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Classical and quantum decay of oscillations: Oscillating self-gravitating real scalar field solitons
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Institute for Theoretical Physics, Department of Physics, University of Alberta, Edmonton, Alberta, Canada T6G 2J1

~Received 2 October 2003; published 23 July 2004!

The oscillating gravitational field of an oscillaton of finite massM causes it to lose energy by emitting
classical scalar field waves, but at a rate that is nonperturbatively tiny for smallm[GMm/\c, wherem is the
scalar field mass:dM/dt'23 797 437.776(c3/G)m22e239.433 795 197/m@11O(m)#. Oscillatons also decay by
the quantum process of the annihilation of scalarons into gravitons, which is only perturbatively small inm,
giving by itselfdM/dt'20.008 513 223 935(m2c2/\)m5@11O(m2)#. Thus the quantum decay is faster than
the classical one form&39.4338/@ ln(\c/Gm2)17 ln(1/m)119.9160#. The time for an oscillaton to decay away
completely into free scalarons and gravitons istdecay;2\6c3/G5m11;10324 yr(1 meV/mc2)11. Oscillatons of
more than one real scalar field of the same mass generically asymptotically approach a static-geometryU(1)
boson star configuration withm5m0, at the rated(GM/c3)/dt'@(C/m4)e2a/m1Q(m/mPl)

2m3#(m22m0
2),

with m0 depending on the magnitudes and relative phases of the oscillating fields, and with the same constants
C, a, andQ given numerically above for the single-field case that is equivalent tom050.

DOI: 10.1103/PhysRevD.70.023002 PACS number~s!: 95.30.Sf, 03.50.Kk, 11.10.Ef, 52.35.Sb
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I. INTRODUCTION

Seidel and Suen@1,2# ~see also Tkachev@3# for an even
earlier paper! have found numerically that there exist no
singular oscillating self-gravitating solitonic configuratio
of a real scalar field, which they called oscillating solito
stars. These have also been studied by several other au
@4–10# and are now generally calledoscillatons. In the sim-
plest case, which is what I shall consider here, they a
from the Einstein-Klein-Gordon~EKG! equations for gravity
plus one or more minimally coupled massive real sca
fields.

The previous numerical evidence suggested that altho
these oscillatons are oscillating, they appeared to be peri
and stable@1,2,5–10#, so that classically, at least, an isolat
oscillaton might be expected to last forever. However, he
shall show that oscillatons of finite mass actually decay c
sically as the oscillating gravitational field leads to the em
sion of scalar waves. The decay rate is calculated for the
of low-mass classical oscillatons and is found to be nonp
turbatively tiny ~nonanalytic in the oscillaton mass at ze
mass!, given by Eq.~122! below, which may be why it has
not been clearly seen numerically.

Seidel and Suen@1# did recognize that their numerica
results were consistent with quasiperiodic oscillations an
gous to the orbit of two black holes that spiral inward wh
emitting gravitational waves. My results are also similar
this analogy, with the oscillatons classically emitting sca
waves instead of gravitational waves, except that here
classical decay rate goes to zero faster than any power la
the appropriate small parameter~herem, which is the mass
M of the oscillaton, multiplied by the scalar field massm,
and divided by the square of the Planck massmPl) as m is
taken to zero.

In addition, oscillatons decay quantum mechanically
the annihilation of scalarons into gravitons, at a rate tha
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also calculated here for low-mass oscillatons, given by
~139! below. Although this mass-loss rate is also small, it
perturbative and goes as the fifth power of the oscilla
mass, so for sufficiently small oscillaton mass, this quant
decay dominates over the classical mass-loss rate. The
for an oscillaton with an initially large number of scalaro
to decay away completely into free scalarons and gravit
then goes as the inverse 11th power of the scalaron mass
hence is very large if the scalaron mass is much less than
Planck mass.

Although my numerical results for the classical and qua
tum decay rates are for a single real scalar field in a sphe
configuration~and for any number of such fields of the sam
mass oscillating in the same mode except for possible ph
shifts @8#, which do give a nontrivial effect!, I shall start by
giving the formalism for the classical decay rates for an
bitrary nearly-Newtonian configuration of an arbitrary num
ber of massive scalar fields, and then do a detailed nume
analysis of the single-field nearly-Newtonian and nearly
riodic spherical case for both the classical and quantum
cays. Then I shall return to a discussion of the classical
quantum decay rates for multifield oscillatons.

Throughout this paper I shall assume that the mass
each scalar field is much less than the Planck mass, whic
a necessary~though not sufficient! requirement for doing a
classical analysis and is also necessary for the validity
various equations I shall use for the quantum decay of os
latons.

II. NOTATION AND UNITS

Consider the case in which there aren real scalar fields
F IJ , each with massmI , minimally coupled to Einstein
gravity, and with no other self-interactions. The indexI la-
bels the different mass values, and the indexJ labels the
different scalar fields that have the same mass.

In the classical analysis, I shall often use units in whi
c51 ~though sometimes for results I shall insert the app
priate power ofc in order to be able to evaluate quantities
conventional units!, but I shall not set\ or G equal to unity.
©2004 The American Physical Society02-1



s

fl
i-
im
n
th

ld

n
ld
n-
o

on

al
e

l-

a
e
-

ni

on

-
is

n

is a

the

st
ion
cy
al

ri-
f
of

sion
en-

lar

ted

he
tric

field

ents
te
di-

DON N. PAGE PHYSICAL REVIEW D 70, 023002 ~2004!
However, to avoid having\ ’s in most of my equations, I
shall let the massesmI have units of inverse time, which i
indeed what they would have~at least ifc51) in the classi-
cal Klein-Gordon equation that each scalar field obeys,

~h2mI
2!F IJ50; ~1!

i.e., a free zero-spatial-momentum real scalar solution in
Minkowski spacetime in orthonormal Minkowski coord
nates, with the appropriate zero of time, would have the t
dependence cos(mIt). In terms of the conventional scalaro
particle masses, which I shall hereafter denote with
starred subscript,m* I , one hasmI5m* Ic

2/\. Perhaps it is
more perspicuous to write this relation as

m* Ic
25\mI , ~2!

so that in terms of the classical quantitymI ~the natural fre-
quency of the scalar field, in radians per second!, the energy
m* Ic

2 of a one-particle quantum excitation of the scalar fie
is indeed\ times the frequency of the excitation.

That is, I am taking the view that it is the natural freque
ciesmI that are the classical parameters of the scalar fie
and that the massesm* I of the scalaron particles are qua
tum properties that will not show up in a classical analysis
in the classical decay of the oscillatons~though they will
when one considers the quantum annihilation of scalar
into gravitons!.

Analogously, to avoid factors of Newton’s gravitation
constantG in most of my equations, when I consider th
gravitational massM of a scalar field configuration or osci
laton, it is convenient to includeG in it ~or actuallyG/c3 if
one uses units in which the speed of light,c, is not unity!, so
that myM has units of time and is thus half the gravitation
~Schwarzschild! radius of the configuration divided by th
speed of light. Therefore, if I letM* be the mass in conven
tional mass units~e.g., grams or kilograms!, what I shall use
is

M[
GM*

c3
. ~3!

With these conventions, I can avoid using\ and G in
most of my intermediate equations, even without using u
in which those quantities are set equal to unity.

For example, the simplest classical spherical oscillat
of a single real scalar field~with no nodes! are characterized
~up to the overall scale, into which the natural frequencym
enters! by the single dimensionless parameter

m[Mm5
GM* m*

\c
'7.483 138 843109S M*

M (
D S m* c2

eV D ,

~4!

whereM ('1.98931033 g is the mass of the sun in conven
tional units. ~In temporal units, the mass of the sun
4.925 490 9531026 s, almost 5ms, known to much higher
accuracy than in conventional units, since the gravitatio
effect of the sun, proportional toGM( , is known much
more accurately thanG is in conventional units.! By dimen-
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sional analysis, one can then easily see that if there
classical decay of such an oscillaton, one must have~since
my M has the dimension of time!

dM

dt
52 f ~m!, ~5!

a function purely of the only dimensionless parameter of
oscillaton,m. @In Eq. ~122! below I shall give this function
for m!1, finding that it is nonanalytic atm50.#

The price of this simplicity in the units is that one mu
get used to the mass of the oscillaton having the dimens
of time, which is the inverse of the dimension of frequen
that is the classical ‘‘mass’’ of the scalar field in its classic
Klein-Gordon equation.

We can get a further simplification by using an approp
ate redefinition of the scalar fieldsF IJ . Since the square o
the time derivative of a scalar field has the dimension
energy density, the square of a scalar field has the dimen
of mass divided by length, which is the same as the dim
sion of c2/G. Thus ~considering also the 8p in Einstein’s
equations! it is convenient to define the dimensionless sca
field values

f IJ[A8pG/c2F IJ . ~6!

Then by Einstein’s equations, the Ricci tensor genera
by the stress-energy tensor of the scalar fields is

Rab5(
IJ

S f IJ,af IJ,b1
1

2
gabmI

2f IJ
2 D . ~7!

This will have the dimension of inverse time squared if t
coordinates have the dimension of time and if the me
componentsgab are dimensionless.

Following the examples of Refs.@10,11#, it is also conve-
nient to combine each rescaled dimensionless real scalar
f IJ and its time derivativeḟ IJ[]f IJ /]t into a single di-
mensionless complex quantity,

C IJ[
1

2
eimI tS f IJ1

i

mI
ḟ IJD , ~8!

so

f IJ5C IJe2 imI t1C̄ IJeimI t ~9!

and

ḟ IJ52 imIC IJe2 imI t1 imIC̄ IJeimI t. ~10!

In terms of the complexC IJ and its complex conjugate
C̄ IJ , the time-time, time-space, and space-space compon
of the Ricci tensor are~using 0 to denote the time coordina
t5x0 and lower-case Latin letters to denote spatial coor
natesxi)
2-2
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R005(
IJ

H mI
2F ~21g00!C IJC̄ IJ2S 12

1

2
g00D ~C IJ

2 e22imI t

1C̄ IJ
2 e22imI t!G J , ~11!

R0i5(
IJ

FmI
2g0i S C IJC̄ IJ1

1

2
~C IJ

2 e22imI t1C̄ IJ
2 e2imI t! D

1 imI@C̄ IJC IJ,i2C IJC̄ IJ,i2C IJC IJ,ie
22imI t

1C̄ IJC̄ IJ,ie
2imI t#G , ~12!

Ri j 5(
IJ

FmI
2gi j S C IJC̄ IJ1

1

2
~C IJ

2 e22imI t1C̄ IJ
2 e2imI t! D

1C IJ,iC̄ IJ, j1C̄ IJ,iC IJ, j1C IJ,iC IJ, je
22imI t

1C̄ IJ,iC̄ IJ, je
2imI tG . ~13!

III. GAUGE OR COORDINATE CONDITIONS

In finding solutions to the Einstein-Klein-Gordon equ
tions, one must make a choice of coordinates or gauge
the gravitational field. I shall restrict consideration to 311
dimensional spacetime. There are four coordinates to be
sen, giving the freedom of four free functions over spaceti
for the gauge group of coordinate transformations.

I generally find it convenient to use these four degrees
freedom to set the time-space components of the metric t
zero,g0i50 for the threei, and to setg00 to be independent
or nearly independent, of the time coordinatet. This then
implies that the hypersurfaces of constantt are orthogonal to
the worldlines of constant spatial coordinatesxi , and that
along each such worldline, the proper time is nearly prop
tional to the coordinate timet ~with a space-dependent con
stant of proportionality!. For example, if the metric is peri
odic in time, we can chooseg00 to be precisely independen
of the time coordinatet. However, this still leaves the free
dom to make arbitrary spatial coordinate transformations
are independent oft.

If we wish to pin down the spatial coordinates, we cou
for example, choose them so that the time average of
spatial metric,̂ gi j &, over a time that is long with respect t
the reciprocal of the smallest natural frequency differen
umI2mI 8u, is as nearly proportional to the 333 identity ma-
trix as possible. More explicitly, if we takêgi j & to be a
spatially dependent 333 matrix, we could choose spatia
coordinates so that the integral over all space of the squa
the traceless part of this matrix is minimized.

This would still not pin down the spatial origin or angul
orientation of the resulting quasi-Cartesian spatial coordin
system, but we could choose the spatial origin to be t
which gives the center of mass of the asymptotic form of
time-averaged metric. If it is necessary to fix the orientati
we could, for example, fix it so that the asymptotic quad
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pole moment has its principle axes lying along the th
coordinate axes in some order determined by, say, the or
ing of the eigenvalues of the quadrupole moment. Of cou
this specification is degenerate in the spherically symme
case, but then the angular orientation about the cente
mass makes no difference.

For our purposes below it is not necessary to be so p
cise, but I am just illustrating how for a generic nearly pe
odic metric, it appears to be possible to fix all of the coor
nates completely. Of course, there is some arbitrariness in
procedure chosen for this~e.g., whether to take the time av
erage of the spatial metric or of its inverse or of some ot
matrix function of the spatial metric, and how to define t
time average over a finite time if the nonoscillatory part
the metric is slowly varying!. But once a sufficiently precise
procedure is chosen, the coordinates are in principle rig
given, and hence so are the metric components for a g
spacetime in that coordinate system. That is, the proced
makes the resulting coordinates and metric components
come procedure-dependent but gauge-invariant funct
over the spacetime.

As a result of all but the last parts of the procedure o
lined above, one can write a generic periodic or appro
mately periodic metric in the form

ds252e2U(xk)dt21e22U(xk)12V(xk)$@112W~ t,xk!#d i j

1s i j ~xk!1hi j ~ t,xk!%dxidxj , ~14!

where the time averages of the time-dependent quanti
that is the scalarW(t,xk) and the traceless symmetric tens
hi j (t,x

k), are all zero, and where the spatial coordinates
chosen to minimize the integral over all space of the trace
the square of the time-independent traceless symmetric
sor s i j (x

k).
I can summarize the situation by noting~i! the separation

of the metric into the two parts given here, with no cro
terms between them, arises from the gauge condition
g0i50; ~ii ! the form of the first part arises from the gaug
condition on the choice of hypersurfaces of constantt that
they give g00 independent oft; and ~iii ! the form of the
second part is given by first factoring out the dominant Ne
tonian spatial dependence of the spatial metric and then s
rating the remaining factor into time-independent and tim
dependent isotropic and anisotropic pieces, with the tim
dependent terms being chosen each to have zero
average. Generally speaking, the five scalar or tensorial fu
tions appearing in the metric,U, V, W, s i j , andhi j , tend to
be smaller the more non-Newtonian, time dependent,
anisotropic they are.

@If the metric is only approximately periodic, it may b
able to be written exactly in the form above for only a lim
ited amount of time, with there then being some ambiguity
to what it means for the time averages ofW(t,xk) and of
hi j (t,x

k) to be zero. Alternatively, to be applicable for long
times, either the form above may be only approximate,
else one might need to giveU, V, ands i j some slow time
dependence to deal with slow nonperiodic changes in
geometry.#
2-3
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Of course, there are many other similar forms for t
metric from similar procedures, such as havingW(t,xk),
hi j (t,x

k), and/ors i j (x
k), or suitable multiples of these quan

tities, as arguments of an exponential, so I am not claim
that there is a unique preferred form for a periodic or a
proximately periodic metric, but only that the form above,
its slight generalization to the case whenU, V, ands i j have
some slow temporal variation, is sufficient for our purpos

Note that in the spherically symmetric case, to which
shall turn later, the time-averaged spatial metric is neces
ily conformally flat by its spherical symmetry, sos i j (x

k)
50. Both time-dependent quantities,W(t,xk) andhi j (t,x

k),
are generically nonzero. The spatial dependence of any
lar quantity is a function of the one spatial functionr 2

5d i j x
ixj , soU andV are functions purely of the ‘‘radius’’r,

andW is a function oft and of r. With spherical symmetry
the traceless tensorial quantity has the formhi j dxidxj

5h(t,r )(d i j dxidxj23dr2) for some functionh(t,r ) of both
time and radius whose time average is zero.

IV. NEARLY-NEWTONIAN SCALAR FIELD
CONFIGURATIONS

In this paper I shall focus on self-gravitating configur
tions of one or more massive scalar fields in which the gra
tational field is very weak~given to an adequate approxim
tion by the linearized Einstein equations!, and the scalar
fields have a very slow spatial dependence~so the dominant
piece ofC IJ has a very slow spacetime dependence, tho
f IJ does have a temporal oscillation of frequency roughlymI
that is not considered slow, since slowness is taken to
relative to these frequencies!. See Refs.@11,10# for previous
analyses in this limit, which have been a motivation for so
of my choices of variables.

In this limiting case, one can work out from the Einste
equations that the metric functionsU(xk) and W(t,xk) are
much smaller in magnitude than unity~but not negligible!,
and V(xk), s i j (x

k), and hi j (t,x
k) are negligibly small, at

least when there are negligible gravitational waves pres
Therefore, the metric~14! takes the form

ds2'2@112U~xk!#dt2

1@122U~xk!12W~ t,xk!#d i j dxidxj . ~15!

If W(t,xk)50, then the approximate metric~15! would
be truly Newtonian, but the temporal oscillations of the s
lar fields give oscillating components of their stress-ene
tensor and hence of the Ricci tensor components~11!–~13!
and of the metric~mainly at twice the frequencies of th
fields themselves!, soW(t,xk) is nonzero even at the linea
ized gravity level.

