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Electronic contribution to the oscillations of a gravitational antenna
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We carefully analyze the contribution to the oscillations of a metallic gravitational antenna due to the
interaction between the electrons of the bar and the incoming gravitational wave. To this end, we first derive
the total microscopic Hamiltonian of the wave-antenna system and then compute the contribution to the
attenuation factor due to the electron-graviton interaction. As compared to the ordinary damping factor, which
is due to the electron viscosity, this term turns out to be totally negligible. This result confirms that the only
relevant mechanism for the interaction of a gravitational wave with a metallic antenna is its direct coupling
with the bar normal modes.
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I. INTRODUCTION

The detection of gravitational waves represents nowad
one of the most challenging and stimulating problems in
perimental and theoretical physics.

At the beginning of the 1960s, Weber pioneered a
search program based on the construction of metallic an
nae~aluminum bars!, and computed the cross section for t
absorption of gravitational waves@1# ~see also@2,3#! under
the assumption that the relevant mechanism that governs
transfer of energy is a direct resonant coupling between
wave and the bar normal modes, the so called resonan
sumption @3#. The detector is so built that a signal is o
served when the frequency of the incoming wave is close
the bar fundamental mode, the cross section taking a B
Wigner shape around this frequency.

Weber successively proposed a correction to his o
computation. Arguing that the bar has very many reson
frequencies within the tiny detection range, he found
enormous enhancement of the cross section@4#. Later
Preparata@5# considered a different mechanism that ag
lead to an enhancement of the cross section. The prob
with both of these mechanisms have been clearly identi
@6–8#. It is by now largely accepted that, within the fram
work of the resonant assumption, the correct result is the
one @1#.

However, in addition to the direct graviton-phonon co
pling considered in@1–3#, which at the microscopic level is
due to a modification of the geodesic distance between
ions of the lattice in the presence of the gravitational wave
is clear that the gravitons also couple to the electrons of
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metal. Due to the electron-phonon interaction, an indir
coupling between gravitons and phonons is then genera1

By considering the microscopic Hamiltonian for the inte
action of a gravitational wave with the bar, in this paper w
carefully analyze the electronic contribution to the abso
tion of gravitational waves by the antenna. More specifica
we compute the contribution~renormalization! to the attenu-
ation factor, i.e., the imaginary part of the frequency of t
propagating acoustic wave, due to the interaction of the e
trons with the gravitational wave. Depending on its sign, t
term could lead to an attenuation or an amplification of
bar oscillation amplitude. This is a correction to the ‘‘ord
nary’’ ~positive! factor, calledG0 from now on, which is the
bar attenuation factor in the absence of gravitational wa
~see Sec. V below!. Therefore, irrespectively of its sign, th
actual relevance of such a term depends on its magni
relative toG0.

A similar phenomenon has already been considered
the propagation of an acoustic wave in a semiconducto
the presence of an electromagnetic wave@10,11#. Here the
electron-phonon interaction generates, via electron-h
loops, an indirect photon-phonon coupling. Although th
electron viscosity generally causes an attenuation of
acoustic wave, under certain circumstances the wave ca
amplified. We shall see in the following that, while this
possible for the electromagnetic case, for a gravitatio
wave hitting a metallic antenna such an amplification can
occur.

Present bars are aluminum detectors operating at a
perature of about 2 K. To avoid uncontrolled complicatio
due to superconductivity effects, the antennae operate at

1It has been recently claimed that this interaction is respons
for an enormous enhancement of the cross section@9#. Our results
~see Sec. V! strongly disagree with this conclusion.
©2004 The American Physical Society04-1
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peraturesT.Ts , whereTs is the transition temperature t
the superconducting state. We also restrict ourselves to
case.

Let us focus now our attention on the graviton-phon
interaction, which is the only interaction mechanism usua
considered, and suppose that a gravitational burst hits
pendicularly the antenna. If the bar lies along, say, thez axis,
the wave excites the modesvqW5(pvs /L)(2n11), where
qW 5qW

n
5@0,0,(p/L)(2n11)#, L is the length of the bar,vs is

the sound speed in aluminum, andn a positive integer. If, as
we assume, the incoming wavehi j contains a superpositio
of frequencies having a cutoff which does not greatly exc
the kHz, the only excited mode is the fundamental one.

As is well known, the detector measures the energy sto
in the bar,Es , which is proportional to the square of th
amplitude of the bar oscillations. This quantity is related
the Fourier transformh̃zz of the signal in the following way
@12#:

Es5
ML2

p2
vqW

0

4 uh̃zz~vqW
0
!u2. ~1!

Hereh̃zz is thezzcomponent of the Fourier transform of th
gravitational wavehi j , M is the mass of the bar,vqW 0

its
fundamental frequency, andL, as before, the length of th
bar. Note that, for notational convenience, but without loss
generality, we have chosen the axes so that the antenna
along thez direction. Moreover we have considered a gra
tational wave perpendicular to the direction of the anten
This is why in Eq.~1! only thezzcomponent of the Fourie
transform of the gravitational wave appears.

Equation ~1! is obtained by considering the graviton
phonon interaction only, and our problem amounts to
question of whether the indirect graviton-phonon interact
induced by the electrons can lead to a significant modifi
tion of this equation. In fact, would this additional interactio
generate a value of the attenuation factor significantly low
than G0, the bar oscillation amplitude would turn out to b
greater than expected~andEs higher!. Therefore, taking into
account only the direct interaction, we would be lead to
overestimate of the signal.

