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UV perturbations in brane gas cosmology

Scott Watsofi
Department of Physics, Brown University, Providence, Rhode Island 02912, USA
(Received 9 March 2004; published 30 July 2p04

We consider the effect of the ultraviol8V) or short wavelength modes on the background of brane gas
cosmology. We find that the string matter sources are negligible in the UV and that the evolution is given
primarily by the dilaton perturbation. We also find that the linear perturbations are well behaved and the
predictions of brane gas cosmology are robust against the introduction of linear perturbations. In particular, we
find that the stabilization of the extra dimensidnsodul) remains valid in the presence of dilaton and string

perturbations.
DOI: 10.1103/PhysRevD.70.023516 PACS nuni®er98.80.Cq
I. INTRODUCTION will extend our considerations to the ultraviolet or small

wavelength perturbations. Our expectation was that on small

Understanding the behavior of strings in a time dependenvavelengths, the motion of the strings would smear out po-
background has been a subject of much interest and has betgmtial instabilities in a way analogous to how the motion of
pursued in a number of differing ways. One scenario, knowright particles(“free streaming’) leads to a decay of short
as brane gas cosmologBGO), is devoted to understanding wavelength fluctuations in standard cosmolo@ge, e.g.,
the effect that string and brane gases could have on a dilatofref. [9] for a review. However, we will find that the string
gravity background in the early Univer§é—5,8. In Ref. ~ matter perturbations are actually subleading in the evolution
[2], it was suggested that the energy associated with thand the dilaton perturbation is the primary driving force of
winding of strings around the compact dimensions wouldnstability.
produce a confining potential for the scale factor and halt the For reference, in Secs. Il and Ill we present the back-
cosmological expansiohThe analysis of BGC was initially ground solution and perturbed equations as found in [gf.
performed under the assumption of a homogeneous and isdhe crucial results appear in Sec. IV, where we derive the
tropic cosmology. The results were recently extended to th@erturbation equations for the UV modes and then solve for
case of anisotropic cosmology in Rd#]. There, it was their late time behavior. The full equations are presented in
shown that string gases can give rise to three dimensiori§€ Appendix. We conclude with a discussion of our findings
growing large and isotropic due to string annihilation while and future prospects in Sec. V.
the other six dimensions remain confined. In R&}.it was
shown that by considering both momentum and winding
modes of strings, the six confined dimensions can be stabi- Il. BACKGROUND SOLUTION

- : : » In BYY, N&he bulk space-time with string matter sour¢a$
volume moduli of the extra dimensions can be stabilized in a
natural and intuitive way.

In recent work{6], we considered the effect of string in-
homogeneities and dilaton fluctuations on BGC. The string S= 1 J dDX\/__ge—an R+4(Vg)2— in +S,,
sources of BGC are usually represented by a perfect fluid dma’ 12
with homogeneous energy and pressure densities given by (D)
the mass spectrum of the stringsee, e.g., Refd.1,5,7)).

One may worry that inhomogeneities of string sourées
particular strings winding around the confined dimensionswhereR denotes the Ricci scalay,is the determinant of the
as a function of the unconfined spatial directions could leadackground metrice is the dilaton field, andd is the field
to serious instabilities which could ruin the main successestrength of an antisymmetric tensor field. The action of the
of BGC, namely the prediction that three directions becomenatter sources is denoted By,. For example, wittD =10
large leaving the other six confined uniformly as a functionthis is the low energy effective action of type II-A super-
of the coordinates of the large spatial sections. In R&f.  string theory. For the purposes of this paper we will ignore
we found that at the linear level BGC is robust with respectthe effects of branes, since it will be the winding and mo-
to long wavelength perturbations. In that paper it was foundnentum modes of the string that ultimately determine the
that at late times the inhomogeneities are subleading condimensionality and stability of space-tinig]. Here, we will
pared to the evolution of the background. In this paper wegnore the effects of fluxesij.e. we setd=0.

