a “mo-

mentarily stationary” black hole with the Killing generator Wheres=12V,¢= 6¢. Thus, this gives thak is proportional
X% is present, conformal transformations in the form ofto the “expansion”, which becomes zero as the stretched
59an=Vo(fx%)gap together withs¢=V,(hx°) leave the ac- horizon approaches the horizon.

tion invariant for smooth functionsandh having their sup- Now the variation of the generatbf f,h] associated with
port only in a small neighborhood of the horizon. Hence hethe transformations given by E@3) near the horizon is
claimed that this can be regarded as an asymptotigiven by

symmetry* Then, by using the fact that the symplectic cur-
rent density @ associated with those transformations is
closed he also suggests that the symplectic form of general
relativity pick up a new contribution from the horizon itself
as — 8k(1°V,h+kh) e, (5)

SLLf,h]1=Q[6,6;n]=— éfz[5¢lava(lbvbf+kf)

YWhether or not this is really a symmetry and so whether oot 2We obtain twice Carlip’s expressidfi6] as shown in the Appen-
is closed subsequently will be discussed below. dix.
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wheree=n is the one-dimensional induced volume element 48w s
C: —_ —

on A andn? is a null vector satisfying®n,=—1. Carlip G k'
showed that the above equation is integrablésiiis propor-

tional to sk. This integrability condition is satisfied once Eq. By integratingsL in Eg. (5), Carlip also obtained separately
(4) holds. In addition, Eq(4) also implies that the eigenvalue of the operatbras

(13

S 1 ~
h:Ef_ (6) L[fn]=—afz(2I-Vs—ks)fne
. . . 1 k . 1 k
The basis Carlip used is — - - _ 242
217G S¢+J<ESZ’1€ 27G S¢+5n,0- (14)
¢+ ,
fo=—522" 2= Q2T () Finally, the Cardy formula corresponding to EG2),

where ¢, is the value of¢ on the horizor?. Using V,V, ¢

«gap ON shell[17] and

_27Tin
by

on the stretched horizon, we have from E5).

[-vz" sZ', |-Vs=ks (8)

p(A)NEX[{ZW\/%}, (15

yields the entropy

Amd

S=logp(A)= G

(16)

whereA is the eigenvalue of the operatbp=L[f,] given

2i s 1 “
SpL[fm]=— ——nm(n—m) fNSZ"ere. (9

G k¢, )3 from Eq.(14) as
Note that the integrand of this integration is regular, and Ae— 1 E 5 1
vanishes asd —A. However, since the integration limits on 2aG st

a portion of the stretched horizon are chosen fidmm ¢; on

Sto ¢=¢; on H keepingp;— ¢;= ¢, , the relevant inte-
gration in Eq.(9) becomes

This entropy is twice the Bekenstein-Hawking entropy
known for two-dimensional dilatonic black holes.

Here we point out several flaws in Carlip’s new approach
briefly summarized above. First of all, Carlip’s identification
of the eigenvalue of the operathp is somewhat erroneous,
namely, since thé., operator is defined up to an arbitrary
additive constant in Eq(5), the direct identification of the
eigenvalue ofL, operator as in Eq(17) could be incorrect
when one applies Cardy’s formula. One way to avoid such
ambiguity would be to use the result obtained in Etfl)
based on the uniqueness of the central extension of the Vira-
soro algebra. By comparing E¢L1) with Eq. (12), we see
that the eigenvalue\ of the operatorL, vanishes. Then,
Cardy’s formula Eq(15) indicates that the entropy actually
vanishes as well.

If the generators form an algebra, as is assumed by CarIiQ/e Second, notice that the base functibp in Eq. (7) di-

the central charge can be read off by comparing it with the rges as the horizon is bellng.apprtiachepl SB'EEO. » and
Virasoro algebra thatz is constant on the horizofi.e., z=1) since¢ is con-

stant there. It indicates that the integral in E5). is not well
L[f 1.L[f T}=6 L[f.]=—i(m—n)L[f defined on the horizon. Let us consider the derivative
(L] LI o]} fn [fo] ( I meenl 12V,f,, for instance. Although the value of this derivative
cannot be computed directly on the horizon, it is clear that
this quantity is independent afsincef,, does not depend on
n along the horizon. On the other hand, let us compute it on

the stretched horizon first and take the lidit=A. We have

1 N 1 (o
_ SZnerE:__ eZwl(n+m)</>/¢+d¢
b fZ ¢+f</>i

1 n+mdz
=5 P2 ="bnimo, (10

where e= —d¢/s and ¢ is assumed to increase along the
stretched horizon in the future. Thus we have
471 s

