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Einstein-aether waves
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Local Lorentz invariance violation can be realized by introducing extra tensor fields in the action that couple
to matter. If the Lorentz violation is rotationally invariant in some frame, then it is characterized by an
‘‘aether,’’ i.e., a unit timelike vector field. General covariance requires that the aether field be dynamical. In this
paper we study the linearized theory of such an aether coupled to gravity and find the speeds and polarizations
of all the wave modes in terms of the four constants appearing in the most general action at second order in
derivatives. We find that in addition to the usual two transverse traceless metric modes, there are three coupled
aether-metric modes.
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I. INTRODUCTION

Recently there has been an explosion of research on
possibility that Lorentz invariance is violated by quantu
gravity effects~see, e.g.,@1# and references therein!. In a
nongravitational setting, it suffices to specify fixed bac
ground fields violating Lorentz symmetry in order to form
late the Lorentz violating~LV ! matter dynamics. However
fixed background fields break general covariance. If we
to preserve the successes of general relativity in accoun
for gravitational phenomena, breaking general covarianc
not an option. The obvious alternative is to promote the
background fields to dynamical fields, governed by a gen
ally covariant action. Virtually any configuration of any ma
ter field breaks Lorentz invariance, but this differs in an i
portant way from what we have in mind. The LV backgrou
fields we are contemplating are constrained either dyna
cally or kinematically not to vanish, so that every releva
field configuration violates local Lorentz symmetry ever
where, even in the ‘‘vacuum.’’

If the Lorentz violation preserves a three-dimensional
tation subgroup, then the background field must be onl
timelike vector, which might be described by the gradient
a scalar, or by a vector field. In this paper we consider
the case where the LV field is a unit timelike vectorua,
which can be viewed as the minimal structure required
determine a local preferred rest frame. We call this field
‘‘aether,’’ as it is ubiquitous and determines a locally pr
ferred frame at every point of spacetime. Kinetic terms in
action couple the aether directly to the spacetime metric
addition to any couplings that might be present between
aether and the matter fields. We refer to the system of
metric coupled to the aether as ‘‘Einstein-aether theory.’’

Here we investigate the linearized wave spectrum of
theory, and determine the complete set of mode speeds
polarizations for generic values of the free parameters in
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action. ~Results for different special cases were previou
published in Refs.@2,3#.! These results identify the choice
of constants in the action for which the linearized field equ
tions are hyperbolic~and hence admit an initial value formu
lation!, and they will be useful in extracting the observab
consequences of such an aether field.

Related work goes back at least to the 1970s, when N
dtvedt and Will began a study of vector-tensor theories
gravity @4–7#, which differed from the present work prima
rily in the fact that the norm of the vector was not co
strained. Gasperini, using a tetrad formalism, studied i
series of papers@8# an equivalent formulation of the
Einstein-aether theory studied here. Further related work
been done by Kostelecky and Samuel@9# and Jacobson and
Mattingly @2# in the special case where the aether dynam
is Maxwell-like. The spherically symmetric weak field solu
tions were found for the general Einstein-aether theory
Eling and Jacobson@10#. Vector-tensor theories have bee
studied in a cosmological context by Clayton and Moff
@11,12# and Bassettet al. @13#. The issues of causality an
shocks in vector-tensor theories were studied by Clay
@14#. Further discussion on previous work can be found
@2,10#. A proposal for Lorentz symmetry breaking via a sc
lar field with unusual kinetic term that makes the gradie
tend to a timelike vector of constant norm has recently b
investigated by Arkani-Hamedet al. @15,16#. Most recently,
the issue of Lorentz violation in a gravitational setting h
been examined in a systematic way by Kostelecky@17#.

II. EINSTEIN-AETHER THEORY

In the spirit of effective field theory, we consider a deriv
tive expansion of the action for the metricgab and aetherua.
The most general action that is diffeomorphism-invariant a
quadratic in derivatives is

S5
1

16pGE d4xA2g@2R1Lu2l~uaua21!# ~1!

where
y-
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Lu52Kab
mn¹aum¹bun ~2!

with

Kab
mn5c1gabgmn1c2dm

a dn
b1c3dn

adm
b 1c4uaubgmn , ~3!

R is the Ricci scalar, andl is a Lagrange multiplier tha
enforces the unit constraint. The metric signature is (122
2), units are chosen such that c51, and other than the sig
nature choice we use the conventions of@18#.

