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UV perturbations in brane gas cosmology

Scott Watson*
Department of Physics, Brown University, Providence, Rhode Island 02912, USA

~Received 9 March 2004; published 30 July 2004!

We consider the effect of the ultraviolet~UV! or short wavelength modes on the background of brane gas
cosmology. We find that the string matter sources are negligible in the UV and that the evolution is given
primarily by the dilaton perturbation. We also find that the linear perturbations are well behaved and the
predictions of brane gas cosmology are robust against the introduction of linear perturbations. In particular, we
find that the stabilization of the extra dimensions~moduli! remains valid in the presence of dilaton and string
perturbations.
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I. INTRODUCTION

Understanding the behavior of strings in a time depend
background has been a subject of much interest and has
pursued in a number of differing ways. One scenario, kno
as brane gas cosmology~BGC!, is devoted to understandin
the effect that string and brane gases could have on a dila
gravity background in the early Universe@1–5,8#. In Ref.
@2#, it was suggested that the energy associated with
winding of strings around the compact dimensions wo
produce a confining potential for the scale factor and halt
cosmological expansion.1 The analysis of BGC was initially
performed under the assumption of a homogeneous and
tropic cosmology. The results were recently extended to
case of anisotropic cosmology in Ref.@4#. There, it was
shown that string gases can give rise to three dimens
growing large and isotropic due to string annihilation wh
the other six dimensions remain confined. In Ref.@5# it was
shown that by considering both momentum and wind
modes of strings, the six confined dimensions can be st
lized at the self-dual radius, where the energy of the str
gas is minimal. This result demonstrated that, in BGC,
volume moduli of the extra dimensions can be stabilized i
natural and intuitive way.

In recent work@6#, we considered the effect of string in
homogeneities and dilaton fluctuations on BGC. The str
sources of BGC are usually represented by a perfect fl
with homogeneous energy and pressure densities give
the mass spectrum of the strings~see, e.g., Refs.@1,5,7#!.
One may worry that inhomogeneities of string sources~in
particular strings winding around the confined dimensio!
as a function of the unconfined spatial directions could le
to serious instabilities which could ruin the main succes
of BGC, namely the prediction that three directions beco
large leaving the other six confined uniformly as a functi
of the coordinates of the large spatial sections. In Ref.@6#,
we found that at the linear level BGC is robust with resp
to long wavelength perturbations. In that paper it was fou
that at late times the inhomogeneities are subleading c
pared to the evolution of the background. In this paper

*Electronic address: watson@het.brown.edu
1This was later shown quantitatively in Ref.@3#.
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will extend our considerations to the ultraviolet or sm
wavelength perturbations. Our expectation was that on sm
wavelengths, the motion of the strings would smear out
tential instabilities in a way analogous to how the motion
light particles~‘‘free streaming’’! leads to a decay of shor
wavelength fluctuations in standard cosmology~see, e.g.,
Ref. @9# for a review!. However, we will find that the string
matter perturbations are actually subleading in the evolu
and the dilaton perturbation is the primary driving force
instability.

For reference, in Secs. II and III we present the ba
ground solution and perturbed equations as found in Ref.@6#.
The crucial results appear in Sec. IV, where we derive
perturbation equations for the UV modes and then solve
their late time behavior. The full equations are presented
the Appendix. We conclude with a discussion of our findin
and future prospects in Sec. V.

II. BACKGROUND SOLUTION

Our starting point is the low energy effective action f
the bulk space-time with string matter sources@3#,

S5
1

4pa8
E dDxA2ge22wS R14~¹w!22

1

12
H2D1Sm,

~1!

whereR denotes the Ricci scalar,g is the determinant of the
background metric,w is the dilaton field, andH is the field
strength of an antisymmetric tensor field. The action of
matter sources is denoted bySm. For example, withD510
this is the low energy effective action of type II-A supe
string theory. For the purposes of this paper we will igno
the effects of branes, since it will be the winding and m
mentum modes of the string that ultimately determine
dimensionality and stability of space-time@1#. Here, we will
ignore the effects of fluxes,2 i.e. we setH50.