5fn|—[fm]: G Em35m+n,0- (11

. C 3
—I 1_2m 6m+n,0: (12

resulting in
k k
3 . . . . 12V, f,= in—&— z“ain—&—. (18
The overall sign off, here is opposite from Carlip’s. However, 2T S 27 S

the above choice of the sign is necessary in order to obtain the o _
standard sign of the first term in the right-hand side of the Virasorol' hus, this limiting value depends anon the horizon. Such
algebra Eq(12). discrepancy implies that the derivative considered is not con-
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tinuous at the horizon and so it is ill defined there. Similarly, Thus the Cardy formula in Eq15) yields

one can see that the integral in E§) is not continuous at

the horizon. Therefore, the algebra given by Etl) is ac- 2w,

tually not well defined on the horizon. It is not convincing at S=P« G (23
all to expect that such an ill-defined algebra is responsible

for physics on the horizon. All these problems describedygtice that this entropy becomes the Bekenstein-Hawking
above are seemingly due to the specific choices of the reégsiropy known for the two-dimensional dilaton black hole
caling of 12 (i.e., k/s=const) and the base functiofg (i.e., [17] if the periodicity could be adjusted tB=x"*. Note
the use of a bad coordinagethat does not distinguish points 415 that in our method the integration of E8) gives, up to

along the event horizgn an additive constant,
Now we show how these flaws mentioned above can be

avoided. In Carlip’s casek=V,l? vanishes at the horizon 1 . (P)Z ¢,
since the rescaling freedom of the null vectéris used to L[f,]= af~(23I~an+ ak?f,)e= oG 75&0.
satisfy Eq.(4). Let us not assume this condition f&t. In- A & (24)
stead we choose the null vectdrin such a way that, as the

horizon is being approached, it becomes the horizon Killing
generatory? so that the quantitik becomes the surface grav-
ity of the horizon, x, which is a nonvanishing constéht.
Definingv as a nonaffine parameter describing the null tra-

jectory onA such thai2V,u =1, we expand the transforma-

Hence one finds that the eigenvaluelgf above coincides
with the one obtained from Eq21).

Ill. HIGHER DIMENSIONAL BLACK HOLES

tion functionf in terms of mode functions given by In this section we extend the method described in the
previous section to higher dimensional cases. Let us consider
fo=— iz”, 7= 2mv/P. (19) the_pure E_insteir_w grayity with a cosmological constant in an
2 arbitrary dimension given by
where the periodicityP is assumed to be an arbitrary con- 1
stant for the moment. Note that the coordinatearies along = mj dPxy—g(R-2A). (25

the horizon, and these base functions are not singular at the

horizon, in contrast to Carlip’s basis function. Finally we The symplectic currentl — 1)-form for this theory may be
assume written as

h=af, 20
. 20 o 38410, 5201= 5101 5,0~ 5,0(U511), (26
wherea is constant od. This relation guarantees the varia-

tional equation Eq(5) integrable ande= ¢ ,/2 as will be
shown from dimensional reduction below. 1
Here we assume tha is the null distance between a @a:m(gbcvaggbc_vbggab)_ (27)

T

reference cross sectiGhand a horizon cross sectiéh mea-
sured by the functiom on each stretched horizon so timat

makes one full turn counterclockwise @asuns fromS to H.

Wherebcd, .. = €apcd- - ,a with

As in the previous section, we consider a symmetry variation

) ) ~ given by
Note that the null distancP is taken to be same as—A.
With these modifications we find 8:Gap=Ve(F1%)Gap- (28)
. (P)? ¢ - e
8 L[fml=—i(m—n) 57 G 75%”10 Here|® is null normal to the stretched horizak that be-
T comes the horizon Killing generata® asA—A. As shall
AT ., be shown belowk=V?|, approaches the surface gravity
5 % Mdmnno- (21)  which is defined by °V,y,= ks, at the horizon. In the case

of the four-dimensional Schwarzschild black hole, for in-

Accordingly, by comparing it with the Virasoro algebra in Stance)® is given by
Eq. (12), one can read off