This action yields the following equations of motion:

*Electronic address: watson@het.brown.edu
This was later shown quantitatively in R¢8]. 2See Ref[10] for inclusion of fluxes in the scenario.
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R’ + ZVMV”go:SwM,;ZeZ‘PT;, The.expllicit forms of the energy density and pressure
were given in Ref[5],3
+ Kp— Kp=
R 4VKV ¢ 4VK¢V ¢ O’ (2) pZSMN(3)e—Z)\—6v+ 3MM(3)e—4)\—6v+ 6MN(6)e—3)\—5V
whereV is the covariant derivative.
. . . (6)a—3N—T7v
We will work in the conformal frame with a homogeneous +6uM™e ' 1D
metric of the form
o pi=— uN®e=22=6v4 , \Blg=—61 (12)
ds?=e?D(dy?— §;dx'dx)) —e?’( 5 dx™dx", (3)
Pm= _MN(6)673)\75V+MM(6)673)\77V, (13)

where (;,x') are the coordinates of+3l space-time ana™
are the coordinates of the other six dimensions, all of whichyhere 4, is a constantN® and M® are the numbers of

can be taken to be isotropid]. The scale factora(7) and  \inding and momentum modes in the large directions, and
b(7) are given byx=In(a) and v=In(b). N® andM®) in the six small directions.
We consider the effect of the strings on the background \ye are interested in solutions that stabilize the internal
through their stress energy tensor dimensions, while allowing the three large dimensions to ex-
T* =diag(p,  p; ,— Pry) @ pand. Such solutions were discussed in Ref.where it was
s v F Emi shown that the winding and momentum modes of the strings
where p is the energy density of the stringg; (i

lead naturally to stable compactifications of the internal di-
—1...3) is thepressure in the expanding dimensions angmensions at the self-dual radius. This remains true as the
Pm (M=4...9) is thepressure in the small dimensiofizse-

other three dimensions grow large, which is possible because
cause of our assumption of isotropy of each subspace, thnge string gas can maintain th_ermal equilibrium in three c.j'_
. ) . mensions and the string winding modes are able to annihi-
is only one independer; and one independemt,,). . B)_ .
. S late. Thus, we will selN'*’=0. At the self-dual radius, the

Strings contain winding modes, momentum modes an - .

. . . .number of winding modes is equal to the number of momen-
oscillatory modes. However, since the energies of the oscil

1 H 6) 6 i
latory modes are independent of the size of the dimension%“m_”(;;)deS(l.e., N®=M®)) and the pressure vanishes
and since the winding modes and momentum modes domt nan_Re.f [5], the solutions subject to the above conditions
nate the thermodynamic partition function at very small and C e ! i
very large radii of the spatial dimensions, here we shall ned" the winding and momentum numbers were found numeri-

glect the oscillatory modes. In the absence of string interac(-:a"y' In this paper, we wish to study the stability of these

tions, the contributions to the stress tensor coming from th<§OIUtlons t_owards I|_near perturbatlons n _the time interval
. o m when the internal dimensions have stabilized and the large
string winding modes and momentum mod&s,( and T};,

. dimensions give power law expansion. In the following sec-
respectively are separately conserved, tion, we will derive the equations for the linear fluctuations.
T —w 4m The coefficients in these equations depend on the back-
wyopy g ground solution. We will use analytical expressions which
VATY =0 VAT —0 5) approximate the_ ngmerical!y obtained solutions of _F{E].
py = wyo = We restrict our initial conditions so that the evolution pre-
serves the low energy and small string coupling assumptions
(gs~e2¢<1).
We can approximate a typical solution of E¢&—(10) by

The conservation equations take the form

9
p M+ 2 N (p" M= p}"™) =0, 6) )
=1 A(m)=kyIn(7)+XNo or a(n)=agn,

where the derivatives are with respect to the conformal time .
7, and where for the moment we consider 9 independent ¢(7)==kaIn(7)+ o,
scale factors.

