
PHYSICAL REVIEW D 70, 024002 ~2004!
Nariai, Bertotti-Robinson, and anti-Nariai solutions in higher dimensions

Vitor Cardoso*
Centro Multidisciplinar de Astrofı´sica, CENTRA, Departamento de Fı´sica, Instituto Superior Te´cnico,

Av. Rovisco Pais 1, 1049-001 Lisbon, Portugal
and Centro de Fı´sica Computacional, Universidade de Coimbra, P-3004-516 Coimbra, Portugal
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We find all higher dimensional solutions of Einstein-Maxwell theory that are the topological product of two
manifolds of constant curvature. These solutions include the higher dimensional Nariai, Bertotti-Robinson and
anti-Nariai solutions and the anti–de Sitter Bertotti-Robinson solutions with toroidal and hyperbolic topology
~Pleban´ski-Hacyan solutions!. We give explicit results for any dimensionD>4. These solutions are generated
from the appropriate extremal limits of the higher dimensional near-extreme black holes in de Sitter and
anti–de Sitter backgrounds. Thus, we also find the mass and charge parameters of higher dimensional extreme
black holes as a function of the radius of the degenerate horizon.
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I. INTRODUCTION

Interest in higher dimensional spacetimes was boos
with the development of string theories. More recently, th
has been a renewed interest in connection with the TeV-s
theory@1# which suggests that the universe in which we li
may have large extra dimensions. According to this conj
ture, we would live on a four-dimensional sub-manifo
where the standard model inhabits, whereas the gravitati
degrees of freedom propagate throughout all dimensio
This has motivated a wide search for various phenomena@2#
involving higher dimensions. In particular, it is possible th
future accelerators, such as the Large Hadron Collider~LHC!
at CERN, will produce black holes and thus detect indirec
gravitational waves@3#.

In this paper we deal with exact solutions of the Einste
Maxwell theory in higher dimensions. The higher dime
sional counterparts of the Schwarzschild and of the Reiss
Nordström black holes—the Tangherlini black holes—ha
been found and discussed in@4#. The D-dimensional
Majumdar-Papapetrou black holes have been found in@5#
~see also@6#!. The higher dimensional Kerr black hole—th
Myers-Perry black hole—was found in@7# and further dis-
cussed in@8#. The higher dimensional counterpart of th
Kerr-Newman black hole is not yet known~see @9# for a
discussion!. The higher dimensional Schwarzschild a
Reissner-Nordstro¨m black holes in an asymptotically de Si
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ter ~dS! spacetime and in an asymptotically anti–de Sit
~AdS! spacetime have also been discussed in@4#. Now, in an
asymptotically AdS 4-dimensional background, besid
black holes with spherical topology, there are also solutio
with planar, cylindrical or toroidal topology found and dis
cussed in@10# ~neutral case!, @11# ~electric case!, and @12#
~magnetic case! and black holes@13# with hyperbolic topol-
ogy analyzed in@14#. The higher dimensional extensions
these non-spherical AdS black holes are already kno
Namely, theD-dimensional AdS black holes with planar, cy
lindrical or toroidal topology were discussed in@15# ~neutral
case!, in @16# ~electric case! and in@17# ~magnetic case!, and
theD-dimensional AdS black holes with hyperbolic topolog
were analyzed in@15,18#.

In a 4-dimensional background with generic cosmologi
constant, and still in the context of Einstein-Maxwell theo
there are other interesting solutions that do not contai
black hole, but are the direct topological product of tw
manifolds of constant curvature. These are the Nariai so
tion @20#, the Bertotti-Robinson solution@21#, the anti-Nariai
solution@22#, and the Pleban´ski-Hacyan solutions@23#. For a
detailed historical overview of these solutions and for ref
ences see, e.g.,@24–26#. A discussion of these solutions in
more mathematical context can be found in@27#. Some of
these solutions, but not all, have already been discussed
higher dimensional spacetime.

Ginsparg and Perry@28# ~see also@29#! have connected
the extreme dS-Schwarzschild black hole with the Nariai
lution @20# in a 4-dimensional spacetime. That is, they ha
shown that the already known Nariai solution~which is not a
black hole solution! could be generated from an appropria
extremal limit of a near-Nariai black hole. They realized th
©2004 The American Physical Society02-1
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connection while they were studying the quantum stability
the Nariai and the dS-Schwarzschild solutions. A similar p
cedure allows one to generate the Bertotti-Robinson,
anti-Nariai, and the Pleban´ski-Hacyan solutions from appro
priate near-extreme black holes.