_ 2474, T,

‘=76 _G(er

1
PK)Z 12= S 1(30%+ (1=r4 /1) (3,)7]. (29
— (22

And at the horizon the function coincides with the ingoing
null coordinate, i.e.p~t+r, wherer, =ryIn(r—r,) is the
“The explicit form ofI? in the four-dimensional Schwarzschild usual “tortoise” coordinate. The variation of the generator
black hole case, for example, is given by E29). L[ f] is now given as
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(D-1)(D-2) ) g 0 ap be the induced metric on the spatial cross section of the
oL[f]=— sz[ga 8Gapl “Ve(19Vyf + k) stretched horizon as,,=gap+1aNp+1,Na. Then
1oV (g7P8g,) (19V,f + kf)]e k=g2"V,l,=(0?°=12n"~1°n?) VI,
=0—nP13V,l — k. (35
- PTVOZD [ sy, (197,6 + k)
T T 16nGD  Jz9 99 o(I"Vaf +kf)e, Here we used that’n?V,l,=n2V,(I",)/2=0, that the ex-

(30 pansion of the congruence of null geodesits o2"V,k,
=02V |, , wherek?® is the geodesic tangent, vanishes at the
where we have used the integration by parts ani$ the  horizon, and thal®— y? and|V,l,— x®V,x, asA—A. The
(D —1)-dimensional induced volume element®nOne can  surface gravity of a stationary event horizon may be defined
check that the variational form of the generatan Eq.(30)  as x“Vexp= kxp. Which is constant along the horizon pro-
is actually integrable, when we focus on a narrow subspaceided that the dominant energy condition is satisfied. Thus,
of the phase space and assume that all relevant variations dfe integrand becomes constant as the stretched horizon ap-
described by Eq(28); namely, when the variatiors is  proaches the event horizon. Finally, from the same calcula-
thought of as a derivative on the space of metric fields, afion as in the previous section, we have at the horizon
explicit calculation shows that;(,L) — 8,(8;L)=0. Thus,
one does not require any further condition for the integrabil- _(b-1)(Db-2) i
it O Lltm]=——F——
Y. n D 4G
As in Eq.(19), we choose a basis of functions as

. P2 _—
X| =i(m=n) Z 5m+n,0_2|r’n 5m+n,0:

(36)

where the normalization is chosen such that the base functiojphere  A=¢dS is the surface area of the
f, satisfies the commutation relations isomorphic to thep — 2)-dimensional horizon cross section.

P )
fn:_ﬁzni z:eZTrlv/P, (31)

Diff( S*) algebra, By comparing it with Eq.(12), therefore, we obtain the
. nonvanishing central charge given b
(o ok =1 (=M, (32 ? Je gveEn Y
with the brackets between the basis functions defined c= 24D-1)(D-2) i (37)
through D2 4G
[J%,.6 19ab= (s, f19ab - (33  and the eigenvalue of the, operator given by
Now one can explicitly obtain from Ed30) that A= ﬂ ?(D-1)(D-2) i: E 22 (39)
2 D2 4G \2w) 24
5y Lt == OO eg s ikt iew,
fm [fnl= 167G Z( cim m) "V By applying the Cardy formula for the density of states in
A Eq. (15), the entropy becomes
X (19V,f ,+kf,)e
2(D-1)(D-2)Px A
(b-1)(D-2) 1 Pk\2 S=logp(A)= 5 —. (39
=— ﬁ —mrP+n| 5— D 4G
D2 471G A 2
i ) This can be adjusted to the Bekenstein-Hawking entropy if
n P—kln(m+n)+ P_ m— Kl 1oV K the periodicity can be chosen such that
27 472 27) °° ,
D
— - -1
X ZM =147 . (34) P= 2(D—l)(D—2)K . (40

Here d is the infinitesimal volume element of the spatial
cross section of the stretched horizoA, and dv

=Pdz27iz. ) ) Since the two-dimensional dilaton gravity can be obtained

The integrand above is not constant in general. As thgrom a dimensional reduction of a higher dimensional pure
stretched horizon approaches the horigion, A—A), how-  Einstein gravity, it is interesting to see whether our results
ever, one can see that the quankity V°l . becomes the sur- for the entropies obtained above are consistent in this con-
face gravityx. Let the null vectom?® be tangent to the ingo- text. If we consider three-dimensional black holes for sim-
ing null trajectory and be scaled such thdt.=—1, and let  plicity, the entropy is given by

