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We find all higher dimensional solutions of Einstein-Maxwell theory that are the topological product of two
manifolds of constant curvature. These solutions include the higher dimensional Nariai, Bertotti-Robinson and
anti-Nariai solutions and the anti—de Sitter Bertotti-Robinson solutions with toroidal and hyperbolic topology
(Plebarski-Hacyan solutions We give explicit results for any dimensid=4. These solutions are generated
from the appropriate extremal limits of the higher dimensional near-extreme black holes in de Sitter and
anti—de Sitter backgrounds. Thus, we also find the mass and charge parameters of higher dimensional extreme
black holes as a function of the radius of the degenerate horizon.
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[. INTRODUCTION ter (dS spacetime and in an asymptotically anti—de Sitter
(AdS) spacetime have also been discussediinNow, in an
Interest in higher dimensional spacetimes was boostedsymptotically AdS 4-dimensional background, besides
with the development of string theories. More recently, thereblack holes with spherical topology, there are also solutions
has been a renewed interest in connection with the TeV-scalwith planar, cylindrical or toroidal topology found and dis-
theory[1] which suggests that the universe in which we live cussed in[10] (neutral casg [11] (electric casg and[12]
may have large extra dimensions. According to this conjecmagnetic caseand black hole$13] with hyperbolic topol-
ture, we would live on a four-dimensional sub-manifold, ogy analyzed if14]. The higher dimensional extensions of
where the standard model inhabits, whereas the gravitationghese non-spherical AdS black holes are already known.
degrees of freedom propagate throughout all dimensiondNamely, theD-dimensional AdS black holes with planar, cy-
This has motivated a wide search for various phenonfizha lindrical or toroidal topology were discussed[it5] (neutral
involving higher dimensions. In particular, it is possible thatcase, in [16] (electric casgand in[17] (magnetic caseand
future accelerators, such as the Large Hadron ColllddC)  the D-dimensional AdS black holes with hyperbolic topology
at CERN, will produce black holes and thus detect indirectlywere analyzed if15,18.
gravitational wave$3]. In a 4-dimensional background with generic cosmological
In this paper we deal with exact solutions of the Einstein-constant, and still in the context of Einstein-Maxwell theory,
Maxwell theory in higher dimensions. The higher dimen-there are other interesting solutions that do not contain a
sional counterparts of the Schwarzschild and of the Reissneblack hole, but are the direct topological product of two
Nordstran black holes—the Tangherlini black holes—have manifolds of constant curvature. These are the Nariai solu-
been found and discussed if¥]. The D-dimensional tion[20], the Bertotti-Robinson solutiof21], the anti-Nariai
Majumdar-Papapetrou black holes have been founfbin  solution[22], and the Plebaski-Hacyan solutionf23]. For a
(see alsd6]). The higher dimensional Kerr black hole—the detailed historical overview of these solutions and for refer-
Myers-Perry black hole—was found 7] and further dis- ences see, e.d24-26. A discussion of these solutions in a
cussed in[8]. The higher dimensional counterpart of the more mathematical context can be found[#Y]. Some of
Kerr-Newman black hole is not yet knowisee[9] for a  these solutions, but not all, have already been discussed in a
discussion The higher dimensional Schwarzschild and higher dimensional spacetime.
Reissner-Nordstra black holes in an asymptotically de Sit-  Ginsparg and Perrj28] (see alsd29]) have connected
the extreme dS-Schwarzschild black hole with the Nariai so-
lution [20] in a 4-dimensional spacetime. That is, they have

*Electronic address: vcardoso@fisica.ist.utl.pt shown that the already known Nariai solutigwhich is not a
"Electronic address: oscar@fisica.ist.utl.pt black hole solutioncould be generated from an appropriate
*Electronic address: lemos@kelvin.ist.utl.pt extremal limit of a near-Nariai black hole. They realized this
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connection while they were studying the quantum stability ofin Eq. (1), the coefficient ofA was chosen in order to en-
the Nariai and the dS-Schwarzschild solutions. A similar pro-sure that, for any dimensioB, the pure dS or pure AdS
cedure allows one to generate the Bertotti-Robinson, thepacetimes are described ty,=1—(A/3)r?, as occurs
anti-Nariai, and the Plebaki-Hacyan solutions from appro- with D=4.
priate near-extreme black holes.

