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Classical and quantum decay of oscillations: Oscillating self-gravitating real scalar field solitons
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The oscillating gravitational field of an oscillaton of finite madscauses it to lose energy by emitting
classical scalar field waves, but at a rate that is nonperturbatively tiny for gree® M /¢, wheremis the
scalar field massiM/dt~ —3 797 437.776¢%/G) u~ 2e 39433 7951991 + O(w)]. Oscillatons also decay by
the quantum process of the annihilation of scalarons into gravitons, which is only perturbatively spaall in
giving by itselfdM/dt~ —0.008 513 223 93%(?c?/#) u®[ 1+ O(u?)]. Thus the quantum decay is faster than
the classical one for<39.4338[ In(Ac/Gn?)+7 In(1/u) + 19.916Q. The time for an oscillaton to decay away
completely into free scalarons and gravitonsis,y— 2% °c®/ G°m™~10*** yr(1 meVimc?)™. Oscillatons of
more than one real scalar field of the same mass generically asymptotically approach a static-ddoietry
boson star configuration witly= o, at the rated(GM/c®)/dt=[(C/u*)e™*'*+Q(m/mp)?u3](?— ud),
with . depending on the magnitudes and relative phases of the oscillating fields, and with the same constants
C, «, andQ given numerically above for the single-field case that is equivalepi;te 0.
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[. INTRODUCTION also calculated here for low-mass oscillatons, given by Eq.

(139 below. Although this mass-loss rate is also small, it is

Seidel and Suefil,2] (see also Tkachef3] for an even perturbative and goes as the fifth power of the oscillaton

earlier paper have found numerically that there exist non- Mass, so for sufficiently small oscillaton mass, this quantum
singular oscillating self-gravitating solitonic configurations décay dominates over the classical mass-loss rate. The time

of a real scalar field, which they called oscillating soliton for an oscillaton with an initially large number of scalarons

stars. These have also been studied by several other authdfsd€cay away completely into free scalarons and gravitons
[4—10 and are now generally callegsciliatons In the sim- then goes as the inverse 11th power of the scalaron mass and

plest case, which is what | shall consider here, they arisfence is very large if the scalaron mass is much less than the

from the Einstein-Klein-GordofEKG) equations for gravity ©/anck mass. _ _
plus one or more minimally coupled massive real scalar Although my numerical results for the classical and quan-
fields. tum decay rates are for a single real scalar field in a spherical

The previous numerical evidence suggested that althougfPnfiguration(and for any number of such fields of the same
these oscillatons are oscillating, they appeared to be period[@ass oscillating in the same mode except for possible phase
and stabld1,2,5-10, so that classically, at least, an isolated SNifts [8], which do give a nontrivial effegt| shall start by
oscillaton might be expected to last forever. However, here Piving the formalism for the classical decay rates for an ar-
shall show that oscillatons of finite mass actually decay clasPirary nearly-Newtonian configuration of an arbitrary num-

sically as the oscillating gravitational field leads to the emis-P€r Of massive scalar fields, and then do a detailed numerical

sion of scalar waves. The decay rate is calculated for the cadi1@!ysis of the single-field nearly-Newtonian and nearly pe-
of low-mass classical oscillatons and is found to be nonperfi0dic spherical case for both the classical and quantum de-

turbatively tiny (nonanalytic in the oscillaton mass at zero C&YS- Then | shall return to a discussion of the classical and

mas3, given by Eq.(122) below, which may be why it has quantum decay rates for multifield oscillatons.
not been clearly seen numerically. Throughout this paper | shall assume that the mass of

Seidel and Suefil] did recognize that their numerical each scalar field is much less than the Planck mass, which is

results were consistent with quasiperiodic oscillations analo? Necessarythough not sufficientrequirement for doing a

gous to the orbit of two black holes that spiral inward while €lassical analysis and is also necessary for the validity of
emitting gravitational waves. My results are also similar toVarous equations | shall use for the quantum decay of oscil-

this analogy, with the oscillatons classically emitting scalar@ons-
waves instead of gravitational waves, except that here the
classical decay rate goes to zero faster than any power law of
the appropriate small parametdrere u, which is the mass Consider the case in which there areeal scalar fields
M of the oscillaton, multiplied by the scalar field mass  ®,;, each with massn,, minimally coupled to Einstein
and divided by the square of the Planck mags) asu is  gravity, and with no other self-interactions. The indeba-
taken to zero. bels the different mass values, and the indeblabels the
In addition, oscillatons decay quantum mechanically bydifferent scalar fields that have the same mass.
the annihilation of scalarons into gravitons, at a rate that is In the classical analysis, | shall often use units in which
c=1 (though sometimes for results | shall insert the appro-
priate power oft in order to be able to evaluate quantities in
*Electronic address: don@phys.ualberta.ca conventional units but I shall not seti or G equal to unity.

II. NOTATION AND UNITS
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However, to avoid havingi’s in most of my equations, | sional analysis, one can then easily see that if there is a
shall let the massem®, have units of inverse time, which is classical decay of such an oscillaton, one must hauece
indeed what they would hav@t least ifc=1) in the classi- my M has the dimension of time

cal Klein-Gordon equation that each scalar field obeys,

, dMm
(O=mp)P,;=0; (1) - fw, )

i.e., a free zero-spatial-momentum real scalar solution in flat

Minkowski spacetime in orthonormal Minkowski coordi- @& function purely of the only dimensionless parameter of the

nates, with the appropriate zero of time, would have the timé@scillaton, w. [In Eq. (122) below | shall give this function

dependence casit). In terms of the conventional scalaron for <1, finding that it is nonanalytic g&=0.]

particle masses, which | shall hereafter denote with the The price of this simplicity in the units is that one must
starred subscriptn, |, one hasm,=m, c?/%. Perhaps itis get used to the mass of the oscillaton having the dimension

more perspicuous to write this relation as of time, which is the inverse of the dimension of frequency
that is the classical “mass” of the scalar field in its classical
m, c’=hm;, (2)  Klein-Gordon equation.

) , , We can get a further simplification by using an appropri-
so that in terms of the classical quantity (the natural fre- 46 redefinition of the scalar fields,; . Since the square of

quency of the scalar field, in radians per sedoftie €nergy  he time derivative of a scalar field has the dimension of

m,,c” of & one-particle quantum excitation of the scalar fieldgnergy density, the square of a scalar field has the dimension

is indeed? times the frequency of the excitation. of mass divided by length, which is the same as the dimen-
That is, | am taking the view that it is the natural frequen-gjon of c2/G. Thus (considering also the 8 in Einstein’s

ciesm, that are the classical parameters of the scalar fieldsguationgit is convenient to define the dimensionless scalar
and that the masses, | of the scalaron particles are quan- fig|d values

tum properties that will not show up in a classical analysis or

in the classical decay of the oscillatofthough they will o~

when one considers the quantum annihilation of scalarons Py =VBTC/CTD), . ©)
into gravitong.

Analogously, to avoid factors of Newton’s gravitational
constantG in most of my equations, when | consider the
gravitational mas$/ of a scalar field configuration or gscil— 1
laton, it is convenient to includ& in it (or actuallyG/c? if _ - 2,2
one uses units in which the speed of lightjs not unity, so Rap |§J: P13.ab13.5% 59aMi i3 |- 0
that myM has units of time and is thus half the gravitational
(Schwarzschilgl radius of the configuration divided by the This will have the dimension of inverse time squared if the
speed of light. Therefore, if | |e¥, be the mass in conven- coordinates have the dimension of time and if the metric
tional mass unitge.g., grams or kilogramswhat | shall use componentsy,,z are dimensionless.
is Following the examples of Reff10,11], it is also conve-

nient to combine each rescaled dimensionless real scalar field

Then by Einstein’s equations, the Ricci tensor generated
by the stress-energy tensor of the scalar fields is

M= GM, _ (3) ¢1; and its time derivativep,;=d¢,;/dt into a single di-
c? mensionless complex quantity,
With these conventions, | can avoid usifigand G in 1 i
most of my intermediate equations, even without using units Y= Ee'm't b3+ H(bu), (8)
in which those quantities are set equal to unity. !
For example, the simplest classical spherical oscillatons
of a single real scalar fielgith no nodes are characterized
(up to the overall scale, into which the natural frequencty . _
enters by the single dimensionless parameter 3=V e M+ P el™ 9
GM, m, M, | [ m,c? and
p=Mm= ———~7.483 138 8K 10° v Tev |
(4) ¢|J:_im|\I’|‘]e_im|t+im|\f|Jeim|t. (10)

whereM ;~1.989x 10*3 g is the mass of the sun in conven-

tional units. (In temporal units, the mass of the sun is _ In terms of the complex¥’;; and its complex conjugate
4.925 490 95 10 ° s, almost 5us, known to much higher ¥,;, the time-time, time-space, and space-space components
accuracy than in conventional units, since the gravitationabf the Ricci tensor aréusing 0 to denote the time coordinate
effect of the sun, proportional t&Mg, is known much t=x° and lower-case Latin letters to denote spatial coordi-
more accurately tha is in conventional unit3.By dimen-  natesx')
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— 1 5 _ pole moment has its principle axes lying along the three
(2+9o0 V13V ;— ( 1- Egoo) (PhHe amt coordinate axes in some order determined by, say, the order-
ing of the eigenvalues of the quadrupole moment. Of course,

Roo= >, [ m;

1J

_ _ this specification is degenerate in the spherically symmetric
+‘I’|239_2'm't)“, (11)  case, but then the angular orientation about the center of
mass makes no difference.
1 For our purposes below it is not necessary to be so pre-
_ 2. T 4 (2 a—2imt g2 a2imt cise, but | am just illustrating how for a generic nearly peri-
Roi E [m' go'(wuw'ﬁ 2 (Vise e )) odic metric, it appears to be possible to fix all of the coordi-
_ _ _ nates completely. Of course, there is some arbitrariness in the
M WP =W — WP e M procedure chosen for thig.g., whether to take the time av-
erage of the spatial metric or of its inverse or of some other
RIS ie2im|t]}, (120 ~ matrix function of the spatial metric, and how to define the
’ time average over a finite time if the nonoscillatory part of
the metric is slowly varying But once a sufficiently precise
— 1 e — procedure is chosen, the coordinates are in principle rigidly
Rij:% [”‘lzgii(‘l’uq’u“L E(q’IZJe 2Im't+\I'IzJem't)) given, and hence so are the metric components for a given
spacetime in that coordinate system. That is, the procedure
+\P|J,i\?lj,j+q7|J,iq,|J,j+\P|J,i\PIJ,je72imlt makes the resulting coordinates and metric components be-
come procedure-dependent but gauge-invariant functions
over the spacetime.
As a result of all but the last parts of the procedure out-
lined above, one can write a generic periodic or approxi-
mately periodic metric in the form

Ty W efmit (13
B )

Ill. GAUGE OR COORDINATE CONDITIONS

In finding solutions to the Einstein-Klein-Gordon equa- dSZZ_GZU(Xk)dt2+ efZU(kaZV(xk){[lJr 2W(t,xk)]6ij
tions, one must make a choice of coordinates or gauge for o
the gravitational field. | shall restrict consideration te-B +oij (x9) + hyj (8, x4 Fdx dX, (14
dimensional spacetime. There are four coordinates to be cho-
sen, giving the freedom of four free functions over spacetimavhere the time averages of the time-dependent quantities,
for the gauge group of coordinate transformations. that is the scalaw(t,x*) and the traceless symmetric tensor
| generally find it convenient to use these four degrees ohij(t,xk), are all zero, and where the spatial coordinates are
freedom to set the time-space components of the metric to behosen to minimize the integral over all space of the trace of
zero,go; =0 for the thred, and to sefyyy to be independent, the square of the time-independent traceless symmetric ten-
or nearly independent, of the time coordinateThis then  sor aij(xk).
implies that the hypersurfaces of constaate orthogonal to | can summarize the situation by notiig the separation
the worldlines of constant spatial coordinatés and that of the metric into the two parts given here, with no cross
along each such worldline, the proper time is nearly proporterms between them, arises from the gauge condition that
tional to the coordinate time(with a space-dependent con- gy, =0; (ii) the form of the first part arises from the gauge
stant of proportionality For example, if the metric is peri- condition on the choice of hypersurfaces of constatitat
odic in time, we can choosgy, to be precisely independent they give go, independent oft; and (iii) the form of the
of the time coordinaté. However, this still leaves the free- second part is given by first factoring out the dominant New-
dom to make arbitrary spatial coordinate transformations thagonian spatial dependence of the spatial metric and then sepa-
are independent df rating the remaining factor into time-independent and time-
If we wish to pin down the spatial coordinates, we could,dependent isotropic and anisotropic pieces, with the time-
for example, choose them so that the time average of thdependent terms being chosen each to have zero time
spatial metric{g;;), over a time that is long with respect to average. Generally speaking, the five scalar or tensorial func-
the reciprocal of the smallest natural frequency differenceions appearing in the metritl, V, W, oy; , andh;;, tend to
|m,—my,|, is as nearly proportional to thex33 identity ma- be smaller the more non-Newtonian, time dependent, and
trix as possible. More explicitly, if we takég;;) to be a anisotropic they are.
spatially dependent 83 matrix, we could choose spatial [If the metric is only approximately periodic, it may be
coordinates so that the integral over all space of the square able to be written exactly in the form above for only a lim-
the traceless part of this matrix is minimized. ited amount of time, with there then being some ambiguity as
This would still not pin down the spatial origin or angular to what it means for the time averages\&{t,x¥) and of
orientation of the resulting quasi-Cartesian spatial coordinatbij(t,xk) to be zero. Alternatively, to be applicable for longer
system, but we could choose the spatial origin to be thatimes, either the form above may be only approximate, or
which gives the center of mass of the asymptotic form of theelse one might need to givé, V, and gj; some slow time
time-averaged metric. If it is necessary to fix the orientationdependence to deal with slow nonperiodic changes in the
we could, for example, fix it so that the asymptotic quadru-geometryj
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Of course, there are many other similar forms for thevalue of V(x*), which we have also dropped. Therefore, it
metric from similar procedures, such as havingt,x¥), may be thought a bit of a cheat to include ¥&t,x*) term
hi; (t,x¥), and/ora;(x), or suitable multiples of these quan- in the metric above but not the(x¥)? and V(x¥) terms,
tities, as arguments of an exponential, so | am not claimingvhich are similar in magnitude.
that there is a unique preferred form for a periodic or ap- However, the point is thatV(t,x¥) is the largest time-
proximately periodic metric, but only that the form above, ordependent term and is responsible for the dominant contri-
its slight generalization to the case whenV, andaj; have  bution to the classical decay of oscillatons and of other self-
some slow temporal variation, is sufficient for our purposesgravitating real scalar field configurations in the nearly-
Note that in the spherically symmetric case, to which INewtonian limit. TheU (x¥)2 andV(x¥) terms that have been
shall turn later, the time-averaged spatial metric is necessadropped are smaller than th#(x*) time-independent terms
ily conformally flat by its spherical symmetry, soij(xk) that have been kept, and none of those terms directly con-
=0. Both time-dependent quantitiéd/(t,x) and h”(t,x"), tributes to the classical decay. Thus the philosophy is that the
are generically nonzero. The spatial dependence of any scasetric (15) includes the dominant time-independent correc-
lar quantity is a function of the one spatial functiosd  tions to the flat Minkowski metrifthe U(x*) termg and the
=;;x'x), soU andV are functions purely of the “radius, dominant time-dependent corrections to the flat mdttie
andW is a function oft and ofr. With spherical symmetry, W(t,x¥) term, in the gauge in whichg, is independent of
the traceless tensorial quantity has the fohmdx'dx by constructioh
=h(t,r)(5ijdx'dx'—3dr2) for some functiorh(t,r) of both Before going to periodic configuratiori# the approxi-
time and radius whose time average is zero. mation of neglecting the scalar field emissiolet us con-
sider the slight generalization to the metric