In this paper we shall use the procedure introduced in@28#
in order to generate, from the appropriate extremal limits
the D-dimensional near-extreme black holes, all the hig
dimensional solutions that are the topological product of t
manifolds of constant curvature. These solutions include
higher dimensional Nariai, Bertotti-Robinson, anti-Nari
and Pleban´ski-Hacyan solutions. We give explicit results fo
any dimensionD>4. In passing we also find the values
the mass and of the charge for which one has extreme b
holes in an asymptotically dS and in an asymptotically A
higher dimensional spacetime. This analysis has already b
initiated in @19#, but our procedure and results are comp
mentary to those of@19#. In the AdS case, the discussio
carried in this paper includes black holes with spherical
pology, with planar, cylindrical and toroidal topology, an
with hyperbolic topology.

The plan of this paper is as follows. In Sec. II, we set t
Einstein-Maxwell action in aD-dimensional background. In
Sec. III we discuss the properties of the extreme higher
mensional dS black holes, and we find their extremal lim
i.e. the associated Nariai-like solutions. In Sec. IV we do
same but this time in an AdS background.

II. ACTION AND EQUATIONS OF MOTION

We will discuss solutions that are the extremal limits
the near-extreme cases of the static higher dimensional b
holes. Some of these black holes were found by Tanghe
@4# and are the higher dimensional cousins of the Schw
schild and of the Reissner-Nordstro¨m black holes. We work
in the context of the Einstein-Maxwell action with a cosm
logical constantL:

I 5
1

16pEM
dDxA2gS R2

~D21!~D22!

3
L2F2D , ~1!

whereD is the dimension of the spacetime,g is the determi-
nant of the metricgmn , R is the Ricci scalar, andFmn

5]mAn2]nAm is the Maxwell field strength of the gaug
field An . We set theD-dimensional Newton’s constant equ
to 1, andc51. The variation of Eq.~1! yields the equations
for the gravitational field and for the Maxwell field, respe
tively,

Rmn2
1

2
Rgmn1

~D21!~D22!

6
Lgmn58pTmn ,

¹mFmn50, ~2!

whereRmn is the Ricci tensor andTmn is the electromagnetic
energy-momentum tensor:

Tmn5
1

4p S gabFamFbn2
1

4
gmnFabFabD . ~3!
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In Eq. ~1!, the coefficient ofL was chosen in order to en
sure that, for any dimensionD, the pure dS or pure AdS
spacetimes are described bygtt512(L/3)r 2, as occurs
with D54.

III. HIGHER DIMENSIONAL EXTREME dS BLACK
HOLES AND NARIAI-LIKE SOLUTIONS

In order to generate the higher dimensional Nariai, d
Bertotti-Robinson, and Nariai-Bertotti-Robinson solutio
one needs first to carefully find the values of the mass an
the charge for which one has an extreme dS black hole.
will do this in Sec. III A, and in Sec. III B we will generate
the Nariai-like solutions from the extremal limits of the nea
extreme black holes.

A. Higher dimensional extreme black holes in an asymptotically
dS background

In an asymptotically de Sitter background,L.0, the
most general static higher dimensional black hole solut
with spherical topology was found by Tangherlini@4#. The
gravitational field is

ds252 f ~r !dt21 f ~r !21dr21r 2dVD22
2 , ~4!

wheredVD22
2 is the line element on a unit (D22)-sphere,

dVD22
2 5du1

21sin2u1 du2
21•••1 )

i 51

D23

sin2u iduD22
2 ,

~5!

and the functionf (r ) is given by

f ~r !512
L

3
r 22

M

r D23
1

Q2

r 2(D23)
. ~6!

The mass parameterM and the charge parameterQ are re-
lated to the Arnowitt-Deser-Misner~ADM ! mass,MADM ,
and ADM electric charge,QADM , of the solution by@7#

MADM5
~D22!VD22

16p
M ,

QADM5A~D23!~D22!

2
Q, ~7!

whereVD22 is the area of a unit (D22)-sphere,

VD225
2p (D21)/2

G@~D21!/2#
. ~8!

Here,G@z# is the gamma function. For our purposes we ne
to know thatG@z#5(z21)! when z is a positive integer,
G@1/2#5Ap, andG@z11#5zG@z#. The radial electromag-
netic field produced by the electric chargeQADM is given by

F52
QADM

r D22
dt`dr. ~9!
2-2
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These solutions have a curvature singularity at the orig
and the black hole solutions can have at most three horiz
the Cauchy horizonr 2 , the event horizonr 1 and the cos-
mological horizonr c , which satisfyr 2<r 1<r c .