In this paper we shall use the procedure introduce@8h lIl. HIGHER DIMENSIONAL EXTREME dS BLACK
in order to generate, from the appropriate extremal limits of HOLES AND NARIAI-LIKE SOLUTIONS
the D-dimensional near-extreme black holes, all the higher
dimensional solutions that are the topological product of two In order to generate the higher dimensional Nariai, dS-
manifolds of constant curvature. These solutions include th&ertotti-Robinson, and Nariai-Bertotti-Robinson solutions
higher dimensional Nariai, Bertotti-Robinson, anti-Nariai, one needs first to carefully find the values of the mass and of
and Plebaski-Hacyan solutions. We give explicit results for the charge for which one has an extreme dS black hole. We
any dimensiorD=4. In passing we also find the values of Will do this in Sec. Il A, and in Sec. Il B we will generate
the mass and of the Charge for which one has extreme b|ad.lae Nariai-like solutions from the extremal limits of the near-
holes in an asymptotically dS and in an asymptotically Adsextreme black holes.
higher dimensional spacetime. This analysis has already been
initiated in [19], but our procedure and results are comple-A. Higher dimensional extreme black holes in an asymptotically
mentary to those of19]. In the AdS case, the discussion dS background

carried in this paper includes black holes with spherical to- In an asymptotically de Sitter background,>0, the

pology, with planar, cylindrical and toroidal topology, and st general static higher dimensional black hole solution

with hyperbolic topology. ; :
The plan of this paper is as follows. In Sec. Il, we set theWIth spherical topology was found by Tangherl{]. The

Einstein-Maxwell action in @&-dimensional background. In gravitational field s

Sec. Il we discuss the properties of the extreme higher di- d<?= _f(r)dt2+f(r)—ldr2+r2dQ%72, (4)
mensional dS black holes, and we find their extremal limits,

i.e. the associated Nariai-like solutions. In Sec. IV we do thavhered3 _, is the line element on a uni(— 2)-sphere,

same but this time in an AdS background. 5

2 _ 2 ; 2 i 2
Il. ACTION AND EQUATIONS OF MOTION d0f_,=def+sifoydes+ -+ [ sifodep_,
We will discuss solutions that are the extremal limits of ®)
the near-extreme cases of the static higher dimensional black, the functiorf(r) is aiven b
holes. Some of these black holes were found by Tangherlini (Nisg y

[4] and are the higher dimensional cousins of the Schwarz- A Q2
schild and of the Reissner-Nordsatndblack holes. We work f(ry=1- grz— 53T 209 (6)
in the context of the Einstein-Maxwell action with a cosmo- r r

logical constant\:
g The mass paramet&d and the charge parametérare re-

1 (D-1)(D-2) lated to the Arnowitt-Deser-MisnefADM) mass,M apy ,
I = EfMdDX\/—g( R-———F—A- F2|, (1)  and ADM electric chargeQapy , of the solution by[7]
: : : I : (D-2)0p,
whereD is the dimension of the spacetinggis the determi- Mppyu=——7—"—"M

nant of the metricg,,, R is the Ricci scalar, and-,, 16m

=d,A,—3d,A, is the Maxwell field strength of the gauge D-3(D_2
field A, . We set theD-dimensional Newton’s constant equal Qapy = u , )
to 1, andc=1. The variation of Eq(1) yields the equations 2

for the gravitational field and for the Maxwell field, respec- ) )
whereQ_, is the area of a unitl) —2)-sphere,

tively,
(D-1)12
1 (pb-1(-2) Op ymm ®
R,MV_ERg,lLV_I_ TAQ}LV_SWTMV’ F[(D_l)/Z]
V,Frr=0, @) Here,I'[ z] is the gamma function. For our purposes we need

to know thatI'[z]=(z—1)! when z is a positive integer,
['[1/2]=m, andI['[z+1]=2[[z]. The radial electromag-

whereR,,,, is the Ricci tensor andl,,, is the electromagnetic el : N
netic field produced by the electric charQgpy is given by

energy-momentum tensor:

- ?QD“Z” dt/\dr. ©)

1 1 _
T/.LV:E gaBFa,uFﬁv_Zg,uVFaﬁFaﬁ . (3) F=
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These solutions have a curvature singularity at the originwherea,b,c,, ... ,C;p-4) are constants that can be found
and the black hole solutions can have at most three horizonthrough the matching between Eg@8) and(12). This proce-
the Cauchy horizom _, the event horizom , and the cos- dure yields the mass paramedrand the charge parameter

mological horizonr;, which satisfyr _<r  <r_. Q of the black holes as a function pf
We are now interested in tHe-dimensional extreme dS-