This action yields the following equations of motion:

2See Ref.@10# for inclusion of fluxes in the scenario.
©2004 The American Physical Society16-1
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Rm
n 12¹m¹nw58pM p

22e2wTm
n ,

R14¹k¹kw24¹kw¹kw50, ~2!

where¹ is the covariant derivative.
We will work in the conformal frame with a homogeneo

metric of the form

ds25e2l(h)~dh22d i j dxidxj !2e2n(h)dmndxmdxn, ~3!

where (h,xi) are the coordinates of 311 space-time andxm

are the coordinates of the other six dimensions, all of wh
can be taken to be isotropic@4#. The scale factorsa(h) and
b(h) are given byl[ ln(a) andn[ ln(b).

We consider the effect of the strings on the backgrou
through their stress energy tensor

Tm
n [diag~r,2pi ,2pm!, ~4!

where r is the energy density of the strings,pi ( i
51 . . . 3) is thepressure in the expanding dimensions a
pm (m54 . . . 9) is thepressure in the small dimensions~be-
cause of our assumption of isotropy of each subspace, t
is only one independentpi and one independentpm).

Strings contain winding modes, momentum modes a
oscillatory modes. However, since the energies of the os
latory modes are independent of the size of the dimensi
and since the winding modes and momentum modes do
nate the thermodynamic partition function at very small a
very large radii of the spatial dimensions, here we shall
glect the oscillatory modes. In the absence of string inter
tions, the contributions to the stress tensor coming from
string winding modes and momentum modes (Tmn

w andTmn
m

respectively! are separately conserved,

Tmn5Tmn
w 1Tmn

m ,

¹mTmn
w 50, ¹mTmn

m 50. ~5!

The conservation equations take the form

r8w,m1(
i 51

9

l i8~rw,m2pi
w,m!50, ~6!

where the derivatives are with respect to the conformal t
h, and where for the moment we consider 9 independ
scale factors.

Expressing Eq.~2! in terms of the metric~3! and the stress
tensor~4!, we find the following system of equations:

23l926n916l8n826n821w92l8w858pM p
22ew12lr,

~7!

2l912l8216l8n81l8w8528pM p
22ew12lpi , ~8!

2n916n8212l8n81w8n8528pM p
22ew12lpm , ~9!

26l9212n9224l8n8242n8226l822w8212w918l8w8

112w8n850. ~10!
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The explicit forms of the energy density and pressu
were given in Ref.@5#,3

r53mN(3)e22l26n13mM (3)e24l26n16mN(6)e23l25n

16mM (6)e23l27n, ~11!

pi52mN(3)e22l26n1mM (3)e24l26n, ~12!

pm52mN(6)e23l25n1mM (6)e23l27n, ~13!

where m is a constant,N(3) and M (3) are the numbers o
winding and momentum modes in the large directions, a
N(6) andM (6) in the six small directions.

We are interested in solutions that stabilize the inter
dimensions, while allowing the three large dimensions to
pand. Such solutions were discussed in Ref.@5#, where it was
shown that the winding and momentum modes of the stri
lead naturally to stable compactifications of the internal
mensions at the self-dual radius. This remains true as
other three dimensions grow large, which is possible beca
the string gas can maintain thermal equilibrium in three
mensions and the string winding modes are able to ann
late. Thus, we will setN(3)50. At the self-dual radius, the
number of winding modes is equal to the number of mom
tum modes~i.e., N(6)5M (6)) and the pressure vanishe
(pm50).

In Ref. @5#, the solutions subject to the above conditio
on the winding and momentum numbers were found num
cally. In this paper, we wish to study the stability of the
solutions towards linear perturbations in the time inter
when the internal dimensions have stabilized and the la
dimensions give power law expansion. In the following se
tion, we will derive the equations for the linear fluctuation
The coefficients in these equations depend on the ba
ground solution. We will use analytical expressions whi
approximate the numerically obtained solutions of Ref.@5#.
We restrict our initial conditions so that the evolution pr
serves the low energy and small string coupling assumpt
(gs;e2w!1).