Expressing Eq(2) in terms of the metri¢3) and the stress
tensor(4), we find the following system of equations:

(14)

where the constants;, k,, Aoy and¢y depend on the choice
of initial conditions. We have made use ofv'=1"=0,
N®=0, N®=M® p =0. Note that in this limit Eq(9)
—3\"— 6"+ 6N v —61' 2+ " —\ @' =87M, % 2, is trivially satisfied. An example of a solution yielding stabi-
7) lized dimensions and three dimensions growing large corre-
sponds tk; =3 andk,=2. The numerical solution of Ref.
~ N 2N 24BN Y N = —SWMgZe“’*Z”pi, (8)  [5] and the analytical approximation used in this paper are
compared in Fig. 1, for the above values of the constints
— " +6v' 242\ v + ¢ v =—87M ;2e¢+2>\pm’ (99 andky.

—BN"— 120" =24\ v’ — 420" 2= 6N'?— o' 2+ 20"+ 8N ¢’
3The equations here are related to Ef®) in Ref. [5] by the
+12¢'v'=0. (100 volume factorv=e®*"6" e.g.p=E/V.

023516-2



UV PERTURBATIONS IN BRANE GAS COSMOLOGY PHYSICAL REVIEW DO, 023516 (2004

The dilatone also fluctuates about its background valee

4 / The dilaton fluctuatiory is determined by
1 P = o+ =
o] —— e=¢otdp, x=de. (16)
,/ In the above, the fluctuating fieldg ¢, ¢ and ¢ are func-
1 tions of the external coordinates and time, i.e.,
a(n) 3.87
x=x(nx), ¢=¢d(nX), P=d(nX), §E=E&nX).

1 a7
3.2:

[/ The perturbations of the matter energy momentum tensor

1 result from overdensities and underdensities in the number of
2.8] A strings. From Eqgs(11)—(13) and noting that we are inter-

0 10 20 30 40 50 60 ested in the case whéw(®>=0 andM(®)=N(®) we find

g .. .»° =2 .2 2.2 .24 Op=6pwt 6pm, (18)
2] Spw=30uNge 3+ 18uNye 3 + 65N 3,

] (29
47

o) ] Spm=42uNée 3 +18uMée™ *+ 18uNye 3N
_6_

] +12uM e~ +6u6M B3N (20)
ae +3udMe (21)
103 Spy=6uMée M +4uM e+ uoMe

5 (22
-12

] 8p,=2uNée 3 — 1 SN®e 3N+ 1 5M (Blg= 3
4] (29

, . where we defireN=N®=M®) and M=M®). The fluc-
FIG. 1. A comparison between the numerical background solu;[ fi SN©®)  5M© d oM tak functi f
tions obtained in Refl5] (red or light line@ and the analytical ap- uations ’ » an aré taken as functions o

i (6)

proximation used in this papégreen or dark ling bo;rlll(con%)rmal time and the external space, edj,
= 7,X').

It follows from Eq. (6) that the perturbed sources obey
modified conservation equations for both the winding and

In this section we consider the growth of scalar metricmomentum modes,
perturbationgsee, e.g., Ref11] for a comprehensive review 9 9
of the theory of cosmological perturbatiorue to the pres- 5 ywm | SV \ (s wm_ sowm SV g 7 wm_ pwmy
ence of string inhomogeneities. We are interested in the case’ |=§:1 (9p P Z’l P P =0,
where the fluctuations depend only on the external coordi- (29
nates and conformal time, not on the coordinates of the in- e 1 .
ternal dimensions. For simplicity we work in the generalizedWhere oh=a “da=—¢ and dv=b""sb=—¢ are spatial

longitudinal gauge in which the metric perturbations are onl variations.

y ; .
in the diagonal metric elemerttsThus, the metric including Ei V\/te.rewrléedliqt.(Z) to taI;e the morel familiar form of the
linear fluctuations is given by Instein and diiaton equations, namely