Tangherlini black holes. That is, in order to start searching M=2 D_3( _ D-2 ﬁ 2>

for Nariai-like solutions one needs first to carefully find the P D-33°

parameterd/ andQ as a function of the degenerate horizon.
To settle the nomenclature and the technical procedure, we 2 20-3)

start with the five-dimensional casB,=5. We look to the Q7=p D—3 3"

extreme dS black holes, for which two of the horizons coin-

cide. Let us label this degenerate horizongyin this case, The conditionQ?=0 implies thatp< pya, With
and for D=5, the functionf(r) given by Eq.(6) can be

written as ~ /b—-33
Pmax™ D—1A " (14

D-1A 2) 13

f(ry=— éi(r—p)z(r+p)2 r2— 3+2p2 (10) _For theD-d_imensionaI cold black holer(=r,), M and
34 A Q increase withp, and one has
4
Thus, besides the degenerate horizenp, there is another 0<p<py, O0<M<——>pD~3

horizon ato = \/3/A — 2p?. From Eq.(6) with D=5 and Eq. D-1Pv

(10), the mass parameté and the charge parametér of
the black holes can be written as functionspofM = p?(2 0<Q< 1 D-3 (15)
— Ap?) andQ?=p*(1—2A p?/3). The conditiorQ?=0 im- pD_2"
plies thatp=<+/3/(2A). At this point we note thaM and Q
first increase wittp (this sector corresponds te>p), until  Where we have defined
p reaches the critical valye= \1/A (this sector corresponds
to o=p), and therM andQ start decreasing until reaches \[ (16)
its maximum allowed valudthis sector corresponds i@ AJ(D-2)(D-1)
<p). These three sectors are associated with three distinct
extreme dS black holes: the cold, the ultracold and the Nariadfor the D-dimensional ultracold black holer (=r . =r),
black holes, respectivelyHere we follow the nomenclature one has
used in the analogous 4-dimensional black h¢83. Note
that the Nariai black hole differs from the Nariai solution _ M= D-3
which is not a black hole solutionMore precisely, for 0
<p<1/JA one has the cold black hole with =r , =p and
r.=o. The ranges of the mass and charge parameters for the 1 b_3
cold black hole are @ M<1/A and 0<Q<1/(y3A). The Q= D2 Pu
casep=1/\/A gives the ultracold black hole in which the
three horizons coincide,_=r . =r. Its mass and charge Finally, for theD-dimensional Nariai black hole ( =r ), M
parameters aréM=1/A and Q=1/(3A). For 1NA<p andQ decrease wittp, and one has
</3/(2A) one has the Nariai black hole with, =r_=p
andr_=o¢. The ranges of the mass and charge parameters pu<p=<p 2 _= oD
for the Nariai black hole are 3/M)<M<1/A ! mee p—gpfma
and 0= Q<1/(\3A).

Now, the above construction can be extended to b_3
D-dimensional extreme dS black holes. In the extreme case O$Q<\/ﬁpu . (18)
the functionf(r) given by Eq.(6) can be written as

17

D-3

\<
M<p—gpPu *

The ranges oM andQ that represent each one of the above
extreme black holes are sketched in Fig. 1. This figure and
f(r)y=(r—p)?= {1— =[r +h(r)]} (11)  the associated relatiori$3)—(18) are not the main results of
this paper. However, they constitute results that we had to
find in our way into the generation of the Nariai-like solu-
wherer =p is the degenerate horizon of the black hole, andtions. For an alternative and complementary description of
the extreme dS-Tangherlini black holes $&6)].
o ¢ c The C_arter—Penrose diagrams'of tBedimensional dS- '
h(r)=a+br+ —+ —2+...+ 20-4 (12)  Tangherlini black holes are similar to the ones of their
rr2 r2(-4) 4-dimensional counterparts and are sketched in Fig. 2 in the
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oA/ 3)(0-3)/2/

FIG. 1. Range oM andQ for which one has

B a nonextreme black holé@egion interior to the

9du T closed lineONUQ), an extreme Nariai black
Ultracold black hole hole with ry=re (line N_U), an extreme cold

Cold Biadk Tioles / t=1,=1) black hole withr_=r_ (line OU_), and an ex-
t,=r) yi treme ultracold black hole withr _=r,=r,

" (point U). The line ON represents the nonex-

treme dS-Schwarzschild black hole, and pdiht

represents the extreme Nariai Schwarzschild

Naﬁaibla"kh"les black hole. The non-shaded area represents a
(=1,) naked singularity region. The constants in the
Notextene axes ) are me=[2/(D—-1)][(D—-3)/(D
black holes | ~1)]®~¥2 m,=[4/(D~-1)][(D-3)*(D-2)
x(D—-1)]®~32 and q,=[1/(yD—-2)][(D
N , —3)%(D-2)(D—1)]P~ 372
) | ] M (A 3)yw312
mo mu
charged case and in Fig. 3 in the neutral case. In these dia- 3 )
grams each point represents@ 2)-sphere of radius. A= m[A+(D—3) B],
B. Extremal limits of the higher dimensional dS black holes 2_ (D-3)B-A (20)
In this section, we apply the near extremal procedure of (D—-3)(D-2)B°~?

