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Einstein-aether waves
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Local Lorentz invariance violation can be realized by introducing extra tensor fields in the action that couple
to matter. If the Lorentz violation is rotationally invariant in some frame, then it is characterized by an
“aether,” i.e., a unit timelike vector field. General covariance requires that the aether field be dynamical. In this
paper we study the linearized theory of such an aether coupled to gravity and find the speeds and polarizations
of all the wave modes in terms of the four constants appearing in the most general action at second order in
derivatives. We find that in addition to the usual two transverse traceless metric modes, there are three coupled
aether-metric modes.
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[. INTRODUCTION action. (Results for different special cases were previously
published in Refs[2,3].) These results identify the choices
Recently there has been an explosion of research on thef constants in the action for which the linearized field equa-
possibility that Lorentz invariance is violated by quantumtions are hyperboli¢and hence admit an initial value formu-
gra\/ity effects(see, eg[]_] and references therginin a lation), and they will be useful in extracting the observable
nongravitational setting, it suffices to specify fixed back-consequences of such an aether field.
ground fields violating Lorentz symmetry in order to formu-  Related work goes back at least to the 1970s, when Nor-
late the Lorentz violatingdLV) matter dynamics. However, dtvedt and Will began a study of vector-tensor theories of
fixed background fields break general covariance. If we ar@ravity [4—7], which differed from the present work prima-
to preserve the successes of general relativity in accountingly in the fact that the norm of the vector was not con-
for gravitational phenomena, breaking general covariance i§trained. Gasperini, using a tetrad formalism, studied in a
not an option. The obvious alternative is to promote the Lvseries of papers8] an equivalent formulation of the
background fields to dynamical fields, governed by a generEinstein-aether theory studied here. Further related work has
ally covariant action. Virtually any configuration of any mat- been done by Kostelecky and Sam{] and Jacobson and
ter field breaks Lorentz invariance, but this differs in an im-Mattingly [2] in the special case where the aether dynamics
portant way from what we have in mind. The LV backgroundis Maxwell-like. The spherically symmetric weak field solu-
fields we are contemplating are constrained either dynamitions were found for the general Einstein-aether theory by
cally or kinematically not to vanish, so that every relevantEling and Jacobsofl0]. Vector-tensor theories have been

field configuration violates local Lorentz symmetry every-studied in a cosmological context by Clayton and Moffatt
where, even in the “vacuum.” [11,12 and Bassetet al. [13]. The issues of causality and

If the Lorentz violation preserves a three-dimensional ro-shocks in vector-tensor theories were studied by Clayton
tation subgroup, then the background field must be only &414]. Further discussion on previous work can be found in
timelike vector, which might be described by the gradient ofl2,10]. A proposal for Lorentz symmetry breaking via a sca-
a scalar, or by a vector field. In this paper we consider justar field with unusual kinetic term that makes the gradient
the case where the LV field is a unit timelike vectaf, tend to a timelike vector of constant norm has recently been
which can be viewed as the minimal structure required tdnvestigated by Arkani-Hameelt al. [15,16. Most recently,
determine a local preferred rest frame. We call this field théhe issue of Lorentz violation in a gravitational setting has
“aether,” as it is ubiquitous and determines a locally pre-Pbeen examined in a systematic way by Kostelelckgj.
ferred frame at every point of spacetime. Kinetic terms in the
action couple the aether directly to the spacetime metric, in Il. EINSTEIN-AETHER THEORY
addition to any couplings that might be present between the o o ) )
aether and the matter fields. We refer to the system of the N the spirit of effective field theory, we consider a deriva-
metric coupled to the aether as “Einstein-aether theory.” tive expansion of the action for the metdg, and aetheu®.

Here we investigate the linearized wave spectrum of this "€ most general action that is diffeomorphism-invariant and
theory, and determine the complete set of mode speeds afgadratic in derivatives is
polarizations for generic values of the free parameters in the .

S= 167G

f d*x\—g[ R+ L,—Muu,—1)] (1)
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=diag(1-1,—1,—1) andu®=(1,0,0,0). The letters,j,k,I
are reserved for spatial coordinate indices, and repeated spa-
tial indices are summed with the Kronecker delta.