Ill. SCALAR METRIC PERTURBATIONS

1
v o v av
R~ 5 8, R=€%T",—29""V,V, ¢

ds?=e?(N[(1+2¢)dn?— (1-2¢) §;dX dX ] 27K
—e?"D(1=2£) 5y dX"dX". (15) +26,(9""V, Vo —09""d,0d,¢),
"9, @d L »Y Vo= L 2eTH 25
4As discussed, e.g., in Ref12], for scalar perturbations depend- 97wy 2g nYv®= 4e w? (25

ing on all spatial coordinates it would be inconsistent to choose the ) ) » 5

perturbed metric completely diagonal, and one would have to add ¥here we invoke Planckian unitse., 87M,“=1). Plug-
metric coefficient to theltdX™ terms, where™ are the coordinates 9ing the perturbed metri¢l5) and dilaton into these equa-
of the internal dimensions. However, as discussed in R&, if

the fluctuations are independent of the coordinat®sas in our

case, the coefficient can be chosen to vanish, and thus the perturbedNotice that we must be careful to distinguish between the per-
metric is completely diagonal. turbed quantitiesSN®) and sM(®),
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tions, making use of the background equations of motionThese equations give us the evolution of the metric pertur-

and linearizing the equations about the backgrounel.
keeping only terms linear in the fluctuationgelds the fol-
lowing set of equations:

V2y+3V2%—9HE —3HY' —3H 2
1
= 52" A (2xTo+ 6To) —6Hbe' 3y’
—6&' ¢ —V2x+3Hy' +2d0' 2= 2x" ¢,
(26)

1
iy’ +30,E" +Hop— 3H<9§— et 2ASTL+ o’

—dix" +Haix, (27)
G0j(p—¢p—6§=2x)=0, i#], (28)
(37 =V)(p= y—68) — 29— 6"~ 4HY' — 6HE'

—2H?¢p—4H'¢p—2¢'H
=2 AN 2x T+ 8T)) +207x
499" =24 —AHPe Ay ' =128 9"+ 2X"
—2V2\+2HY' +4de'2—4x ¢, (29
—V2¢+5V2¢—5¢"+2V2)— 3y — 10H¢ —3¢'H
—9HY' —6H*p—6H

=e? 2 2y TR+ 8T
—49¢"—=2¢"¢"' —8HPe' —6y o' —10¢" "+ 2x"
— 2V +4HY' +4¢e P~ 4y ¢, (30
1
—2h"*+20' X' + "~y He' + 50— 2Hbe'
1 " 52
——¢<p—3§ X+—VX HxY'
1
= 2% (2xT+T), (31)

whereT T“ is the trace of the stress tensor avid= (9

+ ay+ & is the spatial Laplacian. The modified conservation

equatlons(24) take the form

d
—7](5N(6)):7N§’, (32)
A2uNE —T72uMEN' e M —48uMyN'e M+ 12uMy'e
+6,u,i(5|\/| &) —12u6MN" e M+ 3,Li(5|v|)e*A
dn dn
=0. (33

bations¢, ¢, and¢ in terms of the matter perturbations

op, and ép; . At first glance, it may appear that the above
system is overdetermined since we have eight equations for
seven unknowns. However, as is the case in standard cosmol-
ogy, the conservation equations are not independent of the
Einstein equations. Thus, we can choose to keep only one of
the modified conservation equations and our system will be
consistent.

IV. ULTRAVIOLET MODES

We now want to solve Eq$26)—(31) in the limit of small
wavelengthlor high energy. We can simplify the analysis by
working in terms of the Fourier modes, e.g.,

Unx)=3 P m)e X,

N(75,X)= 2‘,5Nk(77)e‘z>z etc.

Note that in the remainder of this paper it will be understood
that when we speak of perturbed quantities we are referring
to the time dependent Fourier modes, eygs (7).