IV. DIMENSIONAL REDUCTION
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4 A in Eq. (31). Therefore, our method gives a consistent result
S=5Px71c (41)  under dimensional reduction. Since the additional matter ac-
tion resulting from the dimensionally reduced theory is ig-
from Eq.(39). We “2 + 1" decompose the three-dimensional nored, our result also indicates that the matter action does not
metric g, as contribute to the entropy as happens in the usual cases.
Carlip [16] imposed the relationship betwednand h
Oap=hap+MmM.my, (420 given by Eq.(6) in order to make the conformal transforma-
tions integrable. In the context of dimensional reduction ex-
where the unit normain, to 2D subspace is given by plained above, it is expected that the variation of the dilaton
field ¢ in the two-dimensional theory can be deduced from
that of the metric field in the three-dimensional theory. By
requiring that the normalization conditiom®mP®g,,=1 is
preserved under the variations, we first find from EzB)
and the variation of Eq43) that

m,=rV,op, (43

in terms of the radius and the angular coordinate of the
circles in the third dimension, arft,;, is the induced metric
of the two-dimensional subspace. Sincelays the role of

the “lapse” function for the “evolution” in thee direction, Sneh
we can write as Vc(fl°)=27, (49
[—qBR=.— (2) C .
g-"R hr(*“R+ L), (44) where the variation induced of is denoted a$, ¢, andr

= ¢ as well as a relation betwednand h, which is to be

where £L=K,,K3— K2 denotes terms consisting of the ex- _
trinsic curvature of a= const surface. We rewrite the radius deter;mned, are understood. On the other hand, from the fact
that!? is null in both three dimensions and two dimensions,

r in terms of the dilaton fieldp asr= ¢. Then the terms of that? should reside in the two-di ional sub
the extrinsic curvature can be considered as matter parts. AlE see shouidreside in the two-dimensional subspace

has been shown in the Ter charge method of black hole asm,|®=0, and then we can show by using it that

entropy[18,19, this matter action does not change the en- 1
tropy result. Accordingly we ignore the terms of the extrinsic Vo(fI¢)=—D(ofl°), (50)
curvature and see if this is consistent with the entropies ob- ¢

tained in the previous sections.

. ; . : whereD. is the covariant derivative associated with the in-
By assuming configurations independentggfwe have

duced metrich,,. Sinced,¢ given by Eq.(3) is written as
Shp=D(hl®), we thus find
| = ! Jd3 V—g(®R-2A 45
= 16-G | 9XVT9(R=2A) (45) &
h= Ef’ (51
1

ZRJ ded?xy—he( PR—2A+ L[ ¢])

which is consistent with the integrability condition in the
two-dimensional case.

1
= —f d?x\—h¢p(PR=-2A). (46)
8G V. DISCUSSION

Notice that Eq(46) is one-quarter of Eq.1), and so are the To conclude, we have analyzed whether the entropy of
values ofc and A. Then, from the two-dimensional result black holes for the pure Einstein gravity in any dimensions

Eq. (23) the entropy is given by can be derived from a Virasoro algebra associated with a
specific class of near-horizon conformal transformations

S=PK7T¢+ 47 given in Eq.(28). We simply extended Carlip’s derivation
2G developed for two-dimensional dilaton black holes in Ref.

[16]. However, there are some important modifications in
if 12 is null and approaches the Killing vector also in the choices of the null vectok® and the base functiofi, as in
two-dimensional subspace. Now we expect that this shoul@&gs. (29) and (31). As can be seen in Eq39), the entropy
be equivalent to the entropy of the three-dimensional blaclobtained is proportional to the area of the event horizon, but

hole. By substitutingp, =r , , Eq. (47) becomes it also depends linearly on the product of the surface gravity
and the parameter length of a horizon segment in consider-

Sszﬁszi 49) ation (i.e., ~P«x).
2G 4G’ The entropy derivation explained above does not depend

on the details of black hole solutions. What we actually need
where A=27r, is the “area” (i.e., circumferenceof the
horizon in three dimensions. One can see that this coincides———
with the full three-dimensional result in E¢41) since the Swith this relationship one can see thés= ¢ Jx/2+ sV,(fl°).
difference by a numerical factor 4/9 simply comes from theThus, §s becomes proportional té«x as the horizon is being ap-
dimension dependent normalization of the mode funcfipn proached since—0 andV,(fI°) is regular.
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is simply the neighborhood of a Killing horizon; namely, the ated by conformal Killing vectors in the vicinity of the hori-
horizon is a null hypersurface which is generated by a Kill-zon. Therefore, the algebra appeared in the present formula-
ing vector field. Therefore it is straightforward to apply thetion is quite different from those associated with
same method to other types of horizons such as a Rindlatiffeomorphisms in the literature so far.