Ginsparg and Pery28] to the extreme black holes discussed ] ] ] . o
in the last subsection, in order to find the higher dimensionafl & Maxwell field(9) of the higher dimensional Nariai so-
Nariai, dS-Bertotti-RobinsonA =0 Bertotti-Robinson and 'Ution is
Nariai-Bertotti-Robinson solutions. The higher dimensional NCEY:
Nariai solgtlon has already been found[itD,22. !—|_ere we F=Qom sinydT/\dy. (21)
show that it can be generated from the near-Nariai black hole A
following the procedure of28]. Therefore, we give empha-
sis to the solution and we set the nomenclature for the othe®o, if we give the parameters andQ, we can construct the
cases. higher dimensional Nariai solution, which is an exact solu-
tion of Einstein-Maxwell equation&2) with A>0 in D di-
1. Higher dimensional Nariai solution mensions. Through a redefinition of coordinates gl
In order to generate the higher dimensional Nariai solu-_AR2 and 7= VAT, the spacetimé19) can be rewritten in
tion from the near-Nariai black hole we first go back to Eq.Static coordinates as
(11) and rewrite it in the formf(r)=—A(r)(r — p)?, where
r=p is the degenerate horizon of the black hole, &fd) is
a polynomial function ofr. Then, we set , =p—¢ andr,
=p+e, wheree<<1l measures the deviation from degen-
eracy, and the limit , —r . is obtained wher —0. Now, we
introduce a time coordinaf€, t=T/(¢A) and a radial coor-
dinate y, r=p+ecosy, wherexy=0 and y= 7 correspond,
respectively, to the horizons, and r ., and A=A(p)
=p 1—(p?>+h)A/3]>0, with h=h(p) defined in Eq.
(12). Then, in the limite—0, from Egs.(4) and (11), we
obtain the gravitational field of the Nariai solution

2

1
ds?=—(1-AR?)dT?+ +Edng,2, (22)

_ R2
and the electromagnetic field changes also accordingly to the
coordinate transformation. Written in these coordinates, we
clearly see that the Nariai solution is the direct topological
product of dS,xSP~2, i.e. of a (1+1)-dimensional dS
spacetime with al) — 2)-sphere of fixed radiuB~*2 This
spacetime is homogeneous with the same causal structure as
(1+1)-dimensional dS spacetime, but it is not an asymptoti-
cally 4-dimensional dS spacetime since the radius of the
L . (D—2)-sphere is constanB( ?), contrarily to what hap-
i 2 Y1 T 402 pens in the dS solution where this radius increases as one
dsz_A( i dT*+dx®) + BdQD*Z’ (19 approaches infinity.
The neutral Nariai solution(=0) satisfies the relations

A=A(D-1)/3 and B=A(D—-1)/(3D—-9). The A=0
wherey runs from 0 torr, andA andB=1/p? are related to limit of the Nariai solution isD-dimensional Minkowski
A andQ by spacetime as occurs with tliz=4 solution(see[26)).
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Nonextreme black hole Nonextreme black hole
=0 r=0
/ r
=3 " =] //// 'c”> - =)
I I I
- (2 — = T - rc rc
1
I+
(@)
I'c l‘+ 1’+ I'c l‘c r+ I'+ l’c
I_ ..
- 7 v Neutral Nariai black hole (r=r,)
(=4
c||> 1 / "ﬁ c||> I I
—~ T - i (@ i rc rc %
@ / NN
(b) r=0 r=0 r=0
Cold black hole (r,=r.) FIG. 3. Carter-Penrose diagrams of the dS-Schwarzsckild (

=0) black holes. The zigzag line represents a curvature singularity,
7 represents the infinityr ), r. represents a cosmological hori-
zon, and | represents a black hole event horiz@.was presented

in [31], and(b) was presented if82].

back to Eqg.(11) and rewrite it in the formf(r)=A(r)(r
—p)2, wherer=p is the degenerate horizon of the black
hole, andA(r) is a polynomial function of. Then, we set
r_=p—e andr, =p+e, wheree<1l measures the devia-
tion from degeneracy, and the limit.—r, is obtained
when ¢—0. Now, we introduce a time coordinaf€, t
=T/(eA), and a new radial coordinatg, r=p+ ecosty,
where A=A(p)=p [1—A(p?>+h)/3]>0, with h=h(p)
defined in Eq.(12). Then, in the limite -0, from Egs.(4)
and(11), we obtain the gravitational field of the dS Bertotti-
Robinson solution

1 1
déézx(—smﬁxdT2+dX%4-Edﬂg,z, (23)

Ultracold black hole (r=r,=r1_)
- whereA andB=1/p? are related to\ andQ by

I+

' 3
c”> ,O A:m[—A+(D_3)ZB],
* (D-3)B+A

d —
(d) VA Q2:

<

)

. (24
. _ . (D—3)(D—2)BP 2
FIG. 2. Carter-Penrose diagrams of the dS-Reissner-Nordstro

(Q#0) black holes. The zigzag line represents a curvature sinQurpg paxwell field(9) of the higher dimensional dS Bertotti-
larity, Z represents the infinityr(= ), r. represents a cosmological Robinson solution is

horizon,r , represents a black hole event horizon, andrepre-

sents a Cauchy horizoria) was presented ifi31]. As far as we g(D-2)2
know, (b)—(d) are first shown here. F=—Quapm Tsinhxd TAdy. (25
The Carter-Penrose diagram of tBedimensional Nariai r
solution (charged or neutralis sketched in Fig. 4. In this
diagram any point represents ® { 2)-sphere with fixed °
|

radiusB~ 2. For a construction that starts with the Carter- o
Penrose diagram of the dS black hole and leads to the dia- A
gram of the Nariai solution sge6]. =

FIG. 4. Carter-Penrose diagram of the Nariai soluticharged
or neutra). The zigzag line represents a curvature singulaffty,

In order to generate the higher dimensional dS Bertottitepresents the infinityR=), and R, represents a cosmological
Robinson solution from the near-cold black hole we first gohorizon.

2. Higher dimensional dS Bertotti-Robinson solution
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=p,+ e, with p, defined in Eq(16) ande <1 measuring the
deviation from degeneracy, and the limit> o is obtained
whene—0. Now, we introduce a new time coordinafet
=T/(2¢?P), and a radial coordinate y, r=p,
+ecos(y2ePy), where P=P(p,)>0. Then, taking the
limit e—0 of Eq.(4), we obtain the gravitational field of the
Nariai-Bertotti-Robinson  solution, ds’= — y?dT?+ dy?
+p2dQ32_,, wherey runs from 0 to+, and the Maxwell
field (9) of the higher dimensional Nariai-Bertotti-Robinson
FIG. 5. Carter-Penrose diagram of the Bertotti-Robinson solusolution isF:QADMpJD”XdT/\dX_ Now, the spacetime
tion in any cosmological constant background. The zigzag line repfactor —x?dT?+dy? is just MY (2-dimensional Minkowski
resents a curvature singularity, represents the infinityR=<«),  spacetimgin Rindler coordinates. Therefore, under the usual
andRy, represents a horizon. coordinate transformatiog= \x?—t2 and T=arctanh(/x),

) , we can write the higher dimensional Nariai-Bertotti-
So, if we give the parameters andQ, we can construct the  ropinson solution in its simplest form

higher dimensional dS Bertotti-Robinson solution, which is

an exact solution of Einstein-Maxwell equatiof® with A ds?=—dt?+dx?+p2dQ3_,, (28
>0 in D dimensions. There is no neutraQ&0) Bertotti-
Robinson solution. wherep,, is defined in Eq(16), and
Through a redefiniton of coordinates;=AT and
sinfPxy=AR—1, the spacetimé23) can be rewritten in static Qaom
coordinates as F=— 5 dthdx (29)

Pu

g whereQapy is given by Egs(7) and(17). So, if we giveA

we can construct the higher dimensional Nariai-Bertotti-
Robinson solution. This solution is the direct topological

and the electromagnetic field changes also accordingly to theroduct of M**x S°~2 and is an exact solution of Einstein-
coordinate transformation. Written in these coordinates, wé/laxwell equations(2) with A>0 in D dimensions. Its
clearly see that the Bertotti-Robinson solution is the direccausal diagram is equal to the causal diagram of the Rindler
topological product of Ad$xSP~2, ie. of a (1+1)-  solution. This solution belongs to the class of solutions dis-

dimensional AdS spacetime with & 2)-sphere of fixed cussed in detail if23] (for D=4), and thus it can very

radiusB 12 appropriately be called a PlebskirHacyan solutiorj25].
The Carter-Penrose diagram of thB-dimensional

Bertotti-Robinson solution is sketched in Fig. 5. In this dia- V. HIGHER DIMENSIONAL EXTREME AdS BLACK

gram any point represents B (- 2)-sphere with fixed radius HOLES AND ANTI-NARIAI LIKE SOLUTIONS

B~ 2. For a construction that starts with the Carter-Penrose

. . In order to generate the higher dimensional anti-Nariai,
glsgg?tTRoganesgns Sb(l)ﬁl;)?}oéz;g]d leads to the diagram of thgnd the two AdS-Bertotti-Robinson solutions one needs first

: . . : . . ._to carefully find the values of the mass and of the charge for
The higher dimensional flat Bertotti-Robinson solution is, . g
given by theA =0 limit of the dS Bertotti-Robinson. It is which one has extreme AdS black holes. We will do this in

. : . Sec. IV A, and in Sec. IV B we will generate the anti-Nariai
described by Eq423) and(25) with A andB being related to like solutions from the extremal limits of the near-extreme

1
ds’=—(AR?—1)dT?+ 1+§dﬂg_2, (26)

AR?