IV. NEARLY-NEWTONIAN SCALAR FIELD
CONFIGURATIONS

In this paper | shall focus on self-gravitating configura-in Which W has a time dependence at frequencies that are

tions of one or more massive scalar fields in which the gravifoughly twice that of them, , butU is now allowed to have
tational field is very weakgiven to an adequate approxima- SOme time dependence that is even much slower than its
tion by the linearized Einstein equationsind the scalar Slow spatial dependence.
fields have a very slow spatial dependefse the dominant Now, instead of Eqsi8)—(10), | shall take
piece ofW,; has a very slow spacetime dependence, though it = imt
¢, does have a temporal oscillation of frequency roughjy =i TN e (17
that is not considered slow, since slowness is taken to be R : — .
relative to these frequenciesSee Refs[11,10] for previous ~ Without the restrictionjye™ ™"+ y,,€'™=0 that is true for
analyses in this limit, which have been a motivation for some¥ 13 from Eqgs.(8)—(10). Instead, | shall assume that eagjy
of my choices of variables. is such that/,; can be chosen to givé,; approximately and
In this limiting case, one can work out from the Einstein also give
equations that the metric functions(x¥) and W(t,x*) are . . )
much srpaller inkmagnitude thkan unitput not negligible, [l <yl <mif ey (18)
and V(x9), a;;(x9), andh;; (t,x°) are negligibly small, at : L . .
least when thJere are negljigible gravitational waves presenhNEr&tQi K\/Iﬁ:?cr? iosrdon equation in the met(is) with
Therefore, the metri€14) takes the form '

d?~ —[1+2U(x)]dt? $y=—mi by —2miU )5+ c* V2, (19

ds?~ —(1+2U)dt>+(1-2U+2W)5,;dXdxX  (16)

+[1—2U(xk)+2W(t,xk)]5ijdxidxi_ (15)  when for the moment we ignore th& term, implies that
eachy,; approximately obeys the Schilinger equation

If W(t,x")=0, then the approximate metrid5) would _
be truly Newtonian, but the temporal oscillations of the sca- S EVZ CimuU 20
lar fields give oscillating components of their stress-energy o= 2m, Pa—imUdg, (20
tensor and hence of the Ricci tensor componé¢hig—(13) B
and of the metricmainly at twice the frequencies of the whereV? is the flat-space Laplacial¥,y;;= 38"y, j; .
fields themselves soW(t,x¥) is nonzero even at the linear-  Note that it ism, ,c2U=7%m,U that is the Newtonian po-
ized gravity level. tential energy of the particle of “massth,, and notU itself

As we shall see below, since the scalar fields are assumeuhich is dimensionlegsAlso, by havingm, have units of
to have slow spatial dependences, a typical magnitude dfequency rather than conventional mass units, the explicit
W(t,x¥) (say its rms value at some spatial location whereappearance ofi is avoided in Eq.(20). This is what one
that is maximized, but of course not its time average, whichwould expect, since this Schdimger equation came from the
is zero at all spatial locations by definitipis of the same purely classical Klein-Gordon equation for the real scalar
order of magnitude as a typical magnitude of the square ofield, rather than from any quantum equation. Note that |
U(x¥), which we have dropped in expanding the exponenhave chosen; to be dimensionless rather than, say, having
tial. It is also of the same order of magnitude as a typicakhe spatial integral of its absolute square be ufotyperhaps
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some other positive integeras one would normally normal- Nevertheless, although this formula féf; is a more accu-

ize the wave function of a truly quantum ScHioger equa- rate inversion of Eq(21) than is Eq(17), | do not know that

tion. it really gives a more accurate solution of the Klein-Gordon
It is most straightforward to regard the approximateequation than Eq(17) does from a solution of the Schro

equivalence between the real second-order Klein-Gordodinger equatior(20).

equation and the complex first-order Sdfirger equation After getting an approximate solution of the Klein-

(20) as a procedure that works when one starts with a solusordon equation in the nearly-Newtonian metfi®) with

tion of the Schrdinger equatior(20) (with a weak gravita- |W|<|U|<1 (and temporarily ignoring the small effect of

tional potential|U|<1) for which|V2y;;|<m?|y;| (except  the tiny but rapidly time-varying/V term, which shall be

near possible zeros af;;) and then uses Ed17) to con-  discussed lat¢y we need to solve the Einstein equation for

struct from it an approximate solution of the Klein-Gordon the effect of the stress-energy tensor of the scalar fields on

equation. the metric. To leading order, the resulting Ricci-tensor com-
In the reverse direction it is a bit more subtle. If one usegponents from the stress-energy tensor and the Einstein equa-

Eq. (8) to defineW¥ ; in terms of¢,; and its time derivative, tion are

ij)u, this W,; itself will be close to the solution,; of the _ 1
Schrainger equatior(20). However, sincel; will generi- Roo~ >, (d)lzj— Emfd;ﬁ)
cally have a small term roughly proportional¢@™* as well 1

as its dominant term with a much slower time variation, o o= 3

the time derivativel,; will pick up a relatively significant ~2 [n’h ( by — E(lﬁue_z'm't*” l/fue_z'm't)”,
contribution from the term that is roughly proportional to

e?™t and so will be significantly different frong,;. Thus (23
W, defined by Eq.(8) will not satisfy the Schrdinger Ry ~0, (24)
equation(20).

However, one can instead define 1, .,
Rij~2>, > M i éiy
i Y
Py=VYit =¥

2m — 1 L :
! %% my S| Y+ z('ﬂ%e Amit gy e?mt) |,
1 . .
E4_m|2elm|t(m|2¢lJ+2|ml¢lJ_¢IJ) (25)
The corresponding Einstein tensor components are sim-
H 2

~ Eeim't diyt I_¢|J+ Uy~ Cﬁvzd’u pler

2 m, 2m; ’ -
(29) Goo~ 2 2m{ Yty (26

where for the last expression | have used the approximate Goi~0, (27)
form (19) of the Klein-Gordon equation in the Newtonian '
part of the metric to evaluate the second time derivative of

¢, in terms of its value and its spatial Laplacian. Thig Gij%_% M8 (yhe 2™+ yfe ™). (28)
then obeys the Schdinger equation20) when U is small

and slowly varying and whem,; is oscillating at nearly its This corresponds to an energy density that has only what-
natural frequencyn, and has a slow spatial variation in units ever slow time variation the mass-squared-weighted sum of
of m,. the squares of the absolute values of thgs may have, and

With this definition of the complex,; in terms of the real an isotropic pressure that oscillates at the frequencias 2
¢,; and its derivatives, Eq17) is still a fairly good approxi- and has a time average that is zero to this order of approxi-
mation for ¢,; in terms of,;, but an inversion of Eq(21) mation (though at the next order there are small time-

that is accurate to one higher order is independent pressure gradients that hold up the self-
gravitating energy density in the approximately periodic or
i _ _ . quasiperiodic cases
bu=| Yy e M| gt ﬁlﬁ)e'm't Directly from the nearly-Newtonian metri€l6) itself,
! : with the spatial derivatives oV being negligibly small, the
5 leading-order linearized Einstein tensor components are
c .
“(1_U){ /N szlﬂu)e_'m't Goo~2c?V2U, (29
|
o C2 o ) GOiNO, (30)
+| st ﬁvzlﬁw)e'm't : (22 .
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Thus the Einstein equation in the nearly Newtonian case 1 5 I - ) )
becomes Ins= WJ dtd X% Limy (ahs— iahy) —c“(VU)
, — _02|V‘//IJ|2_2m|2U|¢IJ|2]:J’ dtlns (34
CZVZU”% myaihg, (32

(in units of time squared, to be multiplied ly/AG if one
wants a dimensionless actipwhere the classical Lagrang-
1 _ _ ian (with units of time is
W~ =5 2 (gfhe 2Mi et ™). (33
1 — . -
Lns= WJ d3><2 i (s — ) —Ey—Ex—Ey
1J

In summary, for nearly Newtonian self-gravitating con-
figurations of real self-gravitating minimally coupled mas- 1
sive scalar fields, the Einstein-Klein-Gordon equations be- =
come the coupled approximate partial differential equations
(200 and (32, which are the time-dependent Newton- ~MU,.—E,—Ex—2Ep
Schralinger or Schrdinger-Newton equationd.2—-15, plus
the additional algebraic equatidB3) for the small rapidly

f dsx%: im, (i) — ¢|J%J)

8mc®

varying termW in the nearly-Newtonian metri¢16). The :_13J d3x> im|(%3¢|3—¢|3%3)—MUm—E.
conditions for these nearly-Newtonian equations to be valid 8mc 1J

are thatX,,|¢;/?<1, |U|<1, and that the spatial deriva- (35
tives of they,;'s are small in comparison with their typical

values multiplied by their natural frequencies. [Then the Here the asymptotic mass of the configuratiessentially

Schralinger equatior(20) implies that the time derivatives the total rest mass, uncorrected for gravitational binding en-
of the ¢,,’s are also small in comparison with their typical €rgy), in time units, is
values multiplied by their natural frequencies.]

Unless explicitly stated otherwise, in this paper we shall 1 3 ) , G 3
assume that the metric is asymptotically flat with asymptoti- M= mf d X% mp | ;%= E’EJ d*xp,  (36)
cally Lorentzian coordinategexcept for a possible rescal-
ing). That is, we assume thak goes to a time-and direction-
independent constant at spatial infinity. Equati@2) then
implies that they,;'s must all asymptotically tend to zero at
spatial infinity. Equationg20) and (32) are invariant under 1 2 2 2
shifting U by a constant or a function purely tf provided P=arG . my|sl°. (37)
the ,;'s are shifted by the appropriate phase factor that is
also a function purely of. (This is simply the gauge trans-
formation of replacing the time coordinatevith a new time
coordinatet’ that is purely a function of the old time coor-
dinatet, and of rescaling the spatial coordinates appropri
ately) One could thus set the asymptotic valuelbfto be
zero, making the coordinates asymptotically Lorentzian
without any scaling factors. However, in some cases it is U~U,— —, (39)
more convenient not to make this restriction, such as when r
the time dependence of thé;’'s is purely by a time-
dependent phase factor, in which case one can cancel tlvhereM is the asymptotic value of the mass, given by Eq.
phase factor and make th,’s independent of time by an (36) above(in time units,G/c? times the mas$/, in con-
appropriate nonzero but time-independent asymptotic valueentional mass units, 9dc has units of length and is half the
of U. Schwarzschild radius corresponding to the meessdr is the

For the rest of this section, we shall take the approximateadial distance from the center of mass, also in units of
Newton-Schrdinger equation$20) and(32) as exact and so length.
write = signs rather thar= equal signs. However, we must By Eq. (20) and the asymptotic boundary conditions
bear in mind that these are actually only approximationsgiven, the masd/ is an approximately conserved quantity
valid in the nearly-Newtonian limit, for the actual Einstein- [approximate only to the extent that Eg0) is approximaté
Klein-Gordon equations taken as fundamental in this papercorresponding under the approximations used to the exactly

The time-dependent Newton-Scdinger equationg20) conserved ADM mass of the spacetime. In some sense it is
and (32), now temporarily re-interpreted as exact equationsmore nearly the rest mass of the mattier time unit9, but
may be derived from the classical acti@f. Ref.[16]) since only the zeroth-order approximation is being used for

with the rest mass density, in conventional units, being

When the Newton-Schdinger actionl g given by Eq.
(34) is extremized, so that the Newton-Sctlimger equa-
tions (20) and(32) are satisfied, one can readily see that the
“asymptotic form of the Newtonian potential is
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the rest mass density and for the spatial volume elemént, that

is only a zeroth-order approximation for the rest mass as

well. Ep=—Eu, (49
The various other energies appearing in the Newton-

Schralinger Lagrangiari35) (smaller tharM by factors that that

in equilibrium are of the order of a typical value gfl|,

which must be much less than unity for the nearly-

Newtonian approximation to be vajidare the following

guantities(in time units, inserting the factor of d/into the

right hand side of each of the equations with squares of sp

tial gradients, and the factor ofcf/into those without them,

under the assumption that the spatial distances and gradients 1. ] ] G

are being measured in length units rather than in the time Ep=§EV= —Ey=—-Ex= ?f d®xJ-VU,  (47)

units that would avoid the need for all factors ©f: the

(positive Newtonian potential gradient energy

E:EK+Ep:EK_Eu, (46)

and that the various energiéall of which have absorbed a
factor of G/c® to have units of timghave the following time
Herivatives:

where

1 : 2
=— | g3 2 imcs — —
Ey 87TCf dx(VU)%, 39 J:% _ﬁ(lﬂlJV%J_lﬂuv%J)) (48)

the (positive) scalar field gradient energy or matter kinetic _ _ .
energy is the mass-current flux vector in the conventional units of

L mass per area per tinfehen we remember that, has units

_ 3 2 of inverse time and that thg,;’s are dimensionle3s

EK_%f d X% Vnal®, (40 One can then see from Eq$46) and (47) that the
Newton-Schrdinger equation$20) and(32), along with the

the (indefinite in sign, though negative in static equilibrium asymptotic boundary conditions, imply that the total nonrel-

matter potential energy ativistic Newtonian energ\E is conserved, or constant in

time. Using the expression(89) and (40) above, and using

Ey= 1 3f x> 2mPU |y, 2= Esf d3xpU, (41) Eq. (46), we can see that Eg¢43) may be written, forE in
8mc 1J c time units(or E, =c®E/G in conventional energy unitsas
the (indefinite in sign, though also negative in static equilib- GE 1
rium) rescaled gravitational potential energy EEC—5*2 %J d3x( E |V 5)2—(VU)? | =const.
1J

1 1

1 (49)
11 _ 3 2001 _ 2
Ep=5Ev—5MU. chgf d X% mi(U—U.) 4]

This is a first-order correction to the rest mass energy of the
configuration in the total ADM mass enerdut since Eq.

G ;
— _3J d3xp(U—U.,), (42) (36) for M is only correct for the rest mass to zeroth order,
2¢c the correct first-order expression for the ADM mass is not
p
and the total Newtonian ener simply M +E. ] . . .
gy If one has a static solution of the Newton-Sdfirger
E=Ey+Ex+Ey,—MU,, equationg20) and(32), in whichU and eachp,zJ is constant

in time, then these are extrema d&,;+Ex+E\,=E

=Byt Ect+2Ep +MU,,. To put it another way, they are extrema of the total
1 Newtonian energ\E with the constraint of fixed. If one
= 87rc3f d?’XIZ [c2(VU)2+c?|V |2 finds these extrema by the method of Lagrange multipliers,
J extremizing E—AM, then the Lagrange multiplier i3
+2m2(U—U.)| )2, (43 =V, which thus isdE/dM for a continuous sequence of
such extrema.
The extrema of the Newton-Scltinger actionl ys given If one takes such an extremum static spatial configuration

by Eq. (34), with U fixed to a constant valu®., at spatial  and replaces)(x) by U(x)=U(e%x) and eachy;(x) with
mﬁmty, and W|th the z,.{;u functions fajlmg off sufficiently T,(x) =eBy,(ex) for small constantsr and 3, then for
rapidly at spatial infinity, are solutions of the Newton- the variation ofEy+Ex+Ey=E+MU.. to vanish to first

Schralinger equation¢20) and(32). order in botha and 8, and with the use also of Eq&l4)—

When these equations of motion are Sa.t'Sf'ed’ ON€ Cafhe) one can readily see that the static equilibrium configu-
readily show(by integration by parts, etc., using the bound- rations have

ary conditions given in the previous sententleat M is a
constant of motior{as mentioned aboyethat

2
Eyv=MU,,—2E,, (44) Ey=2E«=-2Ey=-Ep=5MU.=-2E. (50

3
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The relation that the gravitational potential energy ismation of shiftingU). Thus | would expect there to be
twice the negative of the kinetic energyp,=—2Eyx, and  discrete periodic oscillatons embedded in an open set of non-
hence thaE=—Ey, is just the usual virial relation for an periodic oscillatons for a given total mass.
attractive inverse-square force. The relation thEt However, if we include the effect of the oscillating term
=—(1/3)MU., involves the scaling behavior of the Schro of the nearly-Newtonian metri€l5), the W term given by
dinger equation and |mp||es that for ea(ﬂﬁ‘] to be static EQ. (33), we shall see in the next section that it leads to
(e_g_' not to have any time-dependent phase facboe must classical emission of each scalar field of massat frequen-
haveU.,>0 (essentially for the system to be bound cies roughly Znc=m;, so that generic oscillatons aret

A solution of the approximate time-dependent Newton-classically stable but radiate away their energy and scalar
Schralinger equationg20) and (32) is determined by an fields. The only exceptions appear to be field configurations
initial spatial configuration of the/,;’s (and, for the quanti- that have aJ(1) invariance, so that their total stress-energy
ties in those equations, but not for the gauge-invariant physitensor is independent of time and téterm vanishes.
cal quantities, by the gauge choice of the asymptotic value of

U). If the scalar fields all disperse indefinitely, thenwill V. CLASSICAL EMISSION OF SCALAR FIELDS

tend toU,, everywhere in space asymptotically with time so FOR GENERIC SITUATIONS

that the integral of the negative (VU)? term in the integral o , )
(49) goes to zero, and thus the Newtonian eneEgyust be The oscillatingW term of the nearly-Newtonian metric
nonnegative. (15) gives, in the Klein-Gordon equation of the scalar field

But if Eq. (49) gives a negative Newtonian enerfythen D5, transitions from its dominant frequency neay to fre-
the scalar fields cannot all disperse. To the extent that Eq§luéncies near @+ m, that radiate away, carrying off en-
(20) and (32) are accurate, at least some of the scalar field®dy and causing a generic oscillaton to decay. Here we as-
energy must remain gravitationally bound indefinitely. Un-Sume that the terms given in Eq17) describe the
less the scalar fields collapse gravitationally into configuraonradiating scalar field oscillations of an oscillaton.
tions violating the nearly-Newtonian approximation being 10 describe the radiation, extend Eg7) to include scalar
used(and perhaps leading to continued gravitational Co”aps(geld oscillations at these emitted frequencies, so the dimen-
into one or more black holgsthe scalar fields will continue Sionless rescaled scalar field;=y87G/c“®,; has the
to oscillate, giving an oscillaton. form
Negative Newtonian energly is thus a sufficient condi-
tion for an oscillaton(or for gravitational collapse as a pos-
sible alternativgin the nearly-Newtonian limit, though it is
not a necessary condition, as one can have an initial configu-

By~ €7 M e ME D (x ke eIt
K

ration which asymptotically tends to a bound part with nega- + x1gc€ CME Mty @i (2memy)t

tive Newtonian energy and a dispersing part with a larger _

positive Newtonian energySee Ref[2] for an example of + x5 MMty (51
this.)