Keeping only first order terms in? and vy,,, the field
equations become

L,=—K3  V.umvu" 2
with
Kabmn: Clgabgmn+ 025%52+035ﬁ621+c4uaubgmn! (3)

R is the Ricci scalar, and is a Lagrange multiplier that

. ) C o . (Da _—
enforces the unit constraint. The metric signaturetis{— Jad P m=AUm (12)
—), units are chosen such thatt, and other than the sig-
nature choice we use the conventiond ). GH=1% (13
The presence of the Lagrange multiplier aog terms
differentiates this theory from the vector-tensor theories con-
Y v+ 3 700=0 (14

sidered in[7]. The possible ternR,,u?u® is proportional to

the difference of the, andcg terms via integration by parts ) )
and hence has been omitted. We have also omitted any mathere the superscrigll) denotes the first order part of the
ter coupling since we are interested here in the dynamics diorresponding quantity. The linearized Einstein tensor is
the metric-aether sector in vacuum.

Varying the action(1) with respect tou?, g®°, andX  G{=— Oy~ % yapt Yman)™+ 3 Zap( Y= Ymn™,

yields the field equations (15)
Vadm— CaUa VinU®=Nup, (4 wherey=y," is the trace, while the linearized aether stress
tensor is
Gab=Tab 5
JapUluP=1 (6) TE= (9m[3§511) U ) = IMMaU )~ JE;L)Qm]
(1)mn
where to compactify the notation we have defined LU n(md )JUaUp. (16
Ja,=K3 Vu” (7)  If we impose the linearized aether field equatid) then
the second and last terms of this expressionTigj cancel,
and yielding
um=udv,u™, 8
é ® T =— 07035;%)) + (9m3§611)m9 b) - (17)

and the aether stress tensor is
The linearized quantity'}) is given by
Tab= Vm(Ja"Upy = I(aUp) — Japyu™) + Ca[ (VinUa) (V™up)

‘Jél) =1 VaUp+ C2 745 ViU ™+ C3VpUa + C4U 4 Vouy . (18)

= (Valm) (VU™ ]+ €4UaUp + [Un( Vind™) — 4U?JUaUp
(9) where the covariant derivatives of are expanded to linear
order, i.e., replaced by
In the above expression the constraint has been used to
eliminate the term that arises from varyirg-g in the con-
straint term in Eq.(1), and in the fourth linex has been
eliminated using the aether field equation.

- % gabﬁu .

(Valp) M= (0p+ 3 Yob) at 5 Yabo~ 3 Yaop- (19
This completes an explicit display of the linearized field
equations.

The aether perturbations are coupled to metric perturba-

The first step in finding the wave modes is to linearize thelions, due to the presence of the background aether vector

field equations about the flat background solution withu®. Were it not for the aether background, the linearized
Minkowski metric 7., and constant unit vecton®. The  aether stress tensat6) would vanish, and the metric would

fields are expanded as drop out of the aether field equation, leaving all modes un-
coupled.

A. Linearized field equations

Oab= Mab™ Yab (10

ut=ud+ 2, (11) B. Gauge choice
Diffeomorphism invariance of the actidil) implies that
The Lagrange multiplien vanishes in the background, so the field equations are tensorial, hence covariant under dif-

we use the same notation for the linearized version. Indicefeomorphisms. The linearized equations inherit the linearized

are raised and lowered with,,. We adopt Minkowski co-
ordinates x°x') aligned with u?, i.e., for which 7,

version of this symmetry. To find the independent physical
wave modes we must fix the corresponding gauge symmetry.
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An infinitesimal diffeomorphism generated by a vector In the gaugg?24), (25) the tensors in the aethét?) and

field £ transformsg,, andu? by spatial metric equationdl3) take the forms
09ab=L¢9an= Vatb T Vbta, (20 Jai 2= C14(Vi 00~ 7 Y00j0) ~ C1Vi kk— 7 C13¥ik ko~ 2 C2Ykk0i
1
Oul= L %= MV ut—umV, 2 (21 (31)
. . , . ) 1)_
In the linearized context, the vector field is itself first G{V=— 30— 5 vii— .k~ 7 i (0v= Yoo 00
order in the perturbations, hence the linearized gauge trans- _ ) (32
formations take the form Ykl ki
Yab= YabT daépt dpéa (22 Ti(jl): —C13(vi ot 3 ¥ij.00 ~ % C28i Ykk00 (33
v/ =092 (23)  where we use the notatian 4:=c,+c,, etc.