The oscillations induced in the bar by the gravitation
wave have very small amplitudes (DL/L;10221), and they
have to be amplified by an electronic system. The noise
transducing these bar oscillations into electronic signals
lows for the amplification only of those amplitudes that a
larger than a given threshold. Therefore, in the case of re
nance, the detector is practically blind to frequencies ot
than those within a narrow band around the fundamental o
In the following we consider an incoming plane wave w
frequencyV.vqW 0

.
The rest of the paper is organized as follows. In Sec. II

briefly sketch the derivation of the attenuation factor for t
electromagnetic case mentioned above. In Sec. III we pre
the derivation of the microscopic Hamiltonian for the inte
action of the gravitational wave with the antenna. In Sec.
the renormalization ofvqW 0

in the presence of the gravita
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tional wave is discussed, and in Sec. V we compute the
tenuation factor. Section VI contains the summary and c
clusions.

II. SOUND WAVES IN THE FIELD
OF AN ELECTROMAGNETIC WAVE

To set up the tools for our investigation, and to introdu
some notations, in this section we very briefly review t
derivation of the correction to the attenuation factor for
acoustic wave that propagates in a semiconductor in the
of an electromagnetic wave, referring to@10,11# for details.

The microscopic Hamiltonian of the system~external
electromagnetic wave1 electrons1 phonons! is

H5
1

2m (
pW

S pW 2
e

c
AW ~ t ! D 2

apW
†
apW1(

kW
vkWbkW

†
bkW

1(
pW ,kW

CkWapW 1kW
†

apW~bkW1b
2kW
†

!, ~2!

whereapW andapW
† are the annihilation and creation operato

for the electrons,bkW and bkW
† the annihilation and creation

operators for the phonons,m the electron mass,AW (t) is the
vector potential of the incoming electromagnetic wav
AW (t)5AW 0cos(Vt) @corresponding toEW (t)5EW 0sin(Vt)], and
CkW the coupling constants of the electron-phonon interacti
Note that we are considering an electromagnetic wave
wavelength large with respect to the linear dimension of
system, so that its spatial dependence, within the semic
ductor itself, can be neglected.

Following the standard procedure, we assume that in
infinite past, i.e., att52`, the electrons and the phonons d
not interact and that the external field is absent. Ifr(t) is the
density matrix of the system, and we denote quantu
statistical averages with standard notation„i.e., for a generic
operatorO we write Tr@r(t)O#5^O& t…, the above condition
for the phonons readŝbkW&2`50 and^bkW

†
&2`50. The exter-

nal electromagnetic field and the electron-phonon interac
are then adiabatically switched on. At a certain time, with
help of an external source, phonons of given momentum,
qW , are excited. Starting from this time:^bqW& tÞ0 and ^bqW

†
& t

Þ0.
The renormalization of the phonon attenuation factor,GqW ,

and more generally the renormalization ofvqW , can be ob-
tained by considering the time evolution equation for^bqW& t .2

2Alternatively, we could compute the renormalized frequency
considering the Feynman diagrams for the phonon propagator. N
that, due to the presence of the external electromagnetic field,
the first term in Eq.~2!, there are additional loop corrections co
taining insertion of external electromagnetic lines. Equation~7! be-
low gives an example of these additional terms. As it is immediat
clear from its form, this is the contribution to the renormalization
vqW where the fermion loop contains the insertion of an exter
photon line~absorption and emission of a photon with energy\V).
4-2
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ELECTRONIC CONTRIBUTION TO THE OSCILLATIONS . . . PHYSICAL REVIEW D 70, 024004 ~2004!
This equation is easily obtained with the help of the Lio
ville equation for the density matrix:

i ] tr5@H,r#. ~3!

For the Hamiltonian~2!, we have from Eq.~3!

i ] t^bqW& t2vqW^bqW& t5CqW(
pW

^apW 2qW
†

apW& t. ~4!

The right-hand side~RHS! of Eq. ~4! provides a small cor-
rection, due to the electron-phonon interaction, to the f
equation,i ] t^bqW& t2vqW^bqW& t50, whose elementary solutio
is ^bqW& t5Ae2 ivqW t, with A an integration constant.

Going to Fourier space, i.e., writing ^bqW& t
5*dvB(v)e2 ivt, we derive from Eq.~4! an equation for
B(v). Finally, by considering a value ofv close tovqW , it is
not difficult to see that from this last equation we can obt
the value of the phonon frequency,v̄qW , renormalized by the
electron-phonon interaction@11#. Moreover, by simple in-
spection of the free solution, we see that the attenuation
tor for the acoustic wave is given by the negative of t
imaginary part ofv̄qW .

In order to extractv̄qW from Eq. ~4!, a certain number of
steps are needed~see@11# for the details!. First, again with
the help of the Liouville equation, an evolution equation f
the correlator̂ apW 2qW

†
apW& t , which appears in the RHS of Eq

~4!, is derived. As the RHS of Eq.~4! already contains one
power of the small electron-phonon coupling, we can lim
ourselves to consider the lowest order solution inCqW to this
new equation. This approximated solution contains the fa
^bqW& t . Therefore, from Eq.~4!, going again to Fourier spac
and dropping the factorB(v), we get~to the lowest order in
CqW) @11#:

v̄qW5vqW1CqW
2
S~vqW !, ~5!

where S(vqW) contains the ‘‘ordinary’’ contribution to the
renormalization ofvqW , S0, as well as the additional term
due to the presence of the electromagnetic wave (Sel):

S~vqW !5S0~vqW !1Sel~vqW !. ~6!