In any case, we see that, at least in the nearly-Newtoniafyhere not only thej,;’s and their complex conjugates, but
case, gravitationally bound oscillatons are quite genlenie  aiso they,;«'s and x|,x's and their complex conjugates, are
less all but a set of measure zero collapse gravitationally int@nctions varying much more slowly than the frequencigs
black holes, which naively seems unlikglpccurring if the  angm, . Since fields that can radiate away must have fre-
single inequalityE <0 is true(and also in other cases when qyencies larger tham, , in the sum above we can omit the
just part of the system is boupdrhat is, any perturbation of ¥/3’s which havem,<m, .

a nearly-Newtonian oscillaton within a sufficiently small “"§¢ .0 ree. the sum ovét includes!. so the radiation field
neighborhood in the space of perturbations gives another og;.. ;s even,if there is only a singin,' or even just a single
cillaton (unless it collapsgsin this sense nearly-Newtonian ..\ <cajar fieldone choice for the indicels) denoting the
oscillatons are apparently stable under small perturbations, tfo . , — . .
ield). (Then we can omit thg/;« andy,,« terms, since their

the degree that Eq$20) and(32) are accurate and continue . . ) .
to remain valide.g., when one ignores the scalar field radia-feduencies would be just, , and they would just give smal

tion considered below, and when no continued gravitationagorrections to thej,; and ¢, terms that are not radiating

collapse occurs that takes one outside the validity of thesaway by assumptiop.

equations In principle one should include a whole infinite series of
Of course, if one requires an oscillaton of fixed total masgrequencies by adding toy all possible positive and nega-

(which itself is a continuous variable classically, thoughtive integer multiples of alimg’s, but the additional terms

quantized when one includes the fact that the scalar fielavill generally be smaller yet, and so to a good approximation

particles are quantizédo be periodic with some definite it is sufficient to consider only the;, x5, andx/,x terms

period (say in proper time at spatial infinity, to make the and their complex conjugates.

period gauge invariantthen one gets a nonlinear eigenvalue  Now the term with thee™'?™*™)! time dependence in

problem with presumably only a discrete set of eigensoluthe Klein-Gordon equatiofi) for the field ¢,; in the metric

tions for each masémodulo gauge transformations, includ- (16) with the oscillatingW term included, given by Ed33),

ing spatial translations and rotations and the gauge transfoyields
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[V2+4mK(mK+ml)]XIJK~_EmlmKE YLty -~
4 L dt jkim 25672
(52

dm 9m,2mﬁf d3xd3x’

|x—x]
X [(2my+my)sin(2y/mg (Mg +m;)|x—x'])
X i (0 P13 () e (X)) 3(X')

and the term with the'?™~™)! {ime dependence gives

3 _
[V2+4mK(mK_ml)]XIJK%ZmImK; YrLths - (53 +(2mg —my)sin(2Vmy(mg—m))|x—x'|)
2 m 2 ’ ’
We shall assume, except where explicitly discussed be- X Wi () ha(X) e (X)) g (X)]. (58

low, that there are no scalar waves incoming from infinity, so

we shall impose outgoing wave boundary conditions on the th d of the two t inside the int d wh
Xuk's and x/5’'s. Then they have the form n the second of the two terms inside the integrand, when-

evermyg —m; is negative, that term is to be omitted, since the

3m,my 21 T F X=X’ correspolndingw(l’JK ie spatially exponentially demped rather
Xiak(X) = d3x’ than having the oscillatory behavior representing an outgoing
167 Ix=x'| wave. (Of course, ifm¢—m,=0, this second term is just
zero, so we need not consider it in that case either.
X > YL (X)) gy (X)), (54) Remembering thet I am usiljg uni_ts and conventions in
L which M has the units of time, in which the,’s have the

units of temporal frequencyinverse time¢, in which the
3m|mKJ & ,eZ‘me(mK‘mlj‘X—X" #3's and their complex conjugates are dimensionless, and in

which either the spatial coordinates(represented above by
the 3-vectorx) have the units of time or else the speed of
_ light is set equal to unity, it is easy to see that both sides of
XD YR (X ) gay(X'). (55  Eq.(58) are dimensionless.

- Since the classical mass loss rate form(#8) is rather
Jiomplicated when there are several real massive scalar fields
of different masses, it may help to give it explicitly when
there is only one real scalar field of mass actually natural
Jme(me+my) frequency m:

U'JKZZ—ZmK+m| (56)

[x=x']

These represent scalar waves that are propagating o
ward at asymptotic speeds

and

dM  27m® [ d3xd3x’ —
Tt 256172f x—x'| sin(Bm|x—x']) *(x) 3(x").
vmg(mg—my) (59

U{JKZZ 2mK—m| , (57)

respectively, which generically are within a factor of the or- When there are two scalar fields of the same nmagfien
der of unity of the speed of lightaken to be unity in these oOne gets

equations
In contrast, the/,;'s are assumed to be localized almost

entirely within some region that we shall call the system. dM  27m® [ dxd3x’ L

Since they;’s are assumed to be slowly varying with re- T 256”2] Py sin(\8m|x—x'|)[ #3(x)

spect to the natural frequencies, we assume that theg,;'s

within the system do not change much during the light travel 2 TR0 1 2 .

time acrossythe system, or d?lring the timegit takgs for the OO+ o020 9a(X)

waves represented by thg;k's and x|;«’s to traverse the + z/xz(x)@(x’)]. (60)

system. That is why we can use an instantaneous approxima-

tion for the propagators in the formul&s4) and(55) for the

X1ok'S and xj5i’s. In particular, when), andy,, each have the same magnitude
If we surround the system by a sphere much larger thaeverywhere and are everywhere 90° out of phaseypr

the dominant region over which thé,,’s are significant, =+, [so the two real fields can be interpreted as forming

then we can calculate the flux of mass out through thak single complex field with a global(1) symmetry, then
sphere in the scalar waves represented by h@'s and  the mass loss rate is zero. This is a case in which the stress-
X1k'S given above. When we average this over the oscillaenergy tensor of the scalar fields does not have an oscillating
tion periods and do a bit of algebra that is not repeated hereomponent, and so there is no oscillatigterm in the met-

we get a classical mass loss rate of the oscillaton that is  ric (16).
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There is also the analogous case in which one has an The Newtonian part of the Einstein equations, E2R),
arbitrary number(greater than oneof fields of each mass can be integrated in the spherically symmetric case to give at
m,, when one has zero everywhere for the sum of thesach time
squares of th&),;'s (not the squares of the absolute values of
these quantitiesfor each fixed (for each different mass, ,
the sum being ovetl that labels the different fields with fixed
| and hence with fixed mass,). Then again the stress-
energy tensor and the met(it6) has no oscillating term, and
so there is no generation of outgoifgyk Or x|;x Waves. Here of course the primes and double primes onrtaén-
In these cases, if thg,;’s are not stationaryor stationary  side the integrals just denote dummy variables to be inte-
up to a time-dependent phase fagtout are slowly changing grated over, and not derivatives with respect.to
their form, then although there may be no oscillations at the The spherically symmetric analogues of E¢S4) and
frequenciesn, or their sums or differences, the metric would (55) for the x,;«’s and x|;«’s obeying Eqs(52) and(53) (to
still have a slow time dependence, and this would presumsolve the Klein-Gordon equatipare (with c=1 for simplic-

1 (r ®
U*Uw—Tf df'f dr'r” 5 melyay(r")|2. (64)
Crjo r’ 1J

ably lead to some scalar field radiation, though at an amourity here and in many formulas following

presumably considerably reduced from what it would be the
case if the sum of the squares of tig’s for at least ond

were different from zero so that there would be the moreX'JK(r)%

rapid oscillations in the metric.

The only case in which | would expect absolutely no sca-
lar radiation would be the case in which the metric is abso-
lutely stationary. Otherwise it would seem extremely un-
likely that the outgoing radiation at all possible multiples of
the metric oscillation frequency, plus or minus the natural
frequency of the fields that can potentially be emitted, would
be zero. However, | have not tried to find a rigorous proof
that there are not exceptional counter-examples to this con-
jecture.

VI. CLASSICAL EMISSION OF SCALAR FIELDS
WITH SPHERICAL SYMMETRY

A simple subset of the set of all oscillatons is the set in
which the metric and all of the scalar fields have spherical
symmetry. In the nearly-Newtonian limitvhich | am taking
to exclude gravitational wavgsthe spherical symmetry of
the metric follows from the spherical symmetry of the scalar
fields, and the spherical symmetry of the scalar fidids
cluding the outgoing wavedollows from the spherical sym-
metry of they,;'s. Therefore, we basically just need to as-
sume that eacly,;= ;(t,r).

The Klein-Gordon equatiofi) for the scalar field implies
that ¢,; obeys the Schidinger equatior(20), which for the
spherical symmetric case becomes

3mymg

( ezi VMg (M +my)r

8Vmg(myg+m))r

X f:dr’r’sir’[\/mK(mKnL ml)r]; P2 (1)
xw.J(r'>—fdr’r'sin[JmK<mK+m|><r'—r>]
(65

X; dliL(r,)le(r/))r

3m;mg

Xik(r)=

( eZi Jmg (Mg —mp)r

8vmy (Mg —my)r
X fwdr’r’sir{\/mK(mK—ml)r]
0

X2 g ) a(r)
—jrwdr’r’sir{\/mK(mK—m,)(r’—r)]

xg wiur')%(r')). (66)

_ ic2 The classical mass loss rate becomes
Y~ (Fny)"=im Uy, (61)
N 2mr T = dMm s 9m,2mﬁ/ 2mg+m,
where, except for the prime off,x and on dummy variables dt fx 16 \2‘/mK(mK+ m;)

inside integrals, a prime henceforth denotes a partial deriva-
tive with respect tor (or later, with respect to a rescaled
radial variablex=kr/c). One can avoid the explicit’s in

this equation by defining

fia(tr)=ry(tr),

which makes the Schdinger equation take the form

(62

ic?

o (63)

ic|J~ —imUf,.
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As in Eq. (58), in the second term that has the factors of 2
Jme(me—m,), if mg—m, is negative, the corresponding Y+ F¢’~2m2U ¥, (72)
term in the sum over modes is to be omitted, since it corre-
sponds to &,;x-mode frequency & —m, that is below the and
natural frequencyn, and hence to a mode that is not freely
propagating at large radial distance to carry off mass.

When only one real scalar field of massis present, the
classical mass loss rate becomes

2
U”+FU’%HF¢? (73

As noted previously12,14), this system of equations has

dM  27m* the scale invariance

TR o112 (68)

f drr sin(y/8mr) 2 (r)

(4,U,r)—> (N2 N2U N ). (74)

With two scalar fields of identical masses present, ondnserting explicitly the speed of light so that the radius
gets can have units of length instead of time as it implicitly does
above, | shall set

dM  27m 2 ox
T 211,2( drr sin(VBmI) g2+ y2) oy - 75
o 2
drr sin(V8mn) (v -+ y3) ) (69) K2S
0 =—", (76)
Vam?
Again one can readily see that if the sum of the squares of
the complexy fields with identical masses are zero, then —k2v
there is no classical mass loss, at least at this level of ap- U= 2m2’ (77)
proximation. With just two fields of identical masses, this
condition is thaty, = i . so withk having the units of frequency or inverse time S
andV are the dimensionless variables used by Ref] (ex-
VII. SIMPLEST SPHERICAL OSCILLATONS cept that what | now calk, they callr). Note that thisV,

which is just a rescaling of the Newtonian potentialwith
Now let us focus on the simplest case, in which there is dts sign reversed, is not to be confused with ¥g,x¥) in
single massive scalar field in a finite-mass spherically symthe metric(14), which is negligible in the nearly-Newtonian
metric nearly-Newtonian configuration that is very nearly pe-metric.
riodic in time and has no nodes. In particular, require ghat Although so far | have used a prime generally to denote a
be spherically symmetric, independent of tiii@xcept for a  derivative with respect to the radiuswhen | am using the
possible slowly varying phase facipand nowhere zertho  dimensionless rescaled radial variaklenstead as the inde-
nodes, though asymptotically zero at spatial infinity pendent variable, | shall use a prime to denote a derivative
By a suitable choice of the hypersurfaces of constant timewith respect tax. Then Eqs(72) and(73) (where the prime
one can cancel the phase factor to makeeal and positive  denotedd/dr) become the dimensionless time-independent
everywhere, which is what | shall assume, at the cost oNewton-Schrdinger equations
having U approach a nonzero constant at spatial infinity.
Then the time-dependent Newton-Safirger equations (x9)"=—-xSV (78)
(20) and (32) for a single scalar field with a single reg
become the time-independent Newton-Sdlimger equations and
[12—-15 (where for simplicity | am using units in which
=1 so that | can drop many occurrences of factors tifat
one can easily put back in by dimensional analysis if neede
with other choices of unils

(xV)"=—x%. (79

Rlote that | have now replaced the signs with = signs,
even though these equations are only an approximation to the
actual Einstein-Klein-Gordon equations, though an approxi-

Vip~2mPUy, (70) mation that becomes arbitrarily good in the nearly-
Newtonian limit.
and These time-independent Newton-Sdlirger equations
are the same as Eq$a) and(6b) of Ref.[14], except for the
VZU~m?y?. (71)  replacement of their radiusby my dimensionless rescaled

The fact that the arbitrary constantoes not appear in these
In the case of spherical symmetry which | am now alsoequations illustrates their scale invariance.
assuming, the equations take the fofwith ¢ rea) of two Another form of the equations that is helpful for some of
coupled second-order ordinary differential equations, the analysis below is to use
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N| =

p=5(S-V) (80)

instead ofV in Egs.(78) and(79), which then become
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fore a good integration variable to use to evaluate the
asymptotic value o¥, that isV,,.
The differential equations in terms of these variables are

M
(XS)”:_XSS_Zp) (81) X :(W_ 7)X=_VX, (89)
and M =X, (90)
(Xp)"=xSp (82) NG
. . w=—. (91
Yet another set of variables to use that were particularly X

convenient for numerical integration of the equations and for

the interpretation of the results are

X=xS, (83

M=—x2V', (84)
M

E—(XV)’ZY—V. (85)

The variableX is the same as that used in REf5]. The
asymptotic value ofM(x), say M., , is what is called in

Ref.[14] and what is called in Eq. (2.19 of Ref.[15]. The
asymptotic value ofv(x), sayw.., which is positive, is by
Eqg. (85) the same as the asymptotic value -/ (x), say
—V.,., which is the same as A in Ref.[14].

The initial conditions for these variablémitial in x, of
course, not in time, since all of the quantities being consid-
ered presently are independent of time in the approximation
that we initially ignore the mass decay rafre that atx
=0, we haveX=0, X'=S,, M=0, andw=—V,.

As discussed in Ref$14,15, for an everywhere regular
static spherically symmetric solution to the Newton-
Schralinger equationsS andV must be smooth everywhere,
and S must be decreasing exponentially at spatial infinity
(x—). At the origin x=0), S andV must have finite
values,S, andV, respectively, and must have zero dimen-
sionless radial derivative§' =0 andV'=0.