The usual choice of gauge in vacuum GR is Lorentz
gauge s*yap="0, Whereyap=Yap—3¥7ap- This gauge is IIl. WAVE MODES
chosen because it simplifies the Einstein tensor. The residual o _ _
gauge freedom, which exploits the field equations, further In general relativity there are just two modes per spatial
allows one to impose,; =0 andy=0. In the present case, Wave vector. Since? has three independent degrees of free-
the aether stress tens(k7) contains multiple terms in the dom, we expect that in the Einstein-aether case there will be
derivatives of the metric perturbation and so the LorentZive modes all together. We now determine the wave modes
gauge is not particularly helpful. Moreover, the residualin the chosen gauge.

gauge freedom cannot be used to ggtand y to zero since We assume a perturbation of the form
these do not satisfy the wave equation. _
Instead, a convenient choice is to directly impose the four Yab= €ap€ < (34

gauge conditior’s
va= e2elkeX’, (35)
Y0i=0 (24)
and choose coordinates such that the wave vector is
v;,i=0. (25 (k,0,0ks). The gauge conditiong4), (25) then imply

To see that this gauge is accessible, note that the gauge varia- €i=0 (36)
tions of yo; anduv; ; are, according to Eq$22) and(23),
=0. 3
0701 = &i 0T &o, (26) €3 37

The problem is now to find the set of polarizatiorsg{, €,)
and corresponding wave vectdtg for which the perturba-
tion is a solution to the field equationi$2)—(14).

The 0 component of the aether field equatid®) is
solved by definition ofz, while the constraint equatiofi4)
& ot &oi=X (29 implies the relation

ovii=—&iio- (27)

Thus to achieve the gau@24), (25 we must choosé&, and
¢, to satisfy equations of the form

&iio=Y. (29 €= 3 €0o- (39)

Subtracting the second equation from the divergence of thghis leaves the spatial components of the aether equation,
first gives together with the linearized Einstein equation. It suffices to
use the spatial components of the Einstein equation, as the
Soii =Xii—Y, (30 other components yield redundant informati¢although
they do provide useful algebraic chegks
Inserting the plane wave ansat24), (35) into the field
equations yields

which determinesg, up to constants of integration by solv-
ing Poisson’s equation. Thef can be determined up to a
time-independent field by integrating E&8) with respect to
time. Having made these choices & and &, Eq. (28)
holds, and the divergence of E@®8) implies that Eq.(29)

holds. [A]] (c48*°—Cy)€— 5 C135€3=0 (39
[A3] Ci4€00F Ci23€331 Co€ =0 (40)

IAlternatively, instead of setting; ; to zero it is equally conve- ) . 5
nient for finding the plane wave modes to set the spatial tjgce® [En] €00t (1+Cy)s%€ast 3 [(1+CotCip9)s"— 1] =0
zero. (41)
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TABLE I. Wave mode speeds and polarizations in the gapyge-v; ;=0.

Wave mode squared spest— smallc; limit polarization
transverse, traceless metric 1t —1 Y12, Y11= — Y22
transverse aether (c1—3C3+3¢2)/cif(1—Crg)—C1/Cig Ns=[C13/S(1—C13) v,
trace €123/€14) (2= C1)/[2(1+Cp)?— C1of 1+ Cp+ C1p9 | —C123/C1a Yoo= —2Vg

Y11= Y22~ — C100

Y33=(2C14/C129 (1+Co)vg

[E;i—Egnl [(1—C19)8%—1](€11— €29)=0 (42 nents for the special casg 3 ,~=0 were previously reported
in [3] (the speed for the trace mode is inverted themad the
Maxwell-like casec,3=c,=c,=0 was analyzed if2] (in

2 —
[Eiz] [(1—C198"—1]€1,=0 (43 poth cases using different gaugetn the latter case, the
transverse waves all have unit speed, while the trace mode
[Ejs] Coz€+(—14Cy2)S€3=0 (44) has zero speed, so it does not exist as a propagating wave.