Q by black holes.
A=(D-3)2Q"2(-3) B=Q20C-3) 27)
A. Higher dimensional extreme black holes in an asymptotically
Topologically this solution is also AgXSP~2 and is an AdS background
exact solution of Einstein-Maxwell equatiort®) with A In a higher dimensional asymptotically anti—de Sitter

=0 in D dimensions. The Carter-Penrose diagram of theyackground,A <0, the Einstein-Maxwell equation®) al-
hlgher dimensional flat Bertotti-Robinson solution is alSO|0W a three_fam”y of static black hole SO|Uti0nS, param-
given by Fig. 5. etrized by the constark which can take the values 1, 0,

—1, and whose gravitational field is described by
3. Higher dimensional Nariai-Bertotti-Robinson solution

- 2 —14,2 2 k 2
In order to generate the higher dimensional Nariai- ds’=—f(Nde+f(r) ~tdri+r¥(dQg_,)%  (30)

Bertotti-Robinson solution from the near-ultracold black holeWhere

we first go back to Eq(11) and rewrite it in the formf(r)

=—P(r)(r—p)?(r— o), wherer=p is a degenerate hori- A M )

zon of the black holeg>p is the other horizon, anB(r) is f(r)y=k— =r2— ——+ Q_ (32
a polynomial function ofr. Then, we sep=p,—¢ and o 3 rP-3 r20-3)
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and fork=1, k=0 andk=—1 one has, respectively, The Carter-Penrose diagram of the nonextreme AdS-
Reissner-Nordstm black hole is sketched in Fig(a, and

the one of the extreme AdS-Reissner-Nordstrolack hole

is represented in Fig.(). The Carter-Penrose diagram of
the AdS-Schwarzschild black hole is drawn in Fig. 8. In

D-3
(dQK _,)2=d6?+sir?6,d63+ - -+ [[ sirP6,d63_,,
i=1

(dQ',‘D,Z)2= d6§+ d6§+ d0§+ R d,92|}2 ’ ;[jhese diagrams each point represent®a @)-sphere of ra-
iusr.
D-3
(dQ'E,_Z)szb’vasinhzﬁld 05_,_ RS H Sinhzﬂidﬂé_z. 2. Higher dimensional AdS black holes with toroidal, cylindrical
i=1 or planar topology

(32 Whenk=0, one has &p<+w, andM andQ in Egs.

Thus, the family withk=1 yields AdS black holes with (33) are positive parameters. The rangeshfand Q that
spherical topology found if4]. The family withk=0 yields  represent extreme and nonextreme black holes are sketched
AdS black holes with planar, cylindrical or toroidévith  in Fig. 6.
genusg=1) topology that are the higher dimensional coun- The Carter-Penrose diagram of the nonextreme charged
terparts(introduced in[15,16]) of the 4-dimensional black AdS black hole withk=0 is sketched in Fig. (8), and the
holes found and analyzed [i0,11]. Finally, the family with ~ one of the extreme charged AdS black hole witk O is
k=—1 yields AdS black holes with hyperbolic or toroidal represented in Fig.(B). The Carter-Penrose diagram of the
topology with genusg=2 that are the higher dimensional neutral AdS black hole witk=0 is drawn in Fig. 8. In these
counterpartgintroduced in 15,18 in the neutral cageof the ~ diagrams each point represents R-2)-plane or a D
4-dimensional black holes analyzed [ih4]. The solutions —2)-cylinder or a D —2)-torus.
with non-spherical topologyi.e. with k=0 andk=—1) do
not have counterparts in&=0 or in aA>0 background. 3. Higher dimensional AdS black holes with hyperbolic topology