We are now interested in theD-dimensional extreme dS
Tangherlini black holes. That is, in order to start search
for Nariai-like solutions one needs first to carefully find t
parametersM andQ as a function of the degenerate horizo
To settle the nomenclature and the technical procedure
start with the five-dimensional case,D55. We look to the
extreme dS black holes, for which two of the horizons co
cide. Let us label this degenerate horizon byr. In this case,
and for D55, the function f (r ) given by Eq.~6! can be
written as

f ~r !52
L

3

1

r 4
~r 2r!2~r 1r!2S r 22

3

L
12r2D . ~10!

Thus, besides the degenerate horizonr 5r, there is another
horizon ats5A3/L22r2. From Eq.~6! with D55 and Eq.
~10!, the mass parameterM and the charge parameterQ of
the black holes can be written as functions ofr: M5r2(2
2Lr2) andQ25r4(122Lr2/3). The conditionQ2>0 im-
plies thatr<A3/(2L). At this point we note thatM andQ
first increase withr ~this sector corresponds tos.r), until
r reaches the critical valuer5A1/L ~this sector correspond
to s5r), and thenM andQ start decreasing untilr reaches
its maximum allowed value~this sector corresponds tos
,r). These three sectors are associated with three dis
extreme dS black holes: the cold, the ultracold and the Na
black holes, respectively.~Here we follow the nomenclatur
used in the analogous 4-dimensional black holes@30#. Note
that the Nariai black hole differs from the Nariai solutio
which is not a black hole solution.! More precisely, for 0
,r,1/AL one has the cold black hole withr 25r 1[r and
r c[s. The ranges of the mass and charge parameters fo
cold black hole are 0,M,1/L and 0,Q,1/(A3L). The
caser51/AL gives the ultracold black hole in which th
three horizons coincide,r 25r 15r c . Its mass and charg
parameters areM51/L and Q51/(A3L). For 1/AL,r
<A3/(2L) one has the Nariai black hole withr 15r c[r
and r 2[s. The ranges of the mass and charge parame
for the Nariai black hole are 3/(4L)<M,1/L
and 0<Q,1/(A3L).

Now, the above construction can be extended
D-dimensional extreme dS black holes. In the extreme c
the functionf (r ) given by Eq.~6! can be written as

f ~r !5~r 2r!2
1

r 2 F12
L

3
@r 21h~r !#G , ~11!

wherer 5r is the degenerate horizon of the black hole, a

h~r !5a1br1
c1

r
1

c2

r 2
1•••1

c2(D24)

r 2(D24)
, ~12!
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wherea,b,c1 , . . . ,c2(D24) are constants that can be foun
through the matching between Eqs.~6! and~12!. This proce-
dure yields the mass parameterM and the charge paramete
Q of the black holes as a function ofr:

M52rD23S 12
D22

D23

L

3
r2D ,

Q25r2(D23)S 12
D21

D23

L

3
r2D . ~13!

The conditionQ2>0 implies thatr<rmax with

rmax5AD23

D21

3

L
. ~14!

For theD-dimensional cold black hole (r 25r 1), M and
Q increase withr, and one has

0,r,ru , 0,M,
4

D21
ru

D23,

0,Q,
1

AD22
ru

D23, ~15!

where we have defined

ru5A3

L

D23

A~D22!~D21!
. ~16!

For the D-dimensional ultracold black hole (r 25r 15r c),
one has

r5ru , M5
4

D21
ru

D23,

Q5
1

AD22
ru

D23. ~17!

Finally, for theD-dimensional Nariai black hole (r 15r c), M
andQ decrease withr, and one has

ru,r<rmax,
2

D21
rmax

D23<M,
4

D21
ru

D23,

0<Q,
1

AD22
ru

D23. ~18!

The ranges ofM andQ that represent each one of the abo
extreme black holes are sketched in Fig. 1. This figure
the associated relations~13!–~18! are not the main results o
this paper. However, they constitute results that we had
find in our way into the generation of the Nariai-like sol
tions. For an alternative and complementary description
the extreme dS-Tangherlini black holes see@19#.

The Carter-Penrose diagrams of theD-dimensional dS-
Tangherlini black holes are similar to the ones of th
4-dimensional counterparts and are sketched in Fig. 2 in
2-3
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FIG. 1. Range ofM andQ for which one has
a nonextreme black hole~region interior to the
closed line ONUO), an extreme Nariai black
hole with r 15r c ~line NU), an extreme cold
black hole withr 25r 1 ~line OU), and an ex-
treme ultracold black hole withr 25r 15r c

~point U). The line ON represents the nonex
treme dS-Schwarzschild black hole, and pointN
represents the extreme Nariai Schwarzsch
black hole. The non-shaded area represent
naked singularity region. The constants in th
axes are m05@2/(D21)#@(D23)/(D
21)# (D23)/2, mu5@4/(D21)#@(D23)2/(D22)
3(D21)# (D23)/2, and qu5@1/(AD22)#@(D
23)2/(D22)(D21)# (D23)/2.
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charged case and in Fig. 3 in the neutral case. In these
grams each point represents a (D22)-sphere of radiusr.

