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Weak lensing in generalized gravity theories

Viviana Acquaviva, Carlo Baccigalupi, and Francesca Perrotta
SISSA/ISAS, Via Beirut 4, 34014 Trieste, ltaly,
and INFN, Sezione di Trieste, Via Valerio 2, 34127 Trieste, Italy
(Received 29 March 2004; published 30 July 2004

We extend the theory of weak gravitational lensing to cosmologies with generalized gravity, described in the
Lagrangian by a generic function depending on the Ricci scalar and a nonminimal coupled scalar field. We
work out the generalized Poisson equations relating the dynamics of the fluctuating components to the two
gauge-invariant scalar gravitational potentials, fixing the contributions from the modified background expan-
sion and fluctuations. We show how the lensing equation gets modified by the cosmic expansion as well as by
the presence of anisotropic stress, which is non-null at the linear level both in scalar-tensor gravity and in
theories where the gravitational Lagrangian term features a nonminimal dependence on the Ricci scalar.
Starting from the geodesic deviation, we derive the generalized expressions for the shear tensor and projected
lensing potential, encoding the spacetime variation of the effective gravitational constant and isolating the
contribution of the anisotropic stress, which introduces a correction due to the spatial correlation between the
gravitational potentials. Finally, we work out the expressions of the lensing convergence power spectrum as
well as the correlation between the lensing potential and the integrated Sachs-Wolfe effect affecting cosmic
microwave background total intensity and polarization anisotropies. To illustrate phenomenologically the ef-
fects, we work out approximate expressions for the quantities above in extended quintessence scenarios where
the scalar field coupled to gravity plays the role of the dark energy.
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I. INTRODUCTION providing the 70% of the critical density today raises two
problems. The first is the fine tuning required to fix the
In recent years we reached a remarkable convergence iracuum energy scale about 120 orders of magnitude less
the most important cosmological parameters describing ththan the Planck energy density, which is supposed to be the
cosmic content as well the statistics of perturbations. Theunification scale of all forces in the early Universe. The sec-
Universe is nearly geometrically flat, with an expansion rateond is a coincidence issue, simply why among all the small
of about 70 km/sec/Mpc, and structures grown out of a prinonzero values of the cosmological constant, the value was
mordial linear spectrum of nearly Gaussian and scaleehosen to be comparable to the critical energy density today.
invariant perturbations in the distribution of the energy den-These questions, still largely unsolved, could be answered
sity. About 5% of the critical energy density is made of only if the concept of cosmological constant is extended to a
baryons, while the remaining dark part is supposed to intermore general one, admitting a dynamics of the vacuum en-
act at most weakly with the baryons themselves, since wergy, known now as the dark energsee[7-9] and refer-
observe it only through its gravitational effects. The darkences therein
component appears to be 30% pressureless, like in cold dark The simplest generalization, already introduced well be-
matter(CDM) scenarios, dominating the gravitational poten-fore the evidence for cosmic accelerat{d®,11], is a scalar
tials perturbations that host visible structures such as galaXield, dynamical and fluctuating, with a background evolu-
ies or clusters. The remaining 70% should be in some sort dion slow enough to mimic a constant vacuum energy given
vacuum energy, with negative pressure acting as a repulsivgy its potential, providing cosmic acceleration. As soon as
gravity, and responsible for a late time cosmic acceleratioithe latter was discovered, renewed interest in these models
era. The case for this “concordance cosmological model” isappeared immediately12,13. In particular, it was demon-
now quite robust, supported by several independent data setstrated how the dynamics of this component, under suitable
the distant type la supernovéeereafter SNI41,2]), the cos-  potential shapes inspired by supersymmetry and supergravity
mic microwave backgroundCMB) anisotropies(see Ref. theories(see Refs[14] and[15], respectively, and references
[3] and references therginthe Large Scale Structut@SS  therein, can possess attractors in the trajectory space, named
[4,5]) and the Hubble Space TelescoptST [6]). tracking solutions, capable of reaching the present dark en-
The picture is clearly far from being satisfactory: in par- ergy density starting from a wide set of initial conditions in
ticular, without a better insight into the nature of the darkthe very early Universe, thus alleviating, at least classically,
cosmological component, we cannot claim to have a satisfadhe problem of fine tuning16,17]. The scalar field playing
tory physical understanding of cosmology. The simplest dethe role of the dark energy was named quintessence. Its co-
scription of the vacuum energy responsible for cosmic accelherent insertion among the other cosmological components
eration is a purely geometric term in the Einstein equationsallowed one to constrain it from the existing dgi8—-25, as
the cosmological constant. On the other hand, while thevell as to investigate the relation of the dark energy with the
CDM has well established support from theories beyond th@ther cosmological components: the explicit coupling with
standard model of particle physics, a cosmological constarttaryons is severely constrained by observati@®, while
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the possible coupling of the quintessence with the Ricci scalogical constant, is known and well established, but a com-
lar [27—40 and the dark mattg®1—-44 as well as the phe- prehensive treatment in cosmologies with generalized
nomenology arising from generalized kinetic energy termgheories of gravity still lacks in literature. The aim of the
[45—-47 have been extensively studied. present work is to fill this gap, by providing the community
The generalization of cosmology that we consider heravith the recipe to interpret the weak lensing observations in
concerns the gravitational sector of the fundamental La2 more general context. We follow the harmonic approach to
grangian, admitting a general dependence on the Ricci an§éak lensind69] and the treatment for generalized cosmo-
Brans-Dicke scalar fields. This subject is interesting per s&fdical scenarios including cosmological perturbat(e],
(see Refs[48,49 and references therginand is receiving aIready exploited for investigating the effects of the explicit
more attention after the discovery of cosmic accelerationcPUPling between dark energy and gravigge Ref[40] and
with the attempt to interpret the evidence for dark energy aseferences therein _
a manifestation of gravity: this scenario has been recently NS Work is organized as follows. In Sec. Il we describe
proved to have relevant consequences for what concerns tijae cosmological models we deal with, for background and
dark energy fine-tuning problem mentioned ab#€]. Imgar perturbgtlons. In.Sec. Il we write 'the ge'nerallzed
The gravitational lensing effect in cosmology is gatheringpo'sso_” equations, relating the f_Iuct_uatlons in metric and cos-
a great interest becoming one of the most promising tools tgh°logical components. The derivation and discussion of the
investigate cosmological structurésee Ref[50] and refer- lensing equation and.weak .Iensmg potential are in Seps. v
ences therein and commonly thought in terms of strong and and V, respectively. Finally, in Sec. VI we draw conclusions.
weak regimes. The first one concerns highly magnified