Using Eq.(28) to eliminate the scalar metric perturbation
¢, EQgs.(26)—(31) in Fourier space take the form

61, 61 , 88 88 38
77 21X T 21" T\ 1ge T )X
228 sk E+ O Lk $=0, (34
637]2 2 ’
"+ 38+ + + 169 + 169 =0
Y +38+x @lﬁ mf 63X~ 0
(35
gt gy 218, 230, 230
P +68"+2x +21 77]5 217
| 6434 o 12868§+ 12868 -
396972 13232 3969772X ’
3y 5e 2+ 2 244 = 1978 718
2672 . 5344 5344
+ +K2 | g+ —K? | £+ x=0,
13232 4417? 13232
(37
1 9 250
2X "7 e,
L4 e 510§+ 170 1o\ o
492" 492" \agz 20 JXTT
(38)

To obtain these equations we have made use of the back-
ground solution(14) and dropped all but the leading order
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terms since we are interested in the late time>(1) and where thec;(k) are arbitrary constanta=13%, J, is a
small wavelengthK>1) behaviof In particular, we see that Bessel function of the first kind, and, is a Bessel function
as in the long wavelength case, the source tesids M 5, of the second kind. We proceed by solving E4l) for ©

and Mg are negligible at late times. This is because theusing y= x, and again neglecting the terms that depend on
string matter sources are subleading in the evolution equak. Thus, we wish to solve the equation

tions and instability is primarily sourced by the dilaton per-

turbation. This result is crucial to our outcome and is dis- 4 704 4 226
cussed in detail in the Appendix. _@n 0+ *2 ®= ), (44
. . 18 2 S@(” 1
We also notice that Eq$34) and(35) are only first order 9 5677
in time derivatives and can be taken as constraints on the
initial conditions. This leaves us with the equations of mo-\;yere
tion (36), (37), and (38). These equations can be put in a
more tractable form by introducing the two fieldsand ®, )
Jp(k ) Ja(kn) Ja(kn
1 Se(m)= +Ca(K) = +cs(k) ———
Y=A+0, {=A-70. (39) (kn)® (km) (kn)
Jp(kmn) Yd(kﬂ) Yp(K7)
The equations can then be written as (k) +c7(k) +cg(k)
f (k)9 (k)" (kp)°
1 250 170 1
' s Y (kn) Yp(k 77)
X'+ + 5K x +Cg(k) —
2% 7 63y 2' 2 Co(K) ———~+Cy9(k) (45)
T 149 (k)" (k7)?
9 9 79 127
= 7—A to O - A+ ;0. (400 where again the;'s are arbitrary constants ariui= 15,
7 7’ 777 497] ?%gv d 1?2! e= 2‘21%! f_ﬁgg! andg ?gg The SOIUtlon IS
given by
4@// 704 0+ (4E2 226 )
3 189 5677° Intkn) Yok
0©0=C11(K) ——— -+ Cy(K)——~
16, 4 226A 452 (kn) (kn)
97" 99X 12" se7" , o
+c1K) [ Go(n—7n")Se(7')d7n’, (46)
(41)
866 6434 whereGg is the Green’s function
8A"+ —A'+ A
21y 5675
! 377 ’ !
230 18 6434 12868 Go(7:7")= == (Yn(kn)In(kn") = In(kn) Yn(k7')),
— Xn__ r+_ /+ ®_ X 87777
21y 7 3969%° 3969 (47
(42
with h=132 andi=2%3. This is valid for >7' and Gg

where we have written the system as to isolate the seconeanishes otherW|se On evaluatlng the source integral we find
order derivative terms i andA and again dropped terms that the leading behavior & is given by the homogeneous
that are negligible givek, »>1. We first solve Eq(40) for ~ part of the solution, i.e.,

X, neglecting the right side of the equation and treating it as
a negligible source term. This perturbative approach will

only be justified if, after solving foA and® in the remain- @~ Cpy(k) h( L clz(k)Yh(k”), (48)
ing equations, we return to E¢40) to make sure these terms k)" (k)"
remain negligible. Proceeding in this way we find that to first
order x is given by Using this result in Eq(42) we finally find an equation for
A!
Ja(kn) Ya(kn)
Xo=C1(k) ———+co(k)———, (43)
(k) (kn) gyry 866, 6434 () 49
21p" ez M0

SFor the interested reader, the full equations are presented in the
Appendix. where
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FIG. 2. A comparison between the numerical value of the exter-

nal metric perturbation (red or dark ling and the analytical ap-

proximation found in this papeigreen or light ling.