horizon or a de Sitter horizon. Recently, a generalization of Since the near-horizon conformal transformations consid-
the black hole thermodynamics to any “causal horizon” hasered in this paper are not diffeomorphisms as argued above,

been argued in Ref20]. the standard covariant phase space mefi@22 that we
Another feature of this derivation is that, as can be seen ilmave adopted in this paper might not work. For example, the
Egs.(30) and(34), the central charge is given by linearized field equations fafg,,, are not ensured to hold in

general. Consequently the symplectic currents not nec-
essarily closed. The new idea to add the integral along the
null direction to the variation of as in Eq.(2) might then be
unjustifiable. As a related issue, we should point out that
whereD=1-V=4,. This becomes the standard form of the there does not exist any convincing reasoning to consider
central term for 2D conformal field theory. Note that it con- that the transformations proposed by Carlip and us aité-No
tains an integration over the “time” parameterexplicitly,  er’s symmetry transformations. Although ther's symmetry
in contrast to other approaches as in RE#s10]. In particu-  transformations make the action invariant for arbitrary back-
lar, in Ref.[10] an orthogonality condition for base functions ground configurations, i.e., Nwer's symmetry is a symme-
was used to recover a conventional Virasoro algebra. Altry of the action itself without depending on configurations,
though fixing the average surface gravity on the horizomeither Carlip’s nor our transformation possesses this prop-
cross section can naturally lead to such an orthogonality reerty. (See Ref[16] for Carlip’s argument, where “invariance
lation, the physical origin of such a boundary condition still of action” is shown only for configurations that have a spe-
remains unclear. The orthogonality relations in Rg&10l  cial property, not for arbitrary configurationg:hen the gen-
were realized by adding extra angular dependence to-the erators of these transformations are not ensured to be closed,
diffeomorphisms. As mentioned above, however, this preand are hence not ensured to form an algebra as we assumed.
scription not only requires an unnatural reduction of the sym-Therefore, we should explore the reasoning further to justify
metry group, but also cannot work for two-dimensionalthe method proposed by Carlip and extended by us in this
cases. The new entropy derivation described in the presephper, as Carlip himself mentioned in REE6]. In addition,
work is free from the problem of adding extra angular de-when we show the integrability of the operatoy we as-
pendence. This new feature is essentially because the newdyimed that all variations are described by the conformal
added contribution to the symplectic form in @) has an  transformations given by E428). Thus, the subspace of the
integration along the horizon from the beginning. phase space we considered is quite narrow, compared to the
However, it is important to note that the conformal trans-covariant phase space in R¢R22]. It should be clarified
formations we considered cannot be described by diffeomorwhether quantization, or defining eigenstates at least, in this
phisms. One way to see this is the following. Suppose thaharrow subspace can be carried out in a manner similar to the
the transformations are indeed described by diffeomorstandard Dirac method.
phisms. Then the integrability condition derived by Wald and |t should be pointed out that, in addition to the usual
Zoupag 21] for the generatok should be satisfied. The con- Bekenstein-Hawking entropy, the entropy result B39) ob-
dition is tained in our method has a muiltiplication factor that is a
function of the periodicityP, the surface gravitk, and the
J' £ =0, (53) spacetime dimensioD. Recall thatP is the parameter length
Js between a reference horizon cross sectand the horizon
cross sectiomd in consideration. Since the horizon cross sec-
where¢ is a vector field generating diffeomorphisms @d tion can be chosen arbitrarily on the horizon, such exphcit
is the union ofC and a portion of the horizon. Since the part dependence in the entropy derivation is highly unsatisfactory.
defined over the horizoA in Eq. (2) was shown to be inte- In Carlip's method[16], the parameter length between any
grable separately, this condition becomes equivalerfti#®  two points on the horizon vanishes when measured,n

- =0 whereH is a horizon cross section which is the inner since ¢ is constant on the horizon. Then, in order to keep
boundary ofC. Hence the contribution to the variation of the P=¢¢— ¢i= ¢, fixed m_Eq.(lO) the position of the refer-
generatolL arising from the integral along the null direction ence horizon cross section must move toward the past as the