sources, generically through the generation of multiple im- Il. GENERALIZED COSMOLOGIES
ages of a background object by a single lens with the typical . . .
size of a galaxy. We shall consider a class of theories of gravity whose

The weak gravitational lensing, which is the subject of the?Clion is written in natural units as

present work, produces weak amplification, generically

through the distortion of the pattern of background light; S:f d4x\/—_g
moreover, it is generated by a large set of scales and objects,

ranging roughly from nonlinear structures like galaxy clus- 1

ters to the large scale distribution of matter, still in linear _ = T _

regime. The weak lensing shear was detected recently by 2 (#)4",=V(E)+ Lauia @
independent groups with astonishing agreeni®ht+-55. Al-

though the precision of such measurements does not allowhereg is the determinant of the background metRds the
one to constrain different cosmological models, the plannedRicci scalar,w generalizes the kinetic term, ant,q in-
observations will become certainly a crucial tool to investi-cludes contributions from the matter and radiation cosmo-
gate the behavior of dark matter and energy during the strudegical componentsk=8=G, plays the role of the “bare”
ture formation process and at the onset of cosmic accelergravitational constanf34]. Here and throughout the paper
tion [56]. Greek indices run from 0 to 3, Latin indices from 1 to 3.

In particular, several authors considered the possibility of The usual gravity terniR/167G has been generalized by
investigating the dark energy component through weak lenshe general functiorf/2« [31,49. Note that the formalism
ing, with different approaches ranging from shear distortionadopted is suitable for describing non-scalar-tensor gravity
of background galaxies from clusters of galaxies to the weakheories, i.e., withouts, where, however, the dependence on
lensing power causing a non-Gaussian pattern into the CMR is generic.
anisotropie§57—-64. The reason of this interest is the tim-
ing: the structure formation, and the weak lensing carrying
its physical information occurs at an epoch that overlaps with
the onset of cosmic acceleration; by virtue of this fact, it is By definingF(¢,R) =(1/«) /R, the Einstein equations
reasonable to expect a good sensitivity of the weak lensin& .,= T, take the following form:
effect to the main dark energy properties such as the equation 1
of state and its redshift behavior. G =T ==

These studies are entering in an higher level of sophisti- A
cation: the first outcome oN-body simulations in several flk—RE—

X . k—RF-2V .
dark energy scenarios have been published recsily67], +g9,,———+F ,,—g VF:"},
mainly studying the impact of the background rate of expan- . 2 TR
sion on the internal parameter of structures. The implemen-
tation of a light ray tracing technique through those struc-where again one can recognize a part depending on the fluid
tures allows one to check numerically the weak lensingvariables, and a part relative to the nonminimally coupled
pattern produced by mildly and full nonlinear density pertur-scalar field of the theory plus a contribution arising from the
bations[68]. generalized gravity coupling represented by the function

The theory of weak gravitational lensing in ordinary cos-1/F; for practical purposes we will render this splitting ex-
mologies, i.e., made by radiation, dark matter, and cosmoglicit rewriting T, as

1
Zf(dJ,R)

A. Einstein equations

1
¢,M¢,v_ Egyv(ﬁ,(r(ﬁﬂ)

fluid
T,uv +w
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1 i . and 7 stands for the conformal time variable, related to cos-
Tur=g T + 105 (2 mic time by the usual relatiodt=a(7)dr.
The energy-momentum tens@2) can be recast in a
Note that in our scheme the generalized cosmology term igerfect-fluid form:
active also if gravity is the same as in general relativity, and _ _
a minimally coupled scalar field, like in the quintessence Tu=(PFp)uu,+pgy,; @)
models, represen_ts_the only |r}gred|e.nt.w|th respect to th't3he corresponding background energy density and pressure
ordinary case. This is true also in the limiting case where th% ;
: . re easily computed to be

scalar field reduces to a cosmological constant. Moreover,

note that]f’fv is not conserved if gravity differs from general © RE—f/x 3HF'
relativity; nonetheless, contracted Bianchi identities still hold p= — gt ——=¢'%+ +V—
P=g| Piat S5 > >
and ensure 2a a
fluichy ;o — 1
(T’uV ) 0, ©) = Epfluid+chv 8
which allows us to derive the equations of motion for the
matter variables only, leading to a remarkable simplification w RF—f/x E" HE'
[49]. The expression for the stress-energy tensor relative to p= E pﬂuid+—2¢>’2— T—VJr 5t
the scalar field, which is conserved in the generalized sce- 2a a a

narios described by the actiail), must include the term 1
accounting for the interaction with the gravitational field — =—pgq+pgc; 9
[37]. Itis also worth noting how Eq$2) get simplified if the F

functionfis a product oR times a function of the field only: the prime denotes differentiation with respect to conformal

f time and is the conformal Hubble facta’/a. As above,
—=RF. (4)  pge and pye do not obey the conservation law in ordinary
K 9 g
cosmologiesp g+ 3H(pgct Pgd # 0.

