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Probing gravitation, dark energy, and acceleration
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The acceleration of the expansion of the universe arises from unknown physical processes involving either
new fields in high energy physics or modifications of gravitation theory. It is crucial for our understanding to
characterize the properties of the dark energy or gravity through cosmological observations and compare and
distinguish between them. In fact, close consistencies exist between a dark energy equation of state function
w(z) and changes to the framework of the Friedmann cosmological equations as well as direct spacetime
geometry quantities involving the acceleration, such as “geometric dark energy” from the Ricci scalar. We
investigate these interrelationships, including for the case of superacceleration or phantom energy where the
fate of the universe may be more gentle than the Big Rip.
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I. INTRODUCTION Il. PHYSICAL DARK ENERGY

. . . With the discovery of the acceleration of the cosmic ex-
The acceleration of the expansion of the universe poses a

fundamental challenge to the standard models of both papansmr{l,Z], physicists tended to interpret this in terms of a

ticle physics and cosmology. In both cases addition of an<W physical component of the universe—dark energy—

unknown physical component, called dark energy, or modi_possessing a sgbstantially nggativ_e pressure. This .is perhaps
fication of gravitation, possibly arising from extra dimen- not surprising since modelg mvolymg the cosmological con-
sions, is required. Most attention has been paid to dark eri@nt had been under consideration and the effects of gener-
ergy as a high energy scalar field, a physical componerﬁ‘“zed pressure to energy d_ensny ratios, or equations of state,
contributing a presently dominating energy density, characO" cosmological observations had been worked out, e.g.
terized by a time varying equation of state. But acceleratiod3—5)- Yet, as is well known, the cosmological constant can
is fundamentally linked to gravitation through the Principle be viewed as belonging to either the right hand, energy-
of Equivalence and changes to the framework of the Friedmomentum tensor, side of Einstein’s field equations or to the
mann cosmological equations governing the universal exparieft hand, spacetime geometry or gravitation side. Still, in
sion would play a natural role. analogy to inflation theory, the observations were treated as a

Observations from next generation cosmological probe®igh energy physics scalar field with a potentialV(¢),
will map the expansion historg(t) at 1% precision, offering often called quintessence.
the possibility of characterizing the physics responsible for We here briefly review the essentials so as to later com-
the acceleration. This can be used to test specific modefare and contrast the treatment of gravitation as the source of
inspired by unified physics involving string theory, super-the acceleration. Dark energy as a physical component pos-
gravity, extra dimensiong.g. braneworlds or scalar-tensor Sesses an energy density and pressure,, , both generally
gravity, say. Alternately, one can derive general parametrizetiinctions of timet, or equivalently cosmic scale factaror
constraints on the expansion history and propagate thesedshiftz=a!—1. The equation of state ratio is defined to
through into quantities such as an effective dark energy equde wy4(2)=p,/p,. The cosmological constant is special in
tion of state, extra terms in the Friedmann equations, opossessing/,= —1, which ensures that its density and pres-
spacetime geometry characteristics. sure are constant in both time and space.

Not only the magnitude of the constraints but the inter- Like the matter or radiation components of the universe,
pretation of them is important. We investigate to what extendark energy is generically globally homogeneous and isotro-
one can use a common parametrization to describe these vapic. However, in order for dark energy to dominate the en-
different areas of new physics, and conversely how they cagrgy density of the universe today, but not in the past, in
be distinguished. In Sec. Il we briefly review dark energy asaccordance with observations, it must have an effective mass
a scalar field component of the universe. A general modifim~ \/V'M,~H0~1O‘33 eV, whereHj is the expansion rate
cation of the Friedmann equation is analyzed in Sec. Ill. Wetoday, the Hubble constant. This implies that on scales
examine in Sec. IV the fundamental and general relation besmaller than the horizon size the dark energy is smooth and
tween acceleration and spacetime geometry, specifically inanclustered, while on larger scales it possesses inhomogene-
volving the Ricci scalar, to motivate modifications of gravi- ities. This clumpiness is important observationally in only
tation as a possible source of the acceleration—"“geometricestricted circumstances, such as for the growth of matter
dark energy.” In Sec. V we address the issue of superaccetiensity perturbations on near horizon scales.
eration and whether this leads to a Big Rip. We conclude in For cosmological observations of the expansion history,
Sec. VI, with thoughts on future prospects for understandings.g. distances and cosmography, and of the growth of matter
how cosmological observations will lead us to specific newperturbations on subhorizon scales, the dark energy is simply
physics. characterized by its energy density [equivalently its frac-
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tional contribution to the critical energy densi ,(z) pendence of the parametrization in that the pivot location
=8mp,/3H?] and equation of state ratiw(z). The evolu-  will depend on the specific model and on the cosmological

tion of the energy density follows method of probing it.
The theory of deriving constraints on the dark energy
! equation of state from a variety of cosmological probes has
p¢(a)=p¢,oe3fad Ina[1+w(a)] (1) q y g p

been well addressed, including aspects of parameter degen-

so only the equation of state ratio and the present densit§acies and probe complementarity, as well as optimization
enter. For a spatially flat universe, the present dimensionles f observationge.g.[6-10)). Data from next generation pre-

) ) Cision cosmology surveys, for example KAQ®1], LSST
<1a1rk ?Znergy density is related to the matter density(hy [12], Planck{13], SNAP[14], etc., should be plentiful and in
=1-Q,.