Because of the scale invariance, the only independent
nontrivial parameter for a solution regular at the origin is the
ratio Sy/V,. Integrating out from the origin gives a solution

M(x) has the interpretation of the rescaled mass interiothat diverges at finite radiusvith Sgoing to+< and withV
to the sphere at. From the fact that asymptotically one has going to —« therg if V,<0, so we shall choos¥,>0.
U~U,—M/r and V~V,+M/x (assuming a finite-mass Using the scale invariance, without loss of generality we can
oscillaton in which the mass-energy density, proportional tcand shall se¥,=1, leaving the nontrivial parameter to be
S?, asymptotically rapidly approaches zgrone can see that Sp. If Sy=0, then we just get the trivial solutio=0, V

the masg(in units of time interior to a sphere of radius
=cx/k is

k
M(I’):WM(X). (86)
The variablew can be written as
2m?

whereg is the acceleration of gravity at the same radius

where the gravitational potentiél is evaluated,

_dU_ M)
Q—W— P (89)

=V,, which is flat spacetime with no matter, a solution we
shall discard as previously studied by other people. By the
symmetry of the equations und&——S, we can thus
chooseSy;>0.

If Sy is too large, Eq(79) implies thatxV (initially grow-
ing asx) bends down rapidly, so that goes negative while
X=xS s still growing.[Initially X=xS also grows linearly
with X, as Syx, but, like xV, it also bends down. However,
Eq. (78) implies that it does not bend down so fastxag
bends down, fo6>V>0.] Then whenV becomes negative,
X' grows withx, and soX grows faster and faster, and even-
tually so doesS by Eq. (78) or the equivalent Eq(89).
Equation(79) implies that therxV and eventually als¥ gets
more and more negative. In fact, th&mgoes to+« andV
goes to—< at a singularity of infinite mass at finite Of
course, we shall discard these solutions.

On the other hand, &, is positive but too smalle.g., less

Thusw can be interpreted as a rescaled value that the gravthanVy=1 [15]), Eq. (79) implies thatV will stay positive

tational potential) would have at twice the radiusf U had
a uniform gradient fronr to 2r, with this uniform gradient
having the same value of the actual gradient at raditfshe

long enough for Eq(78) to imply thatxSwill oscillate (with
characteristic period in the variable of 27/\V if V were
constant. However, we want the regular solution with no

mass-energy density dropped precisely to zero outside sommdes, the solution with the largest valueSyfthat does not
radius,w would be constant outside this radius, at the valudead to a singularity. This value &, is an eigenvalue for the

w=—V,=(2m?%/k?>)U.,.

toward zerow is exponentially close te-V., and is there-

In the actual case in which the system.
mass-energy density, proportional38, drops exponentially

At this eigenvalueX= xS will bend over from increasing
at x=0 (X'=S, there to decreasing again toward zero
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value asymptotically, but never crossing zexd&. will also ) X4
bend over from increasingat unit rate at x=0 (since we D'=x 54:;2' (98)

have chosey=1) and will cross zero to become negative
and will eventually keep decreasing at the asymptoticallywith the boundary conditio(0)=0. Since the mass den-

rate given by the asymptotic negative value\ofsay V... sty in conventional units iéwith mandk in frequency units
That is, S will start out atS, with zero derivative with re-

spect tox (S'=0 initially) but will then bend down to ap- m2| |2 KkAS?

proach zero asymptotically at large(while then bending P="247G ~ 8aGM?’ (99)

back upward just enough to keep from crossing zero, but

never quite leveling out, except asymptoticallgimilarly, as  the asymptotic value d, namelyD.,, is proportional to the

a function ofx from x=0 to x=o, V will start out atV, integrated square of the mass-energy dengtd hence to
=1 also with zero derivative with respect xo(V'=0 ini-  the total annihilation rate of two scalarons into two gravi-
tially) but will then bend down and cross zero before bend+tons:

ing back up to level off toward some negative constant

asymptotic value/,, . 167m?

)I/:ofthis eigensolution, sinck starts at zero and initially D= k° f (Gp)*d*x. (100
increases linearly withx, and sinceM’=X? with M(0)
=0, and sincew starts at—Vy=—1 with w’'=X?/x, we | have used the differential equation routinevefPLE 8 to
have initially (near the originx<1), evaluate to high accuracy the eigenval® and the

asymptotic valuesM,, andw., . The eprint version of this
o3 1 L paper[17] explains in more detail the numerical procedure
M~ 35x" = 755X, (92 and gives all of the 30—35 significant digits of the results, but
here | shall give only a smaller number of digits.
The values | obtained, rounded to 19 digits, were

1
W~ — 1+ =Sox?, (93
2 Sy~1.088 637 079 429 044 996, (101
1_ ., M_~3.618 701 237 823 656 810, (102
X~Spx— ESOX , (94
w,,~1.065 731 278 365 451 059, (103
1
S~Sy— ESOXZ’ (95) D..~1.320 680 334 028 957 064. (104
One can see that my value 8 confirms all but the last
1., 96 of the 15 digits given for this quantity by Rdf14].
V~1- ESOX ' (96) From these numbers, one can of course construct various

combinations of them, such as the scale-invariant quantity

1 1 A/B? that Ref.[14] discusses:
p~§(80—1)(1+ gSoXZ : (97)
A W,
o ) o _ =2 =——5~—0.081 384 603 921 072 995(105)
Then asx is increased tee, X will at first increase, while B MZ

bending downward and eventually passing a maximum and

then decreasing. While decreasingwill pass an inflection ~ The first two nonzero digits of this quantity seem to agree
point (at the point at whichv crosses below zeyand will ~ With the valug[14] plotted in their Fig. 4, but they do not list
then bend upward to level out asymptotically as it also apits numerical value.

proaches zero asymptotically. At the same tithere mean- From the scaling relation given by E(B6), we can get

ing during the same evolution infrom 0 tox), M will start ~ the small dimensionless mass parameter of the nearly-
from 0 with zero slope and curvature and initially grow asNewtonian oscillaton,

the cube ofx (i.e., as the volume interior to the sphere of

radiusr = c_x/k) but e_ventually will r_each an inflection point p=Mm= LMOC _ (106)

(at the point at whichX reaches its maximumand then 2m

gradually level off to approach its asymptotic valud., . ) ) _

The variablew will start at —1 atx=0 with zero slope and Since in the end we want to express other properties of the
will bend up to cross zero, before bending downward to levePscillaton in terms ofu, we shall actually invert this to get
off asymptotically and approach its asymptotic valwe the scaling parametek (which has units of frequency, as

- V.>0. doesm) as

For use below in calculating the quantum decay rate of 5
this type of oscillaton, it is also of interest to integrate the k= m'““_ (107)
variableD(x) given by the differential equation M.,
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For example, the value of the Newtonian potential at in-the single scaling parametgr=Mm), we need to use Eq.

finity is
k2

— _VDO

U= 2m?

2W,,
5 1?~0.162 769 207 842 145 990°.

(108

We can then express the fractional binding energy of a

nearly-Newtonian oscillaton as

k2 2w., 5
Teme T gt T

(109
with

©

2

o0

~0.054 256 402 614 048 663 473110

If we take the number of scalar particles to be

M, c°M
m, #Gm’

(112

so the conventional rest mass of the oscillatoN ismes the
conventional rest mass of the scalar field quantuh,

=Nm, , then the conventional total energy of the oscillaton

is, to first order inu?,

Eto=Nm, c?(1+E/M)=Nm, c*~N®m] eG?/#?.
(112

(69) to evaluate the classical mass loss rate. By using Egs.
(75), (76), and (107), we can write the classical mass loss
rate, or power emitted in classical scalar radiatidimen-
sionless when the masM is in time units, i.e., M
=GM, /c? in terms of the mas®, in conventional mass
units), as

27ub

P.=— M classical™ m FZ: (116
F= fwdxxsg(x)sir‘(ax), (117
0
g VoM (119
o

Because the nearly-Newtonian configurations have
<1, theu-dependent constaatis very largea>1. There-
fore, the sin@x) factor in the integra(117) for F oscillates
very rapidly and nearly washes out the integral for laage
causingF to be very small.

We can estimate the value Bfby the following method
of contour integration: Sinc&(x) is an even function ox,
the integrand is an even function &f and so the integral
along the real axis from 0 te may be replaced by half of
the integral along the real axis fromo to +o. Then the
real variablex may be extended to the complex variablas
a function of which the integrand is analytic except at poles
of S(z). One may split sird2)=0.5e'?*—0.5€e'?? into the
first exponential, which drops exponentially along the nega-
tive imaginary axis for the complex and the second expo-

This would be the same value for a boson star with g,enia| which drops exponentially along the positive imagi-

complex scalar field havingd (1) symmetry. For that prob-
lem the value was calculated by Ruffini and BonazZd@|
over 34 years ago, getting=0.1626. Except for the last
digit, this corresponds to three times the value above.

nary axis for the complex. By splitting up the integral into

the corresponding two pieces, the first piece may be replaced
by a contour integral making a clockwise loop around the
lower half plane (Inz<0), and the second piece may be

One can also compare my numerical results with th&gpiaced by a contour integral making a counterclockwise

5-place results for a boson star by Friedberg,
[12] (for n=0 node$. In terms of my calculated parameters

Lee, and Pangqn around the upper half plane (& 0), which gives an

equal contribution.

and my numerical results, their calculated parameters would “Now one of these contour integrals, say the second one

be

Yo=—Vo/Sy=1/S;~0.918 579 771 804 638 252113
Y. =W../Sy~0.978 959 194 486 001 441, (114
(119

They got y,=—0.91858, y,.=0.97896, andy,=3.46826

y1=M.,ISY?~3.468 256 171 397 572 160.

(since they each give equal contributipn®ay be evaluated
by finding the residues at each of the poles of the integrand.
There are a series of poles $fz) running up the imaginary
z axis. Because of the'?* factor from sinfz), the dominant
residue will come from the pole closest to the real axis, say
atz=iy,.

From an analysis[14,15 of the time-independent
Newton-Schrdinger equations in their dimensionless form

in perfect agreement with my results rounded to five d'igits(78) and(79), one can see that the solutions are analytic over

after the decimal point.

VIIIl. CLASSICAL EMISSION FROM THE SIMPLEST
SPHERICAL OSCILLATONS

Now that the nodeless spherically symmetric nearly-

Newtonian configurations have been foutktermined by

the complexz plane, except for movabl@noving if S, were
changedl double poles with coefficients-6. In particular,
near the pole at=iy,, Shas the asymptotic form

SO~ Ty

P (119
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Because it isS*(z) that appears in the integrél17) for F, 1 « 1
which thus has a 6th-order poleztiy,, one must integrate ~ IN5-= w 2 |”; —InC+0O(u)
this factor by parts five times, giving the 5th derivative of the ¢

e'8Z factor, and hence 5 powers afin the dominant term of
the result.(I shall drop terms with lower powers @ that ~ 39.433 795197160163 094
arise from differentiating the factor rather than the'@? I
factor, since they involve higher powers of the small quantity 1
w.) As a result, one finds that -2 In;—15.149 837 127 888 728 190(u),
(129
F~—1.8ra’y e 2. (120

so that the calculations performed here have given the three
leading terms in an expansion for InPL).

Thus there is one more parameter that must be determined It is beyond the scope of this paper to do the nonlinear
numerically before we can evaluate explicitly the dominantgravitational calculations to find the classical mass loss rate
term (for u<1) in the classical mass loss rate, namely thewhen u is not small, but if one neglects te(u) correc-
valuey,, that locates the pole i6(z) atz=iy, that is above tions, one can make a very crude estimate for the mass loss
the real axis but nearest to it. rate even up to the maximum value of say umax-

To find y, one can integrate the time-independent For what are generally called boson stdsfationary
Newton-Schrdinger equation§78) and (79) up the imagi- spherical configurations of a complex massive scalar field
nary z axis (after replacing the real radial variabtewith the ~ Whose phase rotates in a circle in the complex plane, equiva-
complex radial variable). For more details of the numerical lentto two real scalar fields oscillating 90° out of phaske
procedure and for the result to more than 30 significant digmaximum value ofu is 0.633[12]. For oscillatons of a real
its, see Ref[17]. Rounded to 19 digits, the pole location is at massive scalar field, the initial calculatiofs] gave umax

~0.6. Alcubierreet al. [9] have givenumn,,= 0.607.
For example, if the coefficient of th@(u) term of Eq.
Yo~3.852 750 221 596 529 692. (121 (125 were the same magnitudeut of uncertain signas the
coefficient of the 14 term, namelya~39.4338, then just
taking this single term with, say =0.633, would change

Now that we have the last parametgs, that we need to  In(1/P¢) by roughly +25.0, or a total range of roughly 50.0
evaluateF by Eq.(120), we can go back and plug the result for this quantity, giving an uncertainty in the mass decay rate
into Eqgs.(116) and (118 to give the classical mass loss rate by a factor of aboue>*°~5x 10?*. One might hope that the
as uncertainty is a lot less, but without calculating tO¢ w)

and higher terms, | do not see how one can be sure.
Despite this proviso, if we did naively insert the boson
. C star maximum mass parametef,,~0.633 into Eq.(122),
Pe=—Mgpassica™ —2€ “/*, (122 we would get a mass loss ratdimensionless, since our
H masses denoted byl have the factor ofG/c® inserted to
give them the dimension of timef about 8< 102, How-
ever, if it could be larger or smaller by a factor of roughly
20~ 7x 10, the dimensionless mass loss rate could be as
large as roughly & 10 ° or as small as roughly 16
_ ~ In any case, unless the coefficient®fin the O(u) term
- \/§M°°y° 39.433 795 197 160 163 094(123 of Eq. (125 (or actually this entire correction term divided
by w) were negative and had a larger magnitude than the
coefficient of the 14 term, it seems that the dimensionless

where

and where mass loss rate is always less than about®tQ This means
that during a one-radian change in the phase of the scalar
23237 field oscillation(a timet=1/m), the oscillaton would have
C= m2a?~13 797 437.776 333 014 909. lost less than one-billionth of its mass. If instead the correc-
52 tion to applying Eq{(122) to u= umax Were negligible, then

(124 during the 2r-longer period of a full scalar field oscillation,
even a maximum-mass oscillaton would have lost less than a
billionth of a billionth of its mass.
| should emphasize that this is what | believe to be just the This result shows why the numerical analyses to date
dominant term in the classical emission of scalar waves fronfhave not shown any instability of the oscillaton, since its
a nearly-Newtonian oscillaton whea<<1. | would expect mass loss rate is so low.
this expression to have a relative error of the ordegp.of Figure 6 of Ref.[9] for ©=0.5726 shows an apparent
To put it another way, one can presumably write numerical mass loss rate of abouk30 °~5x10 %y in
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dimensionless units, but since this is several times highedefine it to more accuracie.g., “precisely”) would require
than the crude guess above for the upper limit for the massore care.
loss rate, and is- 2 X 10M~ 33~ %% times larger than what Although | do not see any highly preferred way to make
my rashly interpolated formula would predict for that  the definition precise, | can propose the followiad hoc
namelyP.~1.4X 10" %, | suspect that the authors are indeedmethod, which leads to a consideration of precisely periodic
correct in attributing this to “a small amount of numerical pyt infinite-mass oscillatons:
dissipation still present in our numerical method.” However,  Temporarily relax the condition of no incoming waves
| cannot completely rule out the possibility that tu)  that has been fundamental to the discussion so far. Then it
term in Eq.(125 is roughly —58u at ©=0.5726, so that appears that one can have precisely periodic oscillatons,
there conceivably might be mass loss comparable to thahough now with infinite mass, so that the spacetime is not
given by Fig. 6 of Ref[9]. quite asymptotically flatalthough having curvatures falling
Later we shall find that for sufficiently small, the clas-  off fairly rapidly, so, for example, the spatial integral of the
sical mass loss rat€l22) is dominated by a quantum mass Kretschman invariant, the total four-fold contraction of the
loss rate. However, when the classical mass loss rate domgquare of the Riemann tensor, is finite at any jime

nates, and whep <1, the timet,—t; to evolve frompu, to The idea of these precisely periodtbough infinite mass
Mo IS approximately oscillatons is that not only does the oscillation of the scalar
. 4 field at frequencym (with respect to a suitably scaled coor-
fo o M iy _ M ol (126 dinate timet in a gauge or choice of coordinates in which
2 "1 4Cm aCm ' 0oi=0 andgq is independent of) have precisely the right

phase to drop exponentially to zero at large spatial distance

For example, we could defirt¢u) to be the time to decay py the gravitational binding of that mode, but also the oscil-
from p= pmax to some smaller value of. Then if umax  lations at all odd multiples ai also have precisely the right
— > pho/ @~0.00934, then the magnitude of the first term phases to drop exponentially to zero at large spatial distance
on the right hand side of Eq126) (with u,=u) is much by the gravitational binding of those modes as well, when
greater than the magnitude of the second tésay withu;  one takes into account the gravitational field not only of the
= umax=0.607). Since this is necessarily the casegetl  mode at frequencyn but also the gravitational field of all the
where Eq.(126) is applicable, we may then drop the secondhigher-frequency modes.