As we shall see below, since the scalar fields are assu
to have slow spatial dependences, a typical magnitude
W(t,xk) ~say its rms value at some spatial location whe
that is maximized, but of course not its time average, wh
is zero at all spatial locations by definition! is of the same
order of magnitude as a typical magnitude of the square
U(xk), which we have dropped in expanding the expon
tial. It is also of the same order of magnitude as a typi
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value of V(xk), which we have also dropped. Therefore,
may be thought a bit of a cheat to include theW(t,xk) term
in the metric above but not theU(xk)2 and V(xk) terms,
which are similar in magnitude.

However, the point is thatW(t,xk) is the largest time-
dependent term and is responsible for the dominant con
bution to the classical decay of oscillatons and of other s
gravitating real scalar field configurations in the near
Newtonian limit. TheU(xk)2 andV(xk) terms that have been
dropped are smaller than theU(xk) time-independent terms
that have been kept, and none of those terms directly c
tributes to the classical decay. Thus the philosophy is that
metric ~15! includes the dominant time-independent corre
tions to the flat Minkowski metric@theU(xk) terms# and the
dominant time-dependent corrections to the flat metric@the
W(t,xk) term, in the gauge in whichg00 is independent oft
by construction#.

Before going to periodic configurations~in the approxi-
mation of neglecting the scalar field emission!, let us con-
sider the slight generalization to the metric

ds2'2~112U !dt21~122U12W!d i j dxidxj ~16!

in which W has a time dependence at frequencies that
roughly twice that of themI , but U is now allowed to have
some time dependence that is even much slower than
slow spatial dependence.

Now, instead of Eqs.~8!–~10!, I shall take

f IJ'c IJe2 imI t1c̄ IJeimI t ~17!

without the restrictionċ IJe2 imI t1 ċ̄ IJeimI t50 that is true for
C IJ from Eqs.~8!–~10!. Instead, I shall assume that eachf IJ
is such thatc IJ can be chosen to givef IJ approximately and
also give

uc̈ IJu!mI uċ IJu!mI
2uc IJu. ~18!

Then the Klein-Gordon equation in the metric~16! with
uWu!uUu!1, which is

f̈ IJ'2mI
2f IJ22mI

2Uf IJ1c2¹2f IJ ~19!

when for the moment we ignore theW term, implies that
eachc IJ approximately obeys the Schro¨dinger equation

ċ IJ'
ic2

2mI
¹2c IJ2 imIUc IJ , ~20!

where¹2 is the flat-space Laplacian,¹2c IJ[d i j c IJ,i j .
Note that it ism* Ic

2U5\mIU that is the Newtonian po-
tential energy of the particle of ‘‘mass’’mI , and notU itself
~which is dimensionless!. Also, by havingmI have units of
frequency rather than conventional mass units, the exp
appearance of\ is avoided in Eq.~20!. This is what one
would expect, since this Schro¨dinger equation came from th
purely classical Klein-Gordon equation for the real sca
field, rather than from any quantum equation. Note tha
have chosenc IJ to be dimensionless rather than, say, hav
the spatial integral of its absolute square be unity~or perhaps
2-4
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some other positive integer!, as one would normally normal
ize the wave function of a truly quantum Schro¨dinger equa-
tion.

It is most straightforward to regard the approxima
equivalence between the real second-order Klein-Gor
equation and the complex first-order Schro¨dinger equation
~20! as a procedure that works when one starts with a s
tion of the Schro¨dinger equation~20! ~with a weak gravita-
tional potential,uUu!1) for which u¹2c IJu!mI

2uc IJu ~except
near possible zeros ofc IJ) and then uses Eq.~17! to con-
struct from it an approximate solution of the Klein-Gordo
equation.

In the reverse direction it is a bit more subtle. If one us
Eq. ~8! to defineC IJ in terms off IJ and its time derivative,
ḟ IJ , this C IJ itself will be close to the solutionc IJ of the
Schrödinger equation~20!. However, sinceC IJ will generi-
cally have a small term roughly proportional toe2imI t as well
as its dominant term with a much slower time variatio
the time derivativeĊ IJ will pick up a relatively significant
contribution from the term that is roughly proportional
e2imI t and so will be significantly different fromċ IJ . Thus
C IJ defined by Eq.~8! will not satisfy the Schro¨dinger
equation~20!.

However, one can instead define

c IJ5C IJ1
i

2mI
Ċ IJ

[
1

4mI
2 eimI t~mI

2f IJ12imIḟ IJ2f̈ IJ!

'
1

2
eimI tS f IJ1

i

mI
ḟ IJ1Uf IJ2

c2

2mI
2 ¹2f IJD ,

~21!

where for the last expression I have used the approxim
form ~19! of the Klein-Gordon equation in the Newtonia
part of the metric to evaluate the second time derivative
f IJ in terms of its value and its spatial Laplacian. Thisc IJ
then obeys the Schro¨dinger equation~20! when U is small
and slowly varying and whenf IJ is oscillating at nearly its
natural frequencymI and has a slow spatial variation in uni
of mI .

With this definition of the complexc IJ in terms of the real
f IJ and its derivatives, Eq.~17! is still a fairly good approxi-
mation forf IJ in terms ofc IJ , but an inversion of Eq.~21!
that is accurate to one higher order is

f IJ'S c IJ2
i

mI
ċ De2 imI t1S c̄ IJ1

i

mI
ċ̄ DeimI t

'~12U !F S c IJ1
c2

2mI
2 ¹2c IJDe2 imI t

1S c̄ IJ1
c2

2mI
2 ¹2c̄ IJDeimI tG . ~22!
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Nevertheless, although this formula forf IJ is a more accu-
rate inversion of Eq.~21! than is Eq.~17!, I do not know that
it really gives a more accurate solution of the Klein-Gord
equation than Eq.~17! does from a solution of the Schro¨-
dinger equation~20!.

After getting an approximate solution of the Klein
Gordon equation in the nearly-Newtonian metric~16! with
uWu!uUu!1 ~and temporarily ignoring the small effect o
the tiny but rapidly time-varyingW term, which shall be
discussed later!, we need to solve the Einstein equation f
the effect of the stress-energy tensor of the scalar fields
the metric. To leading order, the resulting Ricci-tensor co
ponents from the stress-energy tensor and the Einstein e
tion are

R00'(
IJ

S ḟ IJ
2 2

1

2
mI

2f IJ
2 D

'(
IJ

FmI
2S c IJc̄ IJ2

3

2
~c IJ

2 e22imI t1c̄ IJ
2 e22imI t! D G ,

~23!

R0i'0, ~24!

Ri j '(
IJ

1

2
mI

2d i j f IJ
2

'(
IJ

mI
2d i j S c IJc̄ IJ1

1

2
~c IJ

2 e22imI t1c̄ IJ
2 e2imI t! D .

~25!

The corresponding Einstein tensor components are s
pler,

G00'(
IJ

2mI
2c IJc̄ IJ , ~26!

G0i'0, ~27!

Gi j '2(
IJ

mI
2d i j ~c IJ

2 e22imI t1c̄ IJ
2 e2imI t!. ~28!

This corresponds to an energy density that has only w
ever slow time variation the mass-squared-weighted sum
the squares of the absolute values of thec IJ’s may have, and
an isotropic pressure that oscillates at the frequenciesmI
and has a time average that is zero to this order of appr
mation ~though at the next order there are small tim
independent pressure gradients that hold up the s
gravitating energy density in the approximately periodic
quasiperiodic cases!.

Directly from the nearly-Newtonian metric~16! itself,
with the spatial derivatives ofW being negligibly small, the
leading-order linearized Einstein tensor components are

G00'2c2¹2U, ~29!

G0i'0, ~30!

Gi j '22Ẅd i j . ~31!
2-5
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Thus the Einstein equation in the nearly Newtonian c
becomes

c2¹2U'(
IJ

mI
2c IJc̄ IJ , ~32!

W'2
1

8 (
IJ

~c IJ
2 e22imI t1c̄ IJ

2 e2imI t!. ~33!

In summary, for nearly Newtonian self-gravitating co
figurations of real self-gravitating minimally coupled ma
sive scalar fields, the Einstein-Klein-Gordon equations
come the coupled approximate partial differential equati
~20! and ~32!, which are the time-dependent Newto
Schrödinger or Schro¨dinger-Newton equations@12–15#, plus
the additional algebraic equation~33! for the small rapidly
varying termW in the nearly-Newtonian metric~16!. The
conditions for these nearly-Newtonian equations to be v
are that( IJuc IJu2!1, uUu!1, and that the spatial deriva
tives of thec IJ’s are small in comparison with their typica
values multiplied by their natural frequenciesmI . @Then the
Schrödinger equation~20! implies that the time derivative
of the c IJ’s are also small in comparison with their typic
values multiplied by their natural frequenciesmI .]

Unless explicitly stated otherwise, in this paper we sh
assume that the metric is asymptotically flat with asympt
cally Lorentzian coordinates~except for a possible resca
ing!. That is, we assume thatU goes to a time-and direction
independent constant at spatial infinity. Equation~32! then
implies that thec IJ’s must all asymptotically tend to zero a
spatial infinity. Equations~20! and ~32! are invariant under
shifting U by a constant or a function purely oft, provided
the c IJ’s are shifted by the appropriate phase factor tha
also a function purely oft. ~This is simply the gauge trans
formation of replacing the time coordinatet with a new time
coordinatet8 that is purely a function of the old time coo
dinate t, and of rescaling the spatial coordinates approp
ately.! One could thus set the asymptotic value ofU to be
zero, making the coordinates asymptotically Lorentz
without any scaling factors. However, in some cases i
more convenient not to make this restriction, such as w
the time dependence of thec IJ’s is purely by a time-
dependent phase factor, in which case one can cance
phase factor and make thec IJ’s independent of time by an
appropriate nonzero but time-independent asymptotic va
of U.

For the rest of this section, we shall take the approxim
Newton-Schro¨dinger equations~20! and~32! as exact and so
write 5 signs rather than' equal signs. However, we mus
bear in mind that these are actually only approximatio
valid in the nearly-Newtonian limit, for the actual Einstei
Klein-Gordon equations taken as fundamental in this pap

The time-dependent Newton-Schro¨dinger equations~20!
and ~32!, now temporarily re-interpreted as exact equatio
may be derived from the classical action~cf. Ref. @16#!
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I NS5
1

8pc3E dtd3x(
IJ

@ imI~ c̄ IJċ IJ2c IJċ̄ IJ!2c2~¹U !2

2c2u¹c IJu222mI
2Uuc IJu2#5E dtLNS ~34!

~in units of time squared, to be multiplied byc5/\G if one
wants a dimensionless action!, where the classical Lagrang
ian ~with units of time! is

LNS5
1

8pc3E d3x(
IJ

imI~ c̄ IJċ IJ2c IJċ̄ IJ!2EU2EK2EV

5
1

8pc3E d3x(
IJ

imI~ c̄ IJċ IJ2c IJċ̄ IJ!

2MU`2EU2EK22EP

5
1

8pc3E d3x(
IJ

imI~ c̄ IJċ IJ2c IJċ̄ IJ!2MU`2E.

~35!

Here the asymptotic mass of the configuration~essentially
the total rest mass, uncorrected for gravitational binding
ergy!, in time units, is

M5
1

4pc3E d3x(
IJ

mI
2uc IJu25

G

c3E d3xr, ~36!

with the rest mass density, in conventional units, being

r5
1

4pG (
IJ

mI
2uc IJu2. ~37!

When the Newton-Schro¨dinger actionI NS given by Eq.
~34! is extremized, so that the Newton-Schro¨dinger equa-
tions ~20! and~32! are satisfied, one can readily see that t
asymptotic form of the Newtonian potential is

U;U`2
Mc

r
, ~38!

whereM is the asymptotic value of the mass, given by E
~36! above~in time units,G/c3 times the massM* in con-
ventional mass units, soMc has units of length and is half th
Schwarzschild radius corresponding to the mass!, andr is the
radial distance from the center of mass, also in units
length.

By Eq. ~20! and the asymptotic boundary condition
given, the massM is an approximately conserved quanti
@approximate only to the extent that Eq.~20! is approximate#,
corresponding under the approximations used to the exa
conserved ADM mass of the spacetime. In some sense
more nearly the rest mass of the matter~in time units!, but
since only the zeroth-order approximation is being used
2-6
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the rest mass density and for the spatial volume elemenM
is only a zeroth-order approximation for the rest mass
well.

The various other energies appearing in the Newt
Schrödinger Lagrangian~35! ~smaller thanM by factors that
in equilibrium are of the order of a typical value ofuUu,
which must be much less than unity for the near
Newtonian approximation to be valid! are the following
quantities~in time units, inserting the factor of 1/c into the
right hand side of each of the equations with squares of s
tial gradients, and the factor of 1/c3 into those without them,
under the assumption that the spatial distances and grad
are being measured in length units rather than in the t
units that would avoid the need for all factors ofc): the
~positive! Newtonian potential gradient energy

EU5
1

8pcE d3x~¹U !2, ~39!

the ~positive! scalar field gradient energy or matter kine
energy

EK5
1

8pcE d3x(
IJ

u¹c IJu2, ~40!

the ~indefinite in sign, though negative in static equilibrium!
matter potential energy

EV5
1

8pc3E d3x(
IJ

2mI
2Uuc IJu25

G

c3E d3xrU, ~41!

the ~indefinite in sign, though also negative in static equil
rium! rescaled gravitational potential energy

EP5
1

2
EV2

1

2
MU`5

1

8pc3E d3x(
IJ

mI
2~U2U`!uc IJu2

5
G

2c3E d3xr~U2U`!, ~42!

and the total Newtonian energy

E5EU1EK1EV2MU`

5EU1EK12EP

5
1

8pc3E d3x(
IJ

@c2~¹U !21c2u¹c IJu2

12mI
2~U2U`!uc IJu2#. ~43!

The extrema of the Newton-Schro¨dinger actionI NS given
by Eq. ~34!, with U fixed to a constant valueU` at spatial
infinity, and with thec IJ functions falling off sufficiently
rapidly at spatial infinity, are solutions of the Newto
Schrödinger equations~20! and ~32!.

When these equations of motion are satisfied, one
readily show~by integration by parts, etc., using the boun
ary conditions given in the previous sentence! that M is a
constant of motion~as mentioned above!, that

EV5MU`22EU , ~44!
02300
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EP52EU , ~45!

that

E5EK1EP5EK2EU , ~46!

and that the various energies~all of which have absorbed a
factor ofG/c3 to have units of time! have the following time
derivatives:

ĖP5
1

2
ĖV52ĖU52ĖK5

G

c3E d3xJ•“U, ~47!

where

J5(
IJ

S 2
imIc

2

8pG
~ c̄ IJ“c IJ2c IJ“c̄ IJ! D ~48!

is the mass-current flux vector in the conventional units
mass per area per time~when we remember thatmI has units
of inverse time and that thec IJ’s are dimensionless!.

One can then see from Eqs.~46! and ~47! that the
Newton-Schro¨dinger equations~20! and~32!, along with the
asymptotic boundary conditions, imply that the total nonr
ativistic Newtonian energyE is conserved, or constant i
time. Using the expressions~39! and ~40! above, and using
Eq. ~46!, we can see that Eq.~43! may be written, forE in
time units~or E* 5c5E/G in conventional energy units!, as

E[
GE*

c5 5
1

8pcE d3xS (
IJ

u¹c IJu22~¹U !2D 5const.

~49!

This is a first-order correction to the rest mass energy of
configuration in the total ADM mass energy.@But since Eq.
~36! for M is only correct for the rest mass to zeroth ord
the correct first-order expression for the ADM mass is n
simply M1E.#

If one has a static solution of the Newton-Schro¨dinger
equations~20! and~32!, in which U and eachc IJ

2 is constant
in time, then these are extrema ofEU1EK1EV5E
1MU` . To put it another way, they are extrema of the to
Newtonian energyE with the constraint of fixedM. If one
finds these extrema by the method of Lagrange multiplie
extremizing E2lM , then the Lagrange multiplier isl
52U` , which thus isdE/dM for a continuous sequence o
such extrema.

If one takes such an extremum static spatial configura
and replacesU(x) by Ũ(x)5U(eax) and eachc IJ(x) with
c̃ IJ(x)5ebc IJ(eax) for small constantsa and b, then for
the variation ofEU1EK1EV5E1MU` to vanish to first
order in botha andb, and with the use also of Eqs.~44!–
~46!, one can readily see that the static equilibrium config
rations have

EU52EK522EV52EP5
2

3
MU`522E. ~50!
2-7
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The relation that the gravitational potential energy
twice the negative of the kinetic energy,EP522EK , and
hence thatE52EK , is just the usual virial relation for an
attractive inverse-square force. The relation thatE
52(1/3)MU` involves the scaling behavior of the Schr¨-
dinger equation and implies that for eachc IJ

2 to be static
~e.g., not to have any time-dependent phase factor!, one must
haveU`.0 ~essentially for the system to be bound!.

A solution of the approximate time-dependent Newto
Schrödinger equations~20! and ~32! is determined by an
initial spatial configuration of thec IJ’s ~and, for the quanti-
ties in those equations, but not for the gauge-invariant ph
cal quantities, by the gauge choice of the asymptotic valu
U). If the scalar fields all disperse indefinitely, thenU will
tend toU` everywhere in space asymptotically with time
that the integral of the negative2(¹U)2 term in the integral
~49! goes to zero, and thus the Newtonian energyE must be
nonnegative.

But if Eq. ~49! gives a negative Newtonian energyE, then
the scalar fields cannot all disperse. To the extent that E
~20! and ~32! are accurate, at least some of the scalar fi
energy must remain gravitationally bound indefinitely. U
less the scalar fields collapse gravitationally into configu
tions violating the nearly-Newtonian approximation bei
used~and perhaps leading to continued gravitational colla
into one or more black holes!, the scalar fields will continue
to oscillate, giving an oscillaton.