For our purposes, we are mainly interested inSel(vqW).
To the lowest order in the dimensionless parame
a5eEW 0•qW /mV2, it is @11#:

Sel~vqW !5
a2

4 (
pW

S npW 2qW2npW

epW 2qW2epW1\v̄qW1\V1 i e

1
npW 2qW2npW

epW 2qW2epW1\v̄qW2\V1 i e
D , ~7!

where npW the Fermi distribution function,epW5pW 2/2m, and
i«, as usual, implements the appropriate boundary co
tions.

From Eqs.~5! and ~7!, it is not difficult to see that, if
\V@pF

2/2m and\q@pF (pF is the Fermi momentum!, the
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electromagnetic contribution to the attenuation factor~which
is nothing but theEW 0 dependent part of2Im v̄qW), gqW , van-
ishes whenpF,mvs2u\q/22mV/qu (vs is the sound ve-
locity in the semiconductor!, while it is

gqW5
VCqW

2
a2

4p\4

m2vs

\q S \q

2
2

mV

q D s21 ~8!

for pF.mvs1u\q/22mV/qu.
As is clear from Eq.~6!, the total attenuation factor is

decomposed asGqW5GqW
0
1gqW , whereGqW

0 (.0) is the ‘‘ordi-
nary’’ ~i.e., in the absence of an electromagnetic wave! at-
tenuation factor.

From Eq.~8! we see that when the phonon frequency
small enough with respect to the frequency of the incom
photon, more precisely whenq<A2mV/\, gqW becomes
negative. Moreover, as it depends quadratically onEW 0, for
sufficiently large values of the external field, it can give
significant contribution toGqW . Under these conditions, a
amplification of the acoustic wave is observed@11,13#.

As we shall see in the following, in the case of a gravi
tional wave hitting a metallic bar these conditions are n
met.

III. HAMILTONIAN OF THE GW-ANTENNA SYSTEM

In this section we present the derivation of the micr
scopic Hamiltonian for a gravitational wave interacting wi
a metallic antenna.

The total energy-momentum of this system isTmn5Tmn
mat

1Tmn
gw , where Tmn

gw is the pure gravitational contribution
while Tmn

mat is the matter one, including its interaction with th
gravitational wave. Being the metric just the flat backgrou
plus a small deviation,gmn5hmn1hmn , we can consider the
linearized expression forTmn

gw . Inserting this approximation
in the energy-momentum conservation equation,]nTmn50,
we get@we usehab5diag(11,21,21,21)]

]nTmn
mat2

1

2
]mhabTab

mat50. ~9!

Clearly Tmn
mat contains the contributions of both the ions a

the electrons:

Tmn
mat5Tmn

el 1Tmn
ion1Tmn

el-ion, ~10!

where the last term in the RHS is due to the electron-
interaction, whileTmn

el andTmn
ion are the contributions from the

noninteracting electron and ion systems in the presenc
the external gravitational field.

Since the electron-ion interaction is small, the Ham
tonian for the free electrons and ions can be derived by c
sidering, at first, the electron gas and the ions as noninter
ing. Moreover, once we keep only the first two terms in t
RHS of Eq.~10!, we note thatTmn

el and Tmn
ion , in this limit,

separately satisfy Eq.~9!.
We could derive the complete Hamiltonian of the syste

from the linearized Eq.~9!. In the following, however, we
4-3



r
ld

e
fo

tio
E

i

n

n

ffi
ita
ng

ee

vi
n
e

ro
r

of

the

t

c-
cal
in-
al

r-
al

to
ic

oint

ain

ce

on
, w
is
in
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shall follow this pattern only to derive the Hamiltonian fo
the electrons interacting with the external gravitational fie
In fact, by closely paralleling@6#, we shall see that the
Hamiltonian for the interaction of the phonons with th
gravitational wave is easily obtained from the expression
the force coming from the geodesic deviation equation@14#.
Finally, the free phonon and the electron-phonon interac
terms are the second and the third term in the RHS of
~2!, respectively.3

As is clear from the above considerations, the total Ham
tonian of the system has the form

H5H0
el1Hgw2el1H0

ph1Hgw2ph1Hel2ph, ~11!

whereH0
el1Hgw2el is the Hamiltonian for the electrons i

the presence of the gravitational wave,H0
ph1Hgw2ph is the

phonons’ one, andHel2ph is the electron-phonon interactio
term.

Let us consider now Eq.~9! for Tmn
el . As we are neglect-

ing the mutual interaction between the electrons, it is su
cient to consider a single electron in the field of the grav
tional wave. The Hamiltonian of the electron noninteracti
gas is simply the sum of the individual terms.

Taking the spatial integral of Eq.~9! for Tmn
el , we obtain

~dropping the superscript ‘‘el’’ for simplicity!

d

dt
pm5

1

2E d3x]mhabTab, ~12!

where a vanishing total spatial divergence term has b
omitted, and*d3xTm

0 has been written aspm . This is clearly
the equation of motion for the electron in the external gra
tational field. Our goal here is to find the Lagrangian, a
then the Hamiltonian, from which this equation can be d
rived ~see for instance@15#!.

As we are considering the linearized theory, the elect
energy-momentum tensor can contain only the free te
plus, possibly, an additionalO(hmn) term. We have then

Tab5muaubd3
„xW2xW~ t !…1O~hmn!, ~13!

wherem is the electron mass,ua the electron four-velocity,
andxW (t) the electron trajectory.

Inserting Eq.~13! in Eq. ~12!, and keeping terms up to
O(hmn), we have

d

dt
pm5

m

2
uaub]mhab . ~14!

