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Weak lensing in generalized gravity theories

Viviana Acquaviva, Carlo Baccigalupi, and Francesca Perrotta
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~Received 29 March 2004; published 30 July 2004!

We extend the theory of weak gravitational lensing to cosmologies with generalized gravity, described in the
Lagrangian by a generic function depending on the Ricci scalar and a nonminimal coupled scalar field. We
work out the generalized Poisson equations relating the dynamics of the fluctuating components to the two
gauge-invariant scalar gravitational potentials, fixing the contributions from the modified background expan-
sion and fluctuations. We show how the lensing equation gets modified by the cosmic expansion as well as by
the presence of anisotropic stress, which is non-null at the linear level both in scalar-tensor gravity and in
theories where the gravitational Lagrangian term features a nonminimal dependence on the Ricci scalar.
Starting from the geodesic deviation, we derive the generalized expressions for the shear tensor and projected
lensing potential, encoding the spacetime variation of the effective gravitational constant and isolating the
contribution of the anisotropic stress, which introduces a correction due to the spatial correlation between the
gravitational potentials. Finally, we work out the expressions of the lensing convergence power spectrum as
well as the correlation between the lensing potential and the integrated Sachs-Wolfe effect affecting cosmic
microwave background total intensity and polarization anisotropies. To illustrate phenomenologically the ef-
fects, we work out approximate expressions for the quantities above in extended quintessence scenarios where
the scalar field coupled to gravity plays the role of the dark energy.
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I. INTRODUCTION

In recent years we reached a remarkable convergenc
the most important cosmological parameters describing
cosmic content as well the statistics of perturbations. T
Universe is nearly geometrically flat, with an expansion r
of about 70 km/sec/Mpc, and structures grown out of a p
mordial linear spectrum of nearly Gaussian and sca
invariant perturbations in the distribution of the energy de
sity. About 5% of the critical energy density is made
baryons, while the remaining dark part is supposed to in
act at most weakly with the baryons themselves, since
observe it only through its gravitational effects. The da
component appears to be 30% pressureless, like in cold
matter~CDM! scenarios, dominating the gravitational pote
tials perturbations that host visible structures such as ga
ies or clusters. The remaining 70% should be in some so
vacuum energy, with negative pressure acting as a repu
gravity, and responsible for a late time cosmic accelera
era. The case for this ‘‘concordance cosmological model
now quite robust, supported by several independent data
the distant type Ia supernovae~hereafter SNIa@1,2#!, the cos-
mic microwave background~CMB! anisotropies~see Ref.
@3# and references therein!, the Large Scale Structure~LSS
@4,5#! and the Hubble Space Telescope~HST @6#!.

The picture is clearly far from being satisfactory: in pa
ticular, without a better insight into the nature of the da
cosmological component, we cannot claim to have a satis
tory physical understanding of cosmology. The simplest
scription of the vacuum energy responsible for cosmic ac
eration is a purely geometric term in the Einstein equatio
the cosmological constant. On the other hand, while
CDM has well established support from theories beyond
standard model of particle physics, a cosmological cons
0556-2821/2004/70~2!/023515~13!/$22.50 70 0235
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providing the 70% of the critical density today raises tw
problems. The first is the fine tuning required to fix th
vacuum energy scale about 120 orders of magnitude
than the Planck energy density, which is supposed to be
unification scale of all forces in the early Universe. The s
ond is a coincidence issue, simply why among all the sm
nonzero values of the cosmological constant, the value
chosen to be comparable to the critical energy density to
These questions, still largely unsolved, could be answe
only if the concept of cosmological constant is extended t
more general one, admitting a dynamics of the vacuum
ergy, known now as the dark energy~see@7–9# and refer-
ences therein!.

The simplest generalization, already introduced well b
fore the evidence for cosmic acceleration@10,11#, is a scalar
field, dynamical and fluctuating, with a background evo
tion slow enough to mimic a constant vacuum energy giv
by its potential, providing cosmic acceleration. As soon
the latter was discovered, renewed interest in these mo
appeared immediately@12,13#. In particular, it was demon-
strated how the dynamics of this component, under suita
potential shapes inspired by supersymmetry and supergra
theories~see Refs.@14# and@15#, respectively, and reference
therein!, can possess attractors in the trajectory space, na
tracking solutions, capable of reaching the present dark
ergy density starting from a wide set of initial conditions
the very early Universe, thus alleviating, at least classica
the problem of fine tuning@16,17#. The scalar field playing
the role of the dark energy was named quintessence. Its
herent insertion among the other cosmological compone
allowed one to constrain it from the existing data@18–25#, as
well as to investigate the relation of the dark energy with
other cosmological components: the explicit coupling w
baryons is severely constrained by observations@26#, while
©2004 The American Physical Society15-1
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ACQUAVIVA, BACCIGALUPI, AND PERROTTA PHYSICAL REVIEW D 70, 023515 ~2004!
the possible coupling of the quintessence with the Ricci s
lar @27–40# and the dark matter@41–44# as well as the phe
nomenology arising from generalized kinetic energy ter
@45–47# have been extensively studied.

The generalization of cosmology that we consider h
concerns the gravitational sector of the fundamental
grangian, admitting a general dependence on the Ricci
Brans-Dicke scalar fields. This subject is interesting per
~see Refs.@48,49# and references therein!, and is receiving
more attention after the discovery of cosmic accelerati
with the attempt to interpret the evidence for dark energy
a manifestation of gravity; this scenario has been rece
proved to have relevant consequences for what concern
dark energy fine-tuning problem mentioned above@40#.

The gravitational lensing effect in cosmology is gatheri
a great interest becoming one of the most promising tool
investigate cosmological structures~see Ref.@50# and refer-
ences therein!, and commonly thought in terms of strong an
weak regimes. The first one concerns highly magnifi
sources, generically through the generation of multiple
ages of a background object by a single lens with the typ
size of a galaxy.