Negative Newtonian energyE is thus a sufficient condi-
tion for an oscillaton~or for gravitational collapse as a po
sible alternative! in the nearly-Newtonian limit, though it is
not a necessary condition, as one can have an initial confi
ration which asymptotically tends to a bound part with ne
tive Newtonian energy and a dispersing part with a lar
positive Newtonian energy.~See Ref.@2# for an example of
this.!

In any case, we see that, at least in the nearly-Newton
case, gravitationally bound oscillatons are quite generic~un-
less all but a set of measure zero collapse gravitationally
black holes, which naively seems unlikely!, occurring if the
single inequalityE,0 is true~and also in other cases whe
just part of the system is bound!. That is, any perturbation o
a nearly-Newtonian oscillaton within a sufficiently sma
neighborhood in the space of perturbations gives anothe
cillaton ~unless it collapses!. In this sense nearly-Newtonia
oscillatons are apparently stable under small perturbation
the degree that Eqs.~20! and ~32! are accurate and continu
to remain valid~e.g., when one ignores the scalar field rad
tion considered below, and when no continued gravitatio
collapse occurs that takes one outside the validity of th
equations!.

Of course, if one requires an oscillaton of fixed total ma
~which itself is a continuous variable classically, thou
quantized when one includes the fact that the scalar fi
particles are quantized! to be periodic with some definite
period ~say in proper time at spatial infinity, to make th
period gauge invariant!, then one gets a nonlinear eigenval
problem with presumably only a discrete set of eigenso
tions for each mass~modulo gauge transformations, includ
ing spatial translations and rotations and the gauge trans
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mation of shifting U). Thus I would expect there to b
discrete periodic oscillatons embedded in an open set of n
periodic oscillatons for a given total mass.

However, if we include the effect of the oscillating ter
of the nearly-Newtonian metric~15!, the W term given by
Eq. ~33!, we shall see in the next section that it leads
classical emission of each scalar field of massmI at frequen-
cies roughly 2mK6mI , so that generic oscillatons arenot
classically stable but radiate away their energy and sc
fields. The only exceptions appear to be field configuratio
that have aU(1) invariance, so that their total stress-ener
tensor is independent of time and theW term vanishes.

V. CLASSICAL EMISSION OF SCALAR FIELDS
FOR GENERIC SITUATIONS

The oscillatingW term of the nearly-Newtonian metri
~15! gives, in the Klein-Gordon equation of the scalar fie
F IJ , transitions from its dominant frequency nearmI to fre-
quencies near 2mK6mI that radiate away, carrying off en
ergy and causing a generic oscillaton to decay. Here we
sume that the terms given in Eq.~17! describe the
nonradiating scalar field oscillations of an oscillaton.

To describe the radiation, extend Eq.~17! to include scalar
field oscillations at these emitted frequencies, so the dim
sionless rescaled scalar fieldf IJ[A8pG/c2F IJ has the
form

f IJ'c IJe2 imI t1c̄ IJeimI t1(
K

~x IJKe2 i (2mK1mI )t

1x̄ IJKei (2mK1mI )t1x IJK8 e2 i (2mK2mI )t

1x 8̄IJKei (2mK2mI )t!, ~51!

where not only thec IJ’s and their complex conjugates, bu
also thex IJK’s andx IJK8 ’s and their complex conjugates, ar
functions varying much more slowly than the frequenciesmI
and mK . Since fields that can radiate away must have f
quencies larger thanmI , in the sum above we can omit th
x IJK8 ’s which havemK<mI .

Of course, the sum overK includesI, so the radiation field
occurs even if there is only a singlemI or even just a single
real scalar field~one choice for the indicesIJ denoting the
field!. ~Then we can omit thex IJK8 andx̄ IJK8 terms, since their
frequencies would be justmI , and they would just give smal
corrections to thec IJ and c̄ IJ terms that are not radiating
away by assumption.!

In principle one should include a whole infinite series
frequencies by adding tomI all possible positive and nega
tive integer multiples of allmK’s, but the additional terms
will generally be smaller yet, and so to a good approximat
it is sufficient to consider only thec IJ , x IJK , andx IJK8 terms
and their complex conjugates.

Now the term with thee2 i (2mK1mI )t time dependence in
the Klein-Gordon equation~1! for the fieldf IJ in the metric
~16! with the oscillatingW term included, given by Eq.~33!,
yields
2-8
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@¹214mK~mK1mI !#x IJK'2
3

4
mImK(

L
cKL

2 c IJ ,

~52!

and the term with thee2 i (2mK2mI )t time dependence gives

@¹214mK~mK2mI !#x IJK8 '
3

4
mImK(

L
cKL

2 c̄ IJ . ~53!

We shall assume, except where explicitly discussed
low, that there are no scalar waves incoming from infinity,
we shall impose outgoing wave boundary conditions on
x IJK’s andx IJK8 ’s. Then they have the form

x IJK~x!'
3mImK

16p E d3x8
e2iAmK(mK1mI )uxÀx8u

uxÀx8u

3(
L

cKL
2 ~x8!c IJ~x8!, ~54!

x IJK8 ~x!'2
3mImK

16p E d3x8
e2iAmK(mK2mI )uxÀx8u

uxÀx8u

3(
L

cKL
2 ~x8!c̄ IJ~x8!. ~55!

These represent scalar waves that are propagating
ward at asymptotic speeds

v IJK52
AmK~mK1mI !

2mK1mI
~56!

and

v IJK8 52
AmK~mK2mI !

2mK2mI
, ~57!

respectively, which generically are within a factor of the o
der of unity of the speed of light~taken to be unity in these
equations!.

In contrast, thec IJ’s are assumed to be localized almo
entirely within some region that we shall call the syste
Since thec IJ’s are assumed to be slowly varying with r
spect to the natural frequenciesmI , we assume that thec IJ’s
within the system do not change much during the light tra
time across the system, or during the time it takes for
waves represented by thex IJK’s and x IJK8 ’s to traverse the
system. That is why we can use an instantaneous approx
tion for the propagators in the formulas~54! and~55! for the
x IJK’s andx IJK8 ’s.

If we surround the system by a sphere much larger t
the dominant region over which thec IJ’s are significant,
then we can calculate the flux of mass out through t
sphere in the scalar waves represented by thex IJK’s and
x IJK8 ’s given above. When we average this over the osci
tion periods and do a bit of algebra that is not repeated h
we get a classical mass loss rate of the oscillaton that is
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2
dM

dt
' (

IJKLM

9mI
2mK

2

256p2 E d3xd3x8

uxÀx8u

3@~2mK1mI !sin~2AmK~mK1mI !uxÀx8u!

3cKL
2 ~x!c IJ~x!c̄KM

2 ~x8!c̄ IJ~x8!

1~2mK2mI !sin~2AmK~mK2mI !uxÀx8u!

3cKL
2 ~x!c̄ IJ~x!c̄KM

2 ~x8!c IJ~x8!#. ~58!

In the second of the two terms inside the integrand, wh
evermK2mI is negative, that term is to be omitted, since t
correspondingx IJK8 is spatially exponentially damped rathe
than having the oscillatory behavior representing an outgo
wave. ~Of course, if mK2mI50, this second term is jus
zero, so we need not consider it in that case either.!

Remembering that I am using units and conventions
which M has the units of time, in which themI ’s have the
units of temporal frequency~inverse time!, in which the
c IJ’s and their complex conjugates are dimensionless, an
which either the spatial coordinatesxi ~represented above b
the 3-vectorx) have the units of time or else the speed
light is set equal to unity, it is easy to see that both sides
Eq. ~58! are dimensionless.

Since the classical mass loss rate formula~58! is rather
complicated when there are several real massive scalar fi
of different masses, it may help to give it explicitly whe
there is only one real scalar field of mass~or actually natural
frequency! m:

2
dM

dt
'

27m5

256p2E d3xd3x8

uxÀx8u
sin~A8muxÀx8u!c3~x!c̄3~x8!.

~59!

When there are two scalar fields of the same massm, then
one gets

2
dM

dt
'

27m5

256p2E d3xd3x8

uxÀx8u
sin~A8muxÀx8u!@c1

2~x!

1c2
2~x!#@c̄1

2~x8!1c̄2
2~x8!#@c1~x!c̄1~x8!

1c2~x!c̄2~x8!#. ~60!

In particular, whenc1 andc2 each have the same magnitud
everywhere and are everywhere 90° out of phase, orc1
56 ic2 @so the two real fields can be interpreted as form
a single complex field with a globalU(1) symmetry#, then
the mass loss rate is zero. This is a case in which the str
energy tensor of the scalar fields does not have an oscilla
component, and so there is no oscillatingW term in the met-
ric ~16!.
2-9
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There is also the analogous case in which one has
arbitrary number~greater than one! of fields of each mass
mI , when one has zero everywhere for the sum of
squares of thec IJ’s ~not the squares of the absolute values
these quantities! for each fixedI ~for each different massmI ,
the sum being overJ that labels the different fields with fixe
I and hence with fixed massmI). Then again the stress
energy tensor and the metric~16! has no oscillating term, and
so there is no generation of outgoingx IJK or x IJK8 waves.

In these cases, if thec IJ’s are not stationary~or stationary
up to a time-dependent phase factor! but are slowly changing
their form, then although there may be no oscillations at
frequenciesmI or their sums or differences, the metric wou
still have a slow time dependence, and this would presu
ably lead to some scalar field radiation, though at an amo
presumably considerably reduced from what it would be
case if the sum of the squares of thec IJ’s for at least oneI
were different from zero so that there would be the m
rapid oscillations in the metric.

The only case in which I would expect absolutely no s
lar radiation would be the case in which the metric is ab
lutely stationary. Otherwise it would seem extremely u
likely that the outgoing radiation at all possible multiples
the metric oscillation frequency, plus or minus the natu
frequency of the fields that can potentially be emitted, wo
be zero. However, I have not tried to find a rigorous pro
that there are not exceptional counter-examples to this c
jecture.

VI. CLASSICAL EMISSION OF SCALAR FIELDS
WITH SPHERICAL SYMMETRY

A simple subset of the set of all oscillatons is the set
which the metric and all of the scalar fields have spher
symmetry. In the nearly-Newtonian limit~which I am taking
to exclude gravitational waves!, the spherical symmetry o
the metric follows from the spherical symmetry of the sca
fields, and the spherical symmetry of the scalar fields~in-
cluding the outgoing waves! follows from the spherical sym
metry of thec IJ’s. Therefore, we basically just need to a
sume that eachc IJ5c IJ(t,r ).

The Klein-Gordon equation~1! for the scalar field implies
that c IJ obeys the Schro¨dinger equation~20!, which for the
spherical symmetric case becomes

ċ IJ'
ic2

2mIr
~rc IJ!92 imIUc IJ , ~61!

where, except for the prime onx IJK8 and on dummy variables
inside integrals, a prime henceforth denotes a partial der
tive with respect tor ~or later, with respect to a rescale
radial variablex5kr/c). One can avoid the explicitr ’s in
this equation by defining

f IJ~ t,r ![rc IJ~ t,r !, ~62!

which makes the Schro¨dinger equation take the form

ḟ IJ'
ic2

2mI
f IJ9 2 imIU f IJ . ~63!
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The Newtonian part of the Einstein equations, Eq.~32!,
can be integrated in the spherically symmetric case to giv
each time

U'U`2
1

c2r E0

r

dr8E
r 8

`

dr9r 9(
IJ

mI
2uc IJ~r 9!u2. ~64!

Here of course the primes and double primes on ther ’s in-
side the integrals just denote dummy variables to be in
grated over, and not derivatives with respect tor.

The spherically symmetric analogues of Eqs.~54! and
~55! for thex IJK’s andx IJK8 ’s obeying Eqs.~52! and~53! ~to
solve the Klein-Gordon equation! are~with c51 for simplic-
ity here and in many formulas following!

x IJK~r !'
3mImK

8AmK~mK1mI !r
S e2iAmK(mK1mI )r

3E
0

`

dr8r 8sin@AmK~mK1mI !r #(
L

cKL
2 ~r 8!

3c IJ~r 8!2E
r

`

dr8r 8sin@AmK~mK1mI !~r 82r !#

3(
L

cKL
2 ~r 8!c IJ~r 8! D , ~65!

x IJK8 ~r !'
3mImK

8AmK~mK2mI !r
S e2iAmK(mK2mI )r

3E
0

`

dr8r 8sin@AmK~mK2mI !r #

3(
L

cKL
2 ~r 8!c̄ IJ~r 8!

2E
r

`

dr8r 8sin@AmK~mK2mI !~r 82r !#

3(
L

cKL
2 ~r 8!c̄ IJ~r 8! D . ~66!

The classical mass loss rate becomes

2
dM

dt
'(

IJK

9mI
2mK

2

16 S 2mK1mI

2AmK~mK1mI !

3U E
0

`

drr sin@2AmK~mK1mI !r #(
L

cKL
2 ~r !

3c IJ~r !U2

1
2mK2mI

2AmK~mK2mI !
U E

0

`

drr

3sin@2AmK~mK2mI !r #(
L

cKL
2 ~r !c̄ IJ~r !U2D .

~67!
2-10
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As in Eq. ~58!, in the second term that has the factors
AmK(mK2mI), if mK2mI is negative, the correspondin
term in the sum over modes is to be omitted, since it co
sponds to ax IJK8 -mode frequency 2mK2mI that is below the
natural frequencymI and hence to a mode that is not free
propagating at large radial distance to carry off mass.

When only one real scalar field of massm is present, the
classical mass loss rate becomes

2
dM

dt
'

27m4

211/2 U E0

`

drr sin~A8mr!c3~r !U2

. ~68!

With two scalar fields of identical masses present, o
gets

2
dM

dt
'

27m4

211/2 S U E
0

`

drr sin~A8mr!~c1
21c2

2!c1U2

1U E
0

`

drr sin~A8mr!~c1
21c2

2!c2U2D . ~69!

Again one can readily see that if the sum of the square
the complexc fields with identical masses are zero, th
there is no classical mass loss, at least at this level of
proximation. With just two fields of identical masses, th
condition is thatc156 ic2.

VII. SIMPLEST SPHERICAL OSCILLATONS

Now let us focus on the simplest case, in which there
single massive scalar field in a finite-mass spherically sy
metric nearly-Newtonian configuration that is very nearly p
riodic in time and has no nodes. In particular, require thac
be spherically symmetric, independent of time~except for a
possible slowly varying phase factor!, and nowhere zero~no
nodes, though asymptotically zero at spatial infinity!.

By a suitable choice of the hypersurfaces of constant ti
one can cancel the phase factor to makec real and positive
everywhere, which is what I shall assume, at the cost
having U approach a nonzero constant at spatial infin
Then the time-dependent Newton-Schro¨dinger equations
~20! and ~32! for a single scalar field with a single realc
become the time-independent Newton-Schro¨dinger equations
@12–15# ~where for simplicity I am using units in whichc
51 so that I can drop many occurrences of factors ofc that
one can easily put back in by dimensional analysis if nee
with other choices of units!,

¹2c'2m2Uc, ~70!

and

¹2U'm2c2. ~71!

In the case of spherical symmetry which I am now a
assuming, the equations take the form~with c real! of two
coupled second-order ordinary differential equations,
02300
f

-

e

of

p-

a
-
-

e,

f
.

d

c91
2

r
c8'2m2Uc, ~72!

and

U91
2

r
U8'm2c2. ~73!

As noted previously@12,14#, this system of equations ha
the scale invariance

~c,U,r !°~l2c,l2U,l21r !. ~74!

Inserting explicitly the speed of lightc so that the radiusr
can have units of length instead of time as it implicitly do
above, I shall set

r 5
cx

k
, ~75!

c5
k2S

A2m2
, ~76!

U5
2k2V

2m2 , ~77!

so withk having the units of frequency or inverse time,x, S,
andV are the dimensionless variables used by Ref.@14# ~ex-
cept that what I now callx, they call r ). Note that thisV,
which is just a rescaling of the Newtonian potentialU with
its sign reversed, is not to be confused with theV(t,xk) in
the metric~14!, which is negligible in the nearly-Newtonia
metric.

Although so far I have used a prime generally to denot
derivative with respect to the radiusr, when I am using the
dimensionless rescaled radial variablex instead as the inde
pendent variable, I shall use a prime to denote a deriva
with respect tox. Then Eqs.~72! and ~73! ~where the prime
denotedd/dr) become the dimensionless time-independ
Newton-Schro¨dinger equations

~xS!952xSV ~78!

and

~xV!952xS2. ~79!

Note that I have now replaced the' signs with 5 signs,
even though these equations are only an approximation to
actual Einstein-Klein-Gordon equations, though an appro
mation that becomes arbitrarily good in the near
Newtonian limit.

These time-independent Newton-Schro¨dinger equations
are the same as Eqs.~6a! and~6b! of Ref. @14#, except for the
replacement of their radiusr by my dimensionless rescaledx.
The fact that the arbitrary constantk does not appear in thes
equations illustrates their scale invariance.

Another form of the equations that is helpful for some
the analysis below is to use
2-11
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p[
1

2
~S2V! ~80!

instead ofV in Eqs.~78! and ~79!, which then become

~xS!952xS~S22p! ~81!

and

~xp!95xSp. ~82!

Yet another set of variables to use that were particula
convenient for numerical integration of the equations and
the interpretation of the results are

X[xS, ~83!

M[2x2V8, ~84!

w[2~xV!85
M
x

2V. ~85!