SA(?})=014(|<)%+015(|<)% )%
+ oK) Y("k(—;’i) +ezdK) Y("k(:)”) , (50)
wherej =322 andl=$3. The solution is given by
ol

+Cao(k)J Ga(n=7")Sa(9")dn',  (5D)

wherem= 3% n=./735905/504, an@, is given by

n
n _(77_’
7' Y
517

with p=$55. The Green’s functioni, , is valid for > »’

p n

Galmn')= ; (52

nm

and vanishes otherwise. Using this result foand ®, one
can check that we were justified in neglecting the terms in
both Egs.(40) and (41). That is, these terms do not signifi-
cantly change the evolution. Thus, we have found that there
are no growing exponential instabilities. In fact, we find that
the behavior of the perturbations is that of a decaying oscil-

lator.

FIG. 3. A comparison between the numerical value of the inter-
nal metric perturbatiorf (red or dark ling¢ and the analytical ap-
proximation found in this papeigreen or light line.

mating A and ®, as we have discussed, i.e. ignoring the
source terms, we find the following approximate form for the
perturbations:

Wy~ 777m+n+ nfmfn_i_ C03k7]+ 51) ,
77q
1 cogkn+ &)

— ., Mmtn -m-n_

E~n +7 3 —ﬂq ,
cogkn+ &3)
~ (53
n

where we have used the asymptotic form of the Bessel func-
tions, q=28, r=23 and thes, represent time-independent
phases. In Figs. 2—4 we compare these approximate solu-
tions to the numerical solution of the full equatio(®0)—

(42). We find agreement at late timélarge ») giving us a
second check that our approximations were warranted. Thus,
we conclude that the small wavelength or ultraviolet pertur-

bations are well behaved in the linear regime.

24

chi 14

2

FIG. 4. A comparison between the numerical value of the dila-

As another check of our approximation, we can compareon perturbationy (red or dark ling and the analytical approxima-
our analytic solution with a numerical treatment. By approxi-tion found in this papetgreen or light ling.
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V. CONCLUSIONS

X)= ek, =¢, A2
We have extended the analysis of perturbations in BGC to &) ; &) Slm=¢ (A2)
include the UV modes. We have derived the evolution equa-

tions for the fluctuations at small wavelengths and at late ) .

times. We then solved these equations using a perturbative x(2.X)=2 xi(mek*  yvi(m)=yx, (A3)
approach, which we were able to check both analytically and k

numerically. We find a behavior for the perturbations, in that
string matter sources are negligible compared with the dila- . - -
ton perturbation and the resulting behavior is that of a decay- oM (7,X)=2>, dMy(n)e**, M (n)=8M,
ing oscillator. This has interesting consequences in regards to :
the worry of black hole formation and the usual worrisome
behavior of Kaluza-Klein massive states on the background.
We have concluded that at the linear level and in the gas 6 il 6 iK% 6 _ (6
approximation these types of string matter sources will have oN¢ )(n,x)—; 5N('< X mer, 5N(k ( m)=oN®,
a negligible effect. Moreover, we find that the predictions of (A5)
BGC remain robust under the consideration of both long and
short wavelength perturbations. In particular, the prediction .
that 3+1 dimensions will grow large while 6 dimensions 5M(6)(77,)2):2 5M§(6)( n)ekx 5M(k6)( ,7)55|\7|(6),
remain stabilized around the self dual radius remains intact. k