The weak gravitational lensing, which is the subject of t
present work, produces weak amplification, generica
through the distortion of the pattern of background lig
moreover, it is generated by a large set of scales and obj
ranging roughly from nonlinear structures like galaxy clu
ters to the large scale distribution of matter, still in line
regime. The weak lensing shear was detected recently
independent groups with astonishing agreement@51–55#. Al-
though the precision of such measurements does not a
one to constrain different cosmological models, the plan
observations will become certainly a crucial tool to inves
gate the behavior of dark matter and energy during the st
ture formation process and at the onset of cosmic acce
tion @56#.

In particular, several authors considered the possibility
investigating the dark energy component through weak le
ing, with different approaches ranging from shear distort
of background galaxies from clusters of galaxies to the w
lensing power causing a non-Gaussian pattern into the C
anisotropies@57–64#. The reason of this interest is the tim
ing: the structure formation, and the weak lensing carry
its physical information occurs at an epoch that overlaps w
the onset of cosmic acceleration; by virtue of this fact, it
reasonable to expect a good sensitivity of the weak lens
effect to the main dark energy properties such as the equa
of state and its redshift behavior.

These studies are entering in an higher level of soph
cation: the first outcome ofN-body simulations in severa
dark energy scenarios have been published recently@65–67#,
mainly studying the impact of the background rate of exp
sion on the internal parameter of structures. The implem
tation of a light ray tracing technique through those str
tures allows one to check numerically the weak lens
pattern produced by mildly and full nonlinear density pert
bations@68#.

The theory of weak gravitational lensing in ordinary co
mologies, i.e., made by radiation, dark matter, and cos
02351
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logical constant, is known and well established, but a co
prehensive treatment in cosmologies with generaliz
theories of gravity still lacks in literature. The aim of th
present work is to fill this gap, by providing the communi
with the recipe to interpret the weak lensing observations
a more general context. We follow the harmonic approach
weak lensing@69# and the treatment for generalized cosm
logical scenarios including cosmological perturbation@49#,
already exploited for investigating the effects of the expli
coupling between dark energy and gravity~see Ref.@40# and
references therein!.

This work is organized as follows. In Sec. II we descri
the cosmological models we deal with, for background a
linear perturbations. In Sec. III we write the generaliz
Poisson equations, relating the fluctuations in metric and c
mological components. The derivation and discussion of
lensing equation and weak lensing potential are in Secs
and V, respectively. Finally, in Sec. VI we draw conclusion

II. GENERALIZED COSMOLOGIES

We shall consider a class of theories of gravity who
action is written in natural units as

S5E d4xA2gF 1

2k
f ~f,R!

2
1

2
v~f!f ;mf ;m2V~f!1LfluidG , ~1!

whereg is the determinant of the background metric,R is the
Ricci scalar,v generalizes the kinetic term, andLfluid in-
cludes contributions from the matter and radiation cosm
logical components;k58pG* plays the role of the ‘‘bare’’
gravitational constant@34#. Here and throughout the pape
Greek indices run from 0 to 3, Latin indices from 1 to 3.

The usual gravity termR/16pG has been generalized b
the general functionf /2k @31,49#. Note that the formalism
adopted is suitable for describing non-scalar-tensor gra
theories, i.e., withoutf, where, however, the dependence
R is generic.

A. Einstein equations

By definingF(f,R)5(1/k)] f /]R, the Einstein equations
Gmn5kTmn take the following form:

Gmn5Tmn5
1

F FTmn
fluid1vS f ,mf ,n2

1

2
gmnf ,sf ,sD

1gmn

f /k2RF22V

2
1F ,m;n2gmnF ;s

;sG ,
where again one can recognize a part depending on the
variables, and a part relative to the nonminimally coup
scalar field of the theory plus a contribution arising from t
generalized gravity coupling represented by the funct
1/F; for practical purposes we will render this splitting e
plicit rewriting Tmn as
5-2
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WEAK LENSING IN GENERALIZED GRAVITY THEORIES PHYSICAL REVIEW D70, 023515 ~2004!
Tmn5
1

F
Tmn

fluid1T mn
gc . ~2!

Note that in our scheme the generalized cosmology term
active also if gravity is the same as in general relativity, a
a minimally coupled scalar field, like in the quintessen
models, represents the only ingredient with respect to
ordinary case. This is true also in the limiting case where
scalar field reduces to a cosmological constant. Moreo
note thatT mn

gc is not conserved if gravity differs from gener
relativity; nonetheless, contracted Bianchi identities still ho
and ensure

~Tmn
fluid! ;m50, ~3!

which allows us to derive the equations of motion for t
matter variables only, leading to a remarkable simplificat
@49#. The expression for the stress-energy tensor relativ
the scalar field, which is conserved in the generalized s
narios described by the action~1!, must include the term
accounting for the interaction with the gravitational fie
@37#. It is also worth noting how Eqs.~2! get simplified if the
function f is a product ofR times a function of the field only

f

k
5RF. ~4!

In the following, we will refer to this class of cosmologies
nonminimally coupled~NMC! models.

We willingly keep this work as much general as possib
due to the large variety of scenarios covered by the ac
~1!. We shall only consider the extended quintessence~EQ!
@33,38# scenario as an example to illustrate the aspects of
weak lensing process with respect to ordinary cosmolog
in that case, the fieldf, nonminimally coupled to gravity
also represents the dark energy, providing accelera
through its potentialV. Specifically, the original works con
sidered a NMC model defined as

F~f!5
1

k
1jf2, ~5!

and an inverse power law potentialV(f)5M41a/fa pro-
viding cosmic acceleration today. The constraints from so
system experiments force the correction to the gravitatio
constant to be small in this specific model. Therefore it
suitable to make approximations to illustrate a sort of fi
order variation of the weak lensing in generalized grav
theories with respect to the case of ordinary cosmology.