The variableX is the same as that used in Ref.@15#. The
asymptotic value ofM(x), sayM` , is what is calledB in
Ref. @14# and what is calledI in Eq. ~2.19! of Ref. @15#. The
asymptotic value ofw(x), sayw` , which is positive, is by
Eq. ~85! the same as the asymptotic value of2V(x), say
2V` , which is the same as2A in Ref. @14#.

M(x) has the interpretation of the rescaled mass inte
to the sphere atx. From the fact that asymptotically one ha
U;U`2M /r and V;V`1M/x ~assuming a finite-mas
oscillaton in which the mass-energy density, proportiona
S2, asymptotically rapidly approaches zero!, one can see tha
the mass~in units of time! interior to a sphere of radiusr
5cx/k is

M ~r !5
k

2m2M~x!. ~86!

The variablew can be written as

w5
2m2

k2 ~U1rg !, ~87!

whereg is the acceleration of gravity at the same radiur
where the gravitational potentialU is evaluated,

g5
dU

dr
5

M ~r !

r 2 . ~88!

Thusw can be interpreted as a rescaled value that the gr
tational potentialU would have at twice the radiusr if U had
a uniform gradient fromr to 2r , with this uniform gradient
having the same value of the actual gradient at radiusr. If the
mass-energy density dropped precisely to zero outside s
radius,w would be constant outside this radius, at the va
w52V`5(2m2/k2)U` . In the actual case in which th
mass-energy density, proportional toS2, drops exponentially
toward zero,w is exponentially close to2V` and is there-
02300
y
r

r

o

i-

e
e

fore a good integration variable to use to evaluate
asymptotic value ofV, that isV` .

The differential equations in terms of these variables a

X95S w2
M
x DX[2VX, ~89!

M85X2, ~90!

w85
X2

x
. ~91!

The initial conditions for these variables~initial in x, of
course, not in time, since all of the quantities being cons
ered presently are independent of time in the approxima
that we initially ignore the mass decay rate! are that atx
50, we haveX50, X85S0 , M50, andw52V0.

As discussed in Refs.@14,15#, for an everywhere regula
static spherically symmetric solution to the Newto
Schrödinger equations,SandV must be smooth everywhere
and S must be decreasing exponentially at spatial infin
(x→`). At the origin (x50), S and V must have finite
values,S0 and V0 respectively, and must have zero dime
sionless radial derivatives,S850 andV850.

Because of the scale invariance, the only independ
nontrivial parameter for a solution regular at the origin is t
ratio S0 /V0. Integrating out from the origin gives a solutio
that diverges at finite radius~with Sgoing to1` and withV
going to 2` there! if V0<0, so we shall chooseV0.0.
Using the scale invariance, without loss of generality we c
and shall setV051, leaving the nontrivial parameter to b
S0. If S050, then we just get the trivial solutionS50, V
5V0, which is flat spacetime with no matter, a solution w
shall discard as previously studied by other people. By
symmetry of the equations underS°2S, we can thus
chooseS0.0.

If S0 is too large, Eq.~79! implies thatxV ~initially grow-
ing asx) bends down rapidly, so thatV goes negative while
X5xS is still growing. @Initially X5xS also grows linearly
with x, asS0x, but, like xV, it also bends down. However
Eq. ~78! implies that it does not bend down so fast asxV
bends down, forS.V.0.# Then whenV becomes negative
X8 grows withx, and soX grows faster and faster, and eve
tually so doesS, by Eq. ~78! or the equivalent Eq.~89!.
Equation~79! implies that thenxV and eventually alsoV gets
more and more negative. In fact, thenS goes to1` andV
goes to2` at a singularity of infinite mass at finitex. Of
course, we shall discard these solutions.

On the other hand, ifS0 is positive but too small~e.g., less
thanV051 @15#!, Eq. ~79! implies thatV will stay positive
long enough for Eq.~78! to imply thatxSwill oscillate ~with
characteristic period in thex variable of 2p/AV if V were
constant!. However, we want the regular solution with n
nodes, the solution with the largest value ofS0 that does not
lead to a singularity. This value ofS0 is an eigenvalue for the
system.

At this eigenvalue,X5xS will bend over from increasing
at x50 (X85S0 there! to decreasing again toward zer
2-12
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value asymptotically, but never crossing zero.xV will also
bend over from increasing~at unit rate! at x50 ~since we
have chosenV051) and will cross zero to become negati
and will eventually keep decreasing at the asymptotica
rate given by the asymptotic negative value ofV, say V` .
That is, S will start out atS0 with zero derivative with re-
spect tox (S850 initially! but will then bend down to ap
proach zero asymptotically at largex ~while then bending
back upward just enough to keep from crossing zero,
never quite leveling out, except asymptotically!. Similarly, as
a function ofx from x50 to x5`, V will start out atV0
51 also with zero derivative with respect tox (V850 ini-
tially! but will then bend down and cross zero before be
ing back up to level off toward some negative const
asymptotic valueV` .

For this eigensolution, sinceX starts at zero and initially
increases linearly withx, and sinceM85X2 with M(0)
50, and sincew starts at2V0521 with w85X2/x, we
have initially ~near the origin,x!1),

M;
1

3
S0

2x32
1

15
S0

2x5, ~92!

w;211
1

2
S0

2x2, ~93!

X;S0x2
1

6
S0x3, ~94!

S;S02
1

6
S0x2, ~95!

V;12
1

6
S0

2x2, ~96!

p;
1

2
~S021!S 11

1

6
S0x2D . ~97!

Then asx is increased tò , X will at first increase, while
bending downward and eventually passing a maximum
then decreasing. While decreasing,X will pass an inflection
point ~at the point at whichV crosses below zero! and will
then bend upward to level out asymptotically as it also
proaches zero asymptotically. At the same time~here mean-
ing during the same evolution inx from 0 to`), M will start
from 0 with zero slope and curvature and initially grow
the cube ofx ~i.e., as the volume interior to the sphere
radiusr 5cx/k) but eventually will reach an inflection poin
~at the point at whichX reaches its maximum! and then
gradually level off to approach its asymptotic valueM` .
The variablew will start at 21 at x50 with zero slope and
will bend up to cross zero, before bending downward to le
off asymptotically and approach its asymptotic valuew`

52V`.0.
For use below in calculating the quantum decay rate

this type of oscillaton, it is also of interest to integrate t
variableD(x) given by the differential equation
02300
y

ut

-
t

d

-

l

f

D85x2S45
X4

x2 ~98!

with the boundary conditionD(0)50. Since the mass den
sity in conventional units is~with m andk in frequency units!

r5
m2ucu2

4pG
5

k4S2

8pGm2 , ~99!

the asymptotic value ofD, namelyD` , is proportional to the
integrated square of the mass-energy density~and hence to
the total annihilation rate of two scalarons into two gra
tons!:

D`5
16pm4

k5 E ~Gr!2d3x. ~100!

I have used the differential equation routine ofMAPLE 8 to
evaluate to high accuracy the eigenvalueS0 and the
asymptotic valuesM` and w` . The eprint version of this
paper@17# explains in more detail the numerical procedu
and gives all of the 30–35 significant digits of the results, b
here I shall give only a smaller number of digits.

The values I obtained, rounded to 19 digits, were

S0'1.088 637 079 429 044 996, ~101!

M`'3.618 701 237 823 656 810, ~102!

w`'1.065 731 278 365 451 059, ~103!

D`'1.320 680 334 028 957 064. ~104!

One can see that my value forS0 confirms all but the last
of the 15 digits given for this quantity by Ref.@14#.

From these numbers, one can of course construct var
combinations of them, such as the scale-invariant quan
A/B2 that Ref.@14# discusses:

A

B2 52
w`

M `
2

'20.081 384 603 921 072 995.~105!

The first two nonzero digits of this quantity seem to agr
with the value@14# plotted in their Fig. 4, but they do not lis
its numerical value.

From the scaling relation given by Eq.~86!, we can get
the small dimensionless mass parameter of the nea
Newtonian oscillaton,

m[Mm5
k

2m
M` . ~106!

Since in the end we want to express other properties of
oscillaton in terms ofm, we shall actually invert this to ge
the scaling parameterk ~which has units of frequency, a
doesm) as

k5
2mm

M`
. ~107!
2-13
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For example, the value of the Newtonian potential at
finity is

U`52
k2

2m2 V`

5
2w`

M `
2

m2'0.162 769 207 842 145 990m2.

~108!

We can then express the fractional binding energy o
nearly-Newtonian oscillaton as

E

M
52

1

3
U`52

k2

6m2 V`52
2w`

3M `
2

m252em2

~109!

with

e5
2w`

3M `
2

'0.054 256 402 614 048 663 473.~110!

If we take the number of scalar particles to be

N5
M*
m*

5
c5M

\Gm
, ~111!

so the conventional rest mass of the oscillaton isN times the
conventional rest mass of the scalar field quantum,M*
5Nm* , then the conventional total energy of the oscillat
is, to first order inm2,

Etot5Nm* c2~11E/M !5Nm* c22N3m
*
5 eG2/\2.

~112!

This would be the same value for a boson star with
complex scalar field having aU(1) symmetry. For that prob
lem the value was calculated by Ruffini and Bonazzola@18#
over 34 years ago, gettinge50.1626. Except for the las
digit, this corresponds to three times the value above.

One can also compare my numerical results with
5-place results for a boson star by Friedberg, Lee, and P
@12# ~for n50 nodes!. In terms of my calculated paramete
and my numerical results, their calculated parameters wo
be

ĝ052V0 /S051/S0'0.918 579 771 804 638 252,~113!

ĝ`5w` /S0'0.978 959 194 486 001 441, ~114!

ĝ15M` /S0
1/2'3.468 256 171 397 572 160. ~115!

They got ĝ0520.91858, ĝ`50.97896, andĝ153.46826,
in perfect agreement with my results rounded to five dig
after the decimal point.

VIII. CLASSICAL EMISSION FROM THE SIMPLEST
SPHERICAL OSCILLATONS

Now that the nodeless spherically symmetric near
Newtonian configurations have been found~determined by
02300
-

a

a

e
ng

ld

s

-

the single scaling parameterm5Mm), we need to use Eq
~68! to evaluate the classical mass loss rate. By using E
~75!, ~76!, and ~107!, we can write the classical mass lo
rate, or power emitted in classical scalar radiation~dimen-
sionless when the massM is in time units, i.e., M
5GM* /c2 in terms of the massM* in conventional mass
units!, as

Pc[2Ṁ classical'
27m8

A2M `
8

F2, ~116!

F5E
0

`

dxxS3~x!sin~ax!, ~117!

a5
A2M`

m
. ~118!

Because the nearly-Newtonian configurations havem
!1, them-dependent constanta is very large,a@1. There-
fore, the sin(ax) factor in the integral~117! for F oscillates
very rapidly and nearly washes out the integral for largea,
causingF to be very small.

We can estimate the value ofF by the following method
of contour integration: SinceS(x) is an even function ofx,
the integrand is an even function ofx, and so the integra
along the real axis from 0 tò may be replaced by half o
the integral along the real axis from2` to 1`. Then the
real variablex may be extended to the complex variablez, as
a function of which the integrand is analytic except at po
of S(z). One may split sin(az)50.5ie2 iaz20.5ieiaz into the
first exponential, which drops exponentially along the ne
tive imaginary axis for the complexz, and the second expo
nential, which drops exponentially along the positive ima
nary axis for the complexz. By splitting up the integral into
the corresponding two pieces, the first piece may be repla
by a contour integral making a clockwise loop around t
lower half plane (Imz,0), and the second piece may b
replaced by a contour integral making a counterclockw
loop around the upper half plane (Imz.0), which gives an
equal contribution.

Now one of these contour integrals, say the second
~since they each give equal contributions!, may be evaluated
by finding the residues at each of the poles of the integra
There are a series of poles ofS(z) running up the imaginary
z axis. Because of theeiaz factor from sin(az), the dominant
residue will come from the pole closest to the real axis, s
at z5 iy0.

From an analysis @14,15# of the time-independen
Newton-Schro¨dinger equations in their dimensionless for
~78! and~79!, one can see that the solutions are analytic o
the complexz plane, except for movable~moving if S0 were
changed! double poles with coefficients26. In particular,
near the pole atz5 iy0 , S has the asymptotic form

S~z!;
26

~z2 iy0!2 . ~119!
2-14
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Because it isS3(z) that appears in the integral~117! for F,
which thus has a 6th-order pole atz5 iy0, one must integrate
this factor by parts five times, giving the 5th derivative of t
eiaz factor, and hence 5 powers ofa, in the dominant term of
the result.~I shall drop terms with lower powers ofa that
arise from differentiating thez factor rather than theeiaz

factor, since they involve higher powers of the small quan
m.! As a result, one finds that

F'21.8pa5y0e2ay0. ~120!

Thus there is one more parameter that must be determ
numerically before we can evaluate explicitly the domina
term ~for m!1) in the classical mass loss rate, namely
valuey0 that locates the pole inS(z) at z5 iy0 that is above
the real axis but nearest to it.

To find y0, one can integrate the time-independe
Newton-Schro¨dinger equations~78! and ~79! up the imagi-
naryz axis ~after replacing the real radial variablex with the
complex radial variablez). For more details of the numerica
procedure and for the result to more than 30 significant d
its, see Ref.@17#. Rounded to 19 digits, the pole location is

y0'3.852 750 221 596 529 692. ~121!

Now that we have the last parameter,y0, that we need to
evaluateF by Eq. ~120!, we can go back and plug the resu
into Eqs.~116! and~118! to give the classical mass loss ra
as

Pc[2Ṁ classical'
C

m2 e2a/m, ~122!

where

a5A8M`y0'39.433 795 197 160 163 094,~123!

and where

C5
23/237

52
p2a2'3 797 437.776 333 014 909.

~124!

I should emphasize that this is what I believe to be just
dominant term in the classical emission of scalar waves fr
a nearly-Newtonian oscillaton whenm!1. I would expect
this expression to have a relative error of the order ofm.

To put it another way, one can presumably write
02300
y

ed
t
e

t

-

e
m

ln
1

Pc
5

a

m
22 ln

1

m
2 ln C1O~m!

'
39.433 795 197 160 163 094

m

22 ln
1

m
215.149 837 127 888 728 1991O~m!,

~125!

so that the calculations performed here have given the th
leading terms in an expansion for ln(1/Pc).

It is beyond the scope of this paper to do the nonlin
gravitational calculations to find the classical mass loss
when m is not small, but if one neglects theO(m) correc-
tions, one can make a very crude estimate for the mass
rate even up to the maximum value ofm, saymmax.

For what are generally called boson stars~stationary
spherical configurations of a complex massive scalar fi
whose phase rotates in a circle in the complex plane, equ
lent to two real scalar fields oscillating 90° out of phase!, the
maximum value ofm is 0.633@12#. For oscillatons of a rea
massive scalar field, the initial calculations@1# gave mmax
'0.6. Alcubierreet al. @9# have givenmmax50.607.

For example, if the coefficient of theO(m) term of Eq.
~125! were the same magnitude~but of uncertain sign! as the
coefficient of the 1/m term, namelya'39.4338, then just
taking this single term with, saym50.633, would change
ln(1/Pc) by roughly625.0, or a total range of roughly 50.
for this quantity, giving an uncertainty in the mass decay r
by a factor of aboute50.0;531021. One might hope that the
uncertainty is a lot less, but without calculating theO(m)
and higher terms, I do not see how one can be sure.

Despite this proviso, if we did naively insert the boso
star maximum mass parametermmax'0.633 into Eq.~122!,
we would get a mass loss rate~dimensionless, since ou
masses denoted byM have the factor ofG/c3 inserted to
give them the dimension of time! of about 8310221. How-
ever, if it could be larger or smaller by a factor of rough
e25.0;731010, the dimensionless mass loss rate could be
large as roughly 6310210 or as small as roughly 10231.

In any case, unless the coefficient ofm in the O(m) term
of Eq. ~125! ~or actually this entire correction term divide
by m) were negative and had a larger magnitude than
coefficient of the 1/m term, it seems that the dimensionle
mass loss rate is always less than about 1029m. This means
that during a one-radian change in the phase of the sc
field oscillation~a time t51/m), the oscillaton would have
lost less than one-billionth of its mass. If instead the corr
tion to applying Eq.~122! to m5mmax were negligible, then
during the 2p-longer period of a full scalar field oscillation
even a maximum-mass oscillaton would have lost less tha
billionth of a billionth of its mass.

This result shows why the numerical analyses to d
have not shown any instability of the oscillaton, since
mass loss rate is so low.

Figure 6 of Ref.@9# for m50.5726 shows an apparen
numerical mass loss rate of about 331029;531029m in
2-15
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dimensionless units, but since this is several times hig
than the crude guess above for the upper limit for the m
loss rate, and is;231014;e33;e58m times larger than wha
my rashly interpolated formula would predict for thatm,
namelyPc;1.4310223, I suspect that the authors are inde
correct in attributing this to ‘‘a small amount of numeric
dissipation still present in our numerical method.’’ Howev
I cannot completely rule out the possibility that theO(m)
term in Eq. ~125! is roughly 258m at m50.5726, so that
there conceivably might be mass loss comparable to
given by Fig. 6 of Ref.@9#.

Later we shall find that for sufficiently smallm, the clas-
sical mass loss rate~122! is dominated by a quantum mas
loss rate. However, when the classical mass loss rate d
nates, and whenm!1, the timet22t1 to evolve fromm1 to
m2 is approximately

t22t1'
m2

4

aCm
ea/m22

m1
4

aCm
ea/m1. ~126!