We can approximate a typical solution of Eqs.~7!–~10! by

l~h!5k1ln~h!1l0 or a~h!5a0hk1,

w~h!52k2ln~h!1w0 , ~14!

where the constantsk1 , k2 , l0 andw0 depend on the choice
of initial conditions. We have made use ofn5n85n950,
N(3)50, N(6)5M (6), pm50. Note that in this limit Eq.~9!
is trivially satisfied. An example of a solution yielding stab
lized dimensions and three dimensions growing large co
sponds tok15 1

9 andk25 9
7 . The numerical solution of Ref

@5# and the analytical approximation used in this paper
compared in Fig. 1, for the above values of the constantsk1
andk2.

3The equations here are related to Eq.~18! in Ref. @5# by the
volume factorV5e3l16n, e.g.r5E/V.
6-2



ric

a
rd
in

ed
nl

sor
r of
-

f

y
nd

-

-
th

dd

ur er-

olu
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III. SCALAR METRIC PERTURBATIONS

In this section we consider the growth of scalar met
perturbations~see, e.g., Ref.@11# for a comprehensive review
of the theory of cosmological perturbations! due to the pres-
ence of string inhomogeneities. We are interested in the c
where the fluctuations depend only on the external coo
nates and conformal time, not on the coordinates of the
ternal dimensions. For simplicity we work in the generaliz
longitudinal gauge in which the metric perturbations are o
in the diagonal metric elements.4 Thus, the metric including
linear fluctuations is given by

ds25e2l(h)@~112f!dh22~122c!d i j dxidxj #

2e2n(h)~122j!dmndxmdxn. ~15!

4As discussed, e.g., in Ref.@12#, for scalar perturbations depend
ing on all spatial coordinates it would be inconsistent to choose
perturbed metric completely diagonal, and one would have to a
metric coefficient to thedtdxm terms, wherexm are the coordinates
of the internal dimensions. However, as discussed in Ref.@13#, if
the fluctuations are independent of the coordinatesxm, as in our
case, the coefficient can be chosen to vanish, and thus the pert
metric is completely diagonal.

FIG. 1. A comparison between the numerical background s
tions obtained in Ref.@5# ~red or light line! and the analytical ap-
proximation used in this paper~green or dark line!.
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The dilatonw also fluctuates about its background valuew0.
The dilaton fluctuationx is determined by

w5w01dw, x[dw. ~16!

In the above, the fluctuating fieldsx, f, c andj are func-
tions of the external coordinatesxi and time, i.e.,

x5x~h,xi !, f5f~h,xi !, c5c~h,xi !, j5j~h,xi !.
~17!

The perturbations of the matter energy momentum ten
result from overdensities and underdensities in the numbe
strings. From Eqs.~11!–~13! and noting that we are inter
ested in the case whenN(3)50 andM (6)5N(6) we find

dr5drw1drm, ~18!

drw530mNje23l118mNce23l16dN(6)e23l,
~19!

drm542mNje23l118mMje24l118mNce23l

112mMce24l16mdM (6)e23l ~20!

13mdMe24l, ~21!

dpl56mMje24l14mMce24l1mdMe24l,
~22!

dpn52mNje23l2mdN(6)e23l1mdM (6)e23l,
~23!

where we define5 N[N(6)5M (6) and M[M (3). The fluc-
tuationsdN(6), dM (6), and dM are taken as functions o
both conformal time and the external space, e.g.,dN(6)

5dN(h,xi).
It follows from Eq. ~6! that the perturbed sources obe

modified conservation equations for both the winding a
momentum modes,

dr8w,m1(
i 51

9

l i8~drw,m2dpi
w,m!1(

i 51

9

dl i8~rw,m2pi
w,m!50,

~24!

where dl5a21da52c and dn5b21db52j are spatial
variations.

We rewrite Eq.~2! to take the more familiar form of the
Einstein and dilaton equations, namely

Rm
n 2

1

2
dm

n R5e2wTm
n 22gan¹m¹aw

12dm
n ~gmn¹m¹nw2gmn]mw]nw!,

gmn]mw]nw2
1

2
gmn¹m¹nw5

1

4
e2wTm

m , ~25!

where we invoke Planckian units~i.e., 8pM p
2251). Plug-

ging the perturbed metric~15! and dilaton into these equa

e
a

bed5Notice that we must be careful to distinguish between the p
turbed quantitiesdN(6) anddM (6).