B. Background

We will write the unperturbed Friedmann-Robertso
Walker ~FRW! metric in spherical coordinates as

ds25a2~t!S 2dt21
1

12Kr 2
dr21r 2dV D , ~6!

where K is the uniform spatial curvature of a spherica
symmetric three-space,dV is the metric of the two-sphere
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andt stands for the conformal time variable, related to co
mic time by the usual relationdt5a(t)dt.

The energy-momentum tensor~2! can be recast in a
perfect-fluid form:

Tmn5~p1r!umun1pgmn ; ~7!

the corresponding background energy density and pres
are easily computed to be

r5
1

F S rfluid1
v

2a2
f821

RF2 f /k

2
1V2

3HF8

a2 D
5

1

F
rfluid1rgc, ~8!

p5
1

F S pfluid1
v

2a2
f822

RF2 f /k

2
2V1

F9

a2
1

HF8

a2 D
5

1

F
pfluid1pgc; ~9!

the prime denotes differentiation with respect to conform
time andH is the conformal Hubble factora8/a. As above,
rgc and pgc do not obey the conservation law in ordina
cosmologies,rgc8 13H(rgc1pgc)Þ0.

In FRW cosmologies the expansion equation reads

H 25a2r2K, ~10!

and it cannot be solved directly due to the appearance oH
in rgc, which is explicit in the last term but is also containe
in RF2 f /k through

R5
6

a2
~Ḣ1H 2!. ~11!

Note that this is true also in theories wheref [ f (R) and no
scalar field is present.

On the other hand, NMC scenarios admit a formal so
tion, which is

H52
3

2

F8

F
1A9

4 S F8

F D 2

1
1

F S a2rfluid1
v

2
f821a2VD2K,

~12!

where we have selected the expansion solution with posi
H. Note that the dependence of the comoving distancesr on
the redshiftz51/a21 also gets modified, according to~12!:

r 5E
0

z dz

H~z!
. ~13!

We generically indicate the single components in the fl
with x. Since Tfluid

mn is conserved, energy density, pressu
equation of state, and sound velocity, defined as

rx52T0x
0 , px51/3Tix

i , wx5px /rx , cs
25px8/rx8 ,

~14!
5-3
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give rise to conservation equations having the familiar fo

rx813Hrx~11wx!50. ~15!

The last ingredient is the Klein-Gordon equation for the e
lution of the field, which is substantially different from th
case of ordinary cosmologies:

f912Hf81
1

2v S v ,ff822a2
f ,f

k
12a2V,fD50. ~16!

As we stress in the next section, the relevant changes
respect to the standard picture are represented by the ch
in time of the functionf. In EQ scenarios the dynamics of th
field possesses two distinct regimes. At low redshift, the
havior of the energy density coincides with the correspo
ing one in the tracking trajectories in ordinary quintesse
models, linked to the potential exponent aswf522/(2
1a). At high redshift, generally much earlier than the epo
of structure formation, eventually the effective potent
coming from the nonminimal interaction with gravity take
over (R boost!, and imprints a behaviorwf521/3 for the
quadratic coupling~5! @33,40#.

C. Linear cosmological perturbations

We will describe the linear cosmological perturbations
the real as well as in the Fourier space. For this reason
follow a notation close to that introduced recently by Lidd
and Lyth @70#, which allows one not to make explicit th
Laplace operator eigenfunctions when working in the Fou
space, minimizing the formal changes needed to go from
real to the Fourier space and vice versa. See Ref.@71# for the
usual formulation cast in the Fourier space. The general
pression for the linear perturbation to the metric~6! can be
written as@70#

ds25a2~t!$2~112A!dt22Bidtdxi

1@~112D !d i j 12Ei j #dxidxj%, ~17!

where the functionEi j is chosen to be traceless in order
uniquely identify the nondiagonal spatial perturbation.

It is usual to further decompose the above quantitiesBi
and Ei j into pure scalars (S), scalar-type (S), and vector-
type ~V! components of vectors, and scalar-type (S), vector-
type (V), and tensor-type~T! components of tensors, accor
ing to their behavior with respect to a spatial coordin
transformation:

A5AS, ~18!

Bi5Bi
S1Bi

V , ~19!

Ei j 5Ei j
S1Ei j

V1Ei j
T , ~20!

where

Bi
S5¹iB, Ei j

S5S ¹i¹j2
1

3
d i j ¹

2DE, ~21!
02351
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V50, Ei j

V5
1

2
~¹iEj1¹jEi !, Ei

iV50,

~22!

Ei
jT50, ¹iEij

T50, ~23!

andE andB are scalar functions. Our notation slightly diffe
from that of Liddle and Lyth which is given in the Fourie
space: the quantitiesE, Ei andB we use here correspond t
the original ones divided byk25kik

i andk, respectively. In
the linear theory the different types of perturbations evo
independently of each other and can thus be treated s
rately. An analogous decomposition can be performed for
stress-energy tensor, whose expression up to the first pe
bative order is

T̃ 0
052~r1dr!, ~24!

T̃ i
05~r1p!~v i2Bi !, ~25!

T̃ 0
i 52~r1p!v i , ~26!

T̃ j
i 5~p1dp!d j

i 1pP j
i , ~27!

where the fluid velocityv i and the anisotropic stressP i j can
be split as

v i5v i
S1v i

V , ~28!

P i j 5P i j
S1P i j

V1P i j
T , ~29!

with the same properties of their metric counterparts:

v i
S5¹iv, P i j

S5S ¹i¹j2
1

3
d i j ¹

2DP, ~30!

¹ iv i
V50, Pij

V5
1

2
~¹iPj1¹jPi!, Pi

iV50, ~31!

¹ iP i5¹ iP i j
T 50, ~32!

where againP is a scalar quantity and the same differenc
of our notation with that by Liddle and Lyth hold here for th
stress-energy tensor perturbations.