For example, we could definet(m) to be the time to decay
from m5mmax to some smaller value ofm. Then if mmax

2m@mmax
2 /a;0.00934, then the magnitude of the first ter

on the right hand side of Eq.~126! ~with m25m) is much
greater than the magnitude of the second term~say withm1
5mmax'0.607). Since this is necessarily the case form!1
where Eq.~126! is applicable, we may then drop the seco
term and say that the time to decay down tom!1 from mmax
by the classical emission of scalar radiation is

t~m!'
m4

aCm
ea/m. ~127!

IX. PRECISELY PERIODIC BUT INFINITE-MASS
OSCILLATONS

Although it is beyond the scope of the present pap
which just gives numerical results form!1, it would be of
interest to be able to calculate the functiont(m) for all m
,mmax. To calculate ‘‘exact’’ results~i.e., exact up to nu-
merical errors in solving the differential equations!, one
needs a precise definition ofmmax and of m(t) for the time
thereafter.

It is rather hard to definemmax precisely~and the initial
oscillaton configuration that gives this maximum mas!,
since any initial configuration is losing mass~assuming
boundary conditions of no incoming scalar waves!, so one
could start with a wide variety of initial configurations. Bu
essentially one would like to start with one out of a set
initial configurations that lose mass as slowly as possible
each initial mass, and then choose the maximum-mass
ment from the set members that do not have rapid mass
~e.g., at a rate roughly given by the dynamical timesc
1/m). If the initial decay time scale is of the order o
@mmax

4 /(aCm)#ea/mmax, as the weak-field formulas woul
suggest, then to the degree that this is much larger thanm,
one can define the maximum-mass initial configuration
that accuracy, i.e., with a relative error that would be e
pected to be of the order of (aC/mmax

4 )e2a/mmax. However, to
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define it to more accuracy~e.g., ‘‘precisely’’! would require
more care.

Although I do not see any highly preferred way to ma
the definition precise, I can propose the followingad hoc
method, which leads to a consideration of precisely perio
but infinite-mass oscillatons:

Temporarily relax the condition of no incoming wave
that has been fundamental to the discussion so far. The
appears that one can have precisely periodic oscillato
though now with infinite mass, so that the spacetime is
quite asymptotically flat~although having curvatures falling
off fairly rapidly, so, for example, the spatial integral of th
Kretschman invariant, the total four-fold contraction of th
square of the Riemann tensor, is finite at any time!.

The idea of these precisely periodic~though infinite mass!
oscillatons is that not only does the oscillation of the sca
field at frequencym ~with respect to a suitably scaled coo
dinate timet in a gauge or choice of coordinates in whic
g0i50 andg00 is independent oft) have precisely the righ
phase to drop exponentially to zero at large spatial dista
by the gravitational binding of that mode, but also the osc
lations at all odd multiples ofm also have precisely the righ
phases to drop exponentially to zero at large spatial dista
by the gravitational binding of those modes as well, wh
one takes into account the gravitational field not only of t
mode at frequencym but also the gravitational field of all the
higher-frequency modes.

That is, one has a sequence of relations for the mode
each frequency that start as follows for the lowest mode: T
mode with frequencym is chosen to have the right phas
~e.g., the right relation of its initial-in-r value atr 50, deter-
mined by the quantityS0 above, to the value ofg00 there,
determined by the quantityV0 above in the weak-field or
nearly-Newtonian limit!, so that once the stress-energy te
sor of the scalar field~predominantly from this mode at sma
radii! causes2g00 to rise above unity at sufficiently larg
radiusr ~so that this mode there has a proper-time freque
that is less than its natural frequencym and hence has a
concave or exponential radial dependence for larger va
of r ), one has only the asymptotically exponentially deca
ing behavior of the mode at larger values ofr.

However, the oscillation of thegi j components of the
metric ~at frequencies that are even multiples ofm) couples,
via the Klein-Gordon equation for the minimally couple
massive scalar field, the modes of the scalar field that h
frequencies that are different odd multiples ofm. Thus, for
example, the mode with frequency 3m is excited and propa-
gates out from the region of the oscillaton where the mo
with frequencym dominates the stress-energy tensor.

So far, this is just like the decaying oscillaton describ
above. If there are no incoming waves at frequency 3m, the
outgoing waves carry off energy from the oscillaton, whi
decays~and hence is not precisely periodic in time!.

On the other hand, for the precisely periodic but infinit
mass oscillaton, there are both incoming and outgoing wa
at frequency 3m, and their stress-energy tensor~which at
sufficiently larger dominates over that of the mode of fre
quency m, since thatm-frequency mode is asymptoticall
exponentially decaying at sufficiently larger ) eventually
2-16
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causes2g00 to rise above 9, so that then the mode w
frequency 3m also has an approximately exponential rad
dependence at largerr. With the right choice of phase of thi
mode @i.e., of how big is the part that goes roughly
sin(A8mr)/r at small r ], only the decaying exponential i
present, and the mode at frequency 3m also goes to zero
exponentially rapidly at sufficiently larger. ~The mode at
frequency 3m starts to fall off exponentially in radius at
much larger radius than the mode at frequencym does.! That
is, the phase is chosen so that at each radius where this m
is oscillating radially, there are equal parts of outgoing a
incoming waves, and then the rising gravitational poten
from the stress-energy tensor of mostly that mode makes
mode gravitationally bound so that the outgoing waves
flect off the potential barrier and become the incomi
modes at smaller radii.

Of course, there is also coupling to modes with frequen
5m, and these modes must also be given the right phas
have equal parts of outgoing and incoming waves for rad
which 2g00,25, so that when one gets so far out that t
energy density of that mode, mostly, causes2g00 to rise
above 25 and that mode also to develop an exponential
havior, one has only the approximately exponentially dec
ing piece.

And so it goes for all higher modes with frequencies th
are odd multiples ofm, say (2n11)m. They must each be
chosen so that have equal amounts of outgoing and incom
waves for2g00,(2n11)2, where that mode oscillates i
the radial direction, and then that mode is totally reflected
the gravitational potential for2g00.(2n11)2.

Since this process must continue indefinitely in order t
the oscillaton be precisely periodic in time and not be los
energy to outgoing waves of any mode, one must h
2g00 rising indefinitely, so the metric is not asymptotical
flat and indeed hasM (r ), the mass interior to radiusr, rising
indefinitely with r : these are infinite-mass oscillatons.~They
are also almost certainly unstable to small perturbations,
that is another story.!

These precisely periodic but infinite-mass oscillatons
of course not physically realistic, but they do make intere
ing theoretical solutions of the coupled Einstein-Klei
Gordon equations that one may use for such purpose
defining a precise canonical~though ratherad hoc! maxi-
mum mass for a finite-mass oscillaton without nodes.

For example, one could take a precisely periodic osci
ton and then evaluateM (t,r ) at a timet when the scalar field
at thatr is passing through zero, and at a value ofr where the
time average of the energy density of the mode with f
quencym is equal to the time average of the energy dens
of the mode with frequency 3m. ~If the scalar field passe
though zero more than twice in each coordinate time pe
2p/m, then choose one of the times at which the field at t
r is zero but the magnitude of the time derivative of the fie
is a minimum among all of these times when the field is z
there. If that still does not uniquely specify the time with
one period of the metric, which is a half-periodp/m of the
scalar field, then go to the minimum of the magnitude of
second time derivative of the field among those times,
until the degeneracy is broken. If the degeneracy neve
02300
l

de
d
l

he
-

y
to
t

e

e-
-

t

ng

y

t
g
e

ut

e
t-

as

-

-
y

d
t

o

e
c,
is

broken, then presumably the mass does not depend on w
of those times it is evaluated.!

The value ofM (t,r ) at that value oft and ofr could then
be said to be a canonical~thoughad hoc! finite precise value
for the mass of a decaying finite-mass oscillaton witho
nodes that is in some sense represented by the precisel
riodic infinite-mass~at r 5`) oscillaton.

The idea of the representation is that in the precisely
riodic oscillaton, the value ofr determined above would b
where the mode with frequencym has decayed exponentiall
to a very small value, where its time-averaged energy den
has dropped to that of the tiny amount of outgoing and
coming waves at frequency 3m. For the finite-mass decayin
oscillaton, if one does not include the energy density of
modes with frequency 3m or higher outside this radius~e.g.,
if one assumes that they are just starting to be emitted an
at that time are negligible outside this radius!, the energy
density of the mode with frequencym is so small at that
radius~and dropping roughly exponentially with radius! that
there is a negligible addition to the mass from that ene
density in the finite-mass oscillaton.

That is, it is negligible unless we are wanting to get so
absolutely precise number to assign as the mass of the o
laton, in which case we must go from the slightly-poorl
defined initial configuration of a finite-mass decaying osc
laton to the precisely defined~but unphysical! infinite-mass
oscillaton.

To get a representation of the maximum mass of a dec
ing finite-mass oscillaton by this sort of precise mathemat
definition, one must choose the right precisely periodic
cillaton. There can be an arbitrary number of nodes in
mode with frequencym before it decays approximately ex
ponentially in the radial direction, and to model the decay
finite-mass oscillaton which has no nodes in its mode w
frequencym, we want the precisely periodic oscillaton als
to have no nodes in that mode. On the other hand, we w
the modes at frequencies that are higher odd multiples om,
say (2n11)m for each positive integern, to have as low a
value of energy density possible, which would mean th
should each have the largest number of nodes possible be
2g00 rises above (2n11)2 @at a rate with respect to radiu
that is given mainly by the energy density in the outgoi
and incoming waves at that frequency, once2g00 rises
above (2n21)2 and the mode at the next lower frequenc
(2n21)m, is reflected back inward#.

Smaller numbers of nodes are possible for each of
higher-frequency modes if there is an extra magnitude
outgoing and incoming waves at that frequency, so there
pears to be a whole infinite sequence of integers to be sp
fied for the generic precisely periodic oscillaton, even af
specifying, say, the time-averaged energy density at the
ter to give the one continuous parameter of the classical
cillaton that is the nonlinear-gravity analogue of the scale
the nearly-Newtonian oscillaton. This means that th
should be uncountably many periodic oscillatons at the sa
value of the central time-averaged density.

It is plausible that they form a fractal set of perpetua
oscillating spatially inhomogeneous but spherically symm
ric periodic-in-time solutions of the Einstein-Klein-Gordo
2-17
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equation, somewhat analogous to the apparently fractal s
homogeneous but nonperiodic cosmological solutions of
same equations@19#.

However, here we want just the simplest example, w
the fastest possible falloff of the energy density, to use
define a precise value for the maximum mass of a finite-m
oscillaton with no nodes for the mode with frequencym and
only outgoing components for the modes with high
frequencies—these frequencies being only approximate
the slightly nonperiodic case in which the finite-mass os
laton is actually slowly decaying with time.

Once we have chosen the simplest precisely periodic
cillaton for each possible value of the central time-avera
energy density, we still need to choose the one that gives
maximum value of the mass defined by the procedure ab
That will be the unique precisely periodic oscillaton that w
will use to represent in some sense the initial state of a fin
mass decaying oscillaton, and it will give us a prec
~though ratherad hoc! mathematical definition ofmmax.

Now to get a definite initial state@say for giving a precise
definition of m(t) and of its inverse,t(m)] for a finite-mass
decaying oscillaton that is represented by the unique
cisely periodic oscillaton above, one could take the init
metric and scalar field values and time derivatives of
precisely periodic infinite-mass oscillaton at the timet de-
fined above for determining the value ofM (t,r ) that was
used to represent the maximum mass of a decaying osc
ton, out to the value ofr that was also determined by th
procedure above~where the time average of the energy de
sity of the mode with frequencym had dropped to the sam
time average of the mode with frequency 3m). One could
then truncate the precisely periodic oscillaton at that rad
replacing its initial data on that hypersurface with initial da
that agreed for smaller values ofr but which for larger values
of r has zero for both the scalar field and its time derivati
and the Schwarzschild values for the initial data of the m
ric. ~That is, the solution can be taken to be vacuu
Schwarzschild on the initial time surface for larger values
r.!

Next, simply let this truncated oscillaton initial da
evolve by solving the Einstein-Klein-Gordon equations,
represent the decay of an initially maximal-mass oscillato

As energy flows out from the decaying oscillaton in t
form of scalar waves moving slower than the velocity
light, the ADM mass and also the mass at future null infin
stay constant, so we need a different definition of the mas
the decaying oscillaton to define a nontrivial time depe
dence for it. For that, we can simply chooseM (t,r ), with the
coordinate value ofr kept fixed at the value where, in th
periodic oscillaton that provided the initial data out to th
radius, the time-averaged energy density of the mode w
frequencym equaled that in the mode with frequency 3m.

Here the coordinate value ofr, once determined for the
precisely periodic oscillaton, is assumed to be kept rig
with no gauge freedom, say by continued use in the deca
oscillaton of the gauge choice thatg0i50 and thatg00 has no
periodic component. However, sinceg00 has a slow secula
evolution for the decaying oscillaton, I am not quite su
how to fix the gauge absolutely precisely in this case, sin
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do not see how uniquely to disentangle this slow secu
evolution from a periodic component. Perhaps if one wan
an absolutely precise mathematical definition, which h
been the aim of this long discussion, one should use ins
as the sphere whereM (t,r ) is to be evaluated as a functio
of r, a sphere that has a constant circumference~the
Schwarzschildr coordinate, after takingr to be the circum-
ference divided by 2p, though not ther coordinate that
makesg00 independent of time for the precisely period
oscillaton!.

There is also a slight ambiguity in definingt absolutely
precisely ifg00 has a slow secular evolution rather than bei
precisely independent oft as it can be in the precisely per
odic oscillaton with a suitable choice for the time and spa
coordinates. One commonly used precise way to defin
would be to define the constant-t hypersurfaces to be or
thogonal to the worldlines at constant angular coordinates
the spheres of constant circumference, which leads to
called Schwarzschild coordinates.

One disadvantage of the Schwarzshild (t,r ) coordinates is
that inside the oscillaton, the worldtubes of consta
Schwarzschildr ~circumference divided by 2p) oscillate in
and out, relative to coordinates in which not only isg0i50
~as is true also for the Schwarzschild coordinates by c
struction! but alsog00 is constant~for the precisely periodic
oscillaton!. Then since the hypersurfaces of constantt in
Schwarzschild coordinates are by construction orthogona
the worldlines of constant Schwarzschildr ~and of constant
angular position on the 2-spheres!, these hypersurfaces als
bend forward and back by a rather considerable amoun
the interior of the oscillaton, giving periodic effects that d
pend on this global choice of Schwarzschild coordinates
are actually considerably larger than any effect in the lo
geometry.

However, at the value ofr defined above, where the time
average of the energy density of the mode with frequencm
has dropped down to equal the corresponding value for
tiny outgoing and incoming wave modes with frequency 3m,
one is where the energy density of the oscillaton is so l
that the radial oscillations of the world tubes of consta
Schwarzschildr are very small and should not have a si
nificant effect.

One still has to define thet labeling of this foliation into
constant-t hypersurfaces. When the metric is asymptotica
flat, as it would be for the decaying oscillaton, then one c
define it so thatt is the proper time along the world tube o
infinite circumference. However, with this normalization, th
coordinate-time period of the approximately periodic dec
ing oscillaton would be shifted from the value 2p/m that it
is given by construction~normalization oft) in the precisely
periodic oscillaton.

Another simple but inequivalent choice would be
chooset to be proportional to proper time of the centr
worldline at r 50. Then one can have the approximate p
riod of the approximately periodic decaying oscillaton
very near 2p/m by choosing the constant of proportionali
between proper time and coordinate time to be the same
is in the precisely periodic oscillaton atr 50 in the gauge for
that solution in whichg00 is independent of time. However
2-18
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one should note that as the oscillaton decays and the g
tational potential at the center changes relative to that a
finity, the nearly periodic oscillations of the scalar field w
have its approximate period of oscillation secularly shift
from the value 2p/m that it has initially by this choice oft.

A third choice for the labeling of the constan
Schwarzschild-t hypersurfaces would be to choose atr 50
the time coordinatet so that the quantityc defined by Eq.
~21! would be real and positive for allt. This essentially
forces the coordinatet to be chosen so that, at the center
least, the coordinate period of oscillation of the scalar fieldF
~or of the rescaled dimensionless fieldf) is fixed to be
2p/m. This is perhaps the best choice if one wants to co
the number of oscillations of the scalar field, and to mak
precise count even when that number is not an inte
Henceforth we shall assume that we have made this ch
for the Schwarzschild time coordinatet ~which will not be
the same choice that would maket equal to proper time a
radial infinity!.

Once a suitably time-evolving sphere is defined to rep
sent the outer surface of the decaying oscillaton~with the
waves that go outside that radius being considered outg
waves rather than part of the oscillaton!, and once one has
precise time coordinatet, one can in principle solve numer
cally for the mass as a function of thist. Multiplying the
massM (t) ~in time units! by the constantm ~the natural
frequency of the scalar field, in inverse time units! gives
m(t), the dimensionless measure of the evolving mass of
oscillaton.

Assuming thatm(t) is monotonically decreasing witht
~which it conceivably need not be within each period, sin
the waves need not be purely outgoing over the entirety
period, though they should be when averaged over an i
gral number of periods!, one can invert this relation to ge
t(m) to see the time needed for an oscillaton to decay fr
the maximum-mass configuration to a smaller value ofm. In
the nearly-Newtonian limit in whichm!1, one would ex-
pect that this time should asymptotically approach that gi
by Eq.~127!, not in the sense that the difference between
actualt(m) and that given by this formula would go to zer
but in the sense that the ratio of the actualt(m) to that given
by Eq. ~127! would tend to unity asm tends to zero in this
purely classical calculation.