-

6-3
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SCOTT WATSON PHYSICAL REVIEW D70, 023516 ~2004!
tions, making use of the background equations of moti
and linearizing the equations about the background~i.e.
keeping only terms linear in the fluctuations! yields the fol-
lowing set of equations:

¹W 2c13¹W 2j29Hj823Hc823H 2f

5
1

2
e2w12l~2xT0

01dT0
0!26Hfw823c8w8

26j8w82¹W 2x13Hx812fw8222x8w8,

~26!

] ic813] ij81H] if23H] ij5
1

2
e2w12ldT0

i 1] ifw8

2] ix81H] ix, ~27!

] i] j~f2c26j22x!50, iÞ j , ~28!

~] i
22¹W 2!~f2c26j!22c926j924Hc826Hj8

22H2f24H 8f22f8H
5e2w12l~2xTi

i1dTi
i !12] i

2x

24fw922f8w824Hfw824c8f8212j8w812x9

22¹W 2x12Hx814fw8224x8w8, ~29!

2¹W 2f15¹W 2j25j912¹W 2c23c9210Hj823f8H
29Hc826H 2f26H 8f

5e2w12l~2xTm
m1dTm

m!

24fw922f8w828Hfw826c8w8210j8w812x9

22¹W 2x14Hx814fw8224x8f8, ~30!

22fw8212w8x81fw926cHw81
1

2
f8w822Hfw8

2
3

2
c8w823j8w82

1

2
x91

1

2
¹W 2x2Hx8

5
1

4
e2w12l~2xT1dT!, ~31!

where T[Tm
m is the trace of the stress tensor and¹W 2[]x

2

1]y
21]z

2 is the spatial Laplacian. The modified conservati
equations~24! take the form

d

dh
~dN(6)!57Nj8, ~32!

42mNj8272mMjl8e2l248mMcl8e2l112mMc8e2l

16m
d

dh
~dM (6)!212mdMl8e2l13m

d

dh
~dM !e2l

50. ~33!
02351
,These equations give us the evolution of the metric per
bationsf, c, andj in terms of the matter perturbationsx,
dr, and dpi . At first glance, it may appear that the abo
system is overdetermined since we have eight equations
seven unknowns. However, as is the case in standard cos
ogy, the conservation equations are not independent of
Einstein equations. Thus, we can choose to keep only on
the modified conservation equations and our system will
consistent.

IV. ULTRAVIOLET MODES

We now want to solve Eqs.~26!–~31! in the limit of small
wavelength~or high energy!. We can simplify the analysis by
working in terms of the Fourier modes, e.g.,

c~h,xW !5(
k

ck~h!eikW•xW,

dN~h,xW !5(
k

dNk~h!eikW•xW, etc.

Note that in the remainder of this paper it will be understo
that when we speak of perturbed quantities we are refer
to the time dependent Fourier modes, e.g.,c[ck(h).

Using Eq.~28! to eliminate the scalar metric perturbatio
f, Eqs.~26!–~31! in Fourier space take the form

61

7h
j81

61

21h
x81

88

21h
c81S 338

189h2
1kW2D x

1S 338

63h2
13kW2D j1S 169

189h2
1kW2D c50, ~34!

c813j81x81
88

63h
c1

169

21h
j1

169

63h
x50,

~35!

2c916j912x91
176

21h
c81

230

7h
j81

230

21h
x8

1
6434

3969h2
c1

12868

1323h2
j1

12868

3969h2
x50, ~36!

3c915j912x91
244

21h
c81

1978

63h
j81

718

63h
x8

1S 2672

1323h2
1kW2D c1S 5344

441h2
2kW2D j1

5344

1323h2
x50,

~37!

1

2
x92

9

7h
c81

250

63h
x8

1
43

49h2
c1

510

49h2
j1S 170

49h2
1

1

2
kW2D x50.

~38!

To obtain these equations we have made use of the b
ground solution~14! and dropped all but the leading orde
6-4
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UV PERTURBATIONS IN BRANE GAS COSMOLOGY PHYSICAL REVIEW D70, 023516 ~2004!
terms since we are interested in the late time (h@1) and
small wavelength (k@1) behavior.6 In particular, we see tha
as in the long wavelength case, the source termsdN, dM3,
and dM6 are negligible at late times. This is because
string matter sources are subleading in the evolution eq
tions and instability is primarily sourced by the dilaton pe
turbation. This result is crucial to our outcome and is d
cussed in detail in the Appendix.