. . complementarity capable of determinimg, and w, within
From the equation of state function one can recreate th P y cap "% a

. ) . e "% > uncertainties of roughly 0.05 and 0.15, respectively.
high energy physics Lagrangian of the field in terms of its oy cjyes to the fundamental physics responsible for the
potential and kinetic energies:

acceleration lie in whethew, is more negative, more posi-
1 tive, or consistent with the value-1 and whethew, is
V(¢)=§ (1-w)p, (2)  negative, positive, or consistent with zero. Measurements
consistent withwy=—1, w,=0 would provide circumstan-
tial support for a cosmological constant origin, perhaps sim-
K = E¢2:1(1+W)p 3) ply because it is the simplest model, but would also give
2 2 ¢ motivation to look for large scale inhomogeneities in the
scalar field since those, possibly in the guise of a sound
1. speedC§<l, would provide a definitive distinction from the
¢(a)=f da.—¢=f dinaH 2K, (4 cosmological constant. Of course conversely, values incom-
a patible with the cosmological constant do not rule out its

where the last line allows translation from the expansion facEXIStence, only that its potential energy must be smaller than

tor to the value of the scalar field. Thuga) really is the that of the_dominant scalar_field. .
- . Even with tightly constrained values of a few characteris-
central, determining quantity. , fth : ; ¢ ! q
Note that the equation of motion of the fiefd the Klein- tics of the equation of state function, suchvasandw, , we

Gordon equation, follows easily from the continuity Fried-Wi” not narrow the field to a specific model. Most potentials
L . . have multiple parameters and can cover a swath of such a

mann equation:p,=—3H(p,+p,)=—6HK. Since p, phase space. What the forthcoming observations will tell us

=K+V=¢¢+V'p, where prime denotes a derivative with js that certain classes of models are restricted to some pa-

respect to the field, we obtain the relevant equation rameter range, and other classes are restricted to another pa-
. ) rameter rangépossibly approaching the limit of a simpler
¢+3Hp=-V". (5 model, such as the cosmological constaNaturalness and

. . . _ motivation by theory will be needed to winnow the results to
It is often convenient to devise a tractable and model in4 theory of new physics.

to reproduce the observations. Parametrizatiow(@) in a  jnterpreting the observations in terms of a physical compo-
two dimensional phase space suits this well; there exist manyent arising from high energy physics? Might the accelera-
possibilities but one of the simplest, tion instead signal new physics from a change in the form of
the cosmological expansion equations rather than a change in

w(a)=wo+W,(1-a), ®)  the ingredients going into them?

has good success in fitting a variety of scalar field theories;; \1opIFICATIONS OF THE FRIEDMANN EQUATIONS
especially those with slow variatiofof order the Hubble

time) in the equation of state. While there is no requirement Looking to extensions of general relativity for an expla-
that the scalar field partakes of the characteristic time scalgation of the accelerating expansion has several attractive
of the Hubble expansion, many classes of models do. Fuifeatures. It does not require introduction of hypothetical sca-
thermore, a reasonable fit w(a) is only truly needed over lar fields (e.g. quintessengeyet may possess close ties to
the limited redshift range when the dark energy has signifihigh energy physics such as string theory or extra dimen-
cant dynamical influence, so E() is widely applicable. sions; it does not obviously suffer from fine tuning problems
For a best fitw, is often taken to correspond to the time necessarilye.g. the Ricci scalar naturally evolves; develop-
variation in the equation of state at redstaft 1, approxi- ment of density nonlinearities could induce backreaction on
mately when dark energy is expected to become significanthe expansiop and it is eminently testable by a number of
That is,w’=—dw/d Inal,_;=w,/2. One could also imagine independent cosmological measurements.
using a different “pivot redshift” to definevy andw,, per-
haps that at which the two parameters are decorrelated. How- A. General approach
ever in a coarse sense this is still mathematically equivalent To test the framework of our cosmology theory we should
to Eq. (6) and in a fine sense this disrupts the model indeimpose prior expectations of the form of a modification as
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lightly as possible. We have good evidence for the presence Various extensions of the Friedmann equation have been
of matter density in the universe, from both baryons and darkonsidered in the literature. For exampgts], consider a
matter, neither of which can accelerate the expansion, angrm 6&H?~H®, motivated by infinite scale extra
strong evidence from the cosmic microwave background andimensions—a “bulk” encompassing our4 “brane.” We
isotropy measurements that the universe is consistent witfpitially examine two gravitational source models that lie to-
being spatially flat. Taking that as the extent of our knowl-yard the extremes of present data on the equation of state.
edge, we can parametrize our ignorance of the physical causge first model is the extra dimensional braneworld “leaking
of acceleratlon with an arbltrary additional term in the F“ed'gravity" model[17]. Here the modification to the Friedmann
mann expansion rate equation: equation arises from a crossover length scale related to the
H2/HS=Qm(1+z)3+ 5H2/H§. @ 5—dimensipnal Planqk mass; on larger §cales the gra\{itatiopal
force felt in our 4-dimensional brane is reduced. This typi-
Note that such a phrasing is more general than a paran¢ally has an effective equation of state more positive than
etrization in terms of the matter density exclusively, such as-1 (and corresponds tar=1 above. The second is the
H2=f(p). While the latter can easily be reduced to the formvacuum metamorphosis model pf8], originating from a
of Eq. (7) by means of takinggH?=f(p) —8mp/3, the con-  convergent sum of quantum vacuum contributions of a light
verse is not true. Indeed, tli¢p) approach cannot deal with scalar field coupled to the Ricci scalar curvature. This very
simple time varying dark energy models with nonzerg. elegant approach leads to a rapidly evolving effective equa-
Linder and Jenkingl15] showed that the general form Eq. tion of state that is more negative thanl. To the extent
(7) was mathematically equivalent to a time variable darkcurrently possible these models have some definite physical

energy equation of state function motivation for their modifications.
91012 We mentioned above that kinematics, i.e. cosmography,
Wog of(2)=— 1+ } dIn(6H%/Hg) ) would not distinguish between these or other such modifica-
DE.e 3 din(l+2z2) tions and dark energy, by virtue of E(), but that dynami-

cal probes such as the growth of structure might break this

as far as cosmography. That is, observations of the expansiefegeneracy. Let us investigate this further, both in general
rate and distances alone could not distinguish between theserms and with the specific models mentioned.
possibilities. This degeneracy might be broken, however,
through other information such as the growth rate of matter
density perturbations, as discussed below. B. Role of complementary probes