Of course, it would be interesting to calculate numerica
the value ofmmax and of the ratio of the actualt(m) to that
given by Eq.~127!, the latter being the function

R~m![
aCm

m4 e2a/mt~m!. ~128!

In particular, it would be interesting to calculate the lar
dimensionless number

q[mt~e21mmax!, ~129!

which is the angle by which the phase of the oscillati
scalar field advances (2p times the number of scalar fiel
oscillations! as the oscillaton decays from its maximum ma
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to a mass that is smaller by a factor ofe. The numerical
calculations done above for the nearly-Newtonian limit im
ply that

q'R~e21mmax!
mmax

4

e4aC
eea/mmax. ~130!

This dimensionless numberq, which is somewhat of an
analogue of an averageQ value of the oscillaton system fo
masses within a factor ofe of the maximum mass, is a pur
mathematical number determined purely by the Einste
Klein-Gordon equations~with no dependence upon the sca
set by the scalar field natural frequencym) and by the
mathematically-precise~but admittedly ratherad hoc! proce-
dure given above.

It is interesting thatq is apparently quite large~at least if
the correction factorR(e21mmax) is not too many orders o
magnitude smaller than unity!, a counterexample to the folk
lore that numbers defined purely mathematically tend to
within a few orders of magnitude of unity. For example,
mmax50.607 and ifR(e21mmax) were unity, then one would
get q'8.2031065. @However, there are other countere
amples that are even more extreme, such as the unkn
primen that is the first positive integer greater than one su
that the number of primes less than or equal ton, namely
p(n), is greater than Li(n), the principal value of the inte-
gral of 1/lnx from x50 to x5n, which forms a good
asymptotic estimate forp(n).#

It would certainly be worthwhile to calculate numerical
the values ofmmax and ofq, as well as the functionR(m) for
values ofm up tommax, but since that cannot be done with
the nearly-Newtonian calculation reported here, it is beyo
the scope of this paper and will have to wait for future r
search.

It would also be amusing mathematically to get a quan
tative description of the particular precisely periodic oscil
ton described qualitatively above that I have used to rep
sent ~by its part within the radiusr defined above! the
maximum-mass decaying oscillaton. In particular, what is
quantitative asymptotic behavior of the metric and of t
scalar field@each mode of which, of frequency (2n11)m,
eventually decays approximately exponentially in the rad
direction as the integrated gravitational effect of this a
other modes causes2g00 to rise above (2n11)2 so that the
mode becomes gravitationally bound#? However, this will
also be left to future work.

X. QUANTUM DECAY OF SINGLE-FIELD OSCILLATONS

Besides the classical decay of finite-mass oscillatons
outgoing scalar radiation, there are also quantum decay
cesses that appear to be dominated by the annihilation of
scalar particles into two gravitons. This rate also goes to z
asm is taken to zero, but only as a power-law inm, so for
sufficiently small m ~depending on the ratio ofm to the
Planck value!, it actually dominates over the classical dec
into scalar radiation.

The annihilation cross section for two nonrelativistic sc
lar particles to annihilate into two gravitons has been giv
2-19
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by DeWitt @20# to be~where I have inserted the factors of th
speed of light,c, that he and I usually set equal to unity!

sNR5
2pG2m

*
2

c3v
5

2p\2G2m2

c7v
, ~131!

where the first form is in terms of the scalar particle mass
conventional mass units, which I have been callingm* , and
the second form is in terms of the scalar field natural f
quency in inverse time units, which I have been callingm,
which is given by Eq.~2! asm5m* c2/\.

Therefore, if we have a number densityn of scalar field
particles of one species~more than one species will be con
sidered in the next section!, and hence a conventional ma
density

r5m* n5~\m/c2!n, ~132!

the annihilation rate~per time! for one particle passing
through is

R5nsNRv5~2p\2G2m2/c7!n. ~133!

Two scalar particles annihilate in each such process,
when one takes the square of the number density, the
also a factor of 2 overcounting the number of pairs of ide
tical particles, so these two factors of 2 cancel each other
give the number rate per time per volume by which sca
particles annihilate as

2
dN

dtd~vol!
5Rn5~2pG2m

*
2 /c3!n25~2p\2G2m2/c7!n2

52pG2r2/c3. ~134!

In the nearly-Newtonian limit~which is where the nonrel
ativistic annihilation cross section formula would apply!, the
mass density with one scalar field present, and represe
by the dimensionless complex fieldc given by Eq.~21!, is

r5
m2ucu2

4pG
. ~135!

If one integrates over an oscillaton with one real sca
field ~one complexc), the total annihilation rate per time i

2
dN

dt
5

1

8pc3E m4ucu4d3x. ~136!

In particular, for a spherical oscillaton with realc, one gets

2
dN

dt
5

1

2c3E m4c4r 2dr. ~137!

Now if we use the fact that by Eq.~3!, the total mass in
time units of the oscillaton isM[GM* /c3, and if we use
the fact that the mass in conventional units is the conv
tional massm* of each scalar particle times the numberN of
such particles~neglecting the small correction due to the k
netic energy of the scalar particles and the gravitational b
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ing energy!, M* 5m* N5(\m/c2)N, then we get the rate
per time at which the total massM in time units decays away
the dimensionless rate

Pq[2Ṁquantum52
dm

d~mt!
52

\G

c5 m
dN

dt

'
\G

8pc8E m5c4d3x5
\G

2c8E m5c4r 2dr. ~138!

For the nearly-Newtonian spherical oscillaton analyz
above, by using Eqs.~75!, ~76!, ~83!, ~98!, ~99!, ~100!, and
~106!, one can show that the quantum decay rate~per time!
in the mass~in time units! is

Pq[2Ṁquantum'4
\G

c5 m2
D`

M `
5

m55Q
m2

mPl
2

m55QtPl
2 m2m5,

~139!

where

mPl5A c5

\G
'1.85531043 s21 ~140!

is the Planck frequency,

tPl5A\G

c5 '5.391310244 s, ~141!

is the Planck time, the reciprocal of the Planck frequen
and where

Q5
4D`

M `
5

'0.008 513 223 934 732 691 876,~142!

using the numerical results given in Eqs.~102! and ~104!.
When both the classical decay rate given by Eq.~122! and

the quantum decay rate given by Eq.~139! are both signifi-
cant, one has the total decay rate being given by

2
dM

dt
52

dm

d~mt!
5Pc1Pq'

C

m2e2
a
m1QtPl

2 m2m5.

~143!

It may also be of interest to calculate the expected num
of scalarons and gravitons emitted during one period of
cillation of the oscillaton scalar field, which is a time 2p/m.
Since by far the most dominant scalaron emission is at
quency 3m, the energy of almost every scalaron emitted
3\m, so the expected number of scalarons emitted in
period is

Ns52
2p/m

3\m S dM* c2

dt D
classical

'
2p

3 S mPl

m D 2 C

m2 e2a/m.

~144!

Similarly, the most dominant graviton emission is at fr
quencym ~as two scalarons of this frequency annihilate in
2-20
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two gravitons of the same frequency!, so the expected num
ber of gravitons emitted in one period is

Ng52
2p/m

\m S dM* c2

dt D
quantum

'2pQm5'0.053 490 163 543 442 036 464m5.

~145!

It is interesting that although it is the classical emiss
power~into scalar waves or scalarons! Pc that depends only
on m, with the quantum emission power~into gravitons! de-
pending also onm/mPl , for the expected number of particle
emitted in one oscillaton period, it is the quantum emiss
into gravitons that depends only onm ~with an expected
number of gravitons per period never larger than unity, a
in fact never larger than roughly 0.0044 if the maximu
value form is 0.607 and if the formula above indeed appli
to this large a value ofm), whereas the emission into sc
larons ~classical! gives a number depending also onm/mPl
~and which can be larger than unity for sufficiently sm
massm).

The expected number of scalarons emitted per oscilla
period is unity,Ns51, for

m

mPl
'

A2pC/3

m
e2a/2m

'
2820.165 789 522 802 747

m
e219.716 897 598 580 081 547/m.

~146!

If this formula were to apply form50.607, which is the
most recent numerical result for the maximum mass par
eter of an oscillaton@9#, then this would occur for

m* '3.63310211m* Pl'4.433108 GeV/c2. ~147!

Then there would be some allowed oscillaton mass valu
which the oscillaton would emit an expected number of o
scalaron per oscillation period, for any scalaron mass
than some scalaron mass value that is given crudely by
~147! that uses Eq.~122! outside itsm!1 domain of validity.

If we define for use here~not the samex as used previ-
ously for the rescaled radial variable!

x[
a

m
'

39.433 795 197 160 163 094

m
~148!

and

g5
C

a7Q
'0.003 008 268 339 955 585 529,~149!

then the ratio of the classical mass-loss rate to the quan
mass-loss rate is, form!1,

Pc

Pq
5g

mPl
2

m2
x7e2x, ~150!
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m

which is unity for

x27 lnx5 lnS g
mPl

2

m2 D , ~151!

or

x5 lnS g
mPl

2

m2 D 17 lnx

5 lnS g
mPl

2

m2 D 17 lnF lnS g
mPl

2

m2 D 17 lnxG
5 lnS g

mPl
2

m2 D
17 lnH lnS g

mPl
2

m2 D 17 lnF lnS g
mPl

2

m2 D 17 lnxG J ,

~152!

to give the first three steps in an iterative procedure for so
ing for the value ofx5a/m that givesPc5Pq .

The decay time for an oscillaton to have its dimensionl
decay parameter decay fromm1 to a smaller value ofm is
given by

m~ t2t1!5E
m

m1 dm

Pc1Pq
. ~153!

Define them-dependent constantr @for the use in this
immediate section; not the samer as used elsewhere for th
radial variable# as the largest real solution to the equation

r

~ ln r !3
5s[

1

a4QtPl
2 m2

. ~154!

For brevity also define hereq @now not the large dimension
less constant angle defined in Eq.~129!# to be the function of
the classically dimensionless massm that is

q[
m4

aC
ea/m. ~155!

Then when lns52ln(a4QtPl
2 m2)@1 ~which implies that

ln r@1), and when Eq.~143! also holds, one can show tha
the integral on the right hand side of Eq.~153! can be ap-
proximated by the following explicit function ofr, q, andq1
~the value ofq whenm has its initial valuem1):

m~ t2t1!'
r

4~ ln r !3
$@ ln~r 1q!#42@ ln~r 1q1!#4%.

~156!

We can use Eq.~154! to rewrite this equation in the form

4a4QtPl
2 m3~ t2t1!'@ ln~r 1q!#42@ ln~r 1q1!#4.

~157!
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This gives an approximate formula for the decay timet
2t1, for an oscillaton in terms of its massM and the scalar
field massm ~which then determine the dimensionless ma
parameterm), assuming that one knows the initial valuem1
of the dimensionless mass parameter.

For other purposes, one might know the decay time
from it want to get a relationship between the oscillaton m
M and the dimensionless mass parameterm. For this pur-
pose, it is helpful to define from the decay time the lar
dimensionless parameter@not the samea as them-dependent
constant defined in Eq.~118!#

a[S 16

a4QD 1/3S t2t1

tPl
D 2/3

@1. ~158!

It is also helpful to define a new dimensionless mass par
eter

n[
M

@4a4QtPl
2 ~ t2t1!#1/3

, ~159!

which depends on the oscillaton massM and on the decay
time t2t1 but not on the massm of the scalar field as the
other dimensionless mass parameterm5Mm does.

Then, for example, Eq.~157! becomes

m'n$@ ln~r 1q!#42@ ln~r 1q1!#4%1/3, ~160!

and Eq.~154! becomes

r

~ ln r !3
5s5

an2

m2 . ~161!

For s@1, this solution to this equation is very roughly

r;s~ ln s!35
an2

m2 S ln
an2

m2 D 3

. ~162!

Now we can insertr from Eq. ~162! and the definition of
q from Eq. ~155! into Eq. ~160! to get the following rough
explicit algebraic relation betweenm, m1, andn for fixed t
2t1, and hence for fixeda defined by Eq.~158!:

S m

n D 3

;H lnFan2

m2 S ln
an2

m2 D 3

1
m4

aC
ea/mG J 4

2H lnFan2

m2 S ln
an2

m2 D 3

1
m1

4

aC
ea/m1G J 4

. ~163!

However, I should note that although this relation is a go
approximation to Eq.~160! whenm is very small, it can be
off by about 20–30 % whenm is large.

For a/m1,a/m! ln a, so that the classical decay dom
nates, this relationship can be solved explicitly forn to give

n'
aCam

4~m4ea/m2m1
4ea/m1!

. ~164!
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In this limit, this Eq.~164! is actually a better approximatio
to Eq. ~160! than is Eq.~163!. At the other extreme, for
a/m@ ln a, so that the quantum annihilation dominates d
ing most of the decay, this relationship can also be sol
explicitly for n to give a fairly accurate approximation to Eq
~160!, namely

n'a24/3m7/3S 12
m4

m1
4 24

m

a
ln

m4

aCD 21/3

. ~165!

In between these two extremes, i.e., fora/m; ln a, I do not
see how to give any simple expression that would solve
plicitly for either m or n in terms of the other~say for fixed
a andm1), though of course one could solve Eqs.~160! and
~161! numerically for eitherm or n in terms of a specific
value of the other, for fixed decay timet2t1 and hence for
fixed a given by Eq.~158!.

Let us put in some numbers for these quantities. If
takem1 to be the maximum mass of an oscillaton given
@9#, namelym150.607, then we get

q1[
m1

4

aC
ea/m1'1.4831019. ~166!

If we take the oscillaton decay timet2t1 to be the presen
age of the universe, about 13.7 billion years or 8.
31060tPl in Planck units, then

a[S 16

a4QD 1/3S t2t1

tPl
D 2/3

'3.6831039, ~167!

or lna'91.10.
In the previous paragraph it was noted that Eq.~164! ap-

plies for a/m! ln a and that Eq.~165! applies for a/m
@ ln a, so these inequalities are saturated and one hasa/m
5 ln a at m'0.433. Therefore, sincem cannot be much
larger than this value, one never really has the validity of
inequality a/m! ln a, but in actuality Eq.~164! is a good
approximation to Eq.~160! for ea/m!a, and indeed atm
5m1, one hasea/m/a'4.44310212!1.

However, one must still remember that Eq.~160!, or
equivalently Eq.~156! or Eq.~157!, are valid approximations
only to the extent that Eqs.~122! and~139! are valid for the
classical and quantum decays ratesPc and Pq respectively.
In this paper these formulas were derived under the assu
tion thatm!1, so they are not likely to be accurate for th
small m values whereea/m!a, particularly for Pc with its
very strong dependence onm. Hence the formulas used her
for when the classical decay appears to dominate shoul
taken with a big grain of salt, as merely provisional formul
that might give some rough qualitative indication of the tr
quantitative behavior.

Nevertheless, to get some idea of this rough qualitat
behavior, let us for now assume that Eqs.~122! and~139! are
valid for all m less than its maximum value, at, say,m5m1
50.607, and put in some various possible values form, m,
and/orM.
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For example, taking the example used by Seidel and S
@1# in which the scalar field mass is typical of that of a
axion, m* 51025 eV/c2 or m'1.51931010 s21'8.19
310234mPl , then ln(gmPl

2 /m2)'146.564, so one finds tha
Pc5Pq at x'183.031, orm'0.2154~if the formulas above
really apply to this large a value ofm), which corresponds to
an oscillaton mass in time units ofM'1.418310211 s or an
oscillaton mass in conventional units ofM* '5.72631027g
50.9585M % ~about 96% of the mass of the earth!.

For this oscillaton, assuming that the equations above
apply for m'0.2154 even though this is not much smal
than unity, one gets that the total power emitted would
P5Pc1Pq'5.3310272, and the logarithmic rate of de
crease of the mass would be2d ln M/dt'3.7310261 s21.
The oscillaton would contain about N5M* /m*
5(mPl /m)2m'3.231065 scalarons, and so in each perio
of oscillation of the oscillaton, there would be abo
(2p/3)(mPl /m)2Pc'8.331026 scalarons emitted~each of
energy roughly 3m* c2) and about (2p)(mPl /m)2Pq'2.5
31025 gravitons emitted~each of energy roughlym* c2).
That is, one would need to wait on average about 120
periods of oscillation between the emission of success
scalarons, and about 80 000 periods of oscillation betw
the emission of successive pairs of gravitons~since they
come out predominantly in pairs, with the pair having tw
thirds the energy of a typical scalaron that is emitted!. There-
fore, although this oscillaton is not absolutely stable, for
tronomical purposes it is very nearly stable.

If this oscillaton with m'0.2154 had actually decaye
from m5m150.607, that would have taken a timet2t1
;1051 yr, again using Eqs.~122! and~139! outside their true
range of validity just to give a qualitative answer.

On the other hand, if an oscillaton with this value of t
scalar field mass,m* 51025 eV/c2, were to have started a
m150.607 at the beginning of the universe and had deca
up until its present age, it would now havem'0.459~again
taking the classical decay rate formula outside its range
validity, m!1). But even though this calculated value form
today is not likely to be actually correct, it is interesting th
it is significantly below the initial value. Thus if this result
at least qualitatively correct, an initially maximum-mass o
cillaton with this value of the scalar field mass would ha
decayed by a significant amount during a time comparabl
the age of the universe.