The presence of the Lagrange multiplier andc4 terms
differentiates this theory from the vector-tensor theories c
sidered in@7#. The possible termRabu

aub is proportional to
the difference of thec2 andc3 terms via integration by part
and hence has been omitted. We have also omitted any
ter coupling since we are interested here in the dynamic
the metric-aether sector in vacuum.

Varying the action~1! with respect toua, gab, and l
yields the field equations

¹aJa
m2c4u̇a¹mua5lum ~4!

Gab5Tab ~5!

gabu
aub51 ~6!

where to compactify the notation we have defined

Ja
m5Kab

mn¹bun ~7!

and

u̇m5ua¹aum, ~8!

and the aether stress tensor is

Tab5¹m~J(a
mub)2J(a

mub)2J(ab)u
m!1c1@~¹mua!~¹mub!

2~¹aum!~¹bum!#1c4u̇au̇b1@un~¹mJmn!2c4u̇2#uaub

2 1
2 gabLu . ~9!

In the above expression the constraint has been use
eliminate the term that arises from varyingA2g in the con-
straint term in Eq.~1!, and in the fourth linel has been
eliminated using the aether field equation.

A. Linearized field equations

The first step in finding the wave modes is to linearize
field equations about the flat background solution w
Minkowski metric hab and constant unit vectorua. The
fields are expanded as

gab5hab1gab ~10!

ua5ua1va. ~11!

The Lagrange multiplierl vanishes in the background, s
we use the same notation for the linearized version. Ind
are raised and lowered withhab . We adopt Minkowski co-
ordinates (x0,xi) aligned with ua, i.e., for which hab
02400
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5diag(1,21,21,21) andua5(1,0,0,0). The lettersi , j ,k,l
are reserved for spatial coordinate indices, and repeated
tial indices are summed with the Kronecker delta.

Keeping only first order terms inva and gab , the field
equations become

]aJ(1)a
m5lu m ~12!

Gab
(1)5Tab

(1) ~13!

v01 1
2 g0050 ~14!

where the superscript~1! denotes the first order part of th
corresponding quantity. The linearized Einstein tensor is

Gab
(1)52 1

2 hgab2 1
2 g ,ab1gm(a,b)

m1 1
2 hab~hg2gmn,

mn!,
~15!

whereg5gm
m is the trace, while the linearized aether stre

tensor is

Tab
(1)5]m@J(a

(1) mu b)2J(1)m
(au b)2J(ab)

(1) um#

1@u n~]mJ(1)mn!#u au b . ~16!

If we impose the linearized aether field equation~12! then
the second and last terms of this expression forTab

(1) cancel,
yielding

Tab
(1)52]0J(ab)

(1) 1]mJ(a
(1)mu b) . ~17!

The linearized quantityJab
(1) is given by

Jab
(1)5c1¹aub1c2hab¹mum1c3¹bua1c4u a¹0ub , ~18!

where the covariant derivatives ofua are expanded to linea
order, i.e., replaced by

~¹aub!(1)5~vb1 1
2 g0b! ,a1 1

2 gab,02
1
2 ga0,b . ~19!

This completes an explicit display of the linearized fie
equations.

The aether perturbations are coupled to metric pertur
tions, due to the presence of the background aether ve
ua. Were it not for the aether background, the lineariz
aether stress tensor~16! would vanish, and the metric would
drop out of the aether field equation, leaving all modes
coupled.

B. Gauge choice

Diffeomorphism invariance of the action~1! implies that
the field equations are tensorial, hence covariant under
feomorphisms. The linearized equations inherit the lineari
version of this symmetry. To find the independent physi
wave modes we must fix the corresponding gauge symme
3-2
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An infinitesimal diffeomorphism generated by a vect
field ja transformsgab andua by

dgab5Ljgab5¹ajb1¹bja , ~20!

dua5L ju
a5jm¹mua2um¹mja. ~21!

In the linearized context, the vector fieldja is itself first
order in the perturbations, hence the linearized gauge tr
formations take the form

gab8 5gab1]ajb1]bja ~22!

v8a5va2]0ja. ~23!