In this paper we will take into account only density~i.e.,
scalar-type! perturbations. The reason is that also in the g
eralized scenarios we consider here they play the domin
role. In fact, as we stress in detail in the following, th
scalar-tensor coupling does generate a non-null anisotr
stress already at the linear level, but that is of scalar-t
only, and therefore does not act as a source for gravitatio
waves.

We work in the so called conformal Newtonian gaug
where the nondiagonal perturbations to the metric are se
zero:

B5E50. ~33!
5-4
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Furthermore, we will rename the lapse functionA and the
spatial diagonal perturbationD after the widely used gauge
invariant potentials@72#:

A→C, D→F. ~34!

The line element used through the rest of the paper
therefore be

ds25a2@2~112C!dt21~112F!dl2#, ~35!

wheredl2 is the unperturbed spatial length element from~6!.
We now write down the main equations driving the ev

lution of the perturbed quantities defined above. For e
fluid component, the evolution of the scalar perturbed qu
tities can be followed through the dynamical variablesdx
5drx /rx , vx , dpx , Px , defined in terms of the stress e
ergy tensor as

drx52dT0x
0 , dpx51/3dTix

i ,

¹ ivx52dT0x
i /~rx1px!, px¹i¹

j Þ iPx5dTi
j Þ i .

~36!

Note that from now on we do drop the subscriptS, meaning
that we always treat scalar cosmological perturbations,
less otherwise specified. In the Fourier space, the equa
for dx andvx take the form

dx823Hwxdx5k2~11wx!vx23~11wx!F823Hwxpxdpx ,

~37!

vx81H~123wx!vx1
wx8

11wx
vx

52
dpx

rx~11wx!
2C1

2

3 S 12
3K

k2 D wx

11wx
Px , ~38!

while dpx and Px depend on the particular species cons
ered. The perturbed Klein-Gordon equation can be written
terms of two equations formally equivalent to~37! and ~38!
by building the conserved expression for the perturbed
ergy density, pressure, and anisotropic stress perturba
@37#. Their combination leads to the Klein-Gordon equati
at first perturbative order:

df91S 2H1
v ,f

v
f8D df81Fk21

1

2 S v ,f

v D
,f

f82

1S 2a2f ,f /k12a2V,f

2v D
,f

Gdf5~C823F8!f8

1S 2f914Hf81
v ,f

v
f82DC1

1

2vk

]2f

]f]R
dR.

~39!

III. GENERALIZED POISSON EQUATIONS

In this section we work out the equations relating t
stress-energy tensor perturbations to the scalar metric g
02351
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tational potentials. The latter, together with the backgrou
cosmic geometry and expansion, entirely determine the le
ing process.

We start writing the generalized expression of the den
fluctuation@49#:

dr5r•d52dT0
05

1

F Fdrfluid1
v

a2
f8df8

1
1

2 S v ,f

a2
f822

f ,f

k
12V,fD df2S r13p

2
2

1

a2
¹2D dF

23
HdF8

a2
16

HCF8

a2
23

F8F8

a2
2

v

a2
Cf82G . ~40!

We can focus on two main aspects of the generalized exp
sion above, playing the major role of the generalization
the Poisson equation: the contribution from the field fluctu
tionsdf and the 1/F term in front of the expression fordr,
which acts as an effective time varying gravitational co
stant. As we shall see below, the latter is the relevant effec
typical extended quintessence models.

The Poisson equation relates the fluctuations in the tim
time component of the metric to the usual combination
density and scalar-type velocity perturbations, namedD,
whose expression in Newtonian gauge is@71#

D5d23Hwv. ~41!

We follow as much as possible the notation of earlier wo
@69#. ThedG0

05dT0
0 equation can be cast in such a way th

it formally coincides with the case of ordinary cosmologie
In Fourier space it is

2

a2
~k223K !F53DS H21

K

a2D , ~42!

so that we can exploit our distinction between fluid and g
eralized cosmology terms. Note that the Hubble expans
rate is evaluated with respect to the ordinary time,H5ȧ/a
5a8/a25H/a. By using Eqs.~8! and ~10!, we can write
H25Hfluid

2 1Hgc
2 , where

Hfluid
2 5

1

F

rfluid

3
5

F0

F
H0

2@V0m~11z!31V0r~11z!4

1~12V0!~11z!2#, ~43!

and V0m , V0r , andV0 are the contribution to the presen
expansion rate from the matter, radiation, and the total d
sity, respectively, whileF0 is the actual value of the gravita
tional coupling strength, and can be replaced with 1/8pG. It
is important to note thatHfluid

2 is linked to the energy density
of the fluid components, all but the scalar field, but it co
tains a most important generalization, represented by
F0 /F term, which plays the role of a time dependent gra
tational constant into the Friedmann equation. Moreover,
ing the relationK/a25H0

2(V021)(11z)2, we included the
5-5
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effect of the spatial curvature intoHfluid . The expressions fo
Hgc

2 and Vgc can be easily obtained by making use of Eq
~8! and ~10!:

Hgc
2 5rgc, Vgc5

Hgc
2

H0
2

. ~44!

Starting from~42!, let us write down the relation between th
power spectra ofF, PF5k3F2/2p2, and that ofD:

PF5
9

4 S H0

k D 4S 12
3~12V0!H0

2

k2 D 22FF0

F
V0m~11z!

1
F0

F
V0r~11z!21~12V0!S F0

F
21D

1
1

~11z!2
VgcG 2

PD . ~45!

This is the equation that generalizes the link between tim
time metric fluctuations with density and scalar-type veloc
perturbations. The new effects arise from the scalar field c
tribution, encoded inHgc

2 , the 1/F term behaving as a time
dependent gravitational constant, as well as from the fluc
tions of the scalar field, contained inD, both indr andv.