In the following, we will refer to this class of cosmologies as [N FRW cosmologies the expansion equation reads
nonminimally coupledNMC) models. 9

We willingly keep this work as much general as possible, Ho=a’p—K, (10
due to the large variety of scenarios covered by the action 4 it cannot be solved directly due to the appearandé of

(1). We shall only consider the extended quintessdR«g) ; e e : :
X . in pgc, Which is explicit in the last term but is also contained
[33,38 scenario as an example to illustrate the aspects of thf?] RE— f/x through

weak lensing process with respect to ordinary cosmologies;
in that case, the fieldb, nonminimally coupled to gravity, 6
also represents the dark energy, providing acceleration R= —(H+H?3). (12)
through its potentiaV. Specifically, the original works con- a’

sidered a NMC model defined as o ) )
Note that this is true also in theories whédre f(R) and no

1 ) scalar field is present.
F(¢)= ;+§¢’ ' (5 On the other hand, NMC scenarios admit a formal solu-
tion, which is
and an inverse power law potentdl ¢)=M***/ ¢ pro-

viding cosmic acceleration today. The constraints from solar-,,_ 3 F_' + \/g F_' 2+1 2 +2¢’2+a2v K
system experiments force the correction to the gravitationa 2 F 4\ F) TF|S PruidTD ’
constant to be small in this specific model. Therefore it is (12

suitable to make approximations to illustrate a sort of first _ _ ) N

theories with respect to the case of ordinary cosmology. - Note that the dependence of the comoving distanaes
the redshifz=1/a—1 also gets modified, according (b2):
B. Background

z dz
We will write the unperturbed Friedmann-Robertson- r:fo_H(z)' (13
Walker (FRW) metric in spherical coordinates as
We generically indicate the single components in the fluid
ds?=a?(7)| —dr2+ 1 dr2+r2dQ (6) with x. Since Tf 4 iS conserved, energy density, pressure,
1—Kr? ' equation of state, and sound velocity, defined as

whereK is the uniform spatial curvature of a spherically py,=—T3,, pPy=1/3T., w=p./py, c2=pi/p.,
symmetric three-spacéy) is the metric of the two-sphere, (14
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give rise to conservation equations having the familiar form A 1 A

VBY=0, E;J(:E(viijjEi), ElV=0,
pyt3Hpy(1+w,)=0. (15 22)

The last ingredient is the Klein-Gordon equation for the evo-

lution of the field, which is substantially different from the
case of ordinary cosmologies:

E/'=0, VE]=0, (23

andE andB are scalar functions. Our notation slightly differs
1 f from that of Liddle and Lyth which is given in the Fourier

¢"+2Ho' t5o w,¢¢’2—a2'—¢+2a2v,¢ =0. (16)  space: the quantitie§, E; andB we use here correspond to
@ K the original ones divided bi?=k;k' andk, respectively. In

hhe linear theory the different types of perturbations evolve

As we stress in the next section, the relevant changes W'tmdependently of each other and can thus be treated sepa-

respect to the stan_dard picture are r_epresented by the Chanl%?ely An analogous decomposition can be performed for the
in time of the functiorf. In EQ scenarios the dynamics of the stresé-ener . . :
gy tensor, whose expression up to the first pertur

field possesses two distinct regimes. At low redshift, the bey _ d
. X o X bative order is
havior of the energy density coincides with the correspond-

ing one in the tracking trajectories in ordinary quintessence

J0
models, linked to the potential exponent ag,=—2/(2 To=—(p+dp), (29
+ «a). At high redshift, generally much earlier than the epoch _
of structure formation, eventually the effective potential T?=(p+p)(vi—B)), (25
coming from the nonminimal interaction with gravity takes
over (R boos}, and imprints a behaviow ,=—1/3 for the Ti=—(p+pu', (26)
quadratic coupling5) [33,40.

Ti=(p+6p)5+pllj, (27)

C. Linear cosmological perturbations

We will describe the linear cosmological perturbations inwhere the fluid velocity; and the anisotropic strek; can
the real as well as in the Fourier space. For this reason, wee split as
follow a notation close to that introduced recently by Liddle

and Lyth [70], which allows one not to make explicit the vi=vp+o), (28)
Laplace operator eigenfunctions when working in the Fourier
space, minimizing the formal changes needed to go from the IT;; =Hﬁ+l‘[¥+1‘[£, (29

real to the Fourier space and vice versa. See [Réf.for the
usual formulation cast in the Fourier space. The general exwith the same properties of their metric counterparts:
pression for the linear perturbation to the metié¢ can be
written as[70] s s 1 ,
) Ui_ViU, ]._.[”— V|VJ_§5|]V H, (30)
ds?’=a?(7){—(1+2A)dw>—B;drdx
- Tdxidx

+[(1+2D) &+ 2E;;]dx dx}, (17 VY=o, Hi‘j’%(ViHﬁVjHi), V=0, (31)
where the functiork;; is chosen to be traceless in order to
uniquely identify the nondiagonal spatial perturbation. Vill.=ViIT=0 (32)