3Clearly the Hamiltonian of our metallic antenna should also c
tain an electron-electron interaction term. In our case, however
do not need to write this term explicitly. In fact, its main effect
that of screening the electron-phonon interaction and results
renormalization of the electron-phonon coupling constantsCkW ’s @see
Eq. ~2!#. Therefore, once we regard theCkW ’s as the renormalized
~screened! couplings, the Hamiltonian~11! written below correctly
describes our system.
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It is now a trivial exercise to show that the above equation
motion can be obtained from the Lagrangian:

L5
m

2
~hab1hab!uaub ~15!

and that

pm5
]L

]um
5m~hamua1hamua!. ~16!

Choosing the transverse traceless~TT! gauge forhmn , and
remembering that, as the electron gas is nonrelativistic,
spatial components of the electron four-velocity,ui , are noth-
ing but the components of electron velocity,v i , while u0

>1, the above Lagrangian~up to an irrelevant constan
term! becomes

L5
m

2
~d i j 1hi j !v

iv j . ~17!

The corresponding Hamiltonian is

H5
]L

]ui
ui2L5

1

2m
~pW 22hi j p

ipj !, ~18!

and pi is the momentum canonically conjugate to the ele
tron position. Note that, as the wavelength of the typi
incoming gravitational wave is large with respect to the l
ear dimension of the bar,hi j can be considered as spati
independent.

The classical Hamiltonian of the nonrelativistic, noninte
acting, electron gas in the field of the incoming gravitation
wave is the sum of terms of the form~18!, and the corre-
sponding quantum Hamiltonian is

H0
el1Hgw2el5

1

2m (
pW

~pW 22hi j p
ipj !apW

†
apW . ~19!

Let us now turn our attention toHgw2ph. As we said before,
rather than following the same line of reasoning that lead
Eq. ~19!, we derive this interaction term from the geodes
deviation expression for the force acting upon a generic p
of massm @14#:

F j52mRj 0k0xk , ~20!

wherexk are the coordinates of the point andRmnrs is the
Riemann tensor of the metric field. In the TT gauge, ag
within the linear approximation, it is

Rj 0k052
1

2
ḧ jk , ~21!

while all the other components vanish.
Obviously the Hamiltonian corresponding to the for

~20! is @6#

H5
m

2
Rj 0k0xjxk . ~22!

-
e

a

4-4



li
of
on
av

n

le
r i
a

ita

t

of

ta
Eq

,

e
na.

of
the
to
in-

llic
ec.

en
the

-
en-
re-
e

st
the

-
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Now we choose the coordinate system so that the bar
along thez axis and the origin coincides with the center
the bar. Moreover, in order to face the most favorable c
ditions for the detection, we assume that the incoming w
propagates perpendicularly to thez axis, say along thex axis.
Under these conditions, the only nonvanishing compone
of hi j are

hyy52hzz52h and hyz5hzy . ~23!

For the purposes of our present analysis, we can neg
thexy ~circular! section of the bar, so that we can conside
as being essentially a unidimensional chain of coupled h
monic oscillators~the ions!. From Eqs.~21! and ~22!, the
interaction Hamiltonian between the ions and the grav
tional wave can be written as

H ion– gw52
mion

4
ḧ(

n
~zn!2, ~24!

where the sum is over the ion sites andzn is the position of
the nth ion, which is given by

zn5na1jn , ~25!

where a is the lattice spacing, andjn is the displacemen
from the equilibrium position of thenth ion. To first order in
the displacements, we have

H ion– gw52
mion

2
aḧ(

n
njn . ~26!

This Hamiltonian can be immediately written in terms
phonons if, as usual, we developjn in normal modes:

jn5
1

AN
(

k
j̃ke

ikan, ~27!

where N@1 is the number of ions, and the operatorsj̃k

satisfy the relationsj̃k
†5 j̃2k . By considering periodic

boundary conditions, we havek52pnk /Na, wherenk is an
integer.

The Hamiltonian for the interaction between the gravi
tional wave and the phonons is now found by replacing
~27! into Eq. ~26! and writing j̃k in terms of creation and
annihilation phonon operators@16#:

j̃k5A \

2mionvk
~bk1b2k

† !. ~28!

Performing the sum overn, in the largeN limit we have

(
n

neikan52 iN2
~21!nk

2pnk
. ~29!

Inserting now Eq.~29! in Eq. ~26!, and replacingNa with L,
the length of the bar, andNmion with M, the mass of the bar
we get
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Hgw– ph52ḧ~ t !(
k

ak

Avk

~bk1b2k
† !, ~30!

with

ak52 i
~21!nkL

4pnk
A\M

2
. ~31!

Finally, inserting Eqs.~19! and~30! in Eq. ~11!, and remem-
bering that the termsH0

ph andHel2ph of this equation are the
second and the third term in the RHS of Eq.~2!, respectively,
we can now write the total microscopic Hamiltonian for th
interaction between the gravitational wave and the anten
It is

H5
1

2m (
pW

„pW 22hi j ~ t !pipj
…apW

†
apW1(

kW
vkWbkW

†
bkW

1(
pW ,kW

CkWapW 1kW
†

apW~bkW1b
2kW
†

!2ḧ~ t !(
kW

ak

Avk

~bkW1b
2kW
†

!,

~32!

wherehi j andh are given in Eq.~23!.
Having at our disposal the microscopic Hamiltonian

the system, we can now move to the central issue of
present work, namely the computation of the contribution
the attenuation factor due to the interaction between the
coming gravitational wave and the electrons of the meta
antenna. To this end, following the pattern illustrated in S
II, we shall first consider the time evolution of^bqW 0

& t , where

qW 0 is the wave number of the fundamental mode, and th
compute the corresponding attenuation factor. This is
subject of the two following sections.