Let us check the most relevant corrections to the qua
ties above in the EQ models we take as a reference@33,38#,
where the scalar field fluctuationsdf play a minor role@37#,
and the overall geometry is assumed to be flat,K50. Under
these conditions, the most important correction is rep
sented by the 1/F term, effectively representing the tim
variation of the gravitational constant. The expression foF
in ~5! can be conveniently rewritten as

F5
1

8pG
1j~f22f0

2!, ~46!

to make explicit that at the presentF51/8pG. The observa-
tional constraints@73,74# usually are expressed as bounds
the quantities

1

G

dG

dt
.2

1

F

dF

dt
5

2

f

df

dt
, vJBD5

F

Ff
2

5
F

4j2f2
, ~47!

calculated at the present time, where the. sign above is due
to the slight difference with the gravitational constant me
sured in Cavendish-like experiments@34# and vJBD is the
usual Jordan-Brans-Dicke parameter, which usually imp
the strongest constraint. Typically@31,33# the correction to
the 1/8pG term is small, so that

1

F
.8pG@128pGj~f22f0

2!#. ~48!

Moreover, in tracking trajectories with inverse power la
potentials, the field approachesf0 of the order of 1/AG from
below, being generally much smaller than that in the p
02351
.

-

n-

a-

i-

-

-

s

t,

when 1/F freezes to the value 8pG(118pGjf0
2). The

magnitude of the correction is therefore

8pGjf0
25

1

4jvJBD
5f0A2pG

vJBD
; ~49!

note that asvJBD approaches infinity, recovering gener
relativity, the correction may still be relevant depending
the values ofj or f0. The gravitational potential receives
contribution

dF528pGj~f22f0
2!Ffluid1f . ~50!

The subscript fluid1f represents all the terms coming fro
the fluid quantities as well as the scalar field ones from
minimal coupling, i.e., not involvingF explicitly:

k2Ffluid1f54pGDfluid1fH0
2@V0m~11z!2

1V0r~11z!41Vf#. ~51!

Note also that if the trajectory is tracking, with an almo
constant equation of statewf , the expression above reduce
to

k2Ffluid1f54pGDfluid1fH0
2@V0m~11z!21V0r~11z!4

1Vf0~11z!3(11wf)#; ~52!

in order to keep the notation simple, we drop such subscr
in the following, always meaning that it is there when d
cussing approximate expressions in EQ models. Simila
the gravitational potential power spectrum gets an extra c
tribution, which at first order in the correction to 1/8pG is

dPF5216pGj~f22f0
2!PF , ~53!

where

PF5
9

4 S H0

k D 4

@V0m~11z!1V0r~11z!2

1Vf0~11z!113wf#PD . ~54!

In general, another important effect that arises in cosmol
from the generalization of the underlying gravity physics
represented by the relation betweenC andF. The difference
betweenf andR, which may arise from a scalar-tensor co
pling as well as a nonstandard dependence off from R itself,
gives origin to tidal forces exciting the anisotropic stress
scalar origin@49#; in the Fourier space its simple form is

pfPf5
k2

a2

dF

F
, ~55!

and implies a shift between the two gauge-independent
lar metric perturbations, which in our gauge takes the for

C1F52
a2

k2
pP52

dF

F
, ~56!
5-6
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WEAK LENSING IN GENERALIZED GRAVITY THEORIES PHYSICAL REVIEW D70, 023515 ~2004!
where the last equality holds if the anisotropic stress is du
the generalization of gravity and it does not come from m
ter or radiation. This is an important aspect of generaliz
cosmologies, which implies a change in almost all the eq
tions describing the weak lensing effect in cosmology, to
discussed next. For this reason, it is convenient to giv
name to theC1F combination, valid both for the real an
the Fourier space:

J5C1F. ~57!

One hasJ50 in ordinary cosmology, andJ52dF/F in
the generalized scenarios of interest here. As we alre
stressed,J is excited both by a scalar-tensor coupling as
EQ models, and a generalized dependence of the gra
tional Lagrangian term onR; its expression in terms off is

J52S ] f

]RD 21F ]2f

]f]R
df1

]2f

]R2
dRG . ~58!

While in the first case the correction is small because of
smallness of the scalar field fluctuationsdf @31,37#, the con-
tribution from the second term has not been investigated

IV. LENSING EQUATION

Before working out the generalized expression for
weak lensing power spectrum it is necessary to recons
the lensing equation to track the effects coming from ba
ground dynamics and perturbations. We follow the appro
used in Ref.@75#, deriving the photon trajectories as sol
tions with ds250 of the geodesic equation for the metr
~17!; the lensing deflection around a given direction in t
sky is described, introducing angular coordinatesux anduy ,
defined as

ux5u cosw; uy5u sinw, ~59!

where u5Aux
21uy

2 and w are the polar coordinates in th
(ux ,uy) plane.

Furthermore, we perform a change of the radial coor
nate,

x~r !5
1

AK
arcsinAKr ~60!

such that the spatial background metric takes the more r
able form:

dl25dx21
sin2AKx

K
~dux

21duy
2!. ~61!

This notation is convenient because the weak lensing
pothesis immediately reflects in the condition

u!1, ~62!
02351
to
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which allows us to write the geodesic equation at first or
in the deflection angle, in addition to the usual linear a
proximation for metric perturbations. The geodesic equat
is indeed

d2r a

dl2
52gabS gbn,m2

1

2
gmn,bD drm

dl

drn

dl
, ~63!

which for a50 and a51 gives dt51/a2dl and dr
51/a2dl; substituting these expressions into the perturb
equation for the angular part, we get

d2ux

dt2
52

K

sin2AKx
]ux

~C2F!22AK
cosAKx

sinAKx

dux

dt
~64!

for the angular coordinateux and another one foruy , for-
mally equivalent withx→y.

In terms ofJ, defined in~57!, the geodesic equation as
sumes the familiar form@50,75# plus the perturbation coming
from the anisotropic stress (i stands now forx or y):

d2u i

dt2
5

K

sin2AKx
]u i

~2F2J!22AK
cosAKx

sinAKx

du i

dt
.

~65!

The effects coming from the modified cosmological expa
sion are encoded inx, through the modified dependence
the distancesr given by ~12! and ~13! with respect to the
redshiftz.