K[fl,f2]~fdvdE(Dlezfz—szszl), (52)

on the horizon should vanish since limiting processA— A is taken. In other words, in Carlip's
y method[16] it is likely that the reference horizon cross sec-
_ . _ tion should be located somewhere in the past “infinitgt
oL¢ Lw L dv f.qg @ (54 in the future “infinity”) on the horizon, while a “momen-

tarily stationary” region, i.e., a finite segment of the horizon,
However, the explicit calculation of the variation lofshows is considered. Note that the smoothness of the Euclidean
that it does not vanish as in E€36). Thus the conformal sector of near-horizon geometry naturally requires a period-
transformations considered in this paper cannot be regardedity of ~« 1. Thus, one might expect that it will be pos-
as diffeomorphisms such as “conformal isometries” gener-sible to choose a specific value of the periodi¢tguch that
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the multiplication factor becomes unity as in E@O0). It 1

implies that for a given black hole the Bekenstein-Hawking ~ ©°(i;8y) = E[Va¢(5352+ 8502—297°gq) 59°°

entropy is reproduced in our derivation only when a specific

length of the horizon segment, which depends on the surface = ¢35+ 8562~ 207°Geq) Vadg* .

gravity and the spacetime dimension through E4)), is

taken. There is no clear physical explanation at the moment

for why such specific value should be chosen for the period- ] ) i )

icity though. The symplectic current density, defined in Eq(26) can be
We should mention that the method presented in this paobtained by using®,=¢,,0" and its variation. Now the

per yields vanishing entropy in 2D pure Einstein gravity, assubstitution of Eq(3) gives

we can see from Eq39). Since the field equation is trivially

satisfied in this case, it may indicate that thermodynamic 1

entropy in this theory is not well defined. Then it might make w(¢; 614, 624) =%sba[Vc(f2I YVPS, p— 5, hpVPV(,°)

no sense to consider the horizon entropy in 2D pure Einstein

gravity. On the cher hanq, howeyer, a horizc_)n is_shown to —V(f116)VP,p+ 5, VPV (1],

be a thermal object even in 2D Einstein gravity without us-

ing the field equation of gravity, and hence vanishing statis-

tical entropy looks inconsistent with this fact since it implies )

a frozen object. Actually, we considered a sort of statisticalWherezp, is the volume element expressed as

entropy in this paper, which has not been shown to coincide

with the thermodynamic entropy. The ill-defined classical epa= —lpnat+1lang (A3)

dynamics may be simply a problem of the thermodynamic

entropy, not of the statistical entropy. From this point ofwith n, being a null vector satisfyingfn,= —1.

view, the vanishing entropy result in the 2D pure Einstein Sincel , is normal to the stretched horizdn its pullback

i ignal fail f th h ~ ) ~
%r:r\ll;;yai%egzetr?dzlc??r? thiil :;ep:r_ the method proposed b){o A vanishes, and hence, above becomes, oA,

From the physical point of view, it is also of interest to
consider what “microscopic states” are responsible for blackwa( b 510, Soth)
hole entropy. We see that the zero mode of the conformal
transformations, which is generated by, rescales the met-

(A1)

(A2)

— b b
ric by a constant. Since the entropy derived above is defined — %”a[vc(fZIC)le 81— 8141pV7Ve(f2l°)
as the logarithm of the number of the eigenstatek pfthis ) )
indicates that the “microscopic states” responsible for black = VeI,V 830+ 8,1, VOV(F411)],

hole entropy are the eigenstates of “rescaling of the metric

by a constant.” It does not seem to have something to do 1
with properties of a black hole horizon, such as energy and =-— %na{—251¢IbeVc(f2I°)+282¢l bV, V.(f41°)
angular momentum.

Therefore, the method analyzed in this paper possesses +Ibe[Vc(f2IC) S510—Ve(f119) 6,61} (A4)

some unsatisfactory features, and further investigation is nec-
essary in the future to understand whether this method i

. ~ . b _ b
really correct or not. %‘he fact thatl, is normal toA gives alson,l°V,=(n,l

+1,nP) V= — 52Vb= —V, on A, and hence the last term in

the above equation is totally divergent, which we discard.
Now by choosing the same direction of integratighe

orientation ofA) as Carlip[16], relabelings; asé and s, as
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awe finally obtain Eq.(5) given by

[ 8,6 n]= fzwaw; 8, 8¢ nih)
APPENDIX: GENERATOR IN 2D DILATON GRAVITY

1
Here we explicitly derive Eq(5), i.e., the variation of the =- Ejzna[ 81 PV (1°Vf +kf)
generatord [ f,h] in 2D dilaton gravity. From the action in
Eq. (1) ®°(y; 6) is calculated as — 8k(1°V;h+kh)]. (AB)
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