To take a more extreme example, if we imagine that th
is a scalar field~quintessence?! of natural frequencym that
has the value of the current Hubble expansion rate,H0
'2.3310218 s21'1.24310261mPl , which corresponds to
m* c2'1.51310233 eV, then ln(gmPl

2 /m2)'274.678, so
thenPc5Pq'43102129 at x'314.945, orm'0.1252, giv-
ing an oscillaton mass in time units ofM'5.431016 s
'1.7 billion years, or an oscillaton mass in convention
units of M* '2.231055g51.131022M ( ~of the same order
of magnitude as that of all the observable galaxies in
universe, by the same coincidence that this mass is rou
within a factor of 10 or so of what is needed to close t
universe!. For this example, one would need to wait on a
erage about 1800 000 periods of oscillation between
02300
en

id
r
e

0
e
n

-

-

d

of

t

-

to

e

l

e
ly

-
e

emission of successive scalarons, and about 1200 000
ods of oscillation between the emission of successive pair
gravitons.

If we took an oscillaton with a scalar field of thism
5H0, started it withm150.607, and applied the formula
above, we would find that during the age of the universe
would have hadm decay only by about 6.3310222, an in-
significant reduction in its value. Besides the usual cav
about the inapplicability of Eq.~126! to this largem value—
note that Eq.~127! does not apply here, since in this case t
two terms in Eq.~126! are very nearly equal—there is als
the error from the fact that the age of the universe cor
sponds to only about 0.99 of a radian of the phase of
oscillation of an oscillaton with a scalar field mass equal
the current value of the Hubble constant, whereas the for
las above apply only for time periods containing many os
lations.

For values ofx smaller than the solution of Eq.~151! or
~152!, so thatm is larger than the corresponding criticalm
value for thatm/mPl , then the classical decay rate dominat
~i.e., for large oscillaton masses!. On the other hand, for
values ofx larger than the solution of Eq.~151! or ~152!, so
that m is smaller than the corresponding criticalm value for
thatm/mPl , then the quantum decay rate dominates~i.e., for
small oscillaton masses!.

It is interesting that even with perhaps about the smal
conceivable value of the scalar field mass in the present
verse, that of the Hubble constant, the quantum emiss
dominates over the classical emission whenm is only as
small as about 1/8~and of course for all smaller values o
m). That is, for almost any conceivable oscillaton in t
present universe, if the dimensionless mass parameterm is
smaller than roughly 1/8, the classical emission of sca
waves would be even less than the tiny quantum emissio
gravitons from the annihilation of pairs of scalar particles
the oscillaton. This illustrates how rapidly the classical em
sion drops asm is made small.

When the mass of the scalar field is much smaller than
Planck mass, as it must be for one to have nearly-Newton
oscillatons containing a large number of scalar particles, a
implicitly assumed in the analysis above, then by Eq.~151!
or ~152! one finds thatx is large in comparison with unity for
Pc5Pq . However, becausea is itself rather large, it is not
necessarily the case that this value ofx corresponds to a
small value ofm or even a value ofm less thanmmax.

For example, if Eq.~150! were valid not just for very
small m but also for values ofm up to mmax, and if we take
mmax50.607, then we would find thatPc5Pq at m5mmax
50.607 for m'9.47310210mPl or m* '9.47310210m* Pl
'1.1631010 GeV/c2. Assuming that this is correct, then fo
larger values of the scalar field mass, the quantum de
would dominate (Pq.Pc) for all values of m up to and
includingmmax. On the other hand, for smaller values of th
scalar field mass, which is more realistic if the scalar fie
is, say, an axion, then there is always a mass ra
@saymc,m,mmax with mc being given roughly bya/x with
x the solution of Eq.~151! or ~152! when it gives a small
2-23
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DON N. PAGE PHYSICAL REVIEW D 70, 023002 ~2004!
mc], where the classical emission dominates for the m
loss rate, though form,mc,mmax the quantum mass-los
decay rate would dominate.

It may be of interest to estimate the present upper bo
on m for oscillatons with scalar field masses other than
two examples above, assuming that the oscillatons forme
the early universe and have been decaying for a time c
parable to the age of the universe. The maximum pres
value ofm that they would have would be what they wou
have if they started with the maximum allowed initial valu
of m, which here I shall take to bem150.607, as above.
shall also assume that the scalar field mass energy ism* c2

!1010 GeV, so that the decay fromm5m1 within the
present lifetime of the universe would be in the regim
where the classical decay dominates~see below for more
details on this! and where I shall assume that Eq.~126!
holds.

Then if I usex[a/m defined by Eq.~148!, one gets~with
a new use fory)

ex

x4 'y ~168!

where for this section I shall define
d

xi
is
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y[
C

a3 @m~ t2t1!1q1#

'4.067 59531034S m* c2

eV D S t2t1

1.3731010 yr
D

19.188 61931020 ~169!

~not the samey that denoted the rescaled imaginary rad
coordinate in Sec. VIII!.

An explicit approximation that solves Eq.~168! for x in
terms ofy to at least 8-digit accuracy is

x' ln y

14 ln„ln y14 ln$ ln y14 ln@ ln y14 ln~ ln y14 lnx1!#%…,

~170!

where

x1[
a

m1
'64.965, ~171!

4 lnx154 ln~a/m1!'16.695. ~172!

Then we get
m'
39.433 795

ln y14 ln„ln y14 ln$ ln y14 ln@ ln y14 ln~ ln y116.695!#%…
. ~173!

However, Eq.~168! itself is not that accurate, since it was derived on the assumption of the accuracy of Eq.~126!, which
is in doubt, since that equation was derived form!1, whereas here form* c2!1010 GeV, one getsm in the range roughly
between 0.3 and 0.6, which is not much less than unity.

Once we have an estimate form ~no doubt rather crude, since it does not givem!1 where it would be valid!, or for the
maximum value ofm, as a function of the scalar field mass, we can easily get the oscillaton massM5m/m in time units or
M* 5\cm/(Gm* ) in conventional mass units. In terms of the solar massM ('1.98931033g'0.913731038m* Pl , one can
use Eq.~4! to write

M* '1.336 337 63310210M (S 1 eV

m* c2D m. ~174!

Combining this with Eq.~173! then gives

M* '
5.269 686 4331029M (@~1 eV!/~m* c2!#

ln y14 ln„ln y14 ln$ ln y14 ln@ ln y14 ln~ ln y116.695!#%…
, ~175!
d

wherey is given by Eq.~169!. This would be the estimate
value for the oscillaton mass if it started atm150.607 and
would be an upper limit for the mass if 0.607 were the ma
mum value ofm at which it could have started. Again, th
formula is applicable form* c2!1019 eV ~where the classi-
cal decay dominates for an oscillaton starting withm1
-

50.607 and decaying for up to 13.7 billion years!, and it also
assumes the dubious correctness of Eq.~122! for the result-
ing fairly large values ofm as given by Eq.~173!.

For example, if we letm(m* c2) be the value ofm that an
oscillaton of scalaron mass-energym* c2 would decay to,
from m150.607, in a time of 13.7 billion years, then we ha
2-24
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CLASSICAL AND QUANTUM DECAY OF . . . PHYSICAL REVIEW D 70, 023002 ~2004!
shown above thatm(1025 eV)'0.459. We can also readil
calculate the following values ofm(m* c2) for other values
of m* c2:

m~10235 eV!'m124.41310224,

m~10230 eV!'m124.41310219,

m~10225 eV!'m124.41310214,

m~10220 eV!'m124.4131029,

m~10215 eV!'m124.4131024,

m~10210 eV!'0.534,

m~1025 eV!'0.459,

m~1 eV!'0.402,

m~105 eV!'0.358,

m~1010 eV!'0.323,

m~1015 eV!'0.295. ~176!

Similarly, we can calculateM* (m* c2), the value ofM*
that an oscillaton of scalaron mass-energym* c2 would de-
cay to, fromm150.607 and

M* 15
\cm1

Gm*
'8.111310211M (

1 eV

m* c2
, ~177!

in a time of 13.7 billion years, as having the following va
ues:

M* ~10235 eV!'8.11131024M ( ,

M* ~10230 eV!'8.11131019M ( ,

M* ~10225 eV!'8.11131014M ( ,

M* ~10220 eV!'8.1113109M ( ,

M* ~10215 eV!'81055M ( ,

M* ~10210 eV!'0.7133M ( ,

M* ~1025 eV!'6.12831026M ( ,

M* ~1 eV!'5.375310211M ( ,

M* ~105 eV!'4.790310216M ( ,

M* ~1010 eV!'4.322310221M ( ,

M* ~1015 eV!'3.938310226M ( . ~178!

These are either the estimates for the masses, if the o
latons started 13.7 billion years ago withm50.607, or are
02300
il-

estimates for the upper bounds of the oscillaton masse
0.607 is merely an upper bound on the initial value ofm.

XI. QUANTUM DECAY WHEN THE PARTICLE NUMBER
GETS SMALL

When m!1 and when Eq.~150! gives Pc /Pq!1, then
the quantum mass-loss rate dominates and is given to g
accuracy by Eq.~139!, but only so long as the number o
scalar particles in the oscillaton,

N'
M*
m*

5
c5M

\Gm
5

c5m

\Gm25
mPl

2

m2
m, ~179!

is large in comparison with unity.
That is, the quantum mass loss rate dominates an

given to good accuracy by Eq.~139! if

m2

mPl
2

!m,mc'
a

x
;

a

ln~gmPl
2 /m2!

'
19.716 897 598 580 082

61.7691 ln~eV/m* c2!
!1. ~180!

The right-hand side of this requirement is actually a
stronger than what is needed, which is that bothm,mc and
thatm!1, but it is not really necessary thatmc!1. We may
note that for this inequality to have any range of validity f
m, we needm!mPl , which we have been assuming throug
out this paper and shall continue to assume.

When an oscillaton is decaying, it will eventually g
down to having a small numberN of scalar particles, and Eq
~139! will cease to be accurate. In principle one could so
the N-body Schro¨dinger equation with Newtonian attractiv
potentials between theN scalar particles for the ground-sta
wave function~ignoring for the moment the annihilation
into gravitons! and then calculate the overlap between tw
particles to get the two-particle annihilation rate into tw
gravitons. However, I did not do this calculation forN.2
and am not familiar with the literature where it might ha
been done.

Just as the annihilation rate for largeN goes as the fifth
power ofm and of N, one would also expect that the ann
hilation rate for a small numberN would also decrease rap
idly as N is reduced, reaching a minimum forN52 ~if one
can reach this number, though if one has an odd num
when N is somewhat larger, and if the two-body annihil
tions dominate so that the scalar particles predominantly
nihilate in pairs, then one would most likely end up with
three-particle state before the final decay to two gravito
and one free scalar particle!.

So if the oscillaton decays down to two scalar partic
before annihilating completely, the decay of the final tw
particles is likely to take more time than the entire dec
down to that point.

The final annihilation rate is easily calculable from usi
the ground-state solution of the two-particle Schro¨dinger
equation. One readily gets that the probability density
2-25
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one of the particles to be at the location of the other,
quantity that takes the role of the number densityn in Eq.
~133!, is

n5
1

4p

m9

mPl
6 c3

, ~181!

continuing to usem with units of inverse time. Then by Eq
~133!, the annihilation rate per time~for the two particles to
annihilate! is

R5
m11

2mPl
10

. ~182!

If one uses the first Eq.~138! to convert this to the quan
tum expectation value of a mass-loss rate and uses the
that for this 2-particle state,m52(m/mPl)

2, one gets

Pq[2Ṁquantum52
dM

dt
52

dm

d~mt!

5S m

mPl
D 12

5
\6G6

c30
m125

1

32

m2

mPl
2

m5

'3.670 759 777 914 995 479QtPl
2 m2m5.

~183!

That is, the actual rate at which the 2-particle state ann
lates is a factor of about 3.67 times what one would get
blindly extrapolating down toN52 particles the rate given
by Eq. ~139!, which actually applies only for very man
particles,N@1 ~as well asm!1). Equation~183! contains
the largest positive power of\ ~6!, the largest positive powe
of G ~6!, and the largest negative power of the speed oc
~30!, that I can ever recall seeing in a formula, though I a
not used to using formulas in which I have not just set\
5G5c51.

If instead we take the reciprocal of the annihilation rateR
given by Eq.~182! as the expectation value of the decay tim
from the 2-scalar-particle state to the 2-graviton state,
also as an estimate for the total decay time for an oscilla
~since it presumably dominates over the time to get down
2 particles, assuming that the number of particles is e
when one gets close enough to the 2-particle state that
can ignore the probability that an odd number of scalar p
ticles will annihilate!, then we get a total decay time of

tdecay'1/R5
2mPl

10

m11
5

2c25

\5G5m11
5

2\6c3

G5m
*
11

52tPlS m* Pl

m*
D 11

.

~184!

For example, if we take a typical axion mass,m*
51025 eV/c2, then Eq.~183! gives Pq'9.113102398 and
Eq. ~184! gives tdecay51.88310346 yr. To take the more ex-
treme example in whichm has the value of the curren
Hubble expansion rate, H0'2.3310218 s21'1.24
310261mPl , then Eq.~183! gives Pq'1.33102731 and Eq.
~184! gives tdecay'1.3310680 yr.
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Thus the complete quantum decay of an oscillaton
take a very long time and probably would not be a suita
subject for an experimental Ph.D. thesis. On the other ha
the slowness of both the classical and quantum decay
oscillatons of light scalar fields shows that if they form in t
universe, they can last for astronomically long times.

XII. QUANTUM DECAY OF MULTIPLE-FIELD
OSCILLATONS

The analysis above was for oscillatons having just o
real massive scalar field, minimally coupled to gravity. A
though in this paper we shall not go beyond minimal co
pling or consider other scalar-field self couplings~other than
mass terms!, we started with a general discussion of an ar
trary number of minimally coupled massive scalar fields a
their classical decay rates, so it would be of interest to
also how the quantum decay goes when there are more
one scalar field.

When the scalar fields all have different masses, then
separate decay processes are incoherent, so the rates fo
just add, with the rate for each~in the nearly-Newtonian
limit ! going as the spatial integral of the square of the m
density for that scalar field, with the coefficient as giv
above.

This is at least so if we average over times long in co
parison with the reciprocals of the differences of the sca
field masses in frequency units, which will hereby
assumed—if any mass differences are short in compar
with the reciprocal of the decay time of interest, then for th
time we may consider these scalar fields as having the s
mass. Intermediate cases in which the decay times of inte
are comparable to the reciprocal of any mass differences
not be discussed here.

Therefore, we may consider separately all of the fields
one mass~or one range of masses if the range is much l
than the reciprocal of the decay time being considered!.

The simplest case is that in which there are two equ
mass scalar fields that are oscillating at 90° out of pha
This is equivalent to one complex scalar field that has
global U(1) symmetry and hence a conserved particle nu
ber that presumably cannot decay away, at least by pertu
tive quantum effects such as what DeWitt@20# used to cal-
culate the annihilation of scalar particles into gravitons.

Presumably there are nonperturbative gravitational effe
in which a nonzero particle number, though conserved by
globalU(1) symmetry perturbatively, forms or tunnels into
real or virtual black hole that then decays into a differe
particle number~e.g., zero!. Thus at some level the globa
U(1) invariance is surely broken by gravity. In Ref.@21# we
used a model of gravitational foam to estimate that this r
would be disastrously high for point scalar particles, sugge
ing that perhaps no such particles could exist in our unive
If so, this would of course rule out the whole idea of osc
latons~unless they were made of composite scalars that
not pointlike down to near the Planck scale!. But since our
ideas were admittedly rather speculative, here I shall ass
that the nonperturbative effects violating globalU(1) invari-
ance are suppressed to give rates much smaller than
2-26
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particle-antiparticle annihilation into gravitons that is a
lowed by the perturbative analysis that preserves the glo
U(1) invariance.

If this is indeed so, when there are two equal-mass sc
fields that are oscillating at 90° out of phase, effectively
decay of each individual scalar field must destructively int
fere so that the total decay rate is zero.

At first this sounds impossible, since if one has a st
with N1 scalar particles of the first field andN2 of the sec-
ond, then the final state in which two particles of the fi
field annihilate into gravitons would haveN122 particles of
the first field andN2 of the second, which would be orthogo
nal to the final state in which instead two particles of t
second field annihilate into gravitons, leavingN1 particles of
the first field andN222 particles of the second field. There
fore, how could there possibly be any destructive interf
ence to prevent the particles from annihilating?

However, this objection can be circumvented if the qua
tum state of the oscillaton does not have a definite numbe
particles of both kinds.~Indeed, that would have to be th
case if they are oscillating 90° out of phase, since phase
some sense a conjugate variable to particle number. Note
the total particle number could be precise, so that the t
phase is undefined, so long as the individual particle nu
bers are sufficiently indefinite that the relative phase betw
the two fields is well defined.! For example, the quantum
state for the particles could be a coherent state that is
eigenstate of the annihilation operators for the two kinds
particles.

Then in the case that two particles of the first real sca
field decay, although the expectation value of the numbe
particles of that field would have been reduced by two,
final state would not need to be orthogonal to the state
would result if instead two particles of the second real sca
field were to annihilate. Therefore, the two decay proces
can interfere. When the two scalar fields oscillate 90° ou
phase, their combination is equivalent to a single comp
scalar field with aU(1) symmetry that prevents perturbativ
quantum decay into gravitons.

The gravitational signal of thisU(1) symmetry would be
that the stress-energy tensor would have no oscillations
one would be back to the case of a boson star that seem
be completely stable~except presumably to nonperturbativ
tunneling processes in which some or all of the partic
tunnel into a black hole, or a virtual black hole, that wou
either transcend or violate what would otherwise be the c
servation of the globalU(1) charge@21#!.