In terms of the comoving displacement from the po
axis,xi5u isinAKx/AK, Eq. ~65! simply reads

xi91Kxi52
]~C2F!

]xi
52] iF2] iJ, ~66!

where the first term on the left-hand side describes the
dency of two nearby rays to converge, diverge, or rem
parallel according to the geometry of the Universe, while
right-hand side accounts for the lensing effect due to
metric perturbations. The general solution of this equation

xi1A
sinAKx

AK
1B cosAKx

52E
0

x

dx8] i@C~ n̂,x8!2F~ n̂,x8!#
sinAKx8

AK

5E
0

x

dx8] i@2F~ n̂,x8!2J~ n̂,x8!#
sinAKx8

AK
, ~67!

whereA andB are integration constants, and the positionxW
on the light cone is completely specified by the line of sig
direction n̂ and the generalized radial coordinatex.
5-7
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V. WEAK LENSING

It is convenient to begin with the comoving separati
between two lensed rays, starting from the same point, on
the direction of the polar axis and the other one in a direct
n̂, on a source plane at distancexs ; in terms of the angular
separationu i in the directioni one has

xj~xs!5~d i j 2c i j !
sinAKxs

AK
u i , ~68!

wherec i j is thedistortion tensor:

c i j ~ n̂,x!5
1

AK
E

0

x

dx8
sinAKx8sinAK~x2x8!

sinAKx

3] i] j@C~ n̂,x8!2F~ n̂,x8!#

5
1

AK
E

0

x

dx8
sinAKx8sinAK~x2x8!

sinAKx

3] i] j@22F~ n̂,x8!1J~ n̂,x8!#. ~69!

Note that at first order the effect of cosmological perturb
tions can be computed along the unperturbed trajecto
which corresponds to neglect the difference in the rela
deviation of two lensed and unlensed rays inside the ab
integral.

The components ofc i j are usually interpreted in terms o
the shear g5g11 ig2 and of theeffective convergencek,
respectively identified as

g15
1

2
~c112c22!, g25c12,

k5
1

2
~c111c22!. ~70!

Moreover, as we usually deal with lensing phenomena fr
a multiplicity of sources, the distortion tensor, and thus
projected potential, are usually meant to be integrated o
the possible source distances:

c i j ~ n̂!5E dxg~x!c i j ~ n̂,x!, ~71!

whereg(x) is a normalized function describing the distrib
tion of the relevant sources. When one considers the effe
lensing on the CMB, the source distribution may be repla
by a d function at the last scattering surface.

Let us evaluate the correction to the distortion tensor
EQ models. The contribution fromJ is negligible in these
scenarios, since it arises from the scalar field fluctuati
df, yielding a correction that is small with respect to the o
coming from the variation of 1/F @37#.

Therefore, in flat cosmologies and at a givenx, the cor-
rection to c i j (n̂,x) is due only to the shift in the gravita
tional potential, represented by~50!:
02351
in
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e
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dc i j ~ n̂,x!516pGjf0
2E

0

x

dx8
x8~x2x8!

x

3S f2

f0
2

21D ] i] jF~ n̂,x8!. ~72!

Note, however, that integrating in thex variable, although
convenient in order to minimize the formal corrections
c i j , hides the effect of the varying gravitational constant
x itself; in flat cosmologies the latter coincides withr given
by ~13!, which has to be corrected as

dr 54pGjf0
2E

0

z dz

H~z! S f2

f0
2

21D , ~73!

as can be easily verified sinceH}1/AF.

A. Generalized lensing potential

The lensing equation is often rewritten in terms of t
projected potentialf, defined through the relation

c i j 5
K

~sinAKx!2
] i] jf. ~74!

Indicating the radial coordinate distance withD(x)
5sinAKx/AK, we get

f~ n̂!5E
0

x`
dxD~x!@C~ n̂,x!2F~ n̂,x!#

3E
x

x`
dx8

D~x82x!

D~x8!
g~x8!

5E
0

x`
dxD~x!@22F~ n̂,x!1J~ n̂,x!#

3E
x

x`
dx8

D~x82x!

D~x8!
g~x8!, ~75!

wherex` stands for the comoving distance at infinite re
shift. By defining the integral involving the source distrib
tion as

g8~x!5D~x!E
x

x`
dx8

D~x82x!

D~x8!
g~x8!, ~76!

the lensing potential~75! takes the compact form

f~ n̂!5E
0

x`
dxg8~x!@C~ n̂,x!2F~ n̂,x!#

5E
0

x`
dxg8~x!@22F~ n̂,x!1J~ n̂,x!#. ~77!

The expression above acquires several new contribution
the generalized scenarios of interest here. The modi
5-8
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WEAK LENSING IN GENERALIZED GRAVITY THEORIES PHYSICAL REVIEW D70, 023515 ~2004!
background expansion affects the angular diameter dista
as well as the effective gravitational constant; the pertur
tions get contributions from the field fluctuations affectingF
and exciting the metric fluctuation mode represented byJ.
In EQ models, if the integration is made on the variablex,
the main correction is due to the time variation of the effe
tive gravitational constant:

df~ n̂!516pGjf0
2E

0

x`
dxg8~x!S f2

f0
2

21D F~ n̂,x!.

~78!

In this equation, and in Eqs.~86!, ~91!, and~94!, the quantity
F is meant to beFfluid1f as defined in Eq.~50!.