The mass parametéM and the charge paramet@r are When k=—1, the condition thalQ?=0 demands that
related to the ADM hairsM apy and Qapw l_Jy Egs. (7).  pmin<p<-+, where
These black holes can have at most two horizons. Following
a similar procedure as the one sketched in Sec. Il A, we find

|
U‘U
[l
=W
=] o

the mass parametévl and the charge paramet€r of the Pmin= (35
extreme black holes as a function of the degenerate horizon
atr=p: For p=pmin, the extreme black hole hag no electric charge
- D_s(k_ E A 2) (2—0) arr:d its mass is negativel = —4p:.°/(D—1). For
P D_33° ) p=po, Where
D-33
Q2 p2(D3)( _ % %pZ) (33) Po= - m K, (36)

the extreme black hole has no mad4=0) and its charge is

This equation is not the main result of Sec. IV. However, it . " bl3, &
constitutes a result that we had to find in our way to thed'Ven bth_tPO / Dd—2. Thte rangbels E'Y: "Iind Q thitt hed
generation of the anti-Nariai like solutions. For an alternative CPTESENt extreme and nonextreme black holes are sketche

and complementary description of the extreme AdS black" Fig. 9. .
holes inD dimensions sefl9]. For D=5, and only in this In what concerns the causal structure of these solutions,

case, we were able to writg(r) in the extreme case as a whenM =0 andQ=0, the solution has a horizon that we

function of the degenerate horizgn We write this expres- identify as a cosmological hori_zorrg) since it is.present
sion here since it might be useful for future work: when the mass and charge vanish. In this ¢asé is not a

curvature singularity, but can be regarded as a topological
3 singularity (see Brill, Louko, and Peldan ipL4] for a de-
r2+ 2p2—k—). (34) tailed discussion The Carter-Penrose diagram of this solu-
A tion is drawn in Fig. 10, as long as we interpret the zigzag
) ) line as being a topological singularity. Whé&=0 and M
ForD=6 we were not able to writé(r) as a function o~ the solution still has a single horizon, the same cosmo-
since one has to deal with polynomial functions with degreqqgical horizon that is present in the latter case. However,
higher than 4. now a curvature singularity is presentrat0. The corre-
sponding Carter-Penrose diagram of this solution is repre-
sented in Fig. 10. The most interestiQy=0 solutions are
Whenk=1, one has & p<+ andM andQin Eq.(33)  present when their mass is negative. In this case one can
are positive parameters. The rangedvbfand Q that repre- have a black hole solution with a black hole horizon and a
sent extreme and nonextreme black holes are sketched @aosmological horizorjsee Fig. 11a)] or an extreme black
Fig. 6. hole, in which the two above horizons merggee Fig.

A1l 5 )
f(r)=-— §r_4(r_p) (r+p)

1. Higher dimensional AdS black holes with spherical topology
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0 A/ 3o

FIG. 6. Range oM andQ for which one has
a nonextreme black holeshaded regionand an
extreme black hole with, =r _ (line OE) in the
AdS case with spherical topologk€ 1) or with
planar, cylindrical or toroidal topologyk&0).
The non-shaded region represents naked singu-
larities.

Extreme black holes
(r,=r)

Nonextreme
black holes

o => U (-A/ 3)w302

11(b)]. WhenQ+# 0, one can have a black hole solution with the black hole, and(r) is a polynomial function of. Then,

a black hole horizon and a cosmological horieee Fig. \ve introduce a new time coordinafet=T/(eA), and a new
11(a) for the_z corr_esponding causal dia_gr}im an extreme radijal coordinatey, r=p+ scoshy, whereA=A(p), ande
black hole, in which the two above horizons mefgee Fig. <1 measures the deviation from degeneracy. Finally, taking

11(b) for the corresponding causal diagrhmVote that the  he jimit & — 0 in Eq.(30) yields the gravitational field of the
presence of the charge does not introduce an extra ho”zoﬂigher dimensional solutions:

contrary to what usually occurs in the other black hole solu-

tions. 1 1
dsZ=K(—sinh2XdT2+dX2)+E(dﬂg,z)z, (37)

B. Extremal limits of the higher dimensional AdS black holes ) ) o )
wherek=1,0,—1 in the spherical, cylindrical and hyperbolic

In this subsection, we will consider the extremal limits of cases, respectively, ankland B are constants related tb
the near-extreme higher dimensional AdS black holes. Thi%lndQ by

procedure leads to the generation of the higher dimensional
anti-Nariai solution and to the higher dimensional AdS
Bertotti-Robinson solutions. To achieve our aim, we first go A=
back to the extreme case 81) and rewrite it in the form

f(r)=A(r)(r — p)?, wherer =p is the degenerate horizon of

— m[A—k(D—S)ZB],

5 A+k(D—-3)B
Q= : (39)
Nonextreme Extreme (D-3)(b—-2) Bb-2
black hole black hole
In the coordinate system, the Maxwell figlgl) of the solu-
° tions is
- - T g(D-2)/2
L A . . )
I Equations(37)—(39) describe three exact solutions of the
<
P 1l r=0 A
" 1| z
(a) (b) r=0
FIG. 7. Carter-Penrose diagrams of the charg@d-Q) AdS FIG. 8. Carter-Penrose diagrams of the neuti@=0) AdS