It is usual to further decompose the above quantiBes ' e

and E;; into pure scalars§), scalar-type §), and vector- \ynere agairl is a scalar quantity and the same differences
type (V) components of vectors, and scalar-ty[$,(vector-  of o notation with that by Liddle and Lyth hold here for the
type (V), and tensor-typ€T) components of tensors, accord- stress-energy tensor perturbations.

ing to their behavior with respect to a spatial coordinate |, this paper we will take into account only densitye.

transformation: scalar-typg perturbations. The reason is that also in the gen-
eralized scenarios we consider here they play the dominant

_AS
A=A (18 role. In fact, as we stress in detail in the following, the
scalar-tensor coupling does generate a non-null anisotropic
B,=B>+BY (19 - :
i~ Bj i stress already at the linear level, but that is of scalar-type
s v T only, and therefore does not act as a source for gravitational
Eij=Ej+EjtE;, (20 waves.
We work in the so called conformal Newtonian gauge,
where where the nondiagonal perturbations to the metric are set to
Zero:
BS=vB, ES=|Vv-2s,v2|E (21)
i = Vb, i~ | iViT39 ) B=E=0. (33
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Furthermore, we will rename the lapse functidnand the tational potentials. The latter, together with the background
spatial diagonal perturbatidb after the widely used gauge- cosmic geometry and expansion, entirely determine the lens-

invariant potential$72]: ing process.
We start writing the generalized expression of the density
A=W, D—d. (34 fluctuation[49]:

The line element used through the rest of the paper will

1
therefore be Sp=p-6=—6Tg==

w
= 5Pﬂuid+¥ P o9’

ds?=a?[ — (1+2W¥)d?+ (1+2d)dI?], (35

wheredl? is thg unperturbed spatial Ien_gth elem_ent fre@n +£ %¢’2—t—¢+zv o] 50— pt+3p _ ivz SE
We now write down the main equations driving the evo- 2\ a2 K ’ 2 a2

lution of the perturbed quantities defined above. For each

fluid component, the evolution of the scalar perturbed quan- JHOF'  HYF'  O'F w '

tities can be followed through the dynamical variablgs Y +6 a2 - a? ;qf‘z’ ' (40)

=8py/py, Uy, 6Py, Ily, defined in terms of the stress en-

ergy tensor as We can focus on two main aspects of the generalized expres-

_ _ 70 _ i sion above, playing the major role of the generalization of
Opx OToxs Opy=1/38Ty, the Poisson equation: the contribution from the field fluctua-
Vip.= _5-|-i0 Hpep), pYVVIFII —sTi# tions 8¢ and the 1IF term in front of the expression fafp,
X X X X/ XY X I "

(36) which acts as an effective time varying gravitational con-
stant. As we shall see below, the latter is the relevant effect in

Note that from now on we do drop the subsci$imeaning typical extended quintessence models.
that we always treat scalar cosmological perturbations, un- The Poisson equation relates the fluctuations in the time-
less otherwise specified. In the Fourier space, the equatiorisne component of the metric to the usual combination of

for &, andv, take the form density and scalar-type velocity perturbations, named
, 5 whose expression in Newtonian gaugé 14]
Oy — 3HW, 5, =K (L+W,)vy—3(1+W,) D’ — 3HW,Py Py,
(37) A=6—3Hwu. (41

W/ We follow as much as possible the notation of earlier works
vyt H(1- 3WX)UX+1+—XUX [69]. The 5G8= 5T8 equation can be cast in such a way that
Wi it formally coincides with the case of ordinary cosmologies.
In Fourier space it is
opy 2

=——V¥+ | 1-—
Px(1+wy) 3( k?

Wy

1+—WXHX, (39

2
—2(k2—3K)<I)=3A
a

K
H?+ — ], (42)
while ép, andIl, depend on the particular species consid- a
ered. The perturbed Klein-Gordon equation can be written in . o .
terms of two equations formally equivalent (87) and (38) so that we can exploit our distinction between fluid and gen-
by building the conserved expression for the perturbed en(_arahz_ed cosmology_ terms. Note that the_ HUbb_Ie expansion
ergy density, pressure, and anisotropic stress perturbatiofdte is evaluated with respect to the ordinary tires a/a

[37]. Their combination leads to the Klein-Gordon equation=2'/a>=*/a, By using Egs.(8) and (10), we can write

at first perturbative order: H?=H{,q+Hgc, where
® llo 1 ppuia F
o+ | 2H+=2 " | 59’ +| K+ 5 7“*) ¢ Hiua=F 5= = £ Hol Qom(1+2)°+ Qg (1+2)*
b

+(1- Q) (1+2)?], (43

Sp=(¥'~30")¢'

_azf’¢/K+2a2V’¢
2w $

and Qq, Qo , and ), are the contribution to the present
o 1 2¢ expansion rate from the matter, radiation, and the total den-
2¢"+4H ' +—'¢’¢'2> 4+ — SR. sity, respectively, whild-; is the actual value of the gravita-
w 2ok ddIR tional coupling strength, and can be replaced with7138 It
(39) is important to note thatl3,, is linked to the energy density
of the fluid components, all but the scalar field, but it con-
Ill. GENERALIZED POISSON EQUATIONS tains a most important generalization, represented by the
Fo/F term, which plays the role of a time dependent gravi-
In this section we work out the equations relating thetational constant into the Friedmann equation. Moreover, us-
stress-energy tensor perturbations to the scalar metric graviRg the relationk/a2= Hé(QO— 1)(1+2)?, we included the

+
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effect of the spatial curvature intd;y. The expressions for when 1F freezes to the value BG(1+87Gé¢F). The
HZ. and Q. can be easily obtained by making use of Egs.magnitude of the correction is therefore
(8) and(10):