The usual choice of gauge in vacuum GR is Lore
gauge]aḡab50, where ḡab5gab2 1

2 ghab . This gauge is
chosen because it simplifies the Einstein tensor. The resi
gauge freedom, which exploits the field equations, furt
allows one to imposeg0i50 andg50. In the present case
the aether stress tensor~17! contains multiple terms in the
derivatives of the metric perturbation and so the Lore
gauge is not particularly helpful. Moreover, the residu
gauge freedom cannot be used to setg0i andg to zero since
these do not satisfy the wave equation.

Instead, a convenient choice is to directly impose the f
gauge conditions1

g0i50 ~24!

v i ,i50. ~25!

To see that this gauge is accessible, note that the gauge v
tions of g0i andv i ,i are, according to Eqs.~22! and ~23!,

dg0i5j i ,01j0,i ~26!

dv i ,i52j i ,i0 . ~27!

Thus to achieve the gauge~24!, ~25! we must choosej0 and
j i to satisfy equations of the form

j i ,01j0,i5Xi ~28!

j i ,i05Y. ~29!

Subtracting the second equation from the divergence of
first gives

j0,i i 5Xi ,i2Y, ~30!

which determinesj0 up to constants of integration by solv
ing Poisson’s equation. Thenj i can be determined up to
time-independent field by integrating Eq.~28! with respect to
time. Having made these choices ofj0 and j i , Eq. ~28!
holds, and the divergence of Eq.~28! implies that Eq.~29!
holds.

1Alternatively, instead of settingv i ,i to zero it is equally conve-
nient for finding the plane wave modes to set the spatial traceg i i to
zero.
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In the gauge~24!, ~25! the tensors in the aether~12! and
spatial metric equations~13! take the forms

Jai,
a5c14~v i ,002

1
2 g00,i0!2c1v i ,kk2

1
2 c13g ik,k02 1

2 c2gkk,0i

~31!

Gi j
(1)52 1

2 hg i j 2
1
2 g ,i j 2gk( i , j )k2 1

2 d i j ~hg2g00,00

2gkl,kl! ~32!

Ti j
(1)52c13~v ( i , j )01 1

2 g i j ,00!2 1
2 c2d i j gkk,00 ~33!

where we use the notationc14ªc11c4, etc.

III. WAVE MODES

In general relativity there are just two modes per spa
wave vector. Sinceva has three independent degrees of fre
dom, we expect that in the Einstein-aether case there wil
five modes all together. We now determine the wave mo
in the chosen gauge.

We assume a perturbation of the form

gab5eabe
ikcxc

~34!

va5eaeikcxc
, ~35!

and choose coordinates such that the wave vector
(k0,0,0,k3). The gauge conditions~24!, ~25! then imply

e0i50 ~36!

e350. ~37!

The problem is now to find the set of polarizations (eab ,ea)
and corresponding wave vectorska for which the perturba-
tion is a solution to the field equations~12!–~14!.

The 0 component of the aether field equation~12! is
solved by definition ofl, while the constraint equation~14!
implies the relation

e052 1
2 e00. ~38!

This leaves the spatial components of the aether equa
together with the linearized Einstein equation. It suffices
use the spatial components of the Einstein equation, as
other components yield redundant information~although
they do provide useful algebraic checks!.

Inserting the plane wave ansatz~34!, ~35! into the field
equations yields

@AI # ~c14s
22c1!e I2

1
2 c13se I350 ~39!

@A3# c14e001c123e331c2e II 50 ~40!

@EII # e001~11c2!s2e331
1
2 @~11c21c123!s

221#e II 50
~41!
3-3
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TABLE I. Wave mode speeds and polarizations in the gaugeg0i5v i ,i50.

Wave mode squared speeds2→ small ci limit polarization

transverse, traceless metric 1/(12c13)→1 g12, g1152g22

transverse aether (c12
1
2 c1

21
1
2 c3

2)/c14(12c13)→c1 /c14 g I35@c13/s(12c13)#v I

trace (c123/c14)(22c14)/@2(11c2)22c123(11c21c123)#→c123/c14 g00522v0

g115g2252c14v0

g335(2c14/c123)(11c2)v0
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@E112E22# @~12c13!s
221#~e112e22!50 ~42!

@E12# @~12c13!s
221#e1250 ~43!

@EI3# c13e I1~211c13!se I350 ~44!