IV. TIME EVOLUTION OF ŠBq¢ 0
‹T

AND RENORMALIZATION OF vq¢ 0

Let us consider a gravitational wave, with frequencyV of
the order of theKHz, hitting the metallic antenna. The wave
length of such a wave is much larger than the linear dim
sion of the bar, which is typically of about one meter. The
fore, the spatial dependence ofhi j can be neglected and w
can write

hi j 5Ai j cos~Vt !. ~33!

As usual~see Sec. II!, we assume that in the infinite pa
the gravitational wave is absent and that the electrons and
phonons do not interact. Therefore, for each value ofkW ,
^bkW&2`50. The evolution equation for̂bqW& t ~for notational
simplicity, from now on we writeqW rather thanqW 0 to indicate
the fundamental mode! is obtained with the help of the Liou
ville equation@Eq. ~3!#. With the Hamiltonian~32! we obtain

i ] t^bqW& t2vqW^bqW& t5
a2qWV

2h~ t !

AvqW
1CqW(

pW
^apW 2qW

†
apW& t .

~34!
4-5
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The correlator̂ apW 2qW
†

apW& t in the RHS of Eq.~34! comes
from the electron-phonon interaction term. Again with t
help of Eq.~3!, an equation for this correlator can be derive

i ] t^apW 2qW
†

apW& t2S epW2epW 2qW2
hi j

2m
~2piqj2qiqj ! D ^apW 2qW

†
apW& t

5(
k

Ck^~apW 2qW
†

apW 2kW2apW 2qW 1kW
†

apW !~bkW1b
2kW
†

!& t . ~35!

As it was expected, the right-hand side of this equation c
tains correlators of products of three operators, as for
stance the term̂ apW 2qW

†
apW 2kWbkW&, and this is due to the

electron-phonon coupling. In fact, repeatedly exploiting
Liouville equation, an infinite system of coupled differenti
equations for the different correlators is generated. The
fore, we have to resort to a suitable truncation of this syst
In the following we shall see how such an approximation c
be obtained.

The hypothesis that in the infinite past the electron ga
noninteracting yields the boundary condition:^apW 2qW

†
apW&2`

50. Solving ~formally! Eq. ~35! under this condition we
have

^apW 2qW
†

apW& t52 i(
kW

CkWE
2`

t

dt8^~apW 2qW
†

apW 2kW2apW 2qW 1kW
†

apW !

3~bkW1b
2kW
†

!& t8expF2 i ~epW2epW 2qW !~ t2t8!

2
i ~qiqj22piqj !

2m E
t8

t

dt9hi j ~ t9!G . ~36!

Finally, inserting Eq.~36! in Eq. ~34!, the time evolution
equation for̂ bqW& becomes

]

]t
^bqW& t1 ivqW^bqW& t

52 i
a2qWV

2h~ t !

AvqW
1(

pW ,kW
CqWCkWE

2`

t

dt8@^apW 2qW 1kW
†

apW

3~bkW1b
2kW
†

!& t82^apW 2qW
†

apW 2kW~bkW1b
2kW
†

!& t8#

3expF2 i ~epW2epW 2qW !~ t2t8!

2
i

2m
~qiqj22piqj !E

t8

t

dt9hi j ~ t9!G . ~37!

If we now neglect the electron-phonon interaction in E
~37!, i.e., we consider the zeroth order in theC’s, we have
~for the given boundary conditions!

^bqW& t
(0)5

a2qWV
2A

AvqW

vqWcos~Vt !2 iVsin~Vt !

V22vqW
2 , ~38!
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whereA5Azz is the amplitude of the component of the fie
in the longitudinal direction. ForV;vqW , this solution has
the expected resonant form, with a very large amplitu
Strictly speaking, forV5vqW , the RHS of Eq.~38! is diver-
gent. We note, however, that the well known phenome
logical Breit-Wigner shape is obtained adding an imagin
part to vqW . As we shall see below, this damping facto
which is always added on phenomenological grounds to
equation that describes the bar oscillations, from a mic
scopic point of view is mainly due to the electron viscosi
i.e., to the interaction of the electrons with the phonons.
more technical terms, it comes from the renormalization
vqW due to the electron-phonon interaction.

We observe now that for the correlator^apW 2qW 1kW
†

apWbkW& t , as
well as for the other similar correlators that appear in
RHS of Eq.~37!, the assumption that in the infinite past th
electron-phonon interaction is absent clearly amounts to
condition

^apW 2qW 1kW
†

apWbkW&2`5^apW 2qW 1kW
†

apW&2`^bkW&2` . ~39!

At the lowest order in theC’s, the above factorization prop
erty is also satisfied bŷapW 2qW 1kW

†
apWbkW& t at anyt:

^apW 2qW 1kW
†

apWbkW& t5^apW 2qW 1kW
†

apW& t^bkW& t . ~40!

This approximation~and the other similar ones! is crucial to
find the desired truncation of the above mentioned infin
system of differential equations.

Inserting Eq.~40! in Eq. ~35!, we see that, to the lowes
order, the correlatorŝapW 2qW

†
apW& are time-independent con

stants. More precisely, they all vanish unlessqW 50, in which
casê apW

†
apW&5npW , wherenpW is the occupation number for th

states with momentumpW .
Therefore, if we limit ourselves to consider in Eq.~37!

only terms up toO(CqW
2), we need to keep only those term

with kW5qW . Then, inserting the expression~33! for hi j in Eq.
~37! we have

]

]t
^bqW& t1 ivqW^bqW& t

52 i
a2qWV

2A cos~Vt !