Now consider the case in which there are an arbitr
number, sayn, scalar fields at some massmI . We shall con-
tinue to assume the nearly-Newtonian limit, in which t
dimensionless rescaled real massive scalar fieldsf IJ , de-
fined by Eq.~6!, have the form given by Eq.~17! in terms of
the complex dimensionless scalar fieldsc IJ that are very
slowly varying spatially, and even more slowly varying tem
porally, if at all, on the length scalec/mI and on the time
scale 1/mI . Then the real scalar fieldsf IJ are essentially
oscillating nearly periodically with frequencymI .

When two scalar particles annihilate into~predominantly!
two gravitons, the graviton wavelengths are roughlyc/mI ,
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which is a much shorter length scale than the length scal
the variation of the fieldsf IJ , so each region of size of th
order ofc/mI annihilates essentially independently.~That is,
the quantum states of the outgoing gravitons are essent
orthogonal for the annihilation in the separate regions, if o
uses graviton wavepackets that have sizes more nearly c
parable to their wavelengths than to the much bigger size
the oscillaton.! Thus we can just add up the annihilation rat
in each region, effectively getting an integral over the osc
laton of the annihilation rate in each region.

Since we shall only be interested in the annihilation ov
many oscillations of the oscillaton, we shall only consid
the annihilation rate averaged over many such periods.

In each region of size somewhat bigger thanc/mI where
we are calculating the average annihilation rate, each of
real scalar fields of massmI is oscillating essentially with
constant amplitude and period, staying in phase with e
other scalar field over a time long compared with the os
lation period that is very nearly 2p/mI . In this region, we
can perform anO(n) transformation of then scalar fields so
that all but two of the fields are transformed to zero for t
time of interest~to the accuracy of the nearly-Newtonia
approximation!, and the two that remain nonzero are osc
lating 90° out of phase, say

f15(
J

O1Jf IJ'2c1cos@mI~ t2t0!#, ~185!

f25(
J

O2Jf IJ'22c2sin@mI~ t2t0!#, ~186!

and

f i5(
J

OiJf IJ'0 ~187!

for i .2, with real positive amplitudesc1 and c2 that are
nearly constant over the spacetime region where the ti
averaged annihilation rate is being calculated. Without l
of generality we can choose theO(n) transformation to give
c1>c2.

I am not bothering to include the subscriptI, which tells
what the massmI is, on what I am callingf i . Indeed, the
fact that I am givingf i only a single subscript is used here
distinguish it from theO(n)-related scalar fieldsf IJ without
having to put primes onf i as I would have if it had the sam
number of indices asf IJ .

We can also define theO(n)-transformed complex scala
fields

c15(
J

O1Jc IJ'c1eimI t0, ~188!

c25(
J

O2Jc IJ'2 ic2eimI t0, ~189!

and
2-27
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c i5(
J

OiJc IJ'0 ~190!

for i .2.
Now for the quantum analysis, we can replace the t

real scalar fields with the one complex scalar field

F5
1

A2
~f11 if2!

'
1

A2
@~c11 ic2!e2 imI t1~ c̄11 i c̄2!eimI t#

'
1

A2
@~c11c2!e2 imI (t2t0)1~c12c2!eimI (t2t0)#

5F1e2 imI t1F2eimI t ~191!

~with F not to be confused with the original real scalar fiel
F IJ or the slowly varying complex dimensionless sca
fieldsc IJ that were used to represent each dimensionless
scalar fieldf IJ ; those all had subscripts that will not appe
on the single rapidly varying complexF that combines the
two rapidly varying real scalar fieldsf1 andf2).

Because of theU(1) invariance of the field equations an
stress-energy tensor of the two nonzero real scalar fieldsf1
and f2, which are represented by this complex scalar fi
F, there is a conserved globalU(1) charge. The part of the
classical fieldF that has the phase factore2 imI (t2t0) and the
coefficientF1 can be said to represent particles with po
tive globalU(1) charge and with particle number density

nI 1'
mIc

2

4pG\
uF1u2'

mIc
2

4pG\ Uc11c2

2A2
U2

'
mIc

2

4pG\ Uc11 ic2

A2
U2

~192!

and the part of the classical fieldF that has the phase facto
e1 imI (t2t0) and the coefficientF2 can be said to represen
antiparticles with negative globalU(1) charge and with an
tiparticle number density

nI 2'
mIc

2

4pG\
uF2u2'

mIc
2

4pG\ Uc12c2

2A2
U2

'
mIc

2

4pG\Uc̄11 i c̄2

A2
U2

.

~193!

In the classical limit that we are assuming, we can expr
these number densities in terms of the mass density
mean-squared pressure of the fields of massmI in the fol-
lowing way:

By using Eq.~26! for G00'8pGr or Eq.~37! directly for
the mass densityr ~which is nearly constant in time!, and
splitting it up into the contributions from the fields of th
different massesmI , one gets
02300
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r I'
mI

2

4pG (
J

uc IJu25
mI

2

4pG
~ uc1u21uc2u2!

'
mI

2

4pG
~c1

21c2
2!'

mI\

c2 nI5mI* nI , ~194!

where

nI5nI 11nI 25
mIc

2

4pG\
~c1

21c2
2!5

mIc
2

4pG\ (
J

uc IJu2

~195!

is the total number density of all the scalar fields of massmI ,
or, equivalently, of both the particles and the antiparticles
the single complex scalar fieldF that classically represent
all of the real fields~i.e., we are ignoring vacuum fluctua
tions in the transformed scalar fieldsf i with i .2 that are
classically zero!.

Similarly, by using Eq.~28! for Gi j '(8pG/c2)Pd i j for
the oscillating nearly-isotropic pressureP, and also splitting
it up into the contributions from the fields of the differe
massesmI , one gets

PI'2
mI

2c2

8pG (
J

~c IJ
2 e22imI t1c̄ IJ

2 e2imI t!. ~196!

In this case, if one takes the time-average of the square o
total pressure of all then scalar fields of massmI ~or equiva-
lently of the single complex scalar fieldF), one gets

^PI
2&'

c4

2 S mI
2

4pGD 2U(
J

c IJ
2 U2

'
c4

2 S mI
2

4pGD 2

uc1
21c2

2u2

'
c4

2 S mI
2

4pGD 2

~c1
22c2

2!2'2mI
2\2nI 1nI 2 .

~197!

BecausePI is oscillating sinusoidally, its maximum value
say PImax ~as a function of time at each spatial location! is
^2PI

2&1/2.
Then from Eqs.~194!, ~195!, and~197!, one can solve for

the number densities of both the particles and the antip
ticles of the complex scalar fieldF of massmI :

nI 1'
1

2mI\
~r Ic

21Ar I
2c42^2PI

2&!, ~198!

nI 2'
1

2mI\
~r Ic

22Ar I
2c42^2PI

2&!,

~199!

where^2PI
2& is given in terms of thec IJ’s by Eq. ~197!.

Another way to express this relationship, usingPImax

5^2PI
2&1/2, is to note that

r Ic
21PImax5mI\~AnI 11AnI 2!2, ~200!

r Ic
22PImax5mI\~AnI 12AnI 2!2. ~201!
2-28
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Thus whenPImax50, there are just particles but no antipa
ticles of the complex scalar field, and whenPImax5r Ic

2,
there are equal numbers of particles and antiparticles. T
latter possibility is the case when there is only one real sc
field, in which case it is a fiction to say that there is t
complex scalar fieldF at all, but the classical real scala
field does act as if it were composed of equal numbers
particles and antiparticles of the fictitious complex sca
field, nI 15nI 25(1/2)nI . ~Of course, then there are n
vacuum fluctuations of the nonexistent imaginary compon
of the complexF, but here we are taking the classical lim
and are only considering the effects of real particles and
of any vacuum fluctuations.!

By making the arbitrary requirement that theO(n) trans-
formation lead to realc1>c2>0 for the coefficients of the
two nonzero scalar fields after the transformation, we h
made an arbitrary choice of what to call particles and wha
call antiparticles~with the number density of particles nev
less than the number of antiparticles by this choice! and
hence of which expression in Eqs.~198! and ~199! has the
minus sign in front of the square root.

Now when we have the possibility of both particles a
antiparticles of the complex scalar fieldF, theU(1) invari-
ance prevents the annihilation of a pair of particles or o
pair of antiparticles~at least at the perturbative level! but
allows the annihilation of a particle-antiparticle pair. On t
other hand, the particle-antiparticle annihilation cross-sec
is twice that given by Eq.~131! @20# for two real scalar field
particles, i.e.,

s125
4pG2m

*
2

c3v
5

4p\2G2m2

c7v
. ~202!

This means that when we haveNI 1 particles andNI 2

antiparticles, both of these numbers decrease at the rate

2
dNI 1

dt
52

dNI 2

dt
5E d3xnI 1nI 2s12v

5
4p\2G2mI

2

c7 E d3xnI 1nI 25
pG2

c7 E d3x^2PI
2&

5
pG2

c7 E d3xPImax
2 5

mI
4

16pc3E d3xU(
J

c IJ
2 U2

.

~203!

The total number decay rate is of course twice this. Wh
nI 15nI 2 , so thatPImax5r Ic

2, then the total rate agree
with the integral of Eq.~134!.

When we multiply the total number decay rate for ea
massmI ~which is in frequency units! by the massm* I
5\mI /c2 in conventional units and sum over allI, we get
the total mass loss rate by scalar particle annihilation in c
ventional mass units:
02300
is
ar

f
r

nt

ot

e
o

a

n

n

-

2
dM*

dt
5

\

8pc5 (
I

mI
5E d3xU(

J
c IJ

2 U2

. ~204!

We can then multiply this byG/c3 to get the dimensionles
rate of decrease ofM5GM* /c3, the mass in units of time

2
dM

dt
5

\G

8pc8 (
I

mI
5E d3xU(

J
c IJ

2 U2

. ~205!

XIII. QUANTUM AND CLASSICAL EMISSION
FROM THE SIMPLEST MULTIFIELD

SPHERICAL OSCILLATONS

Now consider the particular case in which all of the re
scalar fields have the same mass, so we can drop the
script I that labels the mass. Furthermore, restrict attention
the case in which all of the real scalar fields are oscillat
with the same quasistationary nodeless spherically symm
ric mode ~that of the simplest spherical oscillaton, exce
that now there are more than one real scalar field that ma
oscillating with different phases!.

By the argument above, we can perform anO(n) trans-
formation so that only two real scalar fields are then os
lating with nonzero amplitude and are 90° out of phase.
the assumption that all of the scalar fields are oscillating
the same mode~up to phase!, this O(n) transformation is
constant over space, and the ratio of the amplitudes of
two resulting nonzero modes are also constant. By the p
cedure above, it can be replaced by a single complex fie

Let N1 be the number of particles of the complex sca
field, N2 be the number of antiparticles, andN5N11N2 be
the total number of particles and antiparticles. Then if thec
given by Eq.~76! ~real in this case! represents the simples
spherical oscillaton with one real scalar field describ
above, the complex oscillaton with two real scalar fields a
the same total mass is represented~after a shift in the origin
of time! by

c15
AN11AN2

A2N
c, ~206!

c252 i
AN12AN2

A2N
c. ~207!

Then the complex scalar field is given by

F5
1

A2
~f11 if2!

5
1

A2
@~c1e2 imt1c̄1eimt!1 i ~c2e2 imt1c̄2eimt!#

5SAN1

N
e2 imt1AN2

N
eimtDc. ~208!

Now, by using Eq.~203! and doing an analysis analogou
to that which led to Eq.~139!, one can show that the quan
2-29
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tum annihilation of scalaron particle-antiparticle pairs for t
spherically-symmetric nodeless complex oscillaton gives

2
dN1

dt
52

dN2

dt
52QtPl

10m11N3N1N2 , ~209!

where the numerical constantQ is given in Eq.~142!.
These equations have the obvious constant of motion

ing the number of particles minus the number of antip
ticles, say,

N0[N12N2 . ~210!

Then, since the total number of particles isN5N11N2 ,
one can write

N15
1

2
~N1N0!, ~211!

N25
1

2
~N2N0!. ~212!

Similarly, one can write the dimensionless mass para
eter of the classical configuration as

m[Mm5tPl
2 m2N ~213!

and also define a constant dimensionless mass paramet

m0[tPl
2 m2N0 . ~214!

As bothN1 andN2 decay away at equal rates, the osc
laton asymptotically approaches the configuration withN
5N15N0 andN250, which is a static boson star withm
5m0. Thusm0 is the asymptotic~minimum! value ofm.

In terms ofN andN0, Eq. ~209! gives

2
dN

dt
5QtPl

10m11N3~N22N0
2! ~215!

from the annihilation of scalaron particle-antiparticle pa
into pairs of gravitons~i.e., ignoring the classical emissio
into scalar radiation!.

Alternatively, we can write the evolution of the dimen
sionless mass parameter as

2
dm

dt
5QtPl

2 m3m3~m22m0
2! ~216!

from the quantum annihilation. This differential equation h
the algebraic solution

m22m0
2

m2 em0
2/m2

5e22QtPl
2 m3m0

4(t2t0) ~217!

wheret0 is an arbitrary constant of integration. Thus at la
times,m approachesm0 exponentially rapidly, and the con
figuration approaches that of a static boson star with the c
served number of particles.

It may also be of interest to give the decay rates from
classical emission of scalar radiation in this multifield ca
02300
e-
-

-

as

s

n-

e
e

with the simplest spherical configuration. By using Eq.~69!,
one can deduce that the classical scalar field emission l
to

2
dN1

dt
52

dN2

dt
'2C

mPl
6

m5

N1N2

N4
e2amPl

2 /m2N, ~218!

2
dN

dt
'C

mPl
6

m5

N22N0
2

N4 e2amPl
2 /m2N, ~219!

and

2
dm

dt
'Cm

m22m0
2

m4 e2a/m. ~220!

To get the totals for these rates, one must add the co
sponding expressions for the quantum rates from Eqs.~209!,
~215!, and ~216! respectively. For example, the total rate
which the mass~in time units! decreases is

2
dM

dt
52

dm

mdt
'C

m22m0
2

m4 e2a/m1QtPl
2 m2m3~m22m0

2!

5S C

m2M4 e2a/mM1QtPl
2 m7M3D ~M22M0

2!,

~221!

where M05m0 /m5tPl
2 mN0 is the asymptotic mass of th

final boson star in time units, and where the numerical c
stants C'3797 438, a'39.4338, andQ'0.008 513 224
were given to 19 decimal places in Eqs.~124!, ~123!, and
~142! respectively.

One can see that at late times, form0.0, asm approaches
very near tom0 , m2m0!m0

2/a, m approachesm0 exponen-
tially rapidly:

m;m01exp@2~Cm0
23e2a/m01QtPl

2 m2m0
4!2mt#.

~222!

Finally, if we use the scalar field mass in convention
mass units,m* 5\m/c2, and the oscillaton mass also in co
ventional mass units,M* 5c3M /G, then the total mass los
rate from the simplest spherical multiple-field oscillaton w
minimum conventional massM* 05c3M0 /G5N0m* , for
m* !M* !10210M (@(1 eV)/(m* c2)#, is

2
dM*

dt
'S C

\2c5

G3

1

m
*
2 M

*
4

e2a\c/(Gm
*

M
*

)

1Q
G5

\6c3 m
*
7 M

*
3 D ~M

*
2 2M

* 0
2 !. ~223!

Again may I remind the reader that the conventional m
m* of the scalar field is a quantum quantity with\ in it,
which is why there is an explicit\2 in the numerator of the
first ~classical! term for the mass decay rate~from scalar field
radiation!, to cancel the implicit\2 in the m

*
2 term in the

denominator. Similarly, in the second~quantum! term, once
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the implicit factor of\7 in them
*
7 term is taken into account

there is one positive power of\ appearing, as one woul
expect for this first-order quantum perturbative contribut
~the annihilation of pairs of scalarons into pairs of graviton!.

XIV. CONCLUSIONS

Oscillatons without aU(1) invariance~those without a
static geometry! are unstable both classically~to emitting
scalar waves! and quantum mechanically~to having sca-
larons annihilate into gravitons!. The classical rate dominate
for largem5Mm but drops very fast with decreasingm and
is nonanalytic atm50: Pc'(C/m2)e2a/m, Eq. ~122!, with
the numerical constantsC given by Eq.~124! anda given by
Eq. ~123!. The quantum rate also drops asm drops, but only
as a power law inm: Pq'Q(m/mPl)

2m5, Eq.~139!, with the
numerical constantQ given by Eq.~142!. The quantum rate
dominates form&1/8 for m*H0 ~the current Hubble expan
sion rate, a lower bound onm for any oscillaton existing in
our universe today!.

An oscillaton that starts atm1'mmax'0.607 @9# has a
significant drop inm ~more than 10%! over a lifetime com-
parable with the age of the universe ifm* c2*2
310211 eV or M* &3.6M ( . However, unlessm* c2*2.3
31013 eV52300 GeV or M* &1.8310224M ('3.5
3109g, in this decay timem does not decrease by more th
a factor of 2.

These numerical approximations are using formulas
rived in this paper for nearly-Newtonian configuration
m

z

02300
-
,

which havem!1. For accurate results for the not-too-sm
values ofm that would arise from the decay, within astro
nomical times, of oscillatons that started with the maximu
mass possible for any reasonable value of the scalaron m
one would need to extend the results derived here to
strong-gravity regime. This is research that shall be left
the future.

Multifield oscillatons @8#, in which different real scalar
fields of the same mass oscillate out of phase, do not de
away completely but instead asymptotically approach
stableU(1)-invariant configuration with a static metric~a
boson star!, at a rate given by Eq.~221! or ~223!.
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