@E33# ~11c2!e II 1c123e3350, ~45!

where@Ai # and @Ei j # indicate the components of the aeth
and Einstein equations. We use the notations5k0 /k3 for the
wave speed~which will be a true ‘‘speed’’ only whens2

.0), and the indexI is dedicated to the two transverse sp
tial directionsI 51,2, so thate II 5e111e22 is the trace of the
transverse spatial part of the metric polarizationeab .

We analyze the independent mode solutions assuming
neric values of the constantsc1,2,3,4. There are a total of five
modes, two with an unexcited aether which correspond to
usual GR modes, two ‘‘transverse’’ aether-metric modes,
a fifth trace aether-metric mode. The two modes correspo
ing to the usual gravitational waves in GR are found when
polarization components vanish excepte11, e22 ande12. To
avoid overdetermining the speeds, the trace equation@EII #
must be identically satisfied, hencee II 50. Then the@E11
2E22# and @E12# equations yield the speed.

The two transverse aether-metric modes have nonzero
larization componentse I and e I3, and the@AI # and @EI3#
equations together yield the speed and the ratioe I3 /e I . The
fifth and final mode involves onlye0 and the diagonal polar
ization componentseaa ~no sum ona50,1,2,3). To avoid
overdetermining the speed, the difference equation@E11
2E22#50 must be identically satisfied, hencee115e22
5e II /2. Equations@A3# and @E33# and the constraint~38!
then allow all polarization components to be expressed
terms of just one, after which@EII # determines the speed
The resulting mode polarizations and speeds are displaye
Table I.

In the limit ci→0 the transverse traceless modes beco
the usual gravitational waves, with unit speed. Note t
these modes are entirely decoupled from the aether pertu
tions even whenciÞ0.

The small ci limits of the transverse aether and tra
mode speeds depend on the ratios of the constants. Ifc2,3,4
vanish, both speeds approach unity, but any other valu
possible. The wave speeds and nonzero polarization com
02400
-

e-

e
d
d-
ll

o-

in

in

e
t
a-

is
o-

nents for the special casec2,3,450 were previously reported
in @3# ~the speed for the trace mode is inverted there!, and the
Maxwell-like casec135c25c450 was analyzed in@2# ~in
both cases using different gauges!. In the latter case, the
transverse waves all have unit speed, while the trace m
has zero speed, so it does not exist as a propagating wa

A peculiar special case occurs ifc1450, since then the
aether wave speeds are generally infinite. This happens
cause no time derivatives of the aether field then arise in
field equation~31!50. ~The more special casec145c2350
was shown by Barbero and Villasen˜or @19# to be equivalent
to general relativity via aua dependent field redefinition o
the metric.!

When the constantsci are chosen so thats2 is positive and
finite for all modes, the linearized equations are eviden
hyperbolic.~It is not known whether this property extends
the nonlinear equations.! In these cases, since the dispersi
relationv5sk is linear,usu represents the signal propagatio
speed of disturbances. It is easily checked from Eqs.~41!–
~45! that the Einstein tensor has nonvanishing compone
for each of the modes.~These equations display componen
of Gab2Tab , so just those ofGab remain when theci are set
to zero.! Hence the modes all have gauge-invariant, phys
significance.

If s2 is negative for a mode then the corresponding f
quency is imaginary, indicating the existence of expon
tially growing and decaying solutions. In such a case
theory is unstable and hence presumably unphysical.

IV. OBSERVATIONAL APPLICATIONS

An important open question is the sign of the energy
the various wave modes. To answer this, it is necessar
first determine the expression for energy in the lineariz
Einstein-aether theory, which has not yet been done.

To compare the wave behavior of the theory with obs
vations, the wave emission from astrophysical sources m
be determined. To begin with, the analog of the quadrup
formula would enable the decay of binary pulsar orbits to
computed. Note that the presence of transverse aether
trace modes strongly suggests that dipole and monopole
diation will also exist and contribute to the energy loss.

The wave emission depends of course on how the ae
field couples to matter. A direct coupling could lead to loc
Lorentz violating effects which may exist but are alrea
quite constrained. However, even a small coupling to
3-4
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matter source might be large enough to produce an obs
able effect. Even without any direct coupling to matter, t
extra modes will still be excited through their coupling to t
time dependent metric produced by the moving ma
sources.

The results obtained here for the linearized theory sho
also be useful in computing the PPN parameters.
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