term and say that the time to decay downute 1 from pmay That is, one has a sequence of relations for the modes at
by the classical emission of scalar radiation is each frequency that start as follows for the lowest mode: The
4 mode with frequencym is chosen to have the right phase
t(w)~ ~ eali 127 (e.g., the right relation of its initial-im-value atr =0, deter-
aCm mined by the quantitys, above, to the value ofjy, there,
determined by the quantity, above in the weak-field or
IX. PRECISELY PERIODIC BUT INEINITE-MASS nearly-Newtonian limit, so that once the stress-energy ten-
OSCILLATONS sor of the scalar fiel@predominantly from this mode at small

radii) causes—gqg to rise above unity at sufficiently large

Although it is beyond the scope of the present paperradiusr (so that this mode there has a proper-time frequency
which just gives numerical results far<1, it would be of  that is less than its natural frequenay and hence has a
interest to be able to calculate the functitfu) for all »  concave or exponential radial dependence for larger values
<mmax- TO calculate “exact” resultgi.e., exact up to nu- of r), one has only the asymptotically exponentially decay-
merical errors in solving the differential equation®ne ing behavior of the mode at larger valuesrof
needs a precise definition @f,., and of u(t) for the time However, the oscillation of they; components of the
thereafter. metric (at frequencies that are even multiplesnof couples,

It is rather hard to defing.,, precisely(and the initial  via the Klein-Gordon equation for the minimally coupled
oscillaton configuration that gives this maximum mass massive scalar field, the modes of the scalar field that have
since any initial configuration is losing magassuming frequencies that are different odd multiplesrof Thus, for
boundary conditions of no incoming scalar waveso one  example, the mode with frequencyn3s excited and propa-
could start with a wide variety of initial configurations. But gates out from the region of the oscillaton where the mode
essentially one would like to start with one out of a set ofwith frequencym dominates the stress-energy tensor.
initial configurations that lose mass as slowly as possible for So far, this is just like the decaying oscillaton described
each initial mass, and then choose the maximum-mass elghove. If there are no incoming waves at frequenny, ghe
ment from the set members that do not have rapid mass logsutgoing waves carry off energy from the oscillaton, which
(e.g., at a rate roughly given by the dynamical timescalejecays(and hence is not precisely periodic in time
1/m). If the initial decay time scale is of the order of  On the other hand, for the precisely periodic but infinite-
[ el (@Cm)]e¥#max as the weak-field formulas would mass oscillaton, there are both incoming and outgoing waves
suggest, then to the degree that this is much larger than 1/ at frequency &, and their stress-energy tens@vhich at
one can define the maximum-mass initial configuration tosufficiently larger dominates over that of the mode of fre-
that accuracy, i.e., with a relative error that would be ex-quencym, since thatm-frequency mode is asymptotically
pected to be of the order o&@/uﬁw)e*“’“ma& However,to  exponentially decaying at sufficiently large eventually
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causes—(go to rise above 9, so that then the mode with broken, then presumably the mass does not depend on which
frequency 3n also has an approximately exponential radialof those times it is evaluated.
dependence at larger With the right choice of phase of this The value oM (t,r) at that value of and ofr could then
mode [i.e., of how big is the part that goes roughly as be said to be a canonicéthoughad hog finite precise value
sin(y8mr)/r at smallr], only the decaying exponential is for the mass of a decaying finite-mass oscillaton without
present, and the mode at frequenom Zlso goes to zero nodes that is in some sense represented by the precisely pe-
exponentially rapidly at sufficiently large. (The mode at riodic infinite-mass(at r =) oscillaton.
frequency 3n starts to fall off exponentially in radius at a  The idea of the representation is that in the precisely pe-
much larger radius than the mode at frequencgoes) That  riodic oscillaton, the value of determined above would be
is, the phase is chosen so that at each radius where this mogéere the mode with frequeney has decayed exponentially
is oscillating radially, there are equal parts of outgoing ando a very small value, where its time-averaged energy density
incoming waves, and then the rising gravitational potentiahas dropped to that of the tiny amount of outgoing and in-
from the stress-energy tensor of mostly that mode makes theoming waves at frequencyn® For the finite-mass decaying
mode gravitationally bound so that the outgoing waves reoscillaton, if one does not include the energy density of the
flect off the potential barrier and become the incomingmodes with frequency® or higher outside this radiug.g.,
modes at smaller radii. if one assumes that they are just starting to be emitted and so
Of course, there is also coupling to modes with frequencyat that time are negligible outside this radiuthe energy
5m, and these modes must also be given the right phase iensity of the mode with frequenay is so small at that
have equal parts of outgoing and incoming waves for radii atadius(and dropping roughly exponentially with radjugat
which —ggr<25, so that when one gets so far out that thethere is a negligible addition to the mass from that energy
energy density of that mode, mostly, causeggy, to rise  density in the finite-mass oscillaton.
above 25 and that mode also to develop an exponential be- That is, it is negligible unless we are wanting to get some
havior, one has only the approximately exponentially decayabsolutely precise number to assign as the mass of the oscil-
ing piece. laton, in which case we must go from the slightly-poorly-
And so it goes for all higher modes with frequencies thatdefined initial configuration of a finite-mass decaying oscil-
are odd multiples om, say (2h+1)m. They must each be laton to the precisely define@but unphysical infinite-mass
chosen so that have equal amounts of outgoing and incomingscillaton.
waves for —ggo<(2n+1)2, where that mode oscillates in  To get a representation of the maximum mass of a decay-
the radial direction, and then that mode is totally reflected bying finite-mass oscillaton by this sort of precise mathematical
the gravitational potential for- ggo>(2n-+1)>2. definition, one must choose the right precisely periodic os-
Since this process must continue indefinitely in order thatillaton. There can be an arbitrary number of nodes in the
the oscillaton be precisely periodic in time and not be losingnode with frequencyn before it decays approximately ex-
energy to outgoing waves of any mode, one must hav@onentially in the radial direction, and to model the decaying
—doo rising indefinitely, so the metric is not asymptotically finite-mass oscillaton which has no nodes in its mode with
flat and indeed ha®l (r), the mass interior to radiusrising  frequencym, we want the precisely periodic oscillaton also
indefinitely withr : these are infinite-mass oscillatofifhey  to have no nodes in that mode. On the other hand, we want
are also almost certainly unstable to small perturbations, buhe modes at frequencies that are higher odd multiples, of
that is another story. say (2h+1)m for each positive integen, to have as low a
These precisely periodic but infinite-mass oscillatons arevalue of energy density possible, which would mean they
of course not physically realistic, but they do make interestshould each have the largest number of nodes possible before
ing theoretical solutions of the coupled Einstein-Klein- —gq, rises above (8+1)? [at a rate with respect to radius
Gordon equations that one may use for such purposes disat is given mainly by the energy density in the outgoing
defining a precise canonicélhough ratherad hog maxi- and incoming waves at that frequency, oneayg, rises

mum mass for a finite-mass oscillaton without nodes. above (h—1)? and the mode at the next lower frequency,
For example, one could take a precisely periodic oscilla{2n—1)m, is reflected back inwaid
ton and then evaluafd (t,r) at a timet when the scalar field Smaller numbers of nodes are possible for each of the

at thatr is passing through zero, and at a value wihere the  higher-frequency modes if there is an extra magnitude of
time average of the energy density of the mode with fre-outgoing and incoming waves at that frequency, so there ap-
quencym is equal to the time average of the energy densitypears to be a whole infinite sequence of integers to be speci-
of the mode with frequency . (If the scalar field passes fied for the generic precisely periodic oscillaton, even after
though zero more than twice in each coordinate time perio&pecifying, say, the time-averaged energy density at the cen-
21r/m, then choose one of the times at which the field at thater to give the one continuous parameter of the classical os-
r is zero but the magnitude of the time derivative of the fieldcillaton that is the nonlinear-gravity analogue of the scale of
is a minimum among all of these times when the field is zerahe nearly-Newtonian oscillaton. This means that there
there. If that still does not uniquely specify the time within should be uncountably many periodic oscillatons at the same
one period of the metric, which is a half-periadlm of the  value of the central time-averaged density.

scalar field, then go to the minimum of the magnitude of the It is plausible that they form a fractal set of perpetually
second time derivative of the field among those times, etcpscillating spatially inhomogeneous but spherically symmet-
until the degeneracy is broken. If the degeneracy never isic periodic-in-time solutions of the Einstein-Klein-Gordon
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equation, somewhat analogous to the apparently fractal set db not see how uniquely to disentangle this slow secular
homogeneous but nonperiodic cosmological solutions of thevolution from a periodic component. Perhaps if one wanted
same equationgl9]. an absolutely precise mathematical definition, which has

However, here we want just the simplest example, withbeen the aim of this long discussion, one should use instead
the fastest possible falloff of the energy density, to use tas the sphere whed (t,r) is to be evaluated as a function
define a precise value for the maximum mass of a finite-masgf r, a sphere that has a constant circumfererites
oscillaton with no nodes for the mode with frequemayand ~ Schwarzschild coordinate, after taking to be the circum-
only outgoing components for the modes with higherference divided by z, though not ther coordinate that
frequencies—these frequencies being only approximate imakesgg, independent of time for the precisely periodic
the slightly nonperiodic case in which the finite-mass oscil-oscillator).
laton is actually slowly decaying with time. There is also a slight ambiguity in definingabsolutely

Once we have chosen the simplest precisely periodic ogarecisely ifggy has a slow secular evolution rather than being
cillaton for each possible value of the central time-averagedrecisely independent dfas it can be in the precisely peri-
energy density, we still need to choose the one that gives thedic oscillaton with a suitable choice for the time and spatial
maximum value of the mass defined by the procedure aboveoordinates. One commonly used precise way to define it
That will be the unique precisely periodic oscillaton that wewould be to define the constanthypersurfaces to be or-
will use to represent in some sense the initial state of a finitethogonal to the worldlines at constant angular coordinates on
mass decaying oscillaton, and it will give us a precisethe spheres of constant circumference, which leads to so-
(though rathelad hog mathematical definition oft . called Schwarzschild coordinates.

Now to get a definite initial statissay for giving a precise One disadvantage of the Schwarzshilg) coordinates is
definition of u(t) and of its inverset(w)] for a finite-mass that inside the oscillaton, the worldtubes of constant
decaying oscillaton that is represented by the unique preSchwarzschild (circumference divided by 2) oscillate in
cisely periodic oscillaton above, one could take the initialand out, relative to coordinates in which not onlygig=0
metric and scalar field values and time derivatives of theas is true also for the Schwarzschild coordinates by con-
precisely periodic infinite-mass oscillaton at the tinde-  struction but alsoggg is constantfor the precisely periodic
fined above for determining the value bf(t,r) that was oscillator). Then since the hypersurfaces of constarii
used to represent the maximum mass of a decaying oscillé&chwarzschild coordinates are by construction orthogonal to
ton, out to the value of that was also determined by the the worldlines of constant Schwarzschildand of constant
procedure abovéwhere the time average of the energy den-angular position on the 2-sphefethese hypersurfaces also
sity of the mode with frequencyn had dropped to the same bend forward and back by a rather considerable amount in
time average of the mode with frequency;nB One could the interior of the oscillaton, giving periodic effects that de-
then truncate the precisely periodic oscillaton at that radiuspend on this global choice of Schwarzschild coordinates and
replacing its initial data on that hypersurface with initial dataare actually considerably larger than any effect in the local
that agreed for smaller valuesobut which for larger values geometry.
of r has zero for both the scalar field and its time derivative, However, at the value afdefined above, where the time-
and the Schwarzschild values for the initial data of the metaverage of the energy density of the mode with frequeancy
ric. (That is, the solution can be taken to be vacuumhas dropped down to equal the corresponding value for the
Schwarzschild on the initial time surface for larger values oftiny outgoing and incoming wave modes with frequenay, 3
r.) one is where the energy density of the oscillaton is so low

Next, simply let this truncated oscillaton initial data that the radial oscillations of the world tubes of constant
evolve by solving the Einstein-Klein-Gordon equations, toSchwarzschildr are very small and should not have a sig-
represent the decay of an initially maximal-mass oscillaton.nificant effect.

As energy flows out from the decaying oscillaton in the One still has to define thelabeling of this foliation into
form of scalar waves moving slower than the velocity of constant: hypersurfaces. When the metric is asymptotically
light, the ADM mass and also the mass at future null infinityflat, as it would be for the decaying oscillaton, then one can
stay constant, so we need a different definition of the mass alefine it so that is the proper time along the world tube of
the decaying oscillaton to define a nontrivial time depen-infinite circumference. However, with this normalization, the
dence for it. For that, we can simply chodgét,r), with the  coordinate-time period of the approximately periodic decay-
coordinate value of kept fixed at the value where, in the ing oscillaton would be shifted from the valuer®m that it
periodic oscillaton that provided the initial data out to thatis given by constructioinormalization oft) in the precisely
radius, the time-averaged energy density of the mode witlperiodic oscillaton.
frequencym equaled that in the mode with frequencin3 Another simple but inequivalent choice would be to

Here the coordinate value of once determined for the chooset to be proportional to proper time of the central
precisely periodic oscillaton, is assumed to be kept rigidworldline atr=0. Then one can have the approximate pe-
with no gauge freedom, say by continued use in the decayingod of the approximately periodic decaying oscillaton be
oscillaton of the gauge choice thgg; =0 and thagyyhas no  very near 2r/m by choosing the constant of proportionality
periodic component. However, singgy has a slow secular between proper time and coordinate time to be the same as it
evolution for the decaying oscillaton, | am not quite sureis in the precisely periodic oscillaton et 0 in the gauge for
how to fix the gauge absolutely precisely in this case, since that solution in whichgy is independent of time. However,
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one should note that as the oscillaton decays and the gravie a mass that is smaller by a factor @f The numerical
tational potential at the center changes relative to that at inealculations done above for the nearly-Newtonian limit im-
finity, the nearly periodic oscillations of the scalar field will ply that

have its approximate period of oscillation secularly shifted y

from the value 2r/m that it has initially by this choice of. . Mmax eu

A third choice for the labeling of the constant- q~R(e :U’max)ﬁe Hmax, (130
Schwarzschild- hypersurfaces would be to chooserat0 “«
the time coordinaté so that the quantitys defined by Eq. This dimensionless numbey, which is somewhat of an

(21) would be real and positive for ali This essentially  analogue of an average value of the oscillaton system for
forces the coordinateto be chosen so that, at the center atmasses within a factor af of the maximum mass, is a pure
least, the coordinate period of oscillation of the scalar field  mathematical number determined purely by the Einstein-
(or of the rescaled dimensionless fie) is fixed to be  Kjein-Gordon equationéwith no dependence upon the scale
2m/m. This is perhaps the best choice if one wants to counet by the scalar field natural frequenay) and by the

the number of oscillations of the scalar field, and to make anathematically-precisébut admittedly rathead hoo proce-
precise count even when that number is not an integegyre given above.