Although these results are promising for BGC there is still (AB)
much to be done. A more complete treatment of the pertur-
bations would need to take into consideration the nonlinear 0, = 0 B3 0 ~i0
behavior. It would also be interesting to test the string gas ST (U,X)=§k: oTi(me™”,  oT(n)=oT".
approach itself. That is, how does one go from the consider- (A7)
ation of the effects of individual strings to the known predic-
tions of BGC? Finally, it is an important consideration to . . . I
reexamine these perturbations in the presence of a frozelﬁOte that in the remainder of this paper it will be understood
dilaton. We know that at very late times in the cosmologicalt at wh.en we speak of pert_urbed quantities we are.referrmg
evolution the dilaton most likely acquired a mass. Since thd® the time dependent Fourier modes, @i ii(7). Given
dilaton perturbation played such a vital role in this analysis it"€S€ modes, Eq&26)—(31) now become
could be expected that the results would change dramatically
in the massive dilaton case. However, if the perturbations do( 61 324) , ( 88 162) , ( 12N 3M

X

(A4)

remain well behaved in this case, it would also be of interest| 57+ oot “Teoes T 17o/6-
) 21 2 21 2 169/63 176/63
to see if BGC could give rise to a method of structure for- ' < 497 49 K K
mation or a unique signature to be observed in the cosmic ) 338 972 61 ) 36N
microwave background. We leave these questions and con-  +k2+ S Ix+ St €+ 3k>+ —eoes
cerns to future work. 1897 499> 17 7
9M 338 , ON 6M 169
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8
"BE Xt ot ot Tt =
A9
APPENDIX: PERTURBATION EQUATIONS (A9)
FOR UV MODES

230 230
In this appendix we will examine in more detail the argu- 2y +68"+2x"+ mlﬂ' + ﬁf’ 21, '
ments that led to the string matter source terms being
dropped from Eqgs(34)—(38). We begin by introducing the 6434 AM 12868 6M
Fourier mOdeS’ 3969772 + 77176/63 w+ 1323”2 + 77176/63
- o 12868 2M M
lﬂ(ﬂ,x):Ek h(me™”, (=4, (A1) + 3969772“L 176063 X+ 7]176/63:0’ (A10)
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1978 718 tion in the following way: In Sec. IV, by neglecting these
' ' (and other terms of explicit higher ordewe found the ap-
proximate solutiong53),

244
3(// +5§ +2X +m¢ + 63775 +@

2672 .
+ +k?
132372

cogkn+ ;)
— ,—Mm+n —m—n
y~n +7 + e ,

5344 2N -
44177 + 7]169/63_ k®| &

5344 SM®  5N(®)

+ x+ + =0, (A11) B _ 1coskn+d,)
13232 169063 ", 169/63 Em g MG MmN 3 T’
1 9 250 18N 43
B R 4 coskn+ &
2X T 7 637 ( 2 7169/63 497]2) x~ 5(+3) (A13)

( 3ON 510) ( 6N 170 1. We must now plug these quantities back into the full equa-
n

27]169/63+ 4972 Teoa 4972 + 20 | X tions (A8)—(Al12) and check that the negligible quantities
remain negligible. However, in the case of the string matter
35N®) perturbations it turns out that we can perform another check.
Tooes O (A12)  For example, in the case of the perturbatiéN(® we can
K use the conservation equati¢d®) to find
From these equations we see that for late timgs () and SN® =7N&+ const. (A14)

small wavelengths k>1) a number of terms can be ne-

glected and we arrive at Eq&4)—(38). In particular, notice By plugging this into Eqs(A8)—(A12) we see that the term
that the string matter perturbatioa, SN®, sM(®) appear is indeed negligible compared to the other terms. Similarly,
to be negligible compared to the other terms. This means thahis can be shown for the other two matter perturbations
the dilaton perturbatiode = x is the most important source using the conservation equati@@g) and the constraint equa-
of the scalar metric perturbation. Of course, depending otion (A8). Thus, we have demonstrated that the matter per-
the time dependence of the string perturbations it could béurbation is negligible and the dilaton perturbation is the pri-
that these terms are not negligible. We can test our assumpaary source of the fluctuations.
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