8nGESE—— — b \/ZWG (49)
T = —= —;
) Hee O 4éwypp ° Vwuep
Hac™ Pge: QQCZF' (44)
0 note that asw;gp approaches infinity, recovering general

relativity, the correction may still be relevant depending on
the values of¢ or ¢,. The gravitational potential receives a
contribution

Starting from(42), let us write down the relation between the
power spectra of®, P, =k3®?/272, and that ofA:

-2
9(H0)4(1_3(1_QO)H(2) %Qm(lﬂ) 5= —8mGE$?— B2 Prigs - (50

ARy 2

The subscript fluie- ¢ represents all the terms coming from

Fo ) 0 the fluid quantities as well as the scalar field ones from the
+E Qor(1+2)7+(1-Qo)| = —1 minimal coupling, i.e., not involving® explicitly:
2 K?® i+ o= 4TGApyig+ pH[ Qom(1+2)?
+——— Q| Ps. (45) ,
(1+2)2 + Q0 (1+2)4+ Q4] (51)

This is the equation that generalizes the link between timeNote also that if the trajectory is tracking, with an almost
time metric fluctuations with density and scalar-type velocityconstant equation of state,, the expression above reduces
perturbations. The new effects arise from the scalar field corto

tribution, encoded in-lgc, the 1F term behaving as a time- 5 5 5 A
dependent gravitational constant, as well as from the fluctua- K™ ®fuid+ =47CA g+ Hol Qom(1+2)°+ Qo (1+2)

tions of the scalar field, contained ik, both_ in dp andv. _ +Q¢0(1+Z)3(1+w¢,)]; (52)

Let us check the most relevant corrections to the quanti-
ties above in the EQ models we take as a refer¢B8638, iy order to keep the notation simple, we drop such subscripts
where the scalar field fluctuatiomg) play a minor rold37],  j, the following, always meaning that it is there when dis-

and the overall geometry is assumed to be Hat0. Under  cyssing approximate expressions in EQ models. Similarly,
these conditions, the most important correction is reprethe gravitational potential power spectrum gets an extra con-

sented by the ¥ term, effectively representing the time tripytion, which at first order in the correction to #& is
variation of the gravitational constant. The expressionHor

in (5) can be conveniently rewritten as 8Pg=—16mGE&(Pp%— ¢,g)p¢, (53
1 where
_ 2_ 42
I ) 2
to make explicit that at the preseft= 1/87G. The observa- Po=7|% ) [Qom(1+2)+ 0o (1+2)
tional constraint$73,74] usually are expressed as bounds on 143w
the quantities TQyo(1+2)" 7Py . (54)
1dG 1dF 2 d¢ = = In general, another important effect that arises in cosmology
ST =, wgpm =, (47) from the generalization of the underlying gravity physics is
G dt Fdt ¢ dt Fo 4&8¢° represented by the relation betwekrand®. The difference

_ _ _ betweenf andR, which may arise from a scalar-tensor cou-
calculated at the present time, where thesign above is due  pling as well as a nonstandard dependencefiaim R itself,
to the slight difference with the gravitational constant mea-gives origin to tidal forces exciting the anisotropic stress of

sured in Cavendish-like experimer(t34] and w;gp is the  scalar origin[49]; in the Fourier space its simple form is
usual Jordan-Brans-Dicke parameter, which usually implies

the strongest constraint. Typicall31,33 the correction to k2 SF
the 1/87G term is small, so that pd,H¢=¥ = (55
1 , . . .
Ez8wG[1—8wG§(¢2— b5)]. (48 and implies a shift between the two gauge-independent sca-
lar metric perturbations, which in our gauge takes the form
Moreover, in tracking trajectories with inverse power law 9 SF
potentials, the field approaches of the order of 1{/G from PY+Pp=— a_pH =— (56)
below, being generally much smaller than that in the past, k? F
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where the last equality holds if the anisotropic stress is due tavhich allows us to write the geodesic equation at first order
the generalization of gravity and it does not come from matin the deflection angle, in addition to the usual linear ap-
ter or radiation. This is an important aspect of generalizegroximation for metric perturbations. The geodesic equation
cosmologies, which implies a change in almost all the equais indeed

tions describing the weak lensing effect in cosmology, to be

discussed next. For this reason, it is convenient to give a d2ra 1 dr® dr”
name to.thellf+<l> combination, valid both for the real and e —-g“ (gﬂw 29‘“’ ﬂ) TN (63
the Fourier space:

E=V+o. (579  Which for =0 and a=1 gives dr=1/a’d\ and dr

=1/a%d\; substituting these expressions into the perturbed
One has= =0 in ordinary cosmology, an& = — sF/F in  €quation for the angular part, we get
the generalized scenarios of interest here. As we already
stressed is excited both by a scalar-tensor coupling as in ~ d?6, K cosvK Ky déy
EQ models, and a generalized dependence of the gravita- 2 (V=) - 2K —== dar
: : & aet . dr smz\/_x sinyKy dr
tional Lagrangian term oR; its expression in terms dfis
mally equivalent withx—y.

af\ 1t
RV
In terms of 2, defined in(57), the geodesic equation as-
While in the first case the correction is small because of théumes the familiar forrf50,75 plus the perturbation coming

smallness of the scalar field fluctuatiofeé [31,37, the con-  70M the anisotropic stress gtands now fox or y):
tribution from the second term has not been investigated yet.