B. Extremal limits of the higher dimensional dS black holes

In this section, we apply the near extremal procedure
Ginsparg and Perry@28# to the extreme black holes discuss
in the last subsection, in order to find the higher dimensio
Nariai, dS-Bertotti-Robinson,L50 Bertotti-Robinson and
Nariai-Bertotti-Robinson solutions. The higher dimension
Nariai solution has already been found in@19,22#. Here we
show that it can be generated from the near-Nariai black h
following the procedure of@28#. Therefore, we give empha
sis to the solution and we set the nomenclature for the o
cases.

1. Higher dimensional Nariai solution

In order to generate the higher dimensional Nariai so
tion from the near-Nariai black hole we first go back to E
~11! and rewrite it in the formf (r )52A(r )(r 2r)2, where
r 5r is the degenerate horizon of the black hole, andA(r ) is
a polynomial function ofr. Then, we setr 15r2« and r c
5r1«, where «!1 measures the deviation from dege
eracy, and the limitr 1→r c is obtained when«→0. Now, we
introduce a time coordinateT, t5T/(«A) and a radial coor-
dinatex, r 5r1«cosx, wherex50 andx5p correspond,
respectively, to the horizonsr c and r 1 , and A[A(r)
5r22@12(r21h)L/3#.0, with h[h(r) defined in Eq.
~12!. Then, in the limit«→0, from Eqs.~4! and ~11!, we
obtain the gravitational field of the Nariai solution

ds25
1

A
~2sin2xdT21dx2!1

1

B
dVD22

2 , ~19!

wherex runs from 0 top, andA andB51/r2 are related to
L andQ by
02400
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L5
3

~D22!~D21!
@A1~D23!2B#,

Q25
~D23!B2A

~D23!~D22!BD22
. ~20!

The Maxwell field~9! of the higher dimensional Nariai so
lution is

F5QADM

B(D22)/2

A
sinxdT`dx. ~21!

So, if we give the parametersL andQ, we can construct the
higher dimensional Nariai solution, which is an exact so
tion of Einstein-Maxwell equations~2! with L.0 in D di-
mensions. Through a redefinition of coordinates, sin2x51
2AR2 and t5AAT, the spacetime~19! can be rewritten in
static coordinates as

ds252~12AR2!dT21
dR2

12AR2
1

1

B
dVD22

2 , ~22!

and the electromagnetic field changes also accordingly to
coordinate transformation. Written in these coordinates,
clearly see that the Nariai solution is the direct topologi
product of dS23SD22, i.e. of a ~111!-dimensional dS
spacetime with a (D22)-sphere of fixed radiusB21/2. This
spacetime is homogeneous with the same causal structu
~111!-dimensional dS spacetime, but it is not an asympto
cally 4-dimensional dS spacetime since the radius of
(D22)-sphere is constant (B21/2), contrarily to what hap-
pens in the dS solution where this radius increases as
approaches infinity.

The neutral Nariai solution (Q50) satisfies the relations
A5L(D21)/3 and B5L(D21)/(3D29). The L50
limit of the Nariai solution isD-dimensional Minkowski
spacetime as occurs with theD54 solution~see@26#!.
2-4
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The Carter-Penrose diagram of theD-dimensional Nariai
solution ~charged or neutral! is sketched in Fig. 4. In this
diagram any point represents a (D22)-sphere with fixed
radiusB21/2. For a construction that starts with the Carte
Penrose diagram of the dS black hole and leads to the
gram of the Nariai solution see@26#.

2. Higher dimensional dS Bertotti-Robinson solution

In order to generate the higher dimensional dS Berto
Robinson solution from the near-cold black hole we first

FIG. 2. Carter-Penrose diagrams of the dS-Reissner-Nords¨m
(QÞ0) black holes. The zigzag line represents a curvature sin
larity, I represents the infinity (r 5`), r c represents a cosmologica
horizon, r 1 represents a black hole event horizon, andr 2 repre-
sents a Cauchy horizon.~a! was presented in@31#. As far as we
know, ~b!–~d! are first shown here.
02400
-
ia-

i-

back to Eq.~11! and rewrite it in the formf (r )5A(r )(r
2r)2, where r 5r is the degenerate horizon of the blac
hole, andA(r ) is a polynomial function ofr. Then, we set
r 25r2« and r 15r1«, where«!1 measures the devia
tion from degeneracy, and the limitr 2→r 1 is obtained
when «→0. Now, we introduce a time coordinateT, t
5T/(«A), and a new radial coordinatex, r 5r1«coshx,
where A[A(r)5r22@12L(r21h)/3#.0, with h[h(r)
defined in Eq.~12!. Then, in the limit«→0, from Eqs.~4!
and~11!, we obtain the gravitational field of the dS Bertott
Robinson solution

ds25
1

A
~2sinh2xdT21dx2!1

1

B
dVD22

2 , ~23!