black holes withk=1 andk=0. The zigzag line represents a cur- black holes withk=1 andk=0. The zigzag line represents a cur-
vature singularityZ represents the infinityr& ), r . represents a vature singularityZ represents the infinityr&«), andr , repre-
black hole event horizon, and. represents a Cauchy horizon. sents a black hole event horizon.
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0 (-AJ Hoai Nonextreme Extreme
/ E black hole black hole
Extreme black holes
(r=r)
T
<
I
i
Nonextreme N A
do _ black holes
<
/ [
-
f i > M (_A/ 3wz / T
M min
FIG. 9. Range ofM and Q for which one has a nonextreme
black hole and an extreme black hole with=r . in the AdS case (b)
with hyperbolic topology k= —1). The non-shaded region repre-
sents a naked singularity. One has.,=—[4/(D—-1)][(D FIG. 11. Carter-Penrose diagrams of the charged AdS black
—3)/(D—-2)]P~3”2 andq,=[(D-3)/(D—2)]P~ % D-2. holes withk= — 1. The zigzag line represents a curvature singular-

ity, Z represents the infinityr&«), r, represents a black hole

) ) ] ) ) ] ) event horizon, and_ represents a Cauchy horizon.
Einstein-Maxwell equation&) with A<0 in D dimensions,

which we discuss in the following subsections. 3. Higher dimensional anti-Nariai solution
Finally, thek=—1 case describes the higher dimensional
1. Higher dimensional AdS Bertotti-Robinson solution anti-Nariai solution. This solution is the direct topological
with spherical topology product of Ad$xHP 2, i.e. of a(1+1)-dimensional AdS

spacetime with a [P —2)-hyperboloid with a fixed size,
B~ Y2 Thek=—1 case is the only one that admits a solution
with Q=0. This neutral anti-Nariai solution satisfids=
—A(D—-1)/3 and B=—A(D—-1)/(3D—9). The A=0

Thek=+1 case describes the AdS Bertotti-Robinson so
lution with spherical topology. This solution is the direct
topological product of Ad$<SP~?, i.e. of a (1+1)-

dimensional AdS spacetime with & (-2)-sphere of fixed limit of the anti-Nariai solution i9-dimensional Minkowski

; -1/2 ; ;
rad|_us B. - The . Carter-Penrosg dla_tgram of _ th'_s spacetime as occurs with tliz=4 solution(see[26]). The
D-dimensional spherical AdS Bertotti-Robinson solution is- a1 Penrose diagram of tiisdimensional anti-Nariai so-
sketched in Fig. 5. In this d!ag[alr); any point represents §iion js sketched in Fig. 5. In this diagram any point repre-
(D —2)-sphere with fixed radiuB™"*. sents a D — 2)-hyperboloid with fixed sizeB~2.

2. Higher dimensional AdS Bertotti-Robinson solution V. CONCLUSION
with toroidal, cylindrical or planar topology

. . . We have constructed all the higher dimensional solutions
~ Thek=0 case describes the AdS Bertotti-Robinson soluy4t are the topological product of two manifolds of constant
tion with toroidal, cylindrical or planar topology, also known ¢ rature and that can be generated from the extremal limits
as Plebaski-Hacyan solutiori23]. 'Drtnzs solution is the direct ¢ the near-extreme black holes. Our analysis yields explicit
topological product of AdS<E™"“ ie. of a (1+1)-  regyits that apply to any dimensid=4. These solutions
dimensional AdS spacetime with ®¢-2) Euclidean space. jncjyde theD-dimensional counterparts of the well-known
The Carter-Penrose diagram of tlilsdimensional toroidal Nariai, Bertotti-Robinson, anti-Nariai, and PlélskiHacyan

Bertotti-Robinson solution is sketched in Fig. 5. solutions. In order to achieve our aim we had to find the
In this diagram any point represents B 2)-plane, a jyes of the mass and of the charge for which one has
(D —2)-cylinder, or a D—2)-torus with fixed size. extreme black holes in an asymptotically de Sitter and in an
asymptotically anti—de Sitter higher dimensional spacetime.

r=0 This is not an easy task inrdimensional background since
’v' one has to deal with polynomial functions with degree higher

r r than four.

‘ Nowadays, one of the main motivations to study higher
dimensional asymptotically AdS or dS black holes is related
r=0 with the AdS/CFT and dS/CFT correspondences. In particu-

FIG. 10. Carter-Penrose diagrams of the neutral AdS black holefr, the higher dimensional cosmological black holes are use-
with k=—1. The zigzag line represents a curvature singulafity, ful to study the dynamics of Friedmann-Robertson-Walker

represents the infinityr«), r, represents a black hole event branes in the framework ¢A)dS/CFT correspondenctor a
horizon, and _ represents a Cauchy horizon. review see, e.g[33]). The solutions discussed in this paper,
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