(64)

9°f 9°f

TR S+ —5R for the angular coordinaté, and another one fod,, for

1|

(58)

d2e, cos de,
— = =20 - E) - 2K —== VKx
IV. LENSING EQUATION dr? smz\/— sinyKy d7°

Before working out the generalized expression for the €9

weak lensing power spectrum it is necessary to recon5|de|t
the lensing equation to track the effects coming from back-
ground dynamics and perturbations. We follow the approac
used in Ref[75], deriving the photon trajectories as solu-
tions with ds>=0 of the geodesic equation for the metric
(17); the lensing deflection around a given direction in the
sky is described, introducing angular coordinafgsand 6y,

he effects coming from the modified cosmological expan-
ion are encoded i, through the modified dependence of
the distances given by (12) and (13) with respect to the
redshiftz
In terms of the comoving displacement from the polar
axis, x;= 6;sin VK x/ VK, Eq. (65) simply reads

defined as
IV —>) _
) X/ +Kxj=— ———=20,0-9,E, (66)
6x=0cose; O,=0sing, (59 29
where = \/67+ 92 and ¢ are the polar coordinates in the Where the first term on the left-hand side describes the ten-
(6.6,) plane dency of two nearby rays to converge, diverge, or remain
Furthermore, we perform a change of the radial coordi{arallel according to the geometry of the Universe, while the
nate, right-hand side accounts for the lensing effect due to the
metric perturbations. The general solution of this equation is
1
(r)= —arcsinyKr (60) sinVK
X JK Xi+A \/—X+Bcos\/RX
VK
such that the spatial background metric takes the more read- X sin \/RX'
able form: :—f dy'a[¥(n,x)—®(n,x ) —=—
Oxl[(x) (n,x")] K
di?=dy?+ J_X (d6Z+d6?). (62) sinyVK '

X ~ (=N
:jo dx'a[2®(n,x")—E(n,x )]—\/R , (67

This notation is convenient because the weak lensing hy-

pothesis immediately reflects in the condition whereA andB are integration constants, and the position
on the light cone is completely specified by the line of sight
0<1, (62 directionn and the generalized radial coordinate
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V. WEAK LENSING N K X' (x—x")
. . . . . Sij(n, x) = 167G jd —
It is convenient to begin with the comoving separation Yis(n.x) £ 0 X X
between two lensed rays, starting from the same point, one in

the direction of the polar axis and the other one in a direction y ( diz

n, on a source plane at distange; in terms of the angular (2)
separatiory; in the directioni one has

—1]30,®(n,x"). (72

Note, however, that integrating in the variable, although

sin VK xs convenient in order to minimize the formal corrections to

Xij(xs)=(6ij— ¢ij)T b, (68)  y;;, hides the effect of the varying gravitational constant on
x itself; in flat cosmologies the latter coincides witlyiven

where ¢; is thedistortion tensor by (13), which has to be corrected as

. L ) z dz | ¢?
v (R X):ifxdxlsm\/RX sinVK(x—x") 5r=47TG§¢(2)f H(z) ¢—2—1), (73
ijth \/R 0 sin \/RX 0 b5
Xai&j[\l,(ﬁyxl)_q)(ﬁ’x,)] as can be easily verified sin¢tx1/\F.
1 (x sin \/EX’Sin \/R(X—X’) A. Generalized lensing potential
JKJo sin \/RX The lensing equation is often rewritten in terms of the

R R projected potentiakp, defined through the relation
X ;[ —2®(n,x" )+ E(n,x")]. (69
K
Note that at first order the effect of cosmological perturba- hij=——=0i9j¢. (74)
- N (sinVKx)
tions can be computed along the unperturbed trajectories,

which corresponds to neglect the difference in the relativq I ; ; - ;
- s ndicating the radial coordinate distance witD
deviation of two lensed and unlensed rays inside the above g ()

integral. =sinVKx/ K, we get

The components of;; are usually interpreted in terms of R Yo A .
the shear y=vy,+ivy, and of theeffective convergence, ¢(n)=f dxD(x)[¥(n,x)—P(n,x)]
respectively identified as 0

- D(y'—
><JX dy DX X gy

1
7125(%1_%2)' V2= 12, N D(x')

Xoo ~ ~
1 = dyD —2d(n,x)+Z(n,
=5 (vt o). (70) fo xDO)L (n,x)+E(n,x)]
Moreover, as we usually deal wi i g PXT
, y deal with lensing phenomena from XJ dxy' ——>=g(x"), (75)
a multiplicity of sources, the distortion tensor, and thus the X D(x")
projected potential, are usually meant to be integrated over
the possible source distances: where y., stands for the comoving distance at infinite red-
shift. By defining the integral involving the source distribu-
- A tion as
0= [ axaCow . 7
L x DX '=x)
whereg() is a normalized function describing the distribu- 9'(x)=D(x) L X D(x') 9(x"), (76)

tion of the relevant sources. When one considers the effect of

lensing on the CMB, the source distribution may be replacedhe lensing potential75) takes the compact form

by a é function at the last scattering surface.
Let us evaluate the correction to the distortion tensor in - Xeo , - N

EQ models. The contribution frorE is negligible in these $(n)= fo dxg’ Q0L (n,x) =@ (n,x)]

scenarios, since it arises from the scalar field fluctuations

S6¢, yielding a correction that is small with respect to the one (X , A o~

coming from the variation of H [37]. o dxg’ OOl —2®(n,x) +E(n.x)]. (77
Therefore, in flat cosmologies and at a giventhe cor-

rection to z//ij(ﬁ,)() is due only to the shift in the gravita- The expression above acquires several new contributions in

tional potential, represented k0): the generalized scenarios of interest here. The modified
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background expansion affects the angular diameter distanaggssuming that the statistical average above eliminates the
as well as the effective gravitational constant; the perturbaeorrelation between different Fourier modes, as well as the
tions get contributions from the field fluctuations affectthg  dependence on the direction of the wave numbers,

and exciting the metric fluctuation mode representedEby

In EQ models, if the integration is made on the variaple R R L

the main correction is due to the time variation of the effec-  (A(K,x)B(K",x"))=(A(k, x)B(k,x"))s(k—k"), (83

tive gravitational constant:

where A and B represent eitheW or Z and they are meant
(n,x). to be ensemble averaged, one finally gets

2

R , [X= ¢
op(n)=16mGé g . dxg’(x) ?—l P
0

(78)

In this equation, and in Eq$86), (91), and(94), the quantity wa:; . ng X)f dx'g f k?dku[kD(x)]u,
® is meant to bebg,qy, , as defined in Eq(50).