whereA andB51/r2 are related toL andQ by

L5
3

~D22!~D21!
@2A1~D23!2B#,

Q25
~D23!B1A

~D23!~D22!BD22
. ~24!

The Maxwell field~9! of the higher dimensional dS Bertott
Robinson solution is

F52QADM

B(D22)/2

A
sinhxdT`dx. ~25!

u-

FIG. 3. Carter-Penrose diagrams of the dS-SchwarzschildQ
50) black holes. The zigzag line represents a curvature singula
I represents the infinity (r 5`), r c represents a cosmological hor
zon, andr 1 represents a black hole event horizon.~a! was presented
in @31#, and~b! was presented in@32#.

FIG. 4. Carter-Penrose diagram of the Nariai solution~charged
or neutral!. The zigzag line represents a curvature singularityI
represents the infinity (R5`), and Rc represents a cosmologica
horizon.
2-5
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So, if we give the parametersL andQ, we can construct the
higher dimensional dS Bertotti-Robinson solution, which
an exact solution of Einstein-Maxwell equations~2! with L
.0 in D dimensions. There is no neutral (Q50) Bertotti-
Robinson solution.

Through a redefinition of coordinates,t5AAT and
sinh2x5AR221, the spacetime~23! can be rewritten in static
coordinates as

ds252~AR221!dT21
dR2

AR221
1

1

B
dVD22

2 , ~26!

and the electromagnetic field changes also accordingly to
coordinate transformation. Written in these coordinates,
clearly see that the Bertotti-Robinson solution is the dir
topological product of AdS23SD22, i.e. of a ~111!-
dimensional AdS spacetime with a (D22)-sphere of fixed
radiusB21/2.

The Carter-Penrose diagram of theD-dimensional
Bertotti-Robinson solution is sketched in Fig. 5. In this d
gram any point represents a (D22)-sphere with fixed radius
B21/2. For a construction that starts with the Carter-Penr
diagram of the dS black hole and leads to the diagram of
Bertotti-Robinson solution see@26#.

The higher dimensional flat Bertotti-Robinson solution
given by theL50 limit of the dS Bertotti-Robinson. It is
described by Eqs.~23! and~25! with A andB being related to
Q by

A5~D23!2Q22/(D23), B5Q22/(D23). ~27!

Topologically this solution is also AdS23SD22 and is an
exact solution of Einstein-Maxwell equations~2! with L
50 in D dimensions. The Carter-Penrose diagram of
higher dimensional flat Bertotti-Robinson solution is al
given by Fig. 5.

3. Higher dimensional Nariai-Bertotti-Robinson solution

In order to generate the higher dimensional Nari
Bertotti-Robinson solution from the near-ultracold black ho
we first go back to Eq.~11! and rewrite it in the formf (r )
52P(r )(r 2r)2(r 2s), where r 5r is a degenerate hori
zon of the black hole,s.r is the other horizon, andP(r ) is
a polynomial function ofr. Then, we setr5ru2« and s

FIG. 5. Carter-Penrose diagram of the Bertotti-Robinson so
tion in any cosmological constant background. The zigzag line r
resents a curvature singularity,I represents the infinity (R5`),
andRh represents a horizon.
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5ru1«, with ru defined in Eq.~16! and«!1 measuring the
deviation from degeneracy, and the limitr→s is obtained
when«→0. Now, we introduce a new time coordinateT, t
5T/(2«2P), and a radial coordinate x, r 5ru

1«cos(A2«Px), where P[P(ru).0. Then, taking the
limit «→0 of Eq.~4!, we obtain the gravitational field of the
Nariai-Bertotti-Robinson solution, ds252x2dT21dx2

1ru
2dVD22

2 , wherex runs from 0 to1`, and the Maxwell
field ~9! of the higher dimensional Nariai-Bertotti-Robinso
solution is F5QADMru

2D12xdT`dx. Now, the spacetime
factor2x2dT21dx2 is justM1,1 ~2-dimensional Minkowski
spacetime! in Rindler coordinates. Therefore, under the us
coordinate transformationx5Ax22t2 andT5arctanh(t/x),
we can write the higher dimensional Nariai-Bertot
Robinson solution in its simplest form

ds252dt21dx21ru
2dVD22

2 , ~28!