We need now to track these effects into the angular po
spectrum of the projected lensing potential. This is defined
usual as

Cl
ff5^uf lmu2&, f lm522E dV n̂f~ n̂!Ylm~ n̂!, ~79!

where the22 is purely conventional in order to keep th
notation consistent with earlier works@69#. One needs now
to expand the metric fluctuations in the Fourier space w
respect to the positionxW5r •n̂. The expansion functions ar
just the eigenfunctionsYkW(xW ) of the Laplace operator in
curved spacetime, defined in general in curved FRW ge
etry @71#. Their radial and angular dependences are furt
expanded in ultraspherical Bessel functionsul and scalar
spherical harmonics, by exploiting the relation

YkW~xW !54p(
l ,m

i lul~kx!Ylm~ k̂!Ylm~ x̂!, ~80!

wherek andx denote the modulus of the corresponding ve
tors. By using the completeness of the spherical harmon
and the fact thatx coincides with the radial distanceD(x),
the final expression forf lm is

f lm5A8

pE0

x`
dxg8~x!E d3k@2F~kW ,x!2J~kW ,x!#

3 i lul„kD~x!…Ylm~ k̂!Ylm~ n̂!. ~81!

The lensing potential angular power spectrum~79! is there-
fore

Cl
ff5

32

p E
0

x`
dxg8~x!E

0

x`
dx8g8~x8!E d3kE d3k8ul

3@kD~x!#ul@k8D~x8!#Ylm~ k̂!Ylm* ~ k̂8!

3F K F~kW ,x!F~kW8,x8!* 2
1

2
J~kW ,x!F~kW8,x8!*

2
1

2
J~kW8,x8!* F~kW ,x!1

1

4
J~kW ,x!J~kW8,x8!* L G .

~82!
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Assuming that the statistical average above eliminates
correlation between different Fourier modes, as well as
dependence on the direction of the wave numbers,

^A~kW ,x!B~kW8,x8!&5^A~k,x!B~k,x8!&d~kW2kW8!, ~83!

whereA andB represent eitherC or J and they are mean
to be ensemble averaged, one finally gets

Cl
ff5

32

p E
0

x`
dxg8~x!E

0

x`
dx8g8~x8!E k2dkul@kD~x!#ul

3@kD~x8!#F ^F~k,x!F~k,x8!&2^J~k,x!F~k,x8!&

1
1

4
^J~k,x!J~k,x8!&G . ~84!

It is also useful to write down explicitly the equivalent form
of the expression above which contains the gravitational
tentials only:

Cl
ff5

32

p E
0

x`
dxg8~x!E

0

x`
dx8g8~x8!E k2dkul

3@kD~x!#ul@kD~x8!#F1

4
^C~k,x!C~k,x8!&

1
1

4
^F~k,x!F~k,x8!&2

1

2
^C~k,x!F~k,x8!&G ,

~85!

putting in evidence the correlation betweenC andF.
From this expression we can easily infer the main corr

tion to the lensing potential angular power spectrum aris
in EQ cosmologies, using~53!:

dCl
ff52512Gjf0

2E
0

x`
dxg8~x!E

0

x`
dx8g8~x8!

3S f2

f0
2

21D E k2dkul@kD~x!#ul@kD~x8!#

3^F~k,x!F~k,x8!&. ~86!

Note that the numbers here conspire to yield a quite la
factor in front of this expression, which may render the c
rection above relevant even for values of the productGjf0

2

as small as 1023. In the following we further specialize ou
results computing the generalized expression of some q
tity particularly relevant for observations, as well as th
main corrections in EQ models.
5-9
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ACQUAVIVA, BACCIGALUPI, AND PERROTTA PHYSICAL REVIEW D 70, 023515 ~2004!
B. Convergence power spectrum

The convergence, represented by the trace of the dis
tion tensor, is usually used as a main magnitude of the w
lensing distortion. Indeed, in the weak lensing hypothese
coincides with the shear power spectrum~see Ref.@50#!
which has been recently observed from the distortion
duced in the shape of background galaxies in the opt
band@51–55#.

The expression we need to compute is given by

keff5
1

2
~c111c22!, ~87!

which shall be averaged over the source distribution as us
We get

k̄eff5
1

2E0

x`
dx8g~x8!E

x

x`D~x!D~x82x!

D~x8!

3] i] i@C~ n̂,x!2F~ n̂,x!#

5
1

2E0

x`
dx8g~x8!E

x

x` D~x!D~x82x!

D~x8!

3] i] i@22F~ n̂,x!1J~ n̂,x!#

5
1

2E0

x`
dxg8~x!] i] i@22F~ n̂,x!1J~ n̂,x!#.

~88!

The two-dimensional Laplacian appearing in this equat
can be safely replaced with its three-dimensional analo
~see Refs.@50# and@76# for a numerical check of this point!.
Once this substitution has been made, we can expand
generalized gravitational potential in Fourier harmon
transforming with respect to the spatial pointn̂•x, and trans-
form the Laplacian in a multiplication by (2k2):

k̄eff5
1

2~2p!3/2E0

x`
dxg8~x!

3E d3kk2@2F~kW ,x!2J~kW ,x!#YkW~xW !. ~89!

Comparing this expression with those for the lensing pot
tial power spectrum~84! and ~85! we can immediately infer
the result
02351
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Pk̄~ l !5
8

pE0

x`
dxg8~x!E

0

x`
dx8g8~x8!E dkk6ul

3„kD~x!…ul„kD~x8!…F ^F~k,x!F~k,x8!&

2^J~k,x!F~k,x8!&1
1

4
^J~k,x!J~k,x8!&G

5
8

pE0

x`
dxg8~x!E

0

x`
dx8g8~x8!E dkk8ul

3~kD~x!!ul~kD~x8!!F1

4
^C~k,x!C~k,x8!&

1
1

4
^F~k,x!F~k,x8!&2

1

2
^C~k,x!F~k,x8!&G .

~90!

In EQ cosmologies, using again~53!, one finds

dPk̄~ l !52128Gjf0
2E

0

x`
dxg8~x!E

0

x`
dx8g8~x8!

3S f2

f0
2

21D E dkk6ul„kD~x!…ul„kD~x8!…

3^F~k,x!F~k,x8!&, ~91!

where the correction tox must be taken into account follow
ing ~73! if the integration is made on the redshift.