Henceforth we shall assume that we have made this choice |t jg interesting that] is apparently quite largéat least if
for the Schwarzschild time coordinatgwhich will notbe  the correction factoR(e™ ' ma) IS NOt too many orders of
the same choice that would makequal to proper time at  magnitude smaller than unitya counterexample to the folk-
radial infinity). lore that numbers defined purely mathematically tend to be
Once a suitably time-evolving sphere is defined to repreyithin a few orders of magnitude of unity. For example, if
sent the outer surface of the decaying oscillataith the Umax=0.607 and ifR(e1x,na,) Were unity, then one would
waves that go outside that radius being considered outgoinget q~8.20x 10°°. [However, there are other counterex-
waves rather than part of the oscillaipand once one has a amples that are even more extreme, such as the unknown
precise time coordinat one can in principle solve numeri- yrimen that is the first positive integer greater than one such
cally for the mass as a function of this Multiplying the  {hat the number of primes less than or equahtmamely
massM(t) (in time unity by the constanm (the natural () s greater than Lif), the principal value of the inte-
frequency of the scalar field, in inverse time upitgves gral of 1/Inx from x=0 to x=n, which forms a good
n(t), the dimensionless measure of the evolving mass of thﬁsymptotic estimate forr(n).]
oscillaton. . _ _ _ It would certainly be worthwhile to calculate numerically
Assuming thatu(t) is monotonically decreasing with {46 values Ofimax @nd ofg, as well as the functioR(u) for
(which it conceivably need not be vv_ithin each periqd, sinceglues Ofie UP 10 ey, bUL Since that cannot be done within
the waves need not be purely outgoing over the entirety of &6 nearly-Newtonian calculation reported here, it is beyond
period, though they should be when averaged over an intgne scope of this paper and will have to wait for future re-
gral number of periods one can invert this relation to get gggrch.
t(w) to see the time nee_ded ft_)r an oscillaton to decay from |+ \would also be amusing mathematically to get a quanti-
the maximum-mass configuration to a smaller valu@.oin  tative description of the particular precisely periodic oscilla-
the nearly-Newtonian limit in whichu<1, one would ex-  ton described qualitatively above that | have used to repre-
pect that this time should asymptotically approach that giveyent (py its part within the radius defined above the
by Eq.(127), not in the sense that the difference between thenaximum-mass decaying oscillaton. In particular, what is the
actualt(u) and that given by this formula would go to zero, gyantitative asymptotic behavior of the metric and of the
but in the sense that the ratio of the acti(al) to that given  scajar field[each mode of which, of frequency 12 1)m,
by Eq.(127) would tend to unity ag. tends to zero in this  eventually decays approximately exponentially in the radial
purely classical calculation. direction as the integrated gravitational effect of this and
Of course, it would be interesting to calculate numerically gther modes causesgo, to rise above (A+ 1)? so that the

the value Ofumax and of the ratio of the actua(u) to that  mode becomes gravitationally bodfdHowever, this will
given by Eq.(127), the latter being the function also be left to future work.

aCm -
R(M)E M4 efa/’“[(,ud). (128) X. QUANTUM DECAY OF SINGLE-FIELD OSCILLATONS

Besides the classical decay of finite-mass oscillatons to
outgoing scalar radiation, there are also quantum decay pro-
cesses that appear to be dominated by the annihilation of two
scalar particles into two gravitons. This rate also goes to zero
as u is taken to zero, but only as a power-lawin so for

g=mt(e * fma), (129 sufficiently small . (depending on the ratio of to the
Planck valug it actually dominates over the classical decay
which is the angle by which the phase of the oscillatinginto scalar radiation.
scalar field advances 2 times the number of scalar field The annihilation cross section for two nonrelativistic sca-
oscillations as the oscillaton decays from its maximum masslar particles to annihilate into two gravitons has been given

In particular, it would be interesting to calculate the large
dimensionless number
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by DeWitt[20] to be(where | have inserted the factors of the ing energy, M, =m,N=(Am/c?)N, then we get the rate
speed of lightc, that he and | usually set equal to unity per time at which the total mass in time units decays away,
the dimensionless rate

2wG2m2  27#2G2m?
= : (13D . du AG dN

3 7
Cv Cv = — —
Pa= = Mauanun™ = Gy =~ o ™ dt

ONR™

where the first form is in terms of the scalar particle mass in
conventional mass units, which | have been callimg, and

G e
fm5¢//4d3x= ﬁf meyiredr. (139

the second form is in terms of the scalar field natural fre- = 8uct
guency in inverse time units, which | have been calling
which is given by Eq(2) asm=m,c%/4. For the nearly-Newtonian spherical oscillaton analyzed

Therefore, if we have a number densityof scalar field above, by using Eqg75), (76), (83), (98), (99), (100), and
particles of one specigsnore than one species will be con- (106), one can show that the quantum decay (atr time
sidered in the next sectipnand hence a conventional mass in the masgin time unitg is

density
2 y hG 2 D, 5 m? 5 2. .25
p=m,n=(Am/c)n, (132 PqE_Mquantumwll'?m IVE M :QFM =Qtpmu’,
s Pl
the annihilation rate(per time for one particle passing (139
through is
where
R=nowgv = (27h°G?m?/c’)n. (133 .
= — 3 o1
Two scalar particles annihilate in each such process, but Mpr= "\ hG 1.855¢10% s (140
when one takes the square of the number density, there is
also a factor of 2 overcounting the number of pairs of iden-s the Planck frequency,
tical particles, so these two factors of 2 cancel each other and
give the number rate per time per volume by which scalar LG 2
particles annihilate as tpi= ?”539% 107 s, (141)
dN —Rn=(27G2m2/c3)n2= (274 2G2m?/c7)n? is the Planck time, the reciprocal of the Planck frequency,
*

~ dtd(vol)
=27wG?%p?/cd. (134

and where

4D,
Q= W@O.OOS 513 223 934 732 691 876(142

oo

In the nearly-Newtonian limifwhich is where the nonrel-
ativistic annihilation cross section formula would applihe
mass density with one scalar field present, and representemsing the numerical results given in Eq$02) and (104).

by the dimensionless complex field given by Eq.(21), is When both the classical decay rate given by @42 and
the quantum decay rate given by E439 are both signifi-
m?| ]2 cant, one has the total decay rate being given by
p= . (135
477G
dM  dp C «a 2 2 5
If one integrates over an oscillaton with one real scalar ~ dt  d(mt) PetPe~ P QM.
field (one complexy), the total annihilation rate per time is (143
dN It may also be of interest to calculate the expected number

dat —chsj m*| | *dx. (136 of scalarons and gravitons emitted during one period of os-
cillation of the oscillaton scalar field, which is a timer2m.

In particular, for a spherical oscillaton with re@| one gets Since by far the most dominant scalaron emission is at fre-
quency 3n, the energy of almost every scalaron emitted is

dN 1 syt (137 3Aam, so the expected number of scalarons emitted in one
———=== | m* redr. ind i
dt ~ 2¢3 period is
Now if we use the fact that by Eq3), the total mass in N 2m/m(dM, c? QZ_W(m_m zge*“’“
time units of the oscillaton iMM=GM, /c3, and if we use s 3him\ dt /3 m]u? '
the fact that the mass in conventional units is the conven- (144

tional massn, of each scalar particle times the numbéof
such particlegneglecting the small correction due to the ki-  Similarly, the most dominant graviton emission is at fre-
netic energy of the scalar particles and the gravitational bindguencym (as two scalarons of this frequency annihilate into
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two gravitons of the same frequencgo the expected num- which is unity for
ber of gravitons emitted in one period is

2
m
_ 27/m[dM,c? x—7 Inx=|n( )/—Zl) (151)
9 Am | dt m
quantum
or
~2mQu’~0.053 490 163 543 442 036 462,
2
m
(145 x=In y—zl +7Inx
It is interesting that although it is the classical emission m
power (into scalar waves or scalargrni, that depends only m2 m2
on w, with the quantum emission powé&nto gravitons de- =In 7_P' +71n In( 7_P' +71Inx
pending also om/mp,, for the expected number of particles m? m?

emitted in one oscillaton period, it is the quantum emission

into gravitons that depends only gm (with an expected m2,
number of gravitons per period never larger than unity, and =In Y5
in fact never larger than roughly 0.0044 if the maximum m

value foru is 0.607 and if the formula above indeed applies 2 m2
to this large a value of), whereas the emission into sca- +7 |n| |n< y—zl +71n In( y—zl +7 Inx”,
larons (classical gives a number depending also ormg, m
(and which can be larger than unity for sufficiently small (152
massm).
The expected number of scalarons emitted per oscillatoto give the first three steps in an iterative procedure for solv-
period is unity,Ng=1, for ing for the value ofx= a/u that givesP.=P,.
The decay time for an oscillaton to have its dimensionless
m N2mCRB decay parameter decay fropy to a smaller value of is
Me i € given by
_ 2820.165 789 522 802 7Aé7_19_716 897 508 580 081 547/ n(t—t,)= fm du _ (153
2 u PctPq

(146 Define them-dependent constanmt [for the use in this
If this formula were to apply forw=0.607, which is the immediate section; not the sames used elsewhere for the

most recent numerical result for the maximum mass paran{_adial variablé as the largest real solution to the equation

eter of an oscillatoi9], then this would occur for : 1

m, ~3.63< 10" Im, p~4.43< 10° GeV/c2.  (147) nr? > atoRm (154

Then there would be some allowed oscillaton mass value gty previty also define herg[now not the large dimension-

which the oscillaton would emit an expected number of 0n§ess constant angle defined in E829)] to be the function of
scalaron per oscillation period, for any scalaron mass lesg,e classically dimensionless massthat is
than some scalaron mass value that is given crudely by Eq.

(147 that uses Eq.122) outside itsu<<1 domain of validity. w? o
If we define for use herénot the samex as used previ- a=_c® “. (159
ously for the rescaled radial variaple

Then when Irs=—|n(a4Qt§|m2)>1 (which implies that
w= 2o 39.433 795 197 160 163 094 (149  Inr>1), and when Eq(143) also holds, one can show that
M M the integral on the right hand side of E{.53 can be ap-
proximated by the following explicit function af g, andq,

and (the value ofq when u has its initial valuew):
C
= ——~0.003 008 268 339 955 585 529(149 r
7T aQ m(t=ty~ g {lin(r+ @)~ [in(r-+ay)1%.

then the ratio of the classical mass-loss rate to the quantum (156

mass-loss rate is, fqe<1, . . L
* We can use Eq154) to rewrite this equation in the form

, (150) 4a*QEEM3(t—ty)~[In(r+a)1*—[In(r+qy)1*
Pqe "m? (157)
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This gives an approximate formula for the decay time, In this limit, this Eq.(164) is actually a better approximation
—t,, for an oscillaton in terms of its ma$d and the scalar to Eg. (160 than is Eq.(163. At the other extreme, for
field massm (which then determine the dimensionless massa/u>Ina, so that the quantum annihilation dominates dur-
parameten), assuming that one knows the initial valpg  ing most of the decay, this relationship can also be solved
of the dimensionless mass parameter. explicitly for v to give a fairly accurate approximation to Eq.

For other purposes, one might know the decay time and160), namely
from it want to get a relationship between the oscillaton mass
M and the dimensionless mass parameterFor this pur- - m woopt\ e
pose, it is helpful to define from the decay time the large vea B 1 g4 In—=| . (165
dimensionless parametgrot the same as theu-dependent #1

constant defined in Eq118 )
q118] In between these two extremes, i.e., toiu~Ina, | do not

16 )1/3(t_t1)2/3 see how to give any simple expression that would solve ex-
>1.

a= %) n (158  plicitly for either u or v in terms of the othe(say for fixed
Pl a and u), though of course one could solve E¢s60 and
It is also helpful to define a new dimensionless mass paranf62 numerically for eitheru or v in terms of a specific
eter value of the other, for fixed decay tinte-t; and hence for
fixed a given by Eq.(158).
M Let us put in some numbers for these quantities. If we
y= 5 , (159  takeu; to be the maximum mass of an oscillaton given by
[4a*Qtp(t—1;)]™ [9], namelyu;=0.607, then we get
which depends on the oscillaton magsand on the decay uh
time t—t, but not on the masm of the scalar field as the = Ee“’“1%1.48>< 10%, (166)

other dimensionless mass paramegier Mm does.

Then, for example, Eq157) becomes ) .
If we take the oscillaton decay tinte-t; to be the present

w~v{[In(r+qg)]*=[In(r+q) ]9, (1600 age of the universe, about 13.7 billion years or 8.02
X 10°%p, in Planck units, then
and Eq.(154) becomes
16 1/3 t_tl 2/3
2 a=|—4=| |——| =3.68x10% (167)
r o av a”Q tp
=S=—5. (161)
(Inr)3 M
or Ina~91.10.
For s> 1, this solution to this equation is very roughly In the previous paragraph it was noted that Bdg4) ap-
plies for a/u<Ina and that Eq.(165 applies for a/u
av?[ ar?\® >Ina, so these inequalities are saturated and onedlias
r~s(ins)’=—|In— (162 :
u? wu? =Ina at ©~0.433. Therefore, sincg. cannot be much

larger than this value, one never really has the validity of the
Now we can insert from Eq. (162 and the definition of inequality o/ u<Ina, but in actuality Eq.(164) is a good
g from Eq. (155 into Eg. (160 to get the following rough approximation to Eq(160) for e*’*<a, and indeed aj

explicit algebraic relation betweegn, w4, andv for fixed t =1, one hae®#/a~4.44< 10 ?<1.
—14, and hence for fixead defined by Eq(158): However, one must still remember that E@{.60), or
equivalently Eq(156) or Eq.(157), are valid approximations
w\® av?( ar?\® ut 7 only to the extent that Eq$122) and(139) are valid for the
;) ~1n iz I”F +oce” classical and quantum decays rafsand P, respectively.
In this paper these formulas were derived under the assump-
ar?| ar®\® ui wl 4 tion thatu<1, so they are not likely to be accurate for the
—1In a I”? T - (183 small u values wheree/#<a, particularly for P, with its

very strong dependence gn Hence the formulas used here

However, | should note that although this relation is a goodor when the classical decay appears to dominate should be
approximation to Eq(160) when u is very small, it can be taken with a big grain of salt, as merely provisional formulas

off by about 20—-30 % whep is large. that might give some rough qualitative indication of the true
For a/u,<alu<Ina, so that the classical decay domi- quantitative behavior. . . o
nates, this relationship can be solved explicitly foto give Nevertheless, to get some idea of this rough qualitative

behavior, let us for now assume that Eq22) and(139) are

aCau valid for all w Iesg than its maximum vqlue, at, say= uq

v~ A TR (164 =0.607, and put in some various possible valuesnfpi,
4(p e — pe ) and/orM.
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For example, taking the example used by Seidel and Sueamission of successive scalarons, and about 1200 000 peri-
[1] in which the scalar field mass is typical of that of an ods of oscillation between the emission of successive pairs of
axion, m,=10"%eV/c? or m~1.519<10Ys 1~8.19  gravitons.

X 10" %mp,, then Inpmd/m?)~146.564, so one finds that  If we took an oscillaton with a scalar field of this
P.=Pq atx~183.031, oru~0.2154(if the formulas above ~=Ho, started it withu,=0.607, and applied the formulas
really apply to this large a value @f), which corresponds to above, we would find that during the age of the universe, it
an oscillaton mass in time units 8f~1.418<10 2 soran would have hadu decay only by about 6310, an in-
oscillaton mass in conventional units bf, ~5.726x 10?’g  significant reduction in its value. Besides the usual caveat
=0.9589M, (about 96% of the mass of the earth about the inapplicability of Eq126) to this largeu value—

For this oscillaton, assuming that the equations above di@ote that Eq(127) does not apply here, since in this case the
apply for u~0.2154 even though this is not much smallertwo terms in Eq.(126) are very nearly equal—there is also
than unity, one gets that the total power emitted would bghe error from the fact that the age of the universe corre-
P=P.+P,~5.3x 10 72, and the logarithmic rate of de- sponds to only about 0.99 of a radian of the phase of the
crease of the mass would bed In M/dt=3.7x 10 61 s 1. oscillation of an oscillaton with a scalar field mass equaling
The oscillaton would contain aboutN=M, /m, the current value of the Hubble constant, whereas the formu-
= (mp;/mM)?u~3.2x 10° scalarons, and so in each period las above apply only for time periods containing many oscil-
of oscillation of the oscillaton, there would be about lations.

(277/3) (Mpy/M)2P.~8.3x 10~ ° scalarons emittedeach of For values ofx smaller than the solution of Eq151) or
energy rough|y 3’]* CZ) and about (%—)(mpllm)zpqwzs (152), SO that,LL is |argel’ than the Corresponding Crlthﬂl

X 10 ° gravitons emittedeach of energy roughlyn, c?). value for thatm/mp,, then the classical decay rate dominates
That is, one would need to wait on average about 120 000.e., for large oscillaton massesOn the other hand, for
periods of oscillation between the emission of successiv&alues ofx larger than the solution of E4151) or (152), so
scalarons, and about 80 000 periods of oscillation betweethat . is smaller than the corresponding critigalvalue for
the emission of successive pairs of gravitdisgnce they thatm/mp, then the quantum decay rate domindiess, for
come out predominantly in pairs, with the pair having two-small oscillaton massgs

thirds the energy of a typical scalaron that is emitt&dhere- It is interesting that even with perhaps about the smallest
fore, although this oscillaton is not absolutely stable, for asconceivable value of the scalar field mass in the present uni-
tronomical purposes it is very nearly stable. verse, that of the Hubble constant, the quantum emission

If this oscillaton with ©~0.2154 had actually decayed gominates over the classical emission whenis only as
from p=u,=0.607, that would have taken a time-t;  gmall as about 1/8and of course for all smaller values of
~10°! yr, again using Eqg122) and(139 outside their true w). That is, for almost any conceivable oscillaton in the
range of validity just to give a q_ualltatlvg answer. present universe, if the dimensionless mass parameter

on the other hand, |f:';\5n OSCI|2|at0n with this value of the smaller than roughly 1/8, the classical emission of scalar
sca_lar field massm, :.10. evic®, were to have started at \(/J/aves would be even less than the tiny quantum emission of
#+1=0.607 at the beginning of the universe and had decayegravitons from the annihilation of pairs of scalar particles in

up until its present age, it would now haye~=0.459(again . o ; i o
taking the classical decay rate formula outside its range Oﬁhe oscillaton. T_hIS illustrates how rapidly the classical emis
sion drops ag: is made small.