whereru is defined in Eq.~16!, and

F52
QADM

ru
D22

dt`dx, ~29!

whereQADM is given by Eqs.~7! and~17!. So, if we giveL
we can construct the higher dimensional Nariai-Berto
Robinson solution. This solution is the direct topologic
product ofM1,13SD22 and is an exact solution of Einstein
Maxwell equations~2! with L.0 in D dimensions. Its
causal diagram is equal to the causal diagram of the Rin
solution. This solution belongs to the class of solutions d
cussed in detail in@23# ~for D54), and thus it can very
appropriately be called a Pleban´ski-Hacyan solution@25#.

IV. HIGHER DIMENSIONAL EXTREME AdS BLACK
HOLES AND ANTI-NARIAI LIKE SOLUTIONS

In order to generate the higher dimensional anti-Nar
and the two AdS-Bertotti-Robinson solutions one needs fi
to carefully find the values of the mass and of the charge
which one has extreme AdS black holes. We will do this
Sec. IV A, and in Sec. IV B we will generate the anti-Nari
like solutions from the extremal limits of the near-extrem
black holes.

A. Higher dimensional extreme black holes in an asymptotically
AdS background

In a higher dimensional asymptotically anti–de Sitt
background,L,0, the Einstein-Maxwell equations~2! al-
low a three-family of static black hole solutions, param
etrized by the constantk which can take the values 1, 0
21, and whose gravitational field is described by

ds252 f ~r !dt21 f ~r !21dr21r 2~dVD22
k !2, ~30!

where

f ~r !5k2
L

3
r 22

M

r D23
1

Q2

r 2(D23)
, ~31!

-
-
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and fork51, k50 andk521 one has, respectively,

~dVD22
k !25du1

21sin2u1du2
21•••1 )

i 51

D23

sin2u iduD22
2 ,

~dVD22
k !25du1

21du2
21du3

21•••1duD22
2 ,

~dVD22
k !25du1

21sinh2u1du2
21•••1 )

i 51

D23

sinh2u iduD22
2 .

~32!

Thus, the family withk51 yields AdS black holes with
spherical topology found in@4#. The family withk50 yields
AdS black holes with planar, cylindrical or toroidal~with
genusg>1) topology that are the higher dimensional cou
terparts~introduced in@15,16#! of the 4-dimensional black
holes found and analyzed in@10,11#. Finally, the family with
k521 yields AdS black holes with hyperbolic or toroid
topology with genusg>2 that are the higher dimension
counterparts~introduced in@15,18# in the neutral case! of the
4-dimensional black holes analyzed in@14#. The solutions
with non-spherical topology~i.e. with k50 andk521) do
not have counterparts in aL50 or in aL.0 background.

The mass parameterM and the charge parameterQ are
related to the ADM hairs,MADM and QADM , by Eqs.~7!.
These black holes can have at most two horizons. Follow
a similar procedure as the one sketched in Sec. III A, we
the mass parameterM and the charge parameterQ of the
extreme black holes as a function of the degenerate hor
at r 5r:

M52rD23S k2
D22

D23

L

3
r2D ,

Q25r2(D23)S k2
D21

D23

L

3
r2D . ~33!

This equation is not the main result of Sec. IV. However
constitutes a result that we had to find in our way to
generation of the anti-Nariai like solutions. For an alternat
and complementary description of the extreme AdS bl
holes inD dimensions see@19#. For D55, and only in this
case, we were able to writef (r ) in the extreme case as
function of the degenerate horizonr. We write this expres-
sion here since it might be useful for future work:

f ~r !52
L

3

1

r 4
~r 2r!2~r 1r!2S r 212r22k

3

L D . ~34!

For D>6 we were not able to writef (r ) as a function ofr
since one has to deal with polynomial functions with deg
higher than 4.

1. Higher dimensional AdS black holes with spherical topology

Whenk51, one has 0,r,1` andM andQ in Eq. ~33!
are positive parameters. The ranges ofM and Q that repre-
sent extreme and nonextreme black holes are sketche
Fig. 6.
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The Carter-Penrose diagram of the nonextreme A
Reissner-Nordstro¨m black hole is sketched in Fig. 7~a!, and
the one of the extreme AdS-Reissner-Nordstro¨m black hole
is represented in Fig. 7~b!. The Carter-Penrose diagram o
the AdS-Schwarzschild black hole is drawn in Fig. 8.
these diagrams each point represents a (D22)-sphere of ra-
dius r.