AvqW
1CqW

2(
pW

~npW2npW 2qW !

3E
2`

t

dt8~^bqW& t81^b2qW
†

& t8!

3expF2 i ~epW2epW 2qW !~ t2t8!2
iAi j

2m
~qiqj22piqj !

3E
t8

t

dt9cos~Vt9!G . ~41!

It is now convenient to move to Fourier space and wri
4-6
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^bqW& t5E
2`

`

dvBqW~v!e2 ivt. ~42!

Note that Eq.~41! also contains the term̂b
2qW
†

& t and that,
from Eq. ~42!, we have

^b2qW
†

& t5E
2`

`

dvB
2qW
* ~v!eivt. ~43!

A relation betweenBqW(v) and B
2qW
* (v) is immediately ob-

tained with the help of the time evolution equation f
S

e

02400
^b2qW
†

& t . In fact, taking into account that the electron-phon
coupling constants are real, and thatCqW5C2qW , we have

i
]

]t
^b2qW

†
& t1vqW^b2qW

†
& t52 i

]

]t
^bqW& t1vqW^bqW& t ~44!

which implies the relation

B
2qW
* ~2v!5

vqW2v

vqW1v
BqW~v!. ~45!

Inserting now Eqs.~42!, ~43! and ~45! in Eq. ~41!, we find
E
2`

`

dve2 ivt~2 iv1 ivqW !BqW~v!5CqW
2(

pW
~npW2npW 2qW ! (

n,m52`

`

Jn~a!Jm~a!

3E
2`

`

dvE
2`

t

dt8e2 ivt8e2 inVteimVt8e2 i (epW 2epW 2qW )(t2t8)S BqW~v!1
vqW2v

vqW1v
BqW~v!D

2 i
a2qWV

2A

2AvqW
E

2`

`

dv~d~v2V!1d~v1V!!, ~46!

whereJn(a) are Bessel functions, whose argumenta is

a5
Ai j ~qiqj22piqj !

2mV
, ~47!

and we have used the relation

eia sin u5 (
n52`

`

Jn~a!einu. ~48!

The time integral in the RHS of Eq.~46! is easily performed. Isolating the Fourier coefficients, we obtain (2 i«, as usual, is
the converging factor for the time integral, i.e., it implements the boundary conditions!:

~v2vqW !BqW~v!5
a2qWV

2A

2AvqW
„d~v2V!1d~v1V!…1CqW

2 (
n,m52`

`

(
pW

Jn~a!Jm~a!
npW2npW 2qW

2v1nV1epW2epW 2qW2 i«

3S BqW„v1~m2n!V…1
vqW2v1~n2m!V

vqW1v1~m2n!V
BqW„v1~m2n!V…D . ~49!
ion

fol-
f

-
d in
s
in-

l

From Eq. ~49! we can obtainBqW(v) up to O(CqW
2). To the

lowest order, i.e., by keeping only the first term in the RH
of this equation, we have

BqW
(0)

~v!5
a2qWV

2A

2AvqW~v2vqW !
„d~v2V!1d~v1V!…. ~50!

As it can be immediately verified, this is nothing but th
Fourier transform of Eq.~38!. To get theO(CqW

2) correction to
Eq. ~50!, we have to insert in Eq.~49! the seriesBqW(v)
5BqW

(0)(v)1CqW
2
BqW

(1)(v)1O(CqW
4), and keep only terms up to
O(CqW
2). Here we are rather interested in the renormalizat

of the phonon frequencyvqW , let us callvqW
r the renormalized

frequency, due to the electron-phonon interaction. In the
lowing we shall see howvqW

r can be obtained with the help o
Eq. ~49!.

We could computevqW
r directly by considering the renor

malization of the phonon propagator. As we are intereste
theO(CqW

2) correction tovqW , we only need to keep diagram
with one electron-hole loop. However, the electrons also
teract with the external gravitational field@see the first term
on the RHS of Eq.~32!#. Therefore, in addition to the usua
4-7
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fermionic loop, an infinite series of one-loop diagrams w
the insertion of one, two, . . . gravitational external lines
generated. These diagrams are all ofO(CqW

2).
Equivalently, following a standard procedure@10#, the

same result can be obtained from Eq.~49! once we perform
the following steps. First of all we note that the first term
the RHS of this equation cannot contribute to the renorm
ization of vqW . In fact, as it is due to the resonant couplin
between the external gravitational field and the phonons@see
the last term on the RHS of Eq.~32!#, this term does not
enter in the loop correction of the phonon propagator.

If we now ~i! ignore this term in Eq.~49!, ~ii ! consider a
value of v such thatv5vqW1O(CqW

2), and ~iii ! keep only

terms up toO(CqW
2), we can write Eq.~49! as

„v2vqW2P~v!…BqW~v!50. ~51!

The precise form ofP(v) is given below@see Eqs.~52! and
~53!#. Apart from harmless factors, the coefficient in front
BqW(v) is the inverse phonon propagator up toO(CqW

2). There-
fore, the one-loop corrected phonon frequency, which
nothing but the pole of the phonon propagator, is given
that value ofv for which this coefficient vanishes.