We also notice that Eqs.~34! and~35! are only first order
in time derivatives and can be taken as constraints on
initial conditions. This leaves us with the equations of m
tion ~36!, ~37!, and ~38!. These equations can be put in
more tractable form by introducing the two fieldsD andQ,

c5D1Q, j5D2
1

3
Q. ~39!

The equations can then be written as

1

2
x91

250

63h
x81S 170

49h2
1

1

2
kW2D x

5
9

7h
D81

9

7h
Q82

79

7h2
D1

127

49h2
Q, ~40!

4

3
Q91

704

189h
Q81S 4

3
kW22

226

567h2D Q

52
16

9h
D82

4

9h
x82

226

81h2
D2

452

567h2
x,

~41!

8D91
866

21h
D81

6434

567h2
D

522x92
230

21h
x81

18

7h
Q81

6434

3969h2
Q2

12868

3969h2
x

~42!

where we have written the system as to isolate the sec
order derivative terms inQ andD and again dropped term
that are negligible givenk,h@1. We first solve Eq.~40! for
x, neglecting the right side of the equation and treating it
a negligible source term. This perturbative approach w
only be justified if, after solving forD andQ in the remain-
ing equations, we return to Eq.~40! to make sure these term
remain negligible. Proceeding in this way we find that to fi
orderx is given by

x05c1~k!
Ja~kh!

~kh!a
1c2~k!

Ya~kh!

~kh!a
, ~43!

6For the interested reader, the full equations are presented in
Appendix.
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where theci(k) are arbitrary constants,a5 147
126, Ja is a

Bessel function of the first kind, andYa is a Bessel function
of the second kind. We proceed by solving Eq.~41! for Q
usingx5x0 and again neglecting the terms that depend
D. Thus, we wish to solve the equation

4

3
Q91

704

189h
Q81S 4

3
kW22

226

567h2D Q5SQ~h!, ~44!

where

SQ~h!5c3~k!
Jb~kh!

~kh!c
1c4~k!

Jd~kh!

~kh!e
1c5~k!

Jd~kh!

~kh! f

1c6~k!
Jb~kh!

~kh!g
1c7~k!

Yd~kh!

~kh!d
1c8~k!

Yb~kh!

~kh!c

1c9~k!
Yd~kh!

~kh! f
1c10~k!

Yb~kh!

~kh!g
, ~45!

where again theci ’s are arbitrary constants andb5 59
126, c

5 815
126, d5 185

126, e5 941
126, f 5 689

126, andg5 563
126. The solution is

given by

Q05c11~k!
Jh~kh!

~kh!h
1c12~k!

Yh~kh!

~kh!h

1c13~k!E GQ~h2h8!SQ~h8!dh8, ~46!

whereGQ is the Green’s function

GQ~h,h8!5
3p

8hhh82 i
~Yh~kh!Jh~kh8!2Jh~kh!Yh~kh8!!,

~47!

with h5 113
126 and i 5 239

126. This is valid for h.h8 and GQ

vanishes otherwise. On evaluating the source integral we
that the leading behavior ofQ is given by the homogeneou
part of the solution, i.e.,

Q0;c11~k!
Jh~kh!

~kh!h
1c12~k!

Yh~kh!

~kh!h
. ~48!

Using this result in Eq.~42! we finally find an equation for
D,

8D91
866

21h
D81

6434

567h2
D5SD~h!, ~49!

where
he
6-5
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SCOTT WATSON PHYSICAL REVIEW D70, 023516 ~2004!
SD~h!5c14~k!
Jh~kh!

~kh! j
1c15~k!

Jb~kh!

~kh!g
1c16~k!

Jd~kh!

~kh! l

1c17~k!
Ji~kh!

~kh! i
1c18~k!

Jb~kh!

~kh!c
1c19~k!

Jd~kh!

~kh! f

1c20~k!
Jd~kh!

~kh!e
1c21~k!

Yh~kh!

~kh! j
1c22~k!

Yb~kh!

~kh!g

1c23~k!
Yd~kh!

~kh! l
1c24~k!

Yi~kh!