2. Higher dimensional AdS black holes with toroidal, cylindrica
or planar topology

When k50, one has 0,r,1`, and M and Q in Eqs.
~33! are positive parameters. The ranges ofM and Q that
represent extreme and nonextreme black holes are sket
in Fig. 6.

The Carter-Penrose diagram of the nonextreme char
AdS black hole withk50 is sketched in Fig. 7~a!, and the
one of the extreme charged AdS black hole withk50 is
represented in Fig. 7~b!. The Carter-Penrose diagram of th
neutral AdS black hole withk50 is drawn in Fig. 8. In these
diagrams each point represents a (D22)-plane or a (D
22)-cylinder or a (D22)-torus.

3. Higher dimensional AdS black holes with hyperbolic topolog

When k521, the condition thatQ2>0 demands that
rmin<r,1`, where

rmin5A2
D23

D21

3

L
. ~35!

For r5rmin , the extreme black hole has no electric char
(Q50) and its mass is negative,M524rmin

D23/(D21). For
r5r0, where

r05A2
D23

D22

3

L
, ~36!

the extreme black hole has no mass (M50) and its charge is
given by Q5r0

D23/AD22. The ranges ofM and Q that
represent extreme and nonextreme black holes are sket
in Fig. 9.

In what concerns the causal structure of these solutio
when M50 andQ50, the solution has a horizon that w
identify as a cosmological horizon (r c) since it is present
when the mass and charge vanish. In this caser 50 is not a
curvature singularity, but can be regarded as a topolog
singularity ~see Brill, Louko, and Peldan in@14# for a de-
tailed discussion!. The Carter-Penrose diagram of this sol
tion is drawn in Fig. 10, as long as we interpret the zigz
line as being a topological singularity. WhenQ50 andM
.0, the solution still has a single horizon, the same cosm
logical horizon that is present in the latter case. Howev
now a curvature singularity is present atr 50. The corre-
sponding Carter-Penrose diagram of this solution is rep
sented in Fig. 10. The most interestingQ50 solutions are
present when their mass is negative. In this case one
have a black hole solution with a black hole horizon and
cosmological horizon@see Fig. 11~a!# or an extreme black
hole, in which the two above horizons merge@see Fig.
2-7
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FIG. 6. Range ofM andQ for which one has
a nonextreme black hole~shaded region! and an
extreme black hole withr 15r 2 ~line OE) in the
AdS case with spherical topology (k51) or with
planar, cylindrical or toroidal topology (k50).
The non-shaded region represents naked sin
larities.
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11~b!#. WhenQÞ0, one can have a black hole solution wi
a black hole horizon and a cosmological horizon@see Fig.
11~a! for the corresponding causal diagram# or an extreme
black hole, in which the two above horizons merge@see Fig.
11~b! for the corresponding causal diagram#. Note that the
presence of the charge does not introduce an extra hori
contrary to what usually occurs in the other black hole so
tions.

B. Extremal limits of the higher dimensional AdS black holes

In this subsection, we will consider the extremal limits
the near-extreme higher dimensional AdS black holes. T
procedure leads to the generation of the higher dimensi
anti-Nariai solution and to the higher dimensional Ad
Bertotti-Robinson solutions. To achieve our aim, we first
back to the extreme case of~31! and rewrite it in the form
f (r )5A(r )(r 2r)2, wherer 5r is the degenerate horizon o

FIG. 7. Carter-Penrose diagrams of the charged (QÞ0) AdS
black holes withk51 andk50. The zigzag line represents a cu
vature singularity,I represents the infinity (r 5`), r 1 represents a
black hole event horizon, andr 2 represents a Cauchy horizon.
02400
n,
-
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the black hole, andA(r ) is a polynomial function ofr. Then,
we introduce a new time coordinateT, t5T/(«A), and a new
radial coordinatex, r 5r1«coshx, whereA[A(r), and«
!1 measures the deviation from degeneracy. Finally, tak
the limit «→0 in Eq.~30! yields the gravitational field of the
higher dimensional solutions:

ds25
1

A
~2sinh2xdT21dx2!1

1

B
~dVD22

k !2, ~37!

wherek51,0,21 in the spherical, cylindrical and hyperboli
cases, respectively, andA and B are constants related toL
andQ by

L52
3

~D22!~D21!
@A2k~D23!2B#,

Q25
A1k~D23!B

~D23!~D22!BD22
. ~38!

In the coordinate system, the Maxwell field~9! of the solu-
tions is

F52QADM

B(D22)/2

A
sinhxdT`dx. ~39!

Equations~37!–~39! describe three exact solutions of th

FIG. 8. Carter-Penrose diagrams of the neutral (Q50) AdS
black holes withk51 andk50. The zigzag line represents a cu
vature singularity,I represents the infinity (r 5`), and r 1 repre-
sents a black hole event horizon.
2-8
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Einstein-Maxwell equations~2! with L,0 in D dimensions,
which we discuss in the following subsections.