To begin with, let us consider the case when the grav
tional wave is absent. As in this casea50, all the Bessel
functions, with the exception ofJ0 @J0(0)51#, vanish. Fol-
lowing the procedure outlined above, neglecting higher or
terms inCqW

2 and dropping the factorBqW , from Eq. ~49! we
get

vqW
r
5vqW1CqW

2(
pW

npW2npW 2qW

2vqW1epW2epW 2qW2 i«
. ~52!

This is the well known result for the renormalization ofvqW

@17# in the absence of external fields~see Sec. V below for
the detailed computation!, where we easily recognize th
one-loop structure of the second term on the RHS of
~52!. Note that the negative of the imaginary part ofvqW

r ,

GqW52Im vqW
r , gives theO(CqW

2) contribution to the damping
factor due to the electron-phonon interaction. This term,
we have anticipated, modifies the deltalike structure of
~38! giving to this amplitude the expected Breit-Wign
shape, the maximum being attained forV5RevqW

r .
The same steps can be repeated for the case when

gravitational wave is present. As we only keep terms up
O(CqW

2), the functionsBqW in both members of Eq.~49! have

to be replaced with their lowest order approximations,BqW
(0) .

Consequently, the only nonvanishing terms in the RHS
Eq. ~49! are those for whichn5m. Moreover, as it was also
the case when the gravitational wave was absent, the
term of Eq.~49!, which is of higher order inCqW

2 , has to be

neglected. Therefore, dropping againBqW
(0) from both sides of

Eq. ~49!, we have
02400
l-

s
y

-

r

.

s
.

the
o

f

st

vqW
r
5vqW1CqW

2 (
n52`

`

(
pW

FJn
2~a!

npW2npW 2qW

2vqW1nV1epW2epW 2qW2 i«
G .

~53!

As we have anticipated, in Eq.~53! we see that theO(CqW
2)

correction tovqW contains an infinite series of one-loop term
due to the interaction of the electrons with the gravitatio
wave. Equation~53! is the result we were looking for
namely, the renormalizedvqW ‘‘dressed’’ by the interaction
with the external gravitational field. This expression clea
contains also the contribution tovqW

r which does not depend
on this interaction, which is nothing but the result in E
~52!. It is easily found in then50 term of this series once
we consider the first term of the expansion ofJ0

2(a) in pow-
ers ofa @see Eq.~55! below#.

Our aim is to investigate the impact of this addition
‘‘dressing’’ of vqW

r on the oscillations of the gravitational an
tenna. To this end, we compute in the next section the da
ing factor GqW52Im vqW

r . Following the notation introduced
in Sec. II, we indicate the attenuation factor in the absenc
the gravitational wave withGqW

0 and the gravitational contri-
bution with gqW , so that the total attenuation factor isGqW

5GqW
0
1gqW .

V. THE ATTENUATION FACTOR

This section is devoted to the computation of the atte
ation ~or damping! factor GqW . In order to compare our esti
mates of physical quantities with experimentally known v
ues, in the following we consider the specific example of
antenna EXPLORER@12# operating at CERN. Taking the
imaginary part of Eq.~53!, we have

GqW52Im vqW
r
5GqW

0
1gqW5pCqW

2 (
n52`

`

(
pW

Jn
2~a!~npW 2qW2npW !

3d~epW2epW 2qW2vqW1nV!. ~54!

Due to the weakness of the gravitational wave,a, the
dimensionless argument of the Bessel functions, is a sm
number. Therefore, we can expand these functions in pow
of a and limit ourselves to consider terms up to the low
nontrivial order ina. This amounts to keep only the Bess
functions withn50,61. In fact, it is

J0
2~a!512

a2

2
1•••,

J61
2 ~a!5

a2

4
1•••, ~55!

where the dots indicate higher power terms ina, and the
expansion of all the other Bessel functionsJn

2(a) with unu
>2 starts with higher powers ofa. We know from Eq.~47!
4-8
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that the quantitya is a function ofpW : a5a(pW ). For reasons
that will be immediately clear, in the following expression
is convenient to indicate explicitly this dependence. Keep
in Eq. ~54! only terms up toO(a2), we have

GqW5pCqW
2S (

pW
npW@d~epW 1qW2epW2vqW !2d~epW2epW 2qW2vqW !#

1(
pW

npW

4
~@d~epW 1qW2epW22vqW !1d~epW 1qW2epW !

22d~epW 1qW2epW2vqW !#a2~pW 1qW !2@d~epW2epW 2qW22vqW !

1d~epW2epW 2qW !22d„epW2epW 2qW2vqW !#a2~pW !…D . ~56!

The first term in the RHS of Eq.~56! does not depend on
a. It is nothing butGqW

0 . Considering for the time being onl

this term, and performing the summation overpW , we get

GqW
0
5

8p3VCqW
2

h4

vqWm
2

q
, ~57!

whereV is the volume of the bar andm is the electron mass
Moreover, as we have chosen the bar to lie along thez di-
rection, in the above expression we haveq5qz .

Let us focus now our attention on the derivation ofgqW ,
i.e., on the computation of the two remaining terms in t
RHS of Eq.~56!. As previously said, the bar lies along the
direction, while the gravitational wave~in the TT gauge!
propagates perpendicularly to the bar, along thex direction.
Therefore, the only nonvanishing components ofAi j are
Ayy52Azz andAxy5Ayx , so that

piqjAi j 5pyqzAyz1pzqzAzz5pq~Ayzsinu sinf1Azzcosu!,

~58!

where, to write the last term, we have introduced spher
coordinates in thepW -space~and noted again thatqz5q).