- <1). .
validity, u<1). But even though this calculated value for When the mass of the scalar field is much smaller than the

today is not likely to be actually correct, it is interesting that ; )
it is significantly below the initial value. Thus if this result is Planck mass, as it must be for one to have nearly-Newtonian

at least qualitatively correct, an initially maximum-mass os-oScillatons containing a large number of scalar particles, as is
cillaton with this value of the scalar field mass would havelMPplicitly assumed in the analysis above, then by BG1)
decayed by a significant amount during a time comparable t8" (152) one finds thak is large in comparison with unity for
the age of the universe. P.=Pq. However, because is itself rather large, it is not

To take a more extreme example, if we imagine that ther@ecessarily the case that this valueotorresponds to a
is a scalar fieldquintessence?f natural frequencyn that ~ small value ofu or even a value ofs less thanuyay.
has the value of the current Hubble expansion rétg, For example, if Eq.(150) were valid not just for very
~2.3x10 8 s 1~1.24x 10 ®'mp;, which corresponds to small u but also for values of. up t0 umay, and if we take
m, c®~1.51x10 ¥ eV, then Ingmd/m?)~274.678, SO  wpa—0.607, then we would find tha.=Pg at u=wmax
thenP =P ~4x10 ' atx~314.945, ou~0.1252, giv- =0.607 for m~9.47x<10 mp or m, ~9.47x 10 *’m,p,
ing an oscillaton mass in time units dfl~5.4x10%s  ~1.16x10' GeV/c2. Assuming that this is correct, then for
~1.7 billion years, or an oscillaton mass in conventionallarger values of the scalar field mass, the quantum decay
units of M, ~2.2x 10°%=1.1x 10?°M, (of the same order would dominate P,>P.) for all values ofux up to and
of magnitude as that of all the observable galaxies in théncluding ua. On the other hand, for smaller values of the
universe, by the same coincidence that this mass is roughlycalar field mass, which is more realistic if the scalar field
within a factor of 10 or so of what is needed to close theis, say, an axion, then there is always a mass range
universe. For this example, one would need to wait on av-[say u.<u<mmax With u. being given roughly byy/x with
erage about 1800 000 periods of oscillation between the the solution of Eq.(151) or (152 when it gives a small
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rel, where the classical emission dominates for the mass C
loss rate, though o< u.< mmax the quantum mass-loss y=_zlm(t—ty)+aqi]
decay rate would dominate.

It may be of interest to estimate the present upper bound m. c2 t—t
on u for oscillatons with scalar field masses other than the ~4.067 595 1034( * ) 10 )
two examples above, assuming that the oscillatons formed in eV J11.37x10" yr
the early universe and have been decaying for a time com- 4+9.188 619 10%° (169

parable to the age of the universe. The maximum present

value of u that they would have would be what they would (not the samey that denoted the rescaled imaginary radial
have if they started with the maximum allowed initial value coordinate in Sec. Vi)l

of u, which here | shall take to bp,=0.607, as above. | An explicit approximation that solves E¢L68) for x in

shall also assume that the scalar field mass energy, i’ terms ofy to at least 8-digit accuracy is

<10'°GeV, so that the decay fromu= g, within the

present lifetime of the universe would be in the regimeXx~Iny

where the classical decay dominatesge below for more

details on this and whergl shall assume that E({.26) F4in(ny+4in{iny+4infiny-+4in(iny+4inx,)]}),

holds. (170
Then if | usex=a/ u defined by Eq(148), one getgwith

a new use for) where
a
X X;=—~64.965, (171
~ M1
&Y (168
4Inx;=41In(alw)~16.695. (172
where for this section | shall define Then we get
39.433 795
(173

K= iny+4in(ny+4 In{lny+4InIny+4In(iny+16.695]})"

However, Eq.(168) itself is not that accurate, since it was derived on the assumption of the accuracy(@2Bgwhich
is in doubt, since that equation was derived fog 1, whereas here fan, c?><10'° GeV, one gets. in the range roughly
between 0.3 and 0.6, which is not much less than unity.

Once we have an estimate far (no doubt rather crude, since it does not givee1l where it would be valig or for the
maximum value ofu, as a function of the scalar field mass, we can easily get the oscillatonMrags/m in time units or
M, =Acu/(Gm,) in conventional mass units. In terms of the solar mss~1.989x 10°%y~0.9137 10°®m, p,, one can
use Eq.(4) to write

1eV

M, ~1.336 337 6X10 %M 5

4. (174

m, ¢

Combining this with Eq(173) then gives

" 5.269 686 4X 10 °My[(1 eV)/(m,c?)] 17
*“Iny+4in(ny+4In{lny+4In[Iny+4 In(Iny+16.6951}) (79

wherey is given by Eq.(169). This would be the estimated =0.607 and decaying for up to 13.7 billion yegmand it also
value for the oscillaton mass if it started a{=0.607 and assumes the dubious correctness of @82 for the result-
would be an upper limit for the mass if 0.607 were the maxi-ing fairly large values ofu as given by Eq(173).

mum value ofu at which it could have started. Again, this  For example, if we lej.(m, c?) be the value ofx that an
formula is applicable fom, c2<10'° eV (where the classi- oscillaton of scalaron mass-energy, c?> would decay to,
cal decay dominates for an oscillaton starting wjih  from w,;=0.607, in a time of 13.7 billion years, then we had
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shown above that(10™° eV)~0.459. We can also readily estimates for the upper bounds of the oscillaton masses, if

calculate the following values q&(m, c?) for other values

of m, c2:

w(10 3% eV)~pu, —4.41x 10 %4,
(10730

(10~ %

w(10720 eV)~ u;—4.41x10°°,

w(107 1 eV)~u;,—4.41x 1074,

w(10710 eVv)~0.534,

w(107° eV)~0.459,

w(l eV)=~0.402,

w(10° eV)~0.358,

w(10% eVv)~0.323,

w(10' eV)~0.295.

eV)~pu;—4.41x 1019,

eV)~u,—4.41x10 1,

(176

Similarly, we can calculat, (m, c?), the value ofM

that an oscillaton of scalaron mass-enengyc? would de-

cay to, fromu,=0.607 and

hc
M*l_Grn*

in a time of 13.7 billion years, as having the following val-

ues:

M, (103
M, (103
M, (102
M, (10" 20
M, (10" 1°
M, (10710
M, (10°°
M, (1

M, (10°
M, (10%°

M, (10

M1

eV)~8.111x 10?*M ¢,
eV)~8.111x 10"™M,,
eV)~8.111x 10*M,,
eV)~8.111X 10°M o,
eV)~8105M,,,
eV)~0.713M,,,
eV)~6.128<10 M,
eV)~5.375x10 M,
eV)~4.790x 10 M,
eV)=~4.322x10 M,

eV)~3.938<10 M, .

1 eV
~8.111x 10 1M

*

77

(178

0.607 is merely an upper bound on the initial valueuof

Xl. QUANTUM DECAY WHEN THE PARTICLE NUMBER
GETS SMALL

When u<1 and when EQq(150 gives P./P;<1, then
the quantum mass-loss rate dominates and is given to good
accuracy by Eq(139), but only so long as the number of
scalar particles in the oscillaton,

2
M, cM c°u m§

N, TRem Aem et

(179

is large in comparison with unity.
That is, the quantum mass loss rate dominates and is
given to good accuracy by E¢L39) if
m? - @ @
T SU< T -
ma) X In(ymg/m?)

19.716 897 598 580 08<2
61.769+In(eV/m, c?)

(180

The right-hand side of this requirement is actually a bit
stronger than what is needed, which is that bath x, and
that u<<1, but it is not really necessary that<1. We may
note that for this inequality to have any range of validity for
M, We needn<<mp;, which we have been assuming through-
out this paper and shall continue to assume.

When an oscillaton is decaying, it will eventually get
down to having a small numbét of scalar particles, and Eq.
(139 will cease to be accurate. In principle one could solve
the N-body Schrdinger equation with Newtonian attractive
potentials between thid scalar particles for the ground-state
wave function(ignoring for the moment the annihilations
into gravitong and then calculate the overlap between two
particles to get the two-particle annihilation rate into two
gravitons. However, | did not do this calculation fie>2
and am not familiar with the literature where it might have
been done.

Just as the annihilation rate for lardegoes as the fifth
power of u and of N, one would also expect that the anni-
hilation rate for a small numbéed would also decrease rap-
idly as N is reduced, reaching a minimum fof=2 (if one
can reach this number, though if one has an odd number
when N is somewhat larger, and if the two-body annihila-
tions dominate so that the scalar particles predominantly an-
nihilate in pairs, then one would most likely end up with a
three-particle state before the final decay to two gravitons
and one free scalar partigle

So if the oscillaton decays down to two scalar particles
before annihilating completely, the decay of the final two
particles is likely to take more time than the entire decay
down to that point.

The final annihilation rate is easily calculable from using

These are either the estimates for the masses, if the oscthe ground-state solution of the two-particle Sclinger

latons started 13.7 billion years ago with=0.607, or are

equation. One readily gets that the probability density for
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one of the particles to be at the location of the other, the Thus the complete quantum decay of an oscillaton can
guantity that takes the role of the number densitin Eq.  take a very long time and probably would not be a suitable
(133, is subject for an experimental Ph.D. thesis. On the other hand,

. the slowness of both the classical and quantum decay of

o 1m oscillatons of light scalar fields shows that if they form in the
L7y méc3’ (181 universe, they can last for astronomically long times.
Pl

continuing to usem with units of inverse time. Then by Eg.
(133, the annihilation rate per timgor the two particles to
annihilate is

XIl. QUANTUM DECAY OF MULTIPLE-FIELD
OSCILLATONS

The analysis above was for oscillatons having just one
m real massive scalar field, minimally coupled to gravity. Al-
R=""% 182 though in thi hall not go beyond minimal
2mX oug s paper we shall not go beyond minimal cou-
pling or consider other scalar-field self couplin@sher than
If one uses the first Eq138) to convert this to the quan- Mass terms we started with a general discussion of an arbi-
tum expectation value of a mass-loss rate and uses the faggry number of minimally coupled massive scalar fields and

11

that for this 2-particle statey=2(m/mp)?, one gets their classical decay rates, so it would be of interest to say
also how the quantum decay goes when there are more than
) dMm du one scalar field.
Pq=—M quantuni= —~ ar —d(mt) When the scalar fields all have different masses, then the
separate decay processes are incoherent, so the rates for each
12 26+6 2 just add, with the rate for eacfin the nearly-Newtonian
m h°G 1m S ] L
= —| = mi?=_—_ _2“5 limit) going as the spatial integral of the square of the mass
Mp c% 32 Mg, density for that scalar field, with the coefficient as given
above.
~3.670 759 777 914 995 4qaZmM?u°. This is at least so if we average over times long in com-

(183 parison with the reciprocals of the differences of the scalar
) ) . . field masses in frequency units, which will hereby be
That is, the actual rate at which the 2-particle state annihizssmed—if any mass differences are short in comparison
lates is a factor of about 3.67 times what one would get byyith the reciprocal of the decay time of interest, then for that
blindly extrapolating down tdN=2 particles the rate given ime we may consider these scalar fields as having the same
by Eqg. (139, which actually applies only for very many msss. intermediate cases in which the decay times of interest
particles,N>1 (as well asu<1). Equation(183 contains  4re comparable to the reciprocal of any mass differences will
the largest positive power df (6), the largest positive power not pe discussed here.
of G (6), and the largest negative power of the speedt of  Therefore, we may consider separately all of the fields at
(30), that | can ever recall seeing in a formula, though | amone masgor one range of masses if the range is much less
not used to using formulas in which | have not just 8et han the reciprocal of the decay time being considered
=G=c=1. The simplest case is that in which there are two equal-
If instead we take the reciprocal of the annihilation i8te ass scalar fields that are oscillating at 90° out of phase.
given by Eq.(182 as the expectation value of the decay timeThjs is equivalent to one complex scalar field that has a
from the 2-scalar-particle state to the 2-graviton state, a”@lobalu(l) symmetry and hence a conserved particle num-
also as an estimate for the total decay time for an oscillatopgy that presumably cannot decay away, at least by perturba-
(since_it presumably dominates over the time to get d_own Qive quantum effects such as what DeWR0] used to cal-
2 particles, assuming that the number of particles is evepyate the annihilation of scalar particles into gravitons.
when one gets close enough to the 2-particle state that one presumably there are nonperturbative gravitational effects
can ignore the probability that an odd number of scalar pari, which a nonzero particle number, though conserved by the
ticles will annihilatg, then we get a total decay time of globalU(1) symmetry perturbatively, forms or tunnels into a
1 real or virtual black hole that then decays into a different
M, py particle number(e.g., zerg. Thus at some level the global
m, ) ' U(1) invariance is surely broken by gravity. In RE21] we
(184)  used a model of gravitational foam to estimate that this rate
would be disastrously high for point scalar particles, suggest-
For example, if we take a typical axion mass, ing that perhaps no such particles could exist in our universe.
=10"° eV/c?, then Eq.(183) gives P,~9.11x10 *® and  If so, this would of course rule out the whole idea of oscil-
Eq. (184 givestgeca= 1.88X 10** yr. To take the more ex- latons(unless they were made of composite scalars that are
treme example in whichm has the value of the current not pointlike down to near the Planck scalBut since our
Hubble expansion rate, Hy~2.3x10 85 1~1.24 ideas were admittedly rather speculative, here | shall assume
X 10" °'mp), then Eq.(183 givesPy~1.3x10""*and Eq.  that the nonperturbative effects violating glohk(1) invari-
(184) givestgecay=1.3X10°% yr. ance are suppressed to give rates much smaller than the

2my)  2¢® 2453
tgecay= 1/R= miL = ﬁ565m11: Gsmilz

PI
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particle-antiparticle annihilation into gravitons that is al- which is a much shorter length scale than the length scale of
lowed by the perturbative analysis that preserves the globahe variation of the fieldg,;, so each region of size of the
U(1) invariance. order ofc/m; annihilates essentially independentyhat is,

If this is indeed so, when there are two equal-mass scalahe quantum states of the outgoing gravitons are essentially
fields that are oscillating at 90° out of phase, effectively theorthogonal for the annihilation in the separate regions, if one
decay of each individual scalar field must destructively inter-uses graviton wavepackets that have sizes more nearly com-
fere so that the total decay rate is zero. parable to their wavelengths than to the much bigger size of

At first this sounds impossible, since if one has a statéhe oscillaton. Thus we can just add up the annihilation rates
with N; scalar particles of the first field ard, of the sec- in each region, effectively getting an integral over the oscil-
ond, then the final state in which two particles of the firstlaton of the annihilation rate in each region.
field annihilate into gravitons would haw, — 2 particles of Since we shall only be interested in the annihilation over
the first field and\, of the second, which would be orthogo- many oscillations of the oscillaton, we shall only consider
nal to the final state in which instead two particles of thethe annihilation rate averaged over many such periods.
second field annihilate into gravitons, leaviNg particles of In each region of size somewhat bigger trem, where
the first field and\,— 2 particles of the second field. There- we are calculating the average annihilation rate, each of the
fore, how could there possibly be any destructive interferreal scalar fields of mass, is oscillating essentially with
ence to prevent the particles from annihilating? constant amplitude and period, staying in phase with each

However, this objection can be circumvented if the quan-other scalar field over a time long compared with the oscil-
tum state of the oscillaton does not have a definite number dftion period that is very nearly72/m,. In this region, we
particles of both kinds(Indeed, that would have to be the can perform arD(n) transformation of the scalar fields so
case if they are oscillating 90° out of phase, since phase is ithat all but two of the fields are transformed to zero for the
some sense a conjugate variable to particle number. Note thtine of interest(to the accuracy of the nearly-Newtonian
the total particle number could be precise, so that the totepproximation, and the two that remain nonzero are oscil-
phase is undefined, so long as the individual particle numlating 90° out of phase, say
bers are sufficiently indefinite that the relative phase between
the two fields is well defined.For example, the quantum

state for the particles could be a coherent state that is an ¢1:§ Ouyhiy~2c,co8mi(t=to)], (189
eigenstate of the annihilation operators for the two kinds of
particles.