1. Higher dimensional AdS Bertotti-Robinson solution
with spherical topology

Thek511 case describes the AdS Bertotti-Robinson
lution with spherical topology. This solution is the dire
topological product of AdS23SD22, i.e. of a ~111!-
dimensional AdS spacetime with a (D22)-sphere of fixed
radius B21/2. The Carter-Penrose diagram of th
D-dimensional spherical AdS Bertotti-Robinson solution
sketched in Fig. 5. In this diagram any point represent
(D22)-sphere with fixed radiusB21/2.

2. Higher dimensional AdS Bertotti-Robinson solution
with toroidal, cylindrical or planar topology

The k50 case describes the AdS Bertotti-Robinson so
tion with toroidal, cylindrical or planar topology, also know
as Pleban´ski-Hacyan solution@23#. This solution is the direct
topological product of AdS23ED22, i.e. of a ~111!-
dimensional AdS spacetime with a (D22) Euclidean space
The Carter-Penrose diagram of thisD-dimensional toroidal
Bertotti-Robinson solution is sketched in Fig. 5.

In this diagram any point represents a (D22)-plane, a
(D22)-cylinder, or a (D22)-torus with fixed size.

FIG. 9. Range ofM and Q for which one has a nonextrem
black hole and an extreme black hole withr c5r 1 in the AdS case
with hyperbolic topology (k521). The non-shaded region repre
sents a naked singularity. One hasmmin52@4/(D21)#@(D
23)/(D22)# (D23)/2 andq05@(D23)/(D22)# (D23)/2/AD22.

FIG. 10. Carter-Penrose diagrams of the neutral AdS black h
with k521. The zigzag line represents a curvature singularityI
represents the infinity (r 5`), r 1 represents a black hole eve
horizon, andr 2 represents a Cauchy horizon.
02400
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3. Higher dimensional anti-Nariai solution

Finally, thek521 case describes the higher dimension
anti-Nariai solution. This solution is the direct topologic
product of AdS23HD22, i.e. of a ~111!-dimensional AdS
spacetime with a (D22)-hyperboloid with a fixed size
B21/2. Thek521 case is the only one that admits a soluti
with Q50. This neutral anti-Nariai solution satisfiesA5
2L(D21)/3 and B52L(D21)/(3D29). The L50
limit of the anti-Nariai solution isD-dimensional Minkowski
spacetime as occurs with theD54 solution~see@26#!. The
Carter-Penrose diagram of thisD-dimensional anti-Nariai so-
lution is sketched in Fig. 5. In this diagram any point rep
sents a (D22)-hyperboloid with fixed size,B21/2.

V. CONCLUSION

We have constructed all the higher dimensional solutio
that are the topological product of two manifolds of consta
curvature and that can be generated from the extremal lim
of the near-extreme black holes. Our analysis yields exp
results that apply to any dimensionD>4. These solutions
include theD-dimensional counterparts of the well-know
Nariai, Bertotti-Robinson, anti-Nariai, and Pleban´ski-Hacyan
solutions. In order to achieve our aim we had to find t
values of the mass and of the charge for which one
extreme black holes in an asymptotically de Sitter and in
asymptotically anti–de Sitter higher dimensional spacetim
This is not an easy task in aD-dimensional background sinc
one has to deal with polynomial functions with degree high
than four.

Nowadays, one of the main motivations to study high
dimensional asymptotically AdS or dS black holes is rela
with the AdS/CFT and dS/CFT correspondences. In parti
lar, the higher dimensional cosmological black holes are u
ful to study the dynamics of Friedmann-Robertson-Walk
branes in the framework of~A!dS/CFT correspondence~for a
review see, e.g.,@33#!. The solutions discussed in this pape

es

FIG. 11. Carter-Penrose diagrams of the charged AdS b
holes withk521. The zigzag line represents a curvature singu
ity, I represents the infinity (r 5`), r 1 represents a black hole
event horizon, andr 2 represents a Cauchy horizon.
2-9
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being extremal limits of higher dimensional black hole
might also be interesting in this context. They might also
useful for the discussion of modified gravities. Another
search area that might follow from this paper is the study
impulsive waves in the background of the spacetimes tha
presented, in a direct generalization of the analysis done
four dimensions in@25#. As a last example of application o
these higher dimensional solutions, we mention the stud
their classical stability, i.e. the exact analytical analysis
their quasinormal modes. Finally, the quantum stability
these Nariai-like solutions will be discussed in@34#.
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