We need now to track these effects into the angular power
spectrum of the projected lensing potential. This is defined as ><[kD(X')][<‘I’(k.X)‘1’(k.X')>—<E(k,X)‘1’(k,X')>
usual as

1
. R +—(2(k,x)2(k,x") } (84)
CHl=(|biml®,  dim=—2 f dQ;é(N)Y m(n), (79) g{=ox -

where the—2 is purely conventional in order to keep the |t is also useful to write down explicitly the equivalent form
notation consistent with earlier work§9]. One needs now of the expression above which contains the gravitational po-
to expand the metric fluctuations in the Fourier space withentials only:

respect to the positioﬁzr -n. The expansion functions are

just the eigenfunctionyk(i) of the Laplace operator in o M

curved spacetime, defined in general in curved FRW geom- C¢¢—_f dXQ’(X)f dX’Q’(X')f k?dku
etry [71]. Their radial and angular dependences are further 0 0

expanded in ultraspherical Bessel functiomsand scalar

. : . . 1
spherical harmonics, by exploiting the relation ><[kD(X)]Ul[kD(X')]{ZOI’(KX)‘I’(KX’)>

m 4 ) ) 2 ' ' )

wherek andx denote the modulus of the corresponding vec- (85)
tors. By using the completeness of the spherical harmonics,
and the fact thak coincides with the radial distand2( ),

the final expression fow, . is putting in evidence the correlation betwednand ®.

From this expression we can easily infer the main correc-
8 (X R R tion to the lensing potential angular power spectrum arising
Dim= ;f ng’(X)J d3k[2d (k,x)— E(k,x)] in EQ cosmologies, using3):
0

Xi'ui(KDOO)Yim(K) Yim(R). (81) oo (e
scit=—s13564 [ o' 00 [ “ax'a' o)
The lensing potential angular power spectr(iff) is there- 0 0

fore 2
¢ j 2
— 1] | k®dku[kD(x)]u[kD(x")]
32 «
wa:? ng X)fx dX’g’(X’)J'de’kJ' d3k’u, d)o
0 0 X(D(k,x)D(k,x")). (86)

XKD Juilk D (x)]Yim(K) Vi (k)
Note that the numbers here conspire to yield a quite large
(k) Pk, x)* factor in front of this expression, which may render the cor-
rection above relevant even for values of the prodastﬁg
as small as 10°. In the following we further specialize our
= (K, X)E( x)* H results computing the generalized expression of some quan-
tity particularly relevant for observations, as well as their
(82 main corrections in EQ models.

X <<1>(E,x><1>(12',x'>*—

N
B B SN

E(K ) *®(k,x)+
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B. Convergence power spectrum

A= [ a0 [ “axo oo [ oy

The convergence, represented by the trace of the distor-
tion tensor, is usually used as a main magnitude of the weak
lensing distortion. Indeed, in the weak lensing hypotheses, it
coincides with the shear power spectrusee Ref.[50]) X(kD(X))UI(kD(X'))[@)(ka){)@(k,)('»
which has been recently observed from the distortion in-
duced in the shape of background galaxies in the optical 1
band[51—55 _<E(k1X)q)(k1X,)>+ Z<E(k1/\/)a(k1/\/’)>}

The expression we need to compute is given by

8 Xoo Xoo
1 —— ’ [P
Keff:z('//ll_" ¥22), (87) Wfo dxg (X)fo dx"g’(x )f dkiu,

1
><(kD(x))u|(kD(x’))[Z<‘P(k,x>‘lf(k,x’)>
which shall be averaged over the source distribution as usual.

We get 1 1
+z<¢(k,x)¢(k,x’)>—§<‘I’(k,x)¢(k,x’)>}-

(90

j dy’ (,)j X)D(X —X)

Dlx In EQ cosmologies, using agai{f3), one finds

XJa[¥(n,x)—PM,x)]

2 X ’ X r ! ’
6P;(I)=—12&§¢>0j0 dxg (X)fo dx'9'(x")

[ [ 200

X a[—2®(n,x)+E(N,x)]

1 f dkieu, (kD)) (KD (')

X(D(k,x)P(k,x")), (91

1 X . ~ ~
=5 ' o[ — +E(n,x)]. , ,
Zjo dxg'(x) 3oL =20(n,x) (nx)] where the correction tg must be taken into account follow-

(88)  ing (73 if the integration is made on the redshift.