~kh! i
1c25~k!

Yb~kh!

~kh!c

1c26~k!
Yd~kh!

~kh! f
1c27~k!

Yd~kh!

~kh!e
, ~50!

where j 5 365
126 and l 5 437

126. The solution is given by

D~h!5
c28~k!

~kh!m2n
1

c29~k!

~kh!m1n

1c30~k!E GD~h2h8!SD~h8!dh8, ~51!

wherem5 349
168, n5A735905/504, andGD is given by

GD~h,h8!5
ah8p

hm F S h

h8
D n

2S h8

h D nG , ~52!

with p5 517
168. The Green’s function,GD , is valid for h.h8

and vanishes otherwise. Using this result forD andQ0 one
can check that we were justified in neglecting the terms
both Eqs.~40! and ~41!. That is, these terms do not signifi
cantly change the evolution. Thus, we have found that th
are no growing exponential instabilities. In fact, we find th
the behavior of the perturbations is that of a decaying os
lator.

As another check of our approximation, we can comp
our analytic solution with a numerical treatment. By appro

FIG. 2. A comparison between the numerical value of the ex
nal metric perturbationc ~red or dark line! and the analytical ap-
proximation found in this paper~green or light line!.
02351
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mating D and Q0 as we have discussed, i.e. ignoring t
source terms, we find the following approximate form for t
perturbations:

c;h2m1n1h2m2n1
cos~kh1d1!

hq
,

j;h2m1n1h2m2n2
1

3

cos~kh1d2!

hq
,

x;
cos~kh1d3!

h r
, ~53!

where we have used the asymptotic form of the Bessel fu
tions, q5 88

63 , r 5 250
63 and thed i represent time-independen

phases. In Figs. 2–4 we compare these approximate s
tions to the numerical solution of the full equations~40!–
~42!. We find agreement at late times~large h) giving us a
second check that our approximations were warranted. T
we conclude that the small wavelength or ultraviolet pert
bations are well behaved in the linear regime.

r-
FIG. 3. A comparison between the numerical value of the int

nal metric perturbationj ~red or dark line! and the analytical ap-
proximation found in this paper~green or light line!.

FIG. 4. A comparison between the numerical value of the d
ton perturbationx ~red or dark line! and the analytical approxima
tion found in this paper~green or light line!.
6-6
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V. CONCLUSIONS

We have extended the analysis of perturbations in BGC
include the UV modes. We have derived the evolution eq
tions for the fluctuations at small wavelengths and at l
times. We then solved these equations using a perturba
approach, which we were able to check both analytically a
numerically. We find a behavior for the perturbations, in th
string matter sources are negligible compared with the d
ton perturbation and the resulting behavior is that of a dec
ing oscillator. This has interesting consequences in regard
the worry of black hole formation and the usual worrisom
behavior of Kaluza-Klein massive states on the backgrou
We have concluded that at the linear level and in the
approximation these types of string matter sources will h
a negligible effect. Moreover, we find that the predictions
BGC remain robust under the consideration of both long
short wavelength perturbations. In particular, the predict
that 311 dimensions will grow large while 6 dimension
remain stabilized around the self dual radius remains int

Although these results are promising for BGC there is s
much to be done. A more complete treatment of the per
bations would need to take into consideration the nonlin
behavior. It would also be interesting to test the string g
approach itself. That is, how does one go from the consid
ation of the effects of individual strings to the known pred
tions of BGC? Finally, it is an important consideration
reexamine these perturbations in the presence of a fro
dilaton. We know that at very late times in the cosmologi
evolution the dilaton most likely acquired a mass. Since
dilaton perturbation played such a vital role in this analysi
could be expected that the results would change dramatic
in the massive dilaton case. However, if the perturbations
remain well behaved in this case, it would also be of inter
to see if BGC could give rise to a method of structure f
mation or a unique signature to be observed in the cos
microwave background. We leave these questions and
cerns to future work.
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APPENDIX: PERTURBATION EQUATIONS
FOR UV MODES