A peculiar special case occursdf,=0, since then the
aether wave speeds are generally infinite. This happens be-
[Ess]l (1+Cp)e)+Ciaz€e33=0, (45  cause no time derivatives of the aether field then arise in the
field equation(31)=0. (The more special casg ,=C,3=0
was shown by Barbero and Villasen19] to be equivalent
to general relativity via a1 dependent field redefinition of
the metric)

When the constants are chosen so that is positive and
finite for all modes, the linearized equations are evidently
transverse spatial part of the metric polarizatiqp. hyperbo!ic.(lt is not _known whether this property ex_tends_to

We analyze the independent mode solutions assuming g&€ nonlinear equationsin these cases, since the dispersion

relationw=skis linear,|s| represents the signal propagation

neric values of the consta . There are a total of five ; . ;
MS234 §4peed of disturbances. It is easily checked from E4$)—

where[ A;] and[E;;] indicate the components of the aether
and Einstein equations. We use the notasietk,/k; for the
wave speedwhich will be a true “speed” only whers?
>0), and the index is dedicated to the two transverse spa-
tial directionsl =1,2, so that, = €;;,+ €, is the trace of the

modes, two with an unexcited aether which correspond to th ) . -2

usual GR modes, two “transverse” aether-metric modes, and+>) that the Einstein tensor has nonvanishing components
a fifth trace aether-metric mode. The two modes correspond©" €ach of the modegThese equations display components
ing to the usual gravitational waves in GR are found when alPf Gab~ Tab, SO just those 08,, remain when the; are set
polarization components vanish except, e,, ande,. To to zero) Hence the modes all have gauge-invariant, physical

: P : ignificance.
avoid overdetermining the speegdthe trace equatiopg, ] ~ S'9NMCA , _
must be identically satisfied, heneg =0. Then the[E,, If s is negative for a mode then the corresponding fre-

—E,,] and[Ey,] equations yield the speed. quency is imaginary, indicating the existence of exponen-

The two transverse aether-metric modes have nonzero pgglly 9F°Wi”9 and decaying solutions. In such a case the
larization components, and €5, and the[A,] and [E,s] theory is unstable and hence presumably unphysical.
equations together yield the speed and the rgtide, . The
fifth and final mode involves only, and the diagonal polar-
ization components,, (no sum ona=0,1,2,3). To avoid
overdetermining the speed, the difference equafién, An important open question is the sign of the energy of
—E»|=0 must be identically satisfied, hence;=e€,  the various wave modes. To answer this, it is necessary to
=¢€,/2. Equationg Az] and[Egz;3] and the constrain(38)  first determine the expression for energy in the linearized
then allow all polarization components to be expressed ilfEinstein-aether theory, which has not yet been done.
terms of just one, after whichE, ] determines the speed.  To compare the wave behavior of the theory with obser-
The resulting mode polarizations and speeds are displayed irations, the wave emission from astrophysical sources must
Table I. be determined. To begin with, the analog of the quadrupole

In the limit ¢;— O the transverse traceless modes becoméormula would enable the decay of binary pulsar orbits to be
the usual gravitational waves, with unit speed. Note thatomputed. Note that the presence of transverse aether and
these modes are entirely decoupled from the aether perturb&race modes strongly suggests that dipole and monopole ra-
tions even whert; #0. diation will also exist and contribute to the energy loss.

The smallc; limits of the transverse aether and trace The wave emission depends of course on how the aether
mode speeds depend on the ratios of the constants.;lf  field couples to matter. A direct coupling could lead to local
vanish, both speeds approach unity, but any other value isorentz violating effects which may exist but are already
possible. The wave speeds and nonzero polarization compaquite constrained. However, even a small coupling to the

IV. OBSERVATIONAL APPLICATIONS
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