C. Lensing in the CMB signal

The lensing potential correlates significantly with secon
ary anisotropies of the CMB, because it arises at the epoc
structure formation; here we generalize the lensing cro
correlation with the integrated Sachs-Wolfe effect~ISW, see
Ref. @69# for a comparison with the case of ordinary co
mologies!.

The latter can be represented in terms of temperature fl
tuations as

Q ISW~ n̂!52E
0

`

dx@Ḟ~ n̂,x!2Ċ~ n̂,x!#

52E
0

`

dx@2Ḟ~ n̂,x!2J̇~ n̂,x!#. ~92!

Note that, in order to avoid confusion with the integratio
variablex8, in this paragraph only we will denote with a
overdot the derivative with respect to conformal time.
5-10
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WEAK LENSING IN GENERALIZED GRAVITY THEORIES PHYSICAL REVIEW D70, 023515 ~2004!
Again, using the expressions for the lensing poten
power spectra~84! and~85!, and making use of the statistica
independence of different Fourier modes, we are able
write immediately the cross-correlated spectrum:

CQf5
8

pE0

x`
dxg8~x!E

0

x`
dx8E k2dkul„kD~x!…ul„kD

3~x8!…F ^F~k,x!Ḟ~k,x8!&2
1

2
^J~k,x!Ḟ~k,x8!&

2
1

2
^J̇~k,x8!F~k,x!&1

1

4
^J~k,x!J̇~k,x8!&G

5
2

pE0

x`
dxg8~x!E

0

x`
dx8E k2dkul„kD~x!…ul

3„kD~x8!…@^C~k,x!Ċ~k,x8!&

1^F~k,x!Ḟ~k,x8!&2^C~k,x!Ḟ~k,x8!&

2^Ċ~k,x8!F~k,x!&#. ~93!

The main correction in EQ cosmologies is obtained again
using ~53!. Interestingly, the time derivative reintroduces
term proportional touFu2:

dCQf52128Gjf0
2E

0

x`
dxg8~x!E

0

x`
dx8S f2

f0
2

21D
3E k2dkul„kD~x!…ul„kD~x8!…^F~k,x!Ḟ~k,x8!&

2256Gjf0
2E

0

x`
dxg8~x!E

0

x`
dx8

fḟ

f0
2 E k2dkul

3„kD~x!…ul„kD~x8!…^F~k,x!F~k,x8!&. ~94!

These expressions can be further simplified noticing that
lensing on the CMB signal the source distribution is w
represented by ad function at the last scattering~LS! sur-
face; thus the averaging functiong8(x) can be written as

g8~x!5D~x!E
x

x`
dx8

D~x82x!

D~x8!
d~x82xLS!

5
D~x!D~xLS2x!

D~xLS!
. ~95!

VI. CONCLUSIONS

The weak lensing in cosmology is one of the most imp
tant tools to investigate the structure formation process,
in particular the mechanics of the dark cosmological com
nent, which represents almost 95% of the cosmic budget
cording to the recent measurements. Since the onset of
mic acceleration occurs at the same epoch of struc
formation, the weak lensing looks most promising in order
gain insight into the nature of the dark energy. The can
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dates which have been proposed for explaining the dark
ergy are suitably described in a cosmological context tha
generalized with respect to the ordinary one, admitting da
matter–energy couplings as well as generalized theorie
gravity.

In particular, for the latter class of theories, a systema
treatment of the weak lensing process is lacking in the lite
ture, and this work aims at filling this gap. We considered
Lagrangian where the gravitational sector is made of a fu
tion that depends arbitrarily on the Ricci scalar as well as
a scalar field; the most general scalar-tensor theory of g
ity, as well as the most general dependence on the R
scalar without a scalar field, can be described in full gen
ality in this framework.

We studied the generalized Poisson equations, linking
fluctuating components to the two gauge-invariant gene
ized gravitational potentials representing the metric fluct
tions that cause the weak lensing process itself. This allow
us to fix the contributions from the modified backgrou
expansion as well as the fluctuations, both in the Ricci sc
and in the scalar field responsible for the scalar-tensor c
pling. We show that both of them are responsible for
anisotropic stress of scalar origin, causing the gravitatio
potentials to be different already at the linear level. We st
ied in particular the modifications induced by the time var
tion of the effective gravitational constant, which are mo
relevant in nonminimally coupled models in which the gra
tational Lagrangian sector is a product of a function depe
ing on a scalar field and on the Ricci scalar; we focus
particular on the EQ scenarios, where the scalar field play
the role of the dark energy and responsible for cosmic ac
eration today possesses a quadratic coupling with the R
scalar.

Starting from the equation describing the geodesic de
tion, we derived the generalized expressions for distort
tensor and projected lensing potential, tracking the effe
due to the time variation of the effective gravitational co
stant and the contribution of the anisotropic stress; in part
lar, we show how the latter yields a correction proportion
to the correlation between the gravitational potentials.

Finally, we specialized our results to the description
two quantities that are most relevant for observations,
the lensing convergence power spectrum as well as the
relation between the lensing potential and the ISW effe
affecting the total intensity and polarization anisotropies
the cosmic microwave background radiation.

By considering again the particular case of EQ cosmo
gies, we worked out approximate expressions for the cor
tions induced by the time variation of the effective gravit
tional constant on the lensing potential, lensing-lens
correlation angular power spectrum, convergence of the
gular power spectrum as well as lensing-ISW correlation.
showed that the order of magnitude of these effects is of
order of 8pGjf0

2, wherej is the coupling constant andf0

is the present value of the dark energy field. It may be no
how such correction may be relevant even if the underly
theory is close to general relativity, i.e., if the Jordan-Bra
5-11
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Dicke parametervJBD51/32pGj2f0
2 is large, depending on

the relative balance betweenj andf0.
Despite these interesting indications in the particular c

of EQ cosmologies, the formulas we developed here h
great generality, allowing a direct interpretation of the mo
ern weak lensing observations in the context of cosmolog
with generalized theories of gravity.
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