Then in the case that two particles of the first real scalar br=2, Oy3¢h3~—2¢C,sim,(t—tg)], (186
field decay, although the expectation value of the number of J

particles of that field would have been reduced by two, the

final state would not need to be orthogonal to the state thand

would result if instead two particles of the second real scalar

field were to annihilate. Therefore, the two decay processes _ _

can interfere. When the two scalar fields oscillate 90° out of $i= ; Oi¢13~0 (187

phase, their combination is equivalent to a single complex

scalar field with aJ(1) symmetry that prevents perturbative for i >2, with real positive amplitudes; and ¢, that are

quantum decay into gravitons. nearly constant over the spacetime region where the time-
The gravitational signal of this/(1) symmetry would be averaged annihilation rate is being calculated. Without loss

that the stress-energy tensor would have no oscillations, sef generality we can choose ti@(n) transformation to give

one would be back to the case of a boson star that seems ¢=c,.

be completely stabléexcept presumably to nonperturbative | am not bothering to include the subscriptwhich tells

tunneling processes in which some or all of the particlesyhat the massn, is, on what | am callingg; . Indeed, the

tunnel into a black hole, or a virtual black hole, that would fact that | am givingg; only a single subscript is used here to

either transcend or violate what would otherwise be the congjstinguish it from theD(n)-related scalar fields,; without

servation of the global/(1) charge{21]). having to put primes ogb; as | would have if it had the same
Now consider the case in which there are an arbitraryumber of indices asg,; .
number, say, scalar fields at some masg . We shall con- We can also define th@(n)-transformed complex scalar

tinue to assume the nearly-Newtonian limit, in which thefie|ds

dimensionless rescaled real massive scalar fields de-

fined by Eq.(6), have the form given by Eq17) in terms of _

the complex dimensionless scalar fields;, that are very l!/FE Oq3¢hy~c.e'Mo, (188
slowly varying spatially, and even more slowly varying tem- J

porally, if at all, on the length scale/m, and on the time

scale I, . Then the real scalar fieldg,; are essentially 1/12:2 O,y ~ —ic,eMto (189
oscillating nearly periodically with frequenay, . J ’

When two scalar particles annihilate inforedominantly
two gravitons, the graviton wavelengths are rougblyn, , and

023002-27



DON N. PAGE PHYSICAL REVIEW D 70, 023002 (2004

2

¢|:; Oiyth3~0 (190 P~ 477G 2 |¢|J|2 (|¢1|2+|¢2|2)

for i>2 m? m A

ori>2. 2, .2
~——(Cc{tCy)~—=N=my,n, 19

Now for the quantum analysis, we can replace the two 47TG( 1cy) c? ! T (199

real scalar fields with the one complex scalar field

where
1 _ m,c2 m,c2
d=— + — — 2 2y _ 2
\/§(¢1 i ) n=n;+n_ —477Gﬁ(01+02) A-Gh 2;4 [
(195
1 ; —imt (o i \aimit . . .
~ E[( rtign)e” M (Y tigp)e™ ] is the total number density of all the scalar fields of magss

or, equivalently, of both the particles and the antiparticles of
the single complex scalar field that classically represents

1 _ _ all of the real fields(i.e., we are ignoring vacuum fluctua-
*E[(Cﬁ cy)e Mt 4 (¢y—cp)elmMtto)] tions in the transformed scalar fields with i>2 that are
classically zern
=P e My p_emt (191 Similarly, by using Eq.(28) for Gij~(87-rG/c2)P5ij for

the oscillating nearly-isotropic pressupe and also splitting
it up into the contributions from the fields of the different

(with @ not to be confused with the original real scalar fields
massesn, , one gets

®,; or the slowly varying complex dimensionless scalar
fields ¢, ; that were used to represent each dimensionless real

scalar fieldg,;; those all had subscripts that will not appear P~
on the single rapidly varying complek that combines the
two rapidly varying real scalar field$, and ¢»).

Because of th&J(1) invariance of the field equations and
stress-energy tensor of the two nonzero real scalar fielgds,
and ¢,, which are represented by this complex scalar fiel
®, there is a conserved globdl(1) charge. The part of the ct
classical fieldD that has the phase facter ™ (=t and the (P2~ _< )
coefficient® , can be said to represent particles with posi- 2\4mG
tive globalU(1) charge and with particle number density

72|mt 2 2|mt
e e ygfher™. (199

In this case, if one takes the time-average of the square of the

total pressure of all tha scalar fields of mass, (or equiva-
q]ently of the single complex scalar fietll), one gets

¢t me |2
~ (m) |5+ 3]

2
2 22, 9272

2 ) ) (cI—cy)"=2mihsn . n -

cl+cz‘ m,c

22| 4wGh

m,c? m,c?
47Gh @ | 47Gh

|2 2
Pt ‘r/fz‘ (197

2 |
BecauseP, is oscillating sinusoidally, its maximum value,
(192 say P max (@s a function of time at each spatial locajion
(2PP)*.
and the part of the classical fieddl that has the phase factor ~ Then from Eqs(194), (195, and(197), one can solve for
etim(t-to) and the coefficientb_ can be said to represent the number densities of both the particles and the antipar-

antiparticles with negative glob&l(1) charge and with an- ticles of the complex scalar field of massm; :

tiparticle number density
ST = (p,C%+ pict—(2P?)), (198

Ny~

|+ 2m|

2
m,02| 2 m,c? cl—cz‘ m|02‘1ﬁ1+|¢2‘

T4nGh| 22 | 4wGh| 2 |

(193 n_=~ 2mﬁ(p.cw pict—(2PF)),

In the classical limit that we are assuming, we can express
these number densities in terms of the mass density anahere(2P?) is given in terms of thej,'s by Eq.(197).

(199

mean-squared pressure of the fields of magsn the fol- Another way to express this relationship, USiRgay
lowing way: =(2P%)*2 is to note that

By using Eq.(26) for Gog~8mGp or Eq.(37) directly for
the mass densitp (which is nearly constant in timgand 1624 Py ma= AN+ + /Ny _)2, (200
splitting it up into the contributions from the fields of the
different masses, , one gets 12— P ma= MA(VN - — N )2, (201)
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Thus whenP,,.=0, there are just particles but no antipar- dm, 2

f
ticles of the complex scalar field, and wh@a,= p,C?, dt  8nc° 2| mp | d® ; vh
there are equal numbers of particles and antiparticles. This
latter possibility is the case when there is only one real scalaj,e can then multiply this bys/c® to get the dimensionless

field, in which case it is a fiction to say that there is the .ate of decrease afl =GM, /c3, the mass in units of time:
complex scalar fieldb at all, but the classical real scalar

(204)

field does act as if it were composed of equal numbers of dMm LG 5 5 5 2
particles and antiparticles of the fictitious complex scalar T4t 8mct 2| my | d°x ; h (209

field, n,.=n,_=(1/2)n,. (Of course, then there are no
vacuum fluctuations of the nonexistent imaginary component

of the complex®, but here we are taking the classical limit XIll. QUANTUM AND CLASSICAL EMISSION
and are only considering the effects of real particles and not FROM THE SIMPLEST MULTIFIELD
of any vacuum fluctuationk. SPHERICAL OSCILLATONS

By making the arbitrary requirement that tb¢n) trans-
formation lead to reat;=c,=0 for the coefficients of the
two nonzero scalar fields after the transformation, we hav
made an arbitrary choice of what to call particles and what t
call antiparticleswith the number density of particles never
less than the number of antiparticles by this chpiaad
hence of which expression in Eq4.98 and (199 has the
minus sign in front of the square root.

Now when we have the possibility of both particles and
antiparticles of the complex scalar fieddl, the U (1) invari-
ance prevents the annihilation of a pair of particles or of
pair of antiparticles(at least at the perturbative leydbut
allows the annihilation of a particle-antiparticle pair. On the
other hand, the particle-antiparticle annihilation cross-sectio
is twice that given by Eq(131) [20] for two real scalar field
particles, i.e.,

Now consider the particular case in which all of the real
scalar fields have the same mass, so we can drop the sub-
%criptl that labels the mass. Furthermore, restrict attention to
Ghe case in which all of the real scalar fields are oscillating
with the same quasistationary nodeless spherically symmet-
ric mode (that of the simplest spherical oscillaton, except
that now there are more than one real scalar field that may be
oscillating with different phases

By the argument above, we can perform @f(n) trans-
formation so that only two real scalar fields are then oscil-
dating with nonzero amplitude and are 90° out of phase. By
the assumption that all of the scalar fields are oscillating in
the same modéup to phasg this O(n) transformation is
"Ronstant over space, and the ratio of the amplitudes of the
two resulting nonzero modes are also constant. By the pro-
cedure above, it can be replaced by a single complex field.

Let N, be the number of particles of the complex scalar
field, N_ be the number of antiparticles, aNd=N, +N_ be
5 — . _ (202) the total number of particles and antiparticles. Then if ¢the
Cv Cv given by Eq.(76) (real in this caserepresents the simplest
spherical oscillaton with one real scalar field described
above, the complex oscillaton with two real scalar fields and

This means that when we hawg . particles andN,_  the same total mass is representafier a shift in the origin
antiparticles, both of these numbers decrease at the rate of time) by

4wG?m  Amh?G?m?
U'+7: =

VN, ++N_
dN|+ dN|, 3 ¢1=—¢1 (206)
- dt =—T=J'dxn|+n,,o-+,v V2N
Amh?GPm? [ nGA [ _ YN VN- 20
=dexn|+n,,—Tde<2Pl> lﬂz-"w : (207)
7G? m|4 2 Then the complex scalar field is given by
= dsXmeafo d* ; W
1 .
(203 O = E(d’lﬂ%ﬁz)
. . . 1 o o
The total number decay rate is of course twice this. When _ —imt imty i —imt imt
=— e "Mty e™) Fi(ye "M+ e
n+=n,_, so thatP,,.,=p,c? then the total rate agrees \/5[(1’//1 e+, ¥2e™)]
with the integral of Eq(134).
When we multiply the total number decay rate for each [ N+ “imt IN= it 208
massm, (which is in frequency unijsby the massm,, - N € N ey (208

=#fm,/c? in conventional units and sum over &Jlwe get
the total mass loss rate by scalar particle annihilation in con- Now, by using Eq(203) and doing an analysis analogous
ventional mass units: to that which led to Eq(139), one can show that the quan-
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tum annihilation of scalaron particle-antiparticle pairs for thewith the simplest spherical configuration. By using Ep),
spherically-symmetric nodeless complex oscillaton gives one can deduce that the classical scalar field emission leads

to
dN, dN_ 10,1173
S odt - dt =2Qtm NN N, (209 dN, dN_ mo NSNS o
— amg/m°N
At Tt s e e (218
where the numerical consta@tis given in Eq.(142). m
These equations have the obvious constant of motion be- 6 n2 a2
ing the number of particles minus the number of antipar- _ON M NTENG 2 men (219
tiCIeS, say, dt - m5 N4 e ’
No=N,—N_. (210  ang
Then, since the total number of particlesNs=N_+N_, du MZ—MS
one can write — ——~Cm—5—e ~, (220
dt w?
1
N, = §(N+N°)' (211 To get the totals for these rates, one must add the corre-

sponding expressions for the quantum rates from Efi9),
(215, and(216) respectively. For example, the total rate at

1 . ) . :
N = z(N_ No). (2120  Which the masgin time unity decreases is

dM  du  uP-pg
dt mdt wt

Similarly, one can write the dimensionless mass param- — et + QEEm2ul(u?— ud)

eter of the classical configuration as

_ _ 2.2 C
pu=Mm=tgm-N (213 _ mZMAefa/mM+thlm7M3 (M2—M2),
and also define a constant dimensionless mass parameter as (221
po=t5m*Ny. (214  where Mg=uq/m=t3mN, is the asymptotic mass of the

. final boson star in time units, and where the numerical con-
As bothN, andN_ decay away at equal rates, the oscil- ¢t5nts C~3797 438, a~39.4338, andQ~0.008 513 224

laton asymptotically approaches the configuration With a1 given to 19 decimal places in Eq424), (123, and
=N, =Ng andN_=0, which is a static boson star wita (142 respectively.

= po- Thus ug is the asymptoti¢minimum) value of . One can see that at late times, fog™>0, asu approaches
In terms ofN andNo, Eq. (209 gives very near toug, u— mo<mala, u approacheg., exponen-
tially rapidly:

dN
— —— = QtPm™N3(N?—N3) (219
at QW ( ° p~ po+ex — (Cug 6™ “/Ho+ Qtym?ug) 2mt].

T . N . 222
from the annihilation of scalaron particle-antiparticle pairs (222

into pairs of gravitongi.e., ignoring the classical emission Finally, if we use the scalar field mass in conventional

into scalar radiation mass unitsm, =#m/c?, and the oscillaton mass also in con-
Alternatively, we can write the evolution of the dimen- ventional mass unitdyl, =c3M/G, then the total mass loss
sionless mass parameter as rate from the simplest spherical multiple-field oscillaton with
q minimum conventional masM, o=c3My/G=Nym, , for
M < < — 10 2 i
—E=Qt§|m3l/«3(,u2—#g) 216 M <M, <10 "Mo[(1 eV)/(m,c?)], is
from the quantum annihilation. This differential equation has gt G —2na g ancl(GmM,)
the algebraic solution mi My
MZ—MZ 2 2 4 ° 73 2 2
K 0eMO/#ZZe—ZQtplm?’#o(tfto) (217 "r‘QﬁG—(;:,;m* My (M* - M*O)' (223
)72

wheret, is an arbitrary constant of integration. Thus at lateAgain may | remind the reader that the conventional mass
times, u approaches., exponentially rapidly, and the con- m, of the scalar field is a quantum quantity within it,
figuration approaches that of a static boson star with the corwhich is why there is an explicik? in the numerator of the
served number of particles. first (classical term for the mass decay ratieom scalar field

It may also be of interest to give the decay rates from theadiation, to cancel the implicit:? in the mi term in the
classical emission of scalar radiation in this multifield casedenominator. Similarly, in the secoriduantum term, once
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the implicit factor of” in them! term is taken into account, which haveu<1. For accurate results for the not-too-small
there is one positive power df appearing, as one would values ofu that would arise from the decay, within astro-
expect for this first-order quantum perturbative contributionnomical times, of oscillatons that started with the maximum
(the annihilation of pairs of scalarons into pairs of gravifons mass possible for any reasonable value of the scalaron mass,
one would need to extend the results derived here to the

XIV. CONCLUSIONS strong-gravity regime. This is research that shall be left to
. _ . . . the future.
Oscillatons without aJ(1) invariance(those without a Multifield oscillatons[8], in which different real scalar

static geometry are unstable both classicallyo emitting  fields of the same mass oscillate out of phase, do not decay
scalar waves and quantum mechanicallfto having sca- away completely but instead asymptotically approach a
larons annihilate into gravitonsThe classical rate dominates stable U(1)-invariant configuration with a static metria
for large w =Mm but drops very fast with decreasipgand  poson star, at a rate given by Eq221) or (223).
is nonanalytic afu=0: P.~(C/u?)e  “*, Eq.(122), with
the numerical constant given by Eq.(124) and«a given by
Eqg. (123). The quantum rate also drops asdrops, but only
as a power law inu: Pq~Q(m/mp)?u°, Eq.(139), with the | am grateful for many discussions with Jeongwon Ho
numerical constan® given by Eq.(142). The quantum rate (who got me interested in oscillatons, gave me some of the
dominates fo =< 1/8 form=H, (the current Hubble expan- early literature on them, and found for me that the quantum
sion rate, a lower bound om for any oscillaton existing in  annihilation of scalarons into gravitons was calculated in
our universe todgy Ref. [20]), and for various other conversations and emails
An oscillaton that starts gt~ uma=0.607 [9] has a  with Miguel Alcubierre, Ricardo Becerril, Bruce Campbell,
significant drop inw (more than 10%over a lifetime com-  Matthew Choptuik, Bryce DeWitt, Valeri Frolov, Siddhartha
parable with the age of the universe ifn,c?=2 F. Guzman, Gary Horowitz, Werner Isra@tho immediately
x10 eV or M, <3.6M. However, unlessn,c>=2.3  recognized that oscillatons would be classically unstable
x 10 eVv=2300 GeV or M,=1.8x10 **My~3.5 Tonatiuh Matos, Dario Nunez, Wai-Mo Suen, Igor Tkachev,
x 10%g, in this decay timgu does not decrease by more thanand L. A. Uréra-Lopez. The numerical calculations were per-
a factor of 2. formed with the aid omAPLE. Finally, financial support has
These numerical approximations are using formulas debeen provided by the Natural Sciences and Engineering Re-
rived in this paper for nearly-Newtonian configurations, search Council of Canada.
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