In addition to the effective equation of state we can write
down other effective “high energy physics” characteristics
of the modified gravity theory. The total equation of state of
the universe follows immediately from the continuity Fried-

For the growth of structure, it is not only the characteris-
tics of the global, homogeneous and isotropic, universe that
enter but the more microphysical properties of the compo-
nents themselves. Thus sound speed of the dark energy field

mann equationp=—3H(p+p), to give or interactions with dark matter could give information sepa-
_— rate from that contained within the equation of motion gov-
-~ 1 dIn(H*/Hg) erning the cosmic expansion. However, for our present case,
Wre(2)=—1+3 dini+ ) ©)

we are trying to distinguish modifications of gravity from
canonical physical dark energy; if we restrict ourselves to
The corresponding potential and kinetic energies of the efgravitation models obeying the Principle of Equivalence and

fective field come from Eqg1)—(3): minimally coupled to matter and nothing else then there are
5 S no such microphysical parameters that could break the de-
Ve i(st Hg d(oH/Hg) (10 generacy. Then all that enter the perturbation growth are the

Hubble drag term depending ad(z) and the dynamical
evolution of the matter density, also determined H{z).
H3 d(SsH?/H3) For a contrasting view of the braneworld model with a time
K= T6r din(i+2) " (1)  varying Newton’s constant, s¢&9]. If the dynamics is lim-
ited in this way we should expect that if we define a modified
g-Friedmann equation and associated effective equation of
state as in Eq47), (8) then we cannot distinguish the gravi-
tational origin from the particularly crafted dark energy
model.
However, note that while there is a formal correspondence
between a modificatiodH? and an equation of staig(z),

87" 16w dIn(1+z)

Note that this is useful as well for treating dark energy mo
els with multiple fields; if there are two componertdfter
all, if we discover thatv# — 1 this does not guarantee there
is not still a cosmological constant preskthten the effective
equation of state is a weighted average,

SH2 SH2 one might expect the resulting functi_on to be so complicated
Wpg ef=W1—— 1 S+ W 2 > (12)  that one would be reluctant to ascribe it to a physical dark
' SHT+ 6HS SHT+ 6HS energy. On the other hand, the modification may be ame-
nable to quite a simple dark energy fit. We examine this for
where 5Hi2 is the energy density of thi¢h field. our two test models.
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FIG. 1. The growth factor behavi@¥a for two modified gravi- FIG. 2. The gravitational potentigd(z) for the same models as

tation models is compared with that of dark energy models. A cleaFig. 1 is plotted vs redshift, showing the decay of the potential as
distinction can be seen relative to the cosmological constant, the expansion accelerates. Dashed, red curves are for the mimicking
model, but simple time varying dark energy modedkort dashed, (wg,w,) models. The dotted outliers to the cosmological constant
red curves can be found that reproduce the modified gravity. curve show the deviation expected by a misestimation of the matter
density(),, by 0.02. The discrimination of modified gravity from a
For a flat braneworld model, the crossover scaldefines  cosmological constant is clear, but from the fit dark energy models
an effective energy densit@,,= (1—Q,)%/4=1/(4H3r> is problematic.

and source for accelerating expansion? Figure 1 emphatically af-

SH2/H2=200 + 20 O (1+2°+ 0. (13 firms this. While the growth evolution of either of the models

0 wt 2V Qo Qn(1+2) ow (13 is readily distinguishable from a cosmological constant uni-
The cosmography in the form of the supernova magnitudeYe"se; the models cannot be separated from thgir dark energy
redshift relation is excellently fitby the simple dark energy counterparts.(One could equally well have first fit the
model of (wy,w,)=(—0.78,0.32). We take both models to growth history and then looked for deviations in the
have the same matter densify,,=0.28. magnitude-redshift curves. o -

For the vacuum metamorphosis model, the cosmic expan- Note that the braneworld scenario, with its more positive
sion causes the quantum vacuum to undergo a phase tranSAuation of state, shuts off growth earlier since its influence
tion at a redshif; away from the matter dominated behav- N the expansion was greater at early times, while the
ior. So the modification to the Friedmann equation goes fronY2cuum metamorphosis model shows increased growth even

zero at high redshift to compared to the cosmological constant case, as generically
expected forw<—1 models. Recall that the linear mass
SH?/H3=(1-m?/12)(1+2)*+ m?/12— Q(1+2)%, power spectrum is proportional to the square of the growth

(14)  factor, so the models differ-25% in power amplitude from
the cosmological constant.
for z<z, where z=[m%(3Q,)]"*~1 and m? If we normalize to the present amplitude of struct(ites
=30, [(4/m? —(1/3)] ¥4 For Q,,=0.28, m*=10.93 and would roughly correspond to normalizing the power spectra
z;=1.35. Despite the rapid evolution in the effective equa-of the different models by the present mass variange
tion of state, the magnitude-redshift relation is excellently fitrather than to the high redshift CMB powethe situation
by (wg,w,)=(—1,—3). Note that this is a physical model does not change. Figure 2 plots this in the form of the gravi-
for an effective phantom energy, i.e. whave< —1. tational potential of the mass perturbations. Again the gravity
Does the dynamical probe of the growth of matter densityand dark energy models lie virtually on top of each other. To
perturbations preserve the degeneracy between the gravitidicate a measure of the ability of cosmological observa-
tional source and the high energy physickark energy tions to distinguish models, for the cosmological constant
case we show the effect of variationgh,, by = 0.02(dotted
lines).
Here and in the rest of the paper we mean specifically that the The parametrization in terms of dark energy variabigs
dark energy model reproduces the modified gravity results to withirw, is nearly the simplest possible, but it is highly successful
0.01 mag over the redshift range=0—2. in mimicking the more complicated gravitational modifica-
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tion. The possibility of discriminating between dark energyearly times is likely to interfere with structure formation.
and gravity would be even worse for either a more compli-Very roughly, cases 1 and 2 are milder versions of the
cated dark energy ansatz or a nonparametric analysis iacuum metamorphosis and braneworld scenarios, respec-
terms of the expansion histo(t) or density historyp(t) tively.