In this appendix we will examine in more detail the arg
ments that led to the string matter source terms be
dropped from Eqs.~34!–~38!. We begin by introducing the
Fourier modes,

c~h,xW !5(
k

ck~h!eikW•xW, ck~h![c, ~A1!
02351
to
-

e
ve
d
t
-

y-
to

d.
s
e
f
d
n

t.
ll
r-
r
s
r-

en
l
e
it
lly
o

st
-
ic
n-

a
s

in

g

j~h,xW !5(
k

jk~h!eikW•xW, jk~h![j, ~A2!

x~h,xW !5(
k

xk~h!eikW•xW, xk~h![x, ~A3!

dM ~h,xW !5(
k

dMk~h!eikW•xW, dMk~h![dM̃ ,

~A4!

dN(6)~h,xW !5(
k

dNk
(6)~h!eikW•xW, dNk

(6)~h![dÑ(6),

~A5!

dM (6)~h,xW !5(
k

dMk
(6)~h!eikW•xW, dMk

(6)~h![dM̃ (6),

~A6!

dTi0~h,xW !5(
k

dTk
i0~h!eikW•xW, dTk

i0~h![dT̃i0.

~A7!

Note that in the remainder of this paper it will be understo
that when we speak of perturbed quantities we are refer
to the time dependent Fourier modes, e.g.c[ck(h). Given
these modes, Eqs.~26!–~31! now become

S 61

21h
1

324

49h2D x81S 88

21h
1

162

49h2D c81S 12N

h169/63
1

3M

h176/63

1kW21
338

189h2D x1S 972

49h2
1

61

7h D j81S 3kW21
36N

h169/63

1
9M

h176/63
1

338

63h2D j13
dN

h169/63
1S 6M

h176/63
1

169

189h2

1
18N

h169/63
1kW2D c1

3

2

dM

h176/63
13

dM (6)

h169/63
50, ~A8!

c813j81x81
88

63h
c1

169

21h
j1

169

63h
x1

dT̃i0

h148/63
50,

~A9!

2c916j912x91
176

21h
c81

230

7h
j81

230

21h
x8

1S 6434

3969h2
1

4M

h176/63D c1S 12868

1323h2
1

6M

h176/63D j

1S 12868

3969h2
1

2M

h176/63D x1
dM

h176/63
50, ~A10!
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3c915j912x91
244

21h
c81

1978

63h
j81

718

63h
x8

1S 2672

1323h2
1kW2D c1S 5344

441h2
1

2N

h169/63
2kW2D j

1
5344

1323h2
x1

dM (6)

h169/63
1

dN(6)

h169/63
50, ~A11!

1

2
x92

9

7h
c81

250

63h
x81S 18N

2h169/63
1

43

49h2D c

1S 30N

2h169/63
1

510

49h2D j1S 6N

h169/63
1

170

49h2
1

1

2
kW2D x

1
3dN(6)

h169/63
50. ~A12!

From these equations we see that for late times (h@1) and
small wavelengths (k@1) a number of terms can be ne
glected and we arrive at Eqs.~34!–~38!. In particular, notice
that the string matter perturbationsdM , dN(6), dM (6) appear
to be negligible compared to the other terms. This means
the dilaton perturbationdw5x is the most important sourc
of the scalar metric perturbation. Of course, depending
the time dependence of the string perturbations it could
that these terms are not negligible. We can test our assu
Re

ar

ys
er

ar
n

02351
at

n
e
p-

tion in the following way: In Sec. IV, by neglecting thes
~and other terms of explicit higher order! we found the ap-
proximate solutions~53!,

c;h2m1n1h2m2n1
cos~kh1d1!

hq
,

j;h2m1n1h2m2n2
1

3

cos~kh1d2!

hq
,

x;
cos~kh1d3!

h r
. ~A13!

We must now plug these quantities back into the full eq
tions ~A8!–~A12! and check that the negligible quantitie
remain negligible. However, in the case of the string ma
perturbations it turns out that we can perform another che
For example, in the case of the perturbationdN(6) we can
use the conservation equation~32! to find

dN(6)57Nj1const. ~A14!

By plugging this into Eqs.~A8!–~A12! we see that the term
is indeed negligible compared to the other terms. Simila
this can be shown for the other two matter perturbatio
using the conservation equation~33! and the constraint equa
tion ~A8!. Thus, we have demonstrated that the matter p
turbation is negligible and the dilaton perturbation is the p
mary source of the fluctuations.
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