Inserting Eq.~58! in Eq. ~56!, and proceeding as before
we find

gqW5
V

h3

pCqW
2

\m2~\vqW !2E0

pF
p2dpE

21

11

d~cosu!E
0

2p

df

3„@~\q!4Azz
2 14p2~\q!2~Ayz

2 sin2usin2f1Azz
2 cos2u!#

3@d11d22d32d422d512d6#

14p~\q!3Azz
2 cosu@d11d21d31d422d522d6#…,

~59!

where we have introduced the compact notations:
02400
g

e

al

d15dS p\q cosu

m
1

~\q!2

2m
22\vqW D ,

d25dS p\q cosu

m
1

~\q!2

2m D ,

d35dS p\q cosu

m
2

~\q!2

2m
22\vqW D ,

d45dS p\q cosu

m
2

~\q!2

2m D ,

d55dS p\q cosu

m
1

~\q!2

2m
2\vqW D ,

d65dS p\q cosu

m
2

~\q!2

2m
2\vqW D . ~60!

For a typical gravitational antenna we are under
conditions:4

~\q!2

2m
, l\vqW2

~\q!2

2m
, l\vqW1

~\q!2

2m
,

pF\q

m
~ l 51,2!,

~61!

and the integration of Eq.~59! gives

gqW5
6p3VCqW

2

h4

m2vqW

q
@2Azz

2 2Ayz
2 #. ~62!

Finally, since the incoming gravitational wave is not e
pected to be polarized, now we have to perform the aver
over the polarizations. If we callb the polarization angle, we
can write

Azz5e1cos 2b2e3sin 2b, Ayz5e1sin 2b1e3cos 2b.

~63!

Averaging overb, we arrive at the result

gqW5
3p3VCqW

2

h4

m2vqW

q
~e1

2 1e3
2 !. ~64!

It is interesting to compare Eq.~64! with the correspond-
ing damping factor for the electromagnetic case@see Eq.~8!
of Sec. II#. We note that, differently from this case, the grav
tational contribution toGqW is always positive. The gravita
tional correction toGqW

0 can never produce an amplification o
the bar oscillation.

Irrespectively of its sign, however, it is more important
compare the magnitude ofgqW , Eq. ~64!, with GqW

0 , Eq. ~57!.
Taking for e1>e35e the realistic value ofe>10221, we
obtain

4For instance for EXPLORER it is\vqW56310231 J, pF51,22
310224 Kg m/s, \q51,1310234 Kg m/s.
4-9
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gqW

GqW
0 >10242. ~65!

Clearly, the gravitational correction toGqW
0 is too small to give

any appreciable contribution toGqW .
A few comments are in order. First of all we note th

such a result, which could be expected on the basis of
extreme weakness of the gravitational wave amplitude,
tirely justifies the common assumption according to wh
the only physically relevant mechanism for the transfer
energy between the incoming wave and the gravitational
tenna is the direct resonant coupling between the wave
the bar normal modes.

We also note that, as the loop integrals extend up to
Fermi momentum, we could expect that correction toGqW

0

depends onpF . Performing the momentum integrals in E
~59!, however, we see that the terms that individually depe
on pF cancel each others.

One coulda priori think that, would these cancellation
not occur, the correction toGqW

0 could turn out more signifi-
cative. However, the value of the Fermi momentum~see
footnote 4! is not sufficiently high to compensate for th
extremely low value of the gravitational amplitude. In fa
as we can easily see by simple inspection of Eq.~60!, there
are three typical terms that come out from the integration
Eq. ~59! before the cancellations. They are (pF\q/m)2,
(\vqW)

2 and (\2q2/2m)2. While the third term is negligible
with respect to the second one, the first term is six order
magnitude greater than the second. Therefore, the orde
magnitude of the ‘‘gravitational damping’’gqW , even in the
absence of these cancellations, would only change of a fa
106, and the resulting value ofgqW (;10236 s21) would still
be far too small if compared withGqW

0 .

VI. SUMMARY AND CONCLUSIONS

In the present work, after deriving the microscopic Ham
tonian for the interaction between a gravitational wave an
n

d

n-
ll

02400
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e
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f
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a

metallic bar~the gravitational antenna!, we have studied the
contribution to the oscillations of the antenna due to the
teraction of its electrons with the incoming wave.

More precisely, we have considered the contribution
the damping factorGqW ~the negative of the imaginary part o
the phonon frequency! which comes from the interaction be
tween the electrons of the bar and the gravitational exte
field. It turns out that this term is several orders of magnitu
smaller than the ordinary factor which is due to the elect
viscosity ~i.e., to the electron-phonon interaction!.

As is well known, the gravitational wave interacts direct
with the normal modes of the bar. This resonant interactio
due to the modification of the geodesic distance between
ions of the lattice induced by the presence of the grav
tional field. The contributiongqW to the damping factor con
sidered in this paper is the result of an additional ‘‘indirec
interaction between the gravitational wave and the phono
This additional coupling, which is due to the electro
graviton interaction, is induced by electron-hole loops.

However, as the incoming wave is extremely weak a
the Fermi momentum~which is the highest value of momen
tum running in the loops! is not sufficiently high to compen
sate for this weakness, it should not come as a surprise
gqW turns out to be a negligibly small contribution toGqW .

Finally, it is worth mentioning that our findings, whil
confirming the assumption that the only relevant mechan
of interaction between a gravitational wave and a meta
bar is the direct resonant coupling between the wave and
normal modes, strongly disagree with the recent claim t
the interaction of the gravitational wave with the electrons
the bar enhances the resonant cross section of several o
of magnitude, actually of four orders of magnitude@9#.
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