directly. Correlations between cosmological quantities tend Case 3 is intriguing in thaw e [ —3/2,—1/2], crossing the

to dilute the precision of the nonparametric approach relativéosmological constant value ef1. Thus one might imagine

to the equation of state fit by roughly a factor of 2, e.g. 0.02that this model could mimic on average the cosmological

mag or 1% distance measurements reconstruct the expansigfinstant at recent times—and is worth studying in detail.
history to only 2% precisiofi20]. Unfortunately, the transition between its asymptotic values is

Another possible cosmological probe is the CMB tem-4uite sharp owing to the difference of six powers of the scale

perature power spectrum. This is primarily dependent Or{actor in the two terms in the_ s.quaﬁre root. Omf could adopt a
dark energy or low redshift modifications of the FriedmannWhOIIy ad hoc model containingyA’p“+B’p ” but we

. . : . ould likely learn little physics motivation. Instead we kee
equation through the geometric q“"".”t.'ty of the distance t%Vase 3 as?/s and use itpasyan interesting, if extreme, test crzise
the last scattering surface. However it is generally not nearl¥0 investigate model degeneracy. Because of its rapid transi-

as se_nsitive to _the equation of state as the supernoy n, if this model can be well fit by a simple dark energy
magnitude-redshift data. In any case, the distances to the | odel then much less radical forms likely will be as well.

scattering surface agree between each gravity model consid- |, this phenomenology we walk a fine line:if>— 1 by
ered and its corresponding dark energy version to 0.1%, b&yg muych, the model will be uninteresting since it is easily

low what Planck will be able to achieve. ruled out by observations, butif~ —1 then the modifica-
tion is too strongly degenerate with simple physical dark
C. Discrimination from A energy models to probe physics well. Observations are less

While the degeneracies exhibited between the two gravit . .
models and their dark energy matches are quite interestin seful to explore further, and if they cross through the inter-
stingw= —1 value then their time averaged equation of

data favors an effective equation of state closewte—1. at Il satisfy fut traints. Th 3 all
However, the braneworld model can only supply this forState may well sa isfy future constraints. Thus case 3 allows

matter densitie€), <1. For ), =0.28 its rough, averaged investigation of the extent to which distance and growth
m . m— VY- ’

_ . ) probes can break degeneracies between classes of physics
equation of state isv~—0.7 while that for vacuum meta- responsible for the acceleration.

morphosis isw~—1.3. Suppose future data continues to e first consider for which values of the parameBeawe
narrow in around the value/=—1; are there gravitational can fit the data for the least sensitive dark energy probe: the
modifications that may be confused with a cosmological conCMB measurement of the distance to the last scattering sur-
stant fit? face. If we require the distance to match the distance in the
We devise additional termsH? such that they mimic cosmological constant case to a certain precision, then we
dark energy near the cosmological constant value. Thesgbtain upper limits tdB in cases 1 and 2, and a range in case
modifications to the Friedmann expansion equation are €. This is because in cases 1 and 2 the vaue0 corre-
sentially ad hog though they bear some functional resem-sponds exactly to the cosmological constant, so these cases
blance to physics models such as braneworld laedsence will never be fully ruled out under our assumption that the

étringent on ruling out models witiw<—1, so these are

tachyon field scenariogf. [21,22): true model is that of the cosmological constantHowever
case 3 is distinct from & model throughout its parameter
Case 1: H?=(8m/3)p+ A’ +B'Ip (15 space. J P
Figure 3 illustrates the allowed parameter space for the
Case 2: H?=(8w/3)p+JA'+B'p (16)  case of WMAP precision: the last scattering surface distance

diss known to 3.3% (br). For case 1, the area between the
Case 3: H?=(8w/3)p+JA'p+B'lp.  (17)  long dashed curve and the dotted curvewat —1 is al-
lowed, corresponding t@<0.427. For case 2, the area
These are universes with matter density as the only physhetween the short dashed curve and the dotted curve at

cal component dynamically important today, but with modi-\y= —1 is allowed, corresponding ®<0.144. Note that in
fications to the Friedmann expansion equation. By evaluatingoth cases the allowed effective equations of state are fairly
these expressions at the present, one derives an expressi@Bwing varying functions of redshift, so we expect ease in
for the constanf’ in terms ofB’ and{}y,, so there are only fitting them to a v,,w,) dark energy model and difficulty in
two free parameters. It is convenient to define a dimensiongjiscrimination from the cosmological constant with whatever
less quantity, B=B’(87/3Hg) in cases 1 and 3 0B  probe forB<1. So we will not consider them further. In

=B’(3/87THS) in case 2. case 3, the CMB data would restrict the model to have
Case 1 has the property that the effective dark energp.099<B<0.145, with a perfect match of the distance for
equation of state ranges betweewe[—3/2—-1]. B=0.131. Nevertheless, the equations of state clearly do not

At high redshifts, w——1 and today w(0)=-1-B/ resemble that of the cosmological constant, and have a
[20,(1-Q,)?]=—-1-3.4B. For case 2 the range i¥  strong time dependencéNote that Planck precision of 0.7%
e[—1,—1/2], with the value evolving fronw=—1/2 atz  would limit B to between 0.126 and 0.135The CMB dis-

>1 to —1+0.27B today. The relatively large value @f at  tance to last scattering, normally thought fairly insensitive to

023511-5



ERIC V. LINDER PHYSICAL REVIEW D70, 023511 (2004

0.9

Growth 6/a
1<)
o

e
3

—B=0.145 -- (w,w,)=(-1.52,0.2) ]

0.6 B=0.131 (wow,)=(—1.49,1.64) —

B=0.099 (wow,)=(-1.12,1.2) ]

------ A (w=-1) 1
oL 1 e

0 0.2 0.4 0.6 0.8 1

FIG. 3. The effective equations of state corresponding to the F|G. 4. As Fig. 1 but for case 3 modified gravity. A fairly clear
modified Friedmann equationd5—(17) are plotted vs redshift. gjstinction in growth behavior exists relative to the cosmological
The parameter space allowed under CMB constraints for cases donstant model, but not with respect to each corresponding, simple,
and 2 lie between the respective curves shown ana/the-1 line,  time varying dark energydashed, red curvesThese were chosen
i.e. they can mimic a cosmological constant arbitrarily closely. Casgo match the magnitude-redshift relation, so neither expansion his-
3 curves(labeled by value oB) can fit the CMB distance of th&  tory nor growth history here distinguishes between a gravitational
model with much more strongly varying equations of state, lyingand dark energy explanation for the acceleration of the universe.
between the left and right solid curves, with a perfect fit given by
the middle solid curve. constant then the growth behavior should lie in the region
) o ) ) between the upper and lower growth curyatsleast for the
time variation, can put tension on regions of parameter spacgree case forms considejed
for these time varying models. _ _ Differences between thB=0.131 (exact match ind,ss)

Next we apply the supernova magnitude-redshift andyqqge| and the cosmological constant amount to less than 8%

growth tests to the models given by case 3 and see 10 Whi the power spectrum, so the magnitude-redshift data would
extent these can distinguish the gravitational model from the

cosmological constant, or from the best fitting effective dark ;g
energy model. All of these gravity models can be distin-
guished from the cosmological constait, model through

the magnitude-redshift probe; the magnitude differences
range from 0.1-0.2. It is not easy to mimic the cosmo- 14
logical constant behavior with a modificatidit? except as
SHZ—A.

However this is a separate issue from whether the modi-
fication matchesomedark energy model. In general the de-
generacy between a gravitational source and effective dark
energy model remains. We find excellent fits by the simple
(wg,w,) parametrization as followsd3=0.099 corresponds
to (wg,w,)=(—1.12,1.2),B=0.131 to (—1.49,1.64), and
B=0.145to (- 1.52,0.2). Recall thav'~w,/2. The model
that exactly reproduces thig for the A (w’=0) model has
aw’~0.8!

Again, the growth of matter perturbations does not break
the degeneracy, as seen in Fig. 4. Gravity models can be
distinguished from each other, and dark energy models from 1 T L S S S
each other, but the mapping to the effective equation of state 0 1 . 2
holds firm. Note that the growth behavior of the models from Redshift z
cases 1 and 2 with the largeBtvalues allowed by the CMB FIG. 5. The gravitational potential behavior as in Fig. 2, but for
data roughly agree with the extremes plotted for case 3. Thithe case 3 modified modelslack solid curvesand dark energy
implies that if CMB data is consistent with the cosmological models(red dashed curves, blue dotted curvevios — 1) in Fig. 4.

(z)
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be the most incisive probe. In Fig. 5 we again normalize tondeed we see tha&>6H? corresponds to the usual condi-
the present matter power spectrum and plot the gravitationdlon w<—1/3. The use ofv is purely a symbolic definition
potential decay behavior. Even such an extreme modifie@and does not rely on a physical link that would come from,
gravity model as the rapidly varying case 3 cannot be distine.g., employing the relatioR=8=T between the Ricci sca-
guished from a dark energy parametrized ta (w,). [Note lar a_nq the trape of the energy-momentum tensor that general
that in fitting (w,,w,) models we impose/(z)<—0.5inthe  relativity provides.

growth equation to match the allowed equation of state range NOte that consistency holds between the two approaches
of the B models, but this in fact does not affect the resultsOf this section and Sec. lll. In some sense we have modified

very much] the accelerationg) Friedmann equation here and the veloc-

ity (a?) Friedmann equation in the previous section. To dem-
onstrate consistency, start with E&) and substitute in Eq.
(7). Using the identity

Through the Principle of Equivalence, acceleration has a

IV. ACCELERATION DIRECTLY

very direct relation to the nature of gravitation and to the (H?) =4H3[R/(12H?) - 1], (22)
spacetime geometry. In turn, mapping the expansion historyne obtains

and observations of cosmological distance relations, or cos-

mography, has a clear connection to the spacetime geometry. 1 H? R

This allows future data to directly constrain modifications of WoEeff(2) = 3 ﬁ( - @) : (22)

general relativity, testing the framework of the gravitation

theory not merely the ingredients of the universe. It seemginally, since the total equation of state of the universe is
useful to try to make this connection between the measureelated to the effective dark energy, or “parametrized igno-
ments and theory as explicit as possible, especially in theance,” equation of state bw(z) =Wpg 1(2) Qpg ei(2), We
hope of distinguishing a gravitational origin for the accelera-find

tion of the expansion of the universe from a physical dark

T . 1 R
energy origin. _ 22y 1
Wr=Wpg( SH2/H?) 3(1 - ) (23
A. Principles as in Eq.(20). One can only go from Eq(20) to Eq. (8),

Starting with Robertson-Walker metric for a homoge- however, i_f one define_s an appropriatze split between knowl-
neous and isotropic universe, and imposing spatial flatnes€dge and ignorance, i.e. tg, and 6H* terms.

leads to the relation between the expansion fat(r) The generality of the link of the total equation of state
and the spacetime geometry quantity of the Ricci scalaWith the spacetime geometry and the dynamical @) has
curvature R: an exciting implication. The equations point up the centrality

of the variableR=[R/(12H?)](z), since both the equation

a of state and the Hubble expansion parameter can be defined
R=6 5+ H2 |, (18  interms of it. That is, through Ed21) H is determined by
2
. o H_:e4fg‘ Y4iny(1-R) (24)
whereH=a/a is the Hubble parameter. No dynamics, i.e. HS

specifica(t) relation or physical theory, is assumed. Cos-

mography directly probesand its derivatives, and hence the Knowledge of the spacetime quanti® therefore allows us
quantitiesR andH. It is possible that these are not the whole to solve forH, R, the comoving distance(z) = fdz/H and
story, that the gravitational action contains other terms and s8thers, the magnitude-redshift relatiom(z) =5 log{ (1
the interpretation of the observations in terms of the theory™ 2r], etc. This is a powerful simplification. N

of gravity is more complicated, but so long as the metric Furthermore, we will see in Sec. V th&=1 is a critical

holds, then the relatiofil8) is still good. (See[23] for the ~ value, corresponding tavr=—1 (a de Sitter stajeand a
case ofR~" terms in the action. universe on the cusp between ordinary acceleration and su-

Observations of acceleratioa;>0, then inform us about peracceleration.
the Ricci scalar. In particular, acceleration imposes the con- B. Parametrization
dition As with the equation of state(z), forthcoming observa-
tional data will not be strong enough to reconstruct directly
the entire function, her&(z). Instead we must learn about
the physics encoded in it, whether gravitational or high en-
Again, this is WhO”y equivalent at this level to an effective ergy, in smaller steps. F0||0wing the equation of state we

R>6H2. (19

total equation of state parameter for the universe, might try to parametrizeR in different models by a fitting
form containing a few parameters. Suppose in analogy to Eq.
1 ( R (6) we write
Wregr= 5| 1— — . (20
e 3 3H? R=ry+ry(1—-a), (25)
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with rq representing the present value andgiving a mea- 1
sure of its time variation. This seems a reasonable minimal
parametrization for the same reasons as witfa); one
might expect that the spacetime geometry should be slowly
varying with the expansion.

In this ansatz, the Hubble parameter is

| R R T N B B T

_ 2 —1)a2rq(1-
H=Hga?(otri-e2n(1-a), (26) go_a :
If we want to ensure a matter dominated epoch at high red-< i
shifts (@<1), then we requirdd to asymptotically vary as %
—3/2 ]
a ' thus G 0.7

Fo+ry=1/4. (27) —w==12 - (ryr)=(0.92,-0.98)

This leaves us with only a one parameter family and so we 0-6 w=-1 (ror,)=(0.81,-0.73)

could elaborate the fitting forn25) to allow a second pa- w=-0.8 (ro.r,)=(0.71,-0.533) :
rameter. However, we find that for redshiftss2, where - (wo,w,)=(-0.82,0.58) (r,r,)=(0.69,-0.58) A
most of the cosmological probe data will lie, the linear fitis oo [ v 1 v v 0 v vy 10w 1 i
a superb approximation to a wide variety of physical dark 0 0.2 0.4 0.6 0.8 1
energy models—as long as the constraint condition(E&d, a

unnecessary at these redshifts, is not imposed. However one g, 6. Growth factor as in Fig. 4, but for the Ricci geometric

could certainly be fancier and attempt a fit that both satisfiegark energy modelged, dashed curvesSimple parametrizations
the moderate redshift fitting and the asymptotic constraintof these models can match the behavior of dark energy models
such asR= 1/4+ryatanh¢,a) or R=1/4+r,a%+rza® (i.e.  (solid, black curves including the cosmological constant. Slight

a cubic polynomial with the zeroth order term fixed by the deviations occur at higher redshifts.

matter domination asymptote and the first order term fixed

by the smooth approach to this asymptote; thus we are lejmjlar forms of Eqs.(25) and (6), due to the presence of
with two free parameteysBut the linear fit suffices, matched matter; furthermore, the fit is similarly successful when using
smoothly to a matter dominated asymptote for high redshiftz — 1/4+ 1 ,a2+r,a3].
calcylaﬂong - ) We examine four dark energy—Ricci geometry pairs. For
Finally, if we have a specific functiofR then we can the cosmological constant, the fit is provided b ;)
derive the corresponding dark energy model, or its effective- (9 81-0.73), for the time varying equation of state
equivalent, upon imposing a split between matter and darksyGRA model with v,,w,)=(—0.82,0.58) the analog is
energy, i.e. choosin@,. The effective dark energy equation (ro.r1)=(0.69-0.58), and forw=—0.8 andw=—1.2

of state is then they are (0.7%; 0.533) and (0.92; 0.98) respectively. Each
1 pair possesses magnitude-redshift diagrams agreeing within
W a)=- (1—-4R)[1—Q e Jdhya-4R) -1 0.01 mag out t=2.
oE o1 @) 3 ( L m ] Dynamical aspects within the matter density perturbation

(28) growth equation still contain no leverage to break the degen-

eracy in any substantial way. For reference we write the

and the scalar field potential and kinetic energies follow fromgrowth equation of a linear matter density perturbatidn
Egs.(1)—(4) as before. Explicitly,

= dplp:
H? 3HG . G"+(3+2R)a G’
V=(1+2R)8——Fﬂma (29
e +[1+2R— (312 Qma 3/(H¥H2)]a"2G=0,
H2 3H§Q . 20 (3D
K_(l_R)E_E ma . (30

whereG= §/a is the normalized growth and prime denotes a
derivative with respect to scale factar (The growth equa-
tion given a modificationsH? is written in[15].)

As we carried out previously for the Friedmann modifica-  Figure 6 shows the growth curves for these four pairs of
tions 6H?, we can investigate the discrimination betweenmodels. At higher redshift the geometric models do have a
this direct acceleration, or “geometric dark energy,” model deviation in growth behavior relative to the dark energy
and physical dark energy for various cosmological probesmodels, but this is small. Note that we enforce matter domi-
Once again the straightforward parametrization of dark ennation asymptotically, matching the,r,) parametrization
ergy in terms of Wy,w,) provides an excellent fit to the onto R=1/4 at high redshift, but this is unlikely to be re-
geometry mode[note that this imot a consequence of the sponsible for the deviation as the effect goes in the opposite

C. Distinction from dark energy
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FIG. 7. The gravitational potentiab(z) corresponding to the FIG. 8. The expansion history is plotted in terms of conformal

models of Fig. 6. Slight deviations at higher redshifts occur betweemorizon scale vs scale factor for various modified gravity and space-
the Ricci modelgdashed red curvesnd their corresponding dark time geometry models. The Ricci geometric dark energy models
energy partnerssolid black curvep Deviations inslopefocus on  (solid, black curvesare subscripted with the present valyg and

the behavior ag~1-2. have the formR=ry+(1/4—ry)(1—a). All models are matter
dominated in the past. Negative slopes indicate an accelerating ep-
_och while slopes more steeply negative than a critical vatué @t

direction, increasing the growth, and would enter at a differ S .
the presentindicate superacceleration.

ent redshift than seen.
The deviation can be seen more clearly in the gravita-
tional potential decay behavior of Fig. 7. Especially for theangular size corresponding to the first acoustic peak of the
w=—1.2 case a distinction between the Ricci geometry and¢MB, allowing for tight constraints on the age via CMB
dark energy models can be seen, but this amounts to less theigasurement24].)
1% difference out taz=3. So for both cosmography and Since the slope of the gravitational potential-redshift rela-
growth of structure, interpretation in terms of an effectivetion is therefore fixed at the two endsughly 1/2 atz=0
equation of state remains a robust path, though not one th&d 0 atz>1), there will be some intermediate redshift
allows us to probe all the details of the fundamental physic4'here the deviation in slopb/dz between models is maxi-
responsible. mal. Thls in fact occurs When the dark energy or _oth_e_r ac-
Studying the behavior of the gravitational potential in Fig_celeratlng mec.hanlsm begins to be dynamically significant,
7 does offer one possible hope for elucidating the physic%ndI t.he crr]]angmgl sIo?e 3r cuLv_aturg ?]fffers clues to the un-
model in more detail. At high redshife>1, we expect that erCylng.p ysics, Ioc.a |z|ebto this reds Ilt' he k q
all models approach the matter dominated behavior wherghi ertain cosmological observations relevant to the key red-

- o . ft range ofz~1-2 in fact are sensitive to this effect. One
the gravitational potential is constant. This corresponds 105 the integrated Sachs-Wolfe effe¢SW), where the CMB
the linear perturbation growth~a. Such behavior, of the ’

o ; o photon interaction with the time varying gravitational poten-
development of structure through gravitational instability 0ftja| of jarge scale structure in the process of formation leads

adiabatic density perturbations, has been broadly successfil cmB anisotropies on large angles or low multipoles. This
in explaining the appearance of large scale structure in oUgyolves dd/dyp=Hd®d/dz (see, for example[25]). An-
universe. In such a decelerating phase of the expansion, thgher prospective probe is the CMB bispectrum, related to
origin of the accelerating physics should be largely moot. the three point correlation function of temperature anisotro-

At low redshift,z<1, all the models within the region of pies arising from nongaussianities induced by weak gravita-
parameter space our universe seems to inhabit show a simildonal lensing of the CMB by large scale structisee[26]).
behavior, all the curves ab(z) possessing nearly the same This involves®(d®/dz) and has been recognized to allow
slope and so overlapping. This does not arise from any fun€EMB measurements to have some sensitivity to the time
damental requirement but is a coincidence for models withvariation of the dark energy equation of stf2&], similarly
behavior not too different from a cosmological constant andocalized toz~=1-2. Both these methods may be able to
for our universe at the present time, not too long after theplay a role in breaking the degeneracy between the physics
acceleration began(A similar coincidence makes the con- of the spacetime geometry Ricci term and a physical dark
tours of constant age of the universe lie parallel to those oénergy.
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V. SUPERACCELERATION AND THE BIG RIP Now we have seen that a component with< —1, so-

. . called phantom energy, leads to superacceleration. This im-

Ri(ﬁ:? gggs%&ro\/;ufée;; :_\\,// (A12|t—T 2e) ;’alluﬁagf;h: QSLT?:;IZeed plies a Big Rip scenario for the fate of the universe, accord-

The condition for superacceleration, where thg accelera.tioinng| 10 [30], where the increasing acceleration overcomes al

increases with time pl ®R>1. which ’coul d be writterw other attractive forces. However we conjecture that the par-
’ ' eff  ticle creation from the Rindler horizon gives an energy den-

=—1.For th_e case of a phy_sicz_il dark energy component thl§ity in radiation that grows faster than the phantom energy.
implies that its energy density increases with expansion. An

; L TA_(hianh 4 -
important point regarding superacceleration is that it corre!llustratively, pg~T"~(a/a)"~pp, while phantom energy

S o i i i ~ 3 i
sponds to &/a) >0 and not &) >0. Thatis, the conformal dominates the universe. So the rafir/ppn~ppp, and this
acceleration is the relevant quantity. grows with time sincev<<—1. Therefore at some point the

This is analogous to the condition for acceleration, or in_radiation energy density will overtake the phantom energy

. : . . density, shutting off the superacceleration. Without superac-
flation, where @H) >0, meaning the conformal horizon ¥ g B P

T o ) celeration the particle creation declines, the radiation energy
(aH)™" shrinks with time. Indzeed such an acceleration conyeqshifts away, and the phantom energy can again dominate.
dition is equivalent ttH>—H< while superacceleration re- Depending on the details, this may lead either to an attractor

lies onH>0, equivalent to 4/a) >0. More explicitly, if ~atw=—1 or a cycle of superacceleration and hot, radiation
R<12H? then @/a)<H?2. If this holds for all future times (and matter dominated phases of the universe.

then @/a) <(H?) =2H[(R/6)—2H?]<0. Thus superac-

celeration is &/a) >0 and not &) >0. The latter condition VI. CONCLUSION

would be satisfie_q by a dark energy equation of state ratio Tq face the challenge of determining the fundamental
w<—2/3, while @/a) >0 corresponds tov<<—1. physics responsible for the acceleration of the universe, we
Figure 8 illustrates the behavior of the conformal horizonneed to bring to bear next generation observations of the
in various cases, including those of Ricci geometric darkexpansion history and possibly its dependent growth history.
energy models listed by their present value ®f Those The precision and accuracy of these future observations will
shown follow Eq.(25) with constraint Eq(27). Any model  guide us a long way to identifying new physics. We see that
with a region of negative slope is accelerating during such ait the heart of the next step lies a single function—the effec-
epoch; e.g. the,=0.5 model is just starting to accelerate tive equation of state/(z). Mapping this describes the cos-
today, corresponding tarr=—1/3. The cosmological con- mology; models with the same function, or equivalently
stant model has nearly the same acceleration today as feame expansion history, will agree on the cosmological tests,
ro=0.8, andr,=0.25 is the(deceleratingEinstein—de Sitter whether distance-redshift, growth of structure, etc. Further-
cosmology. Superacceleration requires a slope more steepigore the simple parametrization in terms of the present
negative than-(a?H) %, i.e. —1 today. This condition for value,w,, and a measure of the time variatiom,, proves
superacceleration can be rewritten in terms of the logarithmiextraordinarily robust regardless of the exact reason for

slope of the conformal diagram as elaborating on the matter density term in the Friedmann
equation.

din(aH)~* This is.not to say t_here is no c_ompleme_nta.rity bgtwegn

W<—1. (32 cosmological probes; indeed that is a crucial ingredient in

constraining thevaluesof the equation of state parameters.
And next generation experiments will be superb at achieving
It occurs for models steeper today thegy=1, or more gen- this. The simplicity of a two parameter functional form
erally R>1 orws<—1. means we cannot easily appeal to “naturalness” to decide

From this diagram one can read off that a model such agshich physics model—dark energy or modified gravity,
vacuum metamorphosis is accelerating today but not supesay—is a most likely explanation. Despite the models con-
accelerating. Although it acts as a component witlt — 1, sidered here, though, there is no guarantee that an arbitrary
the total equation of state of the universe, including matter, isnodificationdH? can be fit in terms ofv,, w,. Regardless,
wr>—1. Even a currently superaccelerating model like the functionw(z) encodes all the standard, “smooth” infor-
=1 only began accelerating a2, so we see that there is mation regardless of origin.

a relatively narrow range of redshifts—not “fine tuned"—  We have illustrated this for several classes of physics in-
when this extraordinary property of the universe will be evi-cluding scalar field dark energy, modifications of general
dent. relativity in the Friedmann equation, and direct acceleration

Note that such increasing conformal acceleration implieshrough Ricci “geometric dark energy,” both in general and
the existence of a Rindler horizon in the spacetime. That isfor specific models. Explicit examples of the fits were given
points at a distance>1/g from an observer, whergis the  for probes such as magnitude-redshift, growth factor or
conformal acceleration, recede at greater than the speed gfavitational potential, and distance to the CMB last scatter-
light and so are hidden behind a horiZ@8,29. Generically  ing surface. This held even for models with quite large time
such a horizon radiates particles at a temperatlire variation of the effective equation of state.
=g/(2m), analogous to Hawking radiation from a black  One possible breakdown of the simple dark energy mimic
hole horizon. ability might occur through the curvature of the gravitational
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potential decay behavior; the slope is remarkably model in{though it is only useful if it occurs within a realm accessible
dependent at low redshifts and asymptotically matter domito precision observations Conversely, couplings in the
nated at high redshift, but the localized deviation in betweergravitational sector, going beyond the Ricci spacetime geom-
might provide a clue to the accelerating physics. Precisiortry approach analyzed here, could distinguish a gravita-
observations of the integrated Sachs-Wolfe effect or the lengional origin from one of dark energy. This could arise in
ing induced CMB bispectrum, yet untested, might be usefukcalar-tensor theories, or metric perturbation tehvia the
probes for this. growth equation, or local curvature dependent effetfs

We considered the implications of acceleration in generale . pack reaction from structure formation.
regardless of origin, through the Ricci scalar curvature. This Thjs is rather analogous to the situation in early universe
is pleasingly directly related to the expansion and fate of thgcceleration—inflation theory. The incredible simplicity and
universe. In a conformal horizon history diagréfig. 8 we  generic power of it in solving cosmological and high energy
illustrate conditions for both acceleration and superacceleraphysics conundra is immensely attractive, and we should not
tion, and briefly discuss the role of superacceleration in partse sight of it, just as we should not lose sight of the crucial
ticle production that could nullify the Big Rip and indeed (gle of w(z). But acceleration, then and now, is very much
possibly provide an attractor for the universe to an apparenfyore than just a de Sitter state. \dant complexity in the
cosmological constant state. _ _ ~ form of perturbations, tilt, gravitational waves to learn about

The picture of an achievable and wide ranging goal inthe details of the fundamental physics. For the CMB, mea-
measuringw(z) is qttractive. In our quest for understanding suring ST/T, or the power spectrum, is a stunning experi-
fundamental physics, though, we always want to pushnental accomplishment, just agz) will be, but we want to
deeper. The virtues of simplicity and broad applicability con-expjore further through non-Gaussianities, polarization, etc.

test with lack of leverage in separating the root causes. But i§o too we look forward to probing gravity, dark energy, and
is only in the absence of new dynamics, new equations ofcceleration.

motion, that the equation of statgz) or the expansion his-

tory a(t) rules all. New terms—interactions or graininess— ACKNOWLEDGMENT
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