The two-dimensional Laplacian appearing in this equation C. Lensing in the CMB signal

can be safely replaced with its three-dimensional analogue

(see Refs[50] and[76] for a numerical check of this point The lensing potential correlates significantly with second-

Once this substitution has been made, we can expand t ary anisotropies of the CMB, because it arises at the epoch of
P r% Sructure formation; here we generalize the lensing cross-

generalized gravitational potential in Fourier harmoni ICS.orrelation with the integrated Sachs-Wolfe effd@W, see

transforming with respect to the spatial pamty, and trans-  Ref. [69] for a comparison with the case of ordinary cos-

form the Laplacian in a multiplication by-k?): mologies.
The latter can be represented in terms of temperature fluc-
tuations as
— 1 f)(ocd ’( )
e 22mPele XX 0'S"(f) = f dxLd (R, x) ¥ (R,x)]
x [ der2n @ - =010, (89 [ aebio-2an @2
0

Comparing this expression with those for the lensing potenNote that, in order to avoid confusion with the integration
tial power spectrunt84) and (85) we can immediately infer variable y’, in this paragraph only we will denote with an
the result overdot the derivative with respect to conformal time.
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Again, using the expressions for the lensing potentialdates which have been proposed for explaining the dark en-
power spectré84) and(85), and making use of the statistical ergy are suitably described in a cosmological context that is
independence of different Fourier modes, we are able tgeneralized with respect to the ordinary one, admitting dark-

write immediately the cross-correlated spectrum: matter—energy couplings as well as generalized theories of
8 gravity.

CO¢— _fX”ng,(X)J'“dX,f k2dku (kD(x))u, (kD In particular, for the Iattgr class of theorie;, a systematic

mJo 0 treatment of the weak lensing process is lacking in the litera-

1 ture, and this work aims at filling this gap. We considered a
X(X')){(‘D(k,)()‘p(k,)('»— E(E(k,x)(b(k,)(’)) L_agrang|an where thg grz_ivnatlonal sector is made of a func-
tion that depends arbitrarily on the Ricci scalar as well as on
1 . 1 _ a scalar field; the most general scalar-tensor theory of grav-
—§<E(k,x’)<b(k,)())+ Z(E(k,){)E(k,){’)) ity, as well as the most general dependence on the Ricci
scalar without a scalar field, can be described in full gener-

2 Xx ality in this framework.
= _f ng/(X)f dX'f k2dku (kD(x))u We studied the generalized Poisson equations, linking the
mJo 0 fluctuating components to the two gauge-invariant general-
ized gravitational potentials representing the metric fluctua-

X(KD(X NV (K x)W(k,x")) tions that cause the weak lensing process itself. This allowed

(DK ) DK ")) — (W (K, x)D(K, x’ us to fix the contributions from the modified background
(@)@ kx’)) = (¥ (k)P kx)) expansion as well as the fluctuations, both in the Ricci scalar
—(W(k,x )P (K, )] (93)  and in the scalar field responsible for the scalar-tensor cou-

_ o o . ~ pling. We show that both of them are responsible for an
The main correction in EQ cosmologies is obtained again bynisotropic stress of scalar origin, causing the gravitational
using (53). Interestingly, the time derivative reintroduces a potentials to be different already at the linear level. We stud-

term proportional td®|: ied in particular the modifications induced by the time varia-
T tion of the effective gravitational constant, which are most

Xeo Xoo ; i ; ; :

S5COP— _ 12%§¢3f ng,(X)J' dy'| -1 rel_evant in nonm_mmally cqupled models in Whlch the gravi
0 0 b5 tational Lagrangian sector is a product of a function depend-

ing on a scalar field and on the Ricci scalar; we focus in
XJ k2dku (kD(x))u;(kD(x" )P (k Y)d(k X)) particular on the EQ scenarios, where the scalar field playing
' ' the role of the dark energy and responsible for cosmic accel-
\ ' b eration today possesses a quadratic coupling with the Ricci
~o5weg3 [ a0 [Cax S wedky  scalar N o

0 0 b5 Starting from the equation describing the geodesic devia-

, , tion, we derived the generalized expressions for distortion
X (KD(x)ui(KD(x )P (K, x)P (K, x")). 94 tensor and projected lensing potential, tracking the effects

These expressions can be further simplified noticing that foflu€ to the time variation of the effective gravitational con-
lensing on the CMB signal the source distribution is well Stant and the contribution of the anisotropic stress; in particu-
represented by @ function at the last scattering.S) sur-  1ar, we show how the latter yields a correction proportional

face; thus the averaging funcucg‘i(x) can be Written as to the COI’relation betWeen the graVitational pOtentia|S.
Finally, we specialized our results to the description of

x-  D(x'—x) two quantities that are most relevant for observations, i.e.,
9'(X)=D(X)f dx'————3(x"— xvs) the lensing convergence power spectrum as well as the cor-
X D(x") relation between the lensing potential and the ISW effect,
D(x)D(xis—x) affecting the total intensity and polarization anisotropies in
R TE (95 the cosmic microwave background radiation.

By considering again the particular case of EQ cosmolo-
gies, we worked out approximate expressions for the correc-
tions induced by the time variation of the effective gravita-

The weak lensing in cosmology is one of the most impor-tional constant on the lensing potential, lensing-lensing
tant tools to investigate the structure formation process, angorrelation angular power spectrum, convergence of the an-
in particular the mechanics of the dark cosmological compogular power spectrum as well as lensing-ISW correlation. We
nent, which represents almost 95% of the cosmic budget ashowed that the order of magnitude of these effects is of the
cording to the recent measurements. Since the onset of cogrder of 8:TG§<;/>§, where¢ is the coupling constant angl,
mic acceleration occurs at the same epoch of structuris the present value of the dark energy field. It may be noted
formation, the weak lensing looks most promising in order tohow such correction may be relevant even if the underlying
gain insight into the nature of the dark energy. The canditheory is close to general relativity, i.e., if the Jordan-Brans-

VI